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Abstract: Methods of dimension reduction are very helpful and almost a necessity
if we want to analyze high-dimensional time series since otherwise modelling affords
many parameters because of interactions at various time-lags. We use a dynamic
version of Sliced Inverse Regression (SIR; Li (1991)), which was developed to reduce
the dimension of the regressor in regression problems, as an exploratory tool for
analyzing multivariate time series. Analyzing each variable individually, we search
for those directions, i.e., linear combinations of past and present observations of the
other variables which explain most of the variability of the variable considered. This
can also provide information on possible nonlinearities. We apply a dynamic version
of SIR to multivariate physiological time series observed in intensive care.
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1 Introduction

Modern technical possibilities allow for simultaneous recording of many variables
at high sampling frequencies. Possibly there are interactions between the observed
variables at various time lags and we have to treat the data as multivariate time
series. Often, the data contain strong dynamic structures which are unknown in the
beginning.

In intensive care medicine for instance, physicians have to deal with a flood of high-
dimensional data describing the patient’s state. Vital signs of critically ill patients
are recorded in the course of time by clinical information systems (CIS). Altogether,
up to 2000 variables are reported. Thus, methods for compressing the information
provided by the CIS in a suitable way would be very helpful.

A model-based approach to dimension reduction which has been applied success-
fully for physiological variables (Gather et al. (2001)) is the application of dynamic
factor models. However, specification of a factor model needs a lot of assumptions.
Methods such as graphical models for multivariate time series (Dahlhaus (2000))
and a dynamic version of Sliced Inverse Regression (SIR; Li (1991)) can be used at
an early stage to explore the dynamic structure between the observed variables.

After briefly reviewing multivariate time series analysis in Section 2, we describe in
Section 3 how SIR can be applied to dynamic process data. In Section 4, we give
an application to multivariate time series of vital signs measured in intensive care
and compare the results with the results obtained by using graphical models.
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2 Multivariate Time Series Analysis

Consider a multivariate time series {x(t) = (x1(t), . . . , xm(t))′ : t = 1, . . . , T}, gen-
erated by a stochastic process {X(t) : t ∈ Z}, where X(t) ∈ R

m, t ∈ Z. In classical
time series analysis, the (time-lagged) relations between the variables are usually
assumed to be linear because of computational convenience and since the theory of
linear time series models is well established. Vector Autoregressive Moving Average
VARMA(p, q) models probably form the most common model class. These models
formally resemble multiple regressions. In a VARMA(p, q) model for a stochastic
process {X(t) : t ∈ Z} the influence of past observations and past shocks on the cur-
rent observation is modelled using weight matrices Φ1, . . . ,Φp,Θ1, . . . ,Θq ∈ R

m×m:

X(t) = Φ1X(t − 1) + . . . + ΦpX(t − p)

+Θ1ε(t − 1) + . . . + Θqε(t − q) + ε(t), t ∈ Z.

The unobservable shocks ε(t), t ∈ Z, are assumed to form a white noise process.
In most cases εt is assumed to be normally distributed. Several seemingly distinct
VARMA models can describe the same stochastic dependencies, i.e., the VARMA
representation of a stochastic process is not necessarily unique (see Reinsel (1997)
for details). In practice, often VAR(p) models (with Θi = 0, i = 1, . . . , q) are used
since we get tractable formulae for estimation and predictions and we can guarantee
uniqueness of the model in this way.

A basic interest in time series analysis is the prediction of future outcomes. In
intensive care, the primary task is the online detection of interesting patterns of
change in the data. The large number of unknown parameters needed for modelling
multivariate time series can cause problems since the estimates have to be based on
a large number of observations. Therefore, methods for dimension reduction could
be very helpful. However, for suitable dimension reduction we have to consider the
possibly time-lagged relations between the variables. Understanding these relations
will help to fit an appropriate model in some lower-dimensional space.

For instance, in Gather et al. (2001) a factor model with four latent factors is
constructed for a ten-dimensional time series of vital signs. This factor model is
based on an approach suggested by Peña and Box (1987). The observed multivariate
time series is assumed to be a linear transform of a lower-dimensional latent factor
process which progresses according to a stationary time series model. More exactly,
the analysis of Gather et al. assumes the factor process to follow a VAR(2) model
with independent components. Another approach to factor analysis is suggested by
Molenaar (1985). He assumes the observed time series to be a moving average of a
lower dimensional factor process which is modelled using a state-space model. This
is a simple example where a-priori information would be useful to specify a suitable
model form.

Assuming all interactions to be linear means a severe restriction which certainly
is not always appropriate. Linear time series models are not sufficient to describe
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all real-world phenomena. For this reason a couple of nonlinear models has been
suggested (Tong (1990)). A multivariate nonlinear autoregressive model of order p
can be written as

X(t) = h(X(t − 1)′,X(t − 2)′, . . . ,X(t − p)′, ε(t)′), t ∈ Z.

Here, the transfer function h : R
(p+1)m → R

m links the past and the present of
the process. It specifies the nonlinear influence of past observations on the present
observation. The specification of h is difficult. For p = 3 and a 10-dimensional time
series we get a 30-dimensional regressor space even if simultaneous interactions are
not considered. Hence, finding a suitable dimension-reducing subspace would be
very helpful.

In the following we select one variable, denoted by Y , and concentrate on the influ-
ence of the other variables, denoted by X, on this variable. Then we get a (possibly
nonlinear) transfer function model

Y (t) = g(X(t), . . . ,X(t − p), Y (t − 1), . . . , Y (t − p), ε(t)) (1)

where the innovations ε(t) form a white noise process. In this model usually it is
assumed that feedback is not present in the system, i.e. influence of Y on the ex-
planatory variables X is not assumed to exist and ε(t) is assumed to be uncorrelated
with X(t − j), j ≥ 0. Even in case of a single explanatory variable, i.e., univariate
X(t), finding a suitable transfer function and estimation of its parameters is diffi-
cult (Karlsen et al. (2000)). Hence, appropriate dimension reduction is crucial to
get an impression on the type of g. For example, a small number of linear combina-
tions (“directions”) of time lagged observations of the influential variables may be
sufficient to explain most of the variability in {Y (t) : t ∈ Z}.

3 Sliced Inverse Regression for Dynamic Data

Li (1991) proposes sliced inverse regression (SIR) as a tool for dimension reduction
in non-dynamic regression problems. The basic idea is that instead of taking Y =
g(X, ε), X = (X1, . . . , Xd)

′, one assumes that it is sufficient to consider a lower-
dimensional space – the so-called central dimension reduction (dr) subspace (Cook
(1996)) B of dimension r < d – such that there exists f : R

r+1 �→ R with

Y = f(β′
1X, . . . ,β′

rX, ε), where (2)

B = span[β1, . . . ,βr],

and B is a space of smallest possible dimension r such that (2) is satisfied. Hence, a
reduction of the regressor space from d to r dimensions is supposed to be possible.
SIR estimates B using information contained in an estimate of the inverse regression
curve E(X|Y ).

For given data (yi,x
′
i)
′, i = 1, . . . , n, xi ∈ R

d,yi ∈ R, SIR is performed in five steps:
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1. Standardization:

zi = Σ̂
−1/2

(xi − x), i = 1, . . . , n, where

Σ̂ =
n∑

i=1

(xi − x)(xi − x)′/n ,

x =
n∑

i=1

xi/n .

2. Slicing: distribute z1, . . . ,zn into H slices Sh, h = 1, . . . , H, according to
the order of the respective values of y1, . . . , yn; let nh denote the number of
observations in Sh.

3. Slice means: m̂h =
∑

Sh
zi/nh, h = 1, . . . , H.

4. PCA of slice means: ŜIR =
∑H

h=1 nhm̂hm̂
′
h/n with eigenvalues λ̂1 ≥ . . . ≥ λ̂d

and respective normalized eigenvectors η̂1, . . . , η̂d.

5. Estimate dr directions: β̂k = Σ̂
−1/2

η̂k, k = 1, . . . , r.

The number H of slices has to be chosen in advance. The reduced dimension r of B
can be estimated simultaneously, cf. Li (1991).

If we want to apply this procedure to multivariate time series, it has to be developed
further to take the dynamic structure of the data into account. Let (Y (t),X(t)′)′

denote the observation of (Y,X ′)′ at time t. In the following, a transfer function
model for the measurements of Y as given in (1) is assumed. Becker et al. (2001)
suggest to search for a dr subspace of the regressor space using a modified version
of equation (2):

Y (t) = f(β′
1X̃(t), . . . ,β′

rX̃(t), ε) ∀t,

where X̃(t) = (X(t)′, Y (t− 1),X(t− 1)′, . . . , Y (t− p),X(t− p)′)′ if we take p time
lags into account. The idea is to bind various lagged measurements of the variables
together, forming higher dimensional observations, and then to apply the original
SIR method to (Y (t), X̃(t)′)′. The number p of time lags has to be chosen appropri-
ately using preliminary information. Experience shows that for online monitoring
data observed in intensive care, p = 2 is sufficient (Gather et al. (2000)).

4 Application

In a given data situation, where we do not know beforehand about the association
structure between the variables but expect that there is some structure, we can apply
dynamic SIR as an explanatory tool. In Becker et al. (2001) a simulation study is



5

Figure 1: Graphical model for the hemodynamic system of one patient.
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performed for several linear and nonlinear VAR and dynamic regression models. It
turns out that dr subspaces can be discovered by applying dynamic SIR. To get
reliable results, for linear models time series with about 250 observations seem to
be sufficient, while for nonlinear models 3000 or even more observations are needed.
For a retrospective analysis of multivariate time series observed in intensive care this
does not pose a severe restriction since usually several thousands of observations are
available.

In the online-monitoring application in intensive care we are concerned with time se-
ries describing the hemodynamic system, consisting of arterial and pulmonary artery
blood pressures (diastolic, systolic, mean), denoted by APD, APS, APM, PAPD,
PAPS, PAPM, central venous pressure (CVP), heart rate (HR), blood temperature
(TEMP), and pulsoximetry (SP02). In Gather et al. (2001), graphical models for
multivariate time series are used to find relations between the variables. However,
such undirected graphical models based on graphical partial correlation analysis
accumulate the relations for all time lags and do not mirror causalities for instance.

Using dynamic SIR for multivariate time series gives an impression of the dynamics
in the relations between the variables. As an illustrative example, we apply graphical
models and the dynamic SIR procedure to a 10-dimensional time series of vital signs
observed for a critically ill patient. A total of 360 observation times is included in
the analysis. Figure 1 shows the graphical model for all vital signs derived from
analyzing the partial correlations.

We concentrate on the relations of APD to the other vital signs further on. Applying
dynamic SIR, we find a three-dimensional reduced subspace which is spanned by the
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directions d1
t , d2

t , d3
t

d1
t ≈ 1.31APMt − 0.57APSt + 0.47APDt−1 − 0.43APMt−1

d2
t ≈ 0.53APMt + 0.59SPO2t + 0.45APMt−1 − 0.52APSt−1

−0.62PAPDt−1 − 0.72TEMPt−1 − 0.52SPO2t−1

−0.57PAPDt−2 + 0.60PAPMt−2

d3
t ≈ −0.65PAPDt + 0.73PAPMt + 0.79APDt−1 − 1.04APMt−1

−0.54PAPMt−1 + 0.68PAPSt−1

In Figure 2 we provide a graphical illustration of these findings. We connect APD
to any of the other vital signs by a line if the simultaneous observation of the latter
has a high weight on one of the directions, and draw an arrow from the vital sign
towards APD if a past observation of the former has a large weight. The strength
of the relation (weak, medium, strong) is interpreted according to the value of the
weight with respect to the standard deviation of the respective variable and the
number of the corresponding direction. This is due to the fact that the first dr
direction corresponds to the largest amount of variability in the relation between
response and explanatory variables. As we can see, the results are rather similar to
the results obtained by graphical models. Both methods identify APM and APS as
the most important variables when we want to explain APD. Using dynamic SIR we
additionally get some information about the possible dynamics of the interactions
since strong simultaneous relations and also somewhat weaker influences of past
values seem to exist. Moreover, we could use dynamic SIR to get an impression of
the functional form of the relations using plots of APD against each dr direction.

There are some weak relations of APD to other variables identified by graphical
modelling but not by dynamic SIR and vice versa. This is due to some fundamental
differences between both approaches: Undirected graphical models treat both vari-
ables symmetrically analyzing their partial correlations after subtracting the linear
influences of the remaining variables, while dynamic SIR uses an asymmetric ap-
proach via a regression model under the assumption that one of the variables can be
explained using a structural equation model. Wermuth and Lauritzen (1990) discuss
some differences between these frameworks in the non-dynamic case.

Finding a three-dimensional reduced subspace points at some nonlinearities (cf.
Becker et al. (2001)). In our application, such nonlinearities can be due to thera-
peutic interventions influencing all variables in different ways. A linear factor model
as used in Gather et al. (2001) can therefore only provide a local description of the
relations in the steady state. This can be totally satisfactory if detection of relevant
changes like intervention effects is the main goal.

Altogether, we consider dynamic SIR-type methods to be promising for dimension
reduction of long multivariate time series from dynamic systems. Yet, the theoretical
properties of dynamic SIR as well as the interactions found within the physiological
time series measured in intensive care should be further validated.
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Figure 2: Relations of APD to other vital signs for one patient derived from graphical
model (top) and from dynamic SIR (bottom).

Temp

HR

APS

APM

PAPD

PAPM

PAPS

CVP

APD

SpO2

medium
weak

strong

Partial correlation

Temp

HR

APS

APM

PAPD

PAPM

PAPS

APD

CVP

SpO2



8

Acknowledgements

The financial support of the Deutsche Forschungsgemeinschaft (SFB 475) is
gratefully acknowledged.

References:

BECKER, C., FRIED, R. and GATHER, U. (2001): Applying Sliced Inverse Re-
gression to Dynamical Data. Preprint, Department of Statistics, University of
Dortmund, Germany.

COOK, R. D. (1996): Graphics for Regressions With a Binary Response, J. Amer.
Statist. Assoc., Vol. 91, 983–992.

DAHLHAUS, R. (2000): Graphical Interaction Models for Multivariate Time Se-
ries. Metrika, 51, 157-172.

GATHER, U., FRIED, R. and IMHOFF, M. (2000): Online Classification of States
in Intensive Care, in Gaul, Opitz, Schader (Eds.): Data Analysis. Scientific
Modeling and Practical Application, Springer, Berlin et al., 413–428.

GATHER, U., FRIED, R., LANIUS, V. and IMHOFF, M. (2001): Online Monitor-
ing of High Dimensional Physiological Time Series - A Case-Study. Technical
Report 3/2001, SFB 475, Department of Statistics, University of Dortmund,
Germany.

KARLSEN, H. A., MYKLEBUST, T. and TJOSTHEIM, D. (2000): Nonparamet-
ric Estimation in a Nonlinear Cointegration Type Model. Discussion Paper,
SFB 373, Berlin, Germany.

LI, K.-C. (1991): Sliced Inverse Regression for Dimension Reduction (with discus-
sion). J. Amer. Statist. Assoc., Vol. 86, 316–342.

MOLENAAR, P. C. M. (1985): A Dynamic Factor Model for the Analysis of
Multivariate Time Series. Psychometrica, Vol. 50, 181–202.
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