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Abstract

Cointegration describes the pattern that pairs of time series keep together in

long run, although they diverge in short run. A generalisation of this behaviour

is the fractional cointegration. Two statistical tests, the M– and ML–test are

formulated for fractional cointegration in different situations. It turns out that

the robust M–test reaches almost the same power as the maximum likelihood

test under certain assumptions. In contrast to this, the power of the M–test is

much higher than that of the ML–test if the examined time series is contami-

nated following the general replacement model.
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1 Introduction

Cointegration, defined by [5] and [3], describes the pattern that pairs of time

series do not diverge from each other in the long run, although each time series

can wander extensively. The economic theory proposes forces which tend to

keep such time series together. Examples might be capital appropriations and

expenditures or household income and expenditures. A generalised notion of

cointegration, called fractional cointegration is examined. Some tests on (frac-

tional) cointegration have been developed. [13] employ a t–test based on [4]

estimates of the long memory parameter of the regression residuals. [7] sum-

marises different semi–parametric and nonparametric tests on long–memory,

e.g. tests based on the trimmed Whittle Likelihood (see [11]) or based on

Robinson’s estimator, see [10]. Several other estimators for long–memory and

tests like the R/S test, or a Maximum Likelihood estimator (proposed by [2])

are described in [12]. Most of these tests have the disadvantage that they are

sensitive against outliers. A well known example of a situation in which out-

liers occur are crashes at the stock market. A Maximum Likelihood estimation

of the memory parameter of such a time series would be forced to be close

to 1
2
. Thus a test statistic created out of such an estimation would have a

poor power. Hence it follows that a robust estimator against outliers is re-

quired. In this paper a robust and a non robust test for parametric stationary

Gaussian models based on the finite Maximum Likelihood estimator and the

M–estimator proposed by [1] are developed and their power properties are

compared by using Monte Carlo. The hypothesis of classical cointegration vs.

fractional cointegration is examined.

The paper is organised as follows. In the next section the setting of fractional

cointegration is introduced. Section 3 formulates the considered test statistics,

section 4 describes the used algorithm to compute them and its difficulties.

The simulational results are provided in Section 5. We conclude in Section 6.

The appendix contains the tables.
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2 Fractional Cointegration

Even if one single economic variable regarded as a time series can wander

extensively, there exist pairs of time series which do not diverge from each

other in the long run. This phenomena for example occurs by considering the

logarithm of daily returns of BASF and Bayer stocks, see [9]. This behaviour

of time series is called cointegration.

To reach cointegration each time series has to be integrated with a certain

memory parameter d. [3] defined an integrated time series of order d, denoted

xt ∼ I(d) as follows:

xt ∼ I(d) ⇐⇒ (1 − B)dxt = εt, (1)

where εt is white noise. Thus an integrated time series of order d = 0 is

stationary. Thus two time series, which do not diverge in the long run have a

“difference” which is I(0). More generally [5] defined cointegration of two time

series xt and yt of order d, b (denoted (xt, yt)
� ∼ CI(d, b)) as the behaviour

that

(xt, yt)
� ∼ CI(d, b) ⇐⇒

{
xt, yt ∼ I(d) ∧
∃α �= 0 : zt := xt − αyt ∼ I(d − b),

(2)

where b > 0. The parameter α is called the cointegration parameter.

Furthermore two cointegrated time series with 0 < b < 1 are called fractional

cointegrated and two cointegrated time series with b = 1 are called classical

cointegrated.

In the following paper tests on cointegration are considered and their properties

in power are examined. The hypothesis of classical cointegration vs. fractional

cointegration is examined, i.e.

H0 : zt = xt − αyt ∼ I(0) (3)

vs.

H1 : zt = xt − αyt ∼ I(d), where d ∈ (0, 1). (4)
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3 M- and ML-Test

The examined tests are based on the autoregressive representation of a frac-

tional ARIMA(p, d, q)-process. [1] proposed a maximum likelihood estimator

and a class of M-estimators for estimating the memory parameter and the AR-

and MA-parameters simultaneously. These estimators are used to create cor-

responding test statistics.

Let xt be a Gaussian long-memory process with finite variance σ2 and mean

µ. Following [8] it has the one-sided autoregressive representation

∞∑
j=0

ψj(η)xt−j = εt(η). (5)

The spectral density is assumed to be characterised by the true but unknown

parameter-vector θ0 = (θ0
1, . . . , θ

0
m) where θ0

1 is the scale parameter, θ0
2 is the

memory-parameter and θ0
3, . . . , θ

0
m describe the short-run behaviour of the pro-

cess. In the following denote θ = (θ1, η), where η = (θ1, . . . , θm). Define

et(η) :=
∑t−1

j=0 ψj(η)xt−j, e′t(η) :=
(

∂
∂η1

et(η), . . . , ∂
∂ηm−1

et(η)
)�

and

rt(θ) := et(η)√
θ1

, r′t(θ) :=
(

∂
∂θ1

rt(θ), . . . ,
∂

∂θm
rt(θ)

)�
(6)

as estimations of

εt(η) :=
∑∞

j=0 ψj(η)xt−j, ε′t(η) :=
(

∂
∂η1

εt(η), . . . , ∂
∂ηm−1

εt(η)
)�

and

νt(θ) := εt(η)√
θ1

, ν ′
t(θ) :=

(
∂

∂θ1
νt(θ), . . . ,

∂
∂θm

νt(θ)
)�

.

(7)

A class of M-estimators is proposed by solving the following equation:

n∑
t=2

Υ(rt(θ), r
′
t(θ)) = 0. (8)

The weight function Υ is a function with a unique zero at the origin. In this

paper we consider Υ as proposed by [2]. That is:

Υ(rt(θ), r
′
t(θ)) = (Υ1(rt(θ), r

′
t(θ)), . . . , Υm(rt(θ), r

′
t(θ))

�,
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where

Υi(rt(θ), r
′
t(θ)) := Υi1(rtθ)Υi2(r

′
t(θi)), with i = 1, . . . ,m.

Because of et(η)/
√

θ1 = rt(θ) the scale parameter θ1 can be estimated sepa-

rately, for more details see [1]. Furthermore [1] proposed a robust M-estimator

with weight function

Υ11(rt(θ)) = rt(θ)
2(γ2 − rt(θ)

2)1[−γ,γ](rt(θ)) − c(γ), Υ12(r
′
t(θ)) = 1,(9)

where γ > 0 and c(γ) is such that E[Υ11(Z)] = 0 for a standard normal

variable Z. For i > 1:

Υi1(rt(θ)) = u(rt(θ); α1, β1), Υi2(r
′
t(θ)) = u(r′t(θ); α2, β2). (10)

Furthermore for rt(θ) ≥ 0 let:

u(rt(θ); α, β) = x1(−∞,α)(rt(θ)) + α

(
1 − rt(θ) − α

β − α

)
1(α,β](rt(θ)), (11)

with 0 < α ≤ β. For rt(θ) < 0:

u(rt(θ); α, β) = −u(−rt(θ); α, β) . (12)

This weight function Υ is re-descending, thus the described class of M-

estimators has a breakdown point of 1/2.

The Maximum Likelihood estimator can be treated as a special case of M-

estimators, defined by choosing

Υ11(rt(θ)) = r2
t (θ) − 1, Υ12(r

′
t(θ)) = 1,

Υi1(rt(θ)) = rt(θ), Υi2(r
′
t(θ)) = r′t(θ)

(13)

for (i > 1), for more details see [1]. Combining (13) and (8), the ML-estimator

can be written as a solution of

θ1 = 1
(n−1)

∑n
t=2 e2

t (η) and 0 =
∑n

t=2 et(η)e′t(η) . (14)

5



This class of M-estimators is consistent and asymptotic normal with variance

n−1W , where W = B−1A(B�)−1. A and B are defined by

A = E[ξt(θ
0)ξ�t (θ0)] = E[ξ1(θ

0)ξ�1 (θ0)]

B = E[ξ′t(θ
0)] = E[ξ′1(θ

0)],
(15)

and ξt(θ) = Υ(νt(θ), ν
′
t(θ)) and ξ′t(θ) =

∂ξ′t(θ)
∂θ

.

In this paper only the ARFIMA(0, d, 0) model is examined. This model seems

sensible because a fractional ARIMA(0, d, 0)-process has similar long-memory

properties as an ARFIMA(p, d, q)-process, see [8]. The parameter under test

is the memory parameter d = H − 0.5. The autoregressive representation of

this model is given in (5). The coefficients there are defined by

ψk =
Γ(k + 1

2
− H)

Γ(k + 1)Γ(1
2
− H)

. (16)

The spectral density is

f(λ) =
σ2

ε

2π

(
2 sin(

λ

2
)

)−2H+1

. (17)

Hence it follows that the spectral density is characterised by θ = (θ1, H) where

θ1 = σ2
ε . Based on these facts the ML-test statistics is derived. Following the

results of [1] the asymptotic variance of the ML-estimator is 6/(nσ2
ε). Therefore

the test statistic is

TML =
ĤML − H√

6/(nπ2)
. (18)

The test statistic (18) is asymptotically standard normal distributed. The vari-

ance of the robust M-estimator given a fractional ARIMA(0, d, 0)-process and

α1 = α2 = β1/2 = β2/2 is:

var(ĤM) =
1

n

6

π2
s(α) + o

(
1

n

)
, (19)

where

s(α) =
h(α)h(α

√
6/π)

g(α)g(α
√

6/π)
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and

g(x) = 4xϕ(2x), 2(1 + 4x2)Φ(2x) − 8x2Φ(x) − 1

h(x) = 4Φ(x) − 2Φ(2x) − 1.

For details see [1]. Hence it follows the asymptotically normal distributed M-

test statistic is:

TM =
ĤM − H0√

(6/(nπ2))s(α)
. (20)

To compute the estimations for the memory parameter H an algorithm pro-

posed by [1] has been used.

4 Algorithm and Difficulties

An algorithm proposed by [1] has been used to compute the estimates for the

memory parameter H.

1. Calculation of e1(H), . . . , en(H) where H = k ∗ (0.05) and the grid has

to cover at least the true memory parameter H.

2. The derivatives e′1(H), . . . , e′n(H) are calculated by discrete differences

with step size ∆H = 10−7.

3. Obtain θ̂1 = θ̂1(H) from e1(H), . . . , en(H) by an approximation of the

solution of (9) in case of the M-test. For the ML-test the estimation of

θ̂1 is the empirical variance, see (14).

4. Set

rt(θ̂1, H) = et(H)√
θ̂1(H)

and r′t(θ̂1, H) =
e′t(H)√
θ̂1(H)

,

for t = 1, . . . , n and for the described grid of k.
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5. Evaluate

Υ(rt(θ̂1, H), r′t(θ̂1, H)) =
n∑

t=2

Υ21(rt(θ̂1, H))Υ22(r
′
t(θ̂1, H)).

6. Find the grid point H∗ such that the signs of H∗ and H∗ + 0.5 are

different. Define Ĥ as the point where a straight line between H∗ and

H∗ + 0.5 intersects with zero.

In the calculation k ∈ N has to be chosen to such an extend that the grid

covers the important area. In the executed simulation the biggest k was such

that the grid covers a value which is 0.2 bigger than the true value. That

means that if for example the known memory parameter H is 0.8, k should

be as big that the area (0.5, 1) is covered. Another difficulty is that ψk(H) is

not defined for H = 0.5 and H = 1.5. Therefore ψk(H) is not calculated for

these values. Hence it follows that estimations for H in time series with a true

memory parameter of H = 0.5 or H = 1.5 can be less exact than estimations

of the memory parameter in time series with another true H.

5 Simulational Results

In this chapter the behaviour of the power of the two tests is examined in

different situations. At first standard normally distributed residuals are con-

sidered. Afterwards the behaviour of the tests is simulated under different

contamination models.

5.1 Standard Normal Residuals

1000 standard normally distributed time series with length 1000 are simulated

with a true memory parameter d ∈ {0, 0.1, . . . , 1}. The rejection probability

of the M- and ML-test is computed. The assumptions, described in chapter

3 are fulfilled, thus the test statistics are asymptotically normal. The given

significance level is 5%. It turns out that the difference in power between the
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observed tests is quite small. The highest difference occurs at d = 0.6, the

rejection probability of the M-test is 99%, the ML-test has a power of 100%.

The simulated type I error of both tests is 5%. For details see table 1.

5.2 The General Replacement Model

In the next step of the simulation study the general replacement model is used.

This model looks as follows:

Yt = (1 − Zt)Xt + ZtWt, (22)

where the random variable Xt is here an ARFIMA(0, d, 0)-process, Wt is the

contaminating process and Zt is Bernoulli distributed with success probability

p, i.e. P (Zt = 1) = p. Define the contaminating process Wt := cVt where c is a

constant and Vt is a t-distributed random variable with 2 degrees of freedom.

Since the asymptotic distribution is not achieved here any more, empirical

critical values are computed. Three degrees of contamination are considered,

c = 0, c = 10, c = 100 (see tables 2 – 4).

In the case of no contamination (c = 0), the ML-test achieves a higher or equal

power than the M-test. The differences between these two tests are small,

similar to the case of the standard normal residuals. The highest difference

occurs at d = 0.1 where the M–test has a rejection probability of 92% and

the ML-test has one of 95%. For a memory parameter bigger than d = 0.1

there is no difference in power. This is what is expected by the theory, because

under the ideal model the ML-test should be superior the robust test. For a

higher contamination (c = 10), the advantage of the M-test becomes obvious.

Simulational results are displayed in Figure 1. The power of the ML-test is

lower than 90% for a true memory parameter of d ∈ [0, 0.5), that means the

power is poor in the stationary region. In contrast to this, the M-test achieves

a power of 99% at a memory parameter of d = 0.3. The maximal difference of

the power between these tests is achieved at a memory parameter of d = 0.3

with a value of 87%. Figure 7 shows the behaviour in power for the case of

contaminated residuals with c = 100. In the stationary region, both tests have
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Figure 1: Power of the M- (solid) and ML-test (dashed), residuals following

the general replacement model with c = 10
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Figure 2: Power of the M- (solid) and ML-test (dashed), residuals following

the general replacement model with c = 100
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a very small power. The maximum of power for d ∈ (0, 0.5) is achieved of the

ML-test at d = 0.2 with a value of 7 %. The simulation results are given in

tables 5 – 7. The result that the non-robust test achieves a higher power in the

stationary region was not expected. For the non-stationary region, the increase

of power of the M-test is much higher than the of the ML-test. All in all the

M-test has a higher rejection probability in the non-stationary region.

5.3 Estimating the long-memory Parameter after doing

linear Regression

The tests have been examined in the situation of estimated residuals. The

Monte Carlo study is carried out in three steps:

1. Simulation of a cointegration system.

2. Estimation of the cointegration coefficient with linear regression.

3. Application of the two tests on the estimated residuals.

In the first step a cointegration system is needed. [13] formulates it as follows:

xt + βyt = u1t u1t = ε1t + u1t−1 (23)

xt + αyt = u2t ε2t = (1 − B)du2t , (24)

where u2t is integrated of order d < 1 and u1t is a random walk, i.e. integrated

of order 1. xt and yt can be written as linear combinations of u1t and u2t, hence

it follows that yt, xt ∼ CI(1, 1). The parameters are set as α = 2, β = 1 and

d ∈ [0, 1] in the Monte Carlo Study. In the second step a linear regression has

to be carried out. In case of the ML-test the ordinary least-squares regression is

chosen. This procedure seems not useful in the case of the robust M-test since

the least-squares estimator is highly non-robust to outliers. Therefore instead

of using least-squares estimation the regression parameter are estimated by a

regression M-estimator which uses Tukey’s biweight function. For details about

robust regression estimates see for example [6]. Again the tests are analysed
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Figure 3: Power of the M- (solid) and ML-test (dashed) with standard normal

distributed residuals after doing a linear regression

in two situations. First u2t is assumed to be Gaussian distributed and in the

second part of the simulation the general replacement model with c = 10

is used. Since the asymptotic distribution of the test statistics is not achieved

after doing the linear regression, empirical critical values are computed for both

situations (see tables 8, 9). In the first part of the simulations with estimated

residuals, u2t is Gaussian distributed.

Figure 10 displays the power of the two tests. Again the difference in power

is very small. At d = 0.2 the ML-test has a higher rejection probability than

the M-test. In case of the other memory parameters the power of the tests is

almost equal (see table 10). Using the general replacement model with a degree

of contamination of c = 10 the M-test applied on robust estimated residuals

has a much higher rejection probability than the ML-test.
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Figure 4: Power of the M- (solid) and ML-test (dashed) with contaminated

residuals (c = 10) after linear regression.
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The loss of power of the ML-test is very high in contrast to that of the M-test.

The ML-test achieves a rejection probability greater than 90% only at a true

memory parameter of d = 1, furthermore is the difference in power between

M- and ML-test greater than 90% for d ∈ [0.2, 0.7]. For details see table 11.

6 Conclusion

Two tests on fractional cointegration namely the ML-test and the robust M-

test are examined. It is expected that the asymptotically efficient maximum

likelihood test achieves a higher power than the robust M-test under the ideal

model. In contrast to this it is expected that the M-test behaves robust against

contaminated residuals following the general replacement model. Simulational

results show that the differences in power between these two tests is negligible

under the ideal model. The loss of power by using the general replacement

model to simulate the residuals is very high in case of the ML-test and much

smaller in case of the M-test thus the robust test performs much better. An

unexpected simulational result is achieved by regarding the power of the M-

and ML-test using a high degree of contamination. In the stationary region,

the ML-test has a higher power than the M-test. This relation turns round in

the non-stationary region.

Advantages and disadvantages of the M-test become more obvious when doing

a linear regression before applying the tests in the estimated residuals. Setting

the original residuals as standard normal distributed the ML-test achieves a

higher rejection probability. The difference to the M-test is again small. Using

original residuals following the general replacement model, the M-test achieves

a high rejection probability and the power of the ML-test is small.

Altogether the simulational results show, that the M-test seems to be an appro-

priate alternative to the ML-test under the ideal model since the differences in

power are negligible. Estimating cointegration of two time series when outliers

occur, it seems useful to use the robust M-test.
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Table 1: Power of the M- and ML-test, α = 0.05, standard normal distributed

residuals

d = H − 1
2

M-test ML-test

0.00 0.05 0.05

0.10 0.98 0.98

0.20 1.00 1.00

0.30 1.00 1.00

0.40 1.00 1.00

0.50 1.00 1.00

0.60 0.99 1.00

0.70 1.00 1.00

0.80 1.00 1.00

0.90 1.00 1.00

1.00 1.00 1.00
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Table 2: Critical values for the M- and ML-test residuals from the general

replacement model with c=0.

k1−α of the M-test k1−α of the ML-test

α = 0.010 2.3109 2.3040

α = 0.025 1.9284 1.9351

α = 0.050 1.6387 1.6794

α = 0.075 1.4637 1.5129

α = 0.100 1.3236 1.3801

α = 0.125 1.1957 1.2645

α = 0.150 1.1004 1.1677

mean 0.0540 0.1252√
(var) 1.0232 1.0258

18



Table 3: Critical values for the M- and ML-test residuals from the general

replacement model with c=10.

k1−α of the M-test k1−α of the ML-test

α = 0.010 1.9018 2.4218

α = 0.025 1.5356 1.7384

α = 0.050 1.2376 1.3905

α = 0.075 1.0759 1.1845

α = 0.100 0.9376 1.0576

α = 0.125 0.8220 0.9609

α = 0.150 0.7260 0.8754

mean -0.2332 0.1525√
(var) 1.6801 0.9053
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Table 4: Critical values for the M- and ML-test residuals from the general

replacement model with c=100.

k1−α of the M-test k1−α of the ML-test

α = 0.010 13.5475 2.4229

α = 0.025 13.1604 1.7478

α = 0.050 12.8418 1.3466

α = 0.075 12.6233 1.1488

α = 0.100 12.4521 1.0183

α = 0.125 12.3107 0.9182

α = 0.150 12.1850 0.8276

mean 5.1855 0.1317√
(var) 6.5653 0.9208
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Table 5: Power of the M- and ML-test, α = 0.05, residuals from the general

replacement model with c=0

d = H − 1
2

M-test ML-test

0.00 0.06 0.06

0.10 0.96 0.97

0.20 1.00 1.00

0.30 1.00 1.00

0.40 1.00 1.00

0.50 1.00 1.00

0.60 1.00 1.00

0.70 1.00 1.00

0.80 0.99 1.00

0.90 1.00 1.00

1.00 1.00 1.00
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Table 6: Power of the M- and ML-test, α = 0.05, residuals from the general

replacement model with c=10

d = H − 1
2

M-test ML-test

0.00 0.09 0.05

0.10 0.66 0.07

0.20 0.99 0.12

0.30 1.00 0.35

0.40 1.00 0.71

0.50 1.00 0.90

0.60 1.00 0.97

0.70 1.00 0.99

0.80 1.00 0.99

0.90 1.00 1.00

1.00 1.00 1.00
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Table 7: Power of the M- and ML-test, α = 0.05, residuals from the general

replacement model with c=100

d = H − 1
2

M-test ML-test

0.00 0.03 0.05

0.10 0.02 0.07

0.20 0.01 0.07

0.30 0.01 0.06

0.40 0.00 0.05

0.50 0.02 0.05

0.60 0.35 0.10

0.70 0.91 0.20

0.80 0.95 0.43

0.90 0.97 0.70

1.00 0.98 0.90
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Table 8: Critical values for the M- and ML-test with normal distributes resid-

uals, after doing a linear regression.

k1−α of the M-test k1−α of the ML-test

α = 0.010 2.8029 2.812

α = 0.025 2.4327 2.4208

α = 0.050 2.0939 2.0894

α = 0.075 1.8677 1.8982

α = 0.100 1.7277 1.7786

α = 0.125 1.6118 1.6825

α = 0.150 1.5089 1.5976

mean 0.5189 0.5917√
(var) 1.0001 1.0046
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Table 9: Critical values for the M- and ML-test residuals (c=10), after doing

a linear Regression.

k1−α of the M-test k1−α of the ML-test

α = 0.010 2.1457 15.6341

α = 0.025 1.8687 12.5305

α = 0.050 1.5363 10.8050

α = 0.075 1.3592 9.7903

α = 0.100 1.2190 9.0437

α = 0.125 1.1040 8.3911

α = 0.150 1.0120 7.9078

mean -0.0396 4.9666√
(var) 1.7743 3.2003
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Table 10: Power of the M- and ML-test, after linear regression, α = 0.05,

standard normal distributed residuals

d = H − 1
2

M-test ML-test

0.00 0.03 0.04

0.10 0.92 0.95

0.20 1.00 1.00

0.30 1.00 1.00

0.40 1.00 1.00

0.50 1.00 1.00

0.60 1.00 1.00

0.70 1.00 1.00

0.80 1.00 1.00

0.90 1.00 1.00

1.00 1.00 1.00
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Table 11: Power of the M- and ML-test, after linear regression, α = 0.05,

residuals from the general replacement model with c=10

d = H − 1
2

M-test ML-test

0.00 0.07 0.02

0.10 0.59 0.02

0.20 0.98 0.02

0.30 1.00 0.03

0.40 1.00 0.03

0.50 1.00 0.04

0.60 1.00 0.08

0.70 1.00 0.18

0.80 1.00 0.49

0.90 1.00 0.78

1.00 1.00 0.94
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