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Abstract

We show that small trends do not influence log-periodogram based

estimators for the memory parameter in a stationary invertible

long-memory process. In the case of slowly decaying trends which

are easily confused with long-range dependence we show by Monte

Carlo methods that the tapered periodogram is quite robust against

these trends and thus provides a good alternative to standard log-

periodogram methodology.
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1 Introduction

It is a well known phenomenon that long-memory and slowly decaying trends

are easily confused. Starting with Bhattacharya et al.(1983) many authors con-

sidered trends which produce the Hurst effect even if there is no long-range
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dependence in the data. The discussion focused mainly on the behavior of

rescaled-range based methods as the R/S-statistic whereas Künsch(1986) sho-

wed that the periodogram can distinguish monotonic trends and long-memory.

For an overview of this debate see Sibbertsen(2001).

In contrast to previous works this paper considers the behavior of log-

periodogram regression estimators for the memory parameter. It is motivated

by the works of Hurvich/Ray(1995) and Velasco(1999) which show that the-

se procedures are insensible to non-stationarities, especially polynomic time

trends, when using an appropriate tapered periodogram.

In this paper the behavior of the log-periodogram regression estimation in-

troduced by Geweke/Porter-Hudak(1983) (GPH-estimator) is considered for

various slowly decaying trends in the data. We analyze the original GPH-

estimator as well as the estimation obtained by employing a tapered periodo-

gram. Several trends as monotonic trends and structural breaks are considered.

It is also proved that small trends do not effect the GPH-estimator.

The paper is organized as follows. In the next section we prove that the GPH-

estimator is not influenced by small trends decaying fast enough. Section 3

gives simulation results for slowly decaying trends as well as for structural

breaks.

2 Log-Periodogram Estimation under trends

Point of departure is the model

Xt = Yt + f(t), t = 1, . . . N, (1)

where Xt denotes the observed process, Yt is a noise process with zero mean

and f(t) is a deterministic trend. The point of interest is how the trend function

influences log-periodogram based estimators for the memory parameter of a

long-memory process. Thus the problem is if log-periodogram based estimators

also confuse model (1) with long-range dependence.
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A process Xt is said to exhibit long-range dependence if the spectral density

behaves like

fX(λ) ∼ cfλ
−2d, λ → 0, (2)

where cf is a positive constant and d ∈ (0, 0.5).

An estimator for the memory parameter based on log-periodogram regres-

sion was introduced by Geweke/Porter-Hudak(1983). Denote with IX(j) :=
1

2πN
|∑N

t=1 Xt exp(−it2πj
N

)|2 the periodogram of the process Xt.

The GPH-estimator is based on the special shape of the spectral density (2). It

is defined as the least-squares estimator of d based on the regression equation

log IX(λj) = log cf − 2d log λj + log ξj, (3)

where λj denotes the j − th Fourier frequency and the ξj are identically dis-

tributed errors with E[log ξj] = −0.577, known as Euler constant.

Hurvich et al. (1998) showed that under some regularity conditions the GPH-

estimator is asymptotically normal. The optimal number of frequencies wich

should be used for the regression (3) is N4/5. This is also the number of fre-

quencies used in this paper.

Following the line of Heyde/Dai(1996) we show at first that the GPH-estimator

is not effected by trends decaying with a rate faster than N1/2. For the trend

f(t) we therefore assume that N−1/2 ∑N
t=1 f(t) → 0 for N → ∞.

Theorem 1 Under the above assumption for the trend f(t) the GPH-

estimator d̂X based on the process Xt in model (1) is equal to the GPH-

estimator d̂Y based on the series Yt in model (1).

Proof: The GPH-estimator depends only on the periodogram of the underlying

series. Thus for proving the theorem it suffices to show that the periodograms

of the series X and Y are equal. To see this we show that IX(j)− IY (j) tends

to zero in probability. Here IX(j) denotes the periodogram of the process X.
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We have

IX(j) − IY (j) =
1

2πN
(|

N∑
t=1

Xte
−itλj |2 − |

N∑
t=1

Yte
−itλj |2)

=
1

2πN
(|

N∑
t=1

(Yt + f(t))e−itλj |2 − |
N∑

t=1

Yte
−itλj |2)

=
1

2πN
(

N∑
s=1

N∑
t=1

(Ytf(s) + Ysf(t) + f(s)f(t))e−i(t−s)λj).

We now prove that

1

2πN
(

N∑
s=1

N∑
t=1

(Ytf(s) + Ysf(t) + f(s)f(t))
P−→ 0 (4)

It is

1

2πN

N∑
s=1

N∑
t=1

Ytf(s) =
1

2πN

N∑
s=1

f(s)
N∑

t=1

Yt

P−→ 0, (5)

because the first sum tends to zero and the second sum tends to a finite

constant.

For showing that the second term in (4) vanishes we can use similar arguments

as in (5). Thus it remains the third term of (4).

1

2πN

N∑
s=1

N∑
t=1

f(t)f(s) =
1

2πN

N∑
s=1

f(s)
N∑

t=1

f(t)

= (
1

2π
√

N

N∑
s=1

f(s))(
1√
N

N∑
t=1

f(t))

P−→ 0, (6)
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because both sums in the second equation tend to zero.

Combining (5) and (6) proves (4) and therefore the assertion. ♦

Thus from this Theorem we see that small trends do not influence log-

periodogram based estimators of the memory parameter.

One trend fulfilling the conditions above is f(t) = 0.9t. Therefore we verify

the result of the theorem with a small simulation study by considering this

trend function. As noise process we add to the trend a white noise as well

as an process exhibiting long-range dependence with memory parameter d =

0.1, d = 0.2, d = 0.3, d = 0.4 and d = 0.45 respectively. All noise processes

have zero mean and a variance of one, the length of the process is N = 1000.

The simulation results for the GPH-estimator are based on 1000 replications.

By denoting with d0 the true value of the memory parameter of the underlying

noise process and by d̂m the mean of the estimations of d and by d̂v the variance

we have the following result:

Table I Influence of small trends to the GPH-estimator

d0 0 0.1 0.2 0.3 0.4 0.45

d̂m 0.082 0.147 0.226 0.31 0.407 0.46

d̂v 0.0016 0.0016 0.0019 0.0018 0.002 0.0019

Thus the simulation results show that the GPH-estimator gives an appropriate

estimation of the true value.

3 Slowly decaying trends

In the case of bigger trends the situation of course differs from the results of

the last section. In this case the GPH-estimator is strongly biased. To obtain

robustness against decaying trend functions we compare in this section the
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standard GPH-estimator with GPH-estimation based on the periodogram of

the tapered data. The periodogram of the tapered process wtXt is defined by

IT,X(j) =
1

2π
∑

w2
t

|
N−1∑
t=0

wtXte
−iλjt|2.

Here λj again denotes the j-th Fourier frequency and wt denotes the taper. We

use in this paper the full cosine bell taper given by

wt =
1

2
[1 − cos(

2π(t + 0.5)

N
)].

In the Monte Carlo study we compare the standard GPH-estimator and the

tapered estimator for three trend functions:

f1(t) := tβ;

f2(t) :=
sin(t)

t
;

f3(t) :=




k if 1 ≤ t ≤ [τN ]

k∗ if [τN ] < t ≤ N

In f1(t) β is chosen to be either −0.2 or −0.4. Following Bhattacharya et

al.(1983) this trend should produce a Hurst coefficient of d = 0.4 and d = 0.3

respectively by using R/S-analysis. We will see later that this is not the case

for the GPH-estimator.

In f3(t) [τN ] denotes the time point of the structural break. In our case we

also choose k∗ = −k.

The structure of the simulation study is similar to the last section. To each

trend we add a noise process with memory parameter d = 0, 0.1, 0.2, 0.3, 0.4

and d = 0.45 respectively. The lengths of the series are N = 1000 and the

simulations are based on 1000 replications. We denote again with d0 the true

memory parameter of the noise process, d̂m and d̂v denote the mean and the

variance of the standard GPH-estimator and we denote by d̂T,m and d̂T,v the
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mean and the variance of the tapered GPH-estimator. For the first trend we

choose a standard deviation of σ = 0.07 of the noise process. Of course the

results depend on the standard deviation of the noise process but for all si-

mulations we choose the standard deviation so that the influence of the trend

is still sensible and that the results are not a consequence of a high standard

deviation of the noise process.

Table II Trend f1(t) with β = −0.2

d0 0 0.1 0.2 0.3 0.4 0.45

d̂m 0.127 0.447 0.465 0.487 0.52 0.543

d̂v 0.0015 0.0009 0.0013 0.0015 0.0019 0.0022

d̂T,m 0.059 0.182 0.268 0.355 0.444 0.492

d̂T,v 0.0026 0.0028 0.0026 0.0027 0.0027 0.0029

For the second trend we choose a standard deviation of σ = 0.1. The results

are as follows

Table III Trend f2(t)

d0 0 0.1 0.2 0.3 0.4 0.45

d̂m 0.305 0.326 0.361 0.411 0.483 0.521

d̂v 0.0008 0.0014 0.0016 0.0017 0.0017 0.0017

d̂T,m 0.002 0.103 0.204 0.307 0.412 0.465

d̂T,v 0.0028 0.0029 0.0032 0.0031 0.003 0.003

For the third trend we choose k = 0.25, τ = 0.5 and the standard deviation of

the noise process is σ = 1. The results are

Table IV Trend f3(t) with k = 0.25 and τ = 0.5

d0 0 0.1 0.2 0.3 0.4 0.45

d̂m 0.515 0.563 0.609 0.656 0.704 0.729

d̂v 0.0008 0.0008 0.0009 0.0009 0.0009 0.001

d̂T,m 0.092 0.162 0.236 0.324 0.421 0.472

d̂T,v 0.003 0.003 0.003 0.003 0.004 0.004
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Thus we see from the simulations that there is a strong reduction of the bias by

using the tapered periodogram. The tapered GPH-estimator gives reasonable

estimations of the true memory parameter.The differences to the standard

GPH-estimator are obvious. On the other hand the variance of the estimates

increase by using the tapered GPH-estimator but still the variance is quite

small.

Altogether the tapered GPH-estimator provides a good alternative when slowly

decaying trends are in the data.
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