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Abstract

In a previous paper Kunert and Qannari (1999) discussed a simple alternative to

Generalized Procrustes Analysis to analyze data derived from a sensory profiling study. After

simple pre-treatments of the individual data matrices, they propose to merge the data sets

together and undergo Principal Components Analysis of the matrix thus formed. On the basis

of two data sets, it was shown that the results slightly differ from those obtained by means of

Generalized Procrustes Analysis.

In this paper we give a mathematical justification to this approach by relating it to a

statistical regression model. Furthermore, we obtain additional information from this method

concerning the dimensions used by the assessors as well as the contribution of each assessor

to the determination of these dimensions. This information may be useful to characterize the

performance of the assessors and single out those assessors who downweight or overweight

some dimensions. In particular, those assessors who overweight the last dimensions should

arouse suspicion regarding their performance as, in general, the last dimensions in a principal

components analysis are deemed to reflect random fluctuations.
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Introduction

Kunert and Qannari (1999) propose a simple method for the analysis of sensory

profiling data. They suggest simple pre-treatment of the individual data matrices to account

for differences in scoring, such as shifts and use of different ranges of the scale. In a second

step, the data matrices are merged together and a Principal Components Analysis (PCA) is

performed on the supermatrix which includes the attributes of all assessors. On the basis of

two data sets it was shown that the results of the proposed method match up to a large extent

with those of Generalized Procrustes Analysis (GPA) (Gower, 1975; Arnold and Williams,

1986). Note that the method proposed by Kunert and Qannari is applicable to data obtained by

means of a fixed vocabulary, i. e. all assessors use the same attributes, as well as to data

derived from a free choice profiling procedure which allows each panelist to use his or her

own set of attributes.

In this paper, we relate this approach to a linear regression model which states that

there exist underlying sensory dimensions (latent variables) and that the observed attributes

can be expressed as linear combinations of these dimensions. Originally this model was

introduced by Tucker (1966) as a three-way factor analysis technique and was discussed

within a sensory analysis framework by Brockhoff et al. (1996). This three-way factor

analysis can be seen as a generalization of PCA and is therefore used to analyze differences

between products, assessors and attributes simultaneously. We show useful properties of the

method that enable a panel leader to identify differences between the assessors regarding their

use of dimensions.

This paper can also be seen as an extension to the case of several data sets of a

relationship between regression analysis and PCA exhibited by Jong and Kotz (1999). These

authors give a link between these two statistical methods within the usual framework (two

way data set). In sensory profiling analysis, we have several data sets that are similar in the

sense that the panelists assess the same set of products.

The model has two interesting properties. On the one hand, it provides a sound

statistical background and a strong justification to the method proposed by Kunert and

Qannari (1999). On the other hand, it allows the panel leader to identify individual differences

between the panelists with respect to both the number of dimensions used and the importance

attached to the various underlying dimensions. Therefore, this paper can be seen as a sequel to

the paper written by Kunert and Qannari (1999) as we discuss useful extensions and introduce

indices which provide the practitioner with useful information.
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A noteworthy feature of the method presented herein is that it does not involve heavy

computations. Both the PCA and the performance coefficients, which constitute the core

subject of the present paper, can be simply computed with standard statistical software.

Centering and pre-scaling the data sets

The sensory profiling (free choice profiling or fixed vocabulary) of n products by m

assessors results in m matrices X1 , X2 , ... Xm , where the rows refer to the products and the

columns to the attributes. These matrices are centered in order to remove the effects of judges

scoring at different levels of the scale. The configurations X1 , X2 , ... Xm are also pre-scaled in

order to adjust for variations among assessors in range of scoring. For this purpose each

configuration Xi, i = 1, ..., m, is multiplied by the isotropic scaling factor αi given by :
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where t i is the sum of variances of the attributes in data matrix Xi and
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More details and a justification of these isotropic scaling factors are given by Kunert and

Qannari (1999). In what follows, we consider the pre-scaled data sets denoted by Yi = αiXi for

i = 1, ... , m.

Determination of the underlying sensory dimensions

The aim of the practitioner in sensory analysis is to depict relationships among

products on the basis of a hopefully small number of dimensions (latent variables) that

underlie the sensory perceptions expressed by the assessors. Let C (n, q) denote the matrix

which contains the q underlying latent variables. These variables are assumed to be

uncorrelated and to have variances equal to one. We assume that each assessor’s attributes,

which form the matrices Yi for i = 1,…, m, can be expressed as linear combinations of the

latent variables given in C plus some random errors. Formally, the model can be written as :
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Yi = C Bi + Ei,

where B i contains the coefficients of the linear combinations that link the attributes in Yi to the

latent variables in C, and Ei gives the random errors. This model relates to the well-known

linear regression model. However, unlike multivariate regression analysis, we have to

estimate several additional parameters : besides the estimation of C, we have to estimate also

the matrices Bi , i = 1, ..., m. In the context of sensory profiling, we are particularly interested

in C in order to describe the relationships among products. However, the different matrices Bi

provide useful information about the individual differences between the assessors with respect

to the underlying dimensions.

Estimation of the parameters

We consider the well-known least squares criterion to estimate the parameters. This

consists in minimizing the loss-function :
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( 3 )

with respect to C and Bi for i = 1,  …, m. In this expression, SSQ(A) denotes the sum

of squares of all the elements for a given matrix A. In the following, the parameter estimates

which are solutions to the minimization problem will also be denoted by C and Bi, thus

avoiding the cumbersome notations Ĉ and iB̂ .

It can be shown that the q columns of the estimated matrix C are given by the first q

principal components of the matrix Y =  (Y1  Y2 ... Ym) which is formed by merging the

individual data matrices Yi, i = 1, …, m. Moreover, as it is well known from multivariate

linear regression analysis, the matrices Bi (for i = 1, …, m) are given by :

i
TT

i YCCCB 1)( −= ,

where CT denotes the transpose of matrix C. Assuming that the columns of C are uncorrelated

and their respective variances being equal to one, we have:

InCCT = ,
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where I is the identity matrix. It follows that :

i
T

i YC
n

B
1= .

Hence, the current element of matrix Bi corresponding to the (j, k)th entry is the

covariance between the kth attribute in matrix Yi (i=1, 2, …, m) and the jth standardized

principal component of matrix Y, i. e the jth column of matrix C.

The predicted individual assessor matrices are given by :

ii CBY =ˆ .

We can show that the loss function (3) can be written as :
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From the pre-scaling procedure, it follows that the quantity SSQ(Yi) is a constant equal to nT

where n is the number of products and T is defined according to (2). Furthermore, )ˆ( iYSSQ is

the sum of squares explained by the model that consists in regressing Yi on C. The

relationship
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links the latter term in (4) to the total variance explained by the q principal components of Y.

In this expression, λj ( j = 1, …, q) are the eigenvalues associated with the principal

components, i. e. the eigenvalues of TYY
n

1
or equivalent of YY

n
T1

. Since the columns of C

are assumed to be uncorrelated, we can derive a more precise and more useful relationship by

considering )(ˆ j
iY , which is defined as the matrix obtained by regressing Yi on the jth principal

component of Y (i. e. the jth column of C). We have :
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where ( ))(ˆ j
iYSSQ can be simply computed as the sum of squared covariances between the

attributes in Yi and the jth principal component of Y (i.e. jth column of matrix C).

We consider the index :
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which reflects the percentage of total variance in Yi (i = 1, …, m) explained by the jth principal

component of Y. It has been mentioned that ( ) nTYSSQ i = , thus (6) simplifies to :

( )
nT

YSSQ j
i
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=λ . ( 7 )

This index reflects the importance that assessor i (i = 1, …, m) attaches to the jth

dimension. If we consider all q principal components associated with Y, it can be shown that

∑
=

=
q

j
ij

1

1λ ( 8 )

for each assessor i. Roughly speaking, (8) expresses that each panelist provides us with an

information regarding how the products differ from each others and the indices λij reflect how

this information is partitioned into the various underlying dimensions.

Furthermore from (5) and (7) it also follows directly that :

∑
=

=
m

i

j
ij mTm 1

1 λ
λ . ( 9 )

Since for i = 1, …, m the total variation in Yi is equal to T owing two the prescaling procedure

and therefore the total variation of Y = (Y1 | Y2 | … | Ym) is equal to mT, the right side of

equation (9) is precisely the percentage of total variance in Y explained by the jth principal

component of Y. Thus λij reflects the importance that assessor i attaches to the jth dimension

and the average over assessors reflects the relative importance of dimension j.

The various steps to calculate the underlying sensory dimensions and the performance

indices are summarized in the appendix.
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Examples

Two examples will be given to illustrate the outcomes of the PCA on merged data sets

(PCAMDS). We purposefully use the data that has already been analyzed by Kunert and

Qannari (1999) and we do not depict relationships among products as this has already been

discussed in their paper, but we focus on the assessor performances.

The first data set is obtained by means of a fixed vocabulary profiling procedure

applied to 5 German beers. A panel of 13 assessors with no experience in sensory analysis

participated in the test in which four attributes were considered (Kunert, 1998). The

percentages of variation explained by the four underlying dimensions are 37.0%, 29.7%,

19.9% and 13.5%, respectively. Table 1 gives the indices λij from equation (7). They reflect

the importance that the assessors attach to the underlying dimensions. The rather poor

performance of the untrained panel is reflected by the high variation of the indices within each

column. If we consider the first dimension for instance, we can see that the importance of this

dimension is evaluated to 37.0% on average, which is exactly the percentage of variation

explained by the first principal component (see the last row of table 1). However, this

dimension explains only a small amount of variation in the configuration associated with

assessor 2 (7.0%), and contrariwise it turns out to be very important for assessors 3 and 7

(75.0%). The same comments hold for the other dimensions with respect to other assessors. If

we compare the rows in table 1, we can see that except for assessor 12 and, to a smaller

extent, assessor 11, all assessors have one dominant dimension. For instance dimension 2

explains 79% of the total variation in the configuration associated with assessor 13. Being

untrained, these assessors seem to mainly assess the products according to only one latent

variable. Considering assessor 12, the dimensions 1, 3 and 4 turn out to be equally important

and the importance he or she gives to dimension 2 is also not negligible. Therefore, the

configuration of assessor 12 is more or less spherical (equal importance of all the directions)

which, considering the context, might be a hint that the assessor under consideration has just

given random scores to the products.
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Table 1. Beer data: Percentage of variation in each assessor’s configuration explained by the
principal components.

dimension→ 1 2       3       4     Total
assessor ↓

A1 15.0% 15.0% 17.0% 53.0% 100.0%
A2  7.0% 66.0% 23.0%  4.0% 100.0%
A3 75.0% 14.0% 10.0%  1.0% 100.0%
A4 55.0%  3.0% 14.0% 27.0% 100.0%
A5 15.0% 49.0% 19.0% 17.0% 100.0%
A6 11.0% 30.0% 58.0%  1.0% 100.0%
A7 75.0% 11.0%  9.0%  4.0% 100.0%
A8 65.0% 4.0% 14.0% 16.0% 100.0%
A9 61.0% 26.0% 10.0%  3.0% 100.0%

A10 21.0% 49.0% 22.0%  8.0% 100.0%
A11 41.0% 24.0% 30.0%  5.0% 100.0%
A12 28.0% 14.0% 24.0% 33.0% 100.0%
A13 11.0% 79.0%  9.0%  2.0% 100.0%

average 37.0% 29.7% 19.9% 13.5% 100.0%

The second data set was obtained from an experiment involving a free choice profiling

procedure. The data are provided and discussed by Dijksterhuis and Punter (1990) and have

also been analyzed by Dijksterhuis and Gower (1991) by means of GPA. In this experiment,

seven assessors rated eight yogurts. Table 2 shows how much the assessors contribute to the

different dimensions. There is less discrepancy between the importance attached by the

assessors to each dimension than in the previous case. The indices associated with the

assessors with respect to dimensions 1 and 2 are plotted in figure 1. It can be seen that

assessors 2 and 5 bestow much importance upon dimension 1 whereas assessors 6 and 7 give

less importance to this dimension. For assessor 7 we see that dimensions 1 and 2 together

explain less than 50% of the total variation in the configuration. In table 2 it can be seen that

this assessor gives even more importance to dimension 3 than to dimensions 1 and 2,

respectively.
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Table 2. Yogurt data: Percentage of variation in each assessor’s configuration explained by
the principal components.

Dimension→ 1 2 3 4 5 6 7 Total
Assessor↓

1 42.0% 34.0% 3.0% 5.0% 8.0% 7.0% 2.0% 100.0%
2 61.0% 5.0% 10.0% 9.0% 7.0% 6.0% 1.0% 100.0%
3 48.0% 14.0% 18.0% 7.0% 3.0% 6.0% 4.0% 100.0%
4 48.0% 28.0% 8.0% 4.0% 5.0% 5.0% 2.0% 100.0%
5 66.0% 12.0% 4.0% 3.0% 8.0% 6.0% 1.0% 100.0%
6 24.0% 36.0% 11.0% 15.0% 10.0% 2.0% 2.0% 100.0%
7 22.0% 22.0% 24.0% 11.0% 6.0% 5.0% 11.0% 100.0%

Average 44.4% 21.6% 11.1% 7.7% 6.7% 5.3% 3.3% 100.0%

Figure 1. Percentage of variation in each assessor’s configuration explained by the two first
principal components; (*) refers to the average percentage of variation over

assessors.
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Conclusion

The paramount features of PCAMDS are, on the one hand, its simplicity and, on the

other hand, its ability to provide performance indices associated with the assessors. These

indices might be a simple tool for a panel leader to consider individual differences between

the panelists with respect to their perception of different dimensions. Moreover, the method is

supported by a statistical model that assumes the existence of latent variables which are

related to the original data in the sense that the attributes can be retrieved as linear

combinations of these underlying latent variables.

The method of analysis basically involves performing PCA on the merged data sets.

Therefore, further developments of the method may rely on the wide statistical literature

devoted to PCA which is by far the most popular method in multivariate analysis (Jolliffe,

1986). For instance, it is possible to extend the method of analysis to encompass the case

where there are missing data (some assessors may be unavoidably retained from attending all

sessions). Indeed, this is a tricky problem when using such method as GPA whereas solutions

to this problem exist within PCA framework. This issue will be investigated in further

research.
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Appendix

The aim of this appendix is to summarize the various steps of the analysis.

Step 1 : Compute the isotropic scaling factors αi (i = 1, …, m) according to (1) and set

Yi=αi Xi.

Step 2 : Perform a PCA on the merged data tables Y = (Y1 | Y2 | …| Ym); relationships among

products can be depicted on the basis of the unstandardized principal components.

Step 3 : Denote by c1, c2, … cp the standardized principal components associated with Y. For

each data table Yi (i = 1, …, m) and for each principal component cj (j = 1, …, p) compute the

percentage of total variance in Yi explained by cj according to

( )
nT

YSSQ j
i

ij

)(ˆ
=λ ,

where ( ))(ˆ j
iYSSQ is computed as the sum of the squared covariances between the attributes in

Yi and cj, n is the number of products and T is defined according to (2). λij reflects the

importance that assessor i attaches to dimension cj. These indices can be compared to each

other and to their average, which is as a matter of fact the percentage of variation explained

by cj (step 2).


