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ABSTRACT The best linear unbiased estimator of the common mean in het-

eroscedastic one{way �xed e�ects model exists only if the values of the variance

components are known. In practice this does not hold and so far there exists no

consensus on the most suitable test for the common mean parameter. With respect

to the attained signi�cance levels, the t�test proposed by Meier (1953) makes signif-

icant improvements when the sample sizes are large. In this paper, alternative tests

and con�dence intervals are proposed which use either the normal distribution or

the F�distribution as reference distributions. Using analytical and simulation re-

sults, it is demonstrated that the tests proposed attain signi�cance levels (con�dence

coe�cients) closer to the prescribed value compared to some selected classical tests.

An example on the e�ectiveness of a drug in the treatment of angina is given to

demonstrate the application of the tests.

1 Introduction

Testing hypothesis on the overall e�ect parameter, also known as the common mean

parameter, �; in meta{analysis is usually addressed in the context of either the �xed

e�ects approach or the random e�ects approach. In the commonly used method for

meta{analysis which goes back to Cochran (1937, 1954), to draw inference on the
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overall treatment e�ect, the normal distribution is taken as the reference distri-

bution. However, Li, Shi and Roth (1994), Boeckenho� and Hartung (1998) have

demonstrated that the variance of the estimated overall e�ect is underestimated

leading to too many signi�cant results.

For estimators of �; Cochran (1937) considered the unweighted mean, the weighted

and the semi-weighted mean and the maximum likelihood estimator when the num-

ber of observations in each group is constant. Other authors who have investigated

inference on � in �xed e�ects models include: Cochran and Carroll (1953), Meier

(1953), Norwood and Hinkelmann (1977), and Whitehead and Whitehead (1991).

In this article we present some tests and con�dence intervals on the common mean,

�; in the unbalanced heteroscedastic one-way �xed e�ects model. A simulation study

is conducted to judge the performance of the tests with regard to the attained signif-

icance levels. Further, the simulation study demonstrates that the commonly used

test is liberal and the t�test proposed by Meier (1953) is liberal for small samples

but performs well for relatively large samples. An example from Li et al. (1994) on

the e�ectiveness of a drug named amlodipine in the treatment of angina is given to

illustrate the application of the test procedures.

2 Model

Consider a situation where K studies are available, with yi being a summary statistic

from the ith study with associated degrees of freedom �i; i = 1 ; : : : ; K:For the �xed

e�ects model, we shall assume that

yi = �+ ei; i = 1 ; : : : ; K� 2; (1)

where e1; : : : ; eK are mutually independent and normally distributed random vari-

ables such that ei � (0; �i); �i > 0; and � is the common mean for all the K studies.

In a typical meta{analysis, independent estimates of � from the individual studies

�̂i = yi are available and unbiased estimates of the error variances, �i; are pro-

vided, where �i � �i=�i approx� �2
�i
; and using Patnaik (1949), �i = 2 � fE(�i)g2=var(�i);

i = 1 ; : : : ; K;cf: the example in section 4. In studies with normally distributed out-

comes, �i are independent of yi and if the ith study consists of a single arm (as in the

one-way ANOVA model) then the �i have an exact �2
�i
�distribution, i = 1 ; : : : ; K:

De�ne now bi = !i=!� with !� =
PK

i=1 !i; !i = 1 =�i; i = 1 ; : : : ; K:The estimate of
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� is �̂� =
PK

i=1 bi yi and for testing the hypothesis of no treatment e�ect, the test

statistic

T = �̂�=
q
1=!�

approx� N(0; 1)

or the con�dence interval

CIT (�) :
�
�̂� � u1��=2

q
1=!�; �̂

� + u1��=2
q
1=!�

�
;

is used, where u1��=2 is the (1 � �=2)�quantile of a standard normal distribution.

Under the normal distribution as the reference distribution, this test has been shown

to be liberal, cf: for instance, Boeckenho� and Hartung (1998).

If �i's are known, the best estimator of the common mean is �̂ =
PK

i=1 �i yi=��;

where �� =
PK

i=1 �i and �i = 1 =�i; with variance 1=�� which is usually estimated by

1=!�: Let the actual variance of �̂
� be denoted by F�̂�(�): In simply using 1=!� in

the denominator of T; that is, to act as the variance of �̂�; two factors are overlooked:

First, that 1=�� is not the true variance of �̂� and secondly, that E(1=!�) � 1=��;

cf: Meier (1953), Li et al. (1994), Boeckenho� and Hartung (1998). Therefore, to

obtain more justi�ed tests on �; there is need to obtain more reliable estimates of

F�̂�(�); the true variance of �̂
�:

3. Proposed Tests

3.1. Normal Distribution Based Tests

First consider the best linear unbiased estimator, �̂; of � and the Graybill and Deal

(1959) estimator �̂�: Proceeding as in Kackar and Harville (1984), the estimation

error in estimating � by �̂� can be partitioned into two parts, namely, �̂� � � =

(�̂��)+(�̂���̂): Due to the independence of y = ( y1; : : : ; yK)
0 and � = ( �1; : : : ; �K)

0;

it is clear that �̂� � and �̂� � �̂ are also statistically independent. Therefore,

E(�̂� � �)2 = E(�̂� �)2 + E(�̂� � �̂)2 =
1

��
+ E(�̂� � �̂)2 : (2)

Clearly 1=�� underestimates F�̂�(#) by an amount E(�̂� � �̂)2 : Expanding �̂� in a

Taylor series in � about � gives

�̂� = �̂+
pX
i=1

(�i � �i) � @�̂
@�i

+
1

2
�

pX
i=1

(�i � �i)
2 � @

2�̂

@�2i
+ � � �
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Retaining only up to the linear term in the expansion above, and on rearranging,

squaring and taking expectations, we obtain the following approximation:

E(�̂� � �̂)2 � E

( pX
i=1

(�i � �i) � @�̂
@�i

)2

:

It can be shown that

@�̂

@�i
=

�2
i

��
� (�̂� yi); and E(@�̂=@�i)

2 =
�4
i

�2
�

�
 
�i � 1

��

!
:

Due to the independence of all the elements of � and y;

E(�̂� � �̂)2 =
KX
i=1

E(�i � �i)
2 � E

 
@�̂

@�i

!2

�
KX
i=1

var(�i) � �
4
i

�2
�

�
 
�i � 1

��

!
: (3)

In other words, we can express F�̂�(�) = E(�̂� � �)2 as

F�̂�(#) � 1

��
+

KX
i=1

var(�i) � �
4
i

�2
�

 
�i � 1

��

!
; (4)

with a natural estimate given by

F�̂�(�) � 1

!�
+

KX
i=1

dvar(�i) � !4
i

!2
�

�
�i � 1

!�

�
: (5)

Now, for testing the hypothesis of the nullity of the overall treatment e�cacy, there

exists a test T1 such that when � = 0 ;

T1 =
�̂�q

F�̂�;HK(�)

approx� N(0; 1) ; (6)

with the corresponding con�dence interval given by

CI1(�) :
�
�̂� � u1��=2

q
F�̂�;HK(�); �̂

� + u1��=2
q
F�̂�;HK(�)

�
;

where

F�̂�;HK(�) =
1

!�;c

+
KX
i=1

dvar(�i) � !4
i

!2
�

�
�
�i � 1

!�

�
; (7)

and !�;c =
PK

i=1 !i;c; with !i;c = ( ci ��i)�1; ci = �i=(�i�2); i = 1 ; : : : ; K;cf: equation

(2.3) and Theorem (3.3) of Boeckenho� and Hartung (1998). The estimator 1=!�;c

is considered as a bias adjusted estimator of 1=��:
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Another alternative is to proceed along the lines of Kenward and Roger (1997). A

series expansion of 1=!� in � about � yields

1

!�

� 1

��
+

KX
i=

(�i � �i)
@(1=!�)

@�i
+

1

2
�
KX
i=

(�i � �i)
2 � @

2(1=!�)

@�2i
:

So that

E
�
1

!�

�
� 1

��
+
1

2
�
KX
i=

var(�i) � @
2(1=!�)

@�2i

=
1

��
+

KX
i=

var(�i) � �
4
i

�2
�

 
1

��
� �i

!
:

It is then obvious that to obtain an estimate of F�̂�(#) we have to add to (4) another

term which is equal to its correction term. That is, we now have

F�̂�;KR(�) =
1

!�
+ 2 �

KX
i=

dvar(�i) � !4
i

!2
�

�
�i � 1

!�

�
; (8)

so that to test H0 : � = 0 versus H1 : � 6= 0 ;we can also use the statistic

T2 =
�̂�q

F�̂�;KR(�)

approx� N(0; 1); (9)

or the con�dence interval

CI2(�) :
�
�̂� � u1��=2

q
F�̂�;KR(�); �̂

� + u1��=2
q
F�̂�;KR(�)

�
;

This was the idea of Kackar and Harville (1984) of estimating standard errors of

estimators which was later used by Kenward and Roger (1997) in estimating �xed

e�ects parameters in mixed models. Our idea, which led to F�̂�;HK(�); is slightly dif-

ferent in that instead of making a second series expansion to obtain a bias corrected

estimate of 1=��; the �rst component in the expression for F�̂�(#); we invoke the

convexity arguments in Boeckenho� and Hartung (1998) to obtain a bias corrected

estimator of 1=��; namely, 1=!�;c:
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Table 1: Sample designs for K = 3 for the simulation results in Table 2 and 3.

Sample Error

sizes variances

Study (Group) Study (Group)

Plan 1 2 3 1 2 3

A11 10 10 10 4 4 4

A12 10 10 10 1 3 5

A21 20 20 20 4 4 4

A22 20 20 20 1 3 5

B11 5 10 15 4 4 4

B12 5 10 15 1 3 5

B13 5 10 15 5 3 1

B21 10 20 30 4 4 4

B22 10 20 30 1 3 5

B23 10 20 30 5 3 1

To obtain K = 6 and K = 9 ;we make, respectively, one and two independent

replications of K = 3 :For example, for plan B12 the sample sizes for K = 6 are (5,

10, 15, 5, 10, 15) and the corresponding error variances (1, 3, 5, 1, 3, 5).

Remark 1

If we de�ne

VM =
1

!�

(
1 + 4

KX
i=1

!i
�̂i � !�

�
1� !i

!�

�)
;

to test H0 : � = 0 against H1 : � 6= 0 ;Meier's (1953) proposed the test

TM =
�̂�

p
VM

approx� t�̂M ; (10)

where

�̂M =
!2
�PK

i=1 !
2
i =�̂i

;

and tm is a t-distribution with m degrees of freedom. A con�dence interval corre-

sponding to this test is given by

CITM (�) :
�
�̂� � t�̂M ;1��=2

q
VM ; �̂

� + t�̂M ;1��=2

q
VM

�
;

where tm;1��=2 is the (1 � �=2)�quantile of a t�distribution with m degrees of

freedom.
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Attained signi�cance levels by using T; TM ; T1 and T2 and patterns given in Table

1 for K = 3 ;6 and 9 at nominal level � = 0 :05 are reported in Table 2 below.

The attained con�dence coe�cients for the con�dence intervals corresponding to

the given test statistics can be obtained by taking 1 � �̂; where �̂ is the attained

signi�cance level (this will also be true thereafter).

Table 2: Simulated signi�cance levels (10 000 runs) for K = 3 ;6; 9 at � = 0 :05

using test statistics T; TM ; T1 and T2:

Attained type I error rates, �̂%

K = 3 K = 6 K = 9

Plan T TM T1 T2 T TM T1 T2 T TM T1 T2

A11 10.6 5.8 5.8 6.6 11.9 6.4 6.1 6.9 12.6 7.0 6.6 7.5

A12 9.9 5.5 5.6 7.2 11.7 6.5 6.4 7.4 11.9 6.6 6.3 7.3

A21 7.7 5.4 5.4 5.9 7.4 5.3 5.2 5.5 7.5 5.1 5.0 5.2

A22 7.4 5.4 5.5 6.2 7.5 5.1 5.0 5.4 7.8 5.2 5.1 5.5

B11 12.2 7.2 7.0 8.6 14.3 7.6 7.2 8.4 16.0 9.3 8.9 9.9

B12 13.4 6.7 6.6 9.3 16.2 8.2 7.8 10.2 17.4 8.6 7.8 10.1

B13 10.1 6.5 6.6 7.8 11.2 7.0 6.9 7.8 11.9 7.4 7.2 8.3

B21 7.4 5.2 5.2 5.8 8.2 5.5 5.4 5.7 8.9 6.1 6.0 6.3

B22 8.3 5.5 5.6 6.5 8.8 5.6 5.6 5.9 9.4 5.8 5.7 6.2

B23 7.2 5.2 5.3 5.8 6.8 5.2 5.2 5.4 7.1 5.4 5.3 5.5

From Table 2, for K = 3 ;6, 9, the commonly used test in meta-analysis, T; always

overstates the signi�cance level. The other tests, TM ; T1; and T2 lead to some

improvements in the attained signi�cance levels. However, for patterns A11, A12,

B11, B12 and B13, there is still unacceptable liberality, using [4%, 6%] as the bounds

for acceptable attained signi�cance levels (see for example, De Beuckelaer, 1996),

which increases with K:

3.2. F�Distribution Based Tests

The unacceptable levels attained by the test statistics in section 2.1 require that

better alternatives test be sort. Alternative and more conservative procedures can

be obtained by tackling the problem along the lines of Kenward and Roger (1997)

and Meier (1953).
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Let us consider the function g(�̂�) = �̂�2=(1=!�); that is when H0 : � = 0 is true.

Using a Taylor series expansion of 1=(1=!�) = !�; it can be shown

E(!�) � �� +
1

2
� E

(
KX
i=1

(�i � �i)
2 @

2��
@�2i

)
:

On using the relationship E(X) = E
Y
fE(XjY )g; expanding and ignoring the de-

pendence between �̂� and 1=!� gives

Efg(�̂�)g = 1 +
1

��
�

pX
i=1

var(�i) � 1
�3i

: (11)

The statistic g(�̂�) is distributed as a F�variable with 1 and �
g(�̂�)

degrees of free-

dom. Which implies that we only have to estimate the denominator degrees of

freedom , �
g(�̂�)

; from the data. Equating the expected value of g(�̂�) to the corre-

sponding moment of the F1;�
g(�̂�)

and solving, we obtain

�
g(�̂�)

= 2 � Efg(�̂�)g
Efg(�̂�)g � 1

; (12)

which can be estimated by �̂
g(�̂�)

= 2 � f(�̂�)=ff(�̂�)� 1g; where

f(�̂�) � 1 +
1

!�;c
�
KX
i=1

dvar(�i) � 1
�3i

:

So that for testing H0 : � = 0 against H1 : � 6= 0 we can use the test statistic

T3 = g(�̂�) =
�̂�2

(1=!�)

approx� F1;�̂
g(�̂�)

: (13)

or the con�dence interval

CI3(�) :
h
�̂� �

q
F1;�̂

g(�̂�)
;1�� � (1=!�) ; �̂

� +
q
F1;�̂

g(�̂�)
;1�� � (1=!�)

i
;

where Fm1;m2;� is the ��quantile of an F�distribution with m1 and m2 degrees of

freedom.

We can also obtain another variant of the test above by applying the following

theorem which is equivalent to that of Meier (1953, p. 64):
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Theorem 1

If x1; � � � ; xp are independently distributed with density functions

h�i(xi) =

�
�i
2

��i=2
�
�
�i
2

� � x
�i
2
�1

i exp
�
��ixi

2

�
; xi > 0;

�i being the associated degrees of freedom, and q(x1; � � � ; xp) is a rational function

with no singularities for xi > 0; then Efq(x1; � � � ; xp)g can be expanded in a asymp-

totic series in 1=�i: Speci�cally,

Efq(x1; � � � ; xp)g = q(1; � � � ; 1) +
pX
i=1

1

�i

@2q

@x2i
j(1;���;1) +O

 pX
i=1

1

�2i

!
: (14)

Consider now the function

g(�̂�) =
�̂�2

!�1
�

=
(
Pp

i=1 yi=�i)
2PK

i=1 1=�i
:

It is easy to notice that xi = �i=�i has the density h�i(xi) given above. Therefore,

we have

g(�̂�) =

nPK
i=1 yi=(�ixi)

o2
PK

i=1 1=(�ixi)
:

By the independence of yi and �i; we can take the expectation of g(�̂�) �rst with

respect to yi holding xi �xed, and then with respect to xi: Thus,

Efg(�̂�)jxig =

PK
i=1E(y

2
i )=(�ixi)

2PK
i=1 1=(�ixi)

=

PK
i=1 1=(�ix

2
i )PK

i=1 1=(�ixi)
: (15)

To the order O
�Pp

i=1 �
�2
i

�
; the expected value of the g(�̂�) can now be written as

Efg(�̂�)g = Efg(�̂�)j1; � � � ; 1g+
KX
i=1

1

�i

@2Efg(�̂�)jxig
@x2i

j(1;���;1)

= 1 +
KX
i=1

1

�i

@

@xi

264 1�PK
i=1 1=�ixi

�2
(

1

�ix2i

KX
i=1

1

�ix2i
� 2

�ix3i

KX
i=1

1

�ixi

)375
(1;���;1)
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= 1 +
2

�2
�

�
KX
i=1

�i
�i
(2�� � �i) : (16)

With these results we can now construct a test statistic to test H0 : � = 0 against

H1 : � 6= 0 ;namely,

T4 =
�̂�2

1=!�

approx� F1;�̂g�(��) (17)

or a con�dence interval

CI4(�) :
h
�̂� �

q
F1;�̂

g�(�̂�)
;1�� � (1=!�) ; �̂

� +
q
F1;�̂

g�(�̂�)
;1�� � (1=!�)

i
:

where �̂g�(��) = 2 � f �(�̂�)=ff �(�̂�)� 1g; with

f �(�̂�) = 1 +
2

!2
�;c

�
KX
i=1

!i
�̂i

(2!� � !i) :

3.3. Scaled F�Distribution Based Tests

Given that the estimate 1=!� underestimates the variance of �̂�; the immediate

implication is that g(�̂�) would take larger values than expected and this partly

explains why the statistic g(�̂�) would exhibits unacceptable liberality. Therefore,

a scaled version of g(�̂�); say, gS(�̂
�) = " � g(�̂�); where we will let the value of "

be determined by the data itself, could deliver acceptable levels. In other words, we

now have

gS(�̂
�) = " � g(�̂�) � F1;�" ;

where " and �" have to be determined from the data. The approach now would be

to determine the �rst and second central moments of the approximating statistic

gS(�̂
�) using theorem 1 and equating them to the corresponding moments of an

F�distribution with 1 and �" degrees of freedom. Consequently,

EfgS(�̂�)g = " � Efg(�̂�)g = �"
�" � 2

:

That is,

" =
�"

(�" � 2) � Efg(�̂�)g ; (18)

which can be estimated by

"̂ =
�̂"

(�̂" � 2) � f �(�̂�)

10



Next,

varfgS(�̂�)g = "2 � varfg(�̂�)g = 2 � �2" (�" � 1)

(�" � 4)(�" � 2)2
:

Solving for �"; we obtain

�" =
6 � [Efg(�̂�)g]2

varfg(�̂�)g � 2 � [Efg(�̂�)g]2 + 4 : (19)

Using again theorem 1, we get

varfg(�̂�)jxig =
1�PK

i=1 1=�ixi
�2 � var

 
KX
i=1

yi
�ixi

!2

=
2�PK

i=1 1=�ixi
�2 � KX

i=1

1

�2i x
4
i

: (20)

With now

varfg(�̂�)j(1; � � � ; 1)g = 2

�2
�

�
KX
i=1

1

�2i
;

and

@

@xi
[varfg(�̂�)jxig] =

2

(
Pp

i=1 1=�i)
4 �
(

2

�ix2i
�
 pX
i=1

1

�ixi

!
�
 pX
i=1

1

�2i x
4
i

!

� 4

�2i x
5
i

�
 pX
i=1

1

�ixi

!2
9=; ;

(see the appendix for the evaluation of @[varfg(�̂�)jxig]=@xij(1;���;1)), we get

varfg(�̂�)g � varfg(�̂�)j(1; � � � ; 1)g+
KX
i=1

1

�i
� @2

@x2i
[varfg(�̂�)jxig]j(1;���;1)

= 2 � 1

�2
�

(
KX
i=1

�2
i + 2 � 1

�2
�

�
KX
i=1

1

�i � �3i
�
10�i � �2

�

+3 �i �
KX
i=1

�2
i � 2�2i � �� �

KX
i=1

�2
i � 8��

!)
: (21)

A natural estimate of varfg(�̂�)g is

dvarfg(�̂�)g =
2

!2
�

(
KX
i=1

!2
i +

2

!2
�

�
KX
i=1

!3
i

�i

�
10�i � !2

�

+ 3 �i �
KX
i=1

!2
i � 2�2i � !� �

KX
i=1

!2
i � 8!�

!)
: (22)

11



However, this estimate is expected to be biased and a bias correction of some sort

is necessary. First, we propose to use the bias corrected estimate of 1=�� wherever

it appears in the expression for varfg(�̂�)g: Therefore, we get

V �

1 =
2

!2
�;c

(
KX
i=1

!2
i +

2

!2
�;c

�
KX
i=1

!3

�̂i

�
10�i � !2

�

+ 3 �i �
KX
i=1

!2
i � 2�2i � !� �

KX
i=1

!2
i � 8!�

!)
: (23)

Secondly, we can make a bias correction to the order of our expansions. Thus, let's

consider the �rst term of varfg(�̂�)g; namely, M(�) = 2 � PK
i=1 !

2
i =!

2
�: Applying

again theorem 1 yields

EfM(�)j1; � � � ; 1g =
2

�2
�

�
KX
i=1

�2
i ;

@2

@x2i
EfM(�)j1; � � � ; 1g =

4

�3i
� 1

�4
�

 
3�i � �2

� + 3 �i �
KX
i=1

�2
i

�2�2i �� �
KX
i=1

�2
i � 4��

!

So that

EfM(�)g � 2

�2
�

(
KX
i=1

�2
i +

2

�2
�

KX
i=1

1

�i � �3i
�
3�i � �2

�

+3 �i �
KX
i=1

�2
i � 2�2i � �� �

KX
i=1

�2
i � 4��

!)
:

Therefore, with a bias of order O(
PK

i=1 �
�1
i ); a bias corrected estimate of varfg(�̂�)g

is

V �

2 =
2

!2
�

�
( pX

i=1

!2
i +

2

!2
�

�
KX
i=1

!3
i

�̂i

�
7�i � !2

� � 4!�

�)
: (24)

So, to test H0 : � = 0 we can use the scaled test statistics

T5 = gS(�̂
�) � F1; �̂�";1;

T6 = gS(�̂
�) � F1; �̂�

";2
(25)
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or the respective con�dence intervals

CI5(�) :
h
�̂� �

q
F1;�̂�

";1;1��
� (1=!�)="̂ ; �̂

� +
q
F1;�̂�

";1;1��
� (1=!�)="̂

i
;

CI6(�) :
h
�̂� �

q
F1;�̂�

";2;1��
� (1=!�)="̂ ; �̂

� +
q
F1;�̂�

";2;1��
� (1=!�)="̂

i
;

with

�̂";1 = 4 +
6 � f �2(�̂�)

V �

1 � 2 � f �2(�̂�)
; �̂";2 = 4 +

6 � f �2(�̂�)

V �

2 � 2 � f �2(�̂�)
:

However, we notice that if V �

1 < 2 � f �2(�̂�); then it is possible that �̂" � 0: To guard

against this eventuality we propose the use of

�̂�";1 = 4 +
6 � f �2(�̂�)

jV �

1 � 2 � f �2(�̂�)j ; �̂�";2 = 4 +
6 � f �2(�̂�)

jV �

2 � 2 � f �2(�̂�)j ;

where jbj represents the absolute value of b:

Table 3: Simulated signi�cance levels (10 000 runs) for K = 3 ;6; 9

at � = 0 :05 using test statisticsT3; T4 T5 and T6:

Attained type I error rates, �̂%

K = 3 K = 6 K = 9

Plan T3 T4 T5 T6 T3 T4 T5 T6 T3 T4 T5 T6

A11 6.6 4.1 4.5 4.2 7.8 4.7 4.7 4.7 8.4 5.2 5.1 5.1

A12 6.5 4.3 4.5 4.3 7.4 4.5 4.5 4.4 7.7 4.9 4.8 4.8

A21 5.8 4.5 4.5 4.5 6.2 4.7 4.6 4.6 6.0 4.8 4.7 4.6

A22 5.9 5.0 5.1 5.0 5.6 5.0 4.9 4.9 5.9 4.5 4.5 4.5

B11 7.5 4.9 4.8 4.7 9.2 5.7 5.5 5.4 10.2 5.8 5.6 5.6

B12 7.3 4.2 4.0 4.0 9.0 4.9 4.4 4.4 9.3 5.5 4.8 4.7

B13 6.9 4.9 5.0 4.9 8.0 5.3 5.4 5.4 8.4 5.7 5.7 5.7

B21 5.9 5.0 5.0 5.0 6.1 4.8 4.8 4.7 6.0 4.7 4.7 4.7

B22 6.5 4.6 4.8 4.7 6.7 5.0 5.1 5.1 6.3 4.6 4.5 4.6

B23 5.7 4.9 4.9 4.9 5.8 5.0 5.0 5.0 5.8 5.1 5.0 5.0

From Table 3, the test T3 is liberal, especially when the sample sizes are relatively

small, that is, patterns A11, A12, B11, B12 and B13. The tests T4; T5 and T6 always

attain acceptable levels for K = 3 ;6 and 9.

It should be mentioned here that signi�cant di�erences in the tests given above are

13



expected for small sample cases, of say � 10: However, with larger samples one

would expect to arrive at almost same conclusion by using any of the above test

procedures.

4 Example

Just for demonstrating the procedures discussed, we consider the following example

of clinical trials on the e�ectiveness of amlodipine in the treatment of angina. The

data we use are taken from Li et al. (1994). A total of eight randomized clinical

trials compared the change in work capacity for patients who received either the

drug (amlodipine) or a placebo. The change in work capacity, for each patient, is

the ratio of the exercise time after the intervention (amlodipine or placebo) to before

receiving the intervention. The logarithms of the observed changes are assumed to

be approximately normally distributed. The data and some summaries are given in

Table 4 below.

Table 4: Change in work capacity in the treatment of angina.

Study Amlodipine Placebo

Sample Mean Variance Sample Mean Variance Mean

Size Size Di�erence Variance

ni;a yi;a ni;a�i;a ni;p yi;p ni;p�i;p yi �i

1 46 0.2316 0.2256 48 -0.0027 0.0007 0.2343 0.0049

2 30 0.2811 0.1441 26 0.0270 0.1139 0.2541 0.0092

3 75 0.1894 0.1981 72 0.0443 0.4972 0.1451 0.0095

4 12 0.0930 0.1389 12 0.2277 0.0488 -0.1347 0.0156

5 32 0.1622 0.0961 34 0.0056 0.0955 0.1566 0.0058

6 31 0.1837 0.1246 31 0.0943 0.1734 0.0894 0.0096

7 27 0.6612 0.7060 27 -0.0057 0.9891 0.6669 0.0628

8 46 0.1366 0.1211 47 -0.0057 0.1291 0.1423 0.0054

In our calculations we have yi = yi;a � yi;p; �i = �i;a + �i;p; i = 1 ; : : : ;8: With

ni;a � �i;a � �2
ni;a�1 and ni;p � �i;p � �2

ni;p�1; we have

�̂i = 2 � (�i;a + �i;p)
2

dvar(�i;a + �i;p)
=

(�i;a + �i;p)
2

�2i;a=(ni;a � 1) + �2i;p=(ni;p � 1))
;
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cf: section 2 above, so that from the data above we obtain:

�̂� = 0 :1619; f(�̂�) = 1 :0386; f�(�̂�) = 1 :0743; �̂g(�̂�) = 53 :8536;

�̂g�(�̂�) = 28 :9269 �̂�";1 =; 7:6763 �̂
�

";2 = 7 :5925:

Suppose interest is in testing the hypothesis that there is no change in work capacity

after use of amlodipine against a two sided alternative of a negative or positive e�ect

at � = 0 :05:Table 5 gives the test statistics T; TM ; T1; T2; T3; T4; T5; and T6

with the corresponding computed values, critical values and the con�dence intervals.

Clearly, the decision reached by using all the test statistics is the same, that is, at

level � = 0 :05;the data does provide enough evidence to reject the hypothesis

of no change in work capacity after use of amlodipine. This is in line with the

con�dence intervals which also indicate that zero is outside the con�dence limits.

That all the test procedures (and the corresponding con�dence intervals) give the

same conclusion may not be surprising given that in more that one half of the eight

studies the sample sizes, in both arms, are greater than 30.

Table 5: Value of the test statistics and corresponding critical values (level

� = 5%) for the data in Table 4.

Test Computed Critical Con�dence

statistic value value Interval

T 5.0134 1.9600 CIT (�) : [0 :0986;0:2252]

TM 4.8615 1.9664 CITM (�) : [0 :0964;0:2274]

T1 4.8460 1.9600 CI1(�) : [0 :0964;0:2274]

T2 4.8615 1.9600 CI2(�) : [0 :0966;0:2272]

T3 25.1340 4.0200 CI3(�) : [0 :0971;0:2266]

T4 25.1340 4.1839 CI4(�) : [0 :0958;0:2279]

T5 31.6397 5.3965 CI5(�) : [0 :0950;0:2288]

T6 31.7632 5.4183 CI6(�) : [0 :0949;0:2289]

5 Conclusion

In the meta-analysis of, for example, randomized clinical trials, the most commonly

used test is T; which, from results published elsewhere and also from our results,

attains levels well above the prescribed levels, �: The practical implication is that

in studies where this test is used, there is likely to be a tendency to mimic the true

e�ect (usually no e�ect) of the factor under investigation (say, some drug). The test
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proposed by Meier (1953) leads to improvements in the attained signi�cance levels

only for reasonably large samples (say � 20). For large samples, the proposed tests

can be used as congruents of Meier`s t�test and of course, they should be preferred

to the commonly used test. When smaller samples are in question, we proposed

the use of either T4; T5 or T6: However, care should also be taken on the number of

studies under consideration.
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Appendix

@

@xi
[varfg(�̂�)jxig] =

2

(
Pp

i=1 1=�i)
4 �
(

2

�ix2i
�
 pX
i=1

1

�ixi

!
�
 pX
i=1

1

�2i x
4
i

!

� 4

�2i x
5
i

�
 pX
i=1

1

�ixi

!2
9=; :

Set

S1(x) =
4

(
Pp

i=1 1=�ixi)
3 �

1

�ix2i
�
 pX
i=1

1

�2i x
4
i

!
; S2(x) =

8

(
Pp

i=1 1=�ixi)
2 �

1

�2i x
5
i

:

Then

@S1(x)

@xi
=

4�PK
i=1 1=�ixi

�6 �
24 KX

i=1

1=�ixi

!3 ( �4
�3i x

7
i

� 2

�ix3i

 
KX
i=1

1=�2i x
4
i

!)

+
3

�2i x
4
i

 
KX
i=1

1=�2i x
4
i

!
�
 

KX
i=1

1=�ixi

!2
35 :

@S1(x)

@xi
j(1;:::;1) =

�16
�3i

� 1

�3
�

� 8

�i
� 1

�3
�

�
KX
i=1

1

�2i
+
12

�2i
� 1

�4
�

�
KX
i=1

1

�2i
:

@S2(x)

@xi
=

8�PK
i=1 1=�ixi

�4 �
8<: 2

�3i x
7
i

 
KX
i=1

1=�ixi

!
� 5

�2i x
6
i

 
KX
i=1

1=�ixi

!2
9=; :

@S2(x)

@xi
j(1;:::;1) =

16

�3i
� 1

�3
�

� 40

�2i
� 1

�2
�

:
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