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Abstract: Intelligent alarm systems are needed for adequate bedside decision sup-
port in critical care. Clinical information systems acquire physiological variables online
in short time intervals. To identify complications as well as therapeutic e�ects proce-
dures for rapid classi�cation of the current state of the patient have to be developed.
Detection of characteristic patterns in the data can be accomplished by statistical time
series analysis. In view of the high dimension of the data statistical methods for di-
mension reduction should be used in advance. We discuss the potential of statistical
techniques for online monitoring.

1 Introduction

In intensive care, today clinical information systems (CIS) acquire and store all phys-
iological and device parameters online every minute. Currently a physician can be
confronted with more than 200 variables of the critically ill patient during a typical
morning round. However, even an experienced physician is not able to develop a sys-
tematic response to any problem involving more than seven variables (Miller, 1956) nor
is he able to judge the degree of relatedness between more than two variables (Jennings
et al., 1982). Thus electronic bedside decision support o�ers huge potential bene�t.
On the other hand, the technological progress achieved in the electronic patient record
during the last ten years (Imho�, 1993) bears new challenges for statistical methodol-
ogy. Techniques of statistical data analysis have to be automated and adapted to the
online-monitoring context.

Existing alarm systems based on �xed thresholds produce a large number of false
alarms due to measurement artefacts or patient movements (O'Carrol, 1986). Usually
changes of a variable with time are more important than a single pathological value
at the time of observation. Hence, the online detection of qualitative patterns such as
outliers, level changes or trends in physiological variables is important for assessing the
patient's state. Qualitative data abstraction has been developed using deviations of the
measurements from the target range (Miksch et al., 1996), so-called trend templates
(Haimowitz and Kohane, 1996), or robust adaptive control charts (Daumer, 2000).
However, they do not consider temporal correlations or they demand prede�nition
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of expected behaviour, which is hard to specify in advance because of the irregular
patterns found in critical care.

Statistical time series modelling has been proven useful for retrospective analysis
of physiologic variables. It leads to interpretable descriptions of complex underlying
dynamics, provides forecasts, gives con�dence bounds and allows the assessment of
the clinical e�ects of therapeutic interventions (Hill and Endresen, 1978, Gordon and
Smith, 1990, Hepworth et al., 1994, Imho� et al., 1997). For pattern detection in single
variables, techniques such as multiprocess models, dynamic linear models, ARIMA-
models, and phase space models have already been applied.

Pattern detection in multivariate time series of several physiologic variables is much
more di�cult than in univariate series. Furthermore, in high dimensions the compu-
tational e�ort can exceed any available computational power (Huber, 1999). This
problem becomes even more severe in the online monitoring context where fast and
robust algorithms are needed. The demand for robustness against disturbances like
sequences of patchy outliers arises because of their negative e�ects on correct pattern
classi�cation. In consequence, reliable procedures for analysing multivariate physiologic
time series have to be developed and validated with real data. Statistical methods like
graphical models, sliced inverse regression, principal component analysis and factor
analysis can be applied for dimension reduction.

In the following we discuss statistical methods for time series analysis and for dimen-
sion reduction. We explore how they can be combined for achieving suitable bedside
decision support and report our experiences w.r.t. analysing the hemodynamic sys-
tem, i.e. variables such as blood pressures, heart rate, pulse, blood temperature and
pulsoximetry.

2 Statistical Time Series Analysis

Subsequent measurements of the same variable typically show autocorrelated behaviour,
i.e., subsequent observations are often positively related. Statistical methods for time
series allow to consider such autocorrelations in the data analysis. Particularly we
aim at the online detection of patterns such as level changes, artefacts and trends in
physiologic time series. The reliable distinction between these patterns is di�cult since
often combinations of several patterns occur (see Figure 1).

2.1 Dynamic Linear Models

In one of the �rst attempts to apply statistical time series analysis to online monitoring
data, Smith and West (1983) used a multiprocess dynamic linear model to monitor
patients after renal transplantation. In dynamic linear models (DLMs) (West and
Harrison, 1989) the observation Xt at time t is considered as a linear transformation
of an unobservable vector of state parameters. These states are assumed to change
dynamically in time according to a simple regression model. The linear growth model

Xt = �t + �t

�t = �t�1 + �t�1 + �t;1
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Figure 1: Patterns of change in univariate physiologic time series. Combinations of
several patterns, which usually occur in practice, may cause problems for any identi�-
cation rule

�t = �t�1 + �t;2

is very appealing for describing hemodynamic variables. Here, �t is the unknown pro-
cess level and �t is the unknown slope at time t. In the multiprocess version used by
Smith and West di�erent variances of the random observation error �t and the random
change in evolution �t;j at time t are assumed for describing the steady state, outliers,
level changes and trends. For pattern classi�cation they calculated the posterior prob-
abilities of these states in a Bayesian framework using a multiprocess Kalman �lter. In
related work time series from anaesthesia were analysed (Daumer and Falk, 1998).

Routine application of these models has not been practiced yet because of their
very strong sensitivity against misspezi�cation of the hyperparameters and their insen-
sitivity against moderate level shifts.

The computational e�ort can signi�cantly be reduced by using a single-process
model. Pattern detection can be accomplished by assessing the inuence of recent
observations on the parameter estimates. This can be done via inuence statistics
(Cook, 1977) which compare estimates of the state parameters calculated with and
without the most recent observations. When an outlier occurs the current level is
supposed to be far from the current observation, while for a level change and a trend
the recent observations should have a large inuence on the estimate of the level and
slope parameter respectively.

While this technique was successfully applied for retrospective analysis (Pe~na, 1990,
De Jong and Penzer, 1998), online detection of patterns by inuence statistics has di�-
culties with little variability during the estimation period, with level changes occuring
stepwise and with patterns of outliers in short time lags. Little variability during the
estimation period causes the detection of outliers and level changes to be too sensi-
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tive subsequently. Stepwise level changes are hard to detect since the smoothed level
parameter adjusts step by step, so that the inuence statistics do not have signi�cant
values at any time. Several close outliers may either mask each other or be mistaken
for a level change. Nevertheless, all kind of patterns in hemodynamic time series could
correctly be identi�ed in most cases (Gather et al., 2000a).

2.2 ARMA Models

An autoregressive moving average (ARMA(p; q)) model (Box et al., 1994) for a time
series formally resembles a multiple regression, where the observation Xt is assumed
to be a linear transform of p past observations Xt�1; : : : ; Xt�p and q unobserved past
shocks �t�1; : : : ; �t�q

Xt = �1Xt�1 + : : :+ �pXt�p + �1�t�1 + � � � �q�t�q + �t; t 2 Z;

where �1; : : : ; �p; �1; : : : ; �q are unknown weights. The unobserved shocks �t are as-
sumed to form a sequence of uncorrelated variables from a �xed distribution with
mean zero and time invariant variance. This model describes the autocorrelations
within a time series in a tractable way and results in simple computational formulas
for parameter estimation, prediction and con�dence intervals for predictions.

Pattern detection can be accomplished by comparing the incoming observations to
con�dence intervals for the predictions (PI). Time series segments can be classi�ed
into the several patterns according to the number of values outside the PI. Following
medical reasoning we can classify observations as outliers if less than 5 consecutive
observations are outside the PI, while a level change can be identi�ed by 5 or more
consecutive observations outside the PI (Imho� et al., 2000).

In practice, a suitable model order has to be determined �rst. This can be done
by analysing a preliminary estimation period of, say, 60 minutes. Either one could use
the autocorrelation and partial autocorrelation function of these observations, or model
selection criteria such as the Akaike information criterion (De Gooijer et al., 1985) could
be used to specify a suitable model order for this estimation period. However, this is
time-consuming and needs some statistical experience. Moreover, in practice sampling
variation makes this task di�cult, particularly in the online monitoring context where
estimation intervals have to be rather short. Hence, an extensive model selection
process is not possible in online monitoring and has to be avoided.

Online application of ARMA models can be simpli�ed signi�cantly by using the
same model order for all patients. Analysis of hemodynamic time series provided
evidence that autoregressive models (AR(p), i.e. ARMA(p,q)-models with q = 0) of
order two may be suitable to describe the autocorrelations within the data in most
cases (Lambert et al., 1995, Imho� et al., 1996, 1997), while choosing higher model
orders results in minor di�erences only (Imho� et al., 2000). Therefore, choosing an
overparameterized autoregressive model could be suitable.

Adaptive control limits corresponding to the current state of the patient can be
achieved by moving a time window through the data for estimation. Prediction intervals
for the incoming observations are calculated using the parameter estimates from the
observations measured within the last hour for instance. If the incoming observation
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Figure 2: Two-dimensional phase space vectors from a time series

lies within the prediction interval, then the time window is moved one step ahead,
otherwise the incoming observation is replaced by its prediction.

Trend detection cannot appropriately be achieved in an online manner by AR-
models, while both outliers and level shifts can be detected reliably. The level chosen
for the PI has to be adjusted in case of very high or low variability during the estimation
period.

2.3 Phase Space Models

In phase space models the dynamical information of a time series x1; : : : ; xN is trans-
formed into a geometric information in an m-dimensional Euclidean space. For this
purpose the phase space vectors

~xt := (xt; xt+1; : : : ; xt+(m�1))
0 2 R

m

are constructed, wherem can be chosen similarly to the order of an AR-model (Bauer et
al., 1999a). Figure 2 visualizes the transformation of a time series into a 2-dimensional
space.

In the steady state the phase space vectors arising from a linear Gaussian process
form an m-dimensional elliptic cloud. A control ellipsoid can be estimated using clas-
sical or robust estimators of the mean and the autocovariances of a time series. The
position of the phase space vectors w.r.t. this control ellipsoid gives information about
their deviation from the steady state. If all observations are inside the estimated ellip-
soid, it can be said that the patient is in a steady state. Disturbances can be detected
by the movement of the a�ected vectors in the phase space outside the control ellipsoid
(Bauer et al., 1999b).

In this way, outliers and level shifts can reliably be detected. A trend, however, can
only be detected by looking at the shape of the vector ellipsoid, which is a relatively
insensitive method for the detection of slight trends. For achieving adaptive control
limits corresponding to the current state moving window techniques can be applied as
described above.

3 Dimension Reduction

In critical care a multitude of variables is measured in the course of time. Figure 3
shows a nine-dimensional time series consisting of the heart rate, the pulse, the central
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Figure 3: Multivariate time series representing the hemodynamic system of a patient
measured during about four hours. Some patterns of change occur simultaneously in
several variables, while others seem to occur in distinct variables in short time lags or
in a single variable only

venous, the arterial, and the pulmonary arterial pressures of a patient measured during
about four hours.

For the reason of interpretability we should reduce the dimension of the data on
which decisions are based. This can be achieved either by selecting a subset of the
most important variables or by searching for combinations of the observed variables
which contain as much information as possible.

3.1 Graphical Models

In clinical practice physicians �rst select a subset of the monitored variables to get a
manageable number of variables. For instance, they neglect the arterial diastolic pres-
sure and the arterial systolic pressure and restrict attention to arterial mean pressure
since it is closely related to the other arterial pressures.

Graphical models (Cox and Wermuth, 1996) allow to investigate the associations
in multivariate data by statistical analysis. Dahlhaus (2000) extended this concept
recently to multivariate time series by means of correlation analysis in the frequency
domain, where time series are considered as combinations of waves with di�erent har-
monic periodicities. This allows to assess the linear, possibly time-lagged relationships
between the variables.

The practical value of this new technique for medical data analysis could already
be appraised in a clinical study (Gather et al., 2000). Known associations within
the hemodynamic system could reliably be reidenti�ed by graphical models calculated
for critically ill patients. Separate analysis of di�erent clinical states even resulted in
characterisations of the states by distinct association structures.
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3.2 Sliced Inverse Regression

Sliced inverse regression (SIR) (Li, 1991) is a powerful statistical instrument for di-
mension reduction in linear regression. Starting from a regression problem with d

covariables a subspace of dimension k < d is calculated which is su�cient to describe
the relationships between the dependent variable and the covariables.

SIR can be applied to multivariate time series from intensive care regressing each
variable on the others. This allows to calculate the minimal number k of linear combi-
nations of the other variables which is needed to substitute the dependent variable. If
k is large a variable has to be considered as important.

When SIR is applied to multivariate time series one should take the dynamical
structure of the data into account. This can be done rather easily when we augment
the observation space with time lagged measurements.

In most cases the inclusion of lagged observations allowed a large dimension reduc-
tion. Furthermore, we obtained di�erent values of k for di�erent clinical states. These
�ndings con�rm the results derived with graphical models.

3.3 Principal Component Analysis

While graphical models and SIR analyse the associations between a single variable and
the remaining ones, principal component analysis aims at �nding a parsimonious joint
description for all variables. Those directions (principal components) within the data
space are searched for, which contribute most to the variability in the data. Principal
component analysis consists of a stepwise search for the direction which explains most
of the variability among all directions which are uncorrelated to the previous ones.

First applications of principal component analysis to the hemodynamic system
showed, that the �rst three principal components capture almost all variability. Pat-
terns found in the hemodynamic variables were also visible in the principal components.
Thus, the number of variables and the computational e�ort could signi�cantly be re-
duced by concentrating on the principal components.

The series of the �rst principal components corresponding to the nine-dimensional
time series shown in Figure 3 are provided in Figure 4. The series has been di�erenced
since our phase space procedure for pattern detection is based on the di�erenced series.
The important structural changes in the original series are still obvious in the series of
the di�erenced principal components.

3.4 Factor Analysis

Factor analysis aims just like principal component analysis at the reduction of the
dimension of multivariate data by searching suitable linear combinations of the vari-
ables. However, factor analysis assumes that there are a few, say q, latent variables
(factors) which actually drive the series and cause the correlations between the observ-
able variables. For achieving good interpretability the factors found in the analysis can
be rotated in the q-dimensional space.

In view of the good results obtained for three principal components, one can try
to describe the hemodynamic system with three latent factors. When the factors are
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Figure 4: Time series of the three principal components of a nine-dimensional time
series representing the hemodynamic system. The important patterns of change in the
original series are also obvious in the series of the principal components

calculated for the whole series they are interpretable by pathophysiologic knowledge.
Moreover, we found factors not to vary considerably between patients. However, when
factors are determined from short estimation periods, the factors may vary markedly.
This would present a serious problem for any automatic analysis based on the time
series of extracted factors.

4 Conclusion

Patterns in univariate physiological time series can be identi�ed using models from
statistical time series analysis with corresponding detection rules. AR-models and
phase space models reliably detect outliers and level changes, but both approaches
have problems with trend patterns. For AR-models sometimes manual adjustment of
the con�dence level is necessary. DLMs allow online trend detection, but they are not
as reliable as the other approaches. Hence, a combination of the procedures might give
the best results.

All approaches to monitoring of univariate series were found to be more sensitive
than clinically relevant. This could be overcome by using an automatically adjusted
level. This has already been included into the phase space procedure and has lead to
signi�cant improvements. For DLMs robust Kalman �lter procedures, which are less
sensitive against outliers, might improve the classi�cation.

Statistical methods for dimension reduction o�er large potential for the joint moni-
toring of several variables. Graphical models and SIR explore the associations between
the variables and facilitate the choice of a suitable subset of the variables. Principal
component and factor analysis result in a set of linear combinations of the variables
which could be monitored. Factor analysis could be more suitable than principal com-
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ponent analysis for online monitoring since the results are better interpretable for
physicians. However, both approaches su�er from the problem that in any dynamic
system both the factors and the principal components may vary over time.

Methods for automatic online analysis of physiological variables give an option for
a more reliable evaluation of the individual treatment. Statistical methods could be
employed to construct intelligent alarm systems, which are more reliable than simple
threshold alarms. Adequate bedside decision support could be achieved by combining
the statistical techniques proposed here with methods of arti�cial intelligence (Morik
et al., 2000).
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