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SUMMARY

In critical care extremely high dimensional time series are generated by clinical infor-

mation systems. This yields new perspectives of data recording and also causes a new

challenge for statistical methodology. Recently graphical correlation models have been

developed for analysing the partial associations between the components of multivari-

ate time series. We apply this technique to the hemodynamic system of critically ill

patients monitored in intensive care. We appraise the practical value of the procedure

by reidentifying known associations between the variables. From separate analyses

for di�erent pathophysiological states we conclude that distinct clinical states can be

characterised by distinct partial correlation structures.
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1 Introduction

Graphical interaction models have become an important tool for investigating and

modeling multivariate data. Here, hypothetical relations between the random variables

are displayed in graphical form, where the vertices symbolise the variables and the edges

illustrate the associations between them.

In most applications the statistical meaning of association is conditional depen-

dence, i.e. a missing edge indicates conditional independence of the corresponding

variables given all the remaining variables. This conditional structure is considered

because in multivariate data usually a multitude of relations exists, but many of them

are indirect, i.e. they are induced by others. In such cases the conditional structure

may be less complex than the marginal one. The essential associations within the

data become obvious after controlling the e�ects of other variables (e.g. confounders)

which inuence the variables considered. Such e�ects possibly induce spurious, indi-

rect associations. Wermuth (1976) uses the concept of conditional independence to

�nd parsimonious models in case of multivariate Gaussian or multinomial distributions

while Dawid (1979) discusses conditional independence as a basic tool for statistical

inference.

According to Wermuth and Lauritzen (1990) and Cox and Wermuth (1993) graph-

ical models have some advantages in comparison to e.g. linear structural equation

models, which are also used for generating and exploring substantial new research

hypotheses, especially in econometrics and the social sciences (Goldberger and Dun-

can, 1973). The graphical visualisation is a simple and very helpful illustration of

the model structure, which can also clarify structural di�erences between several mod-

els and identify equivalences among them (Lauritzen and Wermuth, 1989). Recently,



Tritchler (1999) pointed out some examples of statistical reasoning in medical applica-

tions by directed graphs. The monographs by Whittaker (1990), Lauritzen (1996) and

Cox and Wermuth (1996) give broad reviews on the topic.

Dahlhaus (2000) extends the concept of graphical models to multivariate time se-

ries. For describing the interactions between the components of a multivariate time

series he uses the partial spectral coherence, which is a measure for the linear depen-

dence between two components of a multivariate time series after the linear e�ects of

the other series have been removed (Brillinger, 1981). By combining this tool with

the concept of graphical models he proposes a method to detect (partial) associations

between the variables of a multivariate time series in view of time-lagged dependences.

We apply this technique to time series of hemodynamic variables from randomly

selected intensive care unit (ICU) patients. By comparing the results with known

physiological relations we can appraise the value of this new method. Moreover, we

make use of a given classi�cation of observation periods for each patient into several

clinical states to evaluate whether these states can be characterised also by di�erent

partial correlation structures.

We proceed as follows. In Section 2 we introduce graphical interaction models

and review the idea of their extension to multivariate time series. In Section 3 we give

a basic application of this method to the hemodynamic system and in Section 4 we

use graphical models to distinguish between distinct clinical states of patients. Some

conclusions are given in Section 5.



2 Graphical Interaction Models

A graph G = ( V;E) consists of a �nite set of vertices V and a set of edges E � V � V ,

that are ordered pairs of vertices. A visualization can be accomplished by drawing

a circle for each vertex and connecting each pair a; b of vertices for which (a; b) 2 E

or (b; a) 2 E. If only one of these pairs is included in E, e.g. (a; b), then a directed

edge (arrow) is drawn from a to b. If both pairs are included in E, then an undirected

edge (line) is drawn. Both types of edges have di�erent interpretations in the context

of graphical models. An arrow speci�es a direction for the inuence between the

variables, while a line stands for a symmetrical interaction. In more sophisticated

graphical models further types of edges may be used, e.g. dashed and solid edges, and

the vertices may have di�erent forms, too (Lauritzen and Wermuth, 1989, Cox and

Wermuth, 1993, Didelez and Pigeot, 1998).

In this paper we focus exclusively on undirected graphs, which have undirected

edges only. Here, two variables a and b are conditionally independent given all other

variables if they are not connected via an edge, i.e. (a; b) =2 E. This is the pairwise

Markov property for undirected graphical models. Two variables a and b are related

somehow (possibly via other variables), if they are connected by a path, i.e. if vertices

a = a0; a1; : : : ; ak = b, k � 0, exist, such that there is an edge between each subsequent

pair of vertices.

If the joint density of the variables has a positive continuous density w.r.t. a

product measure, the pairwise Markov property is equivalent to the global Markov

property. This property says, that two sets of variables A and B are conditionally

independent given a set of variables C � V if C separates A and B in G, i.e., if any

path between two variables a 2 A and b 2 B necessarily contains at least one variable



c 2 C. In other words, the variables in A and B are not associated if the e�ects of

the separating subset C are controlled. The subset C may contain less than all the

remaining variables which allows to identify important variables more clearly.

To exemplify the concept of graphical models we consider some of the variables

which are analysed empirically in section 3. Take a look at the vital signs heart

rate (HR), arterial mean pressure (APM), pulmonary arterial mean pressure (PAPM),

central venous pressure (CVP), blood temperature (Temp) and pulsoximetry (SpO2).

Figure 1 shows known physiological associations between these variables. There are

associations between the distinct kinds of blood pressure (which are supposed to be

positive) as well as between each of them and the heart rate (supposed to be negative).

In contrast no association is supposed between pulsoximetry or blood temperature and

any of the other variables.

PAPMTemp

APM

CVPHR

SpO2

Figure 1: Graphical model for the hemodynamic system based on expert knowledge.

Having a closer look at the graph we also notice that there is no indirect association

as any connected vertices are connected directly by an edge. Eventually this simple

physiological model is correct and there really are no induced associations. On the other

hand it is generally very di�cult to distinguish between direct and induced associations

by experience only and without a careful data analysis. One possibility might be to



take the strength of the associations into account. We would like to give a naive,

purely hypothetical example for this. If medical experience told us, that the positive

associations of PAPM to both APM and CVP were much stronger than the association

between APM and CVP, then we might conclude that the latter one is a consequence of

the stronger relations. In that case the edge between APM and CVP in the graphical

model in Figure 1 could be removed and this would illustrate the indirect character of

the association between the two variables via PAPM and HR. More exactly, missing

of this edge would mean that given the temporal course of PAPM and HR the course

of APM does not add any further knowledge to explain the course of CVP and vice

versa. Hence, there are parallels between the speci�cation of a graphical model and

the selection of variables in a regression model (Whittaker, 1990).

Indirect associations can result from subsequent direct inuences. Continuing with

our consideration we could ask if an increase of PAPM typically is caused by an increase

of CVP, and then the increase of PAPM might result in an increase of APM. This

would be an example of a causal mechanism between multiple variables. In graphical

models such mechanisms can adequately be described by directed edges. Searching

for such causal mechanisms is not the scope of this paper as we lack appropriate

methods which have proven their suitability for multivariate time series data. Cox

(1992) gives some general comments and outlines di�erent views with respect to the

problem of recognizing causality by data analysis. Granger causality (Granger, 1969) is

a frequently used concept for variables measured subsequently in time since it gives an

intuitive de�nition of causality by means of improved predictability of a variable when

past observations of the causative variable are included in the model. Here however,

analyzing the symmetric partial association structure between multivariate time series



variables is used as a �rst step to get a better understanding of the data generating

mechanism.

When analysing the associations between the vital signs of an individual we should

actually consider the time series structure of the measurements, which are not indepen-

dent of course. Dahlhaus (2000) de�ned graphical interaction models for multivariate

time dependent data by using the partial spectral coherence, which is a well-known

tool for analyzing the second-order properties of multivariate time series (Brillinger,

1981, section 8.3). Dahlhaus calls such a model "conditional correlation graph" since it

achieves a graphical representation of the linear relations between the components of a

multivariate time series. Hence, a missing edge implies a weaker property in this con-

text than in conditional independence graphs, where a missing edge means conditional

independence. Both concepts are equivalent under the assumption of joint multivariate

normality of the variables.

Let X(t) = ( X1(t); : : : ; Xk(t))
0; t 2 Z; be a multivariate stationary time series of

dimension k. Suppose that the autocovariance fuction

ab(h) = Cov(Xa(t+ h); Xb(t)); 1 � a; b � k; h 2 Z

is absolutely summable with respect to all time lags h for all pairs a; b 2 f 1; : : : ; kg.

Then the cross-spectrum between the time series fXa(t)g and fXb(t)g, t 2 Z, is de�ned

as the Fourier-transform of their covariance function ab(h); h 2 Z,

fab(�) = fXaXb
(�) =

1

2�

1X
h=�1

ab(h) exp(�i�h)

(see Brillinger, 1981, p. 232�). This de�nes a decomposition of the covariance function

ab into periodic functions of frequencies �. The variables Xa and Xb are uncorrelated

at all time lags h i� fab(�) equals zero for all frequencies.



In analogy to graphical models for multivariate data it is useful to distinguish be-

tween direct and induced linear relations between two series Xa(t) andXb(t). Therefore

the linear e�ects of the remaining components of X(t) on Xa(t) and Xb(t) have to be

eliminated. Let Y(t) = ( Xj(t); j 6= a; b); t 2 Z, denote the series of the other compo-

nents. The optimal �a 2 R and the optimal univariate �lter da(h); h 2 Z, have to be

determined, such that the quadratic distance

E

"
Xa(t)� �a(t)�

X
h

da(h)Y(t� h)

#2

is minimal. Let �a(t) be the residual

�a(t) = Xa(t)� �a �
X
h

da(h)Y(t� h) :

In the same way we calculate �b(t) from Xb(t). The partial cross-spectrum between

Xa(t) and Xb(t) can then be de�ned as the cross-spectrum between �a(t) and �b(t)

f
XaXb�Y

(�) = f�a�b(�) ;

while the partial spectral coherence is a standardization hereof

R
XaXb�Y

(�) =
f
XaXb�Y

(�)

f
XaXa�Y(�)f

XbXb�Y
(�)

: (1)

In the same way the (partial) cross-spectrum between two vector time series can be

de�ned. For assessing the properties of these complex-valued functions often their

squared absolute value and their argument �ab(�) or �ab�Y(�) respectively, the (partial)

phase-spectrum, is analysed, where �ab(�) comes from the Eulerian representation

fab(�) = jfab(�)j expfi�ab(�)g :

The argument �ab(�) (respectively �
ab�Y(�)) of the (partial) cross-spectrum is called

(partial) phase-spectrum.



Brillinger (1981, Theorem 8.3.1) shows that the partial cross-spectrum can be

calculated using the formula

f
XaXb�Y

(�) = fXaXb
(�)� f

XaY(�)[fYY(�)]�1fYXb

(�) ; (2)

where the components of the vectors f
XaY(�) and fYXb

(�) and the matrix fYY(�)

are cross-spectra between the corresponding variables.

In a conditional correlation graph of a multivariate time series the vertices a =

1; : : : ; k are the components of the time series and an edge between two vertices a and

b is omitted whenever f
XaXb�Y

(�) = 0 for all frequencies � 2 R. Hence, a missing

edge indicates that the partial linear relation between the variables is zero. Dahlhaus

(2000) proved the global Markov property for this kind of graphical models under the

assumption that the spectral matrix is everywhere regular.

In applications, in order to investigate research hypotheses by empirical analysis

of multivariate time series data, one can �rst estimate the cross-spectra from the data

and then use versions of equations (1) and (2) for the empirical functions to estimate

the partial spectral coherences. Thereafter a decision has to be made on whether the

partial spectral coherence may equal zero because sampling variability always causes

estimates to be distinct from zero. Dahlhaus and Eichler (2000) developed the program

"Spectrum" which estimates the cross-spectrum by a nonparametric kernel estimator.

In addition, the program constructs an approximate bound for the 95%-percentile of

the maximal squared estimated partial spectral coherence under the assumption that

the true partial spectral coherence equals zero. Thus an approximate 5%-test for the

hypothesis of partial uncorrelatedness of two variables can be performed by comparing

the estimated partial spectral coherence with this bound.



3 Application to time series from intensive care

In ICUs of modern hospitals more than 2000 physiological variables, laboratory data,

device parameters etc. are observed for each critically ill patient in the course of time.

The appropriate analysis and online monitoring of this enormous amount of dynamic

data is essential for suitable bedside decision support in time critical situations (Bauer,

Gather and Imho�, 1999). Distinguishing between direct and induced associations

between the observed variables and primary and secondary consequences of medical

interventions is however di�cult from experience only.

As we have pointed out in section 2, the associations between physiological vari-

ables may di�er in strength. Figure 2 shows the opinion of an expert w.r.t. the

associations between the same variables as shown in Figure 1. In the following, we give

a data analysis based on classi�cation criteria described below and compare the results

to the expert's opinion.

PAPMTemp

APM

CVPHR

SpO2

high
association:

low
medium

Figure 2: Graphical model for the hemodynamic system based on expert knowledge.

The data investigated here was acquired with a unix-based clinical information

system (CIS) on the surgical intensive care unit of the Community Hospital Dort-

mund. This CIS (Eclipsys Emtek Continuum 2000, Version 4.1M3) has been in routine



clinical use since 1992 and provides a high-quality acquisition of patient data at the

bedside (Imho�, 1995). Numerous variables from bedside medical devices can auto-

matically be charted at 1-minute time intervals. In this way online-monitoring data

was acquired in one minute intervals from 19 consecutive critically ill patients with pul-

monary artery catheters for extended hemodynamic monitoring amounting to 102132

sets of observations. Time series from ten hemodynamic variables (heart rate HR,

arterial diastolic pressure APD, arterial systolic pressure APS, arterial mean pressure

APM, pulmonary arterial diastolic pressure PAPD, pulmonary arterial systolic pres-

sure PAPS, pulmonary arterial mean pressure PAPM, central venous pressure CVP,

blood temperature Temp, pulsoximetry SpO2) are included in the analysis. We use the

program "Spectrum" of Dahlhaus and Eichler (2000) to estimate the partial spectral

coherences between these variables.

We begin with a simple preliminary example to explain how we can derive graphical

models from the partial spectral coherences. Figure 3 displays the squared estimated

partial spectral coherence (below the diagonal) and the estimated partial phase spectra

(above the diagonal) between arterial and pulmonary arterial pressures of one patient.

Since we focus here on the partial spectral coherence, only the plots below the diag-

onal are considered. Dahlhaus, Eichler and Sandk�uhler (1997) used the partial phase

spectrum for deriving the direction of the inuence between two parameters in point

processes. For time series this is not an established method yet. In our case there

were no visible directions. The dashed lines in the plots represent the bounds of an

approximate joint 5%-test of the hypothesis that the partial coherence equals zero for

all frequencies. The strong associations between both the arterial and the pulmonary

arterial pressures become obvious immediately, while the partial spectral coherence is



close to zero between these groups in all cases.
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Figure 3: Typical example of the partial spectral coherences (below the diagonal) and

partial phase spectra (above the diagonal) between the arterial and pulmonary arterial

pressures of one patient. The partial correlations between APM, APS and APD as well

as between PAPM, PAPS and PAPD are evident from the partial spectral coherence.

Dahlhaus (2000) suggests to construct a graphical correlation model for a multi-

variate time series by comparing the partial spectral coherence to the approximate test

bound. This allows a "yes - no" judgement only, while it is well-known that di�erent

associations between physiological variables may have distinct strengths. We decide

to classify the associations in high, medium, low and zero correlation on the basis of

the area under the estimated partial spectral coherence R
XaXb�Y

. This area can be

measured by the partial mutual information (Granger and Hatanaka, 1964) between



the time series fXag and fXbg, which is de�ned by

�
1

2�

Z
logf1� jR

ab�Y(�)j2gd�

(Brillinger, 1996) or by variants of this. The graphical correlation model which results

from the partial spectral coherences shown in Figure 3 is presented in Figure 4.

high
medium
low

partial correlation:

APM

APD PAPD

PAPM

PAPSAPS

Figure 4: Graphical correlation model for arterial and pulmonary arterial pressures.

In a �rst step we try to analyse the associations between all vital signs mentioned

above. However, an analysis of the partial spectral coherence between many variables

a�ords a huge number of observations. Since we want to get a general impression, the

estimated partial coherences are averaged over all patients. The resulting graphical

correlation model is displayed in Figure 5. As expected strong correlations exist be-

tween the systolic, diastolic and mean arterial pressure (APS, APD and APM), and

between the systolic, diastolic and mean pulmonary arterial pressure (PAPS, PAPD,

PAPM). Additionally, a strong association between the heart rate and the arterial pres-

sures becomes visible, while the system of arterial pressures is related to the system

of pulmonary arterial pressures via the blood temperature only. The strong associa-

tion between the blood temperature and SPO2 in not supposed to exist in reality, and



the other associations are small. In fact, the unexpected association between Temp

and SPO2 turned out to have been caused by a systematic error of the measuring

instruments which could actually be detected by our analysis.

Temp

SpO2

CVP

HR

PAPM

PAPS

APM

APS

PAPDAPD

partial correlation:

high

medium

low

Figure 5: Graphical correlation model for all considered vital signs found by averaging

partial coherences over all patients.

At �rst sight the non-existence of direct connections between the arterial and the

pulmonary arterial system is not in the line with physiological knowledge. The reason

for this unexpected �nding is that the data analysis is accomplished by conditioning

on all other variables. Hence, for analysing a possible association between APM and

PAPM we condition on all remaining variables including APS, APD, PAPS and PAPD.

However, APM is a (slightly non-linear) transform of APS and APD, and PAPM is

a (slightly non-linear) transform of PAPS and PAPD. Since we eliminate the linear

e�ects of the other variables, the remaining variability for both APM and PAPM is

very low. The global Markov property does not apply since the corresponding regularity



condition is not guaranteed. This means that we cannot identify known associations

when a bunch of variables is included which almost measure the same quantity. In

consequence, systolic and diastolic pressures are dropped in the following calculations,

which is in line with medical reasoning. In this way a set of 'important variables'

consisting of HR, SPO2, APM, PAPM, CVP and Temp is retained.

For these variables all observations without missing values are included in the

analysis for each patient. Between 366 and 10929 observations can be used for the

estimation of the partial coherences for each person. A representative example for the

associations between the remaining variables is shown in the partial spectral coherence

plot in Figure 6. The following list gives typical examples of partial correlations with

di�erent strengths.

� zero partial correlation: e.g. HR{SpO2

� low partial correlation: e.g. SpO2{PAPM

� medium partial correlation: e.g. HR{PAPM

� high partial correlation: e.g. HR{APM

Graphical models are generated using distinct types of edges corresponding to the

classi�cation of the partial spectral coherences described above. Using the clinical data

we test whether this method can reliably identify

� known strong associations, e.g. between systolic, mean and diastolic blood pres-

sures, and

� known likely associations, e.g. between HR, PAP, and CVP.
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Figure 6: Partial spectral coherence and partial phase spectra of vital signs.

For all patients the known strong associations can be reidenti�ed. The strongest

partial correlations are observed between mean arterial and intrathoracic pressures,

i.e. central venous and pulmonary pressures. Strong correlations can also be detected

between heart rate and mean arterial and pulmonary arterial pressures. The weakest

partial coherences are between body temperature and all other vital signs. Figure 7

provides the graphical correlation model resulting from the partial spectral coherences

shown in Figure 6.

4 Distinguishing clinical states

Distinct clinical states such as pulmonary hypertension, septic shock, congestive heart

failure and vasopressor support are accompanied by di�erent pathophysiological re-

sponses of the circulatory system. These changes may be supposed to result in di�er-
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Figure 7: Graphical correlation model for vital signs.

ences in the interactions between the vital signs also. To give an example, Figure 8

illustrates the expert's opinion w.r.t. the associations when pulmonary hypertension

is the clinical state. This state can be characterized by an elevated PAPM. Since CVP

also inuences the right ventricle, one expects strong interactions between CVP and

PAPM. On the other hand, the higher resistance within the pulmonary bloodstream

diminishes the interactions between PAPM and APM as changes in PAPM will have

a less than normal e�ect on left ventricular preload. In consequence, the expected as-

sociations of vital signs show another picture for the state of pulmonary hypertension

than the associations under normal physiological conditions as displayed in Figure 2.

In the following we investigate, whether graphical correlation models can detect

di�erences in the status of the circulatory system. Therefore, in a next step, for each

patient the pathophysiological state is determined for every time point as scored from

the medical record. Then the partial coherences between the vital signs are estimated

separately for each of the states and for each individual patient.

Figure 9 shows the associations corresponding to the estimated partial coherences

for each clinical state and for each patient. Although the number of samples is small,
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Figure 8: Graphical correlation model for pulmonary hypertension, expert opinion.

there are obvious di�erences between the partial correlation patterns for distinct clinical

states. Most of these di�erences can be explained by known physiological mechanisms.

While for most states correlations could be found between heart rate and blood pres-

sures as well as between intrathoracic and arterial pressures, the status of pulmonary

hypertension is predominantly associated with strong correlations between intratho-

racic and arterial pressures. For the clinical status of vasopressure support there are

strong partial correlations between APM and PAPM, while some of the other associ-

ations are found to be weaker than for other states. This is due to the therapy the

patient gets in this status, which a�ects the heart as well as the bloodstream and puts

o� the usual autonomous regulation of the circulatory system. Hence, there are strong

positive interactions between APM and PAPM, while the inuence of CVP on the

other variables is reduced. The strong partial correlation between APM and PAPM in

the status of congestive heart failure can be explained by a failure of the left ventricle.

This causes a decrease of APM as the heart is not able to push the blood forward

(forward failure), and in consequence there is a build-up in front of the left ventricle

and thus an increase of PAPM (backward failure).
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Figure 9: Classi�cation of the partial correlation structure for distinct clinical states.

Figure 10 summarizes the impressions gained in Figure 9. Graphical correlation

models for distinct clinical states based on data analysis are contrasted with the as-

sociations expected by expert knowledge for a non-critical state. The di�erences are

in accordance with physiological knowledge. Further studies are projected to validate

these preliminary �ndings with larger groups of patients.

5 Conclusion

We found that graphical correlation analysis based on partial coherences can reliably

detect known physiological association patterns in hemodynamic time series. Our
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Figure 10: Graphical correlation models for distinct clinical states

results con�rm that the method actually detects known physiological dependences

between monitoring variables. The method can be considered as a model selection

approach where the graph represents an appropriate model for the time series.

The insights gained by graphical partial correlation analysis can also be useful to

improve the online-monitoring of vital signs, since such an analysis allows the intelligent

application of methods for dimension reduction. Either a suitable subset of important,

i.e., inuential variables can be selected from the graphs or information w.r.t. the con-

ditional association structure can be deduced from the graph to enhance methods such

as principal component analysis and factor analysis for time series, which are accom-

plished via spectral analysis, too (Brillinger, 1981). Multiblock principal component

analysis has been suggested to monitor high-dimensional time series (MacGregor et

al., 1994). Here, the variables are organized in subsets for which principal component

analysis is applied separately. Such subsets of closely related variables can also be



found from a graphical model for past data.

Special correlation patterns may even represent speci�c pathophysiological states

in the critically ill. This might be useful for getting further insights in the causes of

clinical complications as well as for detecting such complications by additional data

analysis.

Although it is too early for a �nal judgement, graphical partial correlation analysis

seems to support the analysis of correlations in multivariate physiological time series,

and further extensive work has to be done. As the �nal statistical analysis results in

simple graphs, interpretation of the partial correlation patterns can be accomplished

by physicians without further statistical knowledge.
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