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1. Introduction

The basic paper dealing with the combination of forecasts from Bates and Granger (1969)

discusses the calculation of optimal combination weights under the MSE-criterion which is

also done in many other articles. Wenzel (1998) considers the Pitman-closeness criterion for

the evaluation of forecasts. There, the Pitman-closest forecast combination is equivalent to the

MSE-optimal forecast combination. Russell and Adam (1987) among other things employ the

MAD. Klapper (1998) uses the ranks of prediction errors to calculate a forecast combination

whereas Cicarelli (1982) describes combination methods on the basis of turning points. He

counts how often a forecast had the "right" direction in the past and uses this to calculate

weights. These are only a few of a number of authors who evaluate forecasts and derive

combination weights under a special evaluation criterion. An overview about 28 evaluation

criteria is given e.g. in Dammers (1993). Although there exist several error measures we want

to discuss the not so well-known hits-and-misses criterion. We define when a forecast is said

to be "good" (hit) or "bad" (miss), a criterion easily applicable in practice. Especially non-

statisticians are often interested in easy calculations and dislike measures like MSE or MAPE.

In practice, there is often the situation where a special decision is based on a given forecast,

for instance should we invest in stocks of a specific trade or which kind of clothes do we need

tomorrow? Thus, a lot of analysts would categorize the forecast in "good" or "bad", depending

on the decision they made. For the first of these questions the evaluation of the rate by turning

points is appropriate. Secondly, we are interested in a relatively "precise" forecast of the

temperature. Thus we could consider the hits-and-misses criterion. Furthermore, we analyse a

generalized hits-and-misses criterion. Here, we define not only hits and misses but also

approximative hits. We discuss how to use the several approaches for the calculation of a

combined forecast. Another approach is to compare the individual forecasts by statistical

tests, e.g. a comparison of the error variances. Flores (1986, 1989) presents the utilization of

the sign test and the Wilcoxon test for the comparison of forecasting methods in the M-

competition. It is also possible to use the hits-and-misses criterion to test if there is a

significant difference in the quality of the forecasts. Afterwards we consider the results for the

calculation of a forecast combination.

Finally, we analyse an example given in Klapper (1998) dealing with German macro

economic data to give insight how the different methods perform in practice. Furthermore, we

also perform a small simulation study for the combination of two biased forecasts.
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2. The hits-and-misses criterion and the combination of forecasts

The original definition of hits-and-misses for forecasts of a 0-1-variable is given in Armstrong

(1985, p.353). If a forecast has the same value as the variable it is a hit, otherwise a miss. If

the variable to be forecasted is continuous we have to deal with hit-intervals which is decribed

in the following.

Definition 1: Let 1TF + be a forecast for 1TY + (T+1: time index) at time T. Then 1TF + is a γ-hit,

γ∈[0,∞), iff

]YY,YY[F 1T1T1T1T1T +++++ γ+γ−∈ .

Restricting γ to the interval [0,1] we can call a forecast which is in the hit-interval a

100⋅(1−γ)-percent-hit. We can now use the hits-and-misses criterion for the combination of

forecasts. Let 2n,F,...,F 1T,n1T,1 ≥++ , be forecasts for 1TY + and let T,...,1t,n,...,1i,Y,F tit ==

be given past observations. Then we define combination weights by

,n,...,1i,
)F(I
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it]YY,YY[
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+−=
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γ

where }T,...,1{v ∈ is the number of past observations fixed for the calculation. The weights

are well defined if there exists a forecast with at least one γ-hit in the past. This can be assured

by selecting γ appropriately. For each weight we divide the number of hits of the special

individual forecast by the number of hits of all forecasts. By definition ∑
=

γ =
n

1i
,i 1w , and if the

individual forecasts are unbiased, the combination is also unbiased. If we again look at

Definition 1, it is also possible to define hit intervals which have not 1TY + as midpoint, that is

[ ]1T21T1T11T YY,YY ++++ γ+γ− , 0, 21 ≥γγ , 21 γ≠γ . An example, where we should consider

such intervals is given in Schneider, Klapper, and Wenzel (1999). For the evaluation of

forecasting methods in goods management systems underestimation is punished more than

overestimation, and thus we should select 12 γ>γ . Obviously, for "small" values of 1TY + the

hit-interval is also "smaller". Therefore, we give an alternative definition of hits-and-misses.
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Defintion 2: Let 1TF + be a forecast for 1TY + at time T. Then 1TF + is a c-hit, c∈[0,∞), iff

]cY,cY[F 1T1T1T +−∈ +++ .

Here, the hit-interval has always the length 2c, independently of 1TY + . In a similar fashion it

is possible to calculate combination weights defined by

.n,...,1i,
)F(I

)F(I
:w

n

1j

T

1vTt
jt]cY,cY[

T

1vTt
it]cY,cY[

c,i

tt

tt

==
∑ ∑

∑

= +−=
+−

+−=
+−

Again, c should be selected such that there exists at least one hit in the past. It is also possible

to define the hit interval as [ ]21T11T cY,cY +− ++ , where 0c,c 21 ≥ , 21 cc ≠ .

So far we considered only combination methods which use weights depending on the number

of past hits of the individual forecasts. We can also calculate weights to reach a high number

of hits in the past with respect to a special minimization criterion (here MSE). Therefore, we

proceed as follows:

Let 2n,F,...,F 1T,n1T,1 ≥++ , be unbiased forecasts for 1TY + and ( ) n,...,1i,F,...,F: T,i1vT,iiv =′= +−F ,

( )′= +− T1vTv Y,...,Y:Y , { }T,...,1v ∈ , be v past observations which are used for the calculation

of the weights. Further, let n,...,1i,: ivviv =−= FYu , and ( )
n,..,1j,iij:

=
σ=Σ denotes the

covariance matrix of the forecast errors which we estimate in the following by

( )
n,...,1j,iijˆ:ˆ

=
σ=Σ , where .n,...,1j,i,

v

1
:ˆ jvivij =′=σ uu  Then:

step 1: cc
c

Σ̂min ′

with respect to bcFa ≤≤ v

~
,

where ( )nvv1v

~
,...,

~
:

~
FFF = , n,...,1i,,1:

~
iviv =

′



 ′= FF , ( )′= n1 c,...,c:c , ( )′= +− T1vT g,...,g,1:a ,

( )′= +− T1vT m,...,m,1:b and the g’s and m’s are the lower and upper bounds of the intervals (at

the time points in the indices) given with respect to Definition 1 or 2. If the minimization

problem has no solution: go to the next step.

M

step k: Proceed as in step 1 but use 1kv +− instead of v (also for the estimation of Σ ).
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At first we try to calculate an unbiased forecast combination with minimal variance resulting

in v hits in the v most recent data points. If this is not possible we try to find a combination

with 1v − hits in the 1v − most recent data points, and so on. The 1’s in v

~
F , a and b restrict

the combination weights to sum up to 1. We could restrict the weights further to be non-

negative. Next, we should select the bounds in the algorithm so that it stops for an "adequate"

k, e.g. the number of data points considered should not be so small such that Σ̂ is singular.

Another strategy is to focus in the k-th step on the v most recent data points and try to find

combination weights which result in 1kv +− hits, but this is excluded from the following

analysis.

Above, we discussed the hits-and-misses criterion based on sharp bounds between hit values

and miss values. Now we will discuss approaches of hits-and-misses based on a principle well

known in fuzzy theory.

Defintion 3: The hit value of a forecast 1TF + for a variable 1TY + with respect to the functions

1g and 2g is given by










+−∈
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+++++
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1T1Tc,c 21
,

where ∈21 c,c IR+, 21 cc ≤ , 1g,g0 21 ≤≤ and 1g is monotone increasing and 2g is monotone

decreasing.

In Definition 3 we can also use values depending on 1TY + as in Definition 1 instead of

constants 1c and 2c . Furthermore, we can see that Definition 1 and Definition 2 are special

cases of Definition 3 by letting 0g1 = and 0g2 = .

Now it is possible to calculate combination weights based on Defintion 3. Again, let

2n,F,...,F 1T,n1T,1 ≥++ , be forecasts for 1TY + and T,...,1t,n,...,1i,Y,F tit == be past

observations. Then we define

,n,...,1i,
)Y,F(h

)Y,F(h
:w~

n

1j

T

1vTt
tjtc,c

T

1vTt
titc,c
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where }T,...,1{v ∈ . The constants 21 c,c should be chosen so that the denominator is non-

zero. Then the weight of an individual forecast is the sum of its hit values of the most recent v

observations divided by the sum of hit values of all individual forecasts (of the most recent v

observations).

All of the presented methods are based on the performance of the individual forecasts in the

past. This is a very popular principle in combining forecasts: To use for the future what

performed well in the past. If we now focus on the given expression in Definition 2 as a gain

function, that is )u(I:)u(G comb]c,c[comb −= , where combu denotes the combined forecast error,

then it is possible to derive the forecast combination with maximal expected gain

)cuc(P))u(G(E combcomb ≤≤−= . If we additionally assume that the errors

,FY:u 1T,i1T1T,i +++ −= n,...,1i = , of the individual forecasts, are normally distributed, that is

)u,..,u(: 1T,n1T,1 ′= ++u ),(N~ Σ0 , then the "hit-optimal" unbiased forecast combination is

obviously that with minimal error variance. Thus, the optimal weights are given by

n
11

n
1

nopt )(: 111w −−− ′′= ΣΣ  , where n1 denotes the 1n × vector of 1’s, and we can get the

weights by estimating Σ as above. These weights are identical to the MSE-optimal weights

discussed in many other papers.

Finally, we compare the performance of the forecasts by a statistical test. Before combining

forecasts, it is often of interest to analyse the individual forecasts. There is the demand to

know if some of the forecasts are dominated by others or if the forecasts are systematically

wrong. This could lead to a reduction of the number of forecasts included in the combination.

Hendriksson and Merton (1981) analysed the quality of a forecast with a test based on the

turning-point criterion. Their test is similar to Fisher’s exact test (Cumby and Modest, 1981).

We now compare two individual forecasts on the basis of Fisher’s exact test where we assume

that the hit probabilities are constant over time, independent of the magnitude of the variable

to be forecasted. If the null hypothesis is that the two forecasts have the same quality, they

should result in the same number of hits (for given observations). We can check this with e.g.

Fisher’s exact test. For the combination of forecasts we can proceed as follows. If an

individual forecast is outperformed by another (rejection of the nullhypothesis for a given

level α), we exclude it from the combination. Finally, we calculate the arithmetic mean of the

remaining forecasts.
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3. Application

We consider 7 institutes which forecast 6 macro economic variables each. The given time

series are of length 21, where the last 10 data points are our performance points. The detailed

description of the data is given in Klapper (1998). We analyse 13 combination techniques,

where in each step the calculation of the weights is based on the v=10 most recent past data

points.

For methods 1 and 2 we derive the weights γ,iw where 1.0=γ and 2.0=γ . Methods 3 and 4

are based on weights c,iw where 1c = and 3c = , otherwise. For methods 5 and 6 we use the

algorithm presented in Section 2 )2c,10vand5.0,10v( ===γ= where we do not restrict

the weights to be non-negative since then we get in some cases no result. Methods 7 and 8 are

based on Definition 3, where we consider 1c1 = , 2c2 = and the functions 1g and 2g as

follows:

method 7: ( )2tit
12

tit1 cYF
cc

1
:)Y,F(g +−

−
= , )FcY(

cc

1
:)Y,F(g it2t

12
tit2 −+

−
=

method 8: 





+−

−

−
−

=
])cYFexp[(

1
1

])ccexp[(

1
1

1
:)Y,F(g

2
2tit

2
12

tit1







−+

−

−
−

=
])FcYexp[(

1
1

])ccexp[(

1
1

1
:)Y,F(g

2
it2t

2
12

tit2 .

For a better illustration, the form of the function ( )⋅⋅,h related to methods No. 7 and No. 8 is

shown in Figure 1.

Figure 1: Form of the function ( )⋅⋅,h in methods No. 7 and No. 8
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Method No. 8
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Method No. 9 is the MSE-optimal unbiased combination. In method No. 10 the weights are

further restricted to be non-negative (in both methods the sum of weights is restricted to be 1).

Method No. 11 and method No. 12 are based on the comparison of the individual forecasts by

the one-sided Fisher’s exact test. Therefore, we use 1.0=α and hit intervals given in

Definition 2 with 1c = and 5.0c = , otherwise. For the evaluation of the different techniques,

we compare the RMSEs and MADs of the methods with the values of the simple average of

the individual forecasts (method No. 13). The results are given in Table 1.

Table 1: Comparison of the combination techniques (relative RMSEs and relative MADs),

M1-M13 denote the methods

GDP Priv. Cons. Publ. Cons. Export Import Cons. Prices
M1 0.991

0.989
0.978
9.976

0.837
0.820

0.975
0.952

1.014
1.012

0.961
0.964

M2 1.000
1.007

0.998
0.992

0.822
0.846

0.974
0.964

1.011
1.014

0.993
1.005

M3 0.990
0.991

0.993
0.984

0.982
0.984

0.972
0.947

1.006
1.012

0.983
0.987

M4 1.000
1.000

0.999
0.999

1.000
0.999

0.997
0.994

0.998
1.000

1.000
1.000

M5 1.820
1.453

2.434
2.415

3.862
3.438

287.992
112.923

22.705
15.374

2.639
2.254

M6 1.834
1.474

1.750
1.923

2.521
1.906

287.998
112.925

22.705
15.374

1.806
1.684

M7 0.991
0.986

0.996
0.995

0.997
0.998

0.984
0.972

0.995
1.001

0.994
0.995

M8 0.990
0.985

0.995
0.992

0.994
0.997

0.982
0.969

1.002
1.004

0.994
0.994

M9 1.834
1.474

1.750
1.923

2.518
1.876

2.321
1.956

1.456
1.319

1.805
1.683

M10 0.916
0.890

1.072
1.117

0.930
0.955

0.939
0.977

0.935
0.909

1.059
1.059

M11 1.000
1.000

1.000
1.000

1.000
1.000

0.988
0.982

1.000
1.000

0.978
0.980

M12 0.983
0.984

1.000
1.000

1.001
1.001

0.981
0.981

0.999
0.998

1.000
1.000

M13 1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000
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For the calculation of the weights related to methods 5 and 6 we use the S-Plus module

NUOPT. We have to remark that the bad performance of these methods (for Export and

Import) is a result of the higher number of iteration steps in the algorithm above ( 5k = ). The

ten forecasts of the two methods for the variable Export are 170.81, −3575.82, 4.16, 9.71,

18.52, 32.27, 9.14, 5.52, 26.18, 19.54. We see that some of the values are not realistic (see

Klapper, 1998) and so we would disregard them in practice. Looking at Table 1, the methods

M1-M4, M7 and M8 perform a bit better than the simple average. The methods No. 1 and 2

especially for Public Consumption are of high quality. But in general the question arises, if

the improvements justify the cost for the calculation of the weights, or if we should still

calculate the simple average combination. The methods No. 11 and No. 12 result nearly in the

same values as the simple average. The Fisher test rarely indicates a difference between the

performance of the individual forecasts. Thus in most cases the average of all individual

forecasts is calculated.

A disadvantage of methods No. 5, No. 6 and No. 9 is that they often result in weights larger

than 1 or smaller than 0. Especially when the covariance structure is not stable over time, the

quality of these forecasts decreases. Restricting the weights to be in the interval [0,1] as in

No. 10 makes the combination more robust and leads to an improvement.

In the following, for the methods with weights in [0,1] we consider the box-plots of the

combination weights. We have 6 time series with 7 individual forecasts each. For all series we

focus on 10 performance points and thus for each of the methods above, 420 weights are

calculated. The box-plots include only the methods No. 1, 2, 3, 4, 7, 8 and 10. Methods No. 5,

6 and 9 are excluded because of the large discrepancy of the weights. Methods No. 11 and 12

because they are similar to the simple average.

Figure 2: Box-plots of weights for methods No. 1, 2, 3, 4, 7, 8, 10
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The variation of the weights in methods No. 1, No. 2, No. 3 and No. 10 is higher than that for

the other methods. The weights of method No. 7, No. 8 and especially No. 4 are concentrated

around 7
1 , the weight given each individual forecast in the simple average combination. This

is a reason why the latter three methods perform similarly as the simple average.

4. Simulation study for the combination of two biased forecasts

In Section 3 the individual forecasts can be considered as unbiased. There are no systematical

errors. We can also use the methods if the individual forecasts are biased which in general

results in a biased combination. In this case the forecast with the highest hit-probability with

the restriction that the weights sum up to 1 is given by the weight vector opt,µw . If we assume

that the individual forecast errors are normally distributed, that is

),(N~)u,..,u(: 1T,n1T,1 Σµ′= ++u , we get the vector opt,µw from the maximization problem:
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where c defines the hit-interval. For the case where 0=µ we get the optimal unbiased

forecast combination given in Section 2. If we are interested in an unbiased forecast

combination, we have to solve
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and thus, following Wenzel (1999) we get
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( ) 


 ′′−


 ′

′−


 ′
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−−−

−−−−
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1

n
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1111

n
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We now perform a simulation study for the combination of two biased forecasts to analyse the

quality of the different hits-and-misses strategies. We examine methods No. 3, 4, 7, 8, 11, 12

and 13 (simple average). Method No. 14 is given by (4.1) where we use 2c = with the further

restriction that the weights are non-negative. The two individual forecasts are denoted by I1

and I2. The other methods are excluded because they are based on the unbiasedness

assumption or because of their dependence on 1TY + . Here, we do not restrict the forecast

combination to be unbiased. Techniques dealing with this problem are described in Wenzel

(1999).
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We focus on three different bias vectors, )2,1()1( ′=µ , )1,1()2( ′−=µ and )2,1()3( ′−=µ . In

addition, we generate 10 covariance matrices and on their basis together with the bias, 100

time series of forecast errors of length 20 each. The first ten data points are fixed for the

derivation of the first combination weights, so there are 10 points left for our analysis. In each

step the combination weights are reestimated on the basis of the most recent 10 data points.

For each case we calculate the average of the relative RMSEs (third number in the tables). We

count how often the special methods have a smaller RMSE than the simple average

combination (first number) and the best individual forecast (second number). The results are

presented in the following tables.

Table 2: Comparison of the methods for )2,1()1( ′=µ

Cov. M3 M4 M7 M8 M11 M12 M13 M14 I1 I2
1 75

33
0.881

93
32

0.892

78
30

0.884

86
31

0.867

36
20

0.958

22
20

0.977

-
21

1.000

85
45
0.8

79
-

0.823

0
-

1.741
2 86

3
0.823

99
1

0.881

95
3

0.836

98
2

0.825

45
1

0.927

8
1

0.988

-
0

1.000

99
7

0.637

100
-

0.620

0
-

1.599
3 99

0
0.689

25
0

0.998

61
0

0.977

95
0

0.924

97
0

0.760

0
0

1.000

-
0

1.000

100
0

0.681

100
-

0.681

0
-

1.329
4 85

16
0.826

100
13

0.858

95
20

0.820

99
19

0.806

41
7

0.919

21
7

0.961

-
6

1.000

96
23

0.686

94
-

0.674

0
-

1.724
5 98

0
0.788

93
0

0.975

82
0

0.935

99
0

0.902

54
1

0.897

0
0

1.000

-
0

1.000

100
0

0.66

100
-

0.66

0
-

1.362
6 83

3
0.863

100
1

0.937

99
2

0.870

100
2

0.858

42
0

0.933

0
1

1.005

-
1

1.000

99
4

0.666

99
-

0.660

0
-

1.498
7 30

38
1.026

44
39

1.001

46
47

1.012

40
43

1.010

3
41

1.006

0
42

1.006

-
43

1.000

37
30

1.028

7
-

1.208

50
-

1.038
8 33

80
1.076

58
90

0.969

51
88

0.994

57
89

0.979

6
79

1.042

6
84

1.026

-
86

1.000

53
91

0.991

12
-

1.361

2
-

1.869
9 69

25
0.937

39
31

0.999

32
30

1.014

56
28

0.984

55
13

0.974

32
27

0.984

-
31

1.000

66
29

0.951

68
-

0.938

1
-

1.321
10 40

73
1.064

42
82

0.996

42
80

1.018

43
83

1.011

5
77

1.019

3
75

1.023

-
79

1.000

35
79

1.029

16
-

1.314

5
-

1.558

In the case where both individual forecasts are positively biased, most of the hits-and-misses

combinations outperform the simple average combination, the latter being of high quality for

covariance matrices No. 7 and 10. Especially method No. 14 is highly reliable, because it is

theoretically "hit-optimal". We observe that only in a few cases the best individual forecast is
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outperformed. One reason for this is that the different combination strategies in general have a

higher absolute bias than the first individual forecast.

Table 3: Comparison of the methods for )1,1()2( ′−=µ

Cov. M3 M4 M7 M8 M11 M12 M13 M14 I1 I2
1 68

95
0.908

91
96

0.865

71
93

0.932

82
95

0.875

6
83

1.035

5
88

1.013

-
89

1.000

89
99

0.813

11
-

1.393

0
-

2.538
2 80

52
0.878

97
45

0.890

89
57

0.850

95
60

0.837

23
37

0.975

4
33

0.998

-
32

1.000

92
76

0.778

68
-

0.903

0
-

1.988
3 8

100
1.322

0
100

1.000

35
100
1.09

49
100

1.013

0
99

1.294

0
100

1.037

-
100

1.000

21
100

1.047

0
-

3.208

0
-

3.346
4 83

81
0.811

99
77

0.815

82
75

0.797

99
84

0.760

16
54

0.990

7
54

1.015

-
55

1.000

97
95

0.687

45
-

1.087

0
-

2.469
5 24

97
1.133

24
100

0.993

60
98

0.994

73
100

0.959

3
97

1.111

1
82

1.244

-
100

1.000

51
100

0.973

0
-

1.817

0
-

2.499
6 56

98
1.029

68
99

0.951

69
98

0.924

88
100

0.884

1
97

1.031

1
84

1.203

-
99

1.000

79
100

0.860

1
-

1.798

0
-

2.788
7 64

48
0.962

86
42

0.949

68
45

0.948

78
48

0.939

14
34

1.007

8
35

0.997

-
35

1.000

71
51

0.913

0
-

1.596

65
-

0.958
8 16

100
1.552

46
100

0.997

22
100

1.351

39
100

1.117

0
100

1.016

1
100

1.066

-
100

1.000

57
100

0.978

0
-

4.730

0
-

5.464
9 33

100
1.134

42
100

0.982

46
99

1.052

51
100

0.997

0
99

1.064

1
99

1.044

-
100

1.000

52
100

0.980

0
-

3.234

0
-

2.575
10 17

94
1.164

33
99

1.036

20
95

1.121

19
96

1.078

4
98

1.028

1
98

1.028

-
99

1.000

28
97

1.098

0
-

1.971

1
-

1.975

At first we can see that methods No. 11 and 12 (based on the Fisher-test) in most cases are of

lower quality than the simple average. The simple average combination performs best for

covariance matrices No. 3 and 10. For the other matrices it is outperformed by some of the

hits-and-misses techniques. Especially method No. 14 is again of high quality. Furthermore

the individual forecast perform badly. The absolute bias of the combination techniques is

lower than that of both individual forecasts.
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Table 4: Comparison of the methods for )2,1()2( ′−=µ

Cov. M3 M4 M7 M8 M11 M12 M13 M14 I1 I2
1 86

85
0.807

100
90

0.767

87
84

0.767

95
88

0.720

14
56

1.012

2
60

1.014

-
58

1.000

98
100

0.655

42
-

1.187

0
-

2.677
2 82

67
0.808

99
58

0.810

87
62

0.788

94
68

0.760

36
23

0.969

8
28

0.993

-
26

1.000

96
88

0.684

74
-

0.885

0
-

2.175
3 6

16
1.723

16
100

0.988

72
100

0.892

100
100

0.664

1
42

1.633

0
100

1.000

-
100

1.000

100
100

0.569

0
-

1.803

0
-

3.459
4 90

88
0.742

100
86

0.703

95
90

0.683

98
92

0.642

22
50

1.002

6
45

1.008

-
47

1.000

99
99

0.563

53
-

1.029

0
-

2.643
5 54

93
1.007

88
94

0.900

78
97

0.843

94
100

0.740

9
69

1.204

1
87

1.000

-
87

1.000

96
100

0.667

13
-

1.465

0
-

2.939
6 89

98
0.709

100
98

0.754

91
98

0.713

100
98

0.617

7
90

1.058

0
90

1.016

-
92

1.000

100
100

0.490

8
-

1.321

0
-

3.031
7 15

66
1.154

31
88

1.007

33
85

1.028

24
85

1.033

2
81

1.054

1
83

1.013

-
87

1.000

26
85

1.049

1
-

1.580

12
-

1.285
8 34

96
1.382

88
100

0.838

38
100

1.179

64
100

0.978

1
99

1.058

2
99

1.034

-
100

1.000

93
100

0.767

0
-

3.164

0
-

4.495
9 5

70
1.896

46
100

0.986

40
100

1.113

59
100

1.006

1
69

1.743

3
93

1.206

-
100

1.000

70
100

0.953

0
-

2.291

0
-

3.144
10 16

90
1.220

44
97

1.025

25
92

1.139

29
97

1.089

2
95

1.021

2
97

1.007

-
97

1.000

37
96

1.034

3
-

1.896

0
-

2.298

Again, the methods based on the Fisher-test cannot improve upon the simple average

combination. The latter one is best for covariance matrices No. 7 and 10 and also of high

quality for matrices No. 8 and 9. In general, the "hit-optimal" combination performs best.

Depending on the covariance structure, the other methods are sometimes of a higher but in

some cases also of lower quality than the simple average. The individual forecasts are

outperformed by the different combination techniques.

Looking at the results of the simulation study, it is obvious that method No. 14 is the best.

The estimation of the unknown parameters is quite good, based on the time stable covariance

and bias strucure. If the structure is changing over time, the quality of this method would

decrease. The methods based on the Fisher-test cannot improve the simple average

combination. They often result in the simple average. Comparing methods No. 3 and 4, the

combination technique using the wider hit-interval, performs a little bit better. These methods

improve in many cases the simple average combination but cannot outperform it clearly. For

methods No. 7 and 8, where we used the hit-functions given in Section 2, the same holds. The
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first individual forecast only in the case of positive bias is of a higher quality than the forecast

combinations. We have to remark that only for a few time series we observed no past hits and

thus we got no result.

5. Concluding remarks

The hits-and-misses criterion makes the evaluation of forecasts easy to understand for

analysts. Therefore the given combination techniques are very plausible. There are a lot of

variations of this criterion, especially the turning-point criterion. If we define a forecast in the

right direction as a hit, then we can analyse this basing on hits-and-misses. Thus it is possible

to calculate weights with respect to turning points (see Cicarelli, 1982).

The principle of defining indicator functions for the evaluation of forecasts is also analysed in

the contents of interval forecasts. There, we look if a variable takes value in a forecasted

interval (see Christofferson, 1998) whereas in the case of point forecasts we check if the

forecast is in an interval around the value of the variable to be forecasted.

The hits-and-misses criterion makes it easy to imagine why a certain individual forecast has a

bigger weight in the combined forecast than others. In the cases where we count for the

forecast combination the hits in the past, the calculation of the weights is straightforward.

Proceeding that way is associated with a lower cost than for many other techniques. Here, we

do not need any assumptions about the error structure. In the given example of German macro

economic data these methods perform a little better than the simple average combination,

whereas techniques based on the covariance structure of the forecast errors are of bad quality,

except in the case, where we restrict the weights to be non-negative. The Fisher test indicates

that almost none of the individual forecasts is dominated by another one. This is a reason why

some techniques produce nearly the same results as the simple average. We can also conclude

that in such situations the simple average is a combination of high quality.

Most of the hits-and-misses combinations perform well in the simulation study. If the

covariance structure is stable over time, the usage of this knowledge results in an

improvement of the forecast quality.

The combination techniques based on the hits-and-misses criterion are also more robust than

many other techniques. If the weights are e.g. based on the MSE or MAD of the individual

forecasts, extreme outliers (extreme forecast errors) in the past data have great influence on

them. On the other side, such an outlier results only in at most one more miss and hence, the

weight of a special individual forecast in hits-and-misses combinations is very robust.
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