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Abstract

This paper generalizes Kushner's (1997) method for finding optimal repeated measurements
designs to optimal designs under an interference model. The model we assume isfor aone-
dimensional layout without guard plots and with different left and right neighbour effects. The
resulting optimal designs may need many blocks or may not even exist as afinite design. The
results give lower bounds for optimality criteria on finite designs, and the design structure can

be used to suggest efficient small designs.
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1. Introduction

Many agricultural and horticultural trials are susceptible to treatment interference, that isthe
treatment on one unit affecting the response on neighbouring units (see e.g. Besag and
Kempton, 1986). Thereisincreasing interest in the practical use of models to analyse data
from such trias (e.g. David, Monod and Philippeau, 1998), and in the design of experiments
in which treatment interference may occur (e.g. David and Kempton, 1996). A wide variety of
possible models have been postulated (e.g. David and Kempton, 1996, David, Monod and
Philippeau, 1998). There are only very limited results on optimal designs under interference
models. Gill (1993) restricts the class of competing designs to those for which each treatment
appears once in each block. Druilhet (1999) avoids this restriction but considers the case of
very few blocks. Both papers assume a one-dimensional layout of plots within blocks, and
that each block has a guard plot at each end, so that each interior plot has two neighbours.
They concentrate on model (1) below, or its special case of equal left and right neighbour

effects.

The present paper presents a general approach to determine optimal designs for contrasts
among direct treatment effects that can be useful for many kinds of interference models. We
consider experiments for comparing t treatments using b blocks of size k with aone-
dimensional arrangement of plotsin each block. We demonstrate the theory for the model
with no guard plots, and the treatments having different left and right neighbour interference

effects. Similar results to the ones given here will be possible for many other related models.

Letd(i, ) O{1, ..., t} bethetreatment assigned to the plot (i, j) in the j-th position of thei-th

block. In our model the response at plot (i, j) can be written

Yi =,U+Td(i,j)+/]d(i,j—1)+pd(i,j+1)+:8i +te;- (1)



Here

M isthe genera mean,

Ty, ) Isthe direct effect of treatment d(i, j),

Adi, j-1 and pqg, j+1) are, respectively, the left and right neighbour effects, that is the
interference effect of the treatment assigned to, respectively, the left and right neighbour
plots (i, j-1) and (i, j+1),

[ isthe effect of thei-th block, and g j istherandom error, 1<i<b, 1 <j<k.

We assume that the errors arei.i.d. with expectation 0. The generalization of the method to
correlated errors and generalized least squares estimation is straightforward, cf. Kushner

(1997). Since we assume there are no guard plots we have Aqi, o) = Pu(, k+1) = O.

We seek the optimal design among designsd [ Q;k, the set of all designs with b blocks of

size k and with t treatments. Let Ty, be the treatment design matrix of the direct effectsin

block u, 1 <u < b. Further define T, = [‘I;Tl,...,TdL]T as the design matrix of direct effects.

Let Y =[Y)1 Yigo yzyl,...ybyk]T be the vector of the observations, 1 be the k-vector of ones, I,

the b-dimensional identity matrix, and [ denote the Kronecker product. Let V denote the k x k

left neighbour incidence matrix with (i, j)-th element v; j equal to 1if i —j = 1, and O

otherwise. For each u we define L, =VT,, and R, =V'T,,. Then L, :[Lzl,...,LEb]T =

(1, OV)T, and R, :[RdTl,...,RdTb]T = (1, OV T, are, respectively, the design matrices of the

left and right neighbour effects. Let e be the vector of the errors, and let 7, A, p, and [ be the
vectors of direct effects, of left neighbour effects, of right neighbour effects, and of block

effects, respectively. Then, we can write model (1) in vector notation as



Y=l u+Tr+LA+Ryp+(1, 0L )B +e.

For an n x p matrix M define w” (M) =1, - M(MTM) MT, where (M'"M) is ageneralized
inverse (g-inverse) of M™M. Then (see e.g. Kunert, 1983) the information matrix for the least

squares estimate of 7, with zero row and column sums, is

o =TdTa)D([|b le’Ld’Rd])Td'

At xt matrix M is said to be completely symmetric, if al its diagona elements are equal and
all its off-diagonal elements are equal. A completely symmetric information matrix is a scalar
multiple of the matrix B, =1, =411 . Assume we have adesign d* 0Q,,, such that Cy is
completely symmetric and that tr Cy ismaximal over Q,,, . Then the design d* isuniversally

optimum, i.e. it isoptimal under all the optimality criteria considered by Kiefer (1975).

2. Determination of an upper bound for tr Cy.

For apartitioned matrix M =[S, U], we can write

@"([(SV]) = (9) - (9U{U " (SU} U (S). )

Applying this formula twice and defining

Cin = TdTwD(Ib O1)T,, Gy = TdTa)D(Ib OL)Ly, Cus = TdTwD(Ib OL)R;,

Cize = Liw" (I, D L)Ly, Cype = Ly (1, OL)Ry, Cys = Riw (I, D L)R,



we get that

Cy =Cuy — Cdlzcd_zzcglz -

3
(Cd13 —C412C42Cy 23)(Cd33 - ngacd_zzcd 23 )_ (Cd13 —C12C2Cq2s )T . ©

Notethat w’(l, 01,) =1, O B, . Theformulafor Cy4 contains g-inverses of C,,, and of

Cyzs — Cd2:CyCysns» bOth of which depend on the design d. This makes the determination of

tr Cq for an arbitrary design d difficult. Hence, wetry to find a ssmple upper bound for tr Cy.

The derivation of this bound isinspired by the convexity argument of Pukelsheim (1993, p.
75), see also Kushner (1997, Lemma5.1). We give adlightly different proof, which is also

valid if the matrices do not have full rank. We begin with atechnical proposition.

Proposition 1:

Assume A,...,A,,D,,...,D, aematrices, A OIR™,D. OIR™*®,1<i<n. Then

S AA-(YAD)yo'D) (T 0rA)2 T {ATA-AD,(D7D,) D7 Af

in the Loewner-ordering.

Proof:

Consider the partitioned matrices

D, 0 D, 0
0. 0 _0 0
.5 H D.H

The column-space of M, is contained in the column-space of the block diagonal matrix Mo.

Hence,



2°(D,) 0
@'(M) 2" (M,) = .
i w"(D,)H
and
[Ad A O
> A'A-(ZAD)(Z0D) (3 07A)= 5 g
NN
(A0 @' (D) A D
20 80 B3 (aa-ap(oD)ora). O
AEH @' (D,)HA B

Note that Tyl isin the column-space of 1,001, while Ryl; and Lyl; are not. Thisimplies (see
Kunert, 1983) that Cy1; has row and column sums zero, that Cy;2 and Cy13 have column sums
zero, but not necessarily row sums zero, and that Cy,,, Cyo3 and Cysz need not have zero row
sums or column sums. For our bound, we use the traces of B; Cgij By, and define

Cy =trBCyB, forl<i<j<3.
Since the matrix

[BC,,B, BC,,B, BC,,B0 BT O

O
B.CloB BCuB, Btcdzsstm—%tLL (1, 01)[T,B, LB, R,B]
@tCLaBt BtC;iI—ZBBt BthsaBtE B—D’thE

is nonnegative definite, this also holds for

|].‘:d 11 Cd 12 Cd 13 0

a2 Caz  Campy
Fazs Cozz Cuzs



Thisimplies directly that cgi; > 0, 1 <i <3 and that C,,,C s —Cips = 0. It also follows that (see,

e.g. Rao and Toutenburg, 1995, Theorem A74)

o . ¢, [¢,,0
23 5, satisfies QQ" E:dlz = E:dlz 2 4)
d13 [ d13 ]

d2z  Lazz[]

Q — Ij:d 22 Cd

and, consequently, that

[y, 0
[Cdlz Cd13]Q %dlzg
d13

does not depend on the choice of the g-inverse Q™.

We are therefore in aposition to define

[y, 0
Q%4 =Cypy — [Cdlz CdlB]Q . [l
d13 [

Then g* 4 depends on the following four cases (i) to (iv):

(i)  If CypCyuas —Cops >0, then Qisnonsingular and

2 2
O, =Cypy — Ca12Cq3s ~ chlzcdlscd 23+ C13Ca2
d — “di1 2 .
Ca22Cq33 ~ Cyzs

(i) If Cy2Caas _0523 =0andc,,, >0, then o, =c,y, _C§12 I Cyz -
(iii)  If cazz=0and cgz3> 0, then czz =0 and o, =Cyyy = Ch15/ Cyss -

(iv)  Ifcgp=cgz3 =0, thencpz=0and g, =Cgy;.



With these definitions we can show

Proposition 2:

Every design d 0Q,,, hastr Cqy< g*q¢. If adesignf hasall Cyj, 1 <i <j < 3, completely

symmetric, then tr C; = g*+.

Proof:

Using formula (2), C4 can aso be written as
C, =T (L. RDT,, 5)

where T, = ”(1, 01)T,, [, =@”(1, 0L, and R, = @”(1, DL)R,.

In Proposition 1 let n =t! and consider {S= 11, S, ..., S}, the set of all t x t permutation

matrices. Then define A =T,S, D, =[L,S,R,S], 1<i < n. It can be shown with straightfor-

ward algebra, using (3) and (4), that A'w"(D,)A = S'C,S foral 1<i <n. Onthe other hand

> A'A-(3y A'p)(3 07D (3 07A)
=y S'TJT.S -

AL
o

TT T T STEgEdS ZSITEZE%SD

Td Ld ! Td ToT| T5TH
ZsThs 38 &S]%sms zS.RdeSE%
:ZSTCdnS_

: : §CS ) §CSUD §'C,SO
Cd12 ’ Cd13 TA~T T T
[Z S S z S S] % S CdZ?»S Z S Cd3335 % S Cdl?)s 5

Since the summations are over all permutations of the numbers{1, ..., t}, Z S'C,S is

completely symmetric for all 1 <r < s< 3. As Cy11, Car2, and Cqyi3 have column sums zero, we

concludethat ' §'C,.S ={C4n/(t-1)}B, +2,L1 , for some zs, with zs=0if r = 1.



To proceed, we need a g-inverse of

_ ey ,n/(t-1}B, + 2,11 {Cupsn/(t-1)}B, +2,, 117 0_t-1 [Z,,
i =" os -
CysN/(t —D}B, + 2,11 {Cyosn/(t-D}B, +2,10' 7 n %23

One such g-inverse, for appropriate wij, is

W, W, [
Fr =" (QOB-p~ “roLL).

t-1 23 33

Therefore
3 A'A-(3 A'0)(3 00) (T 0rA)
:t_TlcdﬂBt _%([C‘“Z’ Cuss] O Bt)F‘ﬁji ED B, E=%q*d B,.

Then Proposition 1 impliesthat trC, <qg*,.

Finally note that for design f we have C

frs

3. Methods for determination of a maximal g* 4.

An optimal design d* should have a completely symmetric Cy, with tr Cyg = q* ¢+,

:ZSITCfrsS/n forevery 1<sr<s<3.

a1,
[l

3

and it

should have the right proportions of blocks assigned to the treatment sequences such that g* g

ismaximal. Therefore, we need to maximize the bound g* 4. Define

Ct(Jli)l =tr(T4,BTy,) Céli)z = tr(T4,B Ly Céli)a =tr(T4BR,) , Cc(i;)Z =tr(B,L§,B LyB)

Cc(ig)?, = tr( Bt L-cl;u Bk Rdu Bt) ’ and Cc(iL:i,)3 = tr( Bt R(;ru Bk Rdu Bt) '

We then get that



b
— (u)
Cyrs = ZCdrS ,1 <r<s<3.
=1

Note that each ¢ remains unchanged if the treatments are relabelled, i.e. if Tqy, Loy and Ryy

arereplaced by Tq,S La,Sand Ry,S, respectively, where Sisany t x t permutation matrix. We
call two sequences of treatments equivalent if one can be transformed to the other by

relabelling the treatments. Hence, two equivalent treatment sequences give the same c{” .
Therefore, for given t and k, we can divide the set of al possible treatment sequencesinto K

equivalenceclasses s, ..., . If, for example, k=3 and t > 3, then therearethe K =5

equivalence classes givenin Table 1.

Since cl¥

drs

isthe same for each u receiving atreatment sequence in a given equivalence class
s, 1 < <K, wecan define ¢, (¢) =c{) and get ¢, = bzlilﬂdécrs(f) , where g isthe

proportion of blocks assigned to the class ;. This, however, implies that the bound g* 4 of any
design d 0O, is determined by the proportions 7. Note that the cgj are linear in the 7g,, but
that g*4 is aquotient, where the 75, are third order in the numerator and second order in the

denominator. This makes the maximization of g* 4 difficult.

The situation is similar to the models (with carryover effects) for repeated measurements
designs. For these Kushner (1997) showed how to use the linearity of the cq4s to maximize

g*¢. Thisidea can be generalized to interference models.

Proposition 3:

For any design d 0Q x define the function g, : IR* - IR as

_ 2 2
Qg (X, Y) = Cypy +2C41,X+2Cy;5Y + 2C, 15Xy +Cypp X +Cygay” .



Then for every x and y, we have gq4(X, ¥) = g* 4. Thereis at least one point (Xq, Yg) Such that

qd(xd,yd):CId- *
Proof:
We can write

xd xd
0y (X y) =Cypy + Z[Cd12 CdlB]H/HI- [X y]QH/%
[Ca1o T - [0
=Cinn t Z[Cd12 Cd13](u -Q E: é -(u - [Cdlz Cd13]Q )QU-Q % 5

where

Then equation (4) implies that

0y (X, Y) =Cypy — [Cdlz CdlS]Q E: El"'u "Qu.

d13
Therefore, qq(X, y) isminimal iff Qu =0, i.e. iff

X0  [€y,0

QH’D E:dw U

This, however, holds if and only if the partial derivatives of qq with respect to x and y are both

0. The minimum of qq equals g*g. d
From the proof of Proposition 3, we immediately get

Corollary 1:

Consider a point (Xq4, Yq)_such that the partial derivatives 6qq(X, y) / oxand oqu(X, y) / oyare

both O for (X, y) = (X4, Ya). Then g, (Xg, Yg) = -

10



The elegance of qq(X, y) isthat it can be written as a linear combination of functions h,(x, y),

which depend on the equivalence classes of treatment sequences. Define
h, (X,Y) = €y (£) + 2, (1) X+ 2C,5 () Y + 2C,5 (£) Xy + Cpp (£)XZ + Co (1) Y2,

forevery 1</ < K. Then

K
Qg (X, y) = bz M h, (X, Y) .
=

Proposition 4

For adesign d JQ, ,,_consider a point (Xq, Ya) for which du(Xa, Ya) = 0.
If bh, (X4, ¥y) < 0q(Xy, Yq) = q¥aforevery 1< 7 <K, then for every f U Q; ,x we have

tr Cr < g*g = a* ok Say.

Proof:

For any f we have

K K K
q*s = banﬂ,hz:(Xf Vi) < anbhz:(xmyd) = Zr[m g“d=d"a.

The rest follows from Prop. 2. d
Note that the proportions 74, must be such that the partial derivatives of Z m,h (xy) a

(X4, Yd) are both O, and that only such classes ¢ of sequences are included for which h,(xg, Yg) =

MaXi<<k he(Xg, Ya). Therefore (Xq, Yg) must be either at the minimum of an h, or at the

11



intersection of two or more of the hy.

In many situations there is no design fulfilling both the conditions of Proposition 4 and of
Proposition 2. In that case, however, one practical use of the a*p is the lower bound which it

provides for the optimality criteria.

As an example, consider the A-criterion ¢a(Cs), which is the trace of the Moore-Penrose

generalized inverse of C;. From Prop. 2 we get

B)= (t- 1)

f f

P(C; )>¢A ‘t(

With Prop. 4 it follows that

(t-0°

t,b,k

9(Ci)2

4. Some examples
In this section we demonstrate the methods derived in this paper by finding optimal or
efficient designsfor k =3 and 4 for al t = 2. Note that, to save space, blocks are represented

as columnsin Examples 1 to 4.

4.1 The case of 3 plots per block
Table 1 lists the equivalence classes and the corresponding c¢(¢) for the case that there are k =

3 plots per block. If t=2, then only the first four sequences are possible.

12



A design d* which has half of its sequences from s, and half of its sequences from s, has

1 1 4-2 3t-2 , 3-2
L% Y)=b{sh,(X, ) +3h, (X, y)} =bO-—-=Xx-Zy- + X2 + 2
dg- (X, Y) =b{3h, (X, y) +3h, (X, y)} @33 3 x YV Styél

If x=y=1t/{2(t-1)}, then the derivatives of gq(X, y) with respect to x and y are both 0.

Therefore from Corollary 1, we have

X = Yo =t A e = Gy (X Vo) =
d* d* 2(t—1) d g+ g* 1 Ya* (t _1) .

Table1

The classes s, of sequences and adjusted c.(¢) fork=3,t>2

Repre-

4 sentative 3 cu(?) 3 &) 3 ©(/) 3 sz(€)+72 3 ng(f)-% 3 C33(f)+%
seguence

1 [111] 0 0 0 2 1 2

2 [112] 4 A 0 2 2 4

3 [127] 4 3 -3 4 1 4

4 [127] 4 0o -1 4 2 2

5 [123] 6 2 -2 4 -1 4

To prove the optimality of g* 4+ we haveto calculate h (Xg, yg+) for every 1</ <5, and to
verify that g* ¢ / b - h, (Xg+, Y&+) iS nonnegative for every /. Some algebra showsthat g* ¢« / b -
h,(Xa*, Ya=) equals (3t—4) / (4t-4) > 0, O, (3tz-5t) / (3 &-6t+3) > 0, 0, (t-2) / (3t2—6t+3) > 0

(sincet>2)for /=1, ..., 5, respectively.

Hence, we have shown

13



Theorem 1:

If k=3 and t > 2, then for any designd [1 Q;,3 we have

7t-8
tr Cd < a*tybs = %% .

If adesign d*_has half of its blocks with treatment sequences which are equivalent to [1 1 2]

and half of its blocks with treatment sequences equivalent to [1 2 2], and if Cg<11, Cgr12, Car13,

Ca22, Car23, and Cy33 are completely symmetric, then d* is universally optimal over Qi p 3.

Example 1:

If t =2, then a4 block example of adesign fulfilling the conditions of Theorem 1 is

a1 2 1 20

d*,=H 2 2 1710,,,.

P12 17

If t = 3then a 12 block example of adesign fulfilling the conditions of Theorem 1is

M 122331122 3 30
d*, :% 1 223323131 25393123
P 313122313124

If t = 4, then a 24 block exampleis

[1112223334441112223334440]
d*, = 111222333444234134124123:00Q, ,,...
341341241232341341241230

4.2 The case of 4 plots per block

14



If k=4 and t > 4, then we have 15 equivalence classes. The representative sequences and the
Crs(¥) for the 15 classes are given in Table 2. For t = 3, only the 14 classes s; to si4 are

possible. Fort = 2, only the 8 classes 1, S, S3, S4, S, S7, So and Syp are possible.

We start with the caset = 2. Then consider adesign d* with half of its blocks from s, and half

of itsblocks from sy. In that case

11 11
O (X, ) =b{2h, (%, ) +1hy(x, )} =b§2+§x2—2xy+§y2E22b,

with equality holding iff x =y = 0. Now, h, (0, 0) = ¢;1(£) <2 for all 8 possible classes S, of

sequences, with equality for £ = 4, 7 and 9. Thus we have shown

Theorem 2;

If t=2and k =4, then for every designd [0 s we have tr Cy<a*,pa=2h.

If adesign d*_has b/4 of its blocks with each of the sequences[1122],[2211],[1221]]

and [2 11 2], then d*_isuniversally optimal over Q,y, 4.

Note that sequences[1122] and[2 21 1] arefrom s, while[122 1] and [2 1 1 2] are from
S. Because h;(0, 0) = 2, it is possible to show that there is another design f that has g* =

a*,pk Design fhas 3b/4 of its blocks with sequences from s, and b/4 with sequences from s;.

Example 2:

Theorem 2 requires that b is divisible by 4. Suppose b = 2 and consider the two designs

15



a 1% 1 2%
2 20 2 20
218 R 1

While g*y = a*,,4 =4, for dwe have tr Cy = 16/7 < 4, because Cgys3 is not completely
symmetric. Design f, for which the Cg;j, except for Cyp3, are completely symmetric, has
tr Cy = 3. Calculating the information matrix for all 256 possible designs, we find that f is

universally optimal (sincerank Cq = 1).

Table2

The classes s, of sequences and adjusted c¢;s(¢) for k=4

Repre-
/ sentative 4 cy(0) 4 c15(0) 4 c13(0) dcyp(f) Acx(l) 4dcx(h)
sequence e R
1 [1111]] 0 0 0 3 -1 3
2 [1112] 6 -1 1 3 -2 7
3 [1121] 6 -3 -3 7 -1 7
4 [1122] 8 2 2 7 -4 7
5 [1123] 10 -1 0 7 -3 9
6 [1211] 6 -3 -3 7 -1 7
7 [12172] 8 —6 -6 7 4 7
8 [1213] 10 -5 -4 7 1 9
9 [1221] 8 -2 -2 7 -5 7
10 [1222] 6 1 -1 7 -2 3
11 [1223] 10 -1 -1 7 -4 7
12 [1231]] 10 -4 -4 9 -3 9
13 [1232] 10 -4 -5 9 1 7
14 [1233] 10 0 -1 9 -3 7
15 [1234] 12 -3 -3 9 -2 9

As hy4(0, 0) = c11(14) = 10/4 > 2, an optimal design for t = 3 must have other sequences than
just 84, S7 and so. The case k = 3 suggests the candidate design d* with Tis = Ty 14 = %2. In

fact, wefind that g,. (X y) =b(E-1ix-1y—4xy+Ix*+2y?), withaminimum at X¢ = Yo =
3/26. Therefore g* ¢ = O (Xa+, Yar) = (*°'1104) b . It is €asy to check that for every ¢ 1 </ < 14,

we have 257/104 - h (Xg+, Ya+) = O, with equality holding only for / =5 and ¢ = 14. Hence, we

16



have shown

Theorem 3:

If k=4 and t = 3, then for any design d 0 Q34 We havetr Cy < a*3p4 = (°'104) b.

If adesign d* has b/2 blocks with treatment sequences which are equivalent to each of

[1123]and[1233],andif Cq11, Car12, Cyr13, Cyr22, Ca23, aNd Cyr 33 are compl etely

symmetric, then d*_is universally optimal over Qzp .

Example 3:
Thedesign
M1 2 3 31212 3 2 3 10
W
2 3231123312
d*:% |:|:|§23124
2 311233121230 ™
% 1212323112 3%

fulfils the conditions of Theorem 3. Thefirst 6 blocks of d* form a design d which maximizes
g*qin Qg4 but for which tr C4 < g* 4, since Cq12 and Cgyy3 are not completely symmetric.
However, when we calculate the A-criterion ¢a(Cqy) of dand compare it to the unattainable
lower bound ¢* A=(t — 1)2/ a* 34, then we find that ¢* a/@a(Cq) = 0.996, i.e. d hasan

efficiency of 99.6% and islikely to be A-optimal.

Finally, we consider thecasek =4 and t = 4. We try adesign with a proportion ttof sequences

from the class s;5 and proportions (1-1)/2 of classes s; and s14, €ach. The three h,(x,y) intersect

atx=y=(5-/17)/4 = x*, say. For x=y = x*, we have

(135- 23y17)t - (42 -1017)

hs(x, ¥) = ha(x, y) = hs(x, y) = 160

17



Note that his(X, y) = hs(y, X). Thus the derivative of hys(x+3J, x-d) with respect to dis zero if

0= 0. The same holds for ¥2 hs(X, y) + ¥2h4(X, ). It hence remainsto find a 77such that

2 Hrngx,9+ R0+

1-77
2

(X

iszero for x = x*= 0.219. Therefore, set

- (23-5V17)t - (10-2V17) _
217t

T, Ssay.

It is easy to seethat the differences hs(x*, x*) — h,(x*, x*), for £ = 1,2, ..., 15 are dl positive,

except for ¢/ =4, 5, 14 and 15, when they are 0.

Hence we have an optimal design using sequence classes S5, Si4 and Sis. Since h (xX*, x*)
—h,(x*,x*) =0, we can construct an optimal design with some sequences from the class ..

In fact, a second optimal design exists which consists of s, and s;5 only having a proportion

5o (23-3J17)t - (10-24/17)
417t

of sequences from the class s;5 and a proportion of 1 — & of sequences from s;. Any convex

combination of these two designsis also optimal. Hence, we have shown

Theorem 4

If k=4 and t > 4, then for every design d [J Q4 we have

18



o (135-23/17)t - (42-104/17)

trCy<a*ipa= 16t

To achieve this bound, we would need to construct adesign d* as follows:

Define

. (23-5y17)t - (10-2/17) St = (23-3y17)t - (10- 24/17)
217t 417t '

Choose0< a < 1. Let proportions (1-a) (1 0°), a (1-1t)/2, a (1-*)/2and { a T +

and

(1-a) &} of the blocks of d* have treatment sequences which are equivalentto[11 2 2],

[1 12 3], [1 23 3] and [1 23 4], respectively, such that Cy11, Cg12, Cg+13, Car22, Cyr23, and

Cq+33.are completely symmetric.

Remark: The design d* in Theorem 3 cannot exist for finite b. To seethis, notethat 1 - & =
(1-r1) /2, whichisirrationa. Therefore, (1 - a)(1- ) =(1 - a)(1 - 1) / 2and thereis

no a such that both (1 - a)(1 —m*)/2and a(1 — 1¢*) / 2 arerational.

Despite the non-existence of d*, Theorem 4 has two useful aspects. Firstly, it suggests the
structure of an efficient design, and secondly a*, 4 gives alower bound for the A-value. This

is demonstrated in Example 4.

Example 4

It is possible to construct highly efficient designs if we can approximate reasonably well the
fractions 1t or & from Theorem 4. If t = 4, then the upper bound a* 4,4 for tr Cy is
approximately bx2.49852. To construct an efficient design, we select a = 0. We would need a
proportion of & = 0.617995 of blocks with a sequence from s;5. We use 2/3 instead and

construct the 36 block design
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[1112223334441234124314321234124314320]
B %112223334442413231442 132413231442 135

0Q,.,.
[23413412412331424132312431424132312400  +%4

%34134124123432 13421234143213421234 1%

It iseasy to verify that Ci, ..., Cizz are completely symmetric, and that tr C; = 89.8064... .
Thisis extremely close to the upper bound which is approximately 36x2.49852 = 89.94672,

so that f is highly efficient (efficiency = 0.9984).

With 12 blocks, adesign similarly constituted to f is

1234123412 4 30
:%23424132314EDQ
%" 341314241 3200 2
9 341432134217

Its Cy is not completely symmetric. However, its relative A-efficiency with respect to the

bound (t = 1)%a* 4124 is 0.968.

If we prefer not to repeat treatments, we have the universally optimal binary design using a

type | orthogonal array with efficiency 0.924:

1234123412 3 40

0
h:%z14224132341u
@ 413314241 2 30
4321432134127

With 6 blocks, a design with relative A-efficiency 0.885, similarly constituted tof is

U004 6.4.
o0 46,4
18

9, =

NG
PN
5w N P
W Rk NN
N AP W
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For 8 treatments, and 24 blocks similar ideas lead to the design gz [J Qg 24 4, Where

1 234567811362 260547882365 470
1 2345678241758363261875 47
%"m 6 7812343261875 42417°58 3 60
$6781234478835471136226 5

Thisdesign has arelative A-efficiency of 0.910. Note that each treatment is replicated 12

timesin the design gs, asin g;.

The methods of the present paper can be used for blocks with k > 4 aswell. However, with
larger k the number K of equivalence classesincreases rapidly. For k=5and t = 5 there are 52

classes of sequences. It is possible, though, to show that adesign d with a proportion

3
= 25t —3,/41t — 7 +~/41

of blocks with a sequence equivalent to [1 2 3 4 5] and the other blocks with a sequence
equivalent to[1 1 2 3 3] hasamaximal g*y = a*;ps. In the special instancet =5 (with 77 =
0.6643), then abinary type | orthogonal array h, which uses only sequences equivalent to

[12345], hasan efficiency of g*,/ a*s5p5 = 0.959. Thisis slightly higher than for k = 4.

Further work is aimed at obtaining bounds on the ¢;;(¢) to get results for a general k. We
conjecture that a*,, is achieved by a design with amajority of sequences from the class
containing [1 2 3 ... k-2 k=1 k] and the rest of the sequences equivaent to
[112...k-3k-2k-2]. We also conjecture that for t > k > 5, abinary type | orthogonal array

will have an efficiency of more than 0.95.
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