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Abstract:

This note provides a proof of Granger's (1986) error correction model for fractionally

cointegrated variables and points out a necessary assumption that has not been noted

before. Moreover, a simpler, alternative error correction model is proposed which can be

employed to estimate fractionally cointegrated systems in three steps.
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1. Introduction

Fractional cointegration has become an important and relevant topic in time series

econometrics in recent years (see, among others, Cheung and Lai, 1993, Baillie and

Bollerslev, 1994, Booth and Tse, 1995, and Dittmann, 1998, 1999). A vector x
t
of I(1) time

series is called fractionally cointegrated if there is a linear combination a'x
t
that is a long-

memory process or, more formally, I(d) with d V (0, 1). In a side remark, Granger (1986)

provided an error correction model for this case, which has been widely cited in the

fractional cointegration literature. Interestingly enough, this error correction model has

never been explicitly proven in the econometrics literature.

This note provides a proof for Granger's error correction model and points out a

necessary assumption that seems to have been neglected in the literature so far, namely that

all cointegrating relationships share the same long-memory parameter d. A detailed

interpretation of Granger's error correction model concludes that this model is far too

complicated to be useful in practice. Therefore, a simpler error correction model is

proposed which can be employed to estimate fractionally cointegated systems in three steps.

2. Fractional Cointegration and Cointegation Rank

Definition (fractional cointegration): Let x
t
be an n-dimensional vector of I(1) processes.

x
t
is called fractionally cointegrated if there is an a V IRn, a / 0, such that a'x

t
~ I(d) with

0 < d < 1. We call d the equilibrium long-memory parameter and write x
t
~ FCI(d). �

Compared to classical cointegration, where d = 0, defining the cointegration rank is more

difficult for fractionally cointegrated systems, because different cointegrating relationships

need not have the same long-memory parameter.

Definition (cointegration rank): Let x
t

be an n-dimensional vector of I(1) time series. If

there are exactly r linearly independent cointegrating vectors a
1
, a

2
, ..., a

r
V IRn with A =

(a
1
, a

2
, ..., a

r
) and A'x

t
~ I(d), d V (0, 1), r is called the cointegration rank with respect to the

equilibrium long-memory parameter d. We write x
t

~ FCI(d, r). Moreover, if there is a
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fixed �d V (0, 1) so that any linear combination of x
t

is either I � �d � or I(1), x
t

is called

purely fractionally cointegrated with cointegration rank r. �
Note that x

t
~ FCI(d, r) implies that r A (n – 1). However, if x

t
~ FCI(d

1
, r

1
) and

x
t

~ FCI(d
2
, r

2
), r

1
+ r

2
can be larger than (n – 1). Hence, the number of independent

cointegrating relationships can be larger than (n – 1). Consider for instance x
1 t

~ I(1),

x
2 t

= x
1 t

+ y
t
, x

3 t
= x

2 t
+ z

t
with y

t
~ I(d

1
), z

t
~ I(d

2
) and d

1
> d

2
. Then there are three

cointegrating relationships: (–1, 1, 0) x
t
~ I(d

1
), (–1, 0, 1) x

t
~ I(d

1
) and (0, –1, 1) x

t
~ I(d

2
).

3. Granger's Error Correction Model

We consider the multivariate Wold representation of ´x
t
:

(1 – B) x
t
= Á + C(B) Ö

t
(1)

with the (possibly infinite order) moving average polynomial C(B) = I
n

+ C
1

B + C
2

B2 +

C
3
B3 + ... and a zero-mean white-noise vector process Ö

t
(see, e.g., Brockwell and Davis,

1991, p. 187).

Proposition 1 (Granger Representation Theorem): If x
t
is purely FCI(d, r) with full-rank

n 3 r cointegrating matrix A, then A'Á = 0 and A'C(1) = 0. Furthermore, there exist linear

filters A(B) and d(B) and an n 3 r matrix ³ of rank r such that

A(B) (1 – B) x
t
= – [1 – (1 – B)1 – d](1 – B)d ³z

t
+ d(B)Ö

t
(2)

with z
t
= A'x

t
and A(0) = I

n
, where d(B) is a scalar filter. �

Proof: As z
t
= A'x

t
is I(d), A'Á = 0 and A'´x

t
= A'C(B)Ö

t
is I(d – 1). The sum of the Wold

coefficients of a long-memory process with negative long-memory parameter is zero, so

that A'C(1) = 0.

Note that C(B) can be rewritten as

C(B) = C(1) + (1 – B)1 – d C*(B). (3)

C*(B) does not contain any fractional differencing filters, so that the corresponding matrix

polynomial C*(z) with complex argument z is well-defined on the unit-disk with C*(1) / 0.
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Using Engle and Granger's (1987) Lemma, which provides the determinant and adjoint of a

singular matrix polynomial, we obtain:

det(C(B)) = (1 – B)r (1 – d) d(B) I
n
, (4)

and Adj(C(B)) = (1 – B)(r – 1) (1 – d) A*(B). (5)

Multiplying (1) by (5) gives:

(1 – B)1 + (r – 1) (1 – d) A*(B) x
t
= (1 – B)r (1 – d) d(B) Ö

t
+(1 – B)(1 – r) (1 – d) A*(B) Á (6)

⇔ (1 – B)d A*(B) x
t
= d(B) Ö

t
+ (1 – B)d – 1 A*(B) Á (7)

I first show that A*(1) = ³A'. Then (1 – B)d – 1 A*(B) Á = 0, as A*(B) Á = A*(1) Á = 0.

Multiplication of (1) by A*(B) leads to

(1 – B) A*(B) x
t
= A*(B) C(B) Ö

t
+ A*(B) Á . (8)

Substituting with (7) gives

(1 – B)1 – d [d(B) Ö
t
+ (1 – B)d – 1 A*(B) Á] = A*(B) C(B) Ö

t
+ A*(B) Á (9)

⇔ (1 – B)1 – d d(B) Ö
t
= A*(B) C(B) Ö

t
 . (10)

With B = 1 we obtain A*(1)C(1) = 0. Hence, A*(1) is a linear combination of the

cointegrating vectors A': A*(1) = ³ A'.

Consequently, (7) reduces to

(1 – B)d A*(B) x
t
= d(B) Ö

t
 . (11)

Factorization of A*(B) = A*(1) + (1 – B)1 – d A**(B) gives (together with A*(1) = ³A'):

(1 – B)d [(1 – B)1 – d (A*(1) + A**(B)) + [1 – (1 – B)1 – d] A*(1)] x
t
= d(B) Ö

t
(12)

⇔ [A*(1) + A**(B)] (1 – B) x
t
= – [1 – (1 – B)1 – d] (1 – B)d ³A'x

t
+ d(B) Ö

t
(13)

Choosing A(B) :, A*(1) + A**(B), we obtain (due to the definition of A*(B)) A(0) =

A*(1) + A**(0) = A*(0). It remains to show that A*(0) = I
n
. With B = 0 in (10) we obtain

A*(0) C(0) = d(0). As C(0) = I
n

and d(0) is the determinant of C(0), we get A*(0) = I
n
. �

Note that Proposition 1 only holds if x
t

is purely fractionally cointegrated. If x
t

is

multiply fractionally cointegrated, i.e., xt ~ FCI(d, r) and xt ~ FCI(d2, r2) with d
2
/ d, the

error correction model (2) cannot be a representation of the system xt. The reason is that (2)

takes into account only the information contained in the r cointegrating relationships of

order I(d), whereas the information contained in all the other cointegrating relationships is
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neglected. Formally, the above proof does not work any more, because C*(B) in (3) is no

longer well-defined on the unit disk with C*(1) / 0, so that the Lemma of Engle and

Granger (1987) cannot be applied. In order to see this, let A and Ã be the two cointegrating

matrices with A'x
t
~ I(d) and Ã'x

t
~ I(d

2
) and consider

(1 – B)d
2 Ã'x

t
= (1 – B)d

2
– 1 Ã'´x

t
= (1 – B)d

2
 – 1 Ã'C(B)Ö

t
= (1 – B)d

2
 – d Ã'C*(B)Ö

t
(14)

As (1 – B)d
2 Ã'x

t
~ I(0), C*(B) contains the factor (1 – B)d – d

2. If d
2

< d, C*(1) = 0 and, if

d
2
> d, C*(1) does not exist. Note that multiple fractional cointegration can only occur if the

dimension n of the vector x
t
is larger than two.

Equation (2) is a special case of the formula given in Granger (1986). Granger (1986)

considers the more general case that x
t
is not I(1), but I(D) with some D > d. The present

paper uses D = 1, because this is the special case commonly associated with fractional

cointegration. Nevertheless, the proof given above also works for the more general case.

The error correction model (2) then becomes

A(B) (1 – B)D x
t
= – [1 – (1 – B)D – d](1 – B)d ³z

t
+ d(B)Ö

t
(2')

Note that (2) becomes the "traditional" error correction model (see, e.g., Engle and

Granger, 1987) for d = 0, i.e., in the case of classical cointegration. In this case, only

yesterday's equilibrium error z
t – 1

enters the model (2), indicating that today's changes ´x
t

are influenced by yesterday's equilibrium error z
t – 1

but not by older equilibrium errors. If

d = 0 and r = 1, (2) can be used for estimation of A(B) and d(B) after ³ has been estimated

by an ordinary least squares regression.

If d > 0, (2) becomes more complicated. Let us first rewrite the filter in front of the

equilibrium error ³z
t
, by expanding the fractional differencing filter (see Granger and

Joyeux, 1980, or Hosking, 1981):

�11�11B�11d ��11B�d,�11B�d110B,�11d �B0{
j,2

�
d

j
B j

(15)

with d
1

= – d and d
j
, j 1 1 1 d

j
d

j1 1 . Note that all d
j

with j B 1 are negative with |d
j
|

decreasing in j and {
j,2

�
| d

j
|,11d  .
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As all the terms in (15) contain the factor B, only past equilibrium errors z
t – 1

, z
t – 2

,

z
t – 3

,... appear in the error correction model (2). Hence, today's change ´x
t
can be explained

by past changes ´x
t – 1

, ´x
t – 2

, ... , past equilibrium errors z
t – 1

, z
t – 2

, ... and a stationary error

d(B)Ö
t
. With increasing equilibrium long-memory parameter d, the influence of yesterday's

equilibrium error z
t – 1

decreases. If d converges to 1, the error correction term vanishes (as

(15) converges to zero), so that there is no error correction in the limit.

If d V (0, 1), the error correction model (2) contains infinitely many past values not only

of the equilibrium error z
t
, but also of the changes ´x

t
and of the errors Ö

t
, because, in

general, A(B) and d(B) also contain fractional differencing filters. Hence, (2) is unsuitable

for estimation.

4. An Alternative Error Correction Model

If x
t

is purely FCI(d, r), the cointegrating matrix A can be partitioned as A = (A
1
, A

2
)

with regular (r, r)-matrix A
1

and (r, n – r)-matrix A
2
. Moreover, we can normalize A

1
= I

r

without loss of generality. Thus, with z
t
= A'x

t
~ I(d) and correspondingly partitioned x

t
, we

obtain

x
1 t

= – A
2

x
2 t

+ z
t
 . (16)

This is the Phillips's (1991) triangular representation of the system. It shows that the system

contains only n – r random walks x
2 t

.

Proposition 2: If x
t
is purely FCI(d, r) with cointegrating matrix A = (I

r
| A

2
)', then there

exists an n-dimensional nondeterministic I(0)-process u
t
such that

´ x
t
,�I r

- A
 2

0 I
n - r
�u t

1� I
r

0 � �1 1 �1 1 B�1 - d � �1 1 B�d A' x
t

(17)

�
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Proof: By taking differences in (16), we obtain

´ x
t
,�´ x

1 t

´ x
2 t�,�1A

2
´ x

2 t
0 �1 1 B� z

t

´ x
2 t � (18)

Let u
1 t

= (1 – B)d z
t
and u

2 t
= ´x

2 t
. Then

´ x
t
,�I r

- A
2

0 I
n - r
��u1 t

u
2 t�1� I

r

0 � u
1 t
0� I

r

0 � �11 B� z
t

(19)

and (17) follows immediately. �
As in Proposition 1, the assumption that x

t
is purely fractionally cointegrated is

necessary. If x
t
is multiply fractionally cointegrated as described above, u

t
in (17) is not I(0)

but instead some elements of u
t
are antipersistent (i.e., I(d') with d' < 0).

In contrast to Granger's error correction model, (17) can be used for estimation of the

system in three steps if r = 1: In the first step, A
2

is estimated by an ordinary least squares

regression of x
1 t

on x
2 t

. Cheung and Lai (1993) show that this estimator is consistent if

n = 2 and r = 1. In the second step, the long-memory parameter d of the cointegrating

equilibrium A'x
t
is estimated, employing a periodogram regression (cf. Geweke and Porter-

Hudak, 1983). In the third step, û
t
is calculated from equation (17) and the estimates of the

first two stages and modeled as an ARMA-process.
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