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Abstract 

We consider problems of quantifying and monitoring accuracy and precision of 

measurement in mass spectrometry, particularly in contexts where there is unavoidable 

day-to-day/period-to-period changes in instrument sensitivity.  First we consider the issue 

of estimating instrument sensitivity based on data from a typical calibration study.  

Simple method-of-moments methods, likelihood-based methods, and Bayes methods 

based on the one-way random effects model are illustrated.  Then we consider 

subsequently assessing the precision of an estimate of a mole fraction of a gas of interest 

in an unknown.  Finally, we turn to the problem of ongoing measurement process 

monitoring and illustrate appropriate set-up of Shewhart control charts in this application. 
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1  Calibration: Precision of Estimated Device Sensitivities and Estimation of 

Variance Components 

 

In the calibration of a mass spectrometer, several (say m ) specimens of a pure gas 

of interest are first analyzed.  Measured for each are a pressure ( *P ), a temperature ( *T ), 

and an integral of current over time ( *A ).  (We will use the asterisk on symbols as a 

reminder that the corresponding measurements are made on a pure gas.)  This produces 

m  data vectors ( )* * *, ,j j jP T A .  From these, single estimated device sensitivity values are 

available as 

 

*

* *

* * *

j

j j
j

j j j

P V
T R PVDS
A R A T

 
      = =      

 

for 1, 2, ,j m= …  (where R  is the gas constant and the volume, V , is assumed to be 

fixed/known for the particular instrument under study).  The ratios 

 
*

*
* *

j
j

j j

P
r

A T
=  

are in some sense the fundamental “measurements” produced in calibration of the 

instrument. 

 

If one averages 1 2, , , mDS DS DS…  (or equivalently averages * * *
1 2, , , mr r r… ), a 

sample mean sensitivity is 

 *VDS r
R

 =  
 

   . (1.1) 

Further, if DSs  is the sample standard deviation of the values 1 2, , , mDS DS DS… (or 

equivalently, *r
s  is the sample standard deviation of the values * * *

1 2, , , mr r r… ), a standard 

error for DS  is then 

 *SE DS r
DS

ss V
Rm m

 = =  
 

   . (1.2) 
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In cases where the scenario above is repeated on several (say, I ) occasions over 

time (with possibly varying sample sizes, ,  1, 2, ,tm t I= … ) there is the question of how 

to use the resulting tm∑  observations to state a single estimated sensitivity for the 

device and a corresponding precision for that estimated sensitivity.  A class of possible 

answers to these questions can be based on the one-way random effects model.  This 

model says that 

 the sensitivity computed from specimen  in batch tjDS j t=  

can be decomposed as 

 Stj t tjDS µ δ ε= + +    , 

where Sµ  is a fixed unknown constant (the “true” sensitivity of the device), the (daily) 

deviations  for 1, 2, ,t t Iδ = …  are iid ( )2N 0, δσ  random variables, independent of the 

(specimen deviations) tjε , that are iid ( )2N 0,σ . 

 

A computationally simple way of estimating Sµ  in the random effects model is as 

 m
1

1 I

t
t

DS DS
I =

= ∑  

(where in the obvious way tDS  is the estimated sensitivity based on the tm specimens on 

occasion t ).  Vardeman and Wendelberger (2003) note that (in spite of the possibility 

that daily sample size is not constant) if DSs  is the simple sample standard deviation of 

1 2, , , IDS DS DS… , a standard error for mDS  is 

 mSE DS
DS

s
I

=    . 

Vardeman and Wendelberger (2003) further observe that if 2
DS ts  is the usual sample 

variance of the sample device sensitivity values 1 2, , ,
tt t tmDS DS DS…  at period t , then 

 ( )2 2
 pooled  

1

1 1
I

DS t DS t
tt

s m s
m I =

= −
− ∑∑
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is a pooled sample variance of the individual specimen sensitivity values tjDS  and the 

square root of this is an estimate of σ .  And a simple estimate of δσ  can be built on the 

sample variances 2 2
 pooled and DSDSs s .  That is (see again Vardeman and Wendelberger 

(2003)) a sensible point estimate of δσ is 

 2 2
 pooled

1

1 1ˆ max 0,
I

DSDS
t t

s s
I mδσ

=

  
= −     

∑    . 

 

A second and more refined possibility for estimating Sµ  (and assessing the 

precision of estimation through either a standard error or confidence limits) and 

estimating the standard deviations δσ  and σ  is via use of a (linear) mixed effects routine 

like that in R (or Splus).  The R function lme will produce likelihood-based estimates 

and standard errors of estimation for this problem. 

 

A third possibility for estimating Sµ  (and assessing the precision of the 

estimation) and estimating δσ  and σ  is via a Bayes analysis implemented in software 

like WinBUGS.  Diffuse/large-variance priors should produce inferences not wildly 

different from those produced by using more common likelihood-based methods. 

 

There are also other methods of inference in the one-way random effects model 

(besides the simple method-of-moments, likelihood-based, and Bayes methods mentioned 

above).  See, for example, pages 473-475 of Searle (1971) for some explicit formulas for 

other possible estimators.  The ones we have mentioned here and proceed to illustrate 

have been chosen for their simplicity (in the method-of-moments case) or optimality 

properties (in the other two cases). 

 

To illustrate the forgoing, consider the sensitivity values ( tjDS ) obtained from 44 

pure Argon specimens (on three different days) represented in Table 1. 
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Table 1.  Argon Sensitivities for a Particular Device Computed from 44 Specimens 

Analyzed Over 3 Days (units are Moles/(Amp⋅Sec)) 

Day 1 Day 2 Day 3 

31.3 32.5 31.7 

31.0 32.2 29.8 

29.4 31.9 29.6 

29.2 30.2 29.0 

29.0 30.2 28.8 

28.8 29.5 29.6 

28.8 30.8 28.9 

27.7 30.5 28.3 

27.7 28.4 28.3 

27.8 28.5 28.3 

28.2 28.8 29.2 

28.4 28.8 29.7 

28.7 30.6 31.1 

29.7 31.0  

30.8  

30.1  

29.9  

1

1

1

17

29.21
1.132SE .275

17DS

m

DS

=

=

= =

 

2

2

2

14

30.28
1.355SE .362

14DS

m

DS

=

=

= =

 

3

3

3

13

29.41
1.039SE .288

13DS

m

DS

=

=

= =

 

 

Simple method-of-moments estimates based on these values are a device 

sensitivity of 

 m 29.21 30.28 29.41 29.63
3

DS + +
= =    , 

with corresponding standard error 
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 m
.570SE .329

3DS
= =    . 

The pooled standard deviation that can be used to estimate σ  is 

 ( ) ( ) ( )2 2 2

 pooled

16 1.132 13 1.355 12 1.039
1.183

44 3DSs
+ +

= =
−

 

and an elementary point estimate of δσ  is 

 ( ) ( )2 2 1 1 1 1ˆ .570 1.183 .493
3 17 14 13δσ

  = − + + =    
 

Notice that even these elementary calculations reveal substantial day-to-day variation in 

sensitivity that is “missed” or unaccounted for if one uses only a single tDS  (with 

corresponding standard error SE
tDS ) in the calibration. 

 

A more refined analysis of these data based on the random effects model can be 

done using standard “linear mixed effects” routines that rely on likelihood (and “REML”) 

methods.  An example output from the R package follows. 

 
> sens<-c(31.3,31.0,29.4,29.2,29.0,28.8,28.8,27.7,27.7,27.8,28.2,28.4, 
+ 28.7,29.7,30.8,30.1,29.9,32.5,32.2,31.9,30.2,30.2,29.5,30.8,30.5,28.4, 
+ 28.5,28.8,28.8,30.6,31.0,31.7,29.8,29.6,29.0,28.8,29.6,28.9,28.3,28.3, 
+ 28.3,29.2,29.7,31.1) 
day<-c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 
+ 3,3,3,3,3,3,3,3,3,3,3,3,3) 
> DAY<-as.factor(day) 
> DAY 
 [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 
[39] 3 3 3 3 3 3 
Levels: 1 2 3 
> sensmixed<-lme(sens~1,random=~1|DAY) 
> summary(sensmixed) 
Linear mixed-effects model fit by REML 
 Data: NULL  
       AIC      BIC    logLik 
  148.6772 153.9608 -71.33858 
 
Random effects: 
 Formula: ~1 | DAY 
        (Intercept) Residual 
StdDev:    0.480316 1.182519 
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Fixed effects: sens ~ 1  
              Value Std.Error DF  t-value p-value 
(Intercept) 29.6245 0.3301128 41 89.74054       0 
 
Standardized Within-Group Residuals: 
        Min          Q1         Med          Q3         Max  
-1.42150019 -0.81682237 -0.01345281  0.52247011  2.04567367  
 
Number of Observations: 44 
Number of Groups: 3  
> intervals(sensmixed) 
Approximate 95% confidence intervals 
 
 Fixed effects: 
               lower    est.    upper 
(Intercept) 28.95782 29.6245 30.29117 
attr(,"label") 
[1] "Fixed effects:" 
 
 Random Effects: 
  Level: DAY  
                    lower     est.    upper 
sd((Intercept)) 0.1199656 0.480316 1.923081 
 
 Within-group standard error: 
   lower     est.    upper  
0.952379 1.182519 1.468273  
> fixed.effects(sensmixed) 
(Intercept)  
    29.6245  
> random.effects(sensmixed) 
  (Intercept) 
1  -0.3085896 
2   0.4564536 
3  -0.1478639 
> predict(sensmixed) 
       1        1        1        1        1        1        1        1  
29.31591 29.31591 29.31591 29.31591 29.31591 29.31591 29.31591 29.31591  
       1        1        1        1        1        1        1        1  
29.31591 29.31591 29.31591 29.31591 29.31591 29.31591 29.31591 29.31591  
       1        2        2        2        2        2        2        2  
29.31591 30.08095 30.08095 30.08095 30.08095 30.08095 30.08095 30.08095  
       2        2        2        2        2        2        2        3  
30.08095 30.08095 30.08095 30.08095 30.08095 30.08095 30.08095 29.47663  
       3        3        3        3        3        3        3        3  
29.47663 29.47663 29.47663 29.47663 29.47663 29.47663 29.47663 29.47663  
       3        3        3        3  
29.47663 29.47663 29.47663 29.47663  
attr(,"label") 
[1] "Fitted values" 
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Among other things, the parts of the printout in bold show that the standard mixed effects 

analysis produces inferences for the sensitivity Sµ  of 

 Sˆ 29.62 with 95% limits (28.96,30.29)µ =    , 

inferences for σ  (measuring specimen-to-specimen variation in sensitivity within a 

single day) of 

 ˆ 1.183 with 95% limits (0.952,1.468)σ =    , 

and inferences for δσ  (measuring day-to-day variation in sensitivity) of 

 ˆ 0.480 with 95% limits of (0.120,1.923)δσ =    . 

These inferences are, not surprisingly, consistent with the story told by the simple 

estimates.  In particular, it seems the day-to-day variation in sensitivity is not ignorable. 

 

A Bayes analysis of the data of Table 1 can be accomplished using WinBUGS.  A 

summary of a sample WinBUGS session follows. 

 

list(sens=c(31.3,31.0,29.4,29.2,29.0,28.8,28.8,27.7,27.7,27.8,28.2,28.4,28.7,29.7,30.8,3
0.1,29.9,32.5,32.2,31.9,30.2,30.2,29.5,30.8,30.5,28.4,28.5,28.8,28.8,30.6,31.0,31.7,29.8
,29.6,29.0,28.8,29.6,28.9,28.3,28.3,28.3,29.2,29.7,31.1),ind=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3),N=44) 
 
list(mu=c(3,3,3),tau=1,muS=0,taudelta=1) 
 
model; 
{ 
  for(i in 1:N) { 
     sens[i]~dnorm(mu[ind[i]],tau) 
  } 
  for(i in 1:3) { 
     mu[i]~dnorm(muS,taudelta) 
  } 
  tau~dgamma(0.001,0.001) 
  sigma<-1/sqrt(tau) 
  muS~dnorm(0.0,1.0E-6) 
  taudelta~dgamma(0.001,0.001) 
  sigmadelta<-1/sqrt(taudelta) 
} 
 



 9

node      mean    sd  MC error 2.5%     median     97.5% start     sample 
mu[1]      29.38     0.2845 9.197E-4 28.8     29.39         29.91 100001    500000 
mu[2]      29.97     0.3488 0.001272 29.35     29.96         30.68 100001    500000 
mu[3]      29.5       0.2847 7.398E-4 28.91     29.51         30.04 100001    500000 
muS      29.62     0.8746 0.001392 28.56     29.62         30.69 100001    500000 
sigma      1.221     0.1397 2.354E-4 0.9833     1.208         1.529 100001    500000 
sigmadelta  0.6365    1.292 0.004277 0.03682   0.3937       2.699 100001    500000 
 

The Bayes analysis is in substantial agreement with all that has gone before (though is 

perhaps somewhat less optimistic about the precision with which Sµ  has been determined 

than are the other analyses).  In particular, there is evidence of substantial day-to-day 

variation in device sensitivity in the reported posterior mean and median for 

“sigmadelta.” 

 

2  Assessing Precision in the Determination of an Unknown 

 

When one or more (say, n ) specimens of a new mixture of gases are analyzed, 

values of pressure, temperature, and integrated current are obtained.  That is, one is 

presented with new data vectors ( ), ,i i iP T A  for 1, 2, ,i n= … .  (Notice that in contrast to 

the previous section, we use no asterisks on these symbols.  These are measurements not 

on a pure gas, but on samples of a mixture of gases.)  Let  

 i
i

i i

P Vq
AT R

 =  
 

   , 

and in the obvious way, let q  stand for the sample mean of these values.  Then for Sµ̂  
some estimate of instrument sensitivity, an estimated mole fraction of the gas of interest 
is 

 Sˆ
X

q
µ

=    . (2.1) 

An important question is “How may one state a precision for X ?” 

 

Stating a precision for an estimate like (2.1) requires that one make explicit one’s 

assumptions about how Sˆ and q µ  are related probabilistically.  We proceed to do that for 

two possible scenarios, the first where Sˆand q µ  are based on measurements collected on 

a single day, and the second where the estimate of device sensitivity is based on data 
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from days different from the day on which the n  values 1 2, , , nq q q…  are observed.  After 

making the modeling explicit, we offer two types of assessments of the precision of (2.1), 

namely 

1. in terms of standard errors based on simple “delta method”/propagation of 

error/Taylor linearizations and the output of the estimation methods discussed in 

Section 1, and 

2. in terms of Bayes posterior distributions  

based on the probability modeling. 

 

2.1  Modeling Measurement Response for a Mixture of Gases 

 

We continue with the one way random effects model for individual sample 

sensitivities introduced in Section 1.  There is then the question of how to model 

“responses” iq  for a gas mixture with a fraction f  of the gas of interest, on a day 0t  

when device sensitivity is 
0S tµ δ+ .  We will adopt a regression assumption and suppose 

that 

 0S t
i iq

f
µ δ

γ
+

= +    , (2.2) 

where the iγ  are iid ( )2N 0, γσ  independent of 
0t

δ  (and all tjε  and any tδ  with 0t t≠ ).  

(Note that we are assuming that the mean of the iq  depends on the daily deviation in 

sensitivity, but that the standard deviation is approximately constant in that deviation.) 

 

Notice then that under a scenario where both calibration runs and measurement of 

the mixture are made on a single day, the estimated sensitivity (2.1) is most naturally the 

ratio 

 
( )

0 0 0

0
0

S S

S
S

1
t t t

t
t

f f fDSX
q f

f

µ δ ε µ δ ε
µ δ γµ δ γ

+ + + +
= = =

+ ++ +
   . (2.3) 

So analysis of the precision of (2.1) can proceed through the analysis of the variance of 

(2.3), a function of the 3 independent random variables 
0
, ,  and tδ γ ε . 
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In a second case, where calibration runs come from days different from the one on 

which the measurements of the mixture are made, we suppose that Sµ̂  is independent of 

q , with mean Sµ  and standard deviation 
Sµ̂

σ .  Then the estimated sensitivity (2.1) is the 

ratio 

 
( ) 0

0

S S S

S
S

ˆ ˆ ˆ
1

t
t

fX
q f

f

µ µ µ
µ δ γµ δ γ

= = =
+ ++ +

   . (2.4) 

So analysis of the precision of (2.1) can proceed through the analysis of the variance of 

(2.4), a function of the 3 independent random variables 
0 Sˆ, ,  and tδ γ µ . 

 

2.2  Simple Standard Errors of Estimation of a Mole Fraction 

 

The well-known “propagation of error”/“delta method” approximation says that 

for independent random variables , ,  and U W Z  and a differentiable function g , 

 ( )
2 2 2

Var g , , Var Var Varg g gU W Z U W Z
u w z
∂ ∂ ∂     = + +     ∂ ∂ ∂     

 

where the partial derivatives are evaluated at ( )E , E , EU W Z .  Applying this first to (2.3) 
and recalling that all of 

0
, ,  and tδ γ ε  have mean 0, one has that 

 
( ) ( )

0

0

2 22
S 2 2

2 22 2
S S S

Var VarVar
EE

t

t

f f f f
f f

f m n qDS
γµ δ ε σσ ε γ

µ δ γ µ µ

  + +  ≈ + = +    + +     

 

and so a reasonable standard error for (2.3) is 

 
( ) ( )

22

2 2SE qDS
X

ssX
n qm DS

= +    , (2.5) 

where in the obvious way, qs  is the sample standard deviation of  1 2, , , nq q q… .  Note in 

passing that in (2.5) the sample coefficient of variation /qs q  can be computed as the 

sample coefficient of variation for values 1
Sˆ/i iX q µ− =  for any fixed estimate of device 

sensitivity Sµ̂ .  (This is potentially useful where the most natural way to report the result  
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of an individual measurement on an unknown is as an estimated mole fractions of the gas 

of interest, instead of as a value iq .) 

 

Then applying the delta method to (2.4) one has 

 
( )0

2 2 2 2
2 2S S S

22 2 2 2 2
S S S S S S

ˆ ˆ ˆVar Var VarVar
Et

ff f f
f n q

γ δ δσµ µ σ µ σγ
µ δ γ µ µ µ µ µ

  
≈ + + = + +     + +    

   . 

So assuming that (multiple day) calibration data has been processed (for example as in 

Section 1) to produce estimates 
SˆSˆ ˆ, ,  and SEδ µσ µ , a standard error for (2.4) is 

 
( )

S

2 22
ˆ

2
S S

SE ˆ
SE

ˆ ˆ
q

X

s
X

n q
µ δσ

µ µ
   

= + +   
  

   . (2.6) 

Comparison of (2.5) and (2.6) shows that the second standard error is inflated over the 

first by the addition under the square root of a squared coefficient of variation of the daily 

device sensitivities.  This accounts for the fact that the unknown is analyzed on a day 

different from those on which the calibration takes place. 

 

To illustrate the foregoing, consider the 6n =  measured Argon mole ratio values 

in Table 2.  These were obtained from a single mixture of gases on a single day, and we 

will assume that (consistent with the calculations in Section 1) an Argon sensitivity of 

Sˆ 29.63µ =  was used in the development of these values, 
Sˆ

SE .329µ = , and ˆ .493δσ = . 
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Table 2.  Estimated Argon Mole Fractions Collected on a Single Day 

Estimated Mole Fractions Sˆ
i

i

X
q
µ

=  and Their Reciprocals 1

Sˆ
i

i
qX
µ

− =  

.103        (9.709) 

.103        (9.709) 

.104        (9.615) 

.097        (10.309) 

.097        (10.309) 

.098        (10.204) 

S

1

S

S

ˆ

1 9.9759
ˆ 6

1 .1002

ˆ

.3308

i

q

q X

X
q

s
µ

µ

µ

− 
= = 

 

= =
 
 
 
=

∑

 

 

Applying formula (2.6) (and the fact that the sample coefficient of variation /qs q  can be 

computed as the sample coefficient of variation for values 1
Sˆ/i iX q µ− = ), we find that 

.1002X =  has standard error 

 

( )

S S

2
2 2

ˆ ˆ
2

S S

S

2 2 2

SE ˆ
SE

ˆ ˆ

ˆ

.329 1 .3308 .493       .1002
29.63 6 9.9759 29.63

       .1002 .0242
       .0024   .

q

X

s
X

qn

µ µ δσ
µ µ

µ

   
= + +   

    
 
 

     = + +     
     

=

=
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2.3  Bayesian Assessment of Precision of Estimation of a Mole Fraction 

 

The modeling assumptions adopted in this discussion provide a complete 

statistical model for the calibration data tjDS  and observations iq  on the unknown, this 

model having parameters 2 2 2
S , , , ,fδ γµ σ σ σ  (where in the analysis of an unknown, it is the 

parameter f  that is of most interest).  In theory, standard statistical tools of likelihood 

estimation could be applied to estimate f  and state a standard error of estimation (as an 

alternative to the sensible, but somewhat ad hoc adoption of X  and standard error (2.5) 

or (2.6) discussed in Section 2.2).  But the model is not a simple mixed linear model, and 

we presently do not see how to handle the estimation and assessment of precision from 

this point of view. 

 

On the other hand, using modern Bayesian software, it is straightforward to make 

a Bayes analysis and use a posterior distribution for f  to assess what the data tells one 

about an unknown mole fraction.  The following is an example of a summary of a 

WinBUGS session made using the data of Tables 1 and 2.  Notice that limits of the 

posterior 95% interval for f  indicated in bold are somewhat less optimistic (in terms of 

precision of determination), but roughly consistent with the cruder analysis presented in 

Section 2.2.  Under the modeling assumptions of Section 2.1 it seems that an estimated 

mole fraction of roughly .1003 can be thought of as good to within perhaps .0084± .  

 
list(sens=c(31.3,31.0,29.4,29.2,29.0,28.8,28.8,27.7,27.7,27.8,28.2,28.4,28.7,29.7,30.8,30.1,29.
9,32.5,32.2,31.9,30.2,30.2,29.5,30.8,30.5,28.4,28.5,28.8,28.8,30.6,31.0,31.7,29.8,29.6,29.0,28.
8,29.6,28.9,28.3,28.3,28.3,29.2,29.7,31.1),ind=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2
,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3,3,3),q=c(287.7,287.7,284.9,305.5,305.5,302.3),N=44) 
 
list(mu=c(30,30,30,30),tau=1,muS=0,taudelta=1,taugamma=1,f=.1) 
 
model; 
{ 
  for(i in 1:N) { 
     sens[i]~dnorm(mu[ind[i]],tau) 
  } 
  for(i in 1:4) { 
     mu[i]~dnorm(muS,taudelta) 
  } 
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  muq<-mu[4]/f 
  for(i in 1:6) { 
    q[i]~dnorm(muq,taugamma) 
  } 
  tau~dgamma(0.001,0.001) 
  sigma<-1/sqrt(tau) 
  muS~dnorm(0.0,1.0E-6) 
  taudelta~dgamma(0.001,0.001) 
  sigmadelta<-1/sqrt(taudelta) 
  taugamma~dgamma(0.001,0.001) 
  sigmagamma<-1/sqrt(taugamma) 
  f~dunif(0,1) 
} 
 
 node  mean  sd  MC error 2.5% median 97.5% start sample 
f 0.1005 0.004836 3.748E-5 0.09318 0.1003 0.1087 1100001 2500000 
mu[1] 29.38 0.2848 4.93E-4  28.8 29.4 29.91 1100001 2500000 
mu[2] 29.98 0.348 7.342E-4  29.36 29.96 30.68 1100001 2500000 
mu[3] 29.51 0.285 3.911E-4  28.91 29.52 30.04 1100001 2500000 
mu[4] 29.68 1.329 0.01101  27.72 29.63 31.85 1100001 2500000 
muS 29.64 0.7558 0.002962 28.61 29.62 30.73 1100001 2500000 
sigma 1.221 0.1397 1.165E-4  0.9832 1.208 1.53 1100001 2500000 
sigmadelta 0.6306 1.129 0.007227 0.03678 0.3939 2.664 1100001 2500000 
sigmagamma 11.66 4.917 0.004159 6.118 10.51 24.06 1100001 2500000 
 

3  Ongoing Measurement Process Monitoring 

 

It is important to monitor the performance of any measurement system to assure 

that it continues to function as expected over time.  Elementary statistical quality control 

techniques applied to the measurement process are helpful in this regard.  In the 

particular context of monitoring the performance of a mass spectrometer, we assume that 

samples of a fixed gas mixture (potentially a pure gas, but not necessarily so) are 

analyzed at regular time intervals, say tm specimens at period t , giving rise to ratios 

 tj
tj

tj tj

P Vq
A T R

 =  
 

 

or, equivalently, should the same fixed sensitivity value Sµ  be used for calculation at 

each period, the measured mole fractions 

 S
tj

tj

X
q
µ

=    . 
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In light of the day-to-day variation seen in even the calibration data of Table 1, it seems 

clear that a sensible process monitoring scheme in this context must allow for period-to-

period variation in the 's or 'stj tjq X  as legitimate/unavoidable.  The following suggestions 

are thus based on a one-way random effects model for any of these values. 

 

That is, let tjY  stand for or tj tjq X  (depending upon exactly what variable one 

wishes to use in ongoing process monitoring).  Assume (in a way analogous to what was 

done in Section 1) that tjY  may be decomposed as 

 tj t tjY µ τ η= + +    , 

where µ  is a fixed constant (the “true” mean of the variable being monitored), the (daily) 

deviations tτ  are iid ( )2N 0, τσ  random variables, independent of the (specimen 

deviations) tjη , that are iid ( )2N 0, ησ .  In what follows, we assume that values for the 

model parameters , ,  and τ ηµ σ σ  have been established.  This will almost always involve 

the analysis of values tjY  from days 1,2, ,t I= …  in the style of Section 1, leading to 

estimates that are subsequently employed as if they were parameter values. 

 

After establishing parameter values for the measurement process running in an 

acceptable fashion, the newm  observations 
newnew new 2 new , , ,i mY Y Y…  from a subsequent 

period can be summarized in terms of a mean newY  and a standard deviation news .  These 

can then be compared to “control limits” to ascertain whether they clearly indicate a 

change in the measurement process. 

 

A sample mean outside the control limits 

 
new new

2 2
2 2

new new

3   and  3Y YLCL UCL
m m

η η
τ τ

σ σ
µ σ µ σ= − + = + +  (3.1) 

or a sample standard deviation outside the control limits 

 
new new5 6  and  s sLCL B UCL Bη ησ σ= =  (3.2) 
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(for “control chart constants” 5 6and B B  chosen for sample size newm  from a standard 

table of such constants) indicate a change in the measurement process and the need for 

intervention of some sort.  The limits (3.1) monitor primarily for a change in mean Y  and 

secondarily for changes in day-to-day or within-day variation in Y .  The role of limits 

(3.2) is to monitor only for changes in within-day variation in Y . 

 

Consider two examples of the above development, the first where what is to be 

monitored are individual sensitivity values produced from pure gas specimens, and the 

second where what is to be monitored are estimated mole fractions for a particular gas in 

a fixed mixture of gases.  The data in Table 1 provide a basis for the first example. 

 

Table 1 contains data from only 3I =  periods/days.  Ideally, one would like to 

have data from 20I =  or more periods to estimate process parameters before setting up 

control charts for subsequent routine process monitoring.  However, for illustration 

purposes, we will simply use the (simple method-of-moments) estimates derived from 

limited data in Table 1 as if they had been derived from a more substantial data set.  That 

is, we consider monitoring Argon sensitivity values ( tj tjY DS=  in our earlier notation), 

based on an assumption that 

 S  pooledˆ ˆ29.63( ),  .493( ),  and 1.183( )DSsτ δ ηµ µ σ σ σ= = = = = =    . 

And for sake of illustration, suppose that a sample size of new 6m =  will be used in 

ongoing process monitoring.  (On a day when device performance is to be checked, 6 

pure Argon specimens will be run and corresponding sensitivities new new new j j jY q DS= =  

computed.)   

 

Then following from equations (3.1) are control limits 

 ( ) ( ) ( ) ( )
new new

2 2
2 21.183 1.183

29.63 3 .493   and  29.63 3 .493
6 6Y YLCL UCL= − + = + +    . 

These are limits of 29.63 2.07±  for a sample average Argon sensitivity on any single day 

(based on 6 specimens).  Since for sample size 6, 5 6.029 and 1.874B B= =  (see, for 
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example, Table A.1 page 509 of Vardeman and Jobe (1999)), following from equations 

(3.2) are control limits 

 ( ) ( )
new new

.029 1.183 .034  and  1.874 1.183 2.217s sLCL UCL= = = =  

for the sample standard deviation calculated from 6 Argon sensitivities computed on any 

single day. 

 

As a second example, consider the estimated mole fractions of Methane in a fixed 

gas mixture, collected on 6I =  different days recorded in Table 3.  (Once again, one 

would like to have on the order of 20 days’ worth of data to estimate parameters and set 

up control charts for ongoing measurement process monitoring, but these will suffice to 

illustrate the concepts and calculations.) 

 

Table 3. Estimated Methane Mole Fractions in a Fixed Gas Mixture Collected on 6 

Different Days  

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 

.4076 .4059 .3940 .3970 .3950 .4020

.4060 .4074 .4030 .4000 .3960 .4030

.4086 .4073 .4040 .4020 .3970 .4040

.4088  .4080 .3900 .3860 

  .4090 .3920 .3860 

  .4080 .3940 .3870 

  .3900 

  .3940 

1

1

1

4
.40775
.00128

m
Y
s

=

=
=

 
2

2

2

3
.40687
.00084

m
Y
s

=

=
=

 
3

3

3

6
.40433
.00561

m
Y
s

=

=
=

 
4

4

4

6
.39583
.00467

m
Y
s

=

=
=

 
5

5

5

8
.39138
.00466

m
Y
s

=

=
=

 
6

6

6

3
.40300
.00100

m
Y
s

=

=
=

 

 

Then using the simple method-of-moments estimators as in Section 1, we have 

 ( )1ˆ .40775 .40687 .40433 .39583 .39138 .40300 .40153
6

µ = + + + + + =    , 

and 
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 ( ) ( ) ( ) ( ) ( ) ( )

2
 pooled

2 2 2 2 2 2

ˆ

3 .00128 2 .00084 5 .00561 5 .00467 7 .00466 2 .00100
   

3 2 5 5 7 2
   .00422   ,

Ysησ =

+ + + + +
=

+ + + + +
=

 

and since 

 

( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

.40775 .40153 .40687 .40153 .40433 .40153 .39583 .40153 .39138 .40153 .40300 .40153

6 1
.00652   ,Ys − + − + − + − + − + −

−
= =

 

also 

 ( ) ( )2 2 1 1 1 1 1 1 1ˆ .00652 .00422 .00620
6 4 3 6 6 8 3τσ

  = − + + + + + =    
   . 

We proceed to use these as if they were process parameters and compute control limits 

for the sample mean and standard deviation of new 6m =  new estimated Methane mole 

fractions for this fixed gas mixture made on some future day. 

 

First, following from equations (3.1) are control limits 

( ) ( ) ( ) ( )
new new

2 2
2 2.00422 .00422

.40153 3 .00620   and  .40153 3 .00620    ,
6 6Y YLCL UCL= − + = + +

These are limits of .40153 .01930±  for a sample average Methane mole fraction on any 

single day (based on 6 specimens).  Then, following from equations (3.2) are control 

limits 

 ( ) ( )
new new

.029 .00422 .00012  and  1.874 .00422 .00791s sLCL UCL= = = =  

for the sample standard deviation calculated from 6 Methane mole fractions computed on 

any single day. 
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