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Abstract

In this paper, we consider three major types of nonparametric regression tests that are based
on kernel and local polynomial smoothing techniques. Their asymptotic power comparisons are
established systematically under the fixed and contiguous alternatives, and are also illustrated
through non-asymptotic investigations and finite-sample simulation studies.
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1 Introduction

An important application of nonparametric estimation technique is to checking the agreement be-
tween a proposed parametric model with the observed data. Suppose we have a sequence of indepen-
dent observations {(Xi, Yi), i = 1, . . . , n} coming from a population (X,Y ), in which the unknown
regression function m(x) = E(Y |X = x) is assumed to be smooth. To justify the use of a parametric
model, a specification test on the functional form of the regression is needed. Given a parametric
function g(x;θ), the null and alternative hypotheses can be described as

H0 : P{m(X) = g(X;θ0)} = 1, for some θ0 ∈ Θ, (1.1)

H1 : P{m(X) = g(X;θ)} < 1, for any θ ∈ Θ, (1.2)

where Θ denotes the parameter space.
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In applications it is often the case that many nonparametric regression tests, based on a similar
type of nonparametric estimation technique, are potentially applicable to the above model checking
problem. A question that arises naturally in the use of the kernel and local polynomial smoothing
methods, for example, is, for the same smoothing parameter, which test statistic will be more pow-
erful? While a careful study of such question could lead to a better understanding and more efficient
use of nonparametric tests, this issue has rarely been addressed in the literature and thus a compar-
ison is clearly needed. In this paper, the relative performance of three major types of nonparametric
tests will be compared from an asymptotic point of view and by means of a simulation study.

To facilitate presentation of these tests, we first introduce some notations. The pth degree local
polynomial regression estimates, β̂(x) = (β̂0(x), . . . , β̂p(x))T , are defined to be the minimizer of

n∑
i=1

{Yi − β0 − (Xi − x)β1 − · · · − (Xi − x)βp}2Kh(Xi − x)

with respect to (β0, . . . , βp)T , where h > 0 is known as the bandwidth, and K is called a kernel
function, usually taken to be a symmetric probability density function, with Kh(·) = K(·/h)/h.
Denote by m̂h(x) = β̂0(x) the local polynomial estimate of m(x); the kernel and local linear regression
estimates correspond to those of degrees p = 0 and p = 1 respectively. Let θ̂ denote a consistent
estimate of θ0, and ĝh(x; θ̂) a local polynomial regression estimate of g(x; θ̂), via locally regressing
g(Xi; θ̂) on Xi, i = 1, . . . , n. Define f̂h the kernel density estimate of the probability density function,
f , of the regressor variable X, according to f̂h(x) = n−1

∑n
i=1 Kh(Xi−x). Refer to Silverman (1986)

and Fan and Gijbels (1996) for more details of nonparametric smoothing methods. In the following,
we use πj, j = 1, 2, 3, to represent three positive weight functions.

Operationally, the Härdle and Mammen’s test (1993), T1n, to be defined in (2.1), is based on∫
{m̂h(x) − ĝh(x; θ̂)}2π1(x)dx, (1.3)

a Riemannian approximation of which was studied simultaneously by González-Manteiga and Cao
(1993). The Zheng’s test (1996) employs the statistic,

T2n = n−1
∑ ∑
1≤i�=j≤n

Kh(Xi − Xj){Yi − g(Xi; θ̂)}{Yj − g(Xj ; θ̂)}π2(Xi), (1.4)

whereas Dette (1999) and Fan, Zhang & Zhang (2001) build their tests from the statistic,

T3n =
n∑

i=1

{Yi − g(Xi; θ̂)}2π3(Xi) −
n∑

i=1

{Yi − m̂h(Xi)}2π3(Xi). (1.5)

(For a modified version of T3n, see also Azzalini and Bowman (1993).) These structurally distinct
test procedures are necessarily proposed from different criterions that aim at detecting the departure
of the alternative regression from the null hypothesis. Section 2 offers a preliminary comparison of
these criterions. The asymptotic power comparison is made in Section 3, and is evaluated through
finite-sample simulation studies in Section 4.
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2 Preliminary comparison

To gain insight into the structures of the three tests, we start with some familiar properties of
conditional expectation. Write ε0 = Y − g(X;θ0). Then E(ε0|X) = m(X) − g(X;θ0), which
equals zero (with probability one) if and only if the null hypothesis holds. Since θ0 is usually
unknown, a sample analogue of ε0 is given by Y − g(X; θ̂), and thus E(ε0|X) can be estimated by
m̂h(X) − ĝh(X; θ̂), which serves as a smoothed version of Y − g(X; θ̂).

We now examine the criterion under which each of the three tests is constructed. We obtain the
following observations.

(a) The test of Härdle and Mammen (1993) is based on C1 = E2(ε0|X)π1(X). Since E(C1) = 0
iff P{E(ε0|X) = 0} = 1 iff H0 holds, the further apart E(C1) deviates from zero, the stronger the
evidence is against the null hypothesis. Clearly, the sample analogue of E(C1) is formed by T1n/n,
where

T1n =
n∑

i=1

{m̂h(Xi) − ĝh(Xi; θ̂)}2π1(Xi); (2.1)

see Gonzáles-Manteiga and Cao (1993). The L2-version of (2.1) leads to (1.3).

(b) Analogously, the test of Zheng (1996) is based on C2 = ε0E(ε0|X)f(X)π2(X). Again,
E(C2) = E{E2(ε0|X)f(X)π2(X)} = 0 if and only if H0 holds. The sample version of E(C2) is

n−1
n∑

i=1

{Yi − g(Xi; θ̂)}{m̂h(Xi) − ĝh(Xi; θ̂)}f̂h(Xi)π2(Xi), (2.2)

which was introduced by Gozalo and Linton (2001) in the context of testing additivity and coincides
(up to an additive term) with the statistic T2n/n in (1.4), when the kernel regression method is used.

(c) By a similar analysis, the test statistic T3n is based on C3 = [ε2
0 −{ε0 −E(ε0|X)}2]π3(X). It

is easily seen that

E(C3) = E{[2ε0E(ε0|X) − E2(ε0|X)]π3(X)} = E{E2(ε0|X)π3(X)}, (2.3)

which is identical to zero if and only if the null hypothesis H0 holds. The sample version of E(C3) is

n−1
n∑

i=1

({Yi − g(Xi; θ̂)}2 − [{Yi − g(Xi; θ̂)} − {m̂h(Xi) − ĝh(Xi; θ̂)}]2)π3(Xi)

= n−1
n∑

i=1

[{Yi − g(Xi; θ̂)}2 − {Yi − m̂h(Xi) − g(Xi; θ̂) + ĝh(Xi; θ̂)}2]π3(Xi). (2.4)

Note that (2.4) exactly agrees with T3n/n, when g(Xi; θ̂) = ĝh(Xi; θ̂), for i = 1, . . . , n. This condition
is met, if, for instance, g(x;θ) is a qth degree polynomial function of x, and a pth (p ≥ q) degree
local polynomial regression method is used to obtain estimates ĝh(Xi; θ̂).

To confine our discussion to the relevant testing procedures themselves, we shall deal with a
situation, in which π1 ≡ π2f ≡ π3 ≡ c for a constant c > 0. This leads to C1 = c[E2(ε0|X)],
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C2 = c[ε0E(ε0|X)], and C3 = c[ε2
0 − {ε0 − E(ε0|X)}2] = c[2ε0E(ε0|X) − E2(ε0|X)]. It is then

straightforward to check that

E(C1) = E(C2) = E(C3) = c[E{E2(ε0|X)}]. (2.5)

However, the variabilities of Cj, j = 1, 2, 3, are no longer identical, as shown in Lemma 1.

Lemma 1 If π1 ≡ π2f ≡ π3 ≡ c, then var(C1) ≤ var(C2) ≤ var(C3).

Proof. From (2.5), we only need to verify that E(C2
1 ) ≤ E(C2

2 ) ≤ E(C2
3 ). These inequalities follow

directly from the identities,

E(C2
1 ) = c2 E{E4(ε0|X)} = c2 E{E2(ε0|X)E2(ε0|X)},

E(C2
2 ) = c2 E{ε2

0E
2(ε0|X)} = c2 E{E(ε2

0|X)E2(ε0|X)},
E(C2

3 ) = c2 E{4ε2
0E

2(ε0|X) − 4ε0E
3(ε0|X) + E4(ε0|X)}

= c2 E{4E(ε2
0|X)E2(ε0|X) − 3E4(ε0|X)}

= c2 E[{4E(ε2
0|X) − 3E2(ε0|X)}E2(ε0|X)],

and the inequality, E2(ε0|X) ≤ E(ε2
0|X). �

Roughly speaking, since Tjn/n mimics Cj, j = 1, 2, 3, we would expect from the discussions
(a)–(c) that the preceding mean and variance relations between Cj carry over to those between Tjn.
An intuitive implication of Lemma 1 is that T1n will be more powerful than T2n, which has power
greater than T3n. More rigorous comparison with respect to powers will be addressed in the next
section.

3 Asymptotic comparison

The asymptotic distributions of the three tests (defined in (2.1), (1.4), and (1.5) respectively), under
the null hypothesis, the fixed alternative, and the local alternative, will be presented in Theorems
1–4. They summarize and extend the research results in the aforementioned literature, and thus we
omit the technical details to save space. In each case, the local linear method is used for estimating
the functional form of the regression function.

3.1 Asymptotic null distribution

Denote by L−→ and P→ convergence in distribution and in probability, respectively. The following
Condition (A) is a listing of assumptions:
(A1) K is a symmetric probability density function, having a compact support.
(A2) K is continuously differentiable.
(A3) f has compact support Ω.
(A4) f is continuously differentiable on Ω, and f > 0 on Ω.
(A5) m has compact support Ω.
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(A6) m is twice continuously differentiable.
(A7) The functions σ2(x) = var(Y |X = x), and πj(x), j = 1, 2, 3, are continuous on Ω.
(A8) g(x;θ) is a twice continuously differentiable real function on Θ for each x.
(A9) θ̂ is a

√
n-consistent estimator of θ0.

We first obtain in Theorem 1 the asymptotic normal distributions of the three tests under the
null hypothesis.

Theorem 1 Assume that Condition (A) and the null hypothesis H0 hold. Then as n → ∞, h → 0
and nh → ∞,

h1/2{T1n − h−1b1 − (nh2)−1c1}
σ1

L−→ N(0, 1), (3.1)

h1/2T2n

σ2

L−→ N(0, 1). (3.2)

For T3n, suppose either (a) n → ∞, h → 0, nh → ∞, and nh9/2 → 0, if H0 denotes a nonlinear
parametric model, or (b) n → ∞, h → 0, nh → ∞, if H0 denotes a linear parametric model, then

h1/2{T3n − h−1b3 − (nh2)−1c3}
σ3

L−→ N(0, 1), (3.3)

where

b1 = K ∗ K(0)
∫

σ2(x)π1(x)dx, b3 = (2K − K ∗ K)(0)
∫

σ2(x)π3(x)dx,

c1 = K2(0)E{σ2(X)π1(X)/f2(X)}, c3 = −K2(0)E{σ2(X)π3(X)/f2(X)},
σ2

1 = 2‖K ∗ K‖2
2

∫
{σ2(x)}2π2

1(x)dx, σ2
2 = 2‖K‖2

2

∫
{σ2(x)}2π2

2(x)f2(x)dx,

σ2
3 = 2‖2K − K ∗ K‖2

2

∫
{σ2(x)}2π2

3(x)dx,

the symbol ∗ denotes the convolution operator, and ‖·‖2 denotes the L2 norm with respect to Lebesgue
measure.

3.2 Asymptotic distribution under fixed alternatives

Theorem 2 below demonstrates that each of the three tests is consistent against all fixed deviations
from the parametric null model.

Theorem 2 Assume that Condition (A) and the fixed alternative H1 hold. Then as n → ∞, h → 0
and nh → ∞,

n−1T1n
P→ ∆1 = E[{m(X) − g(X;θ0)}2π1(X)] > 0, (3.4)

n−1T2n
P→ ∆2 = E[{m(X) − g(X;θ0)}2π2(X)f(X)] > 0, (3.5)

n−1T3n
P→ ∆3 = E[{m(X) − g(X;θ0)}2π3(X)] > 0. (3.6)
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The results of Theorem 2 indicate that under the fixed alternative H1,

h1/2{T1n − h−1b1 − (nh2)−1c1}
σ1

=
nh1/2[∆1{1 + oP (1)} − (nh)−1b1 − (nh)−2c1]

σ1

P→ +∞,

h1/2T2n

σ2
=

nh1/2[∆2{1 + oP (1)}]
σ2

P→ +∞,

h1/2{T3n − h−1b3 − (nh2)−1c3}
σ3

=
nh1/2[∆3{1 + oP (1)} − (nh)−1b3 − (nh)−2c3]

σ3

P→ +∞.

Hence, nh1/2 stands for the common rate at which the standardized test statistics of Tjn, j =
1, 2, 3, diverge to infinity in probability. Furthermore, the proportionality constants, assuming π1 ≡
π2f ≡ π3, i.e., ∆1 = ∆2 = ∆3, depend inversely on the asymptotic variances σj; Section 3.4
contains numerical information of σj . Our next result gives the asymptotic distribution under a
fixed alternative and is a refinement of Theorems 2 and 4. The proofs are similar to those in Dette
(1999) and therefore omitted.

Theorem 3 If the assumptions of Theorem 2 are satisfied, then

1√
n

(Tjn − h−1bj − n∆j)
L−→ N(0, τ2

j ), j = 1, 2, 3,

where b1, b3 are defined in Theorem 1, b2 = 0, ∆1,∆2,∆3 are given in Theorem 2 and the asymptotic
variances are obtained as

τ2
1 = 4E[σ2(X){(∆π1)(X) − P (∆π1)(X)}2] + var[(∆π1)2(X)], (3.7)

τ2
2 = 4E[σ2(X){(∆π2f)(X) − P (∆π2f)(X)}2] (3.8)

+4var[(∆π2)(X){(∆π2f)(X) − P (∆π2f)(X)}],
τ2
3 = 4E[σ2(X)(∆π3)2(X)] + var[(∆π3)2(X)]. (3.9)

Here
P (m)(X) = g(X;θ∗

0)

with θ∗
0 = argmin�E[{m(X)−g(X;θ)}2] is the parameter corresponding to the best L2-approximation

of the function m by functions of the form g(·;θ), ∆ = m − P (m) is the difference between m and
the best approximation.

3.3 Asymptotic distribution under contiguous alternatives

Consider a sequence of local alternatives, defined by

H1n : m(x) = g(x;θ0) + δn · l(x), (3.10)

where δn = (nh1/2)−1/2 and l(x) is twice continuously differentiable on Ω. The following theorem
gives the asymptotic distributions of the three tests under the local alternatives H1n.
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Theorem 4 Assume that Condition (A) and the local alternatives H1n hold. Then under the same
conditions on n and h as given in Theorem 1,

h1/2{T1n − h−1b1 − (nh2)−1c1}
σ1

L−→ N(e1/σ1, 1), (3.11)

h1/2T2n

σ2

L−→ N(e2/σ2, 1), (3.12)

h1/2{T3n − h−1b3 − (nh2)−1c3}
σ3

L−→ N(e3/σ3, 1), (3.13)

where e1 = E{l2(X)π1(X)}, e2 = E{l2(X)π2(X)f(X)}, and e3 = E{l2(X)π3(X)}.

The results of Theorems 1 and 4 indicate that, all three tests have some powers detecting local
alternative approaching the null at rate (nh1/2)−1/2. A simple calculation shows that the asymptotic
power of Tjn against local misspecifications (3.10) equals

Φ(ej/σj − z1−α), j = 1, 2, 3,

where Φ and z1−α denote the cumulative distribution function and the 1−α quantile of the standard
normal distribution. Again assuming π1 = π2f = π3, the local power of Tjn is inversely proportional
to σj .

3.4 Relative Efficiency

From a local asymptotic point of view, it follows from Theorems 1 and 4 that we only need to
compare the magnitude of σj or, equivalently, the L2-norm of a kernel-dependent function, which
uniquely characterizes the underlying test procedure. The norm comparison is provided in Lemma
2. Its proof can be found in Dette and von Lieres und Wilkau (2001).

Lemma 2 If K is a probability density function, then

‖K ∗ K‖2 ≤ ‖K‖2 ≤ ‖2K − K ∗ K‖2.

Thus, if we assume π1 ≡ π2f ≡ π3, ignore the bias and use an identical bandwidth h for all three
tests, then a test based on the statistic T2n is more powerful, from a local asymptotic point of view,
than T3n, but is less powerful than T1n. The conclusion of this study lends further support to the
interpretation in Section 2. On the other hand, this conclusion may not be substantiated in general,
if different tests use distinct bandwidths, or if π1 
= π2f 
= π3. Our results can be used to evaluate
the performance of other nonparametric tests based on kernel and local polynomial smoothing.

In many practical applications, the multiweight kernel functions, of the form below, are commonly
used:

1
Beta(1/2, � + 1)

(1 − t2)�I(|t| ≤ 1), � = 0, 1, . . . .

Table 1 summarizes the values of the L2-norms for the Epanechnikov kernel (� = 1), biweight kernel
(� = 2), and triweight kernel (� = 3). We see that the differences in the asymptotic variances caused
by the different test statistics can be substantial.
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Table 1: L2-norm Comparison of Kernel-Dependent Functions

Kernel ‖K ∗ K‖2
2 ‖K‖2

2 ‖2K − K ∗ K‖2
2

Epanechnikov 0.4338 0.6000 0.8510
Biweight 0.5164 0.7143 1.0066
Triweight 0.5879 0.8159 1.1528

We now compare the different tests under fixed alternatives by an application of Theorem 3. It
is easy to see that the power function of the test based on the statistic Tjn is approximately equal to

P (“rejection”) ≈ Φ
(√

n
∆j

τj
− σj

τj

z1−α√
nh

)
, j = 1, 2, 3, (3.14)

and is therefore increasing with the expression ∆j/τj . These ratios depend on certain features of
the model in a complicated manner and therefore a comparison of the kernel-based tests is more
difficult, even in the case π1 ≡ π2f ≡ π3. Nevertheless, the formula (3.14) can be used to obtain a
qualitative impression of the tests with respect to particular alternatives and we will illustrate this
in the following section.

4 Simulations

In this section, we present simulation studies to illustrate the extent to which the forgoing asymptotic
results on power comparison are reflected in finite-samples. The independent data {(Xi, Yi)ni=1} are
generated as follows from a nonparametric regression model:

Y = m(X) + ε, (4.1)

in which the regressor X is independent of the noise ε ∼ N(0, 1), and three choices of m(x) are
considered:

Example 1: m(x) = 1 + 2(4x − 2) + θ(4x − 2)2, θ ≥ 0.

Example 2: m(x) = 1 + cos{θ(4x − 2)π}, θ ≥ 0.

Example 3: m(x) = 1 + 2(4x − 2) + θ(4x − 2)2 + cos{θ(4x − 2)π}, θ ≥ 0.

The null hypothesis we want to test is that a linear model is correct. In each example, θ = 0
corresponds the null regression model from which data are simulated. At the nominal 5% significance
level, the critical values of Tjn are estimated from the 95th sample percentiles of the corresponding
test statistics among 400 random samples, and the powers are approximated by the rejection rates
among 400 random samples. For simplicity, the weight functions are set to be π1 = π2 = π3 ≡ 1.

[ Put Figures 1–3 about here ]
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The power comparisons are displayed in Figures 1–3. Three types of design densities f are
treated: U(0, 1) in Figure 1, Beta(2, 3) in Figure 2, and N(0, σ) with σ = 1/3 in Figure 3. Sample
sizes consist of n = 100 and n = 400. In each panel, the non-stochastic bandwidth h for the local
linear method is chosen according to the empirical formula

h = 1.5 × std(X) × n−2/9;

for ease of computations, the Epanechnikov kernel is used.

We first inspect Figure 1, in which the uniform design, satisfying π1 = π2f = π3, is ideal for the
comparison of powers under local alternatives. Example 1 demonstrates the test based on T1n clearly
outperforms the tests based on T2n and T3n; this observation agrees with our asymptotic study in
Section 3. It is also seen in Examples 2–3 that the relative behaviours of the three tests alternate as
the alternatives contain higher-frequency components, leading to less-smooth alternatives.

For Figures 2–3, we do not have π1 = π2f = π3, and the normal designs do not fullfill condition
(A3). Therefore, the conclusions based on Figure 1 may not necessarily hold for Figures 2–3; see
discussions in the paragraph following Lemma 2. However, if T2n is modified from (2.2) to be

T2n =
n∑

i=1

{Yi − g(Xi; θ̂)}{m̂h(Xi) − ĝh(Xi; θ̂)}π2(Xi),

where the local linear method is used for the term m̂h(Xi) − ĝh(Xi; θ̂), then our simulations reveal
that the power plots of Tjn, j = 1, 2, 3, in Figures 2–3, are similar to those in Figure 1.

We finally illustrate the application of formula (3.14) to obtain a qualitative picture for the power
function of the three tests. For this we consider the situation in Figure 1, where X ∼ U [0, 1]. In
Figure 4 we display the approximation of the power function obtained by formula (3.14) for the three
examples, where the sample size was chosen as n = 100. We find a good qualitative agreement with
the picture obtained in the simulations. For example, we observe from Figure 4 that in Example 1
the power function is increasing, where the test based on T1n yields the best results. This reflects the
observations from the simulation study. Similarly, in Example 3 Figure 4 indicates some problems
of the tests to detect alternatives with θ = 0.25, which was also observed in our simulation study.
The situation in Example 2 is not so clear, because the asymptotic theory suggests that the power
for n = 100 is close to one, even for large values of θ. Nevertheless the oscillating behaviour of the
power function of all tests in this example for larger values of θ is clearly reflected by the asymptotic
result. These examples indicate that the asymptotic results under fixed alternatives are useful to
obtain a qualitative picture for the power of the tests with respect to particular alternatives without
performing an extensive simulation study.

[ Put Figure 4 about here ]
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Figure 1: Simulated power curves of three test statistics for linearity, when observations of (X,Y )
are simulated from (4.1) and X ∼ U(0, 1). Solid curve: the T1n test; dashed curve: the T2n test;
dotted curve: the T3n test. The bottom dash-dotted line denotes the nominal 5% significance level.
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Figure 2: The captions are similar to those of Figure 1, except X ∼ Beta(2, 3).
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Figure 3: The captions are similar to those of Figure 1, except X ∼ N(0, 1/3).
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Figure 4: Qualitative behaviour of the power functions obtained from the approximation (3.14) in
the situation considered in Figure 1.
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