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Summary

In this paper, we have presented the second level nesting of Bonney's disposition model
(Bonney, 1998) and examined the implications of higher level nesting of the disposition
model in relation to the dimension of the parameter space. We have aso compared the
performance of the disposition model with Cox’s regression model (Cox, 1972). It has been
observed that the disposition model has a very large number of unknown parameters, and is
therefore limited by the method of estimation used. In the case of the maximum likelihood
method, reasonable estimates are obtained if the number of parametersin the model is at most
nine. This corresponds to about four to seven covariates. Since each covariate in Cox’s model
provides a parameter, it is possible to include more covariates in the regression analysis. On
the other hand, as opposed to Cox’s model, the disposition model is fitted with parameters to
capture aggregation in families, if there should be any. The choice of a particular model

should therefore depend on the available data set and the purpose of the statistical analysis.
Key words: Second level nesting; Proportional hazards model; Quadratic exponential form;

Partial likelihood; Familial aggregation; Second-order methods; Marginal

models; Conditional models.

1 Introduction

The outcomes of family members are correlated because they share common risks. Thus

standard methods of epidemiology, which assume independence of outcomes, are unsuitable
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for the analysis of family data. Many models have been proposed to incorporate dependence
within families. Cox (1972) reviewed several methods that had been proposed for the analysis
of multivariate binary data and outlined some new proposals. He suggested the use of logistic
representations, in which the joint response probability is a quadratic exponentia form, as the
simplest, most flexible, and in many ways the most important models. In the paper ‘Partidl
likelihood’, Cox (1975) gave a definition of partia likelihood which generalises the ideas of
conditional and marginal likelihood. Here, he transformed the random variable Y into a

sequence {X;,S;}, | =1,...,m, and decomposed the full likelihood of the sequence into two
products, the second product being the partial likelihood based on Sin the sequence {X,S;} .
He pointed out that the partial likelihood is especialy useful when it is appreciably simpler

than the full likelihood. This is the situation when constructive procedures for finding useful
partial likelihoods are provided, so that the partial likelihood involves only the parameters of
interest and not nuisance parameters. To support this point, he made mention of the failure of
the method of maximum likelihood as a genera technique, especially in the sampling theory
and pure likelihood approaches, due to excessive nuisance parameters, and hence the need to
reduce dimensions. Care should however be taken to ensure that all or nearly all the relevant
information is contained in the partial likelihood.

Connolly and Liang (1988) introduced the conditional logistic regression models for
correlated binary data which are most useful when the dependence among observations is of
main interest (such as in family data). Although the estimating functions are easily computed
and have high efficiency compared to the computationally intensive maximum likelihood
approach, more work is needed to determine the form of the weights used for the estimating
functions U(j3,0) . Zhao and Prentice (1990) reparameterised probability distribution of the
model advocated by Cox (1972) in terms of marginal parameters of ready interpretation.
Since this approach yields models with very complicated marginal response probabilities and
pairwise correlations, they suggested the transformations of the canonical parameters
0,,A,), k =1,..K, to response means (n, =u,(B)) and covariances (o, =o,(B,2)),
where B and o are parameter vectors. Scoring estimating functions can then be used to
evaluate mean and correlation parameters under the quadratic exponential family. Liang,
Zeger and Qagish (1992) presented a model for correlated binary data, in which the marginal
expectation of each binary variable as well as the association between pairs of outcomes are

modelled separately in terms of explanatory variables. With examples, they described some



drawbacks of conditional models, especially in situations where observations are missing or
cluster sizes differ. On the other hand, the marginal model is reproducible, since the margina
distribution of any proper subset (Y,,...,Y,) isof the same form. Hence the situation where a
subset of the cluster (Y,,...,Y,) is missing causes no problem. Carey, Zeger and Diggle
(1993) proposed the use of odds ratios to measure association among responses. The
approach, which alternates between two steps, estimates the association parameters by
modelling the conditional distributions of one response given another. The alternating logistic
regression avoids the computational burdens encountered in many problems, and its estimates
are reasonably efficient relative to solutions of second-order methods. Odai et a. (2002)
discussed the use of the correlated Weibull regression model for the analysis of multivariate
binary data. The results have shown that the model provides feasible means of analysing

family data.

In this paper, the implications of higher level nesting in relation to the dimension of the
parameter space are examined. Since in real life, levels of nesting higher than two serve no
practical purpose, we will limit our work to second level nesting. Section 2 briefly reviews
Cox’s regresson model (Cox, 1972) for the anaysis of failure data when explanatory
variables are available. Section 3 contains a detailed treatment of the second level nesting of
the disposition model. The estimation procedure will be described in Section 4. The method is
illustrated with breast cancer datain Section 5, and is followed by discussion.

2  Cox’s regression model

The Cox model (also known as the proportional hazards model) is a model that can be used

for the analysis of failure data when explanatory variables are avail able.



2.1 Themode

Let h(t;x) be the hazard rate at time t for an individual with risk vector x' = (Xg5ee0n X)) -

Cox (1972) specified his model asfollows:
h(t; x) = h, (t) exp(B"x) (2.L1)

where h,(t) is an arbitrary baseline hazard rate and B’ = (By,--B,) isavector of unknown

parameters.

The above model is often called a proportional hazards model because, the ratio of the hazard

rates of two individuals with covariate values x and x' can be expressed as

h(t;x) S L
m—@(p[;ﬁk(xk Xk):|’ (21.2)

which is a constant (see, for example, Klein and Moeschberger, 1997). This indicates that the
hazard rates are proportional. The quantity (2.1.2), called the relative risk (hazard ratio), gives
the factor by which the risk of an individual with covariate X is increased in comparison to an

individual with risk factor x'.

2.2 Parameter estimation

In order to estimate the parameters in Cox’ s model with the maximum likelihood method, the

baseline hazard, h,(t), must be specified. To deal with this situation, Cox exploited the



definition of partia likelihood. Specifically, he considered the baseline hazard, h,(t), as a

nuisance parameter function and concentrated mainly on the regression parameters.

Let t, <t, <..<t, denote the ordered event times and define the risk set at time t,,
R(t;), i=1..,n, asthe set of al individuals who are still under study at atime just prior to

t; . Further, let x; denote the value of x for the jth individual, and x, the value for the

ON

individual failing at time t,,, i =1...,n. Then, Cox (1972) gave the partia likelihood based

(UM

on the hazard function specified by (2.1.1) as

_ 2 eXp(BTX(i))
L(B)—li;[ S epBTx ) (2.2.1)

EeR(tGiy)

It should be noted that the numerator of the likelihood in (2.2.1) depends only on information
from the individual who experiences the event, whereas the denominator utilises information
about al individuals who have not yet experienced the event (Klein and Moeschberger,
1997).

Direct calculation from the log-likelihood gives the score equation

X exppTx))

UP) = izzljxm —21: jER(gexp(BTx.) , (2.2.2)

EeR(tgy)

from which we obtain the Hessian matrix



XXX exp(BTx)

HB) = A, BAL B) - ()Z I (2.2.3)
EeR(tgy) :
X exp(BTX;)
where A ,, = =50 . =1..,
exp(B7x,)
J-GRZ(I;)) B

The Fisher information matrix is given by

CoxxpexpTx) | XX exp(Tx;) | D x| exp(Bx))

I(B) _ ieR (L) _ ieR(ty) ER(t(y) ’ (224)
21: D exp(BTx)) 21: D exp(BTx;) D exp(Bx;)
ieR(ty) EeR(t(y) ieR(ty)

(Klein and Moeschberger, 1997). Cox (1975) has shown that the usual maximum likelihood
properties hold for estimates and tests based on partial likelihoods.

3  Second level nesting

Consider a binary outcome Y = 1 or 0, with g, primary-group-specific covariates (i.e.,
cluster-specific covariates), Z; = (Zo1sZoq,) » O SECONdary-group-specific covariates (i.e.,
subgroup-specific covariates), Z! =(Zyy 2y ), 1=1..,m, q; tertiary-group-specific

covariates, ZJ:(Zijl,...,Zijq”), i=1...m, j=L1..n, and p unit-specific covariates,



X = Kijppreer Xijrp)» i =Leeom, j=1..,n,, h=1..n;, measured on severa units. Four

i
types of dispositions are considered here: the group (cluster) disposition, 8,, which is
determined by the group-specific covariates, Z,, the subgroup disposition, §,, i=1,...,m,
which is determined by the group-specific covariates, Z,, and the subgroup-specific
covariates, Z;, i=1..,m, the tertiary-group disposition, &;, which is determined by the
primary-group-specific covariates, Z,, the secondary-group-specific covariates, Z,, and the
tertiary-group-specific covariates, Z;, and the unit disposition, 8, i =1...m, j=1..,n;,
h=1..,n;, which is determined by the primary-group-specific covariates, Z,, the
secondary-group-specific covariates, Z;, the tertiary-group-specific covariates, Z;, and the

unit-specific covariates, X, , i=1...,m, j=1..,n;, h=1..,n;.

We define 6,, &, and 6; asfollows:

§,= "2, (31)
aO
5 =M (32)
o
i=1..m,and
5, =L (33
o

i=1..m, j=1..n, where u, is the primary group baseline disposition under no

aggregation, p, isthe secondary group baseline disposition under no aggregation,

u; is the tertiary group baseline disposition under no aggregation, o, is the relaive

disposition with respect to the primary group, o, isthe relative disposition with respect to the

secondary group and o; isthe relative disposition with respect to the tertiary group.



Thelogit of the unit disposition is decomposed as

8ijh

1-s Mo(zo) + Do(zo) + Mi(zi) + Di(Zi) + Mij(zij) + Dij(zij) +Wijh(Xijh)

=0y, (3.4

i=1...m, j=1..,n, h:],...,n".,where

M (Zo) =log — — Ho (3.5)

Mo

isthe cluster logit mean risk,

d u
Do(Z,) =log—2— -1 0 36
0(Z,) 0 s, %9, (3.6)

is the excess cluster logit disposition due to dependence among members of the group,

W, 9,
—lo , 3.7
T 97 5 (3.7)

M, (Z,) =log

i =1...,m, is the excess on the logit scale of the mean risk in secondary group i above that

due to the cluster disposition,



0. .
D (Z)=I ——| — 3.8
(@) =log >~ log 39

i =1,...,m, isthe excess on the logit scale of the secondary group i disposition that cannot be

explained by the overall primary group disposition and the differencesin u,,

Mi' 8i
M, (Z;)=log " —~log_ -, (39)

ij i

i=1..m, j=1..,n,, isthe excess on the logit scale of the mean risk in the tertiary group j

above that due to the secondary group disposition,

D (Z)=log- > _log Mi (3.10)
Y 1- 6ij 1-u;

i=1..m, j=1..,n,, is the excess on the logit scale of the tertiary group disposition that
cannot be explained by the overal cluster disposition, the subgroup disposition and the

differencesin p;, and

Wi, (Xin) (3.11)

i=1..m, j=1..n, h=1..n,,isafunction of the unit-specific covariates.

ij



From (3.5)-(3.10), we have

1 1
= LMyl T T ep{ My (Zg) + Dy (Zo)]} |

Wo

! i=1...m

M= 1+exp{-[M,(Z,) + Do(Z,) + M, (Z))]} !

1 .
o, = ,1=1....m
1+ exp{—[M o(zo) + Do(zo) +M i (Zi) + Di (Z|)]}

1
" 1+ exp{-[M(Zo) + Do(Z,) + M, (Z) + D, (Z) + M, (Z)I}

W
i=1..,m, j=1..,n,, and

B 1
1 T (M, (Z,) + Dy (Z9) + M, (Z) +D,(Z) + M, (Z,)+D, )}

i=1..m, j=1..n. (3.12)

Hence,

o, = Ko _ 1+ exp{{M,(Z,) + Do (Z,)]} , (3.13)

8o 1+ eXp{_[Mo(Zo)]}

a _ B 1+exp{-[M,(Z,) + Do(Z,) + M (Z;) + D (Z)]} , (3.14)
S 1+ exp{-{M,(Z,) + Do (Z,) + M, (Z)]}

_ K _l+exp{_[M0(ZO)+DO(ZO)+Mi(zi)+Di(Zi)+Mij(Zij)+Dij(zij)]}
M8, T 1rexp{-[Mo(Zo)+ Do(Zo)+ M (Z,)+ D, (Z)) + M, (Z,)]}

1
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i=L1...m, j=1..,n,
and

1
8ijh PR
1+ exp{-0;,}

1

(3.15)

) 1+ exp{-[M o(zo) + Do(zo) +M, (Zi)+ D, (Zi)+ Mij (Zij)+ Dij (Zij)+Wijh (Xijh )1} ,

i=L1...m, j=1..,n, h:],...,n"..

Thejoint probability for acluster is

m N N

P(Yi1 = Yaggseeos Ymninijh = ymninijh) =(1- 0‘0)1—[1—[1—[ - yijh)

i=1 j=1 h=1

N ni

+ 0‘of[{(l_ o )Hﬂ A-Yyin) + o H{(l_ O )lj”[ (- VYin)

j=1 h=1 j=1

oy 1:! aziﬁh - 8ijh )Hlijh }} .

The following parameterisations are considered:
M o(zo) = &00 + §01201+---+§0q020q0 1
Do(Zo) =Yoo * Yoo t--+Y 0a, Z 0, *

M, (Zi) = élzil +'"+2.>qziqi )

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

11



D.(Z)) :ylzi1+...+quiqi, (3.21)

M ij (Zij) = ‘tanzijl +..+ E.!lqzijqij ) (3-22)
i=1...m, j=1..n,, and

D; (Zij) =Yulp+.t quzijqij , (3.23)

i=L1...m, j=1..,n,.

The set of parameters to be determined in the model is therefore

A= 7.B)= (&00"--"20% 'E.!l""'E.!qi ’E.'ll""'Equij Y001+ Vogy 1 Yoo Vg 1 Yiaseens Vg, ’Bl""’Bp) :

4  Parameter estimation for the second level nesting

Denote the likelihood functionin (3.17) by L, (A |y), k=1,...,K:

L (Aly) = (l_ao)ﬁﬂﬁ(l_yijh) + ol
- ﬂnﬂ(l_yijh) + 0| Ly _f[ljﬂ(l_ Yin) | (4.1)

N

where L, = ﬁl-i » L =(1_ai)lﬂ[ﬁ(l_yijh)+aiLnj’ Lo :HL]"
i-1

=l h=1 =1

L ={-o4 )H @=Yin) + ol Loy = H Ly, Ly =85 @-38y, )" and
h=1 h=1

1
Sijh B 1+ exp{-[M o(zo) + Do(zo) +M, (Zi )+ D; (Zi )+ M ij (Zij)+ Dij (Zij)+ Wijh (X ijh)]} ’

12



Wijh(X”.h):(1—exp([31Xijh1+...+BpXijhp)), i=1...m, j=1..,.n, h:],...,n"..

The corresponding score function is

U ly) = AcMag + Bk(l){i Ui} , (4.2)

i=1

. 8 8
k=1..,K,where o, =—(1- so)aDo(zo) +8,(1- (xo)aMo(Zo) :

O{‘Ol‘ni

| L —ﬂﬂﬁ(l_yijh)}
i i h ,k:l,...,K,Bk(h)z—’k:l”"K’

A ()=
() L L.

ULly)=A W +Bi(x){n2uj] i=1..m,

i
=1

o =—(1—5i)%Di(Zi) + 6i(1—oci)%[Mo(Zo)+ Do(Z,) +M,(Z)], i=1..,m,

erj _HH(l_ yijh)
j=1 h=1

} . Bk—aiL“‘ o
L ,1=1...,m, i( )—L—,I—L...,m,

o{
AiO\‘):

n:

U, y)=A, (Mo +Bj(x){iuh}, j=1...n,,

h=1

. )
oy = - (1_8ij)§Dij (Zij)

K

+ 8ij (1-oy) o

{IMy(Z,) + Do (Z,) + M (Z)) + Di(Zi)+Mij(Zij)]} )

n;

th _H(l_ yijh)

o
A M) =

h= :I . aijth .
C , J=1...,n,, Bj(k):L—, j=L1..,n

j j

13



U,(Ay) = (yijh - 8ijh)ei(jlr3

:(yijh |Jh) [Mo(zo)+D (Z,)+M,(Z))+D,(Z))+ M, (Zij)+Dij(Zij)+Wijh(Xijh)]

0
5. —My(Z,)
)
6_Y0D0(Zo)
o
&M@

)

= (yijh _6ijh) EDi (Z) | = (yijh _Sijh)

) i

—M. (Z

6(53” u( u) i

.

i Dij (Zij) - Xijh eXp(B Xijh)
8Yij
)

B

- o o

N N N N N

WI] (X ij )

2y =120 ZgriZog) 20 =(ZynZig) . Zj =(ZjpnZyg) . BT =(ByrBy)  and

X = Kijpgren Xijp)» 1 =Lem, j=1..,n;, h=1..,n,.

The Hessian matrix is given by

m n; Nj m 0 N

m HHH(J-_ yijh) HHH(J-_ yijh) m m T
H, () = Bk[z Hi(x)} S A0l +-E B, (1- oco)[z ui}[z ui}

i=1 k k i=1

m n N

HHH(l Yin) { "

m T
e ZUJOLBT +oc;{z Ui} +A, iToc;, (4.3)
I-k i=1 57\,

i=1

k=1,... K, where

14



' L. L

HH(]-_ yijh) HH(]-_ yijh) n T n;
H = Ao+ 2 B a:[zu,} {Zui}aﬁ
j=1 =1

)6V o To T ra -
N =1 h-1 B{ZU;}{ZU} +B.[ HJ}+Ai—a?,

L, = = ! ' SAT

I I (1_ yijh) I I (1_ yijh) n;j T Njj
_ h=1 * T o h=l * T
H, = - Ao o + 1 B; Ocii|:Z;Uh:| +{2Uh}a”

j j

1-oy )H 1= Yin) ny n; T n 5
M = B{ u}{ uh} +B{ Hh} A
L, h=1 h=1 h=1 oA
and
0O 00O0O0ODO 0
0O 0O0OO0OO0ODO 0
0O 0O0OO0OODO 0
H,A)=/0 0 00 0O 0
0O 0O0OO0OO0ODO 0
0O00O0OO0O0ODO 0
000O0O0O _(yijh_aijh)xijhxi}-h exp(zBTXijh)
ZZy  ZoyZy ZoZ{  Z Z]  ZyZy  Z,Z; —Zw'
ZZy  ZoZy ZoZ{  Z Z]  ZyZy  Z,Z; —Zw'
ZiZ‘OT ZiZ'OT ZiZiT ZiZiT ZiZ; Zizi}- —ZiWT
—Sijh(l—sijh) ZiZ‘OT ZiZ'OT ZiZiT ZiZiT ZiZ; Zizi}- —ZiWT
ZijZ‘OT ZijZ‘OT ZijZiT ZijZiT ZijZ; ZijZ; —ZijWT
ZijZ‘OT ZijZ‘OT ZijZiT ZijZiT ZijZ; ZijZ; —ZijWT
-wZ, -wZ; -wZ] -wZl -wZi -wZ; X X; exp(2B'X;,)

w=[X;, exp(B"X;)], i=1...m, j=1..,n, h=1..,n;.
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If we should use the correlated logistic regresson model, we would have the following

corresponding expressionsfor 6, U, (A |y) and H, (A):

1

O T T (M o(Zo) Dy (Z0) + M, (2,)+ D, (2,) + My (Z,)+ By (2, + Wiy (X

Wi, (X)) =B Xy + -+ B X 1 =1om, j=1...,n, h=1..,n;,

Z] = (LZo, ZgyrnZog) s Z7 = (ZiginZig) s Z = (Zjpreon Z

i=1...m, j=1..,n, h:L...,nij,and

Z,Zy
Z,Zy
2,27
H h (7\‘) = _Sijh (1- 6ijh) Zizg
Zijzg
Z,23

i=1...m, j=1..,n, h=1..,

ZoZq
ZoZg
Z,Zy
Z,Zy
Zijz‘(;r
Z,z7

n;.

U (A 1Y) == (Yin —8ipn)

7,77
ZyZ}
2,z
2,z
z,z]

Z.ZT

ij<i

— o o

NN N N N N

7,77
2oz}
2,z
2,z
z,z]

Z.ZT7

ij<i

Xijhz‘(;r Xijhz‘(;r XithiT XithiT

) ad XJ,
ZoZj  ZoZ;
ZoZj  ZoZ;
2zl zz]
2zl zz]
z,Z]  z,Z]
z,Z]  z,Z]

T T
X ijh Zij X ijh Zij

—ZoXi
—ZoXih
_Zixi-;—h
_Zixi-;—h
_Ziixgj-h
_Ziixgj-h
Xijhx;;-h

= (Xijhl""’xijhp)i

16



The Fisher information matrix for the second level nesting is

10D = 031,00~ ALayory —B;(l—%){iu:‘ }{ZU}

; B;{a;[i Ui*} +[i Ui*}och} : (4.4)

i=1

k=1...,K, where

Ii(k)=ociilj(7»)—Ai*oci*oci*T—Bf(l—ai){iu}}[iuj}
- B[Oﬁ[iU]} +{iu?}0¢ﬁ],

0 =0y 31, () - Ao ~ B (- a){z u}{z u;}
- Bj{a;{iu;} {iu;}aﬂ,

| h (M = 6ijh (1_ 6ijh )eﬁlﬁeﬁf

ZoZy  ZoZy ZoZ]  Z,Z]  ZZi  Z,Z] -ZW'
z,z7 7,20 7,7 7zl Z,Z) 2,2 —Zw
zz? 2zl z2Z' zZ zZ zZ —zw'
= 8ijh (1- 6ijh) Zizg Zizg ZiziT ZiziT ZiZJ ZiZJ _ZiWT )
2,27 7,20 zZ' zzZ z2Z] z,2Z —zw'
227 7,20 zZ' zZ 7,2 Z,2Z —zw'
-wZ, -wZ, -wZ' -wZ' —WZ; —wzg xijhxgh exp(ZBTXijh)

w=[X;, exp(B"X;,)], i=1...m, j=1..n, h=1..,n,,and A, A], A}, B,, B, B,

Ui, U] and U, are the resulting values of A, A;, A;, B, B;, B;, U;, U, and U,

evaluated at y = 0.
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5 [llustration

Data are available on 240 families with breast cancer in the national database and at the
Howard University, Washington, D. C., U.SAA.. The data set comprises family data and
epidemiology data. The variables to be assessed are annua household income (hinc), age at
time of examination (ageat), obesity, and tumour of the breast other than breast cancer
(tumour). Family-specific data consist of hinc in thousands (<5, 5-15, 15-25, 25-35, 35-50,
50+), whereas subject-specific data consist of ageat in years and obesity (O - not obese;

1 - obese), and unit or breast-specific data consist of tumour (0 — absence; 1 - presence). The
response variable indicates whether or not a breast is affected with breast cancer. This is
coded as O for unaffected and 1 for affected. Two levels of nesting exist in these data: two
breasts are nested within each subject and subjects are nested within families (compare with
the second example of Qagish and Liang, 1992). The objective of the analysisis to assess the

presence of familial aggregation of breast cancer.

Model for the second level nesting:

The variables in the model are hinc (Z,,) , ageat (Z;,), obesity (Z;,) and tumour (Xj,) .

That is, we have one group-specific covariate, two subject-specific covariates and one unit-
specific covariate. There are no subgroup-specific covariates. The linear models in Equations
(3.18) — (3.23) can therefore be specified as follows:

Mo(Zy)=Eoo +E0ors Do(Zo) =Yoo +Yoross M;(Z,)=0, D,(Z,) =0,

M (Z;) = gnzm + &122”2 yand Dy(Zy) = YuZj + Y12 Zij2 -

For the function that describes the effects of the unit-specific covariate, we have
W, (X,) = 1—exp(BX,,) for the correlated Weibull regression model and

W, (X)) = BX;, for the correlated logistic regression model. The set of parameters to be

determined in the modd is

A=E7B)=(Cco:Eor:E11:812+Yo0r Yors Vi Yaa s B) -

18



Parameter estimates and standard deviations of the estimates, along with Wald statistics are
given in Table 5.1 for the correlated Weibull and the correlated logistic regression models.

The function of the individual-specific covariates, W, (X;;,), is equal to zero, since no breast

has a primary tumour other than breast cancer. Hence, the estimates for both regression

models are the same. The parameter B is fixed for computational reasons. The covariates of

positive (negative) coefficients increase (decrease) the probability for breast cancer.

For the 1-parameter Wald's tests, the null hypothesis that y; =0 is rejected for vy, v, and
Y.~ Thisis an indication of the existence of familial aggregation of breast cancer. On the
other hand, the null hypothesis of y; =0 for vy,, cannot be rejected at the level o =0.05.

Hence, obesity does not affect the familial aggregation of breast cancer.

Table5.1:  Parameter estimates, standard deviations of the estimates and Wald statistics
for the correlated Weibull and the correlated logistic regression models

Variable Parameter Correlated Weibull and logistic regression models
Parameter estimate | Standard deviation | Wald statistic

constant oo -3.9134 0.2759 14.1841
hinc E o 0.2791 0.0189 14.7672
agesat & 0.0250 0.0034 7.3529
obesity & 0.1275 0.1118 1.1404
constant Yoo -0.6350 0.1530 4.1503
hinc You -0.0477 0.0105 4.5429
ageat Y -0.0290 0.0131 22137
obesity V1o 0.7268 0.9904 0.7338
tumour B

Critical value for the rejection of the null hypothesis: u g, =1.96.

For the globa tests, the hypotheses to be tested are H,:y=0 and H,:y#0, where

'YT = (Yoo Yo Y111 Y12) -
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Let logL, = the maximised log-likelihood from which vy is omitted,
logL, = thefull log-likelihood and

x5 =9.4877, the critical value for rejection of the null hypothesis.

Then, the likelihood ratio statistic for the correlated Weibull and the correlated logistic
regression models is LR = -2[logL, —logL,] = -2[-536.1829 — (-466.6963)] = 138.9732.
Thus, significant familial aggregation is observed for both regresson models (see, for
example, Wilks, 1938).

6.2049x107°
: _ : . |—21115x10°? : :
The maximum likelihood estimate of y is y= X and the estimated variance-
—4.5258x10°°

8.1942x10™

covariance matrix is

431x10°  -1.11x10" -4.72x107 6.86x107*
-1.11x10*  3.13x10°  6.86x10* —2.50x107*
—472x107  6.86x107*  3.95x10° —1.77x107* |
6.86x10* —250x10* -1.77x10" 3.08x10°?

var(y) =

TheWald statistic for H,:y =0 hasavalue of
W=F-0)"L, (1, NF-0) =7y [var(y)] 'y=32.2734 (see Garthwaite et al., 1995; Bickel

and Doksum, 1977). Since the Wald statistic is large, the null hypothesis will be rejected. The
conclusion isthat there is aggregation of breast cancer in families.

Table 5.2 presents estimates of the parameters obtained by fitting Cox’s model, with standard
deviations and Wald statistics for testing effects.
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Table5.2: Parameter estimates, standard deviations of the estimates

and Wald statistics resulting from Cox’s model

Variable Parameter | Parameter | Standard Wald
estimate deviation | statistic
hinc B, -0.0159 0.0196 0.8112
ageat B, -0.0050 0.0020 2.5000
obesity B, 0.0441 0.0652 0.6764
tumour B,

Critical value for the rejection of the null hypothesis: u,g,: =1.96.

The hypothesis to be tested is H, :; =0 versus H, : 3, # 0. From Table 5.2, the covariate
ageat is the only significant factor. The covariates hinc and obesity produce non-significant
effects, since the values of their Wald statistics are less than the critical value, uyg,s =1.96.

For the global null hypothesis H, : B, =B, =B, =0, we obtain 6.9773 for the likelihood ratio
statistic and 6.9874 for the Wald statistic, both values indicating non-significance when

compared to a chi-square distribution with three degrees of freedom (i.e., x3,0 = 7.8147).

6 Discussion

In this paper, we have discussed the second level nesting of the disposition model and its
estimating procedure for the analysis of correlated binary data. We have also investigated the
problems associated with estimation as the level of nesting gets deeper, and compared the
performance of the nested disposition model with Cox’s model (Cox, 1972). The main
disadvantage of the disposition model is that, with the exception of the unit-specific
covariates, each covariate in the model produces two parameters. This results in the following

problems:

(1) The effect of a covariate can have different interpretations. For instance, in Table 5.1 the

covariate hinc increases the cluster logit mean risk, M (Z,) =& + &1 20, » Whereas the same

covariate decreases the excess cluster logit disposition due to dependence among members of
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the group, D,(Z,) =Yoo + YouZo- Thus, the same variable hinc gives two opposing effects

with regard to the probability for breast cancer,

1
" L e Mo (Z,) o2 M, () D, 2,1

(2) The number of covariates that can be included in the model is seriously limited. We recall
that in a previous work, we could estimate up to nine parameters from five covariates, using
the maximum likelihood method (see Table 6.2.1, Odai et a., 2002). An attempt to estimate
more than nine parameters from five covariates (the fifth covariate finally excluded from the
analysis) in the present work resulted in over-identified parameters (i.e., parameters estimated

in two or more linearly independent ways).

The disposition model however has the advantage that aggregations in families, due to
common shared risks, and response probabilities can jointly be modelled.
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