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Summary

Research concerning the quantitative trait loci (QTL) mapping in plant genetics

usually consists of two stages. The first stage is concerned with collecting data while the

second one, based on the data collected, is concerned with a proper QTL study. The final

inferences are strictly connected with the quality of the two approaches applied in both stages.

Data to be analyzed come from an experiment dealing with offsprings obtained from a

crossing system of several lines. The genotypes then are observed in some natural or quasi

natural environment.

The QTL studies are based on so called genotype adjusted means. In α-designs the

adjusted means can be calculated in many ways, which will be presented in this paper. We

also give an EM-algorithm for the estimation of genetic parameters and comment on recent

biometrical research in molecular plant genetics. Finally we mention some activities in the

new field of bioinformatics.

1. Introduction

Characters of agronomic importance show quantitative variation in crop species. This

variation is the result of multiple segregeting loci, whose gene expression can be modulated

by the environment. Genetic improvement of such quantitative traits is difficult because the

effects of individual genes controlling these traits cannot be identified. The loci that control

quantitative traits are called quantitative trait loci, abbreviated henceforth as QTLs.

An important goal in genetics and plant breeding is to identify and chracterize QTLs.

The recent advances in molecular genetics have allowed the construction of genetic linkage
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maps based on molecular markers. The plant geneticist and statistician can then look for

correlations between the mapped markers and the trait of interest in controlled breeding

experiments to obtain information about the regions of the genome that control the trait.

The general QTL studies usually consist of two stages. The first stage is connected

with collecting data while the second one, based on data collected concerns a proper QTL

studies. The final inferences are strictly connected with quality of approaches applied in both

stages. Data to be analysed come from an experiment dealing with offsprings obtained from a

crossing system of several lines. The genotypes then there are observed in some natural or

quasi natural environments.

To obtain as good as possible data concerning genotypes the experimenter uses some

optimal experimental design. The design should allow to estimate the genetical characteristics

with maximal precision. In QTL experiment we observe only genotypes that are different but

which are not additionally grouped or split. It means that most of QTL experiments use one-

factorial design such as for example completely randomized design, block design, nested

block design, row-column design, block design with nested rows and columns, split plot

design, split block designs etc..

All of the above designs are proper with respect to the particular experimental

situation. The experiment considered in the paper was carried out in a so called α-design (see

Melchinger et al., 1998).

α-designs belong to the class of the nested block designs (NBDs). These designs are

applied when experimental material is divided into two nested systems of blocks, (groups) i.e.

superblocks and blocks. The blocks are nested within superblocks. Block designs of this type

have been investigated by Hering and Mejza (1997). The NBDs allow to eliminate real or

potential heterogeneity of experimental units under above nested structure.

2. Estimation

Let n experimental units be divided into r superblocks and additionally, each of them

let be divided into b blocks of size k. Then we have n=rbk. Let v denote the number of

genotypes.
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The observation obtained in an experiment carried out in NBD is usually modelled as

follows (see Mejza and Mejza 1989, Mejza 1994):

εγβαµ ++∆+++= eDCy ’’’1 . (1)

Here y denotes an n×1 vector of observation, 1 denotes n×1 vector of ones, µ the general

mean. C’ and D’ are n×r and n×rb design matrices for superblocks and blocks, respectively,

and α,β correspond to r×1 and rb×1 vectors of superblock and block effects. Furthermore ∆’

is the n×v design matrix for genotypes corresponding to v×1 vector γ of treatment effects, e

and ε are n×1 vectors of unit errors and technical errors.

The statistical properties of the model (1) resulting from a three step randomization

(i.e. randomization of superblocks, blocks within superblocks and randomization of units

within blocks) are as follows:

γµ ’1)( ∆+=yE

( )rr JbkIVV 12 )(,),0(~ −− −= ααα σα ,

( )bbr JbIIVV 12),,0(~ −−⊗= βββ σβ , (2)

( )kkbreee JkIIIVVe 12),,0(~ −−⊗⊗=σ ,

)I,0(~ 2σε ,

where 2
ασ , 2

βσ , 2
eσ , and 2σ are superblock, block, unit and technical error variances,

respectively, It is identity matrix of degree t, Jt=1t1t’ is the txt matrix of ones, ⊗ denotes the

Kronecker product of matrices.

The design considered has orthogonal block structure (cf. Nelder, 1965), hence the

covariance matrix V=Cov(y) can be expressed as

nIDVDGVGV 2’’ σβα ++= (3)

or

33221100 PPPPV ττττ +++= , (4)

where Pi are family of orthogonal projectors, summing to identity matrix, of the form:

,1
0 nJnP −= , nJnGGrbP 11

1 ’)( −− −= , GGrbDDkP ’)(’ 11
2

−− −= , DDkIP n ’1
3

−−= ,

and, respectively. τi are variance components of the form
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2
0 στ = , 22

1 σστ α += rb , 22
2 σστ β += k , 22

3 σστ += e .

The projectors define so called strata, i.e. general area stratum, inter-superblock stratum,

inter-block stratum and inter-plot stratum.

Because of  ∑ =
=3

0i i IP we have

( ) 321032103210 yyyyyPyPyPyPyPPPPIy +++=+++=+++= .

It means that overall analysis of model (1) can be split into stratum analyses, defined by

models

yPy ii = , iii P)y(Cov τ= , i=0,1,2,3 . (5)

Because of algebraic properties of Pi (i=0,1,2,3) to the analysis of the strata models (5) we can

use ordinary least squares method. The normal equation then may be written as

yPP iii ∆=∆∆ γ’ (6)

and yPP iit ∆∆∆= −)’(γ is a vector of normal equation solutions with

’)( ∆∆= iii PCov τγ . (7)

The matrices 3i ¶ &i are called stratum information matrices for estimation genotype

effects. All stratum statistical properties of the design are connected with the pattern of that

matrices.

The normal equation for estimating genotype effects in model (1) under the assumption

that τi are known can be written as:

3
1

32
1

21
1

103
1

32
1

21
1

1 )( QQQCCC −−−−−− ++=++ τττγτττ (8)

where yPQ ii ∆= .

The genotype arrangement in NBD can be characterised by two incidence matrices, i.e.

by N1 *
 and 1 '
. The first one characterises the genotype arrangements on superblocks

while the second one on blocks.

Let N11=N1=R denote the vector of genotype replication.
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The above considerations simplify for a particular class of NBDs called α-design. α-

designs are special NBDs in which all genotypes are replicated exactly α-times in every

superblock, i.e. R=α⋅r⋅1.

It means that α-design is equireplicate design. In this class of design we have: C1=0, and

Q1=0,

νν
α− −= I)(’NNkC r1

2 , ’1
3 NNkrIC v

−−=α . (9)

The QTL techniques are based on data that are a sample from normal population with

constant variance and they are independent. The difference lies in expected values only.

Hence, the problem that will be considered concerns how to find genotype mean estimates

following above requirements.

Method 1        (Williams, 1977)

Let us note that in an α-design there is no information on genotypes in the inter-

superblock stratum. Hence, practically we can remodel our data so that

eDy +∆+= γβ ’’ , (10)

IDDyCovVyE 2
0

2
1 ’)(,’)( σσγ β +==∆= . (11)

In this approach it is assumed that the sample of units was drawn in two stages from an

infinite number of potential blocks and from an infinite number of potential units within

blocks. In this case 222
0 σσσ += e . Formally, Williams (1977) considers the model with

)’( 12
01 nIDDkV += −ϕσ , where )(/k 22

e
2 σ+σσ=ϕ β . He gives an iterative procedure to

estimate the vector of genotype effects and an approximation of V1.

From that we can get the required estimates of  genotype effects used in QTL studies.

Method 2

Let us note that the normal equations for estimating genotype effects are of the form

( ) 3
1

32
1

2233
1

32
1

2 QQCC −−−− +=+ ττγττ . (12)

Instead of the true values of τ we can use estimates obtained by stratum ANOVA and solve

that equation under known variance components. Then we have
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( ) ( )3
1

32
1

23
1

32
1

223 QˆQˆCˆCˆ −−−−− τ+ττ+τ=γ . (13)

and

( ) ( )−−− τ+τ=γ 2
1

32
1

223 CˆCˆVar ( )3
1

32
1

2 PˆPˆ −− τ+∆τ ( ) ⋅∆τ+∆ττ∑
=

−−
3

0i
3

1
32

1
2ti ’Pˆ'PˆPˆ

( ) ( )−−−−−− τ+τ=τ+τ⋅ 3
1

32
1

22
1

32
1

2 CˆCˆCˆCˆ . (14)

The problem is that we need generalized inverses and therefore the solution is in general not

unique.

To obtain a unique solution we may impose linear restrictions upon the parameters. For

example we can add the matrix gZZ’ to the matrix CCC =+ −−
3

1
31

1
2 ττ . Here q is nonzero

constant and Z is an any arbitrary vector such that Z’1≠0. Then the matrix C+qZZ’ is

nonsingular and (C+qZZ’)- = (C+qZZ’)-1.

Finally, as estimates of genotype mean (adjusted means) we may take 231~ γγ += y ,

where y is the general mean. Having dispersion matrix nonsingular it is easy to obtain

genotype mean estimates uncorrelated.

Method 3

As we see from (12) in α-designs the information is included into two strata i.e. inter-

block and inter-plot stratum. Usually, almost all information is included in the inter-plot

stratum. Therefore it is sensible to restrict the investigation to that stratum. This is the idea of

the third method. It means that we use an approach appropriate to the so called intra-block

analysis of the block designs.

Method 4

In fact the α-designed experiment is incomplete with respect to superblocks. Especially

when α=1 then with respect to superblocks we have a complete randomized block design.

Finally, assuming that the block effects can be omitted in one linear model we can treat the

whole experiment as one set up in complete randomized block designs. In this case it is

enough to take only usual means as the genotype mean estimates.
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Open question

Which method is the most suitable for the QTL study? From the statistical point of view

only method 3 guarantees at least unbiasedness of the genotype means. This results from the

fact that ordinary least square estimators are unbiased in the mixed linear model case. We

cannot say anything about the statistical properties of estimators obtained by other methods.

Moreover, by proper design of experiments we can nearly gain the whole information from

the third stratum. α-designs are usually highly efficient. This explains why they are used often

in agricultural and genetical experiments.

3. Quantitative trait locus mapping in plant genetics using molecular genetic

marker systems

The recent advent of molecular markers has created a great potential for the

understanding of quantitative inheritance. In parallel to rapid developments in molecular

marker technologies biometrical models have been constructed, refined and generalized for

detecting, mapping and estimating the effects of quantitative trait loci (QTL). Melchinger et

al. (1998) evaluated testcross progenies of 344 F3 lines in combination with two unrelated

testers plus additional testcross progenies from an independent but smaller sample of 107 F3

lines from the same cross in combination with the same two testers for grain yield and four

other important agronomic traits.

For a more detailed statistical analysis of this data set A.E. Melchinger and H.F. Utz

from the Institute of Plant Breeding, Seed Science and Population Genetics, University of

Hohenheim, provided plant height measurements of an F2 –population of maize, which was

genotyped for a total of 89 restriction fragment length polymorphism marker loci.

Recombination frequencies between marker loci were estimated by multi-point analyses and

transformed into map distances in centi-Morgan by Haldane’s mapping function.

The aim of our statistical approach is to find Maximum-Likelihood-estimates of QTL

locations and effects including their estimated standard errors.
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We consider experimental populations derived from a cross between two parental inbred lines

P1 and P2. Two flanking markers for an interval, where a putative QTL is being tested, have

alleles M,m and N,n. If the F1 individuals are selfed or intermated, it produces an F2 –

population with nine observable marker genotypes.

We consider a QTL in the F2 –population in which the frequencies of genotypes QQ,

Qq and qq are ¼, ½ and ¼ . The genetic model for a QTL is given by

DE1
d
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where the genetic parameter µ is the mean and a and d denote the additive and dominance

effects of QTL in the F2 –population.

The data consists of two parts

yj , j=1,2,...,n             for the quantitative trait value

and xj , j=1,2,...,n             for the genetic markers and other explanatory variables.

The composite interval mapping model from Kao and Zeng (1997) is proposed as

n,...,2,1j,xzdxay jj
*
j

*
jj =ε+β++= (2)

where






−
=

qq1

Qq0

QQisQTLtheif1

x*
j

and



−

=
otherwise2/1

QqisQTLtheif2/1
z*

j .

yj is the quantitative trait value of the j-th individual, a and d are the additive effects of the

putative QTL, β is the partial regression coefficient vector including the mean µ, and

εj~N(0,σ²) is a random error.

Let ( )








−=−=
==

−==
=
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be the distribution of QTL genotype specified by *
j

*
j zandx .

We treat the unobserved QTL genotypes ( *
j

*
j zandx ) as missing data, denoted by y(mis,j) and

treat trait yj, selected markers and explanatory variables (xj) as observed data, denoted by

y(obs,j).

Kao und Zeng (1997) apply the EM algorithm to obtain the Maximum-Likelihood estimates

of θ=(p,a,d,β,σ²).

At a given position, p can be determined and the EM algorithm is used for obtaining the ML

estimates of a, d, β, and σ².

In the E-step we compute the conditional expected complete-data log likelihood with respect

to the conditional distribution of  Ymis given Yobs and the current estimated parameter value

θ(t), given by

( ) ∑∑
= =

π⋅













σ
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n
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3
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)t(
jiji

jij)t( p
y

log|Q ,

where

∑ = σ
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3
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y
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y
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p

p
,

pji are conditional probabilities of QTL genotypes given marker genotypes.

They are given by Kao and Zeng (1997) for F2-populations.

ϕ(•) is a standard normal probability function,

β+−=µ j2
d

1j xa , β+=µ j2
d

2j x , β+−−=µ j2
d

3j xa .

Taking the derivatives of Q(θ|θ(t)) with respect to each parameter, Kao and Zeng (1997) give

the following result:
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and ( ) ( ) ( )[ )1t()t()1t()1t()1t(
n
1)1t(2 DE’XY2XY’XY +++++

Πβ−−β−β−=σ

])1t()t()1t( EV’E +++ ,

where   { }
3nxjiπ=Π ,

( ) ( )
( ) ( )





ΠΠ
ΠΠ

=
2212

2121

D#D’1D#D’1

D#D’1D#D’1
V ,

# denotes Hadamard product of the columb vectors of the genetic design matrix D.

Additionally to ML-estimates of a, d, β, and σ², Kao and Zeng (1997) give general

formulas for the asymptotic variance-covariance matrix of the ML-estimates. In a recent

master-thesis Emrich (1999) was able to present explicit formulas for the M-step which where

different from the above results. At every position, the position parameter p can be

predetermined and only a, d, β, and σ² are involved in estimation and testing. If the tests are

significant in a chromosome region, the position with the largest LRT statistic is inferred to be

the estimate of the QTL position p, and the MLE’s at this position are the estimates of a, d, β,

and σ².

For our plant genetic project it is important to construct confidence intervals for the

QTL positions and effects. The asymptotic variances can be used to calculate these

confidence intervals. For a large sample, the (1-α)% confidence interval for a position p can

be approximated by ( )p̂1p̂1 Szp̂;Szp̂
22

αα −− +− .

In our approach, the lack of knowledge on the number of locations of the most

important QTL’s contributing to the trait is a major problem. Stephens and Fisch (1998)

utilize reversible jump Markov-chain-Monte-Carlo-methodology to compute posterior

densities not only for the parameters, given the number of QTL, but also for the number of

QTL itself.

The EM-algorithm is also used by Selinski and Urfer (1998) for the estimation of

toxicokinetic parameters which are an essential component in the risk assessment of potential

harmful chemicals. This is a first step to analyse the biological processes which are involved

in the formation of DNA adducts and might therefore lead to the development of cancer.
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More details on this research are given by Urfer and Becka (1996). Jansen (1996) describes a

Monte-Carlo expectation-maximization-algorithm for fitting multiple-QTL models to genetic

data which are highly incomplete. Such complicated situations occur when dominant and

missing markers are used.

Many PCR-(Polymerase Chain Reaction) based genetic markers behave like dominant

markers. Co-dominant markers such as restriction fragment length polymorphism (RFLP)

show three band patterns in an F2 population in electrophoretic gels, each representing one

genotype of a probe. Dominant markers such as random amplified polymorphic DNA

(RAPD) can show only two patterns: presence or absence of a band. A heterozygote can have

the same band pattern as one of the homozygotes. Jiang and Zeng (1997) derive a general

algorithm to deal with dominant and missing markers in F2 derived from two inbred lines

using hidden Markov chains.

In recent years considerable progress has been made in the development of new

statistical methods of QTL analysis. These new methods have been implemented in user-

friendly, widely applicable software packages such as PLABQTL, written for routine QTL

analysis in Plant Breeding and Biology by Utz and Melchinger (1996). The QTL cartographer

from Basten et al. (1999) is another suite of programs for mapping QTLs onto a genetic

linkage map. The programs use linear regression, interval mapping or composite interval

mapping methods to dissect the underlying genetics of quantitative traits. The mapping

program uses a dynamic algorithm that allows several statistical models to be fitted and

compared, including various gene actions, QTL-environment interaction and dose linkage.

Scientific progress in molecular genetics leads to new challenges in statistics and

computer science using Markov chain Monte-Carlo-algorithms and hidden Markov chains.

The new field of bioinformatics is concerned with analyzing genomic data in order to help

elucidate biological processes, diagnose diseases and invent new bioactive drugs. The

Helmholtz Network on Bioinformatics (HNB) directed by T. Lengauer integrates the bio-
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informatics software throughout Germany and brings the new potential for genomic analysis

to increased use in molecular biology and medicine.
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