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Abstract

The paper considers the problem of non-parametric regression with emphasis on

controlling the number of local extrema. Two methods, the run method and the taut

string-wavelet method, are introduced and analysed on standard test beds. It is shown

that the number and location of local extreme values are consistently estimated.Rates

of convergence are proved for both methods. The run method has a slow rate but

can withstand blocks as well as a high proportion of isolated outliers. The rate of

convergence of the taut string-wavelet method is almost optimal and the method is

extremely sensitive being able to detect very low power peaks.

Section 1 contains a short introduction with special reference to modality. The run

method is described in Section 2 and the taut string-wavelet method in Section 3.

Low power peaks are considered in Section 4. Section 5 contains a short conclusion

and the proofs are given in Section 6.

1 Introduction

1.1 Approximate models

Given a data set (ti; y(ti)); i = 1 ; : : : ; nin [0; 1]� R we require a simple description of the
form

y(ti) = fn(ti) + rn(ti) (1)

where fn is a function belonging to some speci�ed class of functions and the rn(ti); i =
1; : : : ; n are the resulting residuals. We assume that the design points ti are equidistant with
ti =

i
n
: At the expense of additional complexity more general designs can be considered.

As posed the problem is ill-de�ned: there are many functions fn and residuals ri which
satisfy (1). To make the problem tractable we follow Tukey and write

Data = Signal� Noise: (2)

In the context of non-parametric regression the decomposition (2) can be made precise
using the model

Y (ti) = f(ti) + "(ti) (3)
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where the "(ti) are i.i.d. random variables with a given distribution. The signal is identi�ed
with the function f and the noise with the residuals "(t): Carrying this over to real data
we identify the signal with the function fn and the noise with the residuals rn(ti): The two
can be separated by assuming that the signal is simple and that the noise is complex. In
this paper the simplicity of any function g on [0; 1] is the number of local extreme values.
We use two de�nitions of complexity for the noise. The �rst is the length of the longest run
of the signs sgn(rn(ti)) of the residuals and the second on a wavelet reconstruction of the
residuals. They are explained in more detail below. Each of the de�nitions of complexity
can be regarded as a de�nition of approximation to white noise. The main problem is to
produce simple functions fn, that is ones with low modality, such that the resulting residu-
als approximate white noise. The run method yields a natural lower bound for the modality
as well as bounds for the approximating functions. The wavelet de�nition of approximation
cannot be naturally inverted to give a lower bound for the modality. To produce candidate
functions of low modality we use the unrelated taut string method and call the resulting
procedure the taut string-wavelet procedure. The above ideas are related to a concept of
approximation of stochastic models as developed in Davies (1995) to which we refer for
further details.

1.2 Test beds

Non-parametric procedures may be evaluated using real data sets or under the well con-
trolled conditions of a stochastic model .Test beds are de�ned by stochastic models of
the form (3). They have the advantage of allowing a direct comparison of the function f
used to generate the data with the function fn which the procedure yields as an adequate
approximation. Such comparisons are often based on rates of convergence of fn to f in a
norm such as

kf � fnk = sup
0�t�1

jf(t)� fn(t)j:

For certain forms of test beds it can be shown that optimal rates of convergence exist. For
certain functions f we show that the run based procedure has a slow rate of convergence
namely O( log logn

logn
) whilst the taut string-wavelet procedure has the optimal rate of con-

vergence of O((logn=n)�1=3). In spite of this there are well de�ned test beds with f = fn

depending on n on which the run procedure is asymptotically superior to some procedures
which are optimal for �xed f .

1.3 Smoothness

Smoothness is not a consideration in this paper. The regression functions our proce-
dures provide are piecewise constant and consequently not even continuous. Techniques
for smoothing such functions under shape and deviation constraints have been developed
in Metzner (1997) and Davies and L�owendick (1999).

2



1.4 Previous work

Much work has been done on the problem of non-parametric regression. Of the di�er-
ent approaches we mention kernel estimation (Nadaraya, 1964, Watson, 1964), penalised
likelihood (Silverman, 1984), wavelets (Donoho et al., 1995) and local polynomials (Fan
and Gijbels, 1996). None of these methods is directly concerned with modality but re-
cently much work has been done which explicitly takes the shape of the regression function
into account. One of the examples in van de Geer (1990) is concerned with monotonic
regression. Mammen (1991) uses monotone least squares �ts between local extrema whilst
Mammen and Thomas-Agnan (1998) , Mammen, Marron, Turlach and Wand (1998), Dele-
croix, Simioni and Thomas-Agnan (1995) and Ramsay (1998) modify classical estimators
such as spline smoothers and kernel estimators to deal with monotonicity or convexity
constraints. However none of these papers is concerned with estimating modality or the
positions of the local extreme values. Work in this direction has been done by D�umbgen
(1998b) who applies linear rank tests simultaneously in order to �nd local extrema of an
unknown regression function. Hengartner and Stark (1995) use the Kolmogoro� ball cen-
tred at the empirical distribution function to obtain non-parametric con�dence bounds for
shape restricted densities. Chaudhuri and Marron (1997) assess the signi�cance of zero
crossings of derivatives and use their results to provide a graphical device for displaying
the signi�cance the local extremes. Another approach for determining the modality of a re-
gression function is that of mode testing. We refer to Good and Gaskins (1980), Silverman
(1986), Hartigan and Hartigan (1985), Fisher, Mammen and Marron (1994). The position
of the local extreme values is considered by Minotte (1997) using a procedure which decides
for each mode in a mode tree (Minotte and Scott, 1993) whether it is signi�cant or not.
Finally M�achler (1995) presents an approach using a roughness penalty to penalize points
of inection.

The run method (see Davies (1995) and Metzner (1997)) may be seen as the inversion
of the run test for testing the independence of a sequence of observations. It yields the
minimum modality consistent with the observations as well as approximation intervals for
the location of the extreme values. D�umbgen (1998a,1998b) inverts other tests and obtains
better convergence rates under standard test beds but at the cost of greater computational
complexity.

Taut strings are well understood in the context of �tting an isotone function. The greatest
convex minorant of the integrated data is a taut string and its derivative is precisely the
least squares isotone approximation (Barlow et al., 1972; Leurgans, 1982). The idea of us-
ing taut strings for densities goes back to Hartigan and Hartigan (1985) who derived a test
for modality of a density. In Davies (1995) it was explicitly used to calculate approximate
densities. It was �rst used in the general non-parametric regression problem by Mammen
and van de Geer (1997). They showed the taut string is a special case of a penalised least
squares functional where the penalty is based on the total deviation norm. They also give
a description of the taut string as well as an O(n) algorithm independently of the number
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of local extrema. The reason the taut string is useful for providing candidate functions of
low modality is that it has the smallest modality of all functions in the supremum ball.

2 The run method

2.1 Obtaining bounds for regression functions using runs

The idea of using runs to obtain bounds for adequate regression functions was introduced
by Davies (1995). We give a short description of the method: for a more detailed description
see Metzner (1997). Let �i; i = 1 ; : : : ; ndenote a sequence of independently distributed
random variables with

P(�i = 1) = P(�i = �1) = 1

2
:

We denote by Rn the length of the longest subsequence of the �i which is composed entirely
of 1's or �1's. For any given �; 0 < � < 1 we denote the �-quantile of Rn by qu(n; �;Rn)
that is

qu(n; �;Rn) = minfm : P(Rn � m) � �)g:

For large n we have the simple approximation

qu(n; �;Rn) = dlog2 n� log2(� log((1 + �)=2))e � 1: (4)

whic can be deduced from the results given in Section XIII.7 of Feller (1968).

Consider the data set ((ti; y(ti)); i = 1 ; : : : ; n ) and allow a maximal run length for the
signs of the residuals of qu(n; �;Rn). We look for an adequate regression function which
is initially non-increasing and which satis�es the run condition. An upper bound at the
design point ti is given by

ui(n; �) = minfui�1(n; �);maxfy(tj) : i� qu(n; �;Rn) � j � ig (5)

and a lower bound is given by

li(n; �) = maxfli+1(n; �);minfy(tj) : i � j � i+ qu(n; �;Rn)g: (6)

We set ui(n; �) =1 and li(n; �) = �1 if the minimum in (5) and the maximum in (6) are
not taken over qu(n; �;Rn)+1 observations. This results in in�nite bounds at local minima
and maxima and at the beginning and end of the data set. If the upper and lower bounds
intersect at some point then a non-increasing function can be no longer adequate. At this
point a switch is made to a non-decreasing function for which upper and lower bounds are
constructed in the analogous manner. This process is continued to the end of the sample.
The process is repeated this time starting with non-decreasing upper and lower bounds
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and those bounds are chosen which minimize the number of local extreme values. It gives
an lower bound for the number of local extreme points required for an adequate regression
function as well as upper bounds for the location of the local extremes. This procedure is
called \stretching to the right" in Davies (1995). The reverse procedure starting with the
last data point and proceeding to the �rst is known as \stretching to the left". It can be
shown that the procedures yield the same lower bound for the number of local extreme
values and that together they gives lower and upper bounds for the location of these local
extremes values. At local maxima the upper bound is 1 and at local minima the lower
bound is �1. Once the lower bound for the number of local extrema is known, tighter
bounds for the regression function can be obtained by reducing the allowable run length
to the minimum consistent with this number of local extrema. The bounds (5) and (6)
may be seen as the result of inverting a run test for the independence of the residuals.
D�umbgen (1998a,1998b) has inverted other non-parametric tests and shown that more
powerful tests can be made to yield optimal rates of convergence. They are computation-
ally more exacting whereas the bounds based on the run test can be calculated very quickly.

An approximate regression function may be obtained by taking the midpoints of the bounds
where these are both �nite. Occasionally this may not ful�l the run condition: a somewhat
more complicated procedure described by Metzner (1997) gives a regression function which
always ful�ls the run condition. We denote this function by fRn . Within the limits imposed
by the bounds the user is free to specify the location and size of local extreme values as well
as the boundary values. We do not pursue this any further: a discussion of the possibilities
is contained in Davies and L�owendick (1999).

2.2 Behaviour on �xed function test beds

We consider a �xed function test bed of the form (3). Let k�n denote the number of local
extreme value of fRn based on the �-quantile of the length of the longest run. The intervals
where either the lower bound or the upper bound are in�nite will be denoted by Iei (n; �); i =
1; : : : ; k�n and their midpoints by tei (n; �); i = 1 ; : : : ; k�n . The behaviour of f

�
n is covered by

the following theorem:

Theorem 2.1 Consider the test bed (3) where

� f has a bounded continuous �rst derivative f (1) and exactly k local extreme values at
the points 0 < te1 < : : : < tek < 1

� the "(t) have median zero and a bounded continuous density function in the neigh-
bourhood of zero .

Then the following hold:

(a) there exist a constant A > 0 such that for all � > 0

lim
�!1

lim inf
n!1

P(fk�n = kg \ fmax
1�i�k

jIei (n; �)j � �g \ fmax
1�i�k

jtei (n; �)� tei j � �g) = 1:
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Figure 1: Bounds for the run method. The left panel shows the unscaled data. The right
panel shows only part of the data scaled to reveal the underlying curve and the bounds
provided by the run method.

(b) for all � > 0

lim
�!1

lim inf
n!1

P

 
sup

ft:jf (1)(t)j��g
jf(t)� fRn (t)j � A

�
log log n

logn

�!
= 1 :

The rate of convergence of the above procedure on �xed function test beds is very slow
but in spite of this it gives surprisingly good results as we show below.

2.3 An example

Figure 1 shows the result of applying the run method to the sine curve y = 10 sinx on [0; 1]
contaminated with Cauchy noise. The sample size is n = 1000 and the maximal allowable
run length is to 15 corresponding to the approximation (4) with � = 0 :95. It demonstrates
the ability of the method to deal with many isolated outliers.

3 The taut string and wavelet method

3.1 Strings and supremum tubes

In the last section it was shown how the use of runs to de�ne approximation to white
noise leads to bounds for the modality and for the set of adequate approximating functions
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Figure 2: These �gures illustrate the taut string method. In the upper left corner depicts
the Heavisine function contaminated with Gaussian noise. The upper right panel shows
the tube which is obtained by integrating the data points and translating by " and �".
Also shown is a taut string which is constrained to lie within the tube. The lower left panel
shows the contaiminated Heavisine function and the derivative of the taut string. Finally
the lower right �gure shows the result of another application of the taut string method
where the bandwidth is set to 1:146�=

p
n.
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of this modality. No such method is available for the concept of approximation based on
wavelets. The method we employ to obtain adequate functions of low modality is based on
a taut string constrained to lie in a supremum neighbourhood of the integrated process y�n

y�n(tj) =
jX

i=1

y(ti)(ti+1 � ti); j = 1 ; : : : ; n� 1 (7)

with linear interpolation between the design points The derivative of the taut string is
used as a regression function. This procedure is illustrated in Figure 2. The Heavisine sig-
nal (Donoho et al, 1995) is disturbed by white noise as shown in the upper left corner. The
tube obtained from the integrated process and the taut string can be seen in the upper
right panel and the lower left panel shows the resulting regression function.

We denote the taut string de�ned by the supremum tube T (g; �)

T (g; �) = fh : sup
0�t�1

jg(t)� h(t)j � �g (8)

with centre g and radius � by Sg� and the derivative by sg;�. The connection with modality
is the following. If the supremum tube with centre g and radius � contains the integrated
function

f�(t) =
Z t

0

f(u)du (9)

then the modality of sg;� is at most that of f .

Mammen and van de Geer (1997) give a description of the taut string. In particular it
is piecewise linear so that the resulting regression function is piecewise constant. They
consider the class of all functions with �nite total variation and show that a bandwidth
of order n�2=3 attains the optimal rate of convergence. In the case of white noise contam-
ination this choice of bandwidth leads asymptotically to in�nitely many local extrema.
We show below that bandwidths of order n�1=2 allow the number of local extreme val-
ues to be estimated consistently. The lower right panel in Figure 2 shows the taut string
method to the Heavisine signal contaiminated with Gaussian white noise. The bandwidth
is 1:146�=

p
n. The choice C = 1 :146 corresponds to the 0:5 quantile of the maximum of

the absolute value of a Brownian motion (see Freedman, (34) Proposition, page 27).

The next two theorems are concerned with the asymptotic behaviour of the taut string
on the test bed (3). In particular it is shown to have an optimal rate of convergence away
from the local extrema. This is not surprising as it then coincides with the least squares
solution. Of more interest is its behaviour at the local extrema themselves. We denote the
modality of the derivative of the taut string in the supremum tube T (f�n; C=

p
n) by kCn :

The taut string based on the radius C=
p
n will be denoted by S�n = S�n(C) with derivativs

Sn: We write Iei (n;C); 1 � i � k for the intervals where Sn attains it local extreme values
and denote the midpoints of these intervals by ten(n;C); 1 � i � k:
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Theorem 3.1 Consider the test bed (3) where

� f has a bounded derivative f (1) with jf (1)j 6 = 0except at the k local extrema,

� the errors "(ti) have mean 0 and a bounded second moment.

Then for all � > 0

lim
C!1

lim inf
n!1

P(fkCn = kg \ fmax
1�i�k

jIei (n;C)j � �g \ fmax
1�i�k

jtei (n;C)� tei j � �g) = 1 :

In the following A denotes a generic constant which depends only on f and the distribu-
tion of the "(t) and whose value may di�er from appearance to appearance. The length of
an interval I will be denoted by jIj: The knots of the taut string are the points where it
touches the sides of the tube.

Theorem 3.2 Consider the test bed (3) where

� f has a bounded second derivative f (2) which is non-zero at the k local extremes,

� the �rst derivative f (1) of f is non-zero except at the local extreme values,

� the errors "(ti) have mean 0 and are sub-Gaussian i.e.E(exp(�"(ti))) < exp(��2) for
some � > 0 and for all � > 0.

Then

(a) lim
C!1

lim inf
n!1

P(tei 2 Iei (n;C); 1 � i � k) = 1 :

(b) jIei (n;C)j � (6C)1=3jf (2)(tei )j�1=3n�1=6:

(c) If xi and xi+1 are successive knots in [0; 1]n[k
1I

e
i (n;C) then

xi+1 � xi = OP

 
jf (1)(xi)j�2=3

�
logn

n

�1=3
!
:

(d) At points t 2 [A
�
logn
n

�1=3
; 1� A

�
logn
n

�1=3
]n[n

i I
e
i (n;C) we have

jf(t)� Sn(t)j � OP

 
jf (1)(t)j1=3

�
log n

n

�1=3
!
:

(e) At points t 2 [n
1I

e
i (n;C) we have

jf(t)� Sn(t)j � (1 + oP(1))AC
2=3n�1=3:

We note that (d) implies that Sn is optimal at points t with jf (1)(t)j > � > 0. At points t
with f (1)(t) = 0 its rate of convergence is n�1=3 compared with the optimal rate of n�2=5

(see Leurgans (1982). As the length of the interval is n�1=6 as against the optimal n�1=5

this cannot be alleviated by replacing Sn(t) for t 2 [k
1I

e
i (n;C) by the mean of the y(ti).

Nevertheless the change of boundaries at local extrema does alter the behaviour of the
wavelet coe�cients described in the following section.
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3.2 Strings and wavelets

In the last section a function is regarded as an adequate approximation for the data if it has
minimal modality and its integral lies in the supremum tube T (Y �

n ; C=
p
n): We introduce

another more direct and also more restrictive concept of approximation based on the test
bed situation (3) with the additional assumption that the errors "(t) are Gaussian white
noise. A regression function fn will be regarded as an adequate approximation to the data
if the residuals

rn(t) = yn(t)� fn(t) (10)

\look like" Gaussian white noise in the sense that their wavelet reconstruction after using
some form of thresholding is zero. Amongst all such approximations we seek the simplest
fn i.e. those with minimal modality. The wavelets we use are the Haar wavelets which
are the easiest to handle. We restrict attention to the case where n is a power of 2. The
general case may be handled using the techniques of Kovac and Silverman (1998). The
usual threshold level is

�n
p
2 logn (11)

where �n is some robust measure of the scale of the highest level wavelet coe�cients. A
popular choice and one we shall us is �n = 1 :48MADwhere MAD denotes the median
absolute value of all wavelet coe�cients. The threshold (11) is extremely tight and and can
often be obtained only at the cost of increasing the modality. We use a less restrictive level

�n
p
� log n (12)

where reasonable values of � can be obtained by simulations and the analysis of real data
sets. The value � = 2 :5 has proved to be adequate over a wide range of situations.
We consider �rstly a modi�cation of the taut string through the tube T (Y �

n ; C=
p
n): At

local extreme values the taut string changes boundaries and a simple analysis shows that
this e�ect alone will cause some of the wavelet coe�cients of the residuals to exceed the
threshold level in the limit regardless of the value of � in (12). This may be recti�ed by
the simple expedient of replacing Sn by ~Sn where ~Sn = Sn except at local extrema of Sn

where ~Sn is de�ned to be the mean of the Yn(ti) values on the interval of constancy. The
integrated ~Sn will be denoted by ~S�n. This alteration neither alters the modality or the rate
of convergence. The behaviour of the wavelet coe�cients for candidate functions based on
~Sn is covered by the next theorem.

Theorem 3.3 For each constant A > 0 there exist a � > 0 such that under the thresholding
(12) the following hold.

(a) The coe�cients of all wavelets whose support is of length at most A(logn=n)1=3 are
eventually set to zero.
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Figure 3: These �gures show the application of the taut string methods to the Bumps
signal. In the left panel the bandwidth is 1:146�=

p
n and the lines at the bottom indicate

regions where wavelet coe�cients are not set to zero. The right panel shows the global
squeezing procedure where the band is squeezed until all wavelet coe�cients are set to
zero.

(b) At each local extremum tei of f there exists an interval Je
i (n;C) of length at most

A � C2= logn and which contains tei such that the coe�cients of all wavelets whose
support is not contained in one of the Je

i (n;C) are eventually set to zero.

Theorem 3.3 indicates that the suboptimal rate of convergence at local extrema will be
detected by the wavelet decomposition of the residuals. This is shown using the Bumps
data. Figure 3 shows the intervals where the wavelet coe�cients of the residuals are not
set to zero after thresholding. It also shows the e�ect of squeezing globally until all wavelet
coe�cients are zero: it results in several spurious local extreme values. In the next section
we describe how local squeezing may be used to improve the rate of convergence at local
extrema and with the result that the correct modality is obtained.

3.3 Local squeezing and wavelets

The results of the last section show that although the taut string is locally adaptive (
Mammen and van de Geer (1997)) it is not su�ciently so. Furthermore the problem cannot
be solved by decreasing the width of the tube globally. The calculations used in the proof
of Theorem 2.4 show that if the radius is of order n�3=5 instead of n�1=2 then the length
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of the interval which contains a local extreme value is of order (logn=n)1=5 and the rate of

convergence is of order (logn=n)2=5. This is almost optimal and calculations show that all
wavelet coe�cients will now be set to zero. Figure 3 demonstrates this e�ect. It the right
panel the tube has been squeezed until all wavelet coe�cients are zero resulting in many
spurious local extreme values. This may be countered by decreasing the width of the tube
only in an n�1=5-neighbourhood of the local extrema. This is as it stands not feasible as
the taut string with radius n�1=2 locates the local extrema only with an accuracy of order
n�1=6. The remaining possibility is to decrease the width of the tube on the intervals of
order n�1=6 which contain the local extreme points. We have

P

 
max
1�i�m

1p
m
j

iX
j=1

"(tj)j � �

!
� �2

�2

which implies the following. Suppose a local extreme of f is located at te = ie
n
. On putting

m = mn = Cn5=6 we obtain

P

 
max

ie�mn�i�ie+mn

�����1n
iX

j=ie�mn

(Yn (ti)� f (ti))

����� � �

p
C

n7=12

!
� �2

�2
:

The width of the tube is now n�7=12 compared with the optimal width of n�3=5. The pro-
portional di�erence is n�1=60. Repeating this procedure will always improve the asymptotic
rate of convergence but no �nite number of steps will result in the optimal width of n�2=5.
We now show that decreasing the width until the wavelet coe�cients are set to zero after
thresholding using (12) does result in an almost optimal rate of convergence.

We consider the taut string using a tube of radius Cn�1=2 and the modi�ed derivative
~Sn. As shown above with high probability this will result in the correct modality and all
the extreme points will lie in the corresponding intervals of ~Sn whose lengths will be of
order n�1=6. Furthermore after thresholding all wavelet coe�cients will be set to zero apart
from some in shrinking neighbourhoods of the local extreme points. We now gradually
squeeze the tube locally at the intervals where ~Sn has local extreme values. The squeezing
is continued until after thresholding all wavelet coe�cients are set to zero.

To analyse this procedure consider a piecewise constant function fn with the correct num-
ber of local extreme values and such that the local extreme points of f are contained in
the corresponding intervals where fn has its local extreme values. We suppose that after
thresholding the wavelet coe�cients of the residuals are set to zero and consider what im-
plications this has for the maximal deviation of fn from f . Consider �rstly a point t where
both f and fn are monotone increasing and let dn = fn(t)� f(t) > 0. A short calculation
shows that Z

In(t)

(fn(u)� f(u))du � A � d2n=f (1)(t):
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This implies that there exists a wavelet with support of length 1
2
dn � l � 2dn and whose

coe�cient is at least A � l2=f (1)(t). This will be set to zero after thresholding if and only if

l2=f (1)(t) �
r
l logn

n

which is equivalent to

dn � Ajf (1)(t)j2=3
�
logn

n

�1=3

: (13)

To investigate the behaviour at local extremes we consider an interval I of length l. A short
calculation shows

min
I;a
f
Z
I

maxf0; t2 � agdt;
Z
I

maxf0; a� t2gdtg � A � l3

for some universal constant A. Using this we see that there exists a wavelet whose support
is of length h and whose coe�cient is at least

A1 � l3 � A2

r
�l log l

n
: (14)

If

h � A

�
logn

n

�1=5

:

then (14) is at least

A

�
l logn

n

�1=2

which means that this wavelet will not be set to zero after thresholding. Putting all this
together gives the following theorem:

Theorem 3.4 Consider the model (3) as in Theorem 3.2 and let fn denote a sequence of
piecewise constant functions for which the following hold:

� the local extremes of f are contained in the local extremes of fn

� between local extremes fn has the same monotonic behaviour as f

� the lengths of the intervals where fn has its local extreme values are of order at least
(logn=n)1=5

� after thresholding the wavelet coe�cients of the residuals Yn � fn are all set to zero.
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Then at points t outside the intervals where fn attains its local extreme values

jf(t)� fn(t)j = O

 
jf (1)(t)j1=3

�
logn

n

�1=3
!
:

At points t in the intervals where fn attains its local extreme values

jf(t)� fn(t)j = O

 �
logn

n

�2=5
!
:

Theorems 3.2 and 3.4 taken together suggest the following procedure. Choose a C > 0 and
consider the resulting functions ~Sn. Apply local squeezing at the local extreme points of ~Sn

until after thresholding all the wavelet coe�cients are set to zero. The resulting regression
function will exhibit the optimal rates of convergence at all points outside the intervals
containing the local extrema. At such points the rate of convergence will di�er only by a
term of order (logn)2=5 from the optimal rate. A practical implementation of this procedure
will be described below.

3.4 A practical implementation

The taut string-wavelet method may be implementated as follows. Firstly, the standard
deviation of the noise is estimated by taking the median absolute deviation of the �nest
scale wavelet coe�cients of the raw data divided by 0.6745 (see Donoho et al.). The next
step is to choose a large initial global bandwidth 0. A reasonable choice is such that the
straight line connecting (0; 0) and (1; (1=n)

P
yi lies inside the tube. An alternative is to

use Theorem 2.2 and use an initial bandwidth 0 = C=
p
n where C is chosen to be the

0:95-quantile of the distribution of the maximum of a Brownian motion. Given the initial
width the taut string is calculated. The idea is to construct simultaneously the greatest
convex minorant and the smallest concave majorant of the �rst m points of the lower and
the upper bounds respectivelywhere both curves are forced to start in (0; 0): The number
m is successively increased until the minorant and majorant intersect at a point (u1; v1).
The procedure is repeated with starting point (u1; v1) instead of (0; 0) and continued until
the right end of the interval [0; 1] is reached. The complexity is O(n).

Having calculated the taut string we use the modi�ed version ~s0of the derivative s0 as
described just before Theorem 3.3. If the wavelet reconstruction of the residuals r�(ti) =
y(ti)� ~s0(ti) the algorithm terminates. If not the intervals Ij are determined where r�i 6= 0.
More precisely r�(ti) 6= 0 if and only if ti 2 [jIj. Each interval is extended until its end
points are knots of the taut string, ie for each j we determine the largest knot uj less
than or equal to the minimum of Ij and the smallest knot vj greater than or equal to the
maximum of Ij. This de�nes subintervals Jj � Ij and for each j the taut string procedure
applied to the data on the interval Jj gives a local model ~s0j , this time using the smaller
bandwidth 1 = q0. The squeezing factor q can be chosen as 0:9 of 0 :95 if one is cautious

14



or 0:5 if one wants to speed up the calculations at the risk of overestimating the modality.
A new candidate function s1 is �nally de�ned by the results of the taut string procedure, ie
s1(ti) is set to ~s0j(ti) if ti 2 Jj and s1(ti) = s0(ti) if ti 2 [0; 1] n [jJj: Simple considerations
show that this de�nition is sensible near at the end points of each interval Jj. This is made
more precise by the following lemma.

Lemma 3.1 If the taut string touches the upper (lower) bound in uj, then s1(uj) � s0(uj)
(s1(uj) � s0(uj)). If the taut string touches the upper (lower) bound in vj, then s1(vj) �
s0(vj) (s

1(vj) � s0(vj)).

The algorithm proceeds by calculating the wavelet reconstruction of the new residuals. If
again some wavelet coe�cients are still not set to zero further squeezing is applied, this
time with band width 2 = q20, until eventually the reconstruction of the residuals is
identically zero.

An implementation of this procedure requires that the threshold constant � of (12) be
speci�ed. Simulations and evaluation of real data sets indicate that � = 2 :5 is a satisfac-
tory choice.

3.5 Examples

Donoho and Johnstone (1994) use four test signals to demonstrate the behaviour of wavelet
thresholding. The results of applying the taut string-wavelet procedure to these functions
are shown in Figure 4
The Doppler signal is displayed in the upper left corner and shows a sinusoidal curve which
is smooth in the right half and very rough in the left half of the data. Local squeezing de-
tects the oscillations near the origin very well without introducing spurious extreme values
at other positions.

The main feature of the Heavisine signal in the upper right panels is the presence of
discontinuities near 1=3 and 2=3. The taut string reproduces them again without introduc-
ing spurious extreme values elsewhere.

The Blocks signal is a piecewise constant so it is not surprising that the taut string per-
forms very well. Indeed the reconstruction can hardly be distinguished from the original
signal.

Finally the noisy bumps signal is to be compared with Figure 3. Local squeezing has
identi�ed all the relevant peaks without introducing spurious ones. Between the relevant
peaks the taut string-wavelet function is almost zero.

15



0.0 0.2 0.4 0.6 0.8 1.0

–4
–2

0
2

4

t

y

0.0 0.2 0.4 0.6 0.8 1.0
–4

–2
0

2
4

t

y

0.0 0.2 0.4 0.6 0.8 1.0

–2
0

2
4

6

t

y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
15

t

y

Figure 4: Four noisy test signals and their reconstructions using the taut string procedure
with local squeezing.
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Figure 5: The data show the function f = 0 with a small peak of height hn = 10 locates
at 0:5 contaimnated with Gaussian noise. The sample size is n = 100: In the left panel
the peak is de�ned by 15 observations and it is not detected by the run method with
qu(n;0:95; Rn) = 15 :The left panel shows the same data but with one extra point in the
peak. It is now detected by the run method.
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Figure 6: A regression function corrupted with Gaussian noise and the reconstructions
based on n = 2048 observations. The left panel shows the e�ect of globally squeezing
until the peak near 0:8 is detected. The right panel shows the result of the local squeezing
procedure.

4 Low power peaks

Most work on non-parametric regression and density problems evaluates procedures in
terms of rates of convergence on test beds of the form (3). The distribution of the errors "(t)
is speci�ed and the regression function f is kept �xed whilst the number n of observations
is increased. In this situation there exist optimal rates of convergence (Khas'minski (1978),
Ibragimov and Khas'sminski (1980) and Stone (1982)). As shown the taut string method
based on a ball of radius Cn�1=2 attains the optimal rate away from the local extremes for
functions of speci�ed modality. The run method falls well short with a rate of convergence
of order (log logn)= logn: In spite of this the run base procedure can give better results
than an optimal taut string method based on a tube of constant radius. To investigate this
phenomenon we consider a di�erent form of test bed. Let f be a continuous function with
k peaks. We consider an interval [an; bn] which does not contain a peak and graft a peak
onto the function f: . The height of the peak is hn and we denote the new function by fn.
The power of the peak is de�ned to be

Ln =

Z 1

0

jf � fnj =
Z bn

an

jf � fnj: (15)
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Consider now the asymptotic test bed

Yn;i = fn
�
i

n

�
+ "n;i (16)

with Ln = o
�
n�1=2

�
; limn!1

p
n(bn � an) = 0 and limn!1 hn = 1. For large C the tube

T (fn�; C) will contain f� with large probability. As f has modality k so will the taut string
through the ball. From this it follows that Theorems 3.1 and 3.2 will continue to hold for
the asymptotic test bed (16). In other words the taut string method will fail to identify the
peak at [an; bn]. If Ln = o

�
n�2=3

�
then the Mammen and van de Geer taut string method

will not be able to distinguish between the test beds (3) and (16).

The behaviour of the run method on the test bed (16) is as follows: if

n(bn � an) � qu(n; �;Rn)+

then the peak will be detected whereas if

n(bn � an) � qu(n; �;Rn)

it will not be detected. Figure 5 shows this e�ect. The allowable run length is 15 ((4) with
� = 0 :95):The left panel shows a low power peak de�ned by 15 observations which is
ignored. If one additional observation is included in the peak then it is detected as shown
by the left panel. This property of the run method is useful as it means that blocks of
outliers can be dealt with. Indeed the length of the allowable run can be speci�ed not in
terms of � but in terms of the minimum block length of possible outliers or in terms of the
required modality.

The local squeezing method using wavelets will clearly identify the peak of fn. This is
demonstrated by Figure 6. Indeed the method will pick up a signal con�ned to one single
observation as long hn � B

p
log n where B depends on f and the threshold parameter

� . This is demonstrated by Figure 7 where a very low power peak de�ned by a single
observation is detected without introducing any spurious peaks. Whether a low power
peak represents a signal or the e�ect of outliers is a question that cannot be decided by
statistics alone.

5 Conclusion

We have introduced two methods for obtaining regression functions whilst keeping the
modality under control. Each method has advantages and disadvantages. The run method
can be calculated quickly in O(n) operations and it has certain desirable robustness prop-
erties. It can withstand many islolated outliers and can also be tuned to detect blocks of
outliers of a speci�ed length. The disadvantage is a slow rate of convergence. The taut
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Figure 7: A regression function corrupted with Gaussian noise and the reconstructions
based on n = 2048 observations. The left panel shows the e�ect of globally squeezing
until the peak near 0:8 is detected. The right panel shows the result of the local squeezing
procedure.

string-wavelet method has a complexity of O(n log n) and has almost optimal rates of con-
vergence on standard test beds. It is extremely sensitive being able to identify peaks of
very low power. This very sensitivity makes it susceptible to outliers. Implementations are
available from our home page at
http://wwwstat.mathematik.uni-essen.de.

We are indebted to Lutz D�umbgen and Martin L�owendick for useful comments.

6 Proofs

6.1 Proof of Theorem 2.1

We analyse the behaviour of the upper bound ui(n; �) de�ned by (5). We have from (4)

qn = qu(n; �;Rn) = log2 n+O(1):

Let

�i = max
(i�1)qn+1�j�iqn

"(tj); i = 1 ; : : : ;

�
n

qn

�
:
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If F denotes the common distribution function of the "(tj) then the common distribution
function of the �i is F

qn . We set an = dn log logn
(log2 n)

2 e and de�ne

�i = min
(i�1)an+1�j�ian

�j; i = 1 ; : : : ;

�
logn

log log n

�
:

The common distribution function of the �i is 1 � (1 � F qn)an. On using F (x) = 1
2
+ ax

for small x with a > 0 it follows that

P

�
�i � b log logn

log n

�
= O(exp(�c(logn)b0))

where c > 0 and where b may be chosen so that b0 > 0. For this choice of b we have

P

�
max

1�i�blogn= log lognc
�i � b log logn

logn

�
= O

�
(logn) exp(�c(logn)b0)

�
:

The upper bound ui(n; �) is non-increasing and we �rstly analyse its behaviour on an
interval where f where f (1)(t) > � > 0. Without loss of generality we set I = [0 ;j

n
]. The

above estimates show that

ui(n; �) � f(0) +
A log log n

logn
; i =

log logn

logn
: (17)

The corresponding result for the lower bound li(n; �) is

li(n; �) � f

�
j

n

�
� A log logn

logn
; i = j � log logn

logn
: (18)

As both the upper and lower bounds are non-increasing (17) and (18) imply

A
log logn

log n
+ f(0) � f

�
j

n

�
� A

log logn

logn
: (19)

As f (1)(t) > � > 0 on this interval we have

j

n
� A

log logn

logn
: (20)

It follows if the bounds have the wrong monotonic behaviour this will be detected at latest

on an interval of length O
�
log logn
logn

�
where the constant depends on the size of the deriva-

tive of f on the interval.

The case where the bounds have the same monotone behaviour as f is as follows. Be-
cause of the construction of the intervals it is clear that f will remain below the upper
bound and above the lower bound with probability at least �. On combining these two
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results we see the monotonic behaviour of the bounds which minimizes the number of local
extreme values will coincide with the monotonic behaviour of f with probability at least �
as n tends to in�nity. In other words the number of local extreme values will be determined
correctly for large n with probability at least �: The reasoning also shows that the lengths
of the intervals Iei (n; �) tend to zero with n and that the midpoints converge to the local
extreme points of f . Finally the reasoning which lead to (17) and (18) implies the rate of
convergence of (b) of the theorem.

6.2 Proof of Theorem 3.1

Let � denote the standard deviation of the "(t). The assumptions of the theorem imply
that

p
n"�n ) �W

where ) denotes weak convergence and W denotes the standard Brownian motion on
C[0; 1]: In particular we have

lim
n!1

P

�
max
0�t�1

jpn"�n(t)j � x

�
= P

�
max
0�t�1

jW (t)j
�
= 2�

�x
�

�
� 1

where � denotes the distribution function of a standard Gaussian random variable. It
follows that on the test bed (3)

lim
n!1

P

�
max
0�t�1

jY �
n (t)� f(t)j � Cp

n

�
= 2�

�
C

�

�
� 1:

As n tends to in�nity the probability that the function f lies in the tube T (Y �
n ; C=

p
n)

tends to one. As the taut string minimises the modality in T (Y �
n ; C=

p
n) we see that

lim
n!1

P(kCn � k) = 1 :

In the other direction we note that for f satisfying the assumptions of the theorem

inf
g2Mk�1

sup
0�t�1

jf�(t)� g�(t)j > 0

where Mj denotes the set of functions on [0; ] of modality at most j. This implies

lim
n!1

P(kCn < k) = 0

so that

lim
n!1

P(kCn = k) = 1 :

The other claims are proved similarly. If the lengths of the intervals Iei (n;C) do not converge
in probability to to zero then

max
t2Ie

i
(n;C)

jSn(t)� f(t)j

does not converge in probability to zero and this carries over to the integrated functions.
A similar argument applies to the convergence of the location of the local extreme points.
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6.3 Proof of Theorem 3.2

The proof of Theorem 2.3 relies on the modulus of continuity of the integrated process "�n
as expressed by

lim
�!0

P

�
sup

0�t;t+h�1;h��

p
nj"�n(t+ h)� "�n(t)j � A

p
�� log �

�
= 1 (21)

for some A > 0: This follows from the sub-Gaussian form of the "(t).

Proof of (a):
Suppose S�n is initially convex. Then S�n is the largest convex minorant of Y �

n + C=
p
n

until it reaches the left endpoint tl1(n;C) of Ie1(n;C) = ( tl1(n;C); t
r
1(n;C)). Then with

h0 = tr1(n;C)� tl1(n;C) we have

h0 = argmax0�h��
Y �
n (t

l
1(n;C) + h)� Y �

n (t
l
1(n;C))� 2Cp

n

h
(22)

for arbitrarily small � as n tends to in�nity. On writing tl1(n;C) = te1 � � we may rewrite
(22) to obtain

h0 = argmax0�h��
Y �
n (t

e
1 � �+ h)� Y �

n (t
e
1 � �)� 2Cp

n

h
:

A Taylor expansion together with the modulus of continuity of "�n gives

h0 = argmax0�h��

�
�h(3�� h)f (2)(te1)(1 + o(1))� 2Cp

nh
(1 + o(1))

�
:

This implies

�(3�� 2h0)f
(2)(te1)(1 + o(1)) = � 2Cp

nh20
(1 + o(1))

and as f (2)(te1) < 0 we may conclude 3� � 2h0(1 + o(1)) which implies te1 < tr1(n;C). Simi-
larly te1 � tl1(n;C) which proves that te1 lies in Ie1(n;C). The proofs for the other intervals
are analogous.

Proof of (b):
We suppose that Sn has a local maximum on Ie1(n;C) = [ tl1(n;C); t

r
1(n;C)]. As

jtl1(n;C)� te1j = o(1)

the modulus of continuity of "�n implies that we may replace (22) by

h0 = argmax0�h��
Y �
n (t

e
1 + h)� Y �

n (t
e
1)� 2Cp

n
(1 + o(1))

h
:
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A Taylor expansion and the modulus of continuity of "�n shows that this reduces to

h0 = argmax0�h��

�
1

6
h2f (2)(te1)(1 + o(1))� 2Cp

nh
(1 + o(1))

�

and hence

h0 � (6C)1=3jf (2)(te1)j
�1=3

n�1=6:

Proof of (c):
It is su�cient to consider x1 and x2 and to suppose that f� and S�n are both convex on
(x1; x2). On writing x2 = ( i1+ l1)=n and x = l=n for x1 � x � x2 we see that l1 is the local
argmin of

Y �
n (x1 +

l
n
)� Y �

n (x1)
l
n

:

A Taylor series expansion gives

Y �
n (x1 +

l
n
)� Y �

n (x1)
l
n

= f(x1) +
1

2
f (1)(x1)

l

n
+
"�n(x1 +

l
n
)� "�n(x1)
l
n

+O

 �
l

n

�2
!
:

The modulus of continuity (21) of
p
n"�n implies that large n

p
n

����"�n(t+ l

n
)� "�n(t)

���� � A

r
l log n

n

uniformly in t and l � 1. On setting l = ajf (1)(x1)j�2=3n2=3(logn)1=3 we have for

Y �
n (x1 +

l
n
)� Y �

n (x1)
l
n

� f(x1) +
1

2
ajf (1)(x1)j1=3

�
logn

n

�1=3

� Ap
a
jf (1)(x1)j1=3

�
log n

n

�1=3

+O

 
jf (1)(x1)j�4=3

�
logn

n

�2=3
!
:

From (b) of the theorem jf (1)(x1)j � An�1=6 for C � C0 and consequently the term

O

 
jf (1)(x1)j�4=3

�
logn

n

�2=3
!

may be neglected. This implies that for a su�ciently large

Y �
n (x1 +

l
n
)� Y �

n (x1)
l
n

� f(x1) +
1

4
ajf (1)(x1)j1=3

�
logn

n

�1=3

: (23)
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The lower bound

Y �
n (x1 +

l
n
)� Y �

n (x1)
l
n

� f(x1) + ajf (1)(x1)j1=3
�
log n

n

�1=3

: (24)

is obtained analogously. On putting a = a1 in (23) and a = a2 in (24) with a1 = 4 a2 with
a2 su�ciently large it follows that the local minimum is attained at a point x1 +

l
n
with

l

n
= O

 
jf (1)(x1)j�2=3

�
logn

n

�1=3
!
:

This proves (c) of the theorem.

Proof of (d):
We consider �rst the case where t = xi is a knot which does not delimit the position of a
local extreme value of S�n. We take S�n to be convex at xi. We have

Sn(xi) �
Y �
n (xi +

l
n
)� Y �

n (xi)
l
n

:

A Taylor expansion of order two combined with (21) gives for l = Af (1)(xi)
�2=3n2=3(logn)1=3

Sn(xi) � f(xi) + Ajf (1)(xi)j1=3
�
logn

n

�1=3

: (25)

Using

Sn(xi) �
Y �
n (xi)� Y �

n (xi � l
n
)

l
n

a similar argument gives

Sn(xi) � f(xi)� Ajf (1)(xi)j1=3
�
logn

n

�1=3

which when combined with (25) gives

jf(xi)� Sn(xi)j = O

 
jf (1)(xi)j1=3

�
logn

n

�1=3
!

at all knots xi which do not delimit a local extreme value of Sn. For a point t not in

[A
�
logn
n

�1=3
; 1� A

�
logn
n

�1=3
]n[k

i=1I
e
i (n;C) we have

jf(t)� Sn(t)j = jf(t)� Sn(xi)j
� j f(xi)� Sn(xi)j+ jf(t)� f(xi)j

� j f(xi)� Sn(xi)j+ Ajf (1)(xi)jjf (1)(xi)j�2=3

�
log n

n

�1=3

le Ajf (1)(t)j1=3
�
logn

n

�1=3
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where we have used

sup
xi�t�xi+1

jf
(1)(xi)

f (1)(t)
� 1j � A

for all intervals [xi; xi+1] which do not delimit a local extreme value. This follows from (b)
of the theorem.

Proof of (e):
This follows as in the other cases but using the next term of the Taylor expansion as
f (1)(t) = 0 for some point in the interval.

6.4 Proof of Theorem 3.3

Proof of (a):
The wavelet coe�cient wj;k is given by

wj;k =

p
n

2j=2
�
 
�Y �

n

�
k2j � 2j�1

n

�
+ ~S�n

�
k2j � 2j�1

n

�
+ Y �

n

�
k2j

n

�
� ~S�n

�
k2j

n

�

� Y �
n

�
(k + 1)2j

n

�
+ ~S�n

�
(k + 1)2j

n

�
+ Y �

n

�
k2j + 2j�1

n

�
� ~S�n

�
k2j + 2j�1

n

�!
:

(26)

To show that the wavelet reconstruction of the noise is zero using (12) for some � > 0 it
is su�cient to show that each wavelet coe�cient wi;k is at most �

p
� log n. This in turn

follows from the inequality

jY �
n (tl)� ~S�n(tl)� (Y �

n (ti)� ~S�n(ti))j � A
p
jtl � tij

r
logn

n
(27)

where (ti; tl) is one of the pairs ((k2
j � 2j�1)=n; k2j=n); (k2j=n; (k2j + 2j�1)=n). We have

Y �
n � ~S�n = "�n + f� � ~S�n:

and on using the modulus of continuity of
p
n"�n as given by (21) we obtain for any points

ti and tl with jtl � tij � 1=n

jY �
n (tl)� ~S�n(tl)� (Y �

n (ti)� ~S�n(ti))j � A
p
jtl � tij

r
logn

n

+jf�(tl)� ~S�n(tl)� (f�(ti)� ~S�n(ti))j:
(28)
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As

jf�(tl)� ~S�n(tl)� (f�(ti)� ~S�n(ti))j = j
Z tl

ti

(f(t)� ~Sn(t))dtj

� j tl � tij sup jf(t)� ~Sn(t)j

(c) and (d) of Theorem 3.2 imply

jf�(tm)� ~S�n(tm)� (f�(ti)� ~S�n(ti))j � Ajtm � tij
�
logn

n

�1=3

� A
p
jtl � tij

r
logn

n

if

jtl � tij � A

�
logn

n

�1=3

: (29)

Thus (27) holds for all intervals satisfying (29).
Proof of (b):
Because of (a) and Theorem 3.2 (c) all wavelets whose supports are contained between two
knots which do not delimit a local extreme values will be set to zero. It remains to consider
the case where none of the points de�ning the wavelet lies in an interval Iei (n;C). Consider
two such points ti < tl and let xi denote the �rst knot to the right of ti and xl the knot to
the left of tl. As

Y �
n (xl)� Y �

n (xi) = ~S�n(xl)� ~S�n(xi) (30)

it follows from (28) that it is su�cient to prove

jf�(xi)� ~S�n(xi)� (f�(ti)� ~S�n(ti))j � Ajxi � tij1=2
r

logn

n
: (31)

As

jf�(tm)� ~S�n(tm)� (f�(ti)� ~S�n(ti))j �
Z tm

ti

jf(x)� ~Sn(x)jdx

it follows from Theorem 3.2 and the fact that xi and ti are not separated by one of the
intervals where ~Sn has a local extreme value that

jf�(xi)� ~S�n(xi)� (f�(ti)� ~S�n(ti))j � Ajf (1)(xi)j1=3jxi � tij
�
log n

n

�1=3

: (32)

27



Theorem 3.2 (c) implies

jxi � tij � Ajf (1)(xi)j�2=3j
�
log n

n

�1=3

and hence

jxi � tij
�
log n

n

�1=3

� Ajf (1)(xi)j1=3jxi � tij1=2
r

logn

n
:

On substituting this in inequality (32) we obtain (28) which in turn implies (27).

Finally suppose that two of the points de�ning the wavelet are both contained in one
of the intervals Iei (n;C). Using (b) and (e) of Theorem 3.2 and the arguments just given
we see that the wavelet coe�cient wj;k will be set to zero if

Cn�1=3n�1=6 = n�1=2 � A

r
h logn

n

where h denotes the length of the wavelet. This reduces to h � A � C2= logn:
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