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Abstract

In this paper we propose a simulation study in order to discuss four statistical models dealing
with the problem of parameter estimation in enzyme-kinetics. The pseudo-maximun-
likelihood estimators for the transform-both-sidess-model and the weighted TBS-model are
compared with least-square-estimators of the classical nonlinear regression model and the
linearized Eadie-Hofstee-plot. Due to heteroscedasticity of enzyme-kinetic data in low dose

experiments the proposed estimators are investigated.
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1. Introduction

The description of complex enzyme-kinetic-reactions is strongly connected with the statistical
analysis of conventional MichaelisMenten-kinetic. The Michaelis-Menten-equation that
refers to the relation between the velocity v of the reaction and the concentration [S] of

substrateis as follows:

_ VoadS
R 0

where Ve Characterises the maximum velocity of the reaction and kr, is the half-saturation

constant. This constant defines the concentration of substrate achieving Vimax/2 in (1).

Selecting an appropriate statistical model in order to estimate the parameters (Vmax and ky) of
a MichaelisMenten-kinetic is of great importance. In Frei et a. (1999) the datistical
evaluation of enzyme-kinetic experiments investigating the potent liver carcinogen NTDMA
(N-nitro-dimethylamine) to rats has been described. One conclusion of Frei et al. (1999)
refers to similar estimators of the TBS and the weighted TBS-model after analysing low dose
data. This may cause in biased parameter estimators in this special application. In this
technical report a better validation of both statistical models will be connected with an
investigation of parameter estimation of the Eadie-Hofstee-plot (Eadie, 1942) and the

classical (unweighted) nonlinear regression.

On the one hand a validation has to consider the specific structure of data in enzyme-kinetic
experiments. Because of toxic effects, many experiments in high dose levels are not
practicable as described in Frei et al. (1999). In such an experiment observations of low dose
substrate concentrations are only available. On the other hand the statistical analysis of former
experiments indicate nonconstant error variances (heteroscedasticity). In these cases an
important assumption of nonlinear statistical models referring to constant error variances is
not fulfilled.

Hence simulations studies are an important adviser for future selection of a statistical model
in a real data situation and can validate the selection of statistical models of former
evaluations. Simulation studies are described in Currie (1982) or in Dowd and Riggs (1965).
The aim of Currie (1982) was to find an appropriate experimental design and Dowd and

Riggs (1964) compared linearization methods referring to satistical analysis of Michaelis-



Menten-kinetic. Zivin and Waud (1982) described the advantages of the Eadie-Hofstee-plot in
comparison to other linearization methods.

In this technical report a new simulation study is described in order to discuss four satistical
models. The four statistical models dealing with parameter estimation are explained in the
following paragraph. In paragraph three the simulation study is described. Especially the
specific simulated data structure is mentioned. All results of the study are summarized in
paragraph four. In sequence of three assumed error variance structures the presented figures
enable a comparison of the statistical models. Finally a conclusion of the whole simulation

study will be drawn.

2. Statistical M odels

Various methods were discussed in the literature (Ruppert et al., 1989; Zivin and Waud,
1982) in order to estimate the parameters Vimax and kn, referring to the Michaelis-Menten-
kinetic. In biology, chemistry or medicine the nonlinear function of the velocity of the
enzyme-catalyzed reaction is often handled by standard methods of linearization. For
example, the Eadie-Hofstee-plot (Eadie, 1942) belongs to these methods. Alternatively, the
statistical models of nonlinear regression consider nonlinearity in a direct way. Moreover, the
transformation and/or weighting of these nonlinear models yields a wider class of statistical

models dealing with the estimation of Viax and ki
2.1 The Eadie-Hofstee-plot

The reciprocal of both sides of equation (1) and the multiplication with viax and ky, results in a

linearization of the Michaelis-Menten-function. By rearranging this new equation we yield:

v=v_ -k *. )
c

-

Plotting v versus Y from (2) resultsin a line with intercept vmax and slope -kn. Therefore the
C

-

linear regression model is appropriate. It is defined as:

Vi = Vi — Kim % + ¢, Where 3

e, i=1, ..., n, are assumed to be identical and independent distributed

(i.i.d.) with a constant variance.



The least-square-method leads to estimators of the intercept vimax and the slope —kn, by solving

the minimization problem

ooy V.
min Sy ¥, = (Vo — K =)0 (4)
Vinax» Km = D Si |:|

(for details see for example Zivin and Waud, 1982).
A problem of this method concerns the quotient of dependent variable y; and independent
variable x;. Biased estimators can be the result of this problem.

In this simulation study the SAS procedure Proc Reg has been used for computing the
estimators.

2.2 The classical nonlinear regression model

The application of classical (unweighted) nonlinear regression model to Michaelis-Menten-
Kinetic results in the model

V_ .S

v, = —mx3 e 5
'k, +s ®)
where the errors g, i= 1, ... , n, are assumed to be independent and

identical distributed with constant variances.

From the model (5) we yield estimators for vimax and ky, with ordinary least-square-method.

— o U vmaxsi
RQS = Z g/i - E%T% (6)

requires an application of a nonlinear optimization algorithms. In the presented simulation
study the DuD-algorithm (doesn't use derivatives-algorithm) has been applied. This method

The minimization of

approximates the nonlinear function at each iteration step by an affine function that agrees
with the approximated functions of previous iteration steps. Thereby a linear least-square-
problem leads to estimators of the parameters (Ralston and Jennrich, 1978).

The estimation of parameters by the least-squares-method is optimal and yields ML-
estimators if additionally the errors are normally distributed.



Violations of the assumptions especially heteroscedasticity may lead to biased estimators.
Transformation and/or weighting of the classical nonlinear regression model are well known

methods to handle this problem.
The SAS procedure Proc NIin has been used for computing the estimators.
2.3 The TBS-mode

The TBS-model (transform-both-sides-model) is a modified nonlinear regression model
which deal with the problem of heteroscedasticity by transforming data. Here the
transformation rule proposed by Box and Cox (1964) is used. This transformation is defined
as follows:
AN=1) /A if A0
0gz if A=0. @)

The application of the Box-Cox-transformation to both sides of equation (5) is expressed by
the following TBS-model:

v® = YmaS qm 1 g j=1.. N, 6)

K, *S

The Box-Cox-transformation of v; causes a symmetric distribution of errors and a constant
error variance. Besides this the transformation of the regression function preserves the
relation between v; and s in absence of the stochastic error term. The functional relationship

holds in case of adeterministic model.
2.4 The weighted TBS-model

An alternative approach to handle heteroscedasticity is the definition of a flexible weighting
function. By applying the weighted nonlinear regression model to the Michaelis-Menten-
Kinetic we yield:

V= g @), ©)

where g, i=1, ..., n, are functions depending on an additional parameter

0 and the concentration of substrate s.



The weighting of the errors with consideration of the concentration of substrate counteracts

heteroscedasticity. Former analyses of experiments of enzyme-kinetics indicate that especially
the power function g, (6) = sie , 1=1, ..., n, is appropriate for weighting the errors in order to
consider the influence of the concentration of substrate on the variability of the observed
velocities (Gilberg, 1996; Ruppert et al., 1989).

Combining approach (9) and transformation (7) we yield the weighted TBS-model:

V.S
Vi(7\) :[ max i ](7\) +Si9e

10
e (10)

Consequently, we have to estimate two additional parameters A and 6 which give an insight
into the underlying error structure. In addition, if 8 = 0 the TBS-model is a special case of
the weighted TBS-model and if 8 = 0 and A =1 the classical nonlinear model is a special
case of the weighted TBS-model.

For smultaneously estimation of the parameters Vimax, km, A and 6 using the weighted TBS-
model (10) a pseudo-maximum-likelihood-method by Giltinan and Ruppert (1989) has been
applied. The resulting pseudo model can be implemented in SAS using the procedure Proc
NIin. For details of implementation see Giltinan and Ruppert (1989) and Gilberg (1996).

3. Description of the simulation study

Simulation of data and computation of estimators has been performed using SAS, version 6.12
TS level 045 on an Intel 200 MHz workstation under Windows NT, version 4.0.

3.1 Error structures

An aim of this simulation study is to consider different error structures in order to compare

the four statistical models. Hence we suppose the following error gructures, i=1, ..., n:

» Congtant error variance: Var(e)=0.002.
Together with normally distributed errors this error variance is an important
assumption of nonlinear regression. Therefore this error structure has the function of

control if we compare different error structures.
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+ Relative constant error variance: Var(e)=[0,2 E(v))]>.

: : : . V.S
An error variance that is connected with the expected velocities E(v;) = km¢
m + Si

Former statistical analysis of enzyme kinetics indicates that the quantity of variability
may depend on the substrate doses (Edler et al., 1997). This defined structure of
variance corresponds to this experience.

+ Heteroscedastic error variance: Var(e)=[(0,05+0,1s)/(km+s)]>.
An error variance that varies and has no relation to the expected velocities E(vi). In
Currie (1982) this heteroscedastic condition has been used in a simulation study
comparing different statistical models to the proposed.

3.2 Simulation of the data
An example of substrate dosesthat can be analysed is:
0.008, 0.016, 0.024, 0.048, 0.096, 0.192, 0.384, 0.768, 1.536.

These values indicate a normal dose level, if v, =1 and k,=0.1 as defined in this

example. A data set of alow or high dose level can be generated by multiplication of these
normal values with a constant factor k. In this simulation study k [J {O.L 0.2, 03, .. ,0.9} are

factors for generating low dose level data sets and K D{Z, 3 ..., 10} are factors for

generating high dose level data sets.

For each data set the velocities v; are calculated by:

v = —mS Var(e ) pseudo, j=1,..,.9
i - km—+sj i p 1J_ ey
where Var(g) depends on the assumed error structures (3.1) and pseudo is a standard normal

distributed random number.

All together on each data set 500 Monte-Carlo simulations have been performed. With
consideration of each error sructure we yield 1500 simulated data sets consisting of 9
substrates and 9 velocities for k=0.1, 0.2, ..., 0.9, 1, 2, ...., 10.



The evaluation of all simulated data in low/high dose levels for each error structure results in
13.500 estimations. An additional evaluation of simulated data in normal dose levels (k=1)
results in 1500 estimations. For each error structure and low or high dose levels the
computations result in 4.500 estimations and for normal dose level data sets in 1.500

estimations.

The evaluation of all four discussed statistical models and error structures results in 114.000

estimations.

4. Results
The following statistics are considered in order to describe the results of the simulation study:

- Arithmetic mean of all simulated estimators for each error structure and statistical

model.

- Smulation error o = i, where sis standard deviation of N simulated estimators.

JN
- Coefficient of variation CV, calculated as quotient of standard deviation and arithmetic

mean.

In this simulation study the simulation error of estimated ki, varies from 0.0001 to 0.0027 and
the simulation error of estimated Vinax Varies from 0.0006 to 0.0154. Therefore the variation of
mean estimators is small and the bias of estimators can be quantified by the examination of

the arithmetic mean of simulated estimators and the coefficient of variation.

4.1 Figures

First we compare all estimators of the simulated data with constant error structure. The
arithmetic mean of the estimators vimax and ki, are plotted in figure 1 and 2 and the coefficients
of variation (CV) referring to the estimators of v are plotted in figure 3. The coefficients of

variation of the estimators of k, are not presented because they are similar to those of Viax.
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If we consider constant error structure figures 1 and 2 indicate similar mean estimators
referring to the classical nonlinear regression, the TBS-model and the weighted TBS-model.
Little overestimated kn,, by the weighted TBS-model and little underestimated kn, by the TBS-
model and nonlinear regression can be pointed out in figure 2. Taking into account the
guantity of this overestimated/underestimated parameters these results can be neglected. It is
remarkable that the mean estimators of the Eadie-Hoftsee-plot strongly differ from true
parameters (horizontal reference lines). Therefore these estimators are comparatively useless.
By increasing k the mean estimators of the Eadie-Hoftstee-plot are less biased. But they are
comparatively more biased if we compare them to the other etimators. In the important low
dose level (0.1<k<1) figure 1 and 2 show that Eadie-Hoftsee-plot should not be used in

evaluations.

Two results can be stated by figure 3. First in low dose level (excepted k=0.1) the coefficient
of variation referring to the Eadie-Hofstee-plot ranges from 0.06 to 0.14 and coefficient of
variation referring to the other models ranges from 0.02 to 0.06. These two ranges stress that
Eadie-Hofstee-plot should not be used in low dose level. Second in dose levels of k>4 all

CV’sare below 0.02. This result and the decrease of all CV'’s show estimators with decreasing
10



standard deviation. In other words standard deviation amounts less than 2% of mean
estimator. For this reason figure 3 confirms that the least-square-method yields optimal
estimators in the case of normally distributed errors and constant error variance.

As the last result should have been expected in every simulation study the control of

simulation study by constant error structure is fulfilled.

Next we compare all estimators of the simulated data with relative constant error structure.
The arithmetic mean of the estimators vmax and ki, are plotted in figure 4 and 5 and the
coefficients of variation (CV) referring to the estimators of vimax are plotted in figure 6. The
coefficients of variation of the estimators of k, are not presented because they are similar to

those of Viax.
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If we consider the relative constant error structure figures 4 and 5 indicate that the mean
estimators of the TBS-model and the weighted TBS-model are near the true parameters.
Underestimation can be pointed out by the Eadie-Hofstee-plot and overestimation can be
pointed out by the classical nonlinear regression model. The mean estimators of Eadie-
Hoftsee-plot and the classical nonlinear regression model show a strong increase/decrease in
dose levels with k<0.4. The estimated vmax Of the Eadie-Hofstee-plot amount about 0.09 in
dose level k = 0.6. Therefore a relative constant error structure can be better aggregated by

the Eadie-Hoftsee-plot in dose levels with k = 0.6 than a constant error structure.

Figure 6 stresses the last result. Because now, the coefficients of variation of Eadie-Hofstee-
plot in low dose levels are lower than CV'’s of other statistical models (excepted k=0.1).
Considering k between 0.2 and 1 the coefficients of variation can be ordered by their
guantities. Thereby CV’s of the Eadie-Hofstee-plot are lower than CV’s of the TBS-model.
Then CV’s of the TBS-model are lower than CV’s of the weighted TBS-model and
furthermore CV's of the weighted TBS-model are lower than CV’s of the classical nonlinear
regression model. A ranking of statistical models referring to these coefficient of variation
should be made with consideration of systematically underestimation by Eadie-Hofstee-plot
and overestimation by classical nonlinear regression model and additional estimation of 8 by
the weighted TBS-model. An additional estimator decreases number of degrees of freedom
referring to the standard deviation of the estimator and a lower number of degrees of freedom
increases standard deviation. In high dose levels all CV’s have arange of 0.03 which is lower

than the range in low dose levels. This indicates better estimatorsin high dose levels.

Finally we compare all estimators of the simulated data with heteroscedastic error structure.
The arithmetic mean of the estimators vmax and kp, are plotted in figure 7 and 8 and the
coefficients of variation (CV) referring to the estimators of vimax are plotted in figure 9. The
coefficients of variation of the estimators of k, are not presented because they are similar to

those of Viax.

13



1.20 -
1.00 - - —~ - =
e .
1 e . * * *
8 (.80 - n . ¢
E 1 a .
5 .
S 1m
B 0.60 - o
0N ¢
B O
§ :14:
$ 040 | o
:0
0.20 -
0.007““““‘\““““‘\““““‘\““‘““\““‘“"\““““‘\““““‘\““““‘\““““‘\““““‘\
0 1 2 3 4 5 6 7 8 9 10

‘0 Eadie-Hofstee-plot m Classical nonlinear regresson model ~ TBS-model < Weighted TBS-model

Figure 7: Mean estimator of vmax, heteroscedastic error structure.

0.12
0.10
0.08
0.06

0.04 -

mean estimator of km

0.02 1

0.00 1
¢

-0.02 -

| E— & = p
[, | [ |
D
||
- *
ry ‘
n . *
u IS
*
n
1 .
L 4
M‘ T T T T T T T T T T T T T T 1
)] 1 2 3 4 5 6 7 8 9 10
k

‘0 Eadie-Hofstee-plot m Classical nonlinear regresson model = TBS-model < Weighted TBS-model

Figure 8: Mean estimator of km, heteroscedatic error structure.

14



0.90 -
0.80 -
0.70 -
0.60 |
050 |

.
0.40 -

cv

030 ™
0.20 -

0.10 | *0948)

“ol

ol 4
i
el 2
e
L 2

T4

0.007““““‘\““““‘\““““‘\““‘““\““‘“"\““““‘\““““‘\““““‘\““““‘ T

w

N

(o] <
\,

(o]

©o 1

0 1 2
k

‘0 Eadie-Hofstee-plot m Classical nonlinear regresson model ~ TBS-model < Weighted TBS-model ‘

Figure 9: Coefficient of variation referring to estimators of vma, heteroscedastic error
structure.

If we consider the heteroscedastic error structure figure 7 indicates the best estimation of Vimax
with the weighted TBS-model. Estimators of the classical nonlinear regression model and the
TBS-model are similar. Extremely biased estimators of v are achieved by the Eadie-
Hofstee-plot. The same result can be seen in figure 8 referring to estimators of k. Moreover,
overestimated parameters will be found in figure 8 if we consider the mean estimators of the
weighted TBS-model in high dose levels (k>1). It is remarkable that the mean estimators of
Eadie-Hofstee-plot are negative in dose levels with k=0.1 and k=0.2. The increase of the
mean estimator of Eadie-Hofstee-plot is lower than in figure 7 and the mean estimators of kn,
are not higher than 0.06. For these two reasons the Eadie-Hofstee-plot is not an appropriate

statistical model referring to the heteroscedastic error structure.

Figure 9 makes clear that alow range of 0.06 to 0.16 of the coefficient of variation referring
to the Eadie-Hofstee-plot indicate comparatively useful estimators in low dose levels with
k<1. In contrast, the quantities of these estimators strongly deviate from true parameter (cf.
figure 7 and 8). Therefore estimators referring to Eadie-Hofstee-plot are not appropriate.

Heteroscedastic error structure will be indicated by this plot in low dose level if we consider

15



the comparatively high range of CV (0.08 to 0.78) referring to the classical nonlinear
regression model, the TBS-model and the weighted TBS-model. Useful estimators are
indicated by values of CV between 0.04 to 0.08 in high dose levels. Furthermore CV'’s of the

weighted TBS are minimal in comparison to all other models in dose levelswith k > 0.8.

The assumed error variance structures can be recognized by the estimators of transforming
parameter A and the estimators of weighting parameter 6. For example, if we consider a
constant error variance the mean estimators of 8 of the TBS-model are between 0.7908 and
0.9873 (cf. table 5 in appendix). Therefore the constant error structure is well recognized.
Flexibility in the TBS-model and in the weighted TBS-model will be found if we consider

heteroscedastic error variance (cf. table 6 in appendix.).

5. Conclusions

From the point of expected results assuming constant error structure and of the low simulation

error (o <2 %) we can justify the proposed simulation study. Furthermore the recognition of

error structure secure the possibility of a careful discussion of the results.

Summarizing the TBS-model and the weighted TBS-model will be more appropriate than the
Eadie-Hofstee-plot or the classical nonlinear regression model. Only in one case (estimator of
km referring to relative constant error structure) the Eadie-Hofstee-plot will be more
appropriate than the classical nonlinear regression model if we accept an underestimation of
km to be a conservative method for example in toxicokinetics. In all other cases the Eadie-
Hofstee-plot should not be applied.

The results of this simulation study lead to this conclusion because of several reasons.

» Especially the estimators of the TBS-model and the weighted TBS-model are acceptable
in the important low dose level if we consider all three error structures.
» The coefficients of variation assuming relative constant and heteroscedastic error structure

are comparatively low if we consider TBS and weighted TBS-model.

16



* In areal data sStuation the error sructure is unknown and the TBS-model and the
weighted TBS-model are able to recognize the underlying error structure by estimating the

transformation parameter A and weighting parameter 6.

This simulation study does indicate an influence of overparameterisation referring to the
weighted TBS-model in the case of relative constant error structure. In future evaluations the
choice of the weighted TBS-model with two additional parameters or of the TBS-model with
only one additional parameter should be made in consideration of similar estimators of k, or
Vmax but different standard deviations. In Frei et a. (1999) smilar estimators of the TBS
model and the weighted TBS-model caused the choice of the TBS-model.

Nevertheless it has to be discussed if different nonlinear optimization algorithm than DuD-
algorithm yields better TBS- or weighted TBS-estimators.
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TBS Constant Relative H eteroscedastic
model error constant error

structure error structure

structure

mean of mean of mean of
k A sd. A sd. A sd.
0.1 0.8764 0.1505 0.0051 0.1299 0.4827 0.1785
0.2 0.8989 0.1369 0.0147 0.1326 0.6196 0.2356
0.3 0.9152 0.1288 0.0132 0.1432 0.7515 0.2598
0.4 0.9293 0.1369 0.0070 0.1675 0.8471 0.2621
0.5 0.9366 0.1552 0.0166 0.1633 0.9111 0.2694
0.6 0.9565 0.1400 0.0171 0.1724 0.9571 0.2804
0.7 0.9608 0.1452 0.0097 0.1762 0.9927 0.2571
0.8 0.9759 0.1508 0.0103 0.1893 1.0280 0.2648
0.9 0.9725 0.1521 0.0208 0.2006 1.0953 0.2851
1 0.9873 0.1667 0.0253 0.1998 1.0939 0.2751
2 0.9697 0.2286 0.0084 0.2656 1.2557 0.2783
3 0.9680 0.2902 0.0355 0.3177 1.3576 0.3408
4 0.9625 0.3403 0.0518 0.3809 1.4615 0.3590
5 0.9376 0.3934 0.0746 0.4320 1.5759 0.3912
6 0.9014 0.4472 0.1110 0.4496 1.6255 0.3935
7 0.8799 0.5143 0.1180 0.4534 1.6995 0.3905
8 0.8877 0.5407 0.1326 0.5044 1.7679 0.3998
9 0.9064 0.5742 0.1316 0.5416 1.8469 0.5173
10 0.7908 0.5789 0.1605 0.5593 1.8589 0.5178
Table5: Mean estimator of transforming parameter A , sandard deviation (s.d.) in dark columns.
Weighted Constant Relative Heteroscedastic
TBS error constant error
model structure error structure

structure

mean of mean of mean of mean of mean of mean of
K A sd. 8 sd. A sd. ) sd. A sd. ) sd.
0.1 0.5275 0.3140 -0.2748 0.2175 0.3943 0.7956 0.3327 0.6859 0.4582 0.2114 -0.0457 0.1509
0.2 0.4971 0.3234 -0.3176 0.2432 0.3034 0.7165 0.2193 0.5603 0.5395 0.2188 -0.1528 0.1701
0.3 0.5103 0.3517 -0.3054 0.2583 0.2167 0.6508 0.1414 0.4742 0.5506 0.2531 -0.2573 0.1663
0.4 0.5464 0.3964 -0.2748 0.2744 0.1839 0.5996 0.1141 0.4004 0.5729 0.2753 -0.2821 0.1451
0.5 0.5815 0.4224 -0.2479 0.2739 0.1714 0.6310 0.0962 0.4040 0.5509 0.2637 -0.3123 0.1423
0.6 0.6429 0.4785 -0.2113 0.2939 0.1671 0.5419 0.0891 0.3326 0.5166 0.2855 -0.3463 0.1346
0.7 0.6455 0.4653 -0.2023 0.2815 0.1607 0.5431 0.0852 0.3195 0.5288 0.2938 -0.3589 0.1474
0.8 0.7210 0.4790 -0.1591 0.2776 0.1639 0.5737 0.0819 0.3137 0.5053 0.2951 -0.3671 0.1418
0.9 0.7686 0.4917 -0.1242 0.2687 0.1934 0.6128 0.0895 0.3273 0.5231 0.3176 -0.3741 0.1431
1 0.7545 0.5437 -0.1335 0.2884 0.2259 0.5824 0.1019 0.3079 0.5179 0.3166 -0.3733 0.1444
2 0.8394 0.6957 -0.0582 0.2696 0.1885 0.5751 0.0714 0.2354 0.5154 0.3295 -0.3926 0.1417
3 0.8383 0.7812 -0.0485 0.2482 0.2529 0.6736 0.0762 0.2185 0.5599 0.3769 -0.3699 0.1407
4 0.7239 0.8403 -0.0742 0.2298 0.3282 0.6704 0.0905 0.1875 0.6217 0.4254 -0.3475 0.1387
5 0.7452 0.9636 -0.0509 0.2281 0.3102 0.7535 0.0717 0.1804 0.7256 0.4818 -0.3056 0.1446
6 0.7019 0.9891 -0.0509 0.2123 0.3607 0.7315 0.0679 0.1682 0.7435 0.5263 -0.2956 0.1453
7 0.6566 1.1341 -0.0478 0.2084 0.3499 0.7181 0.0621 0.1518 0.8087 0.5446 -0.2750 0.1473
8 0.6295 1.2189 -0.0519 0.2109 0.4194 0.7496 0.0771 0.1528 0.9121 0.5211 -0.2397 0.1302
9 0.7374 1.2751 -0.0333 0.1986 0.3952 0.7579 0.0681 0.1482 0.9236 0.6813 -0.2429 0.1448
10 0.5525 1.3819 -0.0416 0.2096 0.4802 0.8022 0.0820 0.1491 0.9015 0.7225 -0.2282 0.1347

Table 6: Mean estimator of transforming parameter A and weighting parameter 6, standard deviation (s.d.) in

dark columns.
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