
IMPLEMENTATION STRATEGIES FOR PARTICLE FILTER BASED

TARGET TRACKING

A Thesis
Presented to

The Academic Faculty

by

Rajbabu Velmurugan

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
May 2007



IMPLEMENTATION STRATEGIES FOR PARTICLE FILTER BASED

TARGET TRACKING

Approved by:

Dr. James H. McClellan,
Committee Chair
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Jeffrey A. Davis
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. David V. Anderson
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Brani Vidakovic
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Dr. Aaron D. Lanterman
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: 27 March 2007



ACKNOWLEDGEMENTS

I was able to pursue this research work because of the guidance, help, support, and friendship

of many people at different stages. I thank Prof. McClellan for having advised and guided

me in pursuing this research. By asking the right questions at the right time he helped me

to stay focused on my research. I would also like to thank him for having given me the

opportunity to come to Georgia Tech. I have learnt a lot about research and teaching from

Prof. McClellan. I thank Prof. Anderson and Prof. Lanterman for their suggestions and

feedback at different points in my research. I thank Prof. Davis and Prof. Vidakovic for

being on my PhD committee and the useful discussions I had with them.

Two of my friends, Volkan Cevher and Shyam Subramanian, at Georgia Tech played an

important part in my research. Volkan helped me by providing the motivation and avenues

to get started on my research. I thank him for introducing me to particle filters and target

tracking, and for the discussions I had with him and his feedback. Shyam helped me in

filling some of the missing pieces in my research and introduced me to MITEs. I thank him

for his patient explanations and the useful discussions we had.

I thank Prof. Pragasen Pillay at Clarkson University and Pradhyumnan Ramkumar for

having introduced me to digital signal processing.

I thank my friends from Prof.McClellan’s group: Sam Li, Milind Borkar, Greg Krudysz,

Mubashir Alam, Qiang-Le, Ali Cafer, Faisal Shah, and Karan Chopra for both the academic

and non-academic discussions, conversations we had. I thank all friends in the Center for

Signal and Image Processing (CSIP) group for making it an interesting place to be. I

especially thank Nicolas Gastaud, Badri Vellambi, Yeongseon Lee, Maneli Noorkami, Kevin

Chan, Raviv Raich, Martin Tobias, Will Leven, Kerkil Choi, Mina Sartipi, Majid Fozunbal,

and Amol Borkar for helping me by providing a friendly and social atmosphere. I also thank

Deryck Yeung, Dwi Mansjur, and Mohanned Sinnokrot for the useful discussions I had with

them.

iii



I also thank Keith May and Sam Smith for helping with the computing facilities and all

the staff members at CSIP for their help.

I thank my friends and former colleagues at The MathWorks. I learnt a lot from them

which still helps me in various aspects of my research.

I thank all my FRIENDS and FAMILY with out whom I would not have been at Georgia

Tech or pursued this research.

iv



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Importance sampling . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 State-space representation . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Target Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 Past research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Bearings-only tracker and batch measurement-based tracker . . . 13

1.3 Implementation of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Power-aware design . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.2 Analog computation using MITEs . . . . . . . . . . . . . . . . . . 19

1.3.3 Implementation of particle filters . . . . . . . . . . . . . . . . . . . 20

1.4 Contributions and Organization of this Thesis . . . . . . . . . . . . . . . 23

II ACOUSTIC MULTI-TARGET TRACKING USING DIRECTION-OF-ARRIVAL
BATCHES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Batch measurements for multi-target tracking . . . . . . . . . . . 28

2.1.2 Acoustic DOA tracker . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Tracker System Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Beamformer Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Particle Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 State update model . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.4.3 Data likelihood function . . . . . . . . . . . . . . . . . . . . . . . . 36

v



2.4.4 Particle filter proposal function . . . . . . . . . . . . . . . . . . . . 38

2.4.5 Algorithm details . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 The MHMH Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6 Other Tracker Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.6.1 Extended Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.2 Laplacian filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.1 System simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.7.2 Comparisons of DOA trackers . . . . . . . . . . . . . . . . . . . . 50

2.7.3 Target tracking with a road prior . . . . . . . . . . . . . . . . . . 55

2.8 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

III RADAR RANGE-ONLY MULTI-TARGET TRACKING . . . . . . . . . . . . 59

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.2 State-space Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.1 State update model . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2.2 Observation model . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2.3 Observability of the state vector . . . . . . . . . . . . . . . . . . . 62

3.3 Particle Filter Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Data likelihood function . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.2 Proposal function . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

IV MIXED-MODE IMPLEMENTATION OF A PARTICLE FILTER . . . . . . . 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Particle Filter-based Tracking . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.1 Bearings-only tracking . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2.2 Particle filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 Particle Filter Implementation . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Mixed-mode implementation . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Nonlinear function realization using MITEs . . . . . . . . . . . . . 77

vi



4.3.3 FPGA implementation of particle filter . . . . . . . . . . . . . . . 82

4.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.4.1 Mixed-mode implementation . . . . . . . . . . . . . . . . . . . . . 88

4.4.2 Digital implementation . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Simulations: Bearings-only Tracking . . . . . . . . . . . . . . . . . . . . . 90

4.5.1 Tracking using the mixed-mode implementation . . . . . . . . . . 91

4.5.2 Tracking using the FPGA implementation . . . . . . . . . . . . . 93

4.6 Comparison of the Mixed-mode Implementation to a Digital Implementation 93

4.6.1 Power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.2 Chip area, speed, and accuracy . . . . . . . . . . . . . . . . . . . . 99

4.7 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

V IMPLEMENTATION OF A BATCH-BASED PARTICLE FILTER TRACKER 102

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 A System View of Batch-based Particle Filter Tracker . . . . . . . . . . . 103

5.2.1 Particle proposal stage . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.2 Particle weight evaluation stage . . . . . . . . . . . . . . . . . . . 105

5.2.3 Implementation strategy . . . . . . . . . . . . . . . . . . . . . . . 108

5.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.4 Fixed-point Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5 Floating-point DSP Implementation . . . . . . . . . . . . . . . . . . . . . 119

5.6 FPGA Implementation of Certain Sections . . . . . . . . . . . . . . . . . 124

5.6.1 Particle state update . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.6.2 Data likelihood evaluation . . . . . . . . . . . . . . . . . . . . . . 125

5.6.3 Particle weight evaluation . . . . . . . . . . . . . . . . . . . . . . . 126

5.6.4 Newton-Raphson search . . . . . . . . . . . . . . . . . . . . . . . . 127

5.6.5 Summary of resource and latency in batch-based particle filter . . 129

5.7 Analog implementation of the DOA update function . . . . . . . . . . . . 130

5.8 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.8.1 DSP implementation . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8.2 FPGA implementation . . . . . . . . . . . . . . . . . . . . . . . . 133

5.8.3 Analog implementation . . . . . . . . . . . . . . . . . . . . . . . . 135

vii



5.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

VI CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

APPENDIX A DATA-LIKELIHOOD APPROXIMATION . . . . . . . . . . . . . 144

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

viii



LIST OF TABLES

1.1 Pseudo-code for a resampling algorithm [71]. . . . . . . . . . . . . . . . . . 10

1.2 Sampling Importance Resampling (SIR) particle filter. . . . . . . . . . . . . 12

1.3 Comparison of bearings-only tracker to batch measurement-based tracker. . 16

1.4 Comparison of DSPs to FPGAs. . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Acoustic DOA particle filter tracker pseudo-code. . . . . . . . . . . . . . . . 43

2.2 MHMH sampling algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3 MHMH block pseudo-code. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.4 Simulation parameters - Acoustic target tracker. . . . . . . . . . . . . . . . 48

3.1 Range-only particle filter tracker pseudo-code. . . . . . . . . . . . . . . . . . 65

3.2 Simulation parameters - Range-only target tracker . . . . . . . . . . . . . . 66

4.1 Bearings-only tracker particle filter pseudo-code. . . . . . . . . . . . . . . . 75

4.2 Approximations used in the analog implementation of nonlinear functions. . 79

4.3 Residual Systematic Resampling adapted from [5]. . . . . . . . . . . . . . . 87

4.4 Xilinx Virtex II Pro FPGA - XC2VP30 - Device details. . . . . . . . . . . . 87

4.5 FPGA resource utilization for bearings-only tracker. . . . . . . . . . . . . . 88

4.6 Time delay at various stages of bearings-only tracker. . . . . . . . . . . . . 88

4.7 Characteristics of the MITE implementation - arctan and Gaussian functions. 89

4.8 Simulation parameters - Mixed-mode bearings-only tracker. . . . . . . . . . 89

4.9 Characteristics of the digital implementation - CORDIC algorithm. . . . . . 98

4.10 Comparison of estimated power dissipation - Mixed-mode to a digital imple-
mentation of the bearings-only tracker. . . . . . . . . . . . . . . . . . . . . . 99

5.1 Functions to be implemented for the batch-based DOA target tracker . . . 107

5.2 Notation for computational complexity analysis. . . . . . . . . . . . . . . . 110

5.3 Computational complexity analysis - Batch-based particle filter tracker. . . 111

5.4 Simulation parameters - Fixed-point simulations. . . . . . . . . . . . . . . . 117

5.5 Tracking performance (RMSE) for varying wordlengths and fraction lengths
- Single-target case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.6 Tracking performance (RMSE) for varying word lengths and fraction lengths
- Multi-target case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.7 Memory sections and sizes in the C6713-DSK [111]. . . . . . . . . . . . . . . 120

ix



5.8 Notation for data-size analysis. . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.9 Estimated data size, using the notations and values in Table 5.8. . . . . . . 120

5.10 Size of memory sections in the IRAM, for N = 1000,K = 1, P = 2. . . . . . 121

5.11 Clock cycles (TI-C6713) depending on optimization. . . . . . . . . . . . . . 122

5.12 FPGA resource utilization - Particle state update in the batch-based tracker. 124

5.13 Time delay at the state update stage of the batch-based tracker. . . . . . . 125

5.14 FPGA resource utilization - Data likelihood evaluation in the batch-based
tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.15 FPGA resource utilization - Particle weight evaluation in the batch-based
tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.16 Time delay at the weight evaluation stage of the batch-based tracker. . . . . 127

5.17 FPGA resource utilization - Batch-based particle filter tracker. . . . . . . . 130

5.18 Time delay at various stages of the batch-based tracker. . . . . . . . . . . . 130

5.19 Comparison of bearings-only and batch-based particle filter trackers, based
on sampling frequency or estimation rate. . . . . . . . . . . . . . . . . . . . 130

5.20 Approximations used in the analog implementation of nonlinear functions in
the batch-based tracker. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.21 Simulation parameters - Target tracking using DSP, FPGA, and MITEs. . . 133

A.1 Newton-Raphson algorithm with backtracking step size selection. . . . . . . 146

x



LIST OF FIGURES

1.1 Block diagram of a sampling importance resampling (SIR) particle filter. . . 11

1.2 Geometry for constant velocity target motion. . . . . . . . . . . . . . . . . . 14

1.3 Comparison of observation models. . . . . . . . . . . . . . . . . . . . . . . . 15

1.4 Symbol for a two-input MITE. . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Observation model using batch-measurements. . . . . . . . . . . . . . . . . 28

2.2 Template matching idea is illustrated. . . . . . . . . . . . . . . . . . . . . . 29

2.3 Tracking system mechanics demonstrated. . . . . . . . . . . . . . . . . . . . 31

2.4 Gating operation illustrated. . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Geometry for constant velocity target motion. . . . . . . . . . . . . . . . . . 35

2.6 MHMH correction used to correct bias in target heading estimates. . . . . . 41

2.7 Two targets are successfully initialized and tracked by the automated system. 49

2.8 Four short target bearing tracks are successfully initialized and killed by the
automated system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.9 Performance of the detection scheme in the tracking system. . . . . . . . . . 51

2.10 Monté-Carlo run results comparing particle filter, EKF, and Laplacian filter
for a multi-target tracking scenario. . . . . . . . . . . . . . . . . . . . . . . . 52

2.11 Monté-Carlo run results comparing particle filter, EKF, and Laplacian fil-
ter for a target that maneuvers rapidly, with the MHMH correction in the
tracking system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.12 Monté-Carlo run results for the same example as in Figure 2.11, but without
the MHMH correction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.13 Monté-Carlo comparison of the DOA filters that use batch DOAs to a particle
filter that uses the received acoustic signals directly (denoted as DPF, and
presented in [25]). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.14 Single-target tracking without road prior. . . . . . . . . . . . . . . . . . . . 57

2.15 Single-target tracking estimates in Figure 2.14 are improved by using road
prior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Observation model using batch of radar range measurements. . . . . . . . . 61

3.2 Observability of the state vector using three range measurements. . . . . . . 63

3.3 Single-target tracking using range-only measurements. . . . . . . . . . . . . 67

3.4 Multi-target tracking using range-only measurements. . . . . . . . . . . . . 68

3.5 Single-target tracking using range and range-rate measurements. . . . . . . 70

xi



4.1 Block diagram showing computational flow in a generic particle filter algorithm. 74

4.2 Computations at the weight evaluation stage of the particle filter algorithm
used in bearings-only tracking. . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 Block diagram showing computational flow of the particle filter algorithm in
the mixed-mode implementation (Method-1). Highlighted stage is performed
in the analog domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.4 Block diagram showing computational flow of the particle filter algorithm
in the mixed-mode implementation (Method-2). Highlighted stages are per-
formed in the analog domain. . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5 MITE circuits for the arctan and Gaussian functions. . . . . . . . . . . . . 81

4.6 Particle filter flow in a digital or FPGA implementation . . . . . . . . . . . 83

4.7 Xilinx System Generator model of bearings-only tracker . . . . . . . . . . . 84

4.8 Xilinx System Generator implementation of the particle proposal stage. . . 85

4.9 Xilinx System Generator implementation of the weight evaluation stage. . . 86

4.10 Comparison of the evaluated weights using the analog (MITE) implementa-
tion for two values of noise variance. . . . . . . . . . . . . . . . . . . . . . . 90

4.11 Comparison of the evaluated weights using the digital (FPGA) implementa-
tion for two values of noise variance. . . . . . . . . . . . . . . . . . . . . . . 91

4.12 The true trajectory, in the x-y plane, of the target being tracked. The sen-
sor (not shown in the figure) is located at the origin. . . . . . . . . . . . . . 92

4.13 Comparison of x-y track estimates from the analog (MITE) implementation
to the digital (FPGA) implementation and the Matlab simulation. . . . . . 94

4.14 State estimation results for the x and y coordinates from the analog (MITE)
implementation compared to the digital (FPGA) implementation and the
Matlab simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.15 State estimation results for the x-y velocity components from the analog (MITE)
implementation compared to the digital (FPGA) implementation and the
Matlab simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 A system view of the design choices considered in developing the particle
filter-based multi-target tracker. . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Block diagram showing the flow of computations in the particle proposal stage.105

5.3 Block diagram showing the flow of computations in the particle state update
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.4 Block diagram showing the flow of computations in the particle weight eval-
uation stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5 Block diagram showing the flow of computations in the data likelihood eval-
uation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xii



5.6 Block diagram showing the flow of computations in the particle DOA update
stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Execution times estimated from Matlab simulations for the various particle
filter stages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.8 Comparison of fixed-point estimation results for a single-target case. . . . . 116

5.9 Comparison of fixed-point estimation results for a multi-target case. . . . . 118

5.10 Comparison of total execution time for the particle filter algorithm running
on a TI-C6713 DSP to Matlab. . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.11 Comparison of execution times for various stages in the particle filter algo-
rithm running on a TI-C6713 DSP to Matlab. . . . . . . . . . . . . . . . . . 123

5.12 Comparison of estimation results for a multi-target case using the DSP, Mat-
lab, and C implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.13 Comparison of estimation results for a single-target case using the FPGA
implementation and Matlab. . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.14 Comparison of estimation results for a single-target case using MITE imple-
mentation and Matlab. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xiii



SUMMARY

This thesis contributes new algorithms and implementations for particle filter-based

target tracking. From an algorithmic perspective, modifications that improve a batch-based

acoustic direction-of-arrival (DOA), multi-target, particle filter tracker are presented. The

main improvements are reduced execution time and increased robustness to target maneu-

vers. The key feature of the batch-based tracker is an image template-matching approach

that handles data association and clutter in measurements. The particle filter tracker is

compared to an extended Kalman filter (EKF) and a Laplacian filter and is shown to per-

form better for maneuvering targets. Using an approach similar to the acoustic tracker, a

radar range-only tracker is also developed. This includes developing the state update and

observation models, and proving observability for a batch of range measurements.

From an implementation perspective, this thesis provides new low-power and real-time

implementations for particle filters. First, to achieve a very low-power implementation,

two mixed-mode implementation strategies that use analog and digital components are

developed. The mixed-mode implementations use analog, multiple-input translinear ele-

ment (MITE) networks to realize nonlinear functions. The power dissipated in the mixed-

mode implementation of a particle filter-based, bearings-only tracker is compared to a dig-

ital implementation that uses the CORDIC algorithm to realize the nonlinear functions.

The mixed-mode method that uses predominantly analog components is shown to provide

a factor of twenty improvement in power savings compared to a digital implementation.

Next, real-time implementation strategies for the batch-based acoustic DOA tracker are

developed. The characteristics of the digital implementation of the tracker are quantified

using digital signal processor (DSP) and field-programmable gate array (FPGA) implemen-

tations. The FPGA implementation uses a soft-core or hard-core processor to implement

the Newton search in the particle proposal stage. A MITE implementation of the nonlinear

DOA update function in the tracker is also presented.

xiv



CHAPTER I

INTRODUCTION

Target tracking, as defined in this thesis, is estimating moving targets’ states using noisy

measurements obtained at a single observation point or node. The target states consist of

target positions and motion parameters in the 2-D space. The measurements can be either

single or batch measurements. The individual measurement in a batch is either an acoustic

direction-of-arrival (DOA) estimate or a radar range estimate. The state estimation is

set up as a state-space-based Bayesian estimation problem where the underlying state and

observation models could both be nonlinear and non-Gaussian.

Particle filters or sequential Monte Carlo (SMC) methods use a set of weighted state

samples, called particles, to approximate the posterior probability distribution in a Bayesian

setup. They provide nearly optimal state estimates in the case of nonlinear and non-

Gaussian systems, unlike Kalman filter-based approaches. Because particle filters do not

approximate nonlinearities or non-Gaussian noise in the system and use a large number of

particles, they tend to be computationally complex.

This thesis addresses two cases relevant to particle filter-based target tracking. The

first case is a low-power implementation for a simple particle filter algorithm. The particu-

lar algorithm considered is a simple bearings-only single-target tracker that uses the state

update to propose particles, and measurements are the target DOAs. The second case is

a real-time implementation for a more complicated particle filter tracking algorithm intro-

duced in [28]. This algorithm is a batch-based multi-target tracking algorithm that uses a

Gaussian approximation of the full-posterior as the proposal function. The measurements

in this case are batches of acoustic DOAs or radar ranges.

The use of batch measurements was introduced by Cevher [28] to alleviate the data

association problem in multi-target tracking and is similar to the shape-from-motion al-

gorithm in computer vision. Associating measurements to targets, data association, is a

1



difficult problem inherent to multi-target tracking. If there are missing measurements or

clutter in the measurements the association and tracking become quite difficult. For Kalman

filter-based approaches, this problem has been addressed [10] by using joint probabilistic

data association (JPDA) techniques [34] and multiple hypothesis tracking (MHT) [101].

A particle filter-based multi-target tracker using the JPDA approach has been developed

in [125]. Special pruning techniques to reduce the number of measurement-to-target hy-

potheses should be used to make such data association approaches practically feasible [85].

From an algorithmic perspective, this thesis improves the acoustic DOA batch-based

particle filter algorithm [28] and compares it to the extended Kalman filter (EKF) and the

Laplacian filter. As part of this research, we develop a system that uses the DOA tracker

along with an initialization algorithm that estimates the number of targets. We also develop

a range-only multi-target tracker that uses a batch of radar range measurements. Though

not developed in this thesis, the DOA tracker and range-only tracker can be used in a

multi-sensor joint tracking system to improve state estimation.

From an implementation perspective, this thesis develops hardware implementations for

the efficient use of particle filters in target tracking. When particle filter-based algorithms

are to be deployed for real-time and power constrained applications, special implementa-

tions are needed. Such implementations have to be efficient in speed, tracking accuracy, and

power. The particle filter algorithm has four main stages: particle proposal, particle weight

computation, state estimation, and resampling. Parallelization of the particle proposal and

weight evaluation stages can be used to reduce execution speed because computations for

one particle do not influence the others. However, the resampling and state estimation

stages cannot be readily parallelized. Earlier work in [17] addressed this issue by provid-

ing special-purpose hardware for the resampling stage. The authors of [17], [5] developed

new resampling algorithms and a distributed architecture for parallel resampling. They

also addressed finite word length effects in resampling and particle filters. Though [17]

presents power dissipation results, the impact of the architecture on the power consumed

in computations is not explicitly considered.

One goal of this thesis is to address the issue of low-power computations for particle

2



filters. In one case, we propose using analog signal processing techniques to implement

the nonlinear functions in a particle filter-based bearings-only tracking algorithm to reduce

power consumption. These nonlinear functions are implemented in the analog domain using

multiple-input translinear element (MITE) networks [88]. The MITE networks used in this

research were synthesized by Subramanian [115] in the collaborative analog and digital signal

processing (CADSP) group at Georgia Institute of Technology. The configurability of analog

circuits is one of the drawbacks preventing analog computational circuits from being used

widely. However, recent work [1] has led to the development of field-programmable analog

arrays (FPAAs) that use MITEs as the basic component. FPAAs provide configurability

and the subthreshold operation of MITEs leads to low-power operation.

Another goal of this thesis is to address the case of a real-time implementation of a

batch measurement-based particle filter for multi-target tracking. We derive analytical

formulae for the complexity and analyze the fixed-point aspects of the algorithm. We

develop a floating-point DSP implementation of the algorithm and analyze its performance.

We also present the impact of system parameters on various implementation performance

measures of the algorithm such as complexity, speed, and memory requirement. Using the

Xilinx System Generator tool, we implement most stages of the batch-based tracker on

a field-programmable gate array (FPGA). We compare the FPGA implementation of the

batch-based tracker to a FPGA implementation of the bearings-only tracker. The particle

proposal and weight evaluation stage in the tracker use a nonlinear function to update

the DOA state. This DOA update function is next implemented in the analog domain

using MITEs. We present simulation results to compare the performance of the various

implementations of the batch-based tracker.

The remaining sections of this chapter provide the necessary background and past re-

search relevant to the research presented in later chapters. In Section 1.1 we provide a

brief introduction to Bayesian estimation and present particle filters as a tool to perform

Bayesian estimation. A brief review of multi-target tracking and the target tracking models

considered in this research are presented in Section 1.2. Analog and digital implementation

aspects relevant to the research pursued here are presented in Section 1.3. We conclude

3



this chapter with an outline of this thesis and specific contributions made by this research

in Section 1.4.

1.1 Bayesian Estimation

This section provides a brief introduction to particle filters [46], [103], [48], as their applica-

tion and implementation is the focus of this research. Particle filters are a tool to perform

Bayesian estimation. Consider a system with a hidden state x and an observation y related

to the state x. In real world applications the observation y is a random variable as it is

corrupted by sensor noise or by errors in the measurement. In a probabilistic setting, any

information about the state x before any observation is made can be described using a prior

distribution p(x). The conditional probability density of y depends on x and is given by

p(y|x) and is called the likelihood function. The likelihood is the model for the system

because it tells how y depends on x. Bayes’ theorem states that, given the observation y,

the conditional distribution of x defines the posterior distribution

p(x|y) =
p(y|x)p(x)

p(y)
(1.1)

where p(y) is the total probability of the observed data and actually plays the role of a

normalization constant. In the discrete case

p(y) =
∑

p(y|x)p(x)

The posterior distribution represents what is known about x after the observation y. The

minimum-mean-squared-error (MMSE) estimate or the Bayes’ estimate of x given the ob-

servation y is the conditional mean of the parameter x given the observation y [100],

x̂ = E(x|y) =

∫

x
xp(x|y)dx. (1.2)

1.1.1 Importance sampling

The posterior distribution π(x) , p(x|y) considered in Bayes’ theorem is often analytically

intractable. Monte Carlo methods provide a means to address this difficulty by using a

large set of samples drawn from such a distribution to obtain a numerical approximation.

4



Generally, it is not possible to draw samples directly from an arbitrary probability den-

sity function. Several sampling techniques are available to generate samples from arbitrary

distributions [102]. Importance sampling is one such technique, where a candidate distribu-

tion q(x) is chosen such that it is easy to draw statistically independent samples from q(x).

This distribution, called the importance or proposal density, must have a support that

contains the support of π(x), i.e.,

π(x) > 0 ⇒ q(x) > 0 for all x ∈ R
nx . (1.3)

The Monte Carlo approximation for π(x) with N samples can then be defined as

π̂N (dx) =

∑N
i=1 w(x(i))δx(i)(dx)
∑N

i=1 w(x(i))
, (1.4)

with the importance weights w(x(i)) defined as

w(x(i)) =
π(x(i))

q(x(i))
, (1.5)

and the indicator function δ(dx) defined as

δx(i)(dx) =





1, x(i) ∈ dx

0, otherwise

(1.6)

where dx is a small finite region surrounding a value of interest x.

This procedure, importance sampling, converts samples from the distribution q(x) to the

required distribution π(x). The normalization in (1.4) is required, as the desired distribution

is not completely known but known up to a constant. Using the approximation (1.4) for

π(x) we can estimate functions of the state dependent on the distribution as

fN =

∑N
i=1 w(x(i))f(x(i))
∑N

i=1 w(x(i))
. (1.7)

This estimate in (1.7) is asymptotically unbiased [47] and

lim
N→∞

fN → Eπ(x){f(x)}. (1.8)

In a probabilistic dynamic system, as the parameter x evolves over time, the evolving

posterior density functions are represented as π(xt). The Bayesian importance sampling

5



procedure described above can be used to draw samples from another distribution and

approximate π(xt). In most applications, the difference between π(xt) and π(xt+1) is small

and is caused by incorporating new measurements. Hence, samples used at time t can be

recursively re-weighted to construct the set of samples at time t + 1. Particle filters use

such a procedure to sequentially and recursively estimate the posterior distribution as time

evolves.

1.1.2 State-space representation

The target-tracking problem can be formulated as a dynamic state-space problem. The

target states of interest can be estimated by applying the Bayesian approach outlined in

Section 1.1. We are interested in inferring the state xt at time t based on measurements

y1, y2, . . . , yt at discrete time points 0, 1, . . . , t. We assume the following discrete, state-space

model in this thesis. The underlying state of interest xt changes over time according to the

system equation

xt = ft(xt−1, ut) (1.9)

where ut is a sequence of independent random variables with a known distribution that

represents the system noise. At time t = 0 the state has a prior density p(x0). At any

time t the measurement yt is related to the state xt through the relation

yt = gt(xt, vt) (1.10)

where vt is a sequence of random variables with a known distribution and represents the

measurement noise. This equation is referred to as the measurement or observation equa-

tion. The sequences ut and vt are also assumed to be independent. The functions ft and gt

and the distributions of the noise terms are assumed known.

If the functions ft and gt are linear and the noise distributions are Gaussian, in (1.9)

and (1.10), the optimal recursive estimate for xk can be obtained using the Kalman filter.

The posterior distribution will be Gaussian and the recursion for the Kalman filter allows

the efficient update of the mean and the variance of the Gaussian distribution with each

received measurement [82], [7]. If ft and gt are nonlinear functions, the extended Kalman

6



filter or variations of it can be used to obtain the state estimates [7]. If instead the system

and measurement functions are nonlinear and the noises are non-Gaussian, the particle filter

provides a recursive solution to estimate xk, but the Kalman filter fails.

1.1.3 Particle filter

This section presents details of the recursive particle filter; the discussion and deriva-

tion follows [103]. Let us denote the cumulative state and measurements up to time t

as Xt = {xj , j = 0, . . . , t} and Yt = {yj, j = 0, . . . , t}. The Bayesian approach to make

an inference about the state xt, given the measurements up to time t, is to calculate the

posterior distribution for xt conditional on the measurements up to time t, p(xt|Yt). The

joint posterior density at time t is denoted by p(Xt|Yt). Let
{
X

(i)
t , w

(i)
t

}N

i=1
denote a set

of weighted particles that characterizes p(Xt|Yt), where
{
X

(i)
t , i = 1, . . . , N

}
is a set of

support points,
{

w
(i)
t , i = 1, . . . , N

}
are the associated weights, and N is the number of

particles. The weights have to be normalized such that
∑

i w
(i)
t = 1. Using the Monte Carlo

approach (1.4), the joint density can be approximated as follows:

p(Xt|Yt) ≈
N∑

i=1

w
(i)
t δ(X − X

(i)
t ) (1.11)

The normalized weights w
(i)
t are chosen using the principle of importance sampling described

earlier. If the samples are drawn from an importance density q(Xt|Yt), then according

to (1.5):

w
(i)
k ∝ p(X

(i)
t |Yt)

q(X
(i)
t |Yt)

. (1.12)

If at time t − 1 we have samples constituting an approximation to p(Xt−1|Yt−1), then

as the measurement yt is received at time t, we wish to approximate p(Xt|Yt) with a new

set of samples. If the importance density is chosen to factorize such that

q(Xt|Yt) = q(xt|Xt−1,Yt)q(Xt−1|Yt−1) (1.13)

then the samples X
(i)
t ∼ q(Xt|Yt) can be obtained by augmenting each of the existing

7



samples X
(i)
t−1 ∼ q(Xt−1|Yt−1) with the new state x

(i)
t ∼ q(xt|Xt−1,Yt). The distribu-

tion p(Xt|Yt) is expressed in terms of the prior distribution and data likelihood as

p(Xt|Yt) =
p(yt|Xt,Yt−1)p(Xt|Yt−1)

p(yt|Yt−1)

=
p(yt|Xt,Yt−1)p(xt|Xt−1,Yt−1)p(Xt−1|Yt−1)

p(yt|Yt−1)

=
p(yt|xt)p(xt|xt−1)

p(yt|Yt−1)
p(Xt−1|Yt−1) (1.14)

∝ p(yt|xt)p(xt|xt−1)p(Xt−1|Yt−1). (1.15)

The weight update equation can be obtained by substituting (1.13) and (1.15) in (1.12) as

w
(i)
t ∝ p(yt|x(i)

t )p(x
(i)
t |x(i)

t−1)p(X
(i)
t−1|Yt−1)

q(x
(i)
t |X(i)

t−1,Yt)q(X
(i)
t−1|Yt−1)

= w
(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |X(i)

t−1,Yt)
. (1.16)

In the target-tracking case, we are only interested in the estimate of p(xt|Yt) at each time

step, and only x
(i)
t need to be stored, discarding the past histories X

(i)
t−1 and Y

(i)
t−1. Hence,

the modified weight is then

w
(i)
t ∝ w

(i)
t−1

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−1)

q(x
(i)
t |x(i)

t−1, yt)
(1.17)

from which the posterior density can be approximated as

p(xt|Yt) ≈
N∑

i=1

w
(i)
t δ(xt − x

(i)
t ). (1.18)

The recursive propagation of the weights w
(i)
t and support points x

(i)
t with the reception of

sequential measurements is referred to as the sequential importance sampling (SIS) particle

filtering.

The best choice for the importance density function would be the posterior distribution.

With the importance density of the form in (1.13), the variance of the importance weights

increases over time [48]. This increase in variance leads to the degeneracy of the SIS particle

filter. In practice, after a certain number of recursions, all but one particle will have

extremely small normalized weights. A suitable measure of variation for the importance

8



weights or degeneracy of an algorithm is the effective sample size Neff and estimated as [48]:

N̂eff =
1

N∑
i=1

(
w

(i)
t

)2
(1.19)

where w
(i)
t is the normalized weight obtained using (1.16). The value of Neff lies in the

interval 1 ≤ Neff ≤ N , so a small Neff indicates degeneracy.

1.1.3.1 Resampling

Resampling is a strategy to overcome the degeneracy of samples in SIS and is a crucial

step in particle filtering algorithms when Neff falls below a threshold Nthr which is prede-

termined [48]. Resampling eliminates particles with low importance weights and replicates

samples with high importance weights. It involves mapping the set of weighted parti-

cles
{

x
(i)
t , w

(i)
t

}
into a new set of particles

{
x̂

(i)
t , 1/N

}
with uniform weights. The new

set
{

x̂
(i)
t

}N

i=1
is generated by resampling, with replacement, N times from an approximate

discrete representation of p(xt|Yt) given by

p(xt|Yt) ≈
N∑

i=1

w
(i)
t δ(xt − x

(i)
t ) (1.20)

so that P
{

x̂
(i)
t = x

(j)
t

}
= w

(j)
t , where P () represents probability. Several resampling

schemes have been proposed in the literature [46], [71]. More recently, efficient hardware

for performing resampling has been introduced in [13]. The pseudo-code for one such re-

sampling algorithm is given in Table 1.1.

1.1.3.2 Choice of proposal or importance function

The choice of importance function plays a critical part in the performance and complexity of

particle filter algorithms [46], [3]. We provide a brief introduction to two standard choices.

The optimal importance density function that minimizes the variance of importance

weights, conditioned upon x
(i)
t−1 and yt, has been shown to be [48]

q(xt|x(i)
t−1, yt) = p(xt|x(i)

t−1, yt)

=
p(yt|xt, x

(i)
t−1)p(xt|x(i)

t−1)

p(yt|x(i)
t−1)

. (1.21)

9



Table 1.1: Pseudo-code for a resampling algorithm [71].

1. Heapsort the particles
{

x
(i)
t , w

(i)
t

}
in an ascending order according to their weights,

w
(i)
t → w̃

(i)
t , to form

{
x̃

(i)
t , w̃

(i)
t

}

2. Generate ω ∼ U [0, 1).

3. For j = 1, 2, . . . , N

a. u(j) = j−ω
N ,

b. Find i, satisfying
i−1∑
l=1

w̃
(i)
t < u(j) ≤

i∑
l=1

w̃
(i)
t ,

c. Assign x̂
(j)
t = x̃

(j)
t and ŵ(i) = 1/N , and

obtain the resampled set
{
x̂

(i)
t , ŵ

(i)
t

}

Substituting (1.21) in (1.16) results in

w
(i)
t ∝ w

(i)
t−1p(yt|x(i)

t−1). (1.22)

In order to use the optimal importance function, it must be possible to sample from p(xt|x(i)
t−1, yt)

and evaluate p(yt|x(i)
t−1). In the general case, one of these may not be straightforward [48].

However, there are some special cases where the use of the optimal importance function is

possible. One such case is a class of models for which p(xt|x(i)
t−1, yt) is Gaussian. In some

models, a suboptimal approximation to the optimal importance function is possible [48].

A suboptimal, but simple, choice for the importance function is to use the prior distri-

bution [48],

q(xt|x(i)
t−1, yk) = p(xt|x(i)

t−1). (1.23)

Substituting (1.23) in (1.16) yields

w
(i)
t ∝ w

(i)
t−1p(yt|x(i)

t ). (1.24)

The sampling importance resampling (SIR) particle filter introduced in [55] under the name

bootstrap filter is a simple SIS filter that uses the suboptimal importance density (1.23).

10



Propose i-th
particle

Evaluate i-th
weight

Measurements

Resample
particles

Estimate
states

For i = 1 to N

i=1

i=1i=1

i=N

i=Ni=N

Figure 1.1: Block diagram showing the major computational steps in a sampling importance
resampling (SIR) particle filter algorithm.

Pseudo-code for the SIR particle filter algorithm is given in Table 1.2. A block diagram of

this is shown in Figure 1.1.

In this thesis we use the SIR filter in a bearings-only single-target tracking algorithm

in Chapter 4. On the other hand, the batch-based multi-target tracking in Chapters 2

and 3 uses the optimal importance density function. Furthermore, the multi-target tracker

uses a Gaussian approximation of the full-posterior as the importance function to propose

particles [48].

1.2 Target Tracking

Target tracking is the processing of measurements obtained from a target in order to main-

tain an estimate of its current state [7]. It has applications in different fields, and many

algorithms have been developed based on the type of measurement or target [11], [8]. The

measurements are acoustic, radar, video, or seismic signals obtained at a sensor and can

be noisy. They are either used as raw measurements or processed to provide estimates of

other parameters that are then used as measurements. The moving target is either single

or multiple, vehicle or person. The target state consists of its position in space and its

velocity, or in polar coordinates range and angle with respect to the sensor.

11



Table 1.2: Sampling Importance Resampling (SIR) particle filter.

Given the observed data yk at k, do

1. For i = 1, 2, . . . , N ,

Sample particles: x
(i)
k ∼ q(xk|xk−1, yk).

2. For i = 1, 2, . . . , N ,

Calculate the importance weights: w
(i)
k =

p(yk|x
(i)
k

)p(x
(i)
k

|x
(i)
k−1)

q(x
(i)
k

|x
(i)
k−1,yk)

.

For i = 1, 2, . . . , N ,

Normalize the weights: w̃
(i)
k =

w
(i)
k

PN
j=1 w

(i)
k

.

3. Calculate the state estimates: E{f(xt)} =
∑N

i=1 w̃
(i)
t f(x

(i)
t ).

4. Resample
{

x
(i)
k , w̃

(i)
k

}
to obtain new set of particles

{
x

(j)
k , w

(j)
k = 1

N

}
.

1.2.1 Past research

Target maneuvers, clutter or missing measurements, and the accuracy of dynamic models

are issues that need to be handled in target tracking. In the case of clutter and multiple

targets, the association of measurements to targets needs to be handled. This is referred to

as data association. Target tracking in clutter has been done using the probabilistic data

association filter (PDAF). The PDAF calculates the probabilistic data association (PDA),

which consists of the probabilities for all validated measurements corresponding to the

targets of interest. Target maneuvers are often handled using multiple models and switching

among these models to better represent target dynamics as in the multi-mode (MM) filter

or interacting multi-mode (IMM) filters [8], [10].

In multi-target tracking, in addition to data association, the number of targets being

tracked also needs to be identified. Several approaches to identify the number of targets have

been proposed in the literature [8], [10]. While some approaches explicitly determine the

number of targets, other approaches do this implicitly during tracking. For Kalman filter

based tracking several strategies have been suggested. These methods form various data

association hypotheses and combine or propagate them over time. One technique is the joint

12



probabilistic data association (JPDA), an extension of the PDA, in which the number of

targets is known. This is a target-oriented association filter that evaluates the measurement-

to-target association probabilities using the latest set of measurements. Another technique,

the multiple hypothesis tracker (MHT), is effective in tracking multiple targets in a cluttered

environment [101] where the number of targets is not known ahead of time. This is a

measurement-oriented filter that considers the association of sequences of measurements

and evaluates the probabilities of all the association hypotheses. The complexity of the

MHT increases exponentially with time unless the number of hypotheses is limited using

pruning or merging methods [8].

Because particle filters handle nonlinear models and non-Gaussian noise, they have been

used in multi-target tracking more recently. The multi-target tracking considered in this

research differs from recent work [94], [67] in the observation model used. In [94], the number

of targets is estimated by monitoring events represented using regions of interest (ROI) in

the surveillance region, tracking is performed using particle filter or the SMC method, and

measurement-to-target association is done using a 2-D data assignment algorithm. The

measurements are bearing and range at a single sensor. The estimated target states are

the positions x and y, velocities vx and vy. The observation model used in this thesis is

based on image template-matching ideas to perform the data association. This is similar to

shape-from-motion algorithms in computer vision or active contour tracking [63].

1.2.2 Bearings-only tracker and batch measurement-based tracker

The estimates in target tracking are obtained by setting up the target tracking problem as a

state-space problem as defined in Section 1.1.2. Depending on the dynamic models for target

motion and measurements, a Bayesian approach using either the Kalman filter or particle

filter can be used. In this thesis, we will concentrate on the particle filter approach and use

the EKF approach for comparison. The particle filter is applied to two different tracking

problems. The first is a single-target, bearings-only tracking and the second a multi-target,

batch measurement-based tracking. In both problems the target is assumed to move with

constant velocity, the sensor is stationary, and the geometry is as shown in Figure 1.2.

13



Though individual measurements in both problems are DOAs or bearings, the assumed

observation models are different. A brief description of the main differences between the

two problems, as considered in this thesis, is provided here. Later, in Chapters 2 and 4, the

individual models will be described in detail.

φ(t)

θ(t) θ(t + T )

vT

x

y

r(t)

r(t + T )

1

2

Figure 1.2: Geometry for constant velocity target motion. θ(t) denotes target DOA, r(t)
denotes target range, and φ(t) denotes the target heading direction when the target is at
position denoted by 1 in the x-y plane. The target velocity is represented by v and the
period over which the velocity is assumed constant is T .

The bearings-only tracking problem considered here is similar to the approach in [55],

but differs from most bearings-only tracking problems where the sensor platform also moves

to track targets that maneuver [103]. The target is assumed to follow a constant velocity

model in the x-y space. The measurements yt obtained at a sensor node are bearings or

DOAs or the angle the target makes with respect to the sensor node:

yt = θt.

These angles are obtained by beamforming the acoustic signal received over a period of T s

at the sensor. Measurements θt are obtained at every time instant t with a period of T ,

as shown in Figure 1.3 (a). Using these measurements the target states x, y, vx, and vy

corresponding to the target x, y coordinates and velocities are estimated at each time

instant t. Figure 1.3 compares the observation model in the bearings-only tracker to the

batch measurement-based tracker.

In the batch tracker, the target motion model also assumes constant velocity, but the

14



PSfrag

0 T 2T 3TMτ

t

DOA Measurement

Acoustic batch

(a) Bearings-only tracker

0 T 2T 3TMτ

t

DOA Missing data

Clutter
DOA Batch

(b) Batch measurement-based tracker

Figure 1.3: Observation models comparison. (a) Measurements in the bearings-only tracker
are DOA’s received at time instants T . (b) Measurements in the batch measurement-based
tracker are a batch of DOA’s. Here, the batch size M is five with two peaks at each instant.

estimated states are the target’s motion parameters DOA θt, heading direction φt, and

logarithm of velocity over range qt = log vt/rt. The observability of these states using DOA

measurements requires a batch of M -DOAs at each time instant t:

yt = {yt+mτ (pi)}M−1
m=0 , pi = 1, . . . , P (1.25)

with M ≥ 3, and P is the number of DOA measurement peaks at each time t + mτ ,

obtained by beamforming the acoustic signal received over a period τ . Given a target’s

initial condition, the motion parameters are used to compute the target’s x-y position as it

moves. Figure 1.3 (b) shows the setup in the batch-based multi-target tracker considered

in this thesis. In Chapter 2, the individual measurements in the batch are acoustic DOA

estimates and in Chapter 3 they are radar range estimates.

The particle filter implementation for the batch-based tracker, compared to the bearings-

only tracker, is computationally complex, robust, and handles multiple targets. The com-

plexity and robustness are due to the use of a proposal function that approximates the

full-posterior and the nonlinear functions in the state-update and observation models. Ta-

ble 1.3 shows the main differences between these two trackers and implementations, as

considered in this thesis.

With a brief review on particle filters, target tracking, and observation models we have

introduced the algorithmic aspects of this thesis. The next section provides an introduction

15



Table 1.3: Comparison of bearings-only tracker to batch measurement-based tracker.

Characteristic Bearings-only tracking Batch-based tracking

Targets tracked Single Multiple

Target motion Constant velocity Constant velocity

Target states Position coordinates (x, y)
and velocities (vx, vy)

DOA (θ), heading (φ),
and ratio of velocity over
range (log v/r)

Measurement Single DOAs Batch of DOAs or ranges

Observation model Measurements corrupt by
Gaussian noise

Measurements corrupted
by Poisson clutter or
missing measurements

Particle filtering
State update to propose
particles

Full-posterior to propose
particles

Data likelihood to compute
particle weights

Data likelihood, state likeli-
hood and proposal function
to compute weights

to the implementation aspects of this thesis.

1.3 Implementation of Algorithms

Translating an algorithm for real-time implementation requires making specific choices so

that the design meets the constraints. Some of the main constraints are speed of execution,

power dissipation, accuracy of the results, cost and time involved in the implementation.

With the advent of digital integrated circuits (ICs) most algorithms are implemented in

the digital domain. While most algorithms are implemented in software executed on a

microprocessor, some algorithms and applications require specialized processors or hard-

ware for their implementation. With increasing complexity, the resources consumed by the

algorithm also increase. In certain applications more resources lead to increased power dis-

sipation, reduced execution speed, or increased chip area. While there has been significant

progress in speed of operation and reduced area, power dissipation still poses a significant

challenge [32]. Energy dissipation is critical for certain applications that require a stand-

alone battery-operated sensor or device that needs to perform significant computations,

e.g., target tracking in wireless sensor networks.

16



Table 1.4: Comparison of DSPs to FPGAs.

Characteristics DSP FPGA

Speed Comparable Comparable

Power dissipation Low High

HW Design flexibility Low High

SW Design flexibility High Low

Parallelization Low High

Ease of implementation High Low

Price Low High

As mentioned earlier, one goal of this thesis is to address the energy dissipation in

the particle filter algorithm by appropriate design choice. The approach we adopt is to

use analog circuits in implementing nonlinear functions. We develop a mixed-domain [57],

analog and digital domain, approach for a bearings-only target tracker to achieve low-power

performance of a particle filter algorithm. More details of this are presented in Chapter 4.

Low-power signal processing is an active research area and we provide a brief introduction

to this in Section 1.3.1.

In the digital implementation of algorithms, the choices available are to either use a

digital signal processor (DSP), a field-programmable gate array (FPGA), or an application-

specific IC (ASIC). In this research we focus on DSP and FPGA implementations as these

are suitable for the initial design or prototyping of systems. The advantages and disadvan-

tages of using DSPs or FPGAs for signal processing algorithms [9] are shown in Table 1.4.

The choice of DSPs or FPGAs for particle filter algorithms is analyzed later in this section.

The tools available for custom digital implementation are sophisticated and flexible

compared to the tools available for analog or mixed-signal implementation. We use one such

design automation tool, the Xilinx System Generator, to transform Simulink models of the

tracker algorithm into hardware description language (HDL) code used in a Xilinx FPGA.

While this is not the first FPGA implementation of particle filters, it still provides a platform

to compare the implementation generated by the automation tool to an implementation

17



developed manually by hand. This tool reduces the time spent in system design and hence

is suited for complex system designs, such as the batch-based multi-target tracker in this

research.

1.3.1 Power-aware design

Power consumed or energy dissipated is an important parameter that needs to be considered

while implementing systems for energy-constrained environments. In this section, some

basics on power consumption and issues that need to be considered in a power-aware design

are discussed. Power-aware design in digital circuits is an active area of research [99].

Power consumption in CMOS digital circuits consists of dynamic and static power. The

total power dissipated in a digital circuit has three components, as shown [31]:

P = α0→1CLV Vddfclk + IscVdd + IleakageVdd
(1.26)

where α0→1 is the node transition activity factor, CL the load capacitance, V the swing

voltage, Vdd the supply voltage, and fclk the clock frequency. In most cases V is the same

as Vdd. The first term in (1.26) corresponds to switching component power, the second

corresponds to direct path short-circuit current Isc, and the third term corresponds to

leakage power, which depends on fabrication technology. The switching power is usually

higher than the other components. Among several techniques for low-power dissipation in

digital circuits, scaling the supply voltage can provide significant savings in power. But,

this scaling also places a limit on the maximum speed at which the circuit operates. Hence,

an active area of research is to identify optimal regions of operation for low-power operation

that provide both the required speed and low-power dissipation [127], [21]. For certain low-

power applications where speed is less important, the subthreshold operation of devices is

becoming popular. At subthreshold, the leakage power can be significant. Hence reducing

this power dissipation in memory devices that are used in subthreshold systems is also an

active area of research [20].

The work in [126] provides a good introduction to power consumption in analog circuits

and their limits. In analog circuits, the instantaneous power consumed depends upon the

(instantaneous) current drawn and the supply voltage Vdd. The voltage Vdd, however, has

18



to be above a certain minimum value to provide the necessary dynamic range of operation

and to maintain the signal energy level above the thermal noise floor. Reducing voltage

to reduce power might lead to increased power dissipation or unstable operation of the

circuits and hence is not a valid option. Another approach is to use current-mode operation

and operate in the subthreshold region where the current drawn is significantly less. Here,

again, care should be taken to maintain the circuit in the valid region of operation with the

signal maintained above the noise level. Hence, the low-power operation of analog circuits

depends to a large extent on the noise level and the required dynamic range.

1.3.2 Analog computation using MITEs

The digital implementation of linear functions is realized using primitive logic gates such

as AND, OR, and NOT gates. These gates use transistors as switches to perform binary

operations. Most computations such as addition, subtraction, multiplication, and complex

operations are performed using a combination of these logic gates. Nonlinear functions are

usually approximated using a combination of these operations, and the required number

of devices can be high. On the contrary, the analog implementation of nonlinear functions

exploit the relationship between physical quantities such as currents or voltages and the

device characteristics of certain devices such as transistors and capacitors. Hence, analog

implementation of certain nonlinear functions can be achieved using a few devices [89].

Recent work in the CADSP group at the Georgia Institute of Technology provides

an analog approach to implement nonlinear functions using multiple-input translinear el-

ements (MITEs). The MITE was introduced in [88] as a generalization of the bipolar

transistor. Both of these circuit elements use their exponential transfer characteristic to

implement nonlinear functions or systems [87], [86]. The system parameters are represented

as currents and are hence tunable. The optimal number of inputs required in a MITE to

implement a function is usually decided by a synthesis procedure. A two-input MITE,

whose symbol is shown in Figure 1.4, is defined as a circuit element satisfying the following

properties:

1. The current through the input gates is zero.

19



2. The drain current I and the input-gate voltages V1 and V2 are related as

I = Ise
κ(V1+V2)

UT , (1.27)

where Is is a pre-exponential scaling constant, κ is a positive dimensionless weight,

and UT is the thermal voltage, kT/q.

Figure 1.4: Symbol for a two-input MITE.

The synthesis of nonlinear functions using MITEs and their use in particle filter imple-

mentation is described in Chapter 4.

1.3.3 Implementation of particle filters

Particle filters are being used in a wide variety of real-time applications. This includes tar-

get tracking, navigation [68], robot localization [72], channel estimation [109], and speech

modeling [124]. The theoretical aspects, convergence, and performance of particle filter al-

gorithms and applying them to new problems is an active research area. In [16] performance

issues and the complexity of particle filters used in bearings-only tracking are studied. The

authors suggest adaptively varying the number of particles or variances while tracking. In

quantifying the particle filter algorithm’s complexity [42] concluded that careful design can

mitigate the curse of dimensionality associated with particle filtering. The marginalized

particle filter [69] is a combination of the particle filter and the Kalman filter for certain

20



state-space models where a linear sub-structure exists. This leads to reduced complexity

compared to a particle-filter-only approach.

In the past, research on the hardware implementation of particle filters has drawn at-

tention [17], resulting in an FPGA prototype for a particle filter algorithm. As part of

that effort the authors developed an architecture for a digital hardware implementation of

particle filters along with efficient resampling algorithms. Their initial attempt to use a TI

TMS320C54x DSP for a bearings-only tracker application provided a maximum sampling

frequency of 1.8 kHz for 1000 particles. By using a Xilinx Virtex II Pro FPGA they achieved

a maximum sampling frequency of 50 kHz for a similar application. This later led to an

application specific integrated circuit (ASIC) implementation for realizing certain stages in

the particle filter algorithm [106], [37], [61]. More recently, a single instruction multiple

data (SIMD) architecture that uses N processors to process N particles for particle filters

has been presented in [81].

In [109] an FPGA implementation of particle filtering for channel estimation is devel-

oped. There, the complexity of particle filters is mitigated through structural modifications

such as efficient pipelining and parallel operation. The authors also suggest the use of look-

up tables for exponential evaluations and the efficient pipelining of the particle filter stages.

The resampling stage in particle filtering is a critical stage for maintaining particle diversity.

As resampling requires all particle weights to be available; complete parallelization of the

particle filter algorithm is difficult. Efficient methods to address this in hardware can be

found in [17], [59], [4].

Data representation is another important issue that needs to be considered while im-

plementing algorithms in hardware. In a digital implementation, the number of bits used

to represent quantities of interest is limited. The use of quantization, however, to arrive

at finite wordlengths might affect the algorithm’s accuracy. Hence, there has been some

research on this aspect of the particle filter algorithm. An analysis of finite wordlength

effects in a particle filter bearings-only tracker is presented in [15]. In [139], a quantized

measurement sequential Monte Carlo (QMSMC) approach for systems with limited commu-

nication capability is addressed. The data likelihood function in QMSMC uses quantized

21



measurements. The work in [139] also compared a quantized measurement extended Kalman

filter (QMEKF) and the Kalman filter to QMSMC. Their results show the asymptotic op-

timality of QMSMC. A more fundamental approach is employed in [68], where the effect of

quantization on estimation and filtering is studied, and Cramér-Rao lower bounds (CRLB)

are obtained. Here, too, the effect of quantization in the particle filter approach is handled

by modifying the data likelihood to use accurate probabilistic models for the quantization

noise. Simulations in [68] demonstrate that the particle filter approaches the CRLB when

using quantized measurements.

The complexity of models or the large number of particles used can hinder real-time

execution of particle filters in certain applications. This happens when the rate of incoming

measurements is higher than the update rate of the particle filter. This issue has been

addressed by distributing the particles among different observations within an estimation

interval. In [73] a weighted mixture of k distributions obtained using k subsets of N/k

particles is propagated over time. This approach is used in a particle filter algorithm for

robot localization. For large-scale systems, the parallelization of particle filters to achieve

real-time constraints has been suggested in [18]. Recent work in [114] uses better particle

routing techniques in parallel particle filters to improve execution time. This is applied to

likelihood-based estimation of dynamic stochastic general equilibrium (DSGE) models.

Earlier work in the hardware implementation of particle filters address the issue of

speed or throughput [17], [4]. Energy efficiency is an important issue in environments that

operate under constrained energy or power budgets [62]. The energy dissipated in both

communications and computations is critical and needs to be minimized. In Chapter 4, we

address the power-aware or energy-efficient implementation of particle filters by adopting a

mixed-mode system that performs computations in both the analog and the digital domains.

Most earlier works used FPGAs in particle filter implementation [17], [109]. The particle

proposal and weighting stage can be easily parallelized and this can be efficiently imple-

mented in FPGAs. Earlier implementations use the state update as importance function

to propose particles and hence the computations in the weight update stage are simple as

shown in Section 1.1.3. However, the batch-based algorithm considered in this research,

22



uses a Gaussian approximation to the full-posterior as the importance function. The use of

Newton-Raphson search to identify modes and template-matching to evaluate likelihood,

further increases the complexity of the algorithm. We use a DSP and a FPGA to evaluate

real-time performance of the batch-based algorithm. The details of this implementation are

provided in Chapter 5.

1.4 Contributions and Organization of this Thesis

The contributions of this thesis relate to application of particle filtering for target track-

ing and hardware implementation of particle filters. From an application perspective, we

develop and implement a batch measurement based multi-target tracker that uses acoustic

DOAs. We derive and implement the state-space and observation models for a range mea-

surement based multi-target tracker. These two trackers justify use of batch measurements

to avoid explicit data-association for multi-target tracking. From an implementation per-

spective, we consider the batch based tracker and a bearings-only tracker. For low power

realization of the bearings-only tracker, we develop mixed-mode implementations that use

MITEs for implementing nonlinear functions. The batch-based filter, which is computa-

tionally complex compared to the bearings-only tracker, is implemented on a floating-point

DSP and most sections of the algorithm are implemented on a FPGA.

In Chapter 2, we present improvements to the batch-based multi-target particle filter

DOA tracker introduced by Cevher [28]. We develop a system that uses the particle filter

tracker, an acoustic beamformer, and a mode hungry Metropolis-Hastings (MHMH) algo-

rithm for initialization. The particle filter algorithm uses Laplace’s method to obtain a

Gaussian approximation to the full-posterior. The data-association in multi-target tracking

is handled by using a data likelihood similar to the ones used in image template tracking

and can handle clutter and missing measurements. We also develop a Laplacian filter and

an extended Kalman filter implementation that use batch measurements to perform multi-

target tracking. Simulations are presented to demonstrate the performance of particle filter

approach in comparison to the other approaches.

The multi-target DOA tracking algorithm’s performance can be improved, by developing

23



a joint tracking system that also uses radar range measurements. Though the joint tracker

is not developed in this thesis, a range measurement based tracker is developed in Chapter 3.

This uses a batch of radar range estimates and is similar to the DOA measurement based

tracker. A new approach to use range-rate information to improve the tracking estimates

is also presented. The performance of the algorithm is demonstrated using simulation of

various scenarios.

In Chapter 4, we introduce and develop a mixed-mode approach to implement particle

filters. In the mixed-mode approach, the nonlinear functions in the bearings-only tracker

are implemented using analog MITEs. We demonstrate the tracking performance of the

mixed-mode implementation through simulations and compare it to a digital FPGA imple-

mentation. The mixed-mode implementation is compared to a digital ASIC implementation

based on power dissipation, chip-area, and speed of operation. The digital implementations

use the COordinate Rotation DIgital Computer (CORDIC) algorithm to implement the

nonlinear functions.

We demonstrate real-time execution of the DOA batch-based particle filter tracking

algorithm in Chapter 5. We implement the algorithm on a TI C6713 floating-point DSP,

and analyze the required memory-size and the execution times for different stages in the

particle filter algorithm. We derive finite wordlengths for desired accuracy and performance,

and compare it to a floating-point implementation through simulations. We develop FPGA

implementations for certain sections in the particle filter tracker, and present estimates

on resources consumed and latencies. We also compare the FPGA implementation of the

batch-based tracker to the bearings-only tracker. Using MITEs we implement the DOA

update function in the algorithm. We provide tracking results to justify performance of the

various implementations.

In Chapter 6, we summarize the contributions of this thesis. We suggest possible exten-

sions to this thesis and areas for future research.

24



CHAPTER II

ACOUSTIC MULTI-TARGET TRACKING USING

DIRECTION-OF-ARRIVAL BATCHES

2.1 Introduction

In this chapter and the next, we develop batch measurement based particle filter multi-target

trackers that use direction-of-arrival (DOA)-only or range-only measurements, respectively.

The use of batch measurements to alleviate the data association problem inherent in multi-

target tracking was introduced by Cevher [28], [22]. The motivation for the separate trackers

is to develop a multi-sensor, joint-tracking system that employs both acoustic arrays and

radar sensors. This chapter presents a DOA-only tracker and closely follows a related

publication [29], which is a joint work by Dr. Volkan Cevher and the author. Later, in

Chapter 3 we present details specific to the range-only tracker.

In the literature, target tracking is usually formulated as a state-space problem [7],[46],

with an observation equation that relates the target state vector to the measurements, and

a state equation that constrains the dynamic nature of the state vector. The state vector

contains information related to the target kinematic characteristics, such as DOA, range,

velocity, or other motion parameters. The measurements are obtained from acoustic, radar,

seismic, or video signals. The performance of the tracking algorithms using state spaces re-

lies heavily on how accurate the models represent the observed natural phenomena [76], [75].

Hence, in many cases, it is important to use nonlinear and non-Gaussian state-space models

despite their computational complexity [78].

The multi-target tracking system considered in this chapter uses a batch of DOA mea-

surements to estimate the target states. The DOAs are obtained by beamforming acoustic

data received at an acoustic sensor array. Depending on the performance of the beam-

forming algorithm, the DOAs at certain time instants may be missing or spurious. Such

measurements and the maneuvering nature of the targets, leads to nonlinear state-space

25



models and a non-Gaussian distribution for the noise. In order to better handle this sce-

nario, we use particle filters in the estimation of target states.

As mentioned in Section 1.2, the presence of multiple targets increases the tracking

complexity, because data association is needed to sort the received data for each target. In

the past, the association problem has been handled in several different ways: (i) probabilistic

data association methods estimate the states by summing over all the association hypotheses

weighted by the probabilities obtained by the likelihood [7, 6, 34, 92], (ii) smoothness

assumptions on the target (motion) states allow a natural ordering of the data [67], (iii)

computationally costly ML/EM methods use the likelihood function to search for a global

maximum, or (iv) nearest-neighbor methods provide easy heuristics to perform measurement

updates. Most of these methods use the mean and covariance approximation of the sufficient

statistics for the state, which may be estimated with a Kalman filter; however, for nonlinear

state-spaces with general noise assumptions, Monté-Carlo methods or particle filters should

be used to adequately capture the dynamic, possibly multi-modal, statistics.

In a particle filter, where the observations arrive in sequence, the state probability

density function is represented by discrete state samples (particles) distributed according to

the underlying distribution either directly or by proper weighting [78, 46]. Hence, the filter

can approximate any statistics of the distribution arbitrarily accurately by increasing the

number of particles with proven convergence results [40]. In the particle filtering framework,

data association is undertaken implicitly by the state-space model interaction. However, the

particle filter suffers from the curse of dimensionality as the number of targets increases [40].

To increase the algorithm’s efficiency, various methods have been proposed, such as the

partitioning approach [79, 97], or other Bayesian approaches [64].

More recently [125] uses particle filters to address data association and multi-target

tracking in the presence of clutter. The authors use a proposal distribution that captures

the notion of a soft-gating of the measurements1. They present a Monte Carlo joint prob-

abilistic data association filter (MC-JPDAF) that uses particle filters to approximate the

1Gating is an approach used in joint probabilistic data association (JPDA) approaches to reduce the
number of hypotheses in associating the measurements to targets

26



distributions in a JPDA filter. They also present two improvements to the standard particle

filtering algorithm. In the first approach called sequential sampling particle filter (SSPF),

they use a proposal function that sequentially updates the association hypotheses. The

second approach uses an independent partition particle filter (IPPF) for the association hy-

potheses, assuming that the associations are independent over the individual targets. They

track slowly maneuvering targets in the x-y plane, using both range and bearing or DOA

measurements.

In our work we consider maneuvering targets and use batch measurements to alleviate

data association. Further, we do not perform any explicit data association or gating of

measurements. The tracking is performed using target states expressed in polar coordinates

and the measurements are a batch of DOAs. Though it is based on DOAs the tracking

algorithm also estimates the target heading and ratio of velocity-to-range. These states are

then used to estimate the target position in the x-y plane. The use of batch measurements

to estimate target states is described in Section 2.1.1.

We begin this chapter with a generic description of the batch measurement model. Then,

we concentrate on a target tracking system that uses DOAs as measurements. The tracking

system consists of three stages. The first stage is a beamforming block that provides the

DOA measurements. The second stage is a particle filter based tracking algorithm that

uses the DOA measurements to estimate target states. The third stage uses a mode hungry

Metropolis-Hastings algorithm to estimate the number of targets and performs automatic

initialization. These three stages are iteratively executed to track multiple targets over

time.

We also present simulation results comparing the performance of the particle filter

tracker to a Laplacian filter and an extended Kalman filter (EKF). The Laplacian filter

is an approximate Bayesian filter that uses Laplace’s method to obtain the posterior distri-

bution. The EKF is derived using a sliding window implementation to handle the complex

observation model that considers DOA batches with clutter and missing DOAs.

27



0 T 2T 3TMτ

t

DOA or Range Missing data

Clutter
DOA or Range Batch

Figure 2.1: Observation model uses a batch of DOA (Chapter 2) or range (Chapter 3)
measurements. The measurements are not necessarily ordered. However, when the batch
is treated as a measurement vs. time image, there is a natural ordering, which aids in the
multiple target tracking by the particle filter. This figure is reproduced from [29].

2.1.1 Batch measurements for multi-target tracking

The particle filter developed here (and in Chapter 3) uses multiple measurements to deter-

mine the state vector, based on an image template-matching idea. We denote the collection

of M measurements a batch, where M is the batch size. In our problem, a temporal DOA

image is first formed when a batch of DOA observations is received from a beamformer that

processes the received acoustic data at M τ -second intervals (Figure 2.1). Then, image

templates for target tracks are created using the state update function and the target state

vectors (Figure 2.2). By determining the best matching template (e.g., most probable target

track), the target state vectors are estimated. Because the observations are treated as an

image, the data association and DOA ordering problems are naturally alleviated. Moreover,

by assuming that the observations are approximately normally distributed around the true

target tracks, with constant miss-probability and clutter density, a robust particle filter

tracker is formulated. In Chapter 3, we apply a similar image template-matching approach

to track multiple targets using radar range measurements processed at a radar sensor.

28



t

t + Tt + τ

t + (M − 1)τ

DOA or Range

hθ
mτ (x(j)) (hr

mτ (x(j)))

hθ
mτ (x(i)) (hr

mτ (x(i)))

Figure 2.2: Template matching idea is illustrated. The solid line represents the true
DOA (range) track. Black dots represent the noisy DOA (range) estimates. The dashed
and dotted lines represent the DOA (range) tracks for two proposed particles, x(i) and x(j).
These tracks are calculated using the state update function h. Visually, the i-th particle is a
better match than the j-th particle; hence, its likelihood is higher. This figure is reproduced
from [29].

2.1.2 Acoustic DOA tracker

The target tracker in this chapter uses a particle filter algorithm to track the DOAs of mul-

tiple maneuvering targets. Each particle in the filter is created by concatenating partitions,

i.e., the state vector for each target. For example, the partition of the k-th target has a state

vector that consists of the DOA θk(t), the heading direction φk(t), and the logarithm of

velocity over range Qk(t) = log (vk/rk(t)) of the k-th target. The total number of targets (or

partitions) K is determined by a mode hungry Metropolis-Hastings block. Hence, given K

targets, a particle has K partitions where each target, and each partition, is assumed to be

independent.

The particle filter importance function proposes particles for each target independently

to increase the efficiency of the algorithm. To derive the proposal function for each target,

we use Laplace’s method to approximate the posterior of the corresponding partition by a

Gaussian around its mode [122, 53, 46]. We calculate the partition modes using a robust

Newton-Raphson search method that imposes smoothness constraints on the target motion.

29



We also present a slower but more robust method for determining the partition posteriors,

based on the mode hungry Metropolis-Hastings algorithm [23]. Details of the partition

posteriors are given in Section 2.4.

2.2 Tracker System Design

The target tracking system is constructed such that it (i) compensates DOA estimation

biases due to rapid target motion [138], (ii) results in higher resolution DOA estimates than

just beamforming [138, 97, 25], (iii) is robust to changes in target signal characteristics,

and (iv) automatically determines the number of targets. The tracking system consists of

three blocks as illustrated in Figure 2.3. Details of the individual blocks are given in the

following sections. Here, we discuss the technicalities that lead to this design.

The main objective of the system is to report multiple target DOAs at some period T ,

after observing the acoustic data at the node microphones. Quite often, target DOAs can

change more than a few degrees during an estimation period, e.g., due to rapid target mo-

tion. Hence, if we were to just use conventional snapshot DOA estimation methods (e.g.,

MUSIC, MVDR, etc.) for tracking the targets, the bearing estimates become biased, be-

cause the received data is not stationary [66]. This is intuitive, because these methods

estimate an average of the target angular spread during their estimation periods [138].

In general, locally linear motion models eliminate this bias by simultaneously estimating

the bearing and the target motion parameters for the estimation period T . Conceptually,

this is equivalent to aligning the received acoustic data with the motion parameters so that

the data becomes stationary for bearing estimation purposes. But, this alignment process

relies heavily on the observation model and is computationally costly because of the high

volume of the acoustic data used for estimation. In this research, we propose to use a

beamformer block to buffer the variability in the observed acoustic signals and to create a

compressed set of invariant statistics for our particle filter block.

Therefore, the beamformer block (Figure 2.3) processes the acoustic data at shorter

time intervals of τ = T/M (e.g., M = 10), where the targets are assumed to be relatively

stationary. This reduces the number of acoustic data samples available for beamforming,

30



��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

���
���
���
���

����
����
����
����
����

����
����
����
����
����

��
��
��

��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

Acoustic Node

θ1

θ1

θ2

θ2

θs

Beamformer Block

Beamformer output

Particle Filter Block

Target partitions:

yt = {yt+mτ (pm)}M−1
m=0

Partitions are deleted
when there is no data
in their gate.




θ1(t)
Q1(t)
φ1(t)






θ2(t)
Q2(t)
φ2(t)




yg
t : partition gated data

MHMH Block

x
(i)
new, i = 1, . . . , N

Knew

Finds partitions and distributions.

Figure 2.3: Tracking system mechanics demonstrated. The beamformer block monitors
the received acoustic signals to adapt to their frequency characteristics for better bearing
estimation. It outputs a batch of DOAs that form a sufficient statistic for the particle filter
block. The particle filter estimates the tracking posterior and can make various inferences
(e.g., mean and mode estimates). It acquires the new partition information from the mode
hungry Metropolis Hastings (MHMH) block. It can also delete a partition, if there is no
data in the respective partition gate (explained in the text). The MHMH block determines
the new partitions and their distributions from the residual DOAs coming from the particle
filter (i.e., the gating operation). This figure is reproduced from [29].

31



resulting in a sequence of noisier DOA estimates. However, these noisier DOA estimates

can be smoothed in the particle filter block, because a motion structure is imposed on the

batch of DOAs. Moreover, for the state vector defined in Section 2.1.2, a batch of more

than three DOAs is sufficient for observability of the state [138]. Since the filter is built on

the compressed statistics which are also sufficient to observe the state vector, it achieves a

significant reduction in computation when compared to methods that use the acoustic data

directly [25].

When the received signal characteristics change, the particle filter tracker formulation

is not affected because the beamformer block can absorb variabilities in the acoustic sig-

nals. The state-space formulations in this research is similar to other trackers proposed in

the literature [138, 97, 25]. The trackers presented in [138, 97] directly employ the classi-

cal narrow-band observation model, where targets exhibit constant narrow-band frequency

characteristics [66]. The tracker in [25] tries to adapt to varying time-frequency char-

acteristics of the target signals, assuming that the varying frequencies are narrow-band.

The tracker in [74] also incorporates an amplitude model for the signals. Because their

probability density equations explicitly use an observation equation that relies on the raw

measurements, these trackers are hardwired to their observation model. Hence, a complete

re-work of the filter equations would be required to track targets with wideband signal

characteristics (e.g., [74], [93]).

The third block in Figure 2.3 addresses a fundamental issue for trackers: initialization.

It is an accelerated Metropolis-Hastings algorithm modified specifically for unimodal distri-

butions. It takes the ungated DOAs from the particle filter as inputs (Figure 2.4), or if there

are no partitions in the particle filter, it takes the DOAs as data from the beamformer block

directly. It generates a particle distribution for each potential new target one at a time,

i.e., it converges on the strongest mode in the, possibly, multi-modal target posterior and

sifts out the corresponding DOA data. It then iterates to find other modes until stopping

criteria are met. This block creates new partitions for the particle filter, which can also

delete its own partitions when conditions described in Section 2.5 are met. Conceptually,

this initialization idea is equivalent to the track-before-detect (TBD) approach used in the

32



radar community [12, 105]. Briefly, TBD implies that the tracking or estimation process

uses the measurements obtained over a time to estimate states without performing an ex-

plicit detection. An implicit detection or estimate of the number of targets is performed as

part of the tracking process.

σg

σg

σg

Partition Gate

Ungated DOAs

Figure 2.4: Gating operation illustrated. Solid line is the true DOA track. The DOA
observations are shown with dots. Given a partition gate size σg, the DOAs are ignored
(i.e., gated out) if they are more than σg away from the solid line.

2.3 Beamformer Block

Beamformers use the collected acoustic data to determine target DOAs and are called

narrow-band beamformers if they use the classical narrow-band array observation model [66,

113]. Beamformers are wideband if they are designed for target signals with broadband

frequency characteristics [128].

The beamformer block can be designed with the best beamformer for the local char-

acteristics of the acoustic signals. That is, given the observed acoustic signal and its

time-frequency distribution, we can choose an optimal beamformer to calculate target

DOAs. For example, we can choose multiple beamformers if the received acoustic sig-

nal shows both narrow-band and wideband characteristics. The output of the beam-

former yt = {yt+mτ (p)}M−1
m=0 is a DOA data cube containing the Pm-highest DOA peaks

of the beamformer pattern. In general, the number of DOA peaks Pm at batch index m

should be greater than or equal to the number of targets K so that we can also detect new

targets while tracking the existing targets. In the discussions presented here, we fix Pm = P .

33



Hence, the output of the beamformer is a DOA data cube yt = {yt+mτ (p)}M−1
m=0 . In Fig-

ure 2.1, P = 2 and M = 5. The related work in [29] considers dependence on frequency in

the beamformer. Note that the input of the particle filter has the same structure regardless

of the target signal characteristics.

Finally, the choice of the parameter τ for beamforming is determined by various physi-

cal constraints, including (i) target frequency spread, (ii) target speed, and (iii) a target’s

affinity to maneuver. For reasonable beamforming, at least two cycles of the narrow-band

target signals must be observed. This stipulates that τ > 2/Fmin, where Fmin is the mini-

mum beamforming frequency for the target. Moreover, to keep the worst case beamform-

ing bias2 bounded for each DOA by an angle threshold denoted by D, we approximately

have τ < 2D
exp{Q} , where exp{Q} is the target velocity over range ratio. Lastly, the target

motion should satisfy the constant velocity assumption during the output period T . For

slow moving ground targets, T = 1 s is a reasonable choice. Note that at least three DOA

estimates are necessary to determine the state vector. To improve the robustness of the

tracker, we use M > 5 to decrease the probability that the state is not observable due to

missing DOAs. Hence, the parameter τ is bounded by the following

2

Fmin
< τ < min

{
2D

exp{Q} ,
T

M

}
. (2.1)

2.4 Particle Filter

The details of the particle filter block in Figure 2.3 are discussed here. In Section 2.6, we

provide alternative algorithms to replace this block based on the Kalman filter and Laplace’s

method.

2.4.1 State update model

The particle filter state vector xt consists of the concatenation of partitions xk(t) for each

target, indexed by k, and represented as xt =
[

xT
1 (t), xT

2 (t), · · · , xT
K(t)

]T
, where K is

2The bias is calculated by taking the angular average of the target track. Hence, this bias also depends
on the heading direction. The worst case bias happens when the target heading and DOA sum up to π.
Moreover, it is also possible to analytically find an expected bias by assuming uniform heading direction,
using a similar analysis done in [138].

34



the number3 of targets at time t. Each partition has the corresponding target motion

parameters xk(t) , [ θk(t) , Qk(t) , φk(t) ]T , as defined in Section 2.1.2. The angle param-

eters θk(t) and φk(t) are measured counterclockwise with respect to the x-axis.

The state update equation can be derived from the geometry imposed by the locally

constant velocity model, and is the same as in [22]. The resulting state update equation is

nonlinear:

xk(t + T ) = hT (xk(t)) + uk(t), (2.2)

where uk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
Q,k, σ

2
φ,k} and

hT (xk(t)) =




tan−1
{

sin θk(t)+T exp Qk(t) sinφk(t)
cos θk(t)+T exp Qk(t) cos φk(t)

}

Qk(t) − 1
2 log

{
1 + 2T exp (Qk(t)) cos(θk(t) − φk(t)) + T 2 exp(2Qk(t))

}

φk(t)




.

(2.3)

The analytical derivations of (2.3) can be found in [138, 25], and [25] also discusses state

update equations based on a constant acceleration assumption.

φ(t)

θ(t) θ(t + T )

vT

x

y

r(t)

r(t + T )

1

2

Figure 2.5: Geometry for constant velocity target motion. θ(t) denotes target DOA, r(t)
denotes target range, and φ(t) denotes the target heading direction when the target is at
position denoted by 1 in the x-y plane. The target velocity is represented by v and the
period over which the velocity is assumed constant is T . (This figure is same as Figure 1.2).

3Explicit time dependence is not shown in the formulations. The parameter K is determined by the
MHMH block (Section 2.5).

35



2.4.2 Observation model

The observation yt at time t, consists of the batch DOA estimates from the beamformer

block (Section 2.3), given by

yt = {yt+mτ (p)}M−1
m=0 , p = 1, . . . , P (2.4)

where m is the batch index. Hence, the acoustic data of length T is segmented into M

segments of length τ . Multiple DOA measurements imply the presence of clutter or multiple

targets.

The particle filter observation model also includes a clutter model because beamform-

ers can produce spurious DOA peaks as output (e.g., the sidelobes in the power vs. angle

patterns) [66]. To derive the clutter model, we assume that the spurious DOA peaks are

random with uniform spatial distribution on the angle space, and are temporally as well

as spatially independent. In this case, the probability distribution for the number of spuri-

ous peaks is best approximated by the Poisson distribution with a spatial density [7], [98].

Moreover, the probability density function (pdf) of the spurious peaks is the uniform dis-

tribution on [0, 2π). However, since the number of peaks in the beamformer output can

be user defined (P ), and since the beamformer power vs. angle pattern has smoothness

properties, we use the following pdf for the spurious peaks:

p(θ|θ is spurious) =
γ

2π
, (2.5)

where γ ≫ 1 is a constant that depends on the maximum number of beamformer peaks P ,

the beamformer itself (i.e., the smoothness of the beamformer’s steered response), and the

number of targets K. Equation (2.5) implies that the natural space of the clutter is reduced

by a factor of γ because of the characteristics of our specific system.

2.4.3 Data likelihood function

We now present the data likelihood function for the multi-target tracking scenario considered

here. This is similar to the model used in visual tracking [65]. The approach used here

was introduced in [28], [22]. This is also the approach used in the implementation of the

36



batch tracker in Chapter 5. It assumes that the batch of DOAs form a normally distributed

cloud around the true target DOA tracks (Figure 2.1) with a constant miss probability of

κ; and may have spurious peaks Poisson distributed as derived in (2.5) in Section 2.4.2.

Of the P peaks, only one peak corresponds to a target and the remaining peaks either

correspond to other targets or clutter. Hence, for a specific time instant within a batch

period, with m = mi, we have the observation density to be

p(ymi
(t)|xk(t)) ∝ 1 +

1 − κ√
2πσ2

θ(mi)κλ

P∑

pi=1

exp

{
−
(
hθ

miτ (xk(t)) − yt+miτ (pi)
)2

2σ2
θ(mi)

}
. (2.6)

Extending this to a batch of M observations for a single target, we have

p(y(t)|xk(t)) ∝
∏

m

p(ym(t)|xk(t)). (2.7)

Hence, the observation density for multiple targets can be written as

p(y(t)|x(t)) ∝
∏

k

∏

m



1 +

1 − κ√
2πσ2

θ(m)κλ

P∑

pi=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (pi)
)2

2σ2
θ (m)

}
 ,

(2.8)

where κ is a constant miss probability, λ =
γ

2π
is the Poisson rate of the clutter distribution,

superscript θ on the state update function h refers to the DOA component of the state

update (2.3), and σ2
θ(m) is supplied by a beamformer.

A more rigorous and robust approach to derive the data likelihood using the joint prob-

abilistic data association (JPDA) [7, 8] is presented in [29]. Though, there is no significant

improvement in performance, the JPDA based approach provides additional parameters

that can be used to better model target interactions.

Note that the DOA distribution in (2.8) is not a proper circular normal distribution for

an angle space. For angle spaces, the von Mises distribution is used as a natural distribu-

tion [50]. The von Mises distribution has a concentration parameter with a corresponding

circular variance. It can be shown that for σ2
θ ≪ 1 (high concentration), the von Mises

distribution tends to the Gaussian distribution in (2.8) [49]. Because the von Mises distri-

bution has numerical issues for small DOA variances, the Gaussian approximation (2.8) is

used in this research. Hence, special care is taken in the implementation to handle angle

wrapping issues.

37



2.4.4 Particle filter proposal function

In our problem of DOA-only multiple target tracking, the proposal function poses difficult

challenges because (i) the state vector dimension is proportional to the number of targets K,

hence the number of particles to represent posterior can increase significantly as K increases

(the curse of dimensionality), (ii) in many cases, the targets maneuver, hence full posterior

approximations are required for robust tracking, and (iii) for full posterior approximations,

robustly determining the DOA-only data-likelihood is rather hard. We will address each

of these challenges in this section. Note that once the proposal function is formulated, the

rest of the particle filter structure is well-defined: weighting and resampling.

2.4.4.1 Partitioned sampling

A partitioned sampling approach is used to reduce the curse of dimensionality in the particle

filter. The basic idea is as follows. Suppose that we (wrongfully) factor the tracking posterior

density as

p(xt|yt,xt−T ) ∝ p(yt|xt)p(xt|xt−T )

=

K∏

k=1

p(yt|xk(t))

K∏

k=1

p(xk(t)|xk(t − T ))

=
K∏

k=1

p(yt|xk(t))p(xk(t)|xk(t − T ))

∝
K∏

k=1

qk(xk(t)|yt, xk(t − T )).

(2.9)

In this case, the target posterior is conveniently a product of the partition posteriors (i.e.,

individual target posteriors) qk(·|·). We can then generate samples for each partition ac-

cording to its posterior (i.e., x
(i)
k ∼ qk(xk(t)|yt, xk(t−T ))) and merge them to represent xt.

It can be proved [79] that the resulting particle distribution is the same as when we gener-

ate xt directly from the full posterior p(xt|yt,xt−T ). However, in the partitioned sampling

case, the computational complexity of the state vector generation is linear with respect to

the number of targets K as opposed to exponential when the state vector is sampled from

the full posterior.

38



In our problem, we can approximately factor out the tracking posterior to exploit the

computational advantage of the partitioned sampling. In addition the target dynamics can

be factored out because we assume the targets are moving independently.4 Unfortunately,

the observation density does not factor out, because the observed DOA data cannot be

immediately associated with any of the partitions. However, for a given partition, if we

assume that the data is only due to that partition and clutter (hence, the DOA data cor-

responding to other partitions are treated as clutter), we can do the following approximate

factorization on the observation likelihood (2.8):

p(yt|xt) ≈
K∏

k=1

p(yt|xk(t))

=
K∏

k=1

M−1∏

m=0



1 +

1 − κ√
2πσ2

θ (m)κλ

P∑

pi=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (pi)
)2

2σ2
θ(m)

}
 .

(2.10)

Hence, for our problem, an approximate partition posterior is the following

qk(xk(t)|yt, xk(t − T )) ∝ p(yt|xk(t))p(xk(t)|xk(t − T )), (2.11)

where p(yt|xk(t)) is given in (2.10) and p(xk(t)|xk(t − T )) = N (hT (xk(t − T )),Σu) with

Σu = diag{σ2
θ , σ

2
Q, σ2

φ}.

2.4.4.2 A Gaussian approximation for partition posteriors

Now, we derive a Gaussian approximation to (2.11) to be used as a proposal function for

the particle filter. Hence, we use the current observed data to propose the filter’s particle

support, also incorporating target maneuvers if there are any. This approximation can

be done in two ways: (i) Laplace’s method or (ii) the mode hungry Metropolis-Hastings

method. The first method is an order of magnitude faster than the second, but it is not as

robust. The filter monitors the target states and can decide to switch between methods to

find the partition posteriors.

4When targets are moving closely in tandem, there is a possibility that the beamformer block may not
resolve them. Hence, they can be treated as a single target. In other cases, the independence assumption
still works. However, if high resolution observations (e.g, top down video images of the target plane) are
available, it is better to also model the interactions of targets. A good example using Monté-Carlo Markov
chain methods can be found in [70].

39



By default, the filter uses Laplace’s method to approximate p(yt|xk(t)) in (2.11)

and thereby derive the partition proposal functions of the particle filter, denoted

as gk(xk(t)|yt, xk(t − T )). Laplace’s method provides an analytical approximation for prob-

ability density functions, based on a Gaussian approximation of the density around its mode,

where the inverse Hessian of the logarithm of the density is used as a covariance approx-

imation [53]. It can provide adequate approximations to posteriors that are sometimes

more accurate than approximations based on third-order expansions of the density func-

tions [122]. The computational advantage of this approach is rather attractive because it

only requires first- and second-order derivatives. The condition for accurate approximation

is that the posterior be an unimodal density or be dominated by a single mode. Hence, it

is appropriate for approximating the partition posteriors of the particle filter.

Laplace’s approximation requires the calculation of the data statistics. The Laplacian

approximation is described in detail in [22]. For this research, it is implemented with the

Newton-Raphson recursion with backtracking for computational efficiency, as explained in

Appendix A. Because of the constrained nature of the algorithm’s modified cost function,

this method is sometimes susceptible to “shadow tracking” and can diverge under certain

conditions (refer to Figure 2.6). Shadow tracking refers to the scaled target tracks in x-y

that can lead to the same DOA track as illustrated in Figure 2.6. Shadow tracks may cause

the Laplacian approximation deviate from the truth because of the motion smoothness

constraints used to calculate it.

Any divergence in the Newton-Raphson mode calculation can be detected by monitoring

the number of DOA measurements that fall into the gate of the mode estimate (Figure 2.4).

If there are less than a threshold number of DOAs (typically M/2) within a σg neighborhood

of the Newton-Raphson mode’s DOA track, then the particle filter uses the MHMH method

for determining the mode. After the MHMH iterations are over, if the MHMH corrected

mode fails to have the required number of DOAs within its gate, the partition is declared

dead. Details of the MHMH method are given in Appendix A. The final expression for the

partition proposal functions to be used in the particle filter is given by

gk(xk(t)|yt, xk(t − T )) ∼ N (µg(k),Σg(k)) (2.12)

40



0 1 2 3 4 5 6 7 8 9 10 11
−50

0

50

100

150

 θ
  i

n 
[°

]

 time

0 5 10

−50

0

50

 φ
  i

n 
[°

]

 time
−50 0 50 100

0

50

100
t=6s

 y

 x

Figure 2.6: The particle filter is susceptible to shadow tracking, when only the Newton-
Raphson recursion is used to determine the data-likelihood function. (Top) DOA tracking
results with MHMH correction (solid line) and without (dotted line). At t = 6s, the MHMH
automatically corrects the heading bias. (Bottom Left) True track (inside), the shadow track
(middle) and the diverged track (outside, dotted line) which lacks the MHMH correction.
(Bottom Right) Filter heading estimates. Note the MHMH correction at time t = 6s.

41



where the Gaussian density parameters are

Σg(k) =
(
Σ−1

y (k) + Σ−1
u

)−1

µg(k) = Σg(k)
(
Σ−1

y (k)xk,mode + Σ−1
u hT (xk(t − T ))

)
,

(2.13)

where xk,mode is the mode of p(yt|xk(t)), and Σ−1
y (k) is the Hessian of p(yt|xk(t)) at xk,mode,

calculated by either one of the methods in this section. Using this in (2.11) yields (2.13).

2.4.5 Algorithm details

Pseudo-code of the particle filter algorithm is given in Table 2.1. The filter implementation

employs an efficient resampling strategy, called “deterministic resampling,” first outlined

in [71]. This resampling strategy is preferred because of (i) the efficient sorting of the

particles and (ii) the small number of random number generations. The deterministic

resampling strategy also has known convergence properties [71]. Faster resampling schemes

without convergence proofs are also available [13] and these could make a difference in the

filter computation, especially when K = 1.

Finally, the partitions are managed by the specific interaction between the particle filter

and the MHMH block. New partitions are introduced into the particle filter, using the

distribution supplied by the MHMH block. First, the particle filter block deletes the DOAs

from the observed data that belong to the partitions that it is currently tracking (gating)

after estimation (Figure 2.4). Gating here is a simple distance thresholding operation and

does not incur significant computation. Then, the remaining DOAs are used by the MHMH

block to determine any new partition distributions. For the particle filter to stop tracking

a given target, a deletion operation is necessary. The particle filter can delete partitions

at either the proposal stage or after estimation. Lastly, note that our implementation of

the particle filter does not make partition associations such as partition split or merge. We

leave these decisions to a higher level fusion algorithm.

42



Table 2.1: Acoustic DOA particle filter tracker pseudo-code.

Given the observed data yt = {yt+mτ (p)}M−1
m=0 in [t, t + T ), do

1. For i = 1, 2, . . . , N

• For k = 1, 2, . . . ,K

sample x
(i)
k (t) ∼ gk(x

(i)
k (t)|yt, x

(i)
k (t − T )), given by (2.12).

• Form x
(i)
t =

[
x

(i)
1 (t), x

(i)
2 (t), . . . , x

(i)
K (t)

]T
.

2. Calculate the weights

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t )p(x

(i)
t |xt−T )

∏
k gk(x

(i)
k (t)|yt, x

(i)
k (t − T ))

, (2.14)

where p(yt|x(i)
t ) is fully joint observation density, given by (2.8).

3. Normalize the weights: w
(i)
t =

w∗(i)
t∑

i w
∗(i)
t

.

4. Form the estimate: E{f(xt)} =
∑N

i=1 w
(i)
t f(x

(i)
t ).

5. Resample the particles:

• Heapsort the particles in an ascending order according to their weights: x
(i)
t → x̃

(i)
t .

• Generate ω ∼ U [0, 1).

• For j = 1, 2, . . . , N

a. u(j) = j−ω
N ,

b. Find i, satisfying
∑i−1

l=1 w̃
(i)
t < u(j) ≤∑i

l=1 w̃
(i)
t ,

c. Set x
(j)
t = x̃

(i)
t .

6. Associate the DOA estimates with partitions using a nearest neighbor approach.

• Calculate the DOA track for each partition of x, x =
∑N

i=1 w
(i)
t x

(i)
t , using the state

update equation.

• Associate the nearest DOA estimates within a threshold angle distance, with each
partition.

• Report all the unassociated DOA estimates to the MHMH block.

7. Delete partitions with the number of associated DOA estimates less than a threshold
number (e.g., M/2).

8. Randomly merge the new partitions coming from the MHMH block, if there are any.

43



2.5 The MHMH Block

The objective of the MHMH block5 is to find any new targets in the observed data and

determine their probability density distributions. The MHMH block uses the matching

pursuit idea by Mallat [80] by consecutively applying the MHMH algorithm on the ungated

DOAs until the stopping conditions described below are satisfied. Each iteration of the

MHMH block results in a new target state vector distribution and the total number of

iterations gives the number of new targets.

The MHMH block employs the mode hungry Metropolis-Hastings sampling algorithm

to determine the distribution for the target that has the highest mode in the multi-target

observation density. The MHMH sampling algorithm [23] is an accelerated version of the

Metropolis-Hastings algorithm [84, 58, 36, 121] that generates samples around the modes of a

target density. The pseudo-code for the MHMH sampling algorithm is given in Table 2.2 (re-

produced from [23]). For our system, we use a random walk for the candidate generating

function q(·) in Table 2.2 with the walk noise variances set to σθ = 0.5◦, σQ = 0.01s−1,

and σφ = 4◦. Cross sampling is applied every Ljump = 2 iterations on subpartitions of

size Ml, which is typically half the number of MHMH particles NMHMH. For our problem,

the sampling algorithm is iterated a total of 150 iterations. Finally, the target density π(·)

is obtained by setting K = 1 on the observation density (2.8):

π(xi) ∝
∏

m



1 +

1 − κ√
2πσ2

θ(m)κλ

P∑

pi=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (pi)
)2

2σ2
θ(m)

}
 (2.15)

The pseudo-code of the MHMH block is given in Table 2.3. The algorithm creates a set

of particles to input the MHMH sampling algorithm. This initial set consists of some of

the residual DOAs and a grid of Q-φ values. After the MHMH sampling is over, the mode

of these particles is monitored by two conditions. The first condition checks if there are

sufficient DOAs in the mode’s DOA gate. This ensures that the mode is relatively accurate

when used by the particle filter. The second condition makes sure that mode belongs to

a physical target as opposed to some alignment of the clutter. If these conditions are

5The MHMH block is not to be confused with the MHMH correction of the proposal stage.

44



Table 2.2: MHMH sampling algorithm.

1. At iteration l, decide if cross-jumping is needed for x(l), i.e., every Ljump = 2 iterations.

2. If not, then for each particle xi, i = 1, 2, . . . , NMHMH, use the Metropolis-Hastings scheme:

• Generate a candidate yi using q(xi, yi),

• Calculate the acceptance ratio

α(xi, yi) = min

{
1,

π(yi)q(yi, xi)

π(xi)q(xi, yi)

}
,

• Sample u ∼ U(0, 1),

• if u ≤ α(xi, yi), set x
(l+1)
i = yi, else, x

(l+1)
i = x

(l)
i .

3. Use the Mode-Hungry scheme:

• Determine a subpartition of size Ml < NMHMH, (e.g.,Ml = NMHMH/2),

• Order the current particles according to their probabilities in descending order:
xi → x∗

j , where x∗ is the ordered particle set,

• Generate candidates y∗(1) for x∗(1) = {x∗
j |j : j = 1, 2, . . . , NMHMH − Ml}, using

q(·, ·),
• Calculate the acceptance ratio α(x∗(1), y∗(1)), and set x

(l+1)
j to x∗

j (1) or y∗j (1),
accordingly for j = 1, 2, . . . , NMHMH − Ml,

• Distribute Ml candidates y∗(2) from x∗(1) uniformly,

• Set x
(l+1)
j to y∗(2) for j = NMHMH − Ml + 1, . . . , NMHMH.

not satisfied, the MHMH block exits and no new partitions are introduced. Otherwise, we

resample N particles with replacement from the MHMH output and declare a new partition

in the particle filter. The DOAs belonging to the new mode are gated out, and the procedure

is repeated.

2.6 Other Tracker Solutions

This section discusses alternative DOA tracking algorithms to replace the particle filter in

Figure 2.3, namely the extended Kalman filter (EKF) and the Laplacian filter. These algo-

rithms incur less computational cost than the particle filter. The Laplacian filter solution

can even be implemented in a fully parallel fashion.

45



Table 2.3: MHMH block pseudo-code.

1. Let yg
t,f be the residual set of DOA observations from the particle filter. If there are no

partitions in the particle filter, then yg
t,f = yt,f . Define Nθ as the number DOAs in yg

t,f .

2. Set Knew = 0. Create a uniform grid for Q and φ. Choose NQ starting values for Q based
on the physical motion constraints, and choose Nφ heading directions, uniformly spaced in
(−π, π].

3. while Nθ > 5,

• {θi}Nθ

i=1 = {yg
t+mτ,f (p)}4

m=0.

• Replicate the Q-φ grid Nθ times and combine it with each θi. Generate the initial set

of particles: {x(j)}NθNQNφ

j=1 .

• Use MHMH (Table 2.2) to identify one mode (corresponding to one of the targets) of
the distribution.

• If the DOA gate of the highest probability particle has less than 5 DOAs, break.

• If Q value of the highest probability particle is greater than Qth = 0, break.

• Resample N particles with replacement from the MHMH output. Knew = Knew + 1.
Report the resampled set to the particle filter.

• Delete the DOAs within 3◦ of the mode DOA track (gating) to obtain the residual
yg

t,f .

2.6.1 Extended Kalman filter

The EKF solution is a M -scan multiple hypothesis tracking (MHT) filter. Unlike the stan-

dard Kalman filter based approaches, the observation equation (2.8) requires M snapshots

of data to perform state estimates. Hence, the usage of MHT here differs from traditional

approaches6. Compared to the particle filter that updates the state every T seconds, the

EKF estimates the states every τ seconds, based on the sliding M -DOA snapshots. This is

similar to a sliding window approach [7], but assumes that the number of targets is fixed

and known since it is estimated by the MHMH block.

In the EKF explicit measurement-to-target associations have to be made. We use the

6In traditional MHT, the M -scan associations from one snapshot t + (m − 1)τ are carried over to the
next snapshot t + mτ . In this research, the associations during each snapshot t + mτ depend only on the
predicted measurement, based on state xt, and do not depend on associations at t + (m − 1)τ

46



JPDA to generate a set of hypotheses, relating measurements to targets, during each snap-

shot [7, 6, 34, 92, 11]. Similar hypotheses are generated for each of the M snapshots,

starting at time t. The best hypothesis at each snapshot is chosen, based on the proba-

bilities obtained from the JPDA. These M -best hypotheses are then used to associate the

measurements to targets during each batch period. If a measurement-to-target association

cannot be found for a target, it is assigned a probability of zero. Using this procedure for

each target, a modified innovation term is obtained as

νk(t) =
{

βm(t) ⊗
(
yt+mτ (pk) − hθ

mτ x̂k(t|t − τ)
)}M−1

m=0
, (2.16)

where yt+mτ (pk) is the measurement associated with the target k at time instant t + mτ

and βm(t) is the probability corresponding to the hypothesis at the m-th snapshot, obtained

using the JPDA. The state update in the EKF is

x̂k(t|t) = x̂k(t|t − τ) + Kk(t)νk(t), (2.17)

where Kk(t) is the standard Kalman gain. The EKF covariance update is

Pk(t|t) = Pcc (Pk(t|t − τ)) +

(1 − Pcc)
(
Pk(t|t − τ) − Kk(t)Mk(t)K

T
k (t)

)
+ P̃,

(2.18)

where P̃ = Kk(t)νk(t)ν
T
k (t)KT

k (t), Kk(t) is the Kalman gain, Pcc is the probability that

the associations are correct, Pk(t|t− τ) is the state prediction covariance, and Mk(t) is the

measurement covariance obtained as in the standard EKF [7].

2.6.2 Laplacian filter

The Laplacian filter is a Bayesian filter that uses the product of the partition proposal

functions (2.12) as the tracking posterior. Hence, the posterior of the Laplacian filter is a

combination of multi-target Gaussian approximations:

p(xt|yt,xt−T ) =
K∏

k=1

qk(xk(t)|yt, xk(t − T )). (2.19)

It handles multiple targets using the partition approach and each target posterior is assumed

independent. Hence, the filter can be parallelized for faster implementation. Because the

47



Table 2.4: Simulation parameters - Acoustic target tracker.

Parameter Value

Number of particles, N 200

θ state noise, σθ,k 1 ◦

Q state noise, σQ,k 0.05 s−1

φ state noise, σφ,k 10 ◦

Measurement noise, σθ 1 ◦

Tracker sampling period, T 1 s

Beamformer batch period, τ 0.1 s

Clutter space parameter, γ 600

Probability of target miss, κf
0,K 0.1

Number of batch samples, M 10

Number of DOA peaks, P 4 (≥ K)

Laplacian filter uses the Newton-Raphson recursion to calculate the data-likelihood, its

complexity is similar to the particle filter for N < 200. Every T seconds, the EKF per-

forms M estimates, whereas the particle filter or Laplacian filter perform a single estimate.

Furthermore, using M JPDA steps to make explicit target-data associations during each

estimate of the EKF also increases its complexity. Considering this, the Laplacian filter is

computationally less complex compared to that of the EKF and the particle filter.

2.7 Simulations

This section presents simulation results to demonstrate the performance of the automated

target tracking system that uses the DOA tracker and compares the performance of the

particle filter to the EKF and the Laplacian filters introduced in the chapter. In addition to

these results, we present a tracking scenario that uses prior information of the track or road

to improve the target state estimation. Table 2.4 summarizes the simulation parameters

used.

Apart from the results presented here, a Matlab based tool was developed to interactively

generate scenarios for testing the performance of the particle filter tracking algorithm. This

also helped in identifying issues that affected the robustness of the algorithm.

48



0 5 10 15 20 25 30

−150

−100

−50

0

50

100

150

time [s]

θ
in

[
◦
]

(a) System Input

0 5 10 15 20 25 30
−100

−50

0

50

100

150

time [s]
(b) System Result

Figure 2.7: Two targets are successfully initialized and tracked by the automated system.
(a) DOA input to the tracking system. The number of peaks P = 3 at each time instant.
(b) Output of the system. To better illustrate the initialization and tracking, a zoomed-in
version of the output is shown.

2.7.1 System simulation

Here, we present simulation results for the automated tracking system described in Fig-

ure 2.3. We present two scenarios to illustrate the system performance. In the first scenario,

two targets are being tracked by the system, where one target appears in the beamformer

output between t = 0 s and t = 27 s, and the other one between t = 6 s and t = 32 s (Fig-

ure 2.7). The targets are successfully initialized by the MHMH block and then deleted by

the particle filter. The track coherence is also maintained around t = 14 s, because the

particle filter also tracks the target motion parameters. In this case, there were no false

target initializations by the MHMH block. In the second scenario (Figure 2.8), four short

bearing tracks were used as input data to demonstrate the ability to initiate and terminate

tracks. It should be noted that, the initialization is sensitive to the number of DOAs used

as threshold to determine a valid track.

In Figure 2.9, we provide the results of a simulation to demonstrate the performance of

our detection scheme. In this simulation, we randomly picked a target track with a duration

of 1 s. We generated the corresponding bearing track for M = 10 with varying DOA errors.

We then added a spurious track with M = 10 by generating random DOA estimates that

are uniformly distributed in [0, 2π). We repeated this for a Monté-Carlo run of size 100.

49



0 2 4 6 8 10

−150

−100

−50

0

50

100

150

time [s]

θ
in

[
◦
]

(a) System Input

1 2 3 4 5 6 7 8
−50

0

50

100

time [s]
(b) System Result

Figure 2.8: Four short target bearing tracks are successfully initialized and killed by the
automated system. (a) DOA input to the tracking system. (b) The system can successfully
detect the short target tracks. The plot is a zoomed-in version to better illustrate the
initialization.

During each simulation, we also randomly replaced DOAs in the input data with clutter

with probability Pc to simulate missing DOAs. To determine the probability of missed

detections in our initialization algorithm, we counted the number of times our initialization

algorithm failed to detect the target and then divided that by the size of the Monté-Carlo

run. For DOA error variances less than 2◦, the detection scheme is quite successful, i.e.,

the probability of miss is less than 0.1. As the DOA noise increases above the gate size, the

detection performance loses its monotonicity.

2.7.2 Comparisons of DOA trackers

In Figures 2.10, 2.11, and 2.12, Monté-Carlo simulations compare the estimates obtained

using the particle filter, the EKF, and the Laplacian filter. The state estimation perfor-

mances of these filters are comparable. The Laplacian filter tends to have less variance

than the particle filter in general, because the actual posterior is wider than the Gaussian

approximation. Hence, we can consider the Laplacian filter as a mode tracker.

The filters’ tracking performance in most cases are similar, when initialized correctly

around the true target state as in Figure 2.10. However, the EKF is more sensitive to errors

in initialization than the other two filters. The EKF may have difficulty tracking the DOAs

correctly, when initialized with the mean of the particle set generated by the MHMH block.

50



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

 

 

P
c
 = 10%

P
c
 = 20%

P
c
 = 30%

P
c
 = 40%

DOA variance in [ ◦]

P
ro

b
a
b
il
it
y

o
f
m

is
s

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
−150

−100

−50

0

50

100

150

200

 

 

DOA measurement
Estimated track
Actual track

θ
in

[
◦
]

time [s]
(b)

Figure 2.9: (a) Probability of missed detections in the MHMH block with varying noise
variance in the measurement data. A partition gate size of σg = 3◦ is used. (b) A sample
realization with σθ = 2◦ from the Monté-Carlo run that calculates the probability of miss
in part (a).

The EKF can completely lose the DOA tracks as in Figure 2.10, if the initial estimates

are not accurate, whereas the other two filters can still absorb the discrepancies. There is

also a notable decrease in the EKF performance, when targets maneuver as in Figures 2.11

and 2.12. As seen from Figure 2.12, the particle filter is the most robust to target maneuvers

compared to the other two methods due to the diversity provided by the particles.

In Figure 2.13 we compare the particle filter, the EKF, and the Laplacian filter pre-

sented here with a particle filter that uses the received acoustic signals directly (denoted

as DPF) [25]. For the comparison, we use the classical narrow-band observation model to

generate the acoustic data as described in [25]; the acoustic SNR at the array is approx-

imately 7-dB in the simulation. For the simulation, we use a constant frequency target

at 150 Hz, an 8-microphone circular array with 0.45 wavelength separation, and a sampling

frequency of 1000 Hz. For the synthetic target track, process noise is added with vari-

ances σθ = 0.5◦, σQ = 0.05, and σφ = 8◦. The process noise explains the abrupt changes in

the heading φ estimates in Figure 2.13 at each time period.

To use the filters presented in this research, we applied a simple minimum variance

distortionless response (MVDR) beamformer on the acoustic data at the center frequency

and calculated DOA estimates. The filters being compared use the same noise variances

51



0 5 10 15
−50

0

50

100

θ
in

[
◦
]

0 5 10 15
−50

0

50

100

0 5 10 15
−50

0

50

100

0 5 10 15
−3.5

−2.5

−1.5

−0.5

lo
g
(v

/
r)

0 5 10 15
−3.5

−2.5

−1.5

−0.5

0 5 10 15
−3.5

−2.5

−1.5

−0.5

0 5 10 15
−100

0

100

time [s]

φ
in

[
◦
]

0 5 10 15
−100

0

100

time [s]

0 5 10 15
−100

0

100

time [s]

−200 0 200

−200

0

200

400

x

y

(a) Particle filter

−100 100

−200

0

200

400

x
(b) EKF

−100 100

0

200

x
(c) Laplacian filter

Figure 2.10: Monté-Carlo run results for each filter using 100 independent noise realizations
using Matlab’s boxplot command. (a) Particle filter. (b) Extended Kalman filter. (c) Lapla-
cian filter. The ground truth is shown with the dashed lines. The first row shows the
DOA (θ) estimates, the second row shows the log(v/r) (Q) estimates, the third row shows
the heading (φ) estimates. The last row shows the track estimates and their mean. In
this example, the Laplacian performs quite well and hence there were no MHMH iterations
done in the proposal stage of the particle filter. This is due to the smooth movement of the
targets.

52



0 5 10 15
−150

−50

50

150
θ

in
[
◦
]

0 5 10 15
−150

−50

50

150

0 5 10 15
−150

−50

50

150

0 5 10 15

−2.5

−1.5

−0.5

lo
g
(v

/
r)

0 5 10 15

−2.5

−1.5

−0.5

0 5 10 15

−2.5

−1.5

−0.5

0 5 10 15
−200

−100

0

φ
in

[
◦
]

time [s]

0 5 10 15
−200

−100

0

time [s]

0 5 10 15
−200

−100

0

time [s]

−100 0 100

−200

0

200

x

y

(a) Particle filter

−50 50 150
−200

0

200

x
(b) EKF

−100 0 100

−200

0

200

x
(c) Laplacian filter

Figure 2.11: Monté-Carlo run results for each filter using 100 independent noise realiza-
tions for a target that maneuvers rapidly. (a) Particle filter. (b) Extended Kalman fil-
ter. (c) Laplacian filter. The first row shows the DOA (θ) estimates, the second row shows
the log(v/r) (Q) estimates, the third row shows the heading (φ) estimates. The last row
shows track estimates and their mean. In this example, the MHMH iterations in the Lapla-
cian calculation were necessary to pull the Laplacian towards the true track because of the
abrupt maneuvers at t = 11 s and t = 12 s. Note that the filter track estimates shadow the
true track due to the constant velocity assumption.

53



0 5 10 15
−150

−50

50

150

θ
in

[
◦
]

0 5 10 15
−150

−50

50

150

0 5 10 15
−150

−50

50

150

0 5 10 15

−2.5

−1.5

−0.5

lo
g
(v

/
r)

0 5 10 15

−2.5

−1.5

−0.5

0 5 10 15

−2.5

−1.5

−0.5

0 5 10 15
−200

−100

0

φ
in

[
◦
]

time [s]

0 5 10 15
−200

−100

0

time [s]

0 5 10 15
−200

−100

0

time [s]

−100 100 300

−200

0

200

x

y

(a) Particle filter

−50 50 150
−200

0

200

x
(b) EKF

−50 50 150
−200

0

200

x
(c) Laplacian filter

Figure 2.12: Monté-Carlo run results for the same example as in Figure 2.11, but without the
MHMH correction. (a) Particle filter. (b) Extended Kalman filter. (c) Laplacian filter. The
first row shows the DOA (θ) estimates, the second row shows the log(v/r) (Q) estimates,
the third row shows the heading (φ) estimates. The last row shows track estimates and
their mean. In this case, the Laplacian filter cannot handle the maneuver. The particle
filter can still track the target due to its particle diversity. However, the estimates of the
particle filter are now worse than the estimates (Figure 2.11) with the MHMH correction
at the proposal stage.

54



0 5 10 15
0

50

100

150

θ
in

[
◦
]

0 5 10 15
0

50

100

150

0 5 10 15
0

50

100

150

0 5 10 15
0

50

100

150

0 5 10 15
0

100

200

φ
in

[
◦
]

time [s]
(a) DPF

0 5 10 15
0

100

200

time [s]
(b) Particle filter

0 5 10 15
0

100

200

time [s]
(c) EKF

0 5 10 15
0

100

200

time [s]
(d) Laplacian filter

Figure 2.13: Monté-Carlo comparison of the DOA filters that use batch DOAs to a particle
filter that uses the received acoustic signals directly (denoted as DPF, and presented in [25]).
(a) DPF. (b) Particle filter. (c) Extended Kalman filter. (d) Laplacian filter. The ground
truth is shown in dashed lines, with variances in the estimates indicated by boxplots. The
first row shows the DOA (θ) estimates. The second row shows the heading (φ) estimates.
The DOA estimates for the DPF in (a) are better compared to the other filters. But, the
DPF runs three orders of magnitude slower than the particle filter in (b).

for the state update equation. The DPF runs three orders of magnitude slower than the

particle filter presented here and performs better because the observation model is perfectly

matched by the data. The particle filter has a larger variance partly because of the clutter

handling mechanism that creates a noise floor for the pdf (for a single target, the PDF is a

raised Gaussian). Not surprisingly, the Laplacian filter show a similar estimation variance

as the DPF in bearing estimation because it tracks the mode of the target track with a

narrower posterior approximation.

2.7.3 Target tracking with a road prior

Here, we demonstrate an approach to incorporate prior track information into the particle

filter tracker for tracking targets on a road [27]. Figure 2.14 illustrates a rather hard

tracking scenario, where a single target undergoes various maneuvers along a road. The

DOA tracking performance of the particle filter is satisfactory even in the presence of heavy

clutter, missing data, and noise (Figure 2.14). However, because of the sudden maneuver

at t = 20 s, the filter state estimates of Q and φ are not as accurate.

If the road information is available along with a calibrated acoustic node, it is optimal to

formulate a new tracker, using the target position and velocity as the state vector. However,

55



it is also possible to incorporate the road information to the DOA-only particle filter tracker,

without changing any filter equations. Note that if a target is following a road, its heading

direction, in effect, coincides with the road’s orientation. Hence, at any given time, as long

as the target is on the road, its heading direction will be approximately Gaussian distributed

with a mean angle of the road’s orientation and some variance (e.g., (5◦)2). Denote

p{θ,road}(φ) =
1√

2πσ2
road

exp

{
−

(φ − φ{θ,road})
2

2σ2
road

}
(2.20)

as the heading prior, calculated using (i) the track information, (ii) the acoustic node

position, and (iii) the current DOA θ. Hence, the mean φ{θ,road} of the heading prior is

the orientation of the road, where the line, originating from the node with a slope angle θ,

intersects the road.

The heading prior enters the particle filter at the weighting stage:

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t )p(x

(i)
t |xt−T )

∏
k gk(x

(i)
k (t)|yt, x

(i)
k (t − T ))

∏

k

p
{θ

(i)
k

,road}
(φ

(i)
k ), (2.21)

where it is assumed that the targets are moving along the same road. Figure 2.15 illus-

trates the tracking results with the weighting strategy that includes the heading prior. The

DOA tracking results are comparable to the case without the prior; however, there is an

improvement in the Q and φ parameter estimates. An improved method that uses multiple

models to incorporate prior road information is discussed in [27].

2.8 Discussions

A framework for an automated, multi-target DOA tracking system based on a batch mea-

surement model was developed in this chapter. The DOA batches are treated as images to

naturally handle the data association and ordering issues. The presence of multiple targets

is handled using a partition approach. The automated tracking system has a beamformer to

estimate DOAs using acoustic data, a mode hungry Metropolis-Hastings block that employs

a matching pursuit approach to estimate the number of targets, and a particle filter block

to recursively track the targets. Simulation results demonstrate the performance of the

batch measurement-based particle filter tracking system in tracking multiple targets. We

also present two other filters to perform the tracking: the extended Kalman filter and the

56



0 10 20 30 40

−100

0

100

 θ
  i

n 
[°

]

 time

0 10 20 30 40
−200

−150

−100

−50

0

 φ
  i

n 
[°

]

 time
−400 −200 0 200

−200

−100

0

100

200

t=
20s y

 x

0 10 20 30 40
−2.5

−2

−1.5

−1

−0.5

 time

 lo
g(

v/
r)

Figure 2.14: (Top Left) Particle filter DOA (θ) tracking results (solid line). (Bottom Left)
True track vs. calculated track. Because of the heading (φ) and log(v/r) (Q) estimation
errors, the calculated filter track shadows the true x-y track. Note that the particle filter
track is estimated, using the filter outputs and the correct initial position. (Bottom Right)
Filter heading (φ) estimates. Note the sudden target maneuver at time t = 20 s. (Top
Right) Filter log(v/r) (Q) estimate lags the true target log(v/r), because the state update
function constrains the target movement to constant velocity.

0 10 20 30 40

−100

0

100

 θ
  i

n 
[°

]

 time

0 10 20 30 40

−150

−100

−50

0

 φ
  i

n 
[°

]

 time
−100 0 100

−50

0

50

100

t=
20s

 y

 x

0 10 20 30 40
−2.5

−2

−1.5

−1

−0.5

 time

 lo
g(

v/
r)

Figure 2.15: The tracking estimates for the scenario shown in Figure 2.14 are improved due
to the prior information about the road. The filter input is the same as in Figure 2.14.
The use of the prior information about the road has improved the target heading (φ)
and log(v/r) (Q) estimates, and as a result the calculated target track closely matches the
true track.

57



Laplacian filter. These filters are compared to the particle filter, for sensitivity to initial-

ization and robustness. When compared to the extended Kalman filter and the Laplacian

filter, the particle filter handles the target maneuvers better.

58



CHAPTER III

RADAR RANGE-ONLY MULTI-TARGET TRACKING

3.1 Introduction

This chapter develops a range-only multi-target particle filter tracker. The particle filter

algorithm is similar to that in Chapter 2. Some parts of the discussion in this chapter

also appear in a related publication [30], which is a joint work by Dr. Volkan Cevher

and the author. The radar range tracking problem has attracted some interest in the

literature [103], [104], [110], [45]. This tracking problem is usually formulated using state-

space models, where the target’s motion is approximated locally as constant velocity motion,

and the observations are temporal snapshots of radar range and range-rate estimates. Then,

to estimate the state vector consisting of the target’s position and velocity using range-

only measurements, a mobile platform must be used that executes known maneuvers to

guarantee system observability [110]. Otherwise, multiple beacons must be used to track

the state vector by virtue of triangulation [45]. In [104] range and range-rate measurements,

obtained at a non-stationary observer, are used to estimate the states of a single target. The

application in [104] uses a deterministic state model and hence the EKF provides better

estimates compared to a particle filter approach. Most past research did not consider

multiple targets when using range-only measurements. In our research we use a batch of

range measurements to track multiple targets. We achieve this using the image template-

matching idea described in Section 2.1.1.

The particle filter algorithm developed here tracks a state vector that consists of the

target direction-of-arrival (DOA) θ(t), the logarithm of the target range R(t), the target

speed v(t), and the target heading φ(t), using a batch of range-only measurements, obtained

at a stationary sensor. The angles are measured counterclockwise with respect to the x-

axis. We prove that the particle filter state vector is observable given at least three range

measurements under rotational and planar symmetric ambiguities. The proof makes use of

59



Stewart’s theorem for triangles in geometry.

The motivation for using the state vector of the particle filter is a low-power radio

frequency (RF) sensor, implemented at the University of Florida, which transmits a mi-

crowave signal to determine the range, velocity, and size of detected targets [41]. The

sensor is capable of providing range estimates at 32 ms intervals, with a range resolution

of approximately 2 m on a range-Doppler map. Up to a maximum distance of 100 m,

the current system is capable of producing range estimates for multiple ground vehicles as

well as human targets. The radar hardware is likely to have a larger detection range with

hemispherical coverage in the future. Note that the filter equations in this research are de-

veloped using range-only measurements so that it is also applicable to amplitude tracking

problems when amplitude is proportional to
1

r
or

1

r2
, where r represents range. Additional

velocity measurements or range-rate measurements can also be incorporated through the

data likelihood equation assuming independence of the measurements.

3.2 State-space Description

3.2.1 State update model

The filter state vector xt =
[

xT
1 (t), xT

2 (t), · · · , xT
K(t)

]T
consists of K partition state

vectors xk(t), one for each target, indexed by k, k = 1, . . . ,K. Each partition has the

corresponding target motion parameters xk(t) , [θk(t), Rk(t), vk(t), φk(t)]
T , where θk(t)

is the DOA, Rk(t) is the logarithm of the range r(t), vk(t) is the speed, and φk(t) is the

heading direction. The logarithm of the range is used in the state vector because the range

errors are modeled as multiplicative noise.

The state update equation can be derived from the geometry (Figure 3.2) imposed by a

motion model on the state vector, and we model the target motion with a locally constant

velocity model. The resulting state update equation is nonlinear:

xk(t + T ) = hT (xk(t)) + uk(t), (3.1)

60



t

0 T 2T 3TMτ

Range Missing data

Clutter
yt = {yt+mτ(p)}M−1

m=0

Figure 3.1: Observation model using batch of radar range measurements. Note that the
range measurements are not necessarily ordered. However, the image based observation
approach provides a natural ordering, when targets are being tracked by the particle filter.

where uk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,k, σ

2
R,k, σ2

v,k, σ
2
φ,k} and

hT (xk) =




tan−1
{

eRk sin θk+Tvk sinφk

eRk cos θk+Tvk cos φk

}

1
2 log

{
e2Rk + T 2v2

k + 2TeRkvk cos(θk − φk)
}

vk

φk




. (3.2)

3.2.2 Observation model

The observations yt = {yt+mτ (p)}M−1
m=0 consist of range estimates from a radar sensor at

each batch index m. This observation model can be visualized as shown in Figure 3.1.

The radar returns over the time-interval τ are used to estimate, possibly multiple, target

ranges. A batch of M range estimates are used by the particle filter to estimate the target

state every T = Mτ seconds. It is assumed that the measurements in a batch are normally

distributed around the true target ranges with variance σ2
r and have a constant miss prob-

ability κ. A batch may include spurious peaks due to clutter that are Poisson distributed

with rate λ.

61



3.2.3 Observability of the state vector

Figure 3.2 illustrates that it is possible to determine v and θ−φ given three range measure-

ments. This follows from Stewart’s theorem that can be proved by using the law of cosines

on the triangles △OAB and △OAC. Applying Stewarts’s theorem to the triangle △OAC,

we get

AB · (OC)2 + BC · (OA)2 = (AB + BC) · (OB)2 + AB · (BC)2 + BC · (AB)2 (3.3)

With appropriate substitutions of the parameters shown in Figure 3.2, the velocity v can

be determined from three range measurements as

v =
1

τ

√
1

2

(
r2
1 + r2

3

)
− r2

2.

Note that θ and φ cannot be determined uniquely given only the range measurements: for

example, the trajectories defined by ABC, A1B1C1, and A2B2C2 can result in the same

range measurements {r1, r2, r3}. However, if initialized correctly the target states θ, φ and v

can be estimated sequentially in the target tracker.

3.3 Particle Filter Algorithm

The particle filter algorithm used here is similar to the one used in the DOA-tracker in

Section 2.4. Hence, we only present an outline of the steps here. As opposed to the acoustic

tracking system, which uses a MHMH block to estimate the number of targets, the range-

only tracker assumes the number of targets to be known. All other discussions in Section 2.4

are relevant to the range-only tracker.

3.3.1 Data likelihood function

We derive the data likelihood function considering the output of one batch pe-

riod ym = yt+mτ (p), where p = 1, . . . , Pm for each m. The range measurements ym may

belong to none, i.e.,clutter, or some combination of the targets in the particle filter parti-

tions. Hence the data likelihood function is given as

p(y(t)|x(t)) ∝
∏

k

∏

m



1 +

1 − κ√
2πσ2

r (m)κλ

P∑

pi=1

exp

{
−(hr

mτ (xk(t)) − yt+mτ (pi))
2

2σ2
r (m)

}
 ,

(3.4)

62



O

C

A

B

C1

A1

B1

C2

A2

B2

θ

φ

vτ

vτ

r1

r2

r3

x

y

Figure 3.2: Observability of the state vector using three range measurements. The speed,

which is assumed constant, can be calculated as v = 1
τ

√
1
2(r2

1 + r2
3) − r2

2. Triangles △OA1C1

and △OA2C2 are rotated versions of △OAC that demonstrate the rotational and planar-
symmetric ambiguities, respectively.

63



where κ is a constant miss probability, λ is the Poisson rate of the clutter distribution,

the superscript r on the state update function h refers to the range component of the state

update (3.2), and σ2
r (m) is the variance of the range estimates provided by the radar sensor.

3.3.2 Proposal function

The arguments supporting the proposal function in Section 2.4.4 for the acoustic tracker are

applicable to the range tracker. Hence, we have a partitioned proposal function to propose

new particles. For a given partition, if we assume that the data is only due to that partition

and clutter (i.e., the range data corresponding to other partitions are treated as clutter),

we can factor the data likelihood (3.4). Hence, the partition posterior is the following

qk(xk(t)|yt, xk(t − T )) ∝ p(yt|xk(t))p(xk(t)|xk(t − T )), (3.5)

where p(yt|xk(t)) can be obtained from (3.4) and p(xk(t)|xk(t−T )) = N (hT (xk(t − T )),Σu)

with Σu = diag{σ2
θ,k, σ

2
R,k, σ2

v,k, σ
2
φ,k}.

Next, the target partition posterior function in (3.4) is approximated as Gaussian using

the Laplace method. Here, as in Section 2.4, the data statistics are computed using the

Newton-Raphson recursion (see also Appendix A). The final expression for the partition

proposal functions to be used in the particle filter is given by

gk(xk(t)|yt, xk(t − T )) ∼ N (µg(k),Σg(k).) (3.6)

The Gaussian density parameters are

Σg(k) =
(
Σ−1

y (k) + Σ−1
u

)−1
,

µg(k) = Σg(k)
(
Σ−1

y (k)xk,mode + Σ−1
u hT (xk(t − T ))

)
,

(3.7)

where xk,mode is the mode of p(yt|xk(t)), and Σ−1
y (k) is the Hessian of p(yt|xk(t)) at xk,mode,

calculated using the Newton-Raphson recursion. The pseudo-code for the particle filter

algorithm in the range-only tracker is given in Table 3.1.

3.4 Simulations

This section presents simulation results to demonstrate the performance of the range-only

multi-target tracker. Both single- and multi-target tracking scenarios are considered. The

64



Table 3.1: Range-only particle filter tracker pseudo-code.

Given the observed data yt = {yt+mτ (p)}M−1
m=0 in [t, t + T ), do

1. For i = 1, 2, . . . , N

• For k = 1, 2, . . . ,K

sample x
(i)
k (t) ∼ gk(x

(i)
k (t)|yt, x

(i)
k (t − T )), given by (3.6).

• Form x
(i)
t =

[
x

(i)
1 (t), x

(i)
2 (t), . . . , x

(i)
K (t)

]T
.

2. Calculate the weights

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t )p(x

(i)
t |xt−T )

∏
k gk(x

(i)
k (t)|yt, x

(i)
k (t − T ))

,

where p(yt|x(i)
t ) is fully joint observation density, given by (3.4).

3. Normalize the weights: w
(i)
t =

w∗(i)
t∑

i w
∗(i)
t

.

4. Perform the estimate: E{f(xt)} =
∑N

i=1 w
(i)
t f(x

(i)
t ).

5. Resample the particles:

• Heapsort the particles in a ascending order according to their weights: x
(i)
t → x̃

(i)
t .

• Generate ω ∼ U [0, 1).

• For j = 1, 2, . . . , N

a. u(j) = j−ω
N ,

b. Find i, satisfying
∑i−1

l=1 w̃
(i)
t < u(j) ≤∑i

l=1 w̃
(i)
t ,

c. Set x
(j)
t = x̃

(i)
t .

65



Table 3.2: Simulation parameters - Range-only target tracker

Parameter Value

# particles, N 200

θ state noise, σθ,k 1 ◦

R state noise, σR,k 0.1 m

v state noise, σv,k 0.1 m/s

φ state noise, σφ,k 10 ◦

Measurement noise, σr 1 m

Tracker sampling period, T 1 s

# batch samples, M 10

# radar range returns, P 3 (≥ K)

synthetic range measurement data is obtained using the constant velocity motion of the

targets. The data is perturbed using zero-mean Gaussian noise with variance σ2
r . The

simulation parameters for the results shown in Figures 3.3 and 3.4 are shown in Table 3.2.

Figure 3.3 shows the tracking results for a single-target tracking scenario. The target

moves with a constant speed of 14 m/s. The unordered radar range measurements with

clutter (Figure 3.3) are used as input to the filter. The tracker is initialized with N particles

generated by adding the state noise (Table 3.2) to the true target state at t = 0 s. The

results show that the tracker can associate the range measurements related to the target

motion and can also provide accurate temporal estimates of the single target state. Because

of our constant velocity motion assumption, the estimated heading φ lags the true target

heading. Next, the tracking results for two targets are shown in Figure 3.4. The targets

move with a constant speed of 14 m/s and 14.5 m/s. The particle filter was able to resolve

the data association issues at times t = 3 s and t = 30 s. The motion estimates are unique

because we have assumed a correct initialization.

The estimates obtained using range-only measurements can be further improved by

using additional measurements. For example, define αk = v cos (θk − φk) as the range-rate.

Then, we can treat the additional range-rate measurements as an independent observation

and calculate p(α|xt), α = [α1, . . . , αK ]T , by using the same joint density association

approach as (3.4). The range-rate measurements are then incorporated at the weighting

66



0 5 10 15 20 25 30 35

60

70

80

90

100

110

R
a
n
g
e

in
[m

]

time [sec]
(a)

0 5 10 15 20 25 30 35

−200

−150

−100

−50

0

50

100
Estimated state
Ground truth

θ
in

[
◦
]

time [sec]
(b)

−100 −50 0 50

−80

−60

−40

−20

0

20

40

60

80

x

y

(c)

0 5 10 15 20 25 30 35

−300

−250

−200

−150

−100

−50

0
Estimated state
Ground truth

φ
in

[
◦
]

time [sec]
(d)

Figure 3.3: Single-target tracking using range-only measurements. (a) Black dots are the
range measurements. The estimated target range follows the ground truth. (b) Target
DOA (θ) estimates closely follow the true target DOAs. (c) Target track estimates calculated
from the state estimates in (a), (b), and (c). The pentagram and the star indicate the target
starting position and the radar position, respectively. (d) Target heading (φ) estimates have
more oscillations than the DOA estimates, because they are more sensitive to the noise in
the range measurements.

67



0 5 10 15 20 25 30 35

70

80

90

100

110

120

130

140

150

160

R
a
n
g
e

in
[m

]

time [sec]
(a)

0 5 10 15 20 25 30 35
−150

−100

−50

0

50

100

150

200

250

300

Estimated state
Ground truth

θ
in

[
◦
]

time [sec]
(b)

−150 −100 −50 0 50 100

−80

−60

−40

−20

0

20

40

60

80

100

120

x

y

(c)

0 5 10 15 20 25 30 35
−200

−100

0

100

200

300

Estimated state
Ground truth

φ
in

[
◦
]

time [sec]
(d)

Figure 3.4: Multi-target tracking using range-only measurements. a) Black dots are the
range measurements. The estimated target range follows the ground truth. (b) Target
DOA (θ) estimates closely follow the true target DOAs. (c) Target track estimates calculated
from the state estimates in (a), (b), and (c). The pentagrams and the star indicate the target
starting positions and the radar position, respectively. (d) The heading (φ) estimates have
more oscillations than the DOA estimates, because they are more sensitive to the noise in
the range measurements. The filter does a good job in associating the data with the targets
because of the joint density approach.

68



stage of the particle filter algorithm:

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t )p(x

(i)
t |x(i)

t−T )
∏

k gk(x
(i)
k (t)|yt, x

(i)
k (t − T ))

p(α|x(i)
t ), (3.8)

where w∗ is the unnormalized weight. The range-rate measurements further improve the

tracking estimates as shown in Figure 3.5. The tracking scenario considered here is sim-

ilar to the single-target tracking scenario described earlier in this section. Here a higher

measurement noise variance of σ2
r = 4 m is used with a range-rate variance of σ2

α = 1,

and the range measurements have one peak. The use of range-rate measurements improves

the heading estimates obtained without the use of range-rate measurements, as shown in

Figure 3.5 (d). As a result of this, the estimated target track closely follows the ground

truth, as shown in Figure 3.5 (c).

3.5 Discussions

In this chapter, we present a range-only multi-target particle filter tracker based on a

batch measurement model. As in the acoustic DOA tracker in Chapter 2 the radar range

measurement batches are treated as an image to naturally handle the data association and

ordering issues. The presence of multiple targets is handled using a partition approach.

The observation likelihoods are calculated jointly and are assigned by using the templates

created by the state vectors and the state update equation.

69



0 2 4 6 8 10 12
60

70

80

90

100

110

R
a
n
g
e

in
[m

]

time [sec]
(a)

0 2 4 6 8 10 12

20

40

60

80

100

120

With range−rate measurements
Without range−rate measurements
Ground truth

θ
in

[
◦
]

time [sec]
(b)

−80 −60 −40 −20 0 20 40 60

0

20

40

60

80

100

x

y

(c)

0 2 4 6 8 10 12

−40

−30

−20

−10

0

10

20
With range−rate measurements
Without range−rate measurements
Ground truth

φ
in

[
◦
]

time [sec]
(d)

Figure 3.5: Single-target tracking using range and range-rate measurements. Heading esti-
mates (φ) with range-rate measurements are closer to the true values than without the range-
rate measurements. This scenario is similar to the one in Figure 3.3, but with a single peak
in the range measurements and increased measurement noise variance of four (σ2

r = 4 m).
(a) Black dots are the range measurements. The estimated target range follows the ground
truth. (b) Target DOA (θ) estimates closely follow the true target DOAs. (c) Target track
estimates calculated from the state estimates in (a), (b), and (c). The pentagram and
the star indicate the target starting position and the radar position, respectively. (d) The
heading (φ) estimates when using range and range-rate measurements are improved, when
compared to the range-only estimates.

70



CHAPTER IV

MIXED-MODE IMPLEMENTATION OF A PARTICLE FILTER

4.1 Introduction

In this chapter, we develop a mixed-mode implementation of a particle filter and compare

it to a digital implementation. This chapter differs from Chapters 2 and 3 where the focus

was on the algorithmic aspects of a batch-based particle filter target tracking algorithm.

Here we develop hardware implementation strategies for a simple bearings-only particle filter

tracker. Specifically, we develop a mixed-mode implementation that uses analog components

to realize certain stages in the particle filter. Some sections of this chapter also appear in a

related publication [123]. The analog components used in the particle filter were synthesized

using MITE networks designed by Shyam Subramanian of the CADSP group in Georgia

Institute of Technology. The implementation of the batch measurement-based tracker is

discussed in Chapter 5.

The bearings-only tracking problem has been extensively studied in the litera-

ture [7], [103], and the scenario considered here is similar to the one in [55], [16]. The

specific bearings-only algorithm considered here tracks a single, nonmaneuvering, constant

velocity target. The measurements are single, noisy bearings (or angles) obtained at a

stationary sensor. The estimated states are the target’s position and velocity in the x-y

Cartesian space. The particle filter algorithm used is the SIR or bootstrap filter, presented

in Section 1.1.3, which uses the state update to propose particles.

Past research includes an efficient digital architecture for particle filters that resulted

in a Field Programmable Gate Array (FPGA) prototype [17]. The earlier implementations

of particle filters in [17] and [4] focused on achieving a faster sampling rate or reducing

the execution time. They concentrated on efficient implementation of the resampling stage

and exploit parallelization in the particle filter. They adopted a coarse-grain approach

where M distributed processing elements are used to process N particles, assuming that

71



the ratio
N

M
≫ 1 . More recently, a single instruction multiple data (SIMD) architecture for

particle filters has been presented in [81]. It uses N processors to process N particles and has

a time complexity of O
(
(log N)2

)
. This uses a fine-grain approach with the ratio

N

M
≈ 1.

The power dissipated in the computations of the particle filter algorithm needs to be

minimized when used in an energy constrained environment, e.g., a network of unattended

sensor nodes. Because particle filters do not approximate the nonlinearities in the state-

space systems, they are computationally complex. A promising approach to achieve low

power dissipation is to have cooperative systems that have both digital and analog compo-

nents [57]. This is the approach described in this chapter. The use of an analog computer as

a co-processor in a digital computer to obtain fast and approximate solutions has recently

been demonstrated in [38], [39]. The authors in [38] also show that the analog computer

dissipates less power than a general purpose microprocessor or a digital signal processor,

when used to solve differential equations.

In the particle filter algorithm considered here, the weight evaluation stage uses nonlin-

ear functions such as the arctan and Gaussian. These nonlinear functions are implemented

using analog circuits composed of multiple-input translinear element (MITE) networks to

minimize power dissipation. MITEs were introduced as a circuit primitive in [88] and a

brief description is provided in Section 1.3.2. Digital implementation of the nonlinear func-

tions use the COordinate Rotation DIgital Computer (CORDIC) algorithm [129]. In this

chapter, we compare the power consumed at the weight evaluation stage of the proposed

analog realization with that of a digital ASIC realization. We also address the effect of

using an analog-to-digital converter (ADC) and a digital-to-analog converter (DAC) in the

mixed-mode implementation. We also compare the mixed-mode implementation to a digital

realization based on power consumption, speed of operation, and chip area. Using simula-

tions, we compare the tracking performance of the bearings-only tracker that uses analog

circuits to perform the weight evaluation with that of a tracker that uses digital (FPGA)

components.

72



4.2 Particle Filter-based Tracking

4.2.1 Bearings-only tracking

Bearings-only tracking involves estimating the target trajectory using angle measurements

at a sensor node. The target is assumed to move in the x-y plane and to follow a constant

velocity motion model [7], with a state update period of 1 s. The state transition is described

using the relation

Xt = FXt−1 + Γut, (4.1)

where Xt = [x vx y vy]
T
t , ut = [ux uy]

T
t ,

F =




1 1 0 0

0 1 0 0

0 0 1 1

0 0 0 1




and Γ =




0.5 0

1 0

0 0.5

0 1




. (4.2)

Here, x and y are the Cartesian coordinates1 of the target, vx and vy are the corresponding

velocities. The parameter ut represents the system noise and is Gaussian distributed with

covariance Σu = σ2
uI2, where I2 is a 2 × 2 identity matrix.

The angle measurements at a stationary sensor at the origin are given by

zt = arctan

{
yt

xt

}
+ rt, (4.3)

where rt represents a Gaussian measurement noise N (0, σ2
r ).

4.2.2 Particle filter

We use particle filters [46], [55] (Section 1.1 has a brief review) for solving the bearings-

only tracking problem. Consider the state-space system with the state transition (4.1),

where Xk is the state vector, and with the measurement equation (4.3) where zt are the

noisy measurements related to the state at time t. We are interested in estimating the

state Xn at time n given the measurements zt for k = 1, . . . , n. The state transition

1The notation for x, y in this Chapter 4 differs from the notation in Chapters 1, 2, and 3 where x denotes
the state and y the measurement.

73



density p(Xt|Xt−1) and data likelihood p(zt|Xt) can be obtained from (4.1) and (4.3). A

Bayesian solution for this filtering problem involves obtaining the posterior distribution

πn = p(Xn|zn,Xn−1) ∝ p(zn|Xn)p(Xn|Xn−1). (4.4)

Particle filters use a combination of importance sampling, weight update and resampling to

sequentially obtain and update the distribution (4.4). Importance sampling approximates

the probability distribution π using a set of N weighted particles {X(i), w(i)}, where X(i)

represents the state and w(i) the corresponding weight for the i-th particle. The weight

update stage uses measurements to update the particle weights. The updated particles

are used to make inferences on the state Xn. The resampling stage avoids degeneracy by

removing particles with low weights and replicating particles with high weights.

Using (4.1) and (4.3), a particle filter algorithm for target tracking similar to the one

in [55] can be formulated. The state update is used to propose new particles. As mentioned

in Section 1.1.3, this proposal function provides a sub-optimal recursive estimate of the

target position in the x-y plane. The pseudocode for the particle filter algorithm is shown

in Table 4.1 and a block diagram of the computational flow is shown in Figure 4.1.

Propose i-th
particle

Evaluate i-th
weight

Measurements

Resample
particles

Estimate
states

For i = 1 to N

i=1

i=1i=1

i=N

i=Ni=N

Figure 4.1: Block diagram showing computational flow in a generic particle filter algorithm.

4.3 Particle Filter Implementation

Particle filter algorithms use nonlinear functions and operate on scalar or vector data, as

opposed to blocks of data as in speech or image processing. Their complexity is related

74



Table 4.1: Bearings-only tracker particle filter pseudo-code.

Given the observed data zk at k,

1. For i = 1, 2, . . . , N sample or propose particles using the state

update (4.1), X
(i)
t ∼ p(X

(i)
t |X(i)

t−1).

2. For i = 1, 2, . . . , N calculate the weights,

ŵ
(i)
t = w

(i)
t−1p(zt|X(i)

t ), (4.5)

where p(zt|X(i)
t ) is the observation density, given by

1√
2πσr

2
exp

{
−

(
zt − arctan

y
(i)
t

x
(i)
t

)2

2σr
2

}
. (4.6)

3. Normalize the weights w
(i)
t using ŵ

(i)
t .

4. Calculate the state estimates, E{Xt} =
∑N

i=1 w
(i)
t x

(i)
t .

5. Resample
{
X

(i)
t , w

(i)
t

}
to obtain new set of particles

{
X

(j)
t , w

(j)
t = 1

N

}
.

to the number of particles N , the proposal function used, and the nonlinear functions in

the model. Most applications that use particle filters perform a Gaussian evaluation at

the weighting stage. Depending on the state-space model used, some applications might

use additional nonlinear functions in the particle proposal and weight evaluation stage. An

example application is the batch measurement-based trackers in Chapters 2 and 3. Except

for the state estimate and resampling stage, processing of individual particles can be done

in parallel.

In this research, we are interested in reducing the power dissipated while performing

computations. For an individual particle in the bearings-only tracker, the weight evaluation

stage is computationally more complex when compared to the proposal, state estimation, or

resampling stage. So we concentrate on the computations for a single particle in the weight

evaluation stage of the bearings-only tracker. As shown in Figure 4.2, the computations

include simple operations such as addition and multiplication, as well as nonlinear operations

75



y
(i)
t

x
(i)
t

zt

1√
2σr

+

−

arctan(.)

ŵ
(i)
t

1√
2πσ2

r

e−(.)2

Figure 4.2: Computations at the weight evaluation stage of the particle filter algorithm
used in bearings-only tracking.

such as Gaussian and arctan evaluation. However, we note that, as also mentioned in [17],

the resampling stage is still one of the critical stages when considering the particle filter

algorithm as a whole.

In this section, we first develop a mixed-mode implementation of the bearings-only

target tracker. We then present a digital implementation using an FPGA. This digital

implementation is similar to that developed in [17] but without any parallelization.

4.3.1 Mixed-mode implementation

In the mixed-mode implementation of the particle filter algorithm, certain stages use analog

components to perform the computations while the remaining stages use digital components.

This leads to two possible methods that differ in their analog-digital partition.

In Method-1, shown in Figure 4.3, the weight evaluation stage is implemented in the

analog domain and the remaining stages in the digital domain. Data converter blocks, DAC

and ADC, are used to transfer data across the domains. The minimum number of bits to

be used in the DAC and ADC is dictated by state-space requirements. The lowest value to

be represented must be above the noise level in the analog circuit. Increasing the number

of bits in these blocks can increase latency and power consumption. Hence a compromise

among accuracy, speed, and power consumption has to be made such that the power savings

from the analog computations is not offset.

In Method-2, shown in Figure 4.4, the resampling stage alone is implemented in the

digital domain and the remaining stages in the analog domain. This method uses fewer

76



Propose i-th
particle

Evaluate i-th
weight

Measurements

Resample
particles

Estimate
states

For i = 1 to N

i=1

i=1i=1

i=Ni=N

i=N

DAC

DAC ADC

Figure 4.3: Block diagram showing computational flow of the particle filter algorithm in
the mixed-mode implementation (Method-1). Highlighted stage is performed in the analog
domain.

DACs and ADCs compared to Method-1. The measurements, which are angles in the

bearings-only tracker, may be from a source localization algorithm implemented in the

analog domain [112]. Performing the operations in the proposal and state estimation stages

using analog methods can also provide significant power savings compared to Method-1. The

proposal stage uses four additions to implement (4.1). In the analog domain, the addition

of two signals is based on Kirchoff’s current law (KCL) and is performed by connecting

the wires carrying the corresponding currents. In the digital domain, addition is performed

using adder circuits. An analog approach to generate Gaussian random noise, used in the

proposal stage, is given in [2]. The state estimation, Step 4 in Table 4.1, can be achieved by

using a vector-matrix multiplier in the analog domain [35]. The resampling stage assumes

the availability of an analog memory whose access is controlled using a digital controller [56].

4.3.2 Nonlinear function realization using MITEs

The two-input MITE introduced in Section 1.3.2 is used to realize the nonlinear or tran-

scendental functions in the weighting stage (4.6) as shown in Figure 4.2. The transcendental

functions needed in the bearings-only tracking algorithm are the inverse tangent arctan and

the Gaussian (exp(−x2/2)). The approximations and the corresponding implementations

of these functions are considered here. The synthesis of MITE networks to realize these

functions was performed by Shyam Subramanian [115] in the CADSP group at the Georgia

77



Propose i-th
particle

Evaluate i-th
weight

Measurements

Resample
particles

Estimate
states

For i = 1 to N

i=1

i=1

i=1

i=N

i=N

i=N

Digital
controller

Figure 4.4: Block diagram showing computational flow of the particle filter algorithm in the
mixed-mode implementation (Method-2). Highlighted stages are performed in the analog
domain.

Institute of Technology.

The implementation of nonlinear functions using translinear circuits is discussed in [107].

Elementary operations like addition and subtraction are easily performed in any current-

mode system (using KCL and a current mirror, respectively). Translinear circuits, in par-

ticular, can also perform other elementary operations like multiplication, division, and ex-

ponentiation (with rational exponents). Hence, any algebraic function can be synthesized

by simply expressing it in terms of these elementary operations. Transcendental functions

like exp(x), log(x), and arctan(x) are implemented by suitably approximating them using

algebraic functions. Various techniques exist for approximating nonlinear functions by ra-

tional functions [51]. Approximation with minimax or near-minimax error is one of the

more common methods for approximation over an interval. Remez’s algorithm [51] is used

to determine the minimax rational approximation, while numerous other techniques exist

to get near-minimax approximations. For example, Maple’s ‘minimax’ command imple-

ments Remez’s algorithm. The approximations used for the inverse tangent arctan and

the Gaussian exp(−x2/2) functions are shown in Table 4.2 and the corresponding imple-

mentations are considered next.

78



Table 4.2: Approximations used in the analog implementation of nonlinear functions.

Function Approximation Range

y =
2

π
arctan(x) f(x) =

x

0.63 +
√

0.88 + x2
|x| < ∞

y = c exp
(
− x2

2a2

) f(x) = zc
1 − n1(r/a)

1 − d1(r/a) + d2(r2/a2) x ∈ [−4a, 4a] ⇒ r ∈ [2a, 18a]

z, c, n1, d1, d2 are constants

4.3.2.1 Implementation of the inverse tangent function

The function φ to be approximated is as follows (normalized so that φ(∞) = 1):

φ(x) =
2

π
arctan(x), where |x| < ∞. (4.7)

An approximation of φ using algebraic functions, given in [107], is as follows:

y = f(x) =
x

0.63 +
√

0.88 + x2
, where |x| < ∞. (4.8)

The maximum error obtained using the approximation (4.8) is less than 0.05% of the max-

imum value.

The implementation of f in (4.8) using MITEs is done through the following steps:

1. Scaling. Since the input and output variables are represented by currents, to maintain

dimensional consistency, the substitutions x 7→ Ix/Ia and y 7→ Iy/Ia are done. Hence,

we have

Iy =
IxIa

0.63Ia +
√

0.88I2
a + I2

x

(4.9)

where Ix is the input current, Iy the output current, and Ia the reference current.

2. Current splitting. Since the input x can take both positive and negative values and

since the currents through MITEs must necessarily be positive, we use a current split-

ter [52] to produce currents Ix+ and Ix− satisfying Ix+ − Ix− = Ix and Ix+Ix− = I2
a .

79



3. Block reduction. The equation to be implemented thus becomes

Iy =
Ix+Ia − Ix−Ia

0.63Ia +
√

−1.12I2
a + I2

x+ + I2
x−

=

(
Ix+Ia(

0.63Ia +
(√

IrIa

))
)

−
(

Ix−Ia(
0.63Ia +

(√
IrIa

))
)

where Ir =
I2
x+

Ia
+

I2
x−

Ia
− 1.12Ia.

(4.10)

The parentheses show the order in which the operations are implemented. Each of the

blocks (representing the operation in the parentheses) is implemented using procedures

described in [86].

4. Consolidation. As described in [87], reduntant MITEs are removed using consolida-

tion to arrive at the final circuit shown in Figure 4.5(a).

4.3.2.2 Implementation of the Gaussian

After scaling and normalization, the Gaussian is transformed into

Iy = Ic exp
(
− I2

x

2I2
a

)
, (4.11)

where Iy represents the output current, Ix the input current, Ia the reference current, and Ic

the scaling current. A current splitter converts Ix into two positive currents Ix+ and Ix− sat-

isfying Ix+ − Ix− = Ix and Ix+Ix− = I2
a . Hence, we have I2

x = I2
x+ + I2

x−− 2I2
a = IrIa − 2I2

a ,

where Ir = I2
x+/Ia + I2

x−/Ia. Thus, Iy = eIc exp(−Ir/(2Ia)). It should also be noted

that if the implementation is to be valid for Ix ∈ [−bIa, bIa], then it suffices to approxi-

mate exp(−Ir/(2Ia)) over the interval Ir ∈ [2Ia, (2 + b2)Ia]. The minimax rational approx-

imation for b = 4 with numerator and denominator degrees equal to 1 and 2, respectively,

was found using Remez’s algorithm and is given by :

Iy = zIc
Ia − In1(Ir/Ia)

Ia − Id1(Ir/Ia) + Id2(I2
r /I2

a)
(4.12)

where Ir = (I2
x+ + I2

x−)/Ia, In1 = 0.07195Ia, Id1 = 0.2913Ia, Id2 = 0.1641Ia, and z = 1.245.

The computations that involve multiplication are done using a new synthesis procedure espe-

cially meant for such “product–of–power–law” computations [115]. The currents In1, Id1, Id2

are set using programmable floating–gate MOSFETs [108]. The final circuit is shown in

Figure 4.5(b).

80



(a) The MITE circuit used to implement the arctan function.

(b) The MITE circuit used to implement the Gaussian function.

Figure 4.5: (a) The MITE circuit used to implement the arctan function. The current Ir =
I2
x+

Ia
+

I2
x−

Ia
− 1.12Ia and the output is given

by Iy =
(Ix+Ia − Ix−Ia)

(
√

IaIr + 0.63Ia)
. (b) The MITE circuit used to implement the Gaussian function. The intermediate variables used are given

by Ir = I2
x+/Ia + I2

x−/Ia, and Iden = Ia − (Id1Ir)/Ia + (Id2I
2
r )/I2

a . The output is Iy = zIc(Ia − (In1Ir)/Ia)/Iden.

81



4.3.3 FPGA implementation of particle filter

Having looked at a mixed-mode implementation of the bearings-only tracker, we present

a fully digital FPGA implementation of the tracker in this section. The main motivations

for the FPGA implementation are (i) to obtain qualitative and quantitative comparison of

the two implementations (ii) to compare the FPGA implementation of the bearings-only

particle filter tracker to the batch-based tracker in Chapter 5. We use the Xilinx System

Generator for DSP [136] to obtain an FPGA implementation for the bearings-only tracker.

System Generator is a high-level software tool to generate VHDL code for Xilnx FPGAs

from Simulink models or Matlab code. Otherwise, the FPGA implementation is similar to

that in [17], [5], but without any parallelization.

Most components in the bearings-only particle filter tracker are built from the basic

blocks provided in the System Generator library. Certain functions, such as the arctan, ex-

ponential, ceil, and Gaussian are approximated or implemented by modifying blocks in the

standard library. The arctan and Gaussian functions are implemented using the CORDIC

block. Each of the individual blocks have delays that need to be handled by using appro-

priate delay blocks while integrating them into the tracker.

Another important aspect of the digital FPGA implementation is the choice of word

length. In our case, we restrict the target states to be in the first-quadrant, i.e., positive

values for both x and y positions, and bearing measurements from 0◦ to 90◦. With these

assumptions, the word length is chosen to be 17 bits with a fractional part of 15 bits.

One rationale behind this choice is to make a fair comparison with an earlier implementa-

tion [17], [4].

Though individual stages were integrated to obtain the tracker, a complete tracking

system was not realized. The implementation lacks a higher level module to recursively

propagate the particles and update the state estimates over time, because this would involve

developing a top-level VHDL module to control the memory reads and writes. The System

Generator setup is not well suited to design this control operation, so it is not pursued here.

The implementation presented here performs the computations for N particles in a single

iteration of the particle filter. The individual blocks in the particle filter implementation

82



shown in Figure 4.6 are described next. The System Generator model used to realize the

FPGA implementation is shown in Figure 4.7.

Propose i-th
particle

Evaluate i-th
weight

Measurements

Resample
particles

Estimate
states

For i = 1 to N

i=1

i=1

i=1

i=N

i=N

i=N

Memory

Figure 4.6: Particle filter flow in a digital or FPGA implementation

The proposal stage in the bearings-only tracker performs a state update as in (4.1). From

an implementation perspective, the significant operation in this stage is the additive white

Gaussian noise (AWGN) generator. We use the AWGN block from the System Generator

library, which is based on the Box-Mueller algorithm. Other operations are mostly additions

and subtractions, and the block diagram of this stage is shown in Figure 4.8.

The weight evaluation stage has most of the computations in the bearings-only tracker.

The particle weights are evaluated using the data likelihood expression in (4.6). The System

Generator model of this stage is shown in Figure 4.9. It consists of two significant operations,

i.e., evaluating the arctan and Gaussian functions. The arctan function is implemented by

modifying the CORDIC block provided in the System Generator library. The Gaussian

evaluation is performed using an exponential. This exponential is implemented as [17]:

exp(x) = sinh(x) + cosh(x),

where the hyperbolic functions are implemented by configuring the CORDIC block [90].

Since the range of values that can be input to a CORDIC block is restricted, the exponential

has to be further approximated as

exp(x) = exp(xinteger) + exp(xfractional).

83



sysgen

addr

data

we
z

−1

oldMEM_w

atan Output

x

y

wt

atan

diff

diffsq

exparg

Weighting

sysgen

addr

data

we
z

−1

Single Port RAM

sysgen

addr

din

we

dout

Shared Memory
<< ’MEM_w’ >>

Scope8

Scope5

Scope4

Scope2

sysgen
addr
data
we

z
−1

SMEM_yk1

sysgen
addr
data
we

z
−1

SMEM_xk1

sysgen
addr
data
we

z
−1

SMEM_vyk1

sysgen
addr
data
we

z
−1

SMEM_vxk1

Resource
Estimator

In1

Resample

Reps1

sysgen

addr

data

we
z

−1

RMEM_yk

sysgen

addr

data

we
z

−1

RMEM_xk

sysgen

addr

data

we
z

−1

RMEM_vyk

sysgen

addr

data

we
z

−1

RMEM_vxk

Proposed states

x

Vx

x1

Vx1

noise_u

Propose_y

x

Vx

x1

Vx1

noise_u

Propose_x

Particle weights

 −1
Z   

  Out 
  Out 

  Out 

  Out 

  Out 

 In  

Gateway In4

 In  

 In  

 In  

 In  

data_meas

data_vy

data_y

data_vx

data_x

sysgen
z

−1

Delay1

sysgen
z

−14

Delay

sysgen

ca
stConvert

RMEM_addr

RMEM_we

SMEM_addr

SMEM_we

MEM_w_addr

MEM_w_we

GLOBAL_Counter

sumW_we

Resample_en

Control Logic

0

Constant1sysgen

b

rst

en

q

Accumulator1

System
Generator

Figure 4.7: System Generator model of the bearings-only particle filter tracker. The blocks represent HDL functionality in Xilinx FPGAs.
The implementation is for evaluating particle weights during one time step. The high-level architecture is similar to the approach in [5].

84



3

noise_u

2

Vx1

1

x1

reset noise

White Gaussian 
Noise Generator

0.001007080078125

Sigma

sysgen
a

b

a=b
z−0

Relational1

sysgen
a

b
(ab)z−3

Mult

sysgenz−13

Delay3

sysgenz−12

Delay2

sysgenz−12

Delay1

sysgenout

Counter2

sysgencast

Convert

30

Constant2

sysgen
a

b
a + b

AddSub3

sysgen
a

b
a + b

AddSub1

sysgen
a

b
a + bz−1

AddSub

2
Vx

1
x

Figure 4.8: System Generator model of the proposal stage in the bearings-only tracker.
This corresponds to the “Propose x” block in Figure 4.7. The “Propose y” block uses a
similar model with inputs y and Vy.

The CORDIC block in these functions introduces significant delay when compared to other

blocks in the implementation. This delay depends on the word length of the input data.

An alternative to using the CORDIC blocks is to use a look-up table to evaluate these

nonlinear functions. However, the memory requirements for such an approach increases

with the required accuracy.

The weight normalization stage is closely associated with the weighting stage, because

the sum of the particle weights affects the word length. Normalization involves division

which also requires a CORDIC block in the FPGA implementation.

The resampling stage is an important step in the particle filter algorithm and the most

time consuming operation in the algorithm. Several efficient ways for resampling have been

proposed [14] using a distributed architecture. However, in this thesis we consider a simple

approach and implement a modified residual systematic resampling algorithm [5] as shown

85



−1/ 2*σ2

θ
k

5

exparg

4

diffsq

3

diff

2

atan

1

wt

sysgen
a

b
(ab)z

−3

Mult

sysgenz
−10

Delay2

sysgencast

Convert

z−13z

exp

cosh

sinh

expo

mant1

mant2

exp1

exp2

sign

CORDIC EXP

z−13
x

y

mag

atan

CORDIC ATAN

sysgen
a

b
a − b

AddSub

sysgenx (−5000)
3

2

y

1

x

Figure 4.9: System Generator model of the weight evaluation stage in the bearings-only
tracker. This corresponds to the “Weighting” block in Figure 4.7.

in Table 4.3. The FPGA implementation involves logic operations and control circuits to

move particles among memory locations. The strategy used in resampling is to compute the

number of times a particle has to be replicated based on its weight. The implementation has

one random number generation. The use of K in Step 2 of the pseudocode in Table 4.3 allows

for non-normalized weights to be used and hence reduces the number of divide operations,

otherwise required to normalize the weights.

The proposal and weighting stages can be performed sequentially, whereas the weight

normalization and resampling cannot start until all the particle weights have been evalu-

ated. Hence, the resampling stage determines the speed of operation, or sampling rate, of

the particle filter algorithm, i.e., the rate at which the estimates can be produced. Any

improvement in the resampling stage can provide significant speed up, especially if the pro-

posal and weighting stages can be parallelized. But, resampling is not the focus of this

research, because it has been analyzed already and an ASIC implementation for it was

presented in [60].

The various stages are implemented using the System Generator tool and targeted to

the Xilinx Virtex II Pro FPGA device [135]. The device details are shown in Table 4.4.

Based on this implementation, the estimated resource utilization by each stage for a single

particle evaluation is shown in Table 4.5. Nearly 15% of the resources in the FPGA device

are utilized. This resource utilization does not represent an optimal choice and has room for

86



Table 4.3: Residual Systematic Resampling adapted from [5].

1: U ∼ U [0, 1] {Draw a random variable from an uniform distribution}
2: K = N/Wn {Wn is the sum of non-normalized weights}
3: indr = 0, indd = M − 1
4: for i=1 to N do
5: temp = w

(i)
n .K − U

6: rindr = ⌈temp⌉ {r is the # a particle is replicated}
7: U = temp − rindr

8: if rindr > 0 then
9: i

(indr)
r = i, indr = indr + 1

10: else
11: i

(indd)
d = i, indd = indd − 1

12: end if
13: end for

improvement. For example, the single-port block RAMs used in between the various stages

can be replaced by dual-port block RAMs [5]. The RMEM and SMEM blocks in Figure 4.7

are single-port block RAMs. But, using dual-port block RAMs requires a more sophisticated

control strategy. Since the aim of this implementation is to perform comparisons, such an

approach was not adopted. The proper operation of the particle filtering algorithm also

relies on accurately estimating the delay at each stage of the algorithms. The delay, in

clock cycles, is shown in Table 4.6. Based on a device clock frequency of 100 MHz and

the latencies shown in Table 4.6, the sampling rate of the particle filter algorithm is nearly

33 kHz.

Table 4.4: Xilinx Virtex II Pro FPGA - XC2VP30 - Device details.

Resource # Logic cells†a # Slices†b Block RAM Clock frequency

30816 13696 2448 kb 100 MHz

†a Logic cell ≈ one 4-input LUT + one Flip-Flop + Carry logic
†b Each slice includes two 4-input function generators, carry logic, arith-
metic logic gates, wide function multiplexers, and two storage elements.

87



Table 4.5: FPGA resource utilization for bearings-only tracker.

Resource PF Stage
Proposal Importance Resampling Overall

# Slices 2700 1215 374 4635
# Flip-flops 2500 892 373 4060
# Block RAMs 0 0 0 0
# LUTs 3500 2209 653 7065
# Emb. Mult. 8 0 0 8

Table 4.6: Time delay at various stages of bearings-only tracker.

PF Stage
Proposal Importance Resampling Overall

Latency (Clock cycles) 13 32 N + 5 3N + 50

4.4 Simulations

This section presents simulation results to demonstrate the functional accuracy of the

weighting stage implemented using MITEs in the analog domain and using an FPGA in the

digital domain. In Section 4.5, the weighting stage, implemented as a MITE circuit or an

FPGA block, is used in a Matlab simulation of the bearings-only tracker. This is achieved

using Matlab scripts that execute a call to an analog (Spectre [19]) or a digital (Model-

sim [83]) circuit simulator tool as part of a Matlab simulation.

4.4.1 Mixed-mode implementation

Our mixed-mode simulations use Method-1 (Figure 4.3) for the bearings-only tracker. The

analog implementation of the arctan and Gaussian functions use MITEs as explained in

Section 4.3.1. The circuit blocks are simulated for various values of the input currents and

the reference currents to determine the accuracy of the implementation. Models for the

AMI 0.5 µm CMOS process were used in the simulations. The results for the standalone

functions are shown in Table 4.7. The error (as a percentage of the maximum) and power

values correspond to the ranges of the input and reference currents shown in Table 4.7. The

reference currents must be chosen such that the MITE networks remain in their valid region

of operation.

The analog circuit for the weighting stage of the bearings-only tracker is simulated and

88



Table 4.7: Characteristics of the MITE implementation - arctan and Gaussian functions.

Circuit arctan Gaussian

Minimum Maximum Minimum Maximum

Ref. Ia (nA) 0.5 20 0.1 10

Input current −10Ia 10Ia −10Ia 10Ia

Power (µW) 0.361 14.45 1.097 109.7

Error (%) 0.31 0.71 2.04 2.8

Table 4.8: Simulation parameters - Mixed-mode bearings-only tracker.

Tracker parameters Circuit parameters (variables in (4.6))

N σr σu Iin(y
(i)
k /x

(i)
k ) Iaarctan IaGaussian(σr)

1000 0.29 ◦ 0.001 6.36nA to 10nA 0.1nA

7.18nA

the results compared to a Matlab simulation. The range for the input currents is obtained

from the Matlab simulation. The simulation parameters used are similar to those in [55]

and are shown in Table 4.8. Figure 4.10 compares the weights obtained from the Analog

implementation to the True value obtained using (4.5) and the Analog approximation values

obtained using (4.10) and (4.12), for two cases. The error introduced by the arctan block

shifts the mean of the Gaussian distribution in the weight evaluation.

Depending on the measurement noise variance σ2
r , the shift in the Gaussian may affect

the state estimate. If the variance σ2
r is comparable to the error in the MITE implementation

of the arctan circuit, the error in the computation will lead to biased estimates. The

influence of σr on the output of the weighting stage is shown in Figure 4.10 for two values

that differ by a factor of ten. In Section 4.5.1 we present the corresponding effect in a

bearings-only tracking scenario. Another issue is that the implemented arctan block has

quadrant ambiguity and hence additional logic needs to be included to put the results in

the correct quadrant.

4.4.2 Digital implementation

The digital or FPGA implementation for the weighting stage of the bearings-only tracker is

simulated and the results have been compared to simulink simulation outputs. The range

for the input currents is obtained from Matlab simulations. The simulation parameters

89



32.5 33 33.5 34 34.5 35 35.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Analog implementation
Analog approximation
True value

Weight

θ[◦]

(a) σr = 0.29◦

25 30 35 40 45
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Analog implementation
Analog approximation
True value

θ[◦]

(b) σr = 2.8◦

Figure 4.10: Comparison of the evaluated weights (ŵ
(i)
t in Figure 4.2) using the ana-

log (MITE) implementation for two values of noise variance. The straight line at 33.8◦

represents the true mean. (a) The standard deviation σr = 0.29◦ is of the same order as
the error in arctan function, leading to a shift in the Gaussian mean. (b) The standard
deviation σr = 2.8◦ is much larger than the error in the arctan function.

used are similar to those in the analog simulation and are shown in Table 4.8. The plot in

Figure 4.11 compares the weights obtained from the FPGA implementation to results from

a Simulink simulation and to the True value obtained using Matlab. The error introduced

by the arctan block is low compared to that in the analog implementation. Hence, there is

no shift in the mean of the Gaussian distribution in the weight evaluation.

Depending on the measurement noise variance σr, the shift in the Gaussian may or

may not affect the state estimate. If this variance is comparable to the error in the FPGA

implementation of the arctan circuit, the error in the computation will lead to biased

estimates. The influence of small or large σr on the output of the weighting stage is shown

in Figure 4.11. In Section 4.5.2 we present the corresponding effect in a bearings-only

tracking scenario.

4.5 Simulations: Bearings-only Tracking

In this section, the weighting stage implemented as a MITE circuit, or an FPGA block, is

used in a Matlab simulation of the bearings-only tracker. This is achieved using Matlab

scripts that execute a call to an analog (Spectre [19]) or a digital (Modelsim [83]) circuit

simulator tool as part of a Matlab simulation. The results shown here are for a simple

bearings-only tracker where the measurements are target DOAs at individual time instants.

90



32 32.5 33 33.5 34 34.5 35 35.5 36
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FPGA implementation
Simulink simulation
True value

Weight

θ[◦]

(a) σr = 0.29◦

28 30 32 34 36 38 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FPGA implementation
Simulink simulation
True value

θ[◦]

(b) σr = 2.8◦

Figure 4.11: Comparison of the evaluated weights (ŵ
(i)
t in Figure 4.2) using the digi-

tal (FPGA) implementation for two values of noise variance. The straight line at 33.8◦

represents the true mean. (a) The standard deviation σr = 0.29◦. (b) The standard devia-
tion σr = 2.8◦. Since, the error in FPGA implementation of the arctan block is significantly
smaller than either of the standard deviations σr = 2.8◦ and σr = 0.29◦, the Gaussian mean
is aligned with the true mean.

The tracking scenario considered here and the parameters used are similar to those

in [55] and are shown in Table 4.8. A single target trajectory and measurements

that follow (4.1) and (4.3) is simulated for two different values of measurement noise.

The sensor is located at the origin in the x-y plane. The target’s actual initial state

is X = [0.250 0.001 0.240 − 0.005]T , the system noise is N (0, 0.0012), and the mea-

surement noise is either N (0, 0.292) or N (0, 2.82). The true target trajectory in the x-y

plane is shown in Figure 4.12.

4.5.1 Tracking using the mixed-mode implementation

Tracking estimates from the Analog implementation are shown in Figures 4.13, 4.14,

and 4.15. The error introduced when σr is small can lead to divergence of the estimates with

time. Although, particle filters can mitigate this error because they use particles spread

over a certain region, the error in computation might dominate and cause the particle dis-

tribution to be biased. However, if the noise variance is high compared to the error in

the arctan computation, the estimates will be close to the ones obtained from a Matlab

simulation.

During each iteration, inputs were presented as a data file of
yt

xt
quotient values and

91



0.2 0.25 0.3 0.35
0.1

0.15

0.2

0.25
True target track

X

Y

Figure 4.12: The true trajectory, in the x-y plane, of the target being tracked. The sen-
sor (not shown in the figure) is located at the origin.

bearing measurement zt. xt and yt represent the x and y components of the particle state

vector X, respectively. A Spectre simulation script uses these values to compute the particle

weights ŵ
(i)
t using the analog MITE circuit implementation of the weighting stage. These

weights are used to continue the Matlab simulation.

The error in the arctan computation can vary from 0.18◦ to 0.41◦. In Fig-

ures 4.13 (a), 4.14 (a), and 4.15 (a) the results correspond to a standard deviation of 0.29◦.

This value of the standard deviation is comparable to the error in the arctan computation.

This results in a small bias in the x-y estimates, because of the shift in the mean of the

Gaussian output, or weights, which was shown in Figure 4.10 (a). Hence, the resulting state

estimates (Analog implementation) do not closely match the Matlab estimate. However, in

spite of the bias they closely follow the Ground truth values. This might be an effect of the

bias pulling the estimate towards the ground truth. The results in Figures 4.13 (b), 4.14 (b),

and 4.15 (b) correspond to a standard deviation of 2.80◦. This noise value is high compared

to the error values in the arctan computation and the estimated weights are not biased

as shown in Figure 4.10 (b). Hence, the corresponding estimates (Analog implementation)

closely follow the Matlab estimate. In Figure 4.15, the difference between the Ground truth

and the Matlab estimate is because of the sensitivity of the bearings-only tracker to the

small state noise on the velocity components and the distance of the target from the sensor

location.

92



The error in the magnitude of the analog Gaussian output does not affect the estimates.

Since the computed weights ŵ
(i)
t are normalized to obtain w

(i)
t , the individual difference

in weights does not affect the final estimates significantly. However, the MITE reference

currents have to be selected appropriately to prevent biased values from the Gaussian

computation.

4.5.2 Tracking using the FPGA implementation

As mentioned earlier, the complete particle filter algorithm was not implemented in an

FPGA. However, the FPGA implementation of the weighting stage was simulated using a

VHDL implementation of this stage along with a Matlab implementation. This was achieved

by realizing the weighting stage as a simulation file in Modelsim. This file was then used as

part of the Matlab simulation to compute weights. The measurements and particle states

were input to this simulation file and the outputs were fed back to the Matlab simulation.

The true trajectory of the target being tracked is shown in Figure 4.12 and the scenario

is described in the beginning of Section 4.5. The target state estimates using the FPGA

implementation were compared to the Analog implementation and to the Matlab estimate;

the results for two different values of measurement noise are shown in Figures 4.13, 4.14,

and 4.15. The tracking estimates using the FPGA implementation closely follow the Matlab

estimate. This is expected, because the evaluation of weights using the FPGA implemen-

tation does not introduce any bias in the weights as shown in Figure 4.11 and as discussed

in Section 4.4.2. In Figure 4.15, the difference between the Ground truth and the Matlab

estimate is because of the sensitivity of the bearings-only tracker to the small state noise

on the velocity components and the distance of the target from the sensor location.

4.6 Comparison of the Mixed-mode Implementation to a Digital Im-

plementation

In this section, we compare the mixed-mode implementation to a digital implementation. To

do a fair comparison, the digital implementation corresponds to an ASIC implementation,

not the FPGA implementation.

93



0.2 0.25 0.3 0.35
0.1

0.15

0.2

0.25
Analog implementation
FPGA implementation
Matlab estimate
Ground truth

X

Y

(a) σr = 0.29◦

0.2 0.25 0.3 0.35
0.1

0.15

0.2

0.25
Analog implementation
FPGA implementation
Matlab estimate
Ground truth

X

Y

(b) σr = 2.8◦

Figure 4.13: Comparison of x-y track estimates from the analog (MITE) implementation
to the digital (FPGA) implementation and the Matlab simulation. (a) Results for a noise
standard deviation of σr = 0.29◦, which is comparable to the error in the analog arctan
computation. (b) Results for a noise standard deviation of σr = 2.8◦, which is high compared
to the error in the analog arctan computation.

4.6.1 Power dissipation

From (4.5) and (4.6), note that the significant computations in the particle weighting stage

of the particle filter algorithm involve the evaluation of arctan and Gaussian functions.

Hence, the power consumed in these computations is considered here.

4.6.1.1 Analog MITE implementation

The analog implementations of the arctan and Gaussian functions use MITEs as explained

in Section 4.3.2. The instantaneous power consumed by these circuits depends on the

instantaneous value of the input current, Ix. For the arctan circuit, the current drawn from

the supply can be shown to be

Ia

(
9.26 +

2I2
x

I2
a

+

√
4 +

I2
x

I2
a

+ 2

√
Ir

Ia
+

√
4 + I2

x/I2
a√

Ir/Ia + .63

)

where Ia is the reference current and Ir is as shown in (4.10). Assuming |Ix|max = 10Ia, the

maximum power dissipated is 240.82IaVdd. For a typical value of Ia = 10 nA with a 3 V

supply, the maximum power consumed is 7.23 µW. A similar expression can be derived for

the Gaussian block. Using the notations in (4.11) and setting the scaling current Ic to be

equal to the reference current Ia, Ic = Ia, the maximum power consumed is 3655.14IaVdd.

For Ia = 0.1 nA the power consumed is 1.097 µW. These values are shown in Table 4.7.

94



0 2 4 6 8 10 12 14
0.2

0.25

0.3

0.35

0.4
Analog implementation
FPGA implementation
Matlab estimate
Ground truth

x

0 2 4 6 8 10 12 14
0.2

0.25

0.3

0.35

0.4
Analog implementation
FPGA implementation
Matlab estimate
Ground truth

x

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3
Analog implementation
FPGA implementation
Matlab estimate
Ground truth

y

time (s)

(a) σr = 0.29◦

0 2 4 6 8 10 12 14
0.1

0.15

0.2

0.25

0.3
Analog implementation
FPGA implementation
Matlab estimate
Ground truth

y

time (s)

(b) σr = 2.8◦

Figure 4.14: State estimation results for the x and y coordinates from the analog (MITE)
implementation compared to the digital (FPGA) implementation and the Matlab simu-
lation. (a) Results for a noise standard deviation of σr = 0.29◦, which is comparable to
the error in the analog arctan computation. (b) Results for a noise standard deviation of
σr = 2.8◦, which is high compared to the error in the analog arctan computation.

95



0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10
x 10

−3

Analog implementation
FPGA implementation
Matlab estimate
Ground truth

v x

0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10
x 10

−3

Analog implementation
FPGA implementation
Matlab estimate
Ground truth

v x

0 2 4 6 8 10 12 14
−12

−10

−8

−6

−4

−2
x 10

−3

Analog implementation
FPGA implementation
Matlab estimate
Ground truth

v y

time (s)

(a) σr = 0.29◦

0 2 4 6 8 10 12 14
−12

−10

−8

−6

−4

−2
x 10

−3

Analog implementation
FPGA implementation
Matlab estimate
Ground truth

v y

time (s)

(b) σr = 2.8◦

Figure 4.15: State estimation results for the x-y velocity components from the ana-
log (MITE) implementation compared to the digital (FPGA) implementation and the Mat-
lab simulation. (a) Results for a noise standard deviation of σr = 0.29◦, which is comparable
to the error in the analog arctan computation. (b) Results for a noise standard deviation of
σr = 2.8◦, which is high compared to the error in the analog arctan computation.

96



4.6.1.2 Digital implementation

As introduced in Section 1.3.1, power consumption in CMOS circuits consists of dynamic

and static power (1.26). Ignoring the negligible static power, the average dynamic power

dissipated can be approximated as [31]:

P = α0→1CLV 2
ddfclk (4.13)

where α0→1 is the node transition activity factor, CL the load capacitance, Vdd the supply

voltage, and fclk the clock frequency.

Digital implementations of the arctan and Gaussian functions use the CORDIC algo-

rithm [129], which is an iterative algorithm that can be used to implement trigonomet-

ric and hyperbolic functions. The Gaussian function can be implemented using the rela-

tion ex = sinh(x) + cosh(x). A single CORDIC block can evaluate both sinh and cosh

functions simultaneously. There are several implementation architectures for the CORDIC

block depending on the performance requirements. The basic computation, in a single

iteration or pipeline, involves two shifts, three additions, and one look-up operation. Its

complexity and speed depends on the required number of bits of precision.

A VHDL implementation of a pipelined CORDIC block [96] was simulated, and the

estimated power consumption using the AMI 0.35 µm CMOS process is shown in Table 4.9.

This simulation was performed to obtain a baseline for comparison. Low-power implementa-

tion of CORDIC algorithms is an on going research area. Hence, for reference, results from

a low-power CORDIC implementation using MOS Current Mode logic (MCML) demon-

strated in [91] is also shown. The implementation specifications in [91], however, were a bit

different.

4.6.1.3 Comparison of power dissipation in the mixed-mode to a digital implementation

As explained in Section 4.3.1, the mixed-mode Method-1 uses DACs and ADCs to transfer

data between the digital and analog domains. Hence, the power dissipation in these devices

has to be considered as part of the total power dissipation in the mixed-mode. Here, we

provide a brief analysis of its impact. It is difficult to quantify the exact speed of operation

97



Table 4.9: Characteristics of the digital implementation - CORDIC algorithm.

Implementation Digital MCML [91]

VDD(V) 3.3 1.0

Clock Frequency (MHz) 1 125

Output precision (bits) 12 8

Power (µW) †a 550 × 2 4330 × 2

†a The factor of 2 is to account for the two
CORDIC blocks needed to implement the arctan
and Gaussian functions.

of the MITE circuits when used in implementation Method-1. However, they can operate

at a relatively low frequency. Based on the delay in the circuit this frequency range is in

the 10–100 kHz range. The accuracy that can be obtained using these circuits is nearly 8

bits. A TI 10-bit DAC [117] with an update rate of 75 kHz dissipates 0.75 mW, while an 8-

bit ADC [118] with 70 kHz throughput has a minimum power dissipation of 0.18 mW. Using

this approximate analysis, the DAC and ADC conversion dissipates nearly 1 mW power.

Hence, for N particles this leads to 2N mW of power dissipation in the data converters for

the mixed-mode Method-1. For N = 1000 this corresponds to a power dissipation of 2W.

This assumes voltage as output from the DAC and input to the ADC. On the other hand

MITE circuits operate in a current mode, so a voltage-to-current conversion is required.

The MITE implementation of the arctan and Gaussian functions together dissipates

nearly 115 µW (Table 4.7), for a typical value of Ia = 10 nA. The combined digital imple-

mentation, operating at a lower frequency (Table 4.9) dissipates 1100 µW. This shows that

the MITE implementation dissipates ten times less power than a digital implementation of

the transcendental functions considered. However, if the ADCs and DACs are included, the

total power dissipated in the mixed-mode is nearly 1115 µW which is of the same order as

the digital implementation.

On the other hand, if Method-2 in Figure 4.4 is used the power dissipated in the data

converters can be removed. Implementing the proposal and state estimation stages in the

analog domain can provide additional savings. While it is difficult to give exact power sav-

ings without an implementation, we can provide an estimate. As shown in Figure 4.8, the

98



Table 4.10: Comparison of estimated power dissipation - Mixed-mode to a digital imple-
mentation of the bearings-only tracker.

Operation
Mixed-mode Digital

Method-1 Method-2 (ASIC)

Nonlinear functions 115 µW 115 µW 1100 µW

ADC/DAC 1000 µW − −
Addition 20 µW − 20 µW

Multiply accumulate 10 × PMAC PMAC
†a 10 × PMAC

Overall
1135 µW+ 115 µW+ 1120 µW+

10 × PMAC PMAC 10 × PMAC

†a PMAC denotes power dissipation in analog multiply accu-
mulate operation.

particle proposal stage involves six adders. For a digital implementation of a 16-bit ripple-

carry adder operating at 2 MHz, the power dissipation is 0.21 mW (See [33], Paper 4.7).

Considering a lower frequency of operation, in the kHz range, the power consumed will be

in the µW range. In an analog implementation, addition can be achieved by connecting

the wires that carry the corresponding values, and hence no additional power is dissipated.

As mentioned earlier, state estimation, which is a multiply-accumulate (MAC) operation,

can be performed using a vector-matrix multiplier [35]. At frequencies of operation less

than 10 MHz, when compared to a digital implementation of a MAC an analog implemen-

tation can provide a factor of 1000 in power savings [35]. For frequencies of operation in

the kHz range, the analog circuit can lead to approximately a factor of ten in power sav-

ings. Hence, using the implementation in Method-2, in addition to the arctan and Gaussian

functions that provide a factor of ten power savings, the proposal and state estimation stage

provide a factor of nearly ten in power savings. Overall, the implementation in Method-2

will dissipate approximately 20 times less power when compared to a digital implementation.

Table 4.10 summarizes the results comparing the estimated power dissipation.

4.6.2 Chip area, speed, and accuracy

As for chip area, the MITE implementation of the arctan and Gaussian functions consumes

nearly 0.38 mm2. This area is of the same order as a digital implementation of the CORDIC

99



algorithm in [137]. The implementation specifics in [137] are a bit different, but a single

CORDIC implementation takes up 0.114 mm2 area. A chip using the MITE implementation

for the arctan amd Gaussian blocks has been sent for fabrication by Shyam Subramanian.

As mentioned earlier, it is difficult to quantify the operating speed of the MITE imple-

mentation. However, based on approximate time delays obtained from simulations, it is in

the 100 kHz range.

The accuracy of the output results, based on the error estimates in Table 4.7, is approx-

imately 6–8 bits. The precision or accuracy of a digital implementation using the CORDIC

algorithm depends on the number of bits used and number of iterations in the algorithm.

Hence, higher accuracy could be obtained with the digital implementation if it were needed.

4.7 Discussions

In this chapter, we presented a mixed-mode implementation strategy for particle filters.

We used multiple-input translinear element (MITE) networks to implement the nonlinear

arctan and Gaussian functions in the weight evaluation stage of a bearings-only tracker. We

presented simulation results to show the accuracy of these functions and their effect on target

tracking. If the error in the output of the arctan function is smaller than the measurement

noise standard deviation, its impact on the target tracking estimates will be minimal. We

also showed that the MITE implementation of the functions dissipate approximately ten

times less power when compared to a digital implementation of the CORDIC algorithm,

which is used to evaluate the nonlinear functions. If the MITE implementation is used in

the mixed-mode Method-1, the use of data converters can offset the power savings obtained

from the analog implementation. However, if the mixed-mode Method-2 is used it leads to

more power savings.

In addition to the mixed-mode implementation, we presented an FPGA implementation

for the bearings-only tracker. This implementation is similar to that in [17], [4]. However,

in this thesis we realized this using the Xilinx System Generator tool, which significantly

reduced the time spent in developing the FPGA implementation. The motivation for this

100



FPGA implementation, is to provide a baseline for comparing the batch-based tracker pre-

sented in Chapter 5. We also compared the tracking estimates of the FPGA implementation

to those of the mixed-mode implementation of the bearings-only tracker through simula-

tions.

101



CHAPTER V

IMPLEMENTATION OF A BATCH-BASED PARTICLE FILTER

TRACKER

5.1 Introduction

In this chapter, we concentrate on the implementation of the batch-based multi-target

tracker introduced by Cevher [28] and presented in Chapters 2 and 3. Our goal is to

demonstrate real-time performance of the batch-based DOA tracker and to address aspects

that are unique to the algorithm. We first derive the complexity of the algorithm. Next

we develop and analyze a fixed-point implementation of the algorithm. This provides a

guideline for wordlength selection. We implement the algorithm in a floating-point DSP and

present performance metrics such as speed of operation, memory utilization, and estimation

accuracy. Using an approach similar to that in Section 4.3 we implement most stages of the

batch-based tracker using the Xilinx System Generator. The particle proposal and weight

evaluation stages in the tracker use nonlinear functions to update the DOA state. This

DOA update function is next implemented in the analog domain using MITEs. The MITE

networks were synthesized by Subramanian [115] in the CADSP group at Georgia Institute

of Technology.

From an implementation perspective, the batch-based tracker is different from earlier

work in [17], [4], [109] in two main aspects. The first difference is in the state update

function. The state update function in previous work is linear and computationally less

complex when compared to that in the batch-based tracker. The second difference is in the

proposal function and as a result in the weight evaluation stage. Earlier work uses the state

update to propose particles, and hence the weight evaluation stage only has to evaluate

the data likelihood. In comparison, as described in Section 2.4, the batch-based tracker

uses a Gaussian approximation to the full-posterior distribution as the proposal function.

Because of this proposal function, the computation of weights requires the evaluation of

102



state and proposal distributions in addition to the data likelihood. These computations lead

to additional complexity in the proposal stage. The Gaussian approximation is obtained

using Laplace’s method and also uses a Newton search. We present a soft- and hard-

core FPGA implementation of the Newton search algorithm and discuss the advantages

and disadvantages of these approaches. Furthermore, the data likelihood evaluation in the

weighting stage handles a batch of M measurements, leading to a product of Gaussians.

The batch-based tracker, however, has one advantage in that it uses a relatively smaller

number of particles.

5.2 A System View of Batch-based Particle Filter Tracker

In this section, we provide a system view of the batch-based particle filter multi-target

tracker developed in Chapter 2. Figure 5.1 shows a system view to better relate the research

aspects in Chapter 2 and this chapter. While the Algorithm Level corresponds to Chapter 2,

the Architecture Level and Circuit Level correspond to this chapter.

A brief description of the stages in the tracker relevant to the implementation is given

here. This will be used in the later sections of this chapter, where details of the DSP,

FPGA, and analog MITE implementations will be discussed. While a complete tracker was

implemented on a DSP, only sections of the tracker were implemented using the FPGA and

analog components.

5.2.1 Particle proposal stage

The particle proposal stage (Figure 5.2) in the DOA tracker uses an approximation of the

full-posterior to propose particles, as detailed in Section 2.4. This requires performing

a state update of the particles and approximating the data likelihood using the Laplace

method. Evaluating the state likelihood involves evaluating (2.3) which is shown as a block

diagram in Figure 5.3 and repeated here for convenience.

xk(t + T ) = hT (xk(t)) + uk(t), (5.1)

103



Figure 5.1: A system view of the design choices considered in developing the particle filter-
based multi-target tracker. The Algorithm Level aspects are handled in Chapter 2. The
Architecture Level and Circuit Level are handled in this chapter.

where uk(t) ∼ N (0,Σu) with Σu = diag{σ2
θ,u, σ2

Q,u, σ2
φ,u} and

hT (xk(t)) =




tan−1
{

sin θk(t)+T exp Qk(t) sinφk(t)
cos θk(t)+T exp Qk(t) cos φk(t)

}

Qk(t) − 1
2 log

{
1 + 2T exp (Qk(t)) cos(θk(t) − φk(t)) + T 2 exp(2Qk(t))

}

φk(t)




.

(5.2)

Approximating the data likelihood using the Laplace method requires a Newton-

Raphson search algorithm to be implemented (see Section 2.4.4 and Appendix A). This

involves computing the inverse Hessian and gradient of the cost function. These operations

will be sensitive to finite-precision effects so this needs to be handled appropriately. One

approach to simplify this is to use the state update as a proposal function and hence avoid

the Laplace method for approximating the data likelihood. Another approach, if feasible,

is to implement the Newton search in a floating-point co-processor.

104



Figure 5.2: Block diagram showing the flow of computations in the particle proposal stage.

5.2.2 Particle weight evaluation stage

The weight evaluation stage (Figure 5.4) of the batch-based tracker in Section 2.4 is com-

putationally complex when compared to that in the bearings-only tracker (Figure 4.2) in

Section 4.2. As shown in (2.14) from Chapter 2, the particle weights are calculated using

w∗(i)
t = w

(i)
t−T

p(yt|x(i)
t )p(x

(i)
t |xt−T )

∏
k gk(x

(i)
k (t)|yt, x

(i)
k (t − T ))

. (5.3)

Here, the state transition distribution, proposal distribution, and data likelihood are all

Gaussians. The evaluation of the state distribution p(x
(i)
t |xt−T ) and the proposal distri-

bution gk(x
(i)
k (t)|yt, x

(i)
k (t − T )) only involve subtraction and product operations. In Fig-

ure 5.4 these functions are denoted as L
(i)
x and L

(i)
g . Since the covariances Σu and Σg are

105



Figure 5.3: Block diagram showing the flow of computations in the particle state update
stage.

diagonal matrices they do not require matrix operations. However, evaluating the data

likelihood (5.4) involves M DOA updates (Figure 5.6) and M exponential evaluations. The

computations in the data likelihood evaluation are shown in Figure 5.5 and the relevant

equation (2.8) from Chapter 2 is repeated here for convenience:

p(y(t)|x(t)) ∝
∏

k

∏

m



1 +

1 − κ√
2πσ2

θ(m)κλ

P∑

pi=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (pi)
)2

2σ2
θ(m)

}


(5.4)

106



The DOA update function hθ
T (x(t)), with x = [θ(t) Q(t) φ(t)]T in (5.4), is also nonlinear

with some of the functions shown in Table 5.1.

hθ
T (x(t)) = θ(t + T ) = tan−1

{
sin θ(t) + T exp (Q(t)) sin φ(t)

cos θ(t) + T exp (Q(t)) cos φ(t)

}
. (5.5)

Figure 5.4: Block diagram showing the flow of computations in the particle weight evaluation
stage.

Table 5.1: Functions to be implemented for the batch-based DOA target tracker

Function Expected range for x †a

Gaussian [exp(−x2)] x − 4σθ ≤ x ≤ x + 4σθ

exp(x) −4.5 ≤ x < 0

log(x) 0 < x < 2

arctan(x) −100 < x < 100

sin(x) −π ≤ x < π

cos(x) −π ≤ x < π

square-root [
√

x] −
multiplies (∗) −
division (/) −

†a These are approximate range values, obtained from sim-
ulations in Section 2.7.

107



Figure 5.5: Block diagram showing the flow of computations in the data likelihood evalua-
tion.

5.2.3 Implementation strategy

Several factors affect the design strategy to be adopted in implementing algorithms for

target tracking. Some of these factors are

• Real-time constraints

• Accuracy of the estimates

• Cost of implementation

• Power dissipation and area constraints

• Flexibility of the implementation with respect to design modifications.

Our goal is to explore some of the available choices and to evaluate the above attributes

in implementing the particle filter-based tracker, but we will not try to optimize the im-

plementation for all these factors. The main motivation is to develop an implementation

strategy for particle filters, which tend to be computationally complex.

108



Figure 5.6: Block diagram showing the flow of computations in the particle DOA update
stage.

In the digital domain, we first demonstrate that the complex batch-based particle filter

multi-target tracker can be executed in real-time using a floating-point DSP. Next, we

concentrate on an FPGA implementation for certain stages in the tracker. The proposal

stage and weight evaluation stage are realized with an FPGA. The FPGA implementation

of the data likelihood is used in evaluating weights in the batch-based tracker as part of

a Matlab simulation. This is similar to our approach in Section 4.5 for the bearings-only

tracker. We provide resource utilization in the FPGA and analyze the implications of the

batch measurements from an implementation perspective. We compare this to the FPGA

implementation of the bearings-only tracker presented in Chapter 4. We also develop soft-

and hard-core applications to implement the Newton-Raphson search on the FPGA.

109



Table 5.2: Notation for computational complexity analysis.

Notation Description Typical Values

N Number of particles 100

Ns State vector size 3

K Number of targets 3

M # batch samples for DOA estimation 10 (> 5)

P # DOA peaks in a beamformer 3 (≥ K)

F # beamforming frequencies 1

Niter # iterations in Newton-Raphson search 15

In the analog domain, we develop a MITE network to perform the DOA update (5.5).

We modify (5.5) into a form that requires less computation stages in the MITE implemen-

tation. Because of this modification, the sine and cosine functions need not be implemented

explicitly, which leads to a reduction in the number of MITEs required for the DOA update

stage.

5.3 Computational Complexity

This section presents the computational complexity of the particle filter algorithm described

in Section 2.4. Table 5.2 summarizes the notation for the parameters required to derive the

implementation complexities shown in Table 5.3.

The choice of our proposal function drives the complexity and execution time of the

tracking algorithm. As expected complexity increases with the number of targets and the

number of particles used. The complexity analysis (Table 5.3) and simulation results suggest

that the overall complexity of the algorithm is of O(NPKM). This is also apparent from the

linear increase in the total computational time versus N in Figure 5.7, for fixed P , K,and M .

The complexity of the particle proposal stage (Step 1 in Table 2.1) and the weight evaluation

stage (Steps 2 and 3 in Table 2.1) are comparable. For a small number of particles, up

to N = 500, the execution time of the Newton search is considerably more than the other

operations. The Newton search does not depend on the number of particles used, but does

depend on the number of targets. The number of iterations in the Newton search is typically

between 10 and 20 because of the adaptive step-size and the stopping conditions.

110



Table 5.3: Computational complexity analysis - Batch-based particle filter tracker.

Description (Equation)
Number of Operations

Complexity
Adds Mult. Trans. Other

Propose particles

(Table 2.1 - Step 1)

State xt update (2.3) 6NK 12NK 8NK − O(NK)

Evaluate mode xmode 12NM 6NM 4NM 3NM O(NM)

Newton-Raphson recursion K2N2
s M K2M 10K KPM †a O(MK2)

Evaluate µg and Σg (2.13) NK2N2
s 2NK2N2

s − − O(NK2)

Sample particles NK2N2
s NK2N2

s − NKNs
†b O(NK2)

Update particle weights

(Table 2.1 - Steps 2,3)

Evaluate state-likelihood, NK2N2
s NK2N2

s 2NKNs NKNs
†a O(NK2)

proposal (2.12)

Evaluate data-likelihood (2.10) 3NKPM 10NKM NKPM NKPM †a O(NKPM)

Evaluate weights 3N 2N N − O(N)

Estimate states NKNs NKNs − − O(NK)

(Table 2.1 - Step 4)

Resample 2N − − 2N †c O(N)

(Table 2.1 - Step 5)

Overall O(NPKM)

†a Modulo operations, †b Random number generation, †c Compare operations.

111



200 400 600 800 1000

10
−3

10
−2

10
−1

10
0

Total time
State update
Newton Iteration
Data likelihood
Resampling

C
o
m

p
u
ta

ti
o
n

ti
m

e
[s

]

Number of particles (N)

(a)

200 400 600 800 1000

10
−3

10
−2

10
−1

10
0

Number of particles (N)

(b)

Figure 5.7: Execution times estimated from Matlab simulations for the various particle
filter stages. (a) Single-target case. (b) Three-target case.

5.4 Fixed-point Analysis

Fixed-point analysis of algorithms is important to characterize their behavior when im-

plemented in hardware. Hardware realization using fixed-point is significantly faster and

consumes less power when compared to a floating-point realization.

As shown in Section 2.7, the DOA tracking algorithm has acceptable tracking perfor-

mance when executed on a general purpose CPU that performs floating-point computa-

tions. To use this algorithm in fixed-point hardware, simulations are needed to measure the

performance loss resulting from the word length of the fixed-point representation. Fixed-

point simulations can be performed using the Matlab Fixed-point Toolbox. Following the

Matlab notation [77], a signed or unsigned fixed-point number is represented using the no-

tation [sW,F ] or [uW,F ], where s or u identifies it as a signed or unsigned quantity, W is

the total number of bits (word length) and F indicates the number of bits to the right of

the binary point (fraction length). More details on fixed-point numerics can be found in

standard texts [130].

Fixed-point numerics Using a finite number of bits to represent numerical quantities

introduces errors while performing common arithmetic operations and function evaluations.

Two types of errors that can occur are (i) overflow or underflow (ii) round-off errors. If

the quantity to be represented is outside the range of values that can be represented using

112



a chosen fixed-point representation, then an overflow has occurred. Overflows can occur

during operations that accumulate results. For the proper behavior of an algorithm, these

errors need to be avoided by choosing the mantissa and fraction lengths appropriately. The

word length must accommodate the dynamic range of variables used in the algorithm. In

the case of DOA target tracking, the dynamic range depends on the assumed tracking

scenario such as target velocity, distance from the sensor, and noise variances. Round-off

errors occur as a result of the minimum resolution that can be obtained in the fixed-point

representation. It is difficult to avoid such errors, but care should be taken so that these

errors do not accumulate. Though particle filters are recursive, the accumulation of fixed-

point errors is mitigated by the resampling stage.

In the following sections, finite word length effects at individual stages of the particle

filter target tracker are presented to justify the choice of word length used. In the fixed-point

simulation considered here:

• All mathematical functions perform floating-point computations on fixed-point data.

The fixed-point hardware implementation of these functions will have additional im-

plications. In particular, it will affect the execution time, accuracy, and resolution of

the output.

• If a word length of W is used to represent variables, then the output during a product

operation can be 2W long and is not considered as an overflow.

Particle proposal stage The tracking algorithm considered uses an approximation of

the full posterior as its proposal function. This involves determining the data likelihood and

then using the state update to determine the proposal distribution as shown in Table 2.1.

State update The state update equation in (5.2) is nonlinear and uses exponential,

arctangent, sine, and cosine functions. The range of values for θ and φ is −π to π. The

range of values for Q (log(v/r)) depends on the target velocity and tracking field. Based

on the parameters shown in Table 5.4 and physical constraints, the range of values for Q

is −4.5 to 0. The dynamic range of θ, φ, and Q requires a minimum mantissa length of 4

113



bits to represent the integer part. The covariance of the assumed state noise Σ2
u places a

limit on the number of bits used in the fractional part. For the simulation parameters shown

in Table 5.4, σ2
θ,k requires a fraction length of 14 bits. We choose a wordlength of [s16, 10],

based on simulations, to provide better estimates.

Gaussian approximation to proposal distribution This is done using Laplace’s

method described in Section 2.4.4. Evaluating the data likelihood involves modifications to

the floating-point algorithm. The cumulative sum operation over the number of peaks (P )

and the product over number of snapshots (M) are evaluated by appropriately handling

the intermediate results to avoid overflow. Other modifications relate to the use of the

exponential function in the data likelihood and the noise variance σ2
θ , which is small. The

conclusion is that we require a fraction length of 14 bits.

Another aspect of the proposal stage that is sensitive to finite wordlength is the Newton

search to identify modes. The tolerance values, stopping criteria, and line search algorithm

in the Newton search are sensitive to finite wordlength. The inverse of the Hessian matrix

used in the Newton search depends on the state noise variances. In the target tracking

scenario considered, the impact of the state noise variance on the DOAs is very small and

hence the inverse can have large values requiring a mantissa of up to 11 bits. Each step

involves computing the cost function J(x), its Jacobian G(x), and Hessian H(x). All of

these involve nonlinear function evaluations that affect the choice of word length.

Evaluate particle weights This is shown in (5.3) and involves exponential function

evaluations that could be affected by limited word length. The second step, is the normal-

ization of the weights. Though this is an elementary operation, it can affect the word length

choice, because it involves a cumulative sum of N terms that could be large. Scaling the

weights by N can avoid this issue. The minimum word length used to represent the par-

ticle weights is determined by the number of particles. In the target tracking simulations,

particle weights are represented using a word length of 16 as [u16, 15].

114



Estimate states An estimate of the states can be obtained as the weighted mean of the

particles. Implementing this involves an inner product evaluation where the wordlength

can grow as the number of terms increases. In the particle filtering algorithm, because the

particle weights are normalized and sum up to one, this is not a concern.

Resampling This is a critical step in the performance of the particle filter. The use of

finite word length affects this stage in a subtle, but significant, way. Using the normalized

weights, the particles that need to be replicated and the number of times they need to be

replicated can be determined. At the end of resampling, the sum of the particle weights

needs to be one and the number of particles N should remain the same. This is difficult

to obtain because of the finite number of bits used to represent the weights. A strategy to

satisfy both criteria needs to be used. Efficient ways of doing this in hardware can be found

in [59].

Fixed-point simulation results This section summarizes results obtained from fixed-

point simulations of the multi-target DOA tracker. The parameters used in the simulations

are shown in Table 5.4.

In the scenario considered, the minimum fixed-point wordlength required for acceptable

tracking performance is [s16, 10]. Figure 5.8 compares the state estimates obtained us-

ing different fixed-point word lengths to a floating-point implementation of a single-target

tracking scenario. As can be seen, with decreasing fraction lengths, the error in the state

estimates increases. This is mainly caused by round-off errors that occur when shorter

fraction lengths are used. The tracking result for a three-target case is shown in Figure 5.9.

Increasing the number of targets increases the execution time. It does not affect the errors

resulting from fixed-point computation.

Simulations performed with wordlengths and fraction lengths lower than those shown

in Figures 5.8 and 5.9 either cause overflow or lead to particle divergence. The root-mean

square errors (RMSE) using varying word lengths, for the single-target case are given in

Table 5.5, while the multi-target case is summarized in Table 5.6. Though the RMSE of

the estimates for θ and Q increases with decreasing fraction lengths, a similar trend is not

115



0 2 4 6 8 10 12

−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]

Target DOA

(a)

0 2 4 6 8 10 12

−20

−10

0

10

20

30

40

φ
in

[
◦
]

time [sec]

Target heading direction

(b)

0 2 4 6 8 10 12

−2.2

−2.1

−2

−1.9

−1.8

−1.7

−1.6

−1.5

−1.4

True state
Double precision [64b]
Fixed point [32,16]
Fixed point [16,10]
Fixed point [16,8]

lo
g
(v

/
r)

time [sec]

Target log(velocity/range)

(c)

0 50 100 150

−70

−60

−50

−40

−30

−20

−10

0

x

y

Target track

(d)

Figure 5.8: Comparison of tracker estimates for a single-target case, using particle filter
with varying fixed-point wordlengths. (a) The estimated target DOAs closely follow the
true DOAs. The dots are the noisy DOA measurements. (b) The estimated target head-
ing directions. (c) The estimated target state log(velocity/range). (d) The target tracks
obtained from the estimated states are compared to the true track. The star indicates the
sensor location.

116



Table 5.4: Simulation parameters - Fixed-point simulations.

Parameter Value

[Word length, Fraction length] [16, 10]

Number of particles, N 200

State DOA noise variance, σ2
θ,k (1 ◦)2

State Q noise variance, σ2
Q,k (0.05s−1)2

State heading noise variance, σ2
φ,k (10 ◦)2

Measurement noise variance, σ2
θ (1 ◦)2

Tracker sampling period, T 1 s

Beamformer batch period, τ 0.1 s

Poisson clutter rate, λ 2π
600

Probability of target miss κf
0,K 0.1

Batch samples for DOA estimation, M 10

Number of DOA peaks, P 4 (≥ K)

Beamformer center frequencies, F 1

Target velocities, v 10 to 15 m/s

Surveillance region [600, 600]2 m2

seen in φ because it decreases. The error in the heading estimate φ is high compared to

the DOA θ and log(v/r) (Q) states. This is also true with the floating-point RMSE values

shown in Tables 5.5 and 5.6 because the heading state noise (10 ◦) is assumed large to allow

for target maneuvers.

Table 5.5: Tracking performance (RMSE) for varying wordlengths and fraction lengths -
Single-target case.

Data type
State estimates - RMSE

θ[ ◦] Q[s−1] φ[ ◦]

Floating-Point [64b] 0.7147 0.0427 9.9008

Floating-Point [32b] 1.0123 0.0637 10.2219

Fixed-Point [s32, 16] 0.7428 0.0400 9.7948

Fixed-Point [s16, 10] 0.9294 0.0505 17.4354

Fixed-Point [s16, 8] 1.7882 0.0646 15.9137

117



0 5 10 15 20

−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [sec]

Target DOA

(a)

0 5 10 15 20

−40

−20

0

20

40

60

80

100

120

φ
in

[
◦
]

time [sec]

Target heading direction

(b)

0 5 10 15 20

−3

−2.5

−2

−1.5

−1
True state
Double precision [64b]
Fixed point [32,16]
Fixed point [16,10]
Fixed point [16,8]

lo
g
(v

/
r)

time [sec]

Target log(velocity/range)

(c)

0 50 100 150 200 250 300 350 400

−100

−50

0

50

100

150

200

250

300

x

y

Target track

(d)

Figure 5.9: Comparison of tracker estimates for a multi-target case, using a particle filter
with varying fixed-point wordlengths. (a) The estimated target DOAs closely follow the
true DOAs. The dots are the noisy DOA measurements. (b) The estimated target head-
ing directions. (c) The estimated target state log(velocity/range). (d) The target tracks
obtained from the estimated states are compared to the true track. The star indicates the
sensor location.

118



Table 5.6: Tracking performance (RMSE) for varying word lengths and fraction lengths -
Multi-target case.

Data type
State estimates - RMSE

θ[ ◦] Q[s−1] φ[ ◦]

Floating-Point [64b] 1.3330 0.1384 22.7141

Fixed-Point [s32, 16] 1.3949 0.0953 24.0729

Fixed-Point [s16, 10] 3.1371 0.1885 27.7010

Fixed-Point [s16, 8] 4.5096 0.1902 16.0695

In practical implementations, the power consumed might be critical because power dis-

sipation increases with wordlength. Hence, a compromise between estimation error and bit

length used (power consumed) needs to be made. A trade-off among word length, execution

time, and memory usage will also be critical in real-time execution. Based on the simula-

tions and considering that we are interested in both DSP and FPGA implementations of

the batch-based tracker we choose a wordlength of [s16, 10].

5.5 Floating-point DSP Implementation

The particle filter based target tracker that uses batch measurement has been implemented

in a floating-point DSP. The DSP board used is a DSP starter kit (DSK) [111] for the

Texas Instrument (TI) C6713 chip [120]. The objective of this implementation is to demon-

strate the feasibility of a real-time batch measurement-based tracker, and to quantify its

performance in terms of accuracy, speed, and memory requirements.

As a first step in this process, the algorithm is implemented in C, based on the Matlab

implementation used in Section 2.4. The implementation is for a floating-point processor

and hence there are no round-off errors that affect the implementation. It is possible

that the implementation could be optimized further by improving memory usage and the

implementation of certain functions. Where possible, library functions provided by TI in

their standard libraries were used.

The size of memory sections in the C6713 chip are shown in Table 5.7. The internal or

on-chip memory of 256 KB is a unified program and data memory [116]. The memory size

needed for storing particle states, weights, and state estimates can be estimated from the

119



system parameters. Table 5.8 summarizes the parameter values used to derive the memory

required for individual stages, which are shown in Table 5.9. In a practical implementation

the dependence on duration D will not be relevant, because data can stream in and the

estimates can be streamed out and need not be stored in the DSP. The code size for an

optimized implementation using the IRAM is 45.34 KB. Most of the code is devoted to the

weight evaluation and proposal stages of the particle filter.

Table 5.7: Memory sections and sizes in the C6713-DSK [111].

Type Section Size

Internal IRAM 192 KB

Internal L2 CACHE 64 KB

External SDRAM 16 MB

Table 5.8: Notation for data-size analysis.

Notation Description Values

N Number of particles 100

Ns State vector size 3

K Number of targets 1

M # batch samples for DOA estimation 10

P # DOA peaks in a beamformer 2

S Size in bytes (data-type) 4 (float)

D Total duration 20 s

Table 5.9: Estimated data size, using the notations and values in Table 5.8.

Stage Size K = 1, N = 1000, P = 2 K = 3, N = 100, P = 4

Measurement data PMD · S 1.56 KB 3.12 KB

Estimated states NsKD · S 0.23 KB 0.70 KB

Initial particles NNsK · S 11.71 KB 3.51 KB

Particle states 4NsNK · S 46.87 KB 14.06 KB

Particle weights 2N · S 7.81 KB 0.78 KB

Required heap 68.18 KB 22.17 KB

The memory used in the implementation is an important aspect when implementing on

a DSP. Most DSPs have two types of memory. One is a smaller, on-chip memory or internal

memory, and the other is off-chip or external memory. Performing all the processing in

120



Table 5.10: Size of memory sections in the IRAM, for N = 1000,K = 1, P = 2.

Section Size

.heap (data) 88 KB

.text (code) 45.34 KB

.bios 17.21 KB

.cinit (data) 17.04 KB

.far (data) 14.05 KB

others 8.7 KB

Total 190.16 KB

the on-chip memory can provide significant advantage in terms of speed of operation and

power dissipation. However, the smaller size of this memory makes this hard to do. In the

algorithm considered here, the code size is rather large and occupies a significant portion

of the internal memory (IRAM) as shown in Table 5.10. As long as the number of particles

or number of targets is within a certain limit, all processing can be done using the internal

memory. For our implementation, using the Notation in Table 5.8 and Size in Table 5.9,

we were able to fit N = 1000, with a single-target on the IRAM. The corresponding data

size is 68.18 KB.

In Table 5.10, the size of .text and .bios sections depend on the programming and algo-

rithm code flow and are not affected by the parameters relevant to the data in the algorithm.

On the other hand, the size of .cinit and .far sections depend on the parameters relevant to

the algorithm. The size of .heap is a user-controllable parameter in the DSP implementa-

tion. The heap memory is used to store pre-allocated data. In our implementation, we use

this for the data shown in Table 5.9. The .heap size of 88 KB in Table 5.10 was chosen to

fit the 68.18 KB of data size shown in Table 5.9. Hence, the size of the heap memory can

be adjusted to fit the required data size. The size of the heap memory is limited by the size

of the IRAM and memory required by the other sections in Table 5.10. It should also be

noted that apart from the code and data size used by the algorithm, there is an overhead

attached to running these algorithms on a DSP. This overhead includes the DSP/BIOS

and the loading of other libraries as shown in Table 5.10. There are ways to reduce this

overhead by a careful design of the memory layout [119]. If the IRAM is not large enough

121



to accommodate the relevant sections, the external memory has to be used and that leads

to reduced speed of operation. However, careful design of the code and data accesses can

lead to better performance even while using the external memory.

As a simple rule of thumb, if all processing can be performed using the internal memory,

the algorithm can run at least five to ten times faster than an implementation that runs

in external memory. Figure 5.10 shows the total execution time versus the number of

particles and Figure 5.11 shows the execution times for different stages in the algorithm.

The execution time with either optimization enabled or disabled while compiling the code

for the DSP is compared to that of Matlab execution times in both figures. As expected the

proportion of time spent in the various stages of the algorithm is consistent between the DSP

and Matlab implementations. One aspect that can be tuned in the DSP implementation

is the operating clock speed. The DSP considered here can operate at a maximum clock

speed of 225 MHz. The execution times shown in Figures 5.10 and 5.11 assume a clock

frequency of 225 MHz. The execution times for the DSP include both the CPU cycles

and the time spent at the system level to perform the computations, i.e., the time spent

in memory accesses. The execution times in clock cycles were obtained using the device

accurate simulator in Code Composer Studio (CCS) and verified using the actual device.

The simulator is used to accurately quantify the execution times of individual functions.

Table 5.11: Clock cycles (TI-C6713) depending on optimization.

Number of Particles
Clock Cycles

Without optimization With optimization

100 10, 387, 044 8, 443, 120

200 17, 685, 104 8, 870, 869

300 27, 070, 784 22, 085, 757

400 35, 756, 373 29, 173, 871

500 44, 477, 691 36, 223, 795

600 51, 846, 031 42, 316, 446

122



100 200 300 400 500 600
10

−2

10
−1

10
0

DSP − Optimized
DSP − Unoptimized
Matlab

E
x
ec

u
ti
on

ti
m

e
[s

]

Number of particles (N)

Figure 5.10: Comparison of total execution time for the particle filter algorithm running on
a TI-C6713 DSP to Matlab. The operating clock frequency for the DSP is 225 MHz and
the Matlab code was run on a PC operating at 1.69 GHz.

100 200 300 400 500 600

10
−4

10
−3

10
−2

10
−1

DSP − Optimized

DSP − Unoptimized

Matlab

State update
Newton Iteration
Data likelihood
Resampling

E
x
ec

u
ti
on

ti
m

e
[s

]

Number of particles (N)

Figure 5.11: Comparison of execution times for various stages in the particle filter algorithm
running on a TI-C6713 DSP to Matlab. The operating clock frequency for the DSP is
225 MHz and the Matlab code was run on a PC operating at 1.69 GHz.

123



5.6 FPGA Implementation of Certain Sections

In this section, we develop an FPGA implementation for the particle state update, data

likelihood evaluation, and particle weight evaluation stages. We also present an FPGA

based soft- and hard-core strategy to implement the Newton-Raphson search in the particle

proposal stage. As mentioned in Section 4.3.3, the FPGA implementation is done using the

Xilinx System Generator [136]. Based on results from the Matlab fixed-point simulations

presented in Section 5.4, the fixed-point word length used is 16 bits with 10 bits for the

fractional part. In Section 5.8, we provide simulation results of using the FPGA implemen-

tation of the data likelihood as part of a Matlab simulation to perform target tracking. The

functionality of the individual stages implemented as System Generator models was verified

by comparing with Matlab and Simulink results.

5.6.1 Particle state update

The particle state update function in (5.2) and shown in Figure 5.3 was implemented as a

System Generator model. The implementation only involves updating the states θ and Q,

because the heading state φ is propagated directly. The resource utilization for this stage is

shown in Table 5.12 and the latency of this stage is shown in Table 5.13. The trigonometric,

exponential, arctangent, and logarithmic functions were implemented using the CORDIC

algorithm. A single realization of the CORDIC algorithm evaluates both sine and cosine

functions of a parameter, leading to reduced resource usage. The CORDIC implementation

in the System Generator uses a fully parallel and pipelined architecture. The approximate

number of slices used (Xilinx convention as in Table 4.4) in implementing a CORDIC

algorithm to realize the transcendental functions varies from 300 to 600 slices.

Table 5.12: FPGA resource utilization - Particle state update in the batch-based tracker.

Resource
State update stage

Q update θ update Overall

# Slices 2491 1877 4368

# Flip-flops 2225 1480 3705

# LUTs 4624 3551 8175

# Emb. Mult. 0 0 0

124



Table 5.13: Time delay at the state update stage of the batch-based tracker.

Latency in clock cycles

Q update θ update Overall

49 34 49

5.6.2 Data likelihood evaluation

The data likelihood function to be evaluated is in equation (5.4) and the corresponding

block diagram is shown in Figure 5.5. This function will be used in both the particle

proposal stage and the weight evaluation stage, and plays a significant role in the particle

filter performance.

Apart from the number of nonlinear functions to be evaluated, the use of batch-

measurements is a significant difference between this tracker and the bearings-only tracker.

For a single-target, there are two ways in which the batch computations in (5.4) can be

performed. They can be done in parallel using M computation units or using a single unit

with sequential updating of the product term.

The resources required for the parallel and sequential implementation are shown in Ta-

ble 5.14. The resources shown are for a single target (K = 1), one peak (P = 1) in the

measurement, and a batch size of ten (M = 10). The parallel version of implementing the

data likelihood consumes nearly M times more resources when compared to the recursive

implementation. The control circuitry in the recursive version to obtain the cumulative

product accounts for the small increase in resources. If a parallel implementation is pur-

sued, it will not fit on the FPGA device Xilinx XC2VP30 (Table 4.4) considered in this

research. The resources for k targets with p peaks in the measurement batch, assuming that

the computations for the p peaks are performed in parallel, can be approximately estimated

by scaling the resources shown for the single target case in Table 5.14 by a factor of kp.

While the parallel implementation results in increased resource consumption, the sequential

implementation adds an additional latency of 5M cycles leading to an increase in the exe-

cution time of the data likelihood evaluation. The latency for the parallel implementation

is shown in Table 5.16. If sufficient resources are available, a parallel implementation will

125



provide significant improvement in speed. The sequential approach adopted in this research

uses a memory unit to store the intermediate M values. The cumulative product is not

computed until all M values are available. However, pipelining this operation can further

reduce the execution time.

Table 5.14: FPGA resource utilization - Data likelihood evaluation in the batch-based
tracker.

Resource
Data likelihood

Parallel Recursive

# Slices 29960 3435

# Flip-flops 28180 3311

# Block RAMs − −
# LUTs 57610 6588

# Emb. Mult. − −

5.6.3 Particle weight evaluation

The evaluation of the particle weights using (5.3) involves evaluating the state transition dis-

tribution, proposal distribution, data likelihood, and an exponential as shown in Figure 5.4.

The operations involved in evaluating the state and proposal distribution probabilities are

identical and hence the same blocks can be reused. Further, the delay in the data likeli-

hood evaluation is large when compared to the evaluation of state or proposal distribution

probabilities as shown in Table 5.16. Hence, the sequential evaluation of these distributions

does not introduce any additional delay. The resource utilization for evaluating the state

or proposal distribution probabilities is shown in Table 5.15. The resources for the data

likelihood are shown in Table 5.14.

Table 5.15: FPGA resource utilization - Particle weight evaluation in the batch-based
tracker.

Resource
Evaluate distributions Evaluate

Weight evaluation
State or proposal Data likelihood

# Slices 4906 3435 8869

# Flip-flops 6306 3311 10029

# LUTs 7889 6588 15484

# Emb. Mult. 3 0 3

126



Table 5.16: Time delay at the weight evaluation stage of the batch-based tracker.

Latency in clock cycles

State Proposal Data
Weight evaluation Overall

distribution distribution likelihood

37 37 119 15 134

5.6.4 Newton-Raphson search

As explained in Section 2.4.4, Laplace’s method is used to approximate the data likelihood as

a Gaussian. This is achieved by executing a Newton-Raphson search algorithm to identify

the mode and curvature of the distribution. As described in Appendix A, the Newton-

Raphson recursion is given by the familiar expression xl+1
k = xl

k − νlH
−1
l Gl, where νl is the

algorithm step size, G = ∂J/∂xk the gradient, and H = ∂2J/∂xk∂xT
k the Hessian. The

cost function J (reproduced from Appendix A) that needs to be minimized is:

J(xk(t)) = −
M−1∑

m=0

P∑

p=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (p)
)2

2σ2
θ(m)

}

+
1

2
(xk(t) − x0,k)

T Σ−1 (xk(t) − x0,k) .

(5.6)

A generic Newton-Raphson search itself is not difficult to implement in an FPGA. Math-

ematical operations such as division and square-root are implemented in hardware using

Newton-Raphson search [44]. However, the cost function (5.6) contains nonlinear function

evaluations, which significantly increase the complexity. Another aspect that can affect

the iteration is the use of fixed-point data. Unless special care is taken care to address

this, the convergence of the Newton search will be affected. Furthermore, its complexity is

independent of the number of particles N and does not lead to any parallelization. So, we

implement the Newton search in software using floating-point data. In most FPGAs there

are two choices to implement an algorithm as a software application. One choice is to use a

soft-core processor and the other is to use a hard-core processor. The Xilinx device [135] we

use offers both these functionalities. The soft-core is a MicroBlaze core [134] from Xilinx

and the hard-core is Power PC based [131].

One advantage of using a soft- or a hard-core to implement the Newton-Raphson search

127



is that the C code developed for the DSP implementation in Section 5.5 can be reused

with minor modifications. However, using this code as part of an FPGA, either as part of

the soft- or hard-core, requires appropriate compilation. We achieve this using the Xilinx

Platform Studio (XPS) for embedded development kit (EDK) [132].

The advantage of using a soft-core implementation, over a hard-core, is that the compo-

nents of the designed CPU can be user specified. Further, the MicroBlaze can be configured

to have a floating point unit (FPU) that can provide faster floating-point operations. How-

ever, the disadvantage of the current version of the MicroBlaze supported on the board (Xil-

inx XCV2P30) we use is that the maximum size of the local memory (block RAM (BRAM))

available to store the application is 64 KB. In our application, this is smaller than the code

and data size for the Newton-Raphson search algorithm. The compiled size of the algorithm

is 110 KB, so we cannot use the MicroBlaze soft-core for the Newton-Raphson search. How-

ever, we verified the functionality of the MicroBlaze soft-core by executing the DOA update

function (5.5), which occupies less memory than the Newton search.

Next, we used a hard-core processor to achieve software implementation of the Newton

search on the FPGA. The hard-core processor in the FPGA considered in this research is

the Power PC 405 from Xilinx. This is a 32-bit implementation of the Power PC CPU. The

floating-point operations on this hard-core are emulated using software. Hence, it cannot

provide any significant speedup in the floating-point operations. But, the latest version

of the FPGAs have a hard-core with the facility to incorporate an FPU that can speedup

floating-point operations [133].

We performed a functional verification of the Newton-Rapshon search by executing it

on the hard-core, but we did not perform any specific performance or time profiling of

the Newton-Raphson algorithm. A soft- or hard-core implementation on a FPGA provides

an opportunity to improve the performance of the software application by using hardware

blocks for specific operations, e.g., matrix multiplication, matrix inverse, data likelihood

evaluation. Similar approaches to improve performance in a different application were

presented in [54].

128



5.6.5 Summary of resource and latency in batch-based particle filter

In this section, we present a summary of the estimated resource utilization and latency

for the entire batch-based particle filter algorithm. These resources are for a single particle

evaluation in the single-target case, and were obtained using the resource utilization block in

the Xilinx System Generator. The resources and latency for the Newton search algorithm,

implemented in hard-core, are not included in this summary. Since the entire batch-based

tracker was not implemented in the FPGA, the estimates provided here are only approxi-

mate. When compared to the resources utilized by the bearings-only tracker (Table 4.5),

the batch-based tracker utilizes at least four times more resources. The total number of

slices in Table 5.17 is more than the available resource (Table 4.4) in the FPGA device

considered in this research. However, recent FPGA devices are even larger, and would be

able to accommodate the batch-based particle filter tracker.

Assuming that the resampling algorithm is the same as in Section 4.3.3, the overall

latency of 3N +302 in the batch-based tracker depends on N . The additional latency of 2N

comes from the assumption that a single-port block RAM is used between the particle filter

stages (Section 4.3.3 and [5]). As mentioned earlier and from simulations in Section 2.7,

the batch-based tracker requires relatively less particles (100 < N ≤ 1000) to provide

reasonable estimates. Based on a clock frequency of 100 MHz, the delay or sampling

frequency corresponding to two different N values is given in the Table 5.19. For comparison,

the sampling frequency of the bearings-only tracker (from Table 4.6) is also presented. The

latency in the resampling stage is the same in both trackers and depends on the resampling

algorithm. For large values of N the additional latency from the individual stages of the

batch tracker are not significant. Hence, meeting real-time constraints depends more on N .

For smaller values of N the overall latency is comparable to that of the bearings-only tracker

that requires a large number of particles. A sampling frequency of 100 kHz is sufficient to

generate estimates at every time period T = 1 s.

129



Table 5.17: FPGA resource utilization - Batch-based particle filter tracker.

Resource
PF Stage

Proposal†a Weight evaluation Resampling Overall

# Slices 7803 8869 374 17046

# Flip-flops 7016 10029 373 17418

# LUTs 14763 15484 653 30900

# Emb. Mult. 0 3 0 3

†a Excluding the Newton search and Gaussian noise generation.

Table 5.18: Time delay at various stages of the batch-based tracker.

Latency in clock cycles

Proposal†a
Weight evaluation Resampling Overall

State update Data likelihood

49 119 134 N + 5 3N + 302

†a This does not include the Newton-Raphson search.

5.7 Analog implementation of the DOA update function

In this section, we develop an analog implementation using MITE networks for the DOA

update function (5.7). This function was chosen, because it is required in both the particle

proposal and weight evaluation stages of the batch-based tracker and has more nonlinear

operations. The motivation to realize this function using MITEs is to continue the mixed-

mode implementation in Section 4.3 and better understand the feasibility of using MITEs

in particle filter algorithms. The DOA update function is reproduced here

hθ
T (x(t)) = θ(t + T ) = tan−1

{
sin θ(t) + T exp (Q(t)) sin φ(t)

cos θ(t) + T exp (Q(t)) cos φ(t)

}
. (5.7)

This can be modified into a form that requires fewer computational stages in the analog

MITE implementation. Ignoring the time index of the states and state vector x in (5.7),

Table 5.19: Comparison of bearings-only and batch-based particle filter trackers, based on
sampling frequency or estimation rate.

Batch-based tracker Bearings-only tracker

Latency 3N + 302 (Table 5.18) 3N + 50 (Table 4.6)

Sampling frequency
N = 200 N = 1000 N = 200 N = 1000

100 kHz 30 kHz 285 kHz 33 kHz

130



we perform the following rearrangement of the inverse tangent:

hθ
T (x) = arg(ejθ + TeQejφ)

= arg(ejθ + cejφ), where c = TeQ

= arg

(
ej(φ+θ

2
)
(
e−j(φ−θ

2
) + cej(φ−θ

2
)
))

=
φ + θ

2
+ arg

(
(c + 1) cos(

φ − θ

2
) + j(c − 1) sin(

φ − θ

2
)
)

=
φ + θ

2
+ tan−1

((
c − 1

)
(
c + 1

) tan
(φ − θ

2

))
. (5.8)

This representation replaces two sine and two cosine evaluations by one tangent evaluation

resulting in a reduced number of MITEs in the analog implementation. A similar represen-

tation in the digital domain using FPGAs will not provide any significant savings, because

the CORDIC algorithm can produce the sine and cosine values of an argument simultane-

ously. Next, we approximate the arctangent term in (5.8) using algebraic functions. The

synthesis procedure for the MITE network to implement this function is similar to that

followed in Section 4.3.1 for the arctan and Gaussian functions.

As was the case in the arctangent evaluation in Section 4.4.1 of Chapter 4, there is

an quadrant ambiguity in the DOA update function. Additional circuitry is needed to

appropriately handle this mapping.

The MITE implementation of the DOA update obtained using the synthesis procedure

introduces a bias or error in the updated DOAs. The maximum error is on the order

of 5–10% (nearly 9–18 ◦). A small uniform bias or error in the updated DOAs may not affect

the weight evaluation stage, assuming the error is of the same order among all particles at

a specific time instant. However, its impact on the particle proposal stage, which decides

the particle support, is more serious and can lead to erroneous estimates. A large error will

affect both the weight evaluation and the particle proposal. At this time, it is difficult to

isolate or explain the cause for the error or deviation in the analog circuit output. Hence, we

use the mathematical approximation in Table 5.20 used in implementing the MITE circuit,

as part of a Matlab simulation in Section 5.8.3.

131



Table 5.20: Approximations used in the analog implementation of nonlinear functions in
the batch-based tracker.

Function Approximation Range

y =
2

π
arctan(x) f(x) =

x

0.63 +
√

0.88 + x2
|x| < ∞

y = tan(πx) f(x) =
88

3π

x(1 − x2)

(1 − 4x2)(3 − x2)
|x| < 1

y =
1

π
tan−1

“

(c−1)
(c+1)

tan (πx)
” y =

αf1(x)

1.26(0.25 − x2) +
p

3.52(0.25 − x2)2 + f2
1 (x) |x| < 1

where α = 1
2
, and f1(x) = 44

3π

(c−1)
(c+1)

x(1−x2)

(3−x2)

Assuming a Vdd of 3 V the MITE implementation of the DOA update function dissi-

pates 2.34 µW, which is quite low. The DOA update function can be used in the data

likelihood (5.4) evaluation and the state update function (5.2), which can lead to further

power savings. However, the accuracy of the DOA update function has to be improved to

perform the batch-based target tracking.

5.8 Simulations

In this section, we present tracking results from using the DSP, FPGA, and analog MITE

implementations. While the entire batch-based particle filter algorithm was developed and

implemented in the DSP, only sections of the algorithm were developed for the FPGA and

analog implementations. The tracking results for the FPGA implementation are obtained

by using a ModelSim description of the data likelihood as part of a Matlab simulation. The

tracking results for the analog implementation are obtained by using the approximation of

the MITE implementation for the DOA update stage in a Matlab simulation. The diffi-

culty in interfacing and the time taken in running simulations in the different development

environments or simulation tools makes it difficult to perform Monte Carlo simulations.

However, the simulation results presented here provide functional verification of the various

implementations presented in this chapter. The real-time performance of the algorithm on

the DSP has been presented in Section 5.5.

132



Table 5.21: Simulation parameters - Target tracking using DSP, FPGA, and MITEs.

Parameter
DSP FPGA or MITE

implementation simulation

Number of particles, N 100 100

θ state noise, σθ,k 1 ◦ 1 ◦

Q state noise, σQ,k 0.05 s−1 0.05 s−1

φ state noise, σφ,k 10 ◦ 10 ◦

Measurement noise, σθ 1 ◦ 1 ◦

Tracker sampling period, T 1 s 1 s

Beamformer batch period, τ 0.1 s 0.1 s

Clutter space parameter, γ 900 600

Probability of target miss, κf
0,K 0.1 0.1

Number of batch samples, M 10 10

Number of DOA peaks, P 4 1

5.8.1 DSP implementation

We performed both single- and multi-target tracking using the DSP implementation pre-

sented in Section 5.5. The simulation parameters for the tracking results presented in

Figure 5.12 are given in Table 5.21. Inputs to the DSP algorithm, such as the measurement

data and the initial set of particles, are provided as header files. Output estimates are ob-

tained by executing the algorithm and the results were written to a text file. These results

are compared to the Matlab results in Figure 5.12 and are found satisfactory. The data and

parameters used in the DSP implementation are represented using 32-bit floating-point rep-

resentation (single-precision), whereas, the Matlab simulations use a 64-bit floating-point

representation (double-precision). However, this difference does not cause any degradation

in the performance of the tracker.

5.8.2 FPGA implementation

As explained in Section 5.6, the data likelihood function was implemented in the FPGA.

Following a procedure similar to that in Section 4.5 we use this FPGA implementation in a

Matlab simulation. This is done by executing a call to the ModelSim simulation script for

the data likelihood evaluation. The accuracy of the results also depends on the choice of

word length in the CORDIC block for implementing the nonlinear functions in Figure 5.5.

133



0 5 10 15 20
−50

0

50

100

θ
in

[
◦
]

time [s]

Target DOA

(a)

0 5 10 15 20

−40

−20

0

20

40

60

80

100

120

φ
in

[
◦
]

time [s]

Target heading direction

(b)

0 5 10 15 20

−3

−2.5

−2

−1.5

−1

lo
g
(v

/
r)

time [s]

Target log(velocity/range)

(c)

−50 0 50 100 150 200 250 300 350
−150

−100

−50

0

50

100

150

200

250

300
Floating point DSP
Matlab
Generic C
Ground−truth

x

y

Target track

(d)

Figure 5.12: Comparison of estimation results for a multi-target case using the DSP, Matlab,
and C implementation. Ground-truth is represented using dotted lines. State estimates are
represented as solid or dashed lines. (a) Target DOA θ estimates. The black dots denote
DOA measurements. (b) Target heading φ estimates. (c) Target log(v/r) estimates. (d)
Target tracks calculated using the state estimates. The star denotes the sensor location. The
target state estimates obtained using the DSP implementation are compared to the ground-
truth as well as to the results from the Matlab simulation and a generic-C implementation.

134



In our implementation the wordlength used was 16 bits with 10 bits for the fractional part.

The results from a simulation for a single-target tracking case with the parameters shown

in Table 5.21 are shown in Figure 5.13.

5.8.3 Analog implementation

As mentioned in Section 5.7, the MITE implementation of the DOA update introduces

a bias or error in the updated DOAs. Hence, we use the mathematical approximation

in Table 5.20 used to implement the MITE circuit as part of a Matlab simulation. The

tracking scenario considered is the same as in the FPGA simulation in Section 5.8.2, whose

simulation parameters are shown in Table 5.21. The results from this simulation are shown

in Figure 5.14.

5.9 Discussions

In this chapter, we presented our implementation approach using three possible platforms,

either for the entire algorithm or sections of the algorithm, to be used in batch-based multi-

target particle filter tracking.

In the digital domain, we demonstrated a real-time implementation of the algorithm

on a TI-C6713 floating-point DSP. We showed that optimizing the code in a DSP imple-

mentation can speed-up the execution. As for the FPGA implementation we presented

resource utilization and latency in the batch-based algorithm. We also presented soft- and

hard-core approaches for the Newton search used in the algorithm. Based on our estimate,

even though the entire FPGA implementation will not fit on a XCV2P30 device, more

recent FPGA devices are large enough to implement this algorithm. The main reason for

the increased resources is the use of pipelined CORDIC blocks for all the nonlinear opera-

tions in the algorithm. Hence, an optimal design of the FPGA implementation can improve

both the speed of operation and resource utilization, by reusing CORDIC blocks and other

functions with appropriate control circuitry.

In the analog domain, we implemented the DOA update function using MITEs. Al-

though, the accuracy of the results obtained from the analog circuit simulation might not

135



0 5 10 15 20

−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [s]

Target DOA

(a)

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

φ
in

[
◦
]

time [s]

Target heading direction

(b)

0 5 10 15 20

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

lo
g
(v

/
r)

time [s]

Target log(velocity/range)

(c)

0 50 100 150 200 250 300
0

20

40

60

80

100

120

140

FPGA estimate
Matlab estimate
Ground−truth
Sensor

x

y

Target track

(d)

Figure 5.13: Comparison of estimation results for a single-target case using the FPGA
implementation and Matlab. The target state estimates obtained using an FPGA imple-
mentation of the data likelihood stage are compared to the ground-truth as well as to the
results from a Matlab simulation. Ground-truth is represented using dotted lines. State
estimates are represented as solid or dashed lines. (a) Target DOA θ estimates. The black
dots denote DOA measurements. (b) Target heading φ estimates. (c) Target log(v/r) esti-
mates. (d) Target tracks calculated using the state estimates. The star denotes the sensor
location.

136



0 5 10 15 20

−150

−100

−50

0

50

100

150

θ
in

[
◦
]

time [s]

Target DOA

(a)

0 5 10 15 20

0

5

10

15

20

25

30

35

40

45

φ
in

[
◦
]

time [s]

Target heading direction

(b)

0 5 10 15 20

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

lo
g
(v

/
r)

time [s]

Target log(velocity/range)

(c)

0 50 100 150 200 250 300
0

50

100

150

Analog approximation
Matlab
Ground−truth
Sensor

x

y

Target track

(d)

Figure 5.14: Comparison of estimation results for a single-target case using MITE imple-
mentation and Matlab. The target state estimates obtained using the approximation (Ta-
ble 5.20) for the DOA update function used in the MITE implementation are compared to
the ground-truth and the results from a Matlab simulation. Ground-truth is represented us-
ing dotted lines. State estimates are represented as solid or dashed lines. (a) Target DOA (θ)
estimates. The black dots denote DOA measurements. (b) Target heading (φ) estimates.
(c) Target log(v/r) estimates. (d) Target tracks calculated using the state estimates. The
star denotes the sensor location.

137



be sufficient for the tracking algorithm, the significantly low power dissipation in this func-

tion justifies the use of MITEs for nonlinear functions. As discussed in Chapter 4, it is

difficult to quantify the operating speed of the analog implementation. Also, if this analog

implementation is to be used in a mixed-mode approach as shown in Section 4.3, the use of

large number of DACs and ADCs might offset the power savings obtained from the analog

implementation. However, when compared to the bearings-only tracker, the batch-based

tracker uses fewer particles. Hence, a mixed-mode approach may be more suitable for the

batch-based tracker, if the accuracy of the implementation can be improved.

138



CHAPTER VI

CONCLUSIONS

In this Chapter, we first summarize the contributions of this thesis. Next, we present

directions for future research in using particle filters for target tracking and in implementing

particle filter algorithms.

6.1 Contributions

The contributions of this thesis can be classified into two separate parts. The first part

relates to the application of particle filters in multi-target tracking. This includes contri-

butions from Chapters 2 and 3. These two chapters also involved joint work by the author

with Dr.Volkan Cevher ([29], [30], and [27]). The second part relates to efficient imple-

mentation methods for particle filters in target tracking. This includes contributions from

Chapters 4 and 5. Even though the implementations discussed were for target tracking,

they should be useful for other applications that employ particle filters. The analog MITE

implementations in these chapters were developed by Shyam Subramanian ([123]).

In Chapter 2, the acoustic batch-measurement-based particle filter for multi-target track-

ing introduced by Cevher [28] was improved. Improvements included reducing the execution

time and improving the robustness of the algorithm. The tracking algorithm used a batch of

direction-of-arrivals (DOAs) as measurements and follows a template-matching approach to

alleviate the data association problem inherent in multi-target tracking. We also developed

an automated tracking system that consists of the tracking algorithm, and an initializa-

tion algorithm that estimates the number of targets. The particle filter algorithm, when

compared to a Laplacian filter and an extended Kalman filter, performed better for maneu-

vering targets. The target tracking results in this chapter justified the use of acoustic batch

DOA-based particle filter multi-target tracking.

The acoustic DOA-based particle filter tracker in Chapter 2 was modified and extended

to a range-only tracker in Chapter 3. The observations here were radar range measurements

139



obtained at a stationary sensor. We showed that the observability of target states required at

least three range measurements. These range measurements were used in tracking multiple,

maneuvering targets. The range-only tracker estimates were improved using prior road

information. The estimation results for the range-only tracker also justified the use of

batch measurements.

In Chapter 4, we developed mixed-mode implementation strategies for particle filter-

based tracking algorithms to achieve low-power dissipation. The mixed-mode implemen-

tations used analog multiple-input translinear elements (MITEs) to realize nonlinear func-

tions, such as the arctan and the Gaussian, used in a standard particle filter bearings-only

tracking algorithm. MITEs operate in the subthreshold region, drawing lower currents and

thus providing low-power operation. While the MITEs provided power savings, depending

on the implementation in which they were used, the overall mixed-mode implementations

did not offer significant power saving. In one implementation, Method-1, the use of data

converters offsets the power savings obtained by the analog implementation. A second im-

plementation, Method-2, that uses mostly analog components can provide nearly 20 times

less power dissipation when compared to a digital implementation. We also developed a

FPGA implementation of the bearings-only tracker, similar to that in [5]. We used the

Xilinx System Generator tool to obtain the FPGA implementation. The use of this tool

reduced the time spent in developing the system, and provided estimates of the FPGA

resources consumed. By using simulations, we showed the sensitivity of the tracking results

to inaccuracies in the analog implementation. For comparatively large measurement noise

variances, the inaccuracy in the analog implementation did not affect the estimation results.

In Chapter 5, we developed various implementations for the batch-measurement-based

particle filter tracker presented in Chapter 2. We developed a floating-point DSP imple-

mentation of the algorithm, and demonstrated that it can operate in real-time. We also

presented estimates on the required memory size, based on the number of particles, tar-

gets, and other parameters of the tracking algorithm. Using fixed-point simulations, we

showed that a fixed-point word length of 16 bits with 10 bits for the fractional part will

be sufficient for a fixed-point implementation of the batch-based tracker. We used this

140



word length in developing FPGA implementations for certain sections of the batch-based

tracker. We showed that the resources consumed by this tracker are at least four times more

than that of the bearings-only tracker. The FPGA device we considered, the Xilinx Vir-

tex II Pro (XCV2P30), will not be able to fit the batch-based tracker. But newer versions

of these FPGAs can accommodate this algorithm. Using 200 particles, the batch tracker

can operate at approximately 100 kHz. Though not all stages of the particle filter tracking

algorithm are part of the resource and speed estimate, there is enough room for improve-

ment and an FPGA implementation is feasible. We also showed that a soft- or hard-core in

the FPGA can be used to implement the Newton-Rapshon search in the particle filter algo-

rithm. In the analog domain, we used MITEs to implement the DOA update function used

in the algorithm. While the MITE implementation has a low-power dissipation of 2.34 µW,

the accuracy of the results are not sufficient to be used in the tracking algorithm. The accu-

racy of the DSP, FPGA, and MITE implementations were all verified through comparison

with Matlab simulations. While the complete algorithm implemented on the DSP was used

in the verification, the FPGA and MITE implementation of the weighting stage alone was

used in the verification. Further, the MITE implementation to verify target tracking used

the analog approximation and not the actual analog circuit.

6.2 Future research

Here, we briefly present directions for future research that could be an extension to the

research performed in this thesis.

Particle filters in multi-target tracking The proposal function of the particle filter

algorithm used in the multi-target tracking considered in this thesis used a Newton-Raphson

search to identify the mode of the data likelihood function. Another approach to identify

this mode, when using batch measurements, would be to use a random sampling consen-

sus (RANSAC) algorithm [26]. RANSAC can be used to identify the particle that best

predicts the batch of received measurements. The use of RANSAC avoids computing the

gradient and Hessian required in a Newton-Raphson search.

The DOA-only and range-only trackers presented in this thesis can be used in a joint

141



tracker that uses both DOA and range measurements. This joint tracker would provide

improved estimates on all the estimated states of the target being tracked.

Mixed-mode implementation of particle filters While this thesis developed two

mixed-mode implementation strategies, to make a robust comparison with a digital im-

plementation the actual mixed-mode implementations have to be physically realized. As

a first step, this would involve using mixed-mode simulators that can also accommodate

the use of ADCs and DACs, and would also include the impact of circuit level noise in

the digital-to-analog interface layer for the MITE implementation. Next, the physical real-

ization of the mixed-mode implementations would help in more accurately quantifying the

speed of operation, power dissipation, and other device-level characteristics of the mixed-

mode implementation.

FPGA implementation of batch-based particle filters In this thesis, sections of the

batch-based particle filter tracker were implemented on an FPGA using the Xilinx System

Generator tool. Implementing all the sections in an FPGA, using soft- or hard-cores to

implement the Newton-Rapshon search, and integrating all these sections to perform target

tracking will be a challenging, system-on-chip implementation for target tracking. Another

aspect of this would be to reduce the complexity of the algorithm by using look-up table

implementations for the nonlinear functions, instead of using CORDIC blocks as was the

case in this thesis.

While the Xilinx System Generator is a good tool for prototyping, it does not generate

an optimal implementation. Hence, other approaches to creating an FPGA implementation

can be considered for a practical implementation. One interesting approach would be to use

System-C to implement the algorithm and then translate it into a generic hardware descrip-

tion language (HDL) implementation that can be used in FPGA or ASIC implementations.

Analog implementation in target tracking The mixed-mode implementation

Method-2 in this thesis uses analog implementation for most stages in the particle filter

algorithm. A physical realization of this implementation will be a challenging analog circuit

142



implementation that would likely provide significant power savings. This implementation

can use analog approaches to estimate DOAs, the MITE implementations for the nonlinear

functions, a vector-matrix multiplier in the state estimation, and analog memory sections

that use a digital controller in performing the resampling.

The idea of particle filters is to obtain discrete representation of distributions, and

use this representation in a Bayesian framework to perform estimation. Hence, analog

implementations as suggested in this thesis can be used to perform nonlinear function

computations, that can provide power savings. However, a more challenging approach

would be to use analog circuits to perform the numerical integrations involved in Bayesian

estimation to approximate posterior distributions.

143



APPENDIX A

DATA-LIKELIHOOD APPROXIMATION

A.1 Newton-Raphson for Laplace’s Approximation

To use Laplace’s method [53] in Section 2.4.4, we need to determine the mode xk,mode

and the Hessian H (calculated at the mode) of the density p(yt|xk(t)), given by (2.11).

To calculate these parameters, a Newton-Raphson search algorithm can be used on the

negative log-likelihood of the data. In this appendix, we will first present a numerically

robust cost function to optimize for calculating the parameters required by the partition

proposal functions [22]. We then give the modifications of the Newton-Raphson algorithm

that lead to faster convergence.

A.1.1 Modifications to the Cost Function

Define L− as the negative log of p(yt|xk(t)) in (2.7):

L−(xk(t))
.
= −

M−1∑

m=0

log



1 +

1 − κ

κλ
√

2πσ2
θ (m)

P∑

p=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (p)
)2

2σ2
θ(m)

}
 ,

(A.1)

where
.
= means equality up to a constant. Unfortunately, the Newton-Raphson recursion,

based on L− (A.1), has numerical sensitivity issues. Moreover, the exact local Hessian

of the partition data-likelihood is not a good covariance approximation, because it is not

guaranteed to be a positive definite matrix.

As an alternative cost function to determine the required mode and the Hessian, we

propose to use the following cost function

J(xk(t)) = −
M−1∑

m=0

P∑

p=1

exp

{
−
(
hθ

mτ (xk(t)) − yt+mτ (p)
)2

2σ2
θ(m)

}

+
1

2
(xk(t) − x0,k)

T Σ−1 (xk(t) − x0,k) .

(A.2)

This cost function consists of two terms: the first term has the same minima as the negative

log-likelihood function (A.1); and the second term is a regularization term that forces the

144



minima to lie close to some vector x0,k with respect to a weighted distance measure Σ.

Nominally, the mode should be within the particle cloud coming from the previous iteration

after being propagated through the state update. Hence, an easy way to determine the mode

would be to choose the kth partition of the particle that best explains the current data set

(denoted as x0,k in (A.2)). Unfortunately, when the targets maneuver, x0,k may fall outside

actual data observations. This necessitates the correction accomplished by the Newton

algorithm to determine the actual mode xk,mode.

The regularization in (A.2) is introduced to constrain the solution space to lie in the

Σ-neighborhood of x0,k, and, at the same time, impose smoothness on the target motion.

Note that the cost function J depends only on the angular distances without the regular-

ization term. With the regularization term, the gradients of J will not produce physically

infeasible (motion) changes in the states Qk(t) and φk(t) of xk(t) to account for small angle

errors, while determining xk,mode. In addition, the parameter Σ of the regularization term

also bounds the covariance of the data-likelihood approximation for numerical stability. A

sensible choice for Σ is a constant α (e.g., α = 2) times the state noise covariance Σu,

where the constant α corresponds to how much more variation than Σu the target states

can have.1

A.1.2 The Modifications to the Newton-Raphson Recursion

If we define G = ∂J/∂xk and H = ∂2J/∂xk∂xT
k , the Newton-Raphson recursion is given by

the familiar expression xl+1
k = xl

k − νlH
−1
l Gl, where νl is the algorithm step size. Although

time-consuming, it is straightforward to derive analytical expressions for G and H. Similar

calculations can be found in [138] as well as in [28, 24]. We note that even with the available

analytical cost function J , the calculation of the Hessian poses problems. If the Hessian

of (A.2) is directly calculated from the exact formulas, it is possible to show that the

resulting expression for H is not guaranteed to be positive definite, and modifications are

necessary to make the Newton correction H−1G effective at each iteration. Hence, while

calculating the final expression of the Hessian, terms including second order derivatives are

1The parameter α values should be chosen according to the knowledge of how fast the targets of interest
can maneuver.

145



neglected. In this case, the Hessian is a function of the outer product of the gradient, and

it is possible to prove that it is positive definite.

When the Newton-Raphson recursion converges, it does so with a quadratic convergence

rate [95]. To further speed up the convergence rate of this algorithm, the step size νl can

be changed adaptively, as long as we make sure that the cost function is always decreasing.

The optimum choice for the step size νl is the minimizer of the following cost function:

νl = min
ν

φ(ν), φ(ν) = J(xl
k − νH−1

l Gl). (A.3)

To avoid the computational burden of (A.3), line search algorithms are used. The line search

algorithms can be derived based on at least one of the two Wolfe conditions: (i) the sufficient

decrease condition and (ii) the curvature condition [95, 43]. For the problem considered here,

a backtracking line search algorithm is used to identify the largest acceptable νl based on the

sufficient decrease condition. The backtracking line search algorithm, adapted from [43],

for determining the Newton step size is summarized in Table A.1.

Table A.1: Newton-Raphson algorithm with backtracking step size selection.

At the lth iteration of Newton-Raphson algorithm:

1. Calculate the descent direction pl = −H−1
l Gl. Then,

• Set ν0 = 1;

• While J(xl
k + νmpl) > J(xl

k) + 10−4νmGT
l pl (sufficient decrease condition), do

– Choose the contraction factor ρ ∈ [0.1, 0.5],

– νm = ρνm−1.

• Set νl = νm.

2. xl
k = xl−1

k + νlpl.

3. Continue until the stopping condition.

4. Set xk,mode = xl
k and Σy(k) = H−1

l in Eqn. (2.13).

Lastly, it is also crucial for the Newton-Raphson algorithm to use a good stopping

condition for terminating the search. Among various choices outlined in [43], we tested two

conditions: (i) relative change in the cost function and (ii) relative change in the state xk.

We identified that both choices are adequate to terminate the search in approximately ten

146



iterations for the partition mode calculation.

A.2 Mode Hungry Approach for the Partition Data-Likelihood

To determine the mode xk,mode and the Hessian H in Section 2.4.4, the mode hungry

Metropolis-Hastings iterates on the particles that belong to the k-th partition after they

are propagated through the state update function. The MHMH generic iteration can be

found in Table 2.2 in Section 2.5. The mode of the resulting distribution is taken as xk,mode.

The Hessian can be calculated using the weights of the resulting particles and

H =
N∑

j=1

w
(j)
∗

(
x

(j)
k − xk,mode

)(
x

(j)
k − xk,mode

)T
(A.4)

where w
(j)
∗ is the normalized weight of the j-th particle after the MHMH. The Hessian

calculated this way is not an accurate estimate of the actual Hessian due to (i) presence

of multiple targets, (ii) spurious DOA’s, and (iii) finite number of MHMH iterations.2

We estimate the Hessian by using the weights of the ten closest particles to the mode by

using (A.4).

2If the number of particles tend to infinity, they are likely to cover the other target partitions. Hence,
the estimates will naturally be biased.

147



REFERENCES

[1] Abramson, D., “MITE architectures for reconfigurable analog arrays,” Master’s
thesis, Georgia Institute of Technology, Atlanta, GA, November 2004.

[2] Aouini, S. and Roberts, G. W., “A predictable robust fully programmable analog
Gaussian noise source for mixed-signal/digital ate,” in Proc. IEEE Intl. Test Conf.,
October 2006.

[3] Arulampalam, M. S., Maskell, S., Gordon, N., and Clapp, T., “A tutorial
on particle filters for online nonlinear/non-Gaussian Bayesian tracking,” IEEE Trans.
Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.

[4] Athalye, A., Bolić, M., Hong, S., and Djurić, P. M., “Architecture and memory
scheme for sampling and resampling in particle filters,” in Proc. IEEE 11th Digital
Signal Processing Workshop, (Taos Ski Valley, New Mexico, USA), Aug. 2004.

[5] Athalye, A., Bolić, M., Hong, S., and Djurić, P. M., “Generic hardware archi-
tectures for sampling and resampling in particle filters,” EURASIP J. Applied Signal
Processing, vol. 17, pp. 2888–2902, 2005.

[6] Bar-Shalom, Y., “Tracking methods in a multitarget environment,” IEEE Trans.
Automatic Control, vol. AC-23, pp. 618–626, Aug. 1978.

[7] Bar-Shalom, Y. and Fortmann, T., Tracking and Data Association. Academic-
Press, 1988.

[8] Bar-Shalom, Y. and Li, X.-R., Multitarget-Multisensor Tracking: Principles and
Techniques. YBS, 3 ed., 1995.

[9] Berkeley Design Technology, Inc.(BDTI), “Comparing FPGAs
and DSPs for high-performance DSP applications.” White paper at
“http://www.bdti.com/articles/info articles.htm”, November 2006.

[10] Blackman, S. and Popoli, R., Design and Analysis of Modern Tracking Systems.
Norwood, MA: Artech House, 1999.

[11] Blackman, S. S., Multiple-Target Tracking with Radar Application. Artech House,
1986.

[12] Boers, Y. and Driessen, J. N., “Multitarget particle filter track before detect
application,” IEE Proc. Radar, Sonar, and Navigation, vol. 151, no. 6, pp. 351–357,
Dec. 2004.

[13] Bolić, M., Djurić, P. M., and Hong, S., “New resampling algorithms for particle
filters,” in ICASSP, 2003.

148



[14] Bolić, M., Djurić, P. M., and Hong, S., “Resampling algorithms and architectures
for distributed particle filters,” IEEE Trans. Signal Processing, vol. 53, pp. 2442–2450,
July 2005.

[15] Bolić, M., Hong, S., and Djurić, P. M., “Finite precision effect on performance
and complexity of particle filters for bearing-only tracking,” in IEEE 36th Asilomar
Conf. Signals, Systems and Computers, vol. 1, (Pacific Grove, CA, USA), pp. 838–842,
Nov 2002.

[16] Bolić, M., Hong, S., and Djurić, P. M., “Performance and complexity analysis
of adaptive particle filtering for tracking applications,” in IEEE 36th Asilomar Conf.
Signals, Systems and Computers, vol. 1, (Pacific Grove, CA, USA), pp. 853–857, Nov
2002.

[17] Bolić, M., Architectures for efficient implementation of particle filters. PhD thesis,
Stony Brook University, New York, Aug 2004.

[18] Brun, O., Teuliere, V., and Garcia, J.-M., “Parallel particle filtering,” J. Par-
allel and Distributed Computing, vol. 62, pp. 1186–1202, July 2002.

[19] Cadence Design Systems, Inc.,, San Jose, CA, USA, Virtuoso Spectre Circuit Simu-
lator User Guide, Product version 5.1.41 ed., July 2004.

[20] Calhoun, B. H. and Chandrakasan, A., “A 256kb sub-threshold SRAM in 65nm
CMOS,” in Proc. IEEE Intl. Solid-State Circuits Conf., pp. 628–629, 678, Feb 2006.

[21] Calhoun, B. H., Wang, A., and Chandrakasan, A., “Modeling and sizing for
minimum energy operation in subthreshold circuits,” IEEE J. Solid-State Circuits,
vol. 40, pp. 1778–1786, Sep 2005.

[22] Cevher, V. and McClellan, J. H., “An acoustic multiple target tracker,” in Proc.
IEEE/SP 13th workshop on Statistical Signal Processing, (Bordeaux, FR), 17–20 July
2005.

[23] Cevher, V. and McClellan, J. H., “Fast initialization of particle filters using a
modified Metropolis-Hastings algorithm: Mode-Hungry approach,” in ICASSP 2004,
(Montreal, CA), 17–22 May 2004.

[24] Cevher, V. and McClellan, J. H., “Acoustic node calibration using a moving
source,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, pp. 585–600, April 2006.

[25] Cevher, V. and McClellan, J. H., “General direction-of-arrival tracking with
acoustic nodes,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 1–12, January
2005.

[26] Cevher, V., Shah, F., Velmurugan, R., and McClellan, J. H., “A multi target
bearing tracking system using random sampling consensus,” in IEEE Aerospace Conf.,
March 2007.

[27] Cevher, V., Velmurugan, R., and McClellan, J. H., “Multi target direction-
of-arrival tracking using road priors,” in IEEE Aerospace Conference, (Big Sky, Mon-
tana), 4–11 March 2006.

149



[28] Cevher, V., A Bayesian Framework for Target Tracking using Acoustic and Image
Measurements. PhD thesis, Georgia Institute of Technology, Atlanta, GA, Jan 2005.

[29] Cevher, V., Velmurugan, R., and McClellan, J. H., “Acoustic multi target
tracking using direction-of-arrival batches.” Accepted in IEEE Tran. Signal Process-
ing, October 2006.

[30] Cevher, V., Velmurugan, R., and McClellan, J. H., “A range-only multiple
target particle filter tracker,” in Proc. IEEE Intl. Conf. Acoustics, Speech, and Signal
Proc. ICASSP’06, May 2006.

[31] Chandrakasan, A. P. and Brodersen, R. W., Low Power Digital CMOS Design.
Kluwer Academic Publishers, 1995.

[32] Chandrakasan, A. P. and Brodersen, R. W., “Minimizing power consumption
in digital CMOS circuits,” Proceedings of the IEEE, vol. 83, pp. 498–523, April 1995.

[33] Chandrakasan, A. P. and Brodersen, R. W., eds., Low Power CMOS Design.
IEEE Press, 1998.

[34] Chang, K. and Bar-Shalom, Y., “Joint probabilistic data association for mul-
titarget tracking with possibly unresolved measurements,” IEEE Trans. Automatic
Control, vol. AC-29, pp. 585–594, July 1978.

[35] Chawla, R., Power-Efficient Analog Systems To Perform Signal-Processing Using
Floating-Gate MOS Device For Portable Applications. PhD thesis, Georgia Institute
of Technology, Atlanta, GA, USA, December 2004.

[36] Chib, S. and Greenberg, E., “Understanding the Metropolis-Hastings algorithm,”
The American Statistician, vol. 49, no. 4, pp. 327–335, 1995.

[37] Chin, S.-S. and Hong, S., “VLSI design of high-throughput processing element
for real-time particle filtering,” Intl. Symp. on Signals, Circuits and Systems, vol. 2,
pp. 617–620, Jul 2003.

[38] Cowan, G. E. R., A VLSI Analog Computer / Math Co-processor for a Digital
Computer. PhD thesis, Columbia University, New York, NY, USA, 2005.

[39] Cowan, G. E. R., Melville, R. C., and Tsividis, Y. P., “A VLSI analog com-
puter/digital computer accelerator,” IEEE J. Solid-State Circuits, vol. 41, pp. 42–53,
January 2006.

[40] Crisan, D. and Doucet, A., “A survey of convergence results on particle filtering
methods for practitioners,” IEEE Trans. Signal Processing, vol. 50, no. 3, pp. 736–746,
March 2002.

[41] Damarla, R. T., Hao, V., Reiff, C., and Kurtz, J., “Fusion of acoustic and
radar data for tracking vehicles,” in Military Sensing Symposium, (Laurel, MD), Aug
2005.

[42] Daum, F. and Huang, J., “Mysterious computational complexity of particle filters,”
in Proc. of the SPIE, vol. 4728, (Orlando, FL, USA), pp. 418–426, Apr 2002.

150



[43] Dennis, J. E. and Schnabel, R. B., Numerical Methods for Unconstrained Opti-
mization and Nonlinear Equations. Society for Industrial and Applied Mathematics,
Philadelphia, PA, 1996.

[44] Deschamps, J.-P., Bioul, G. J. A., and Sutter, G. D., Synthesis of Arithmetic
Circuits: FPGA, ASIC and Embedded Systems. Wiley-Interscience, 2006.

[45] Doraiswami, R., “A novel Kalman filter-based navigation using beacons,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 32, pp. 830–840, April 1996.

[46] Doucet, A., Freitas, N., and Gordon, N., eds., Sequential Monte Carlo Methods
in Practice. Springer-Verlag, 2001.

[47] Doucet, A., “On sequential simulation-based methods for bayesian filtering,” Tech.
Rep. CUED/F-INFENG/TR. 310, Cambridge University Department of Engineering,
1998.

[48] Doucet, A., Godsill, S., and Andrieu, C., “On sequential Monte Carlo sampling
methods for Bayesian filtering,” Statistics and Computing, vol. 10, no. 3, pp. 197–208,
2000.

[49] Edgoose, T., Allison, L., and Dowe, D. L., “An MML classification of protein
sequences that knows about angles and sequences,” in Pacific Symp. Biocomputing
98, pp. 585–596, Jan. 1998.

[50] Evans, M., Hastings, N., and Peacock, B., Statistical Distributions, 3rd ed.
Wiley, 2000.

[51] Fike, C. T., Computer Evaluation of Mathematical Functions. Series in Automatic
Computation, Prentice Hall, Inc., 1968.

[52] Frey, D., “Current mode class AB second order filter,” Electronics Letters, vol. 30,
pp. 205 – 206, Feb. 1994.

[53] Gelman, A., Carlin, J. B., Stern, H. S., and Rubin, D. B., Bayesian Data
Analysis. Chapman Hall/CRC, 2004.

[54] Gonzalez, I. and Gomez-Arribas, F., “Ciphering algorithms in MicroBlaze-based
embedded systems,” IEE Proc.-Comput. Digit. Tech., vol. 153, pp. 87–92, March 2006.

[55] Gordon, N. J., Salmond, D. J., and Smith, A. F. M., “Novel approaches
to nonlinear/non-Gaussian Bayesian state estimation,” IEE Proceedings-F, vol. 140,
pp. 107–113, Apr 1993.

[56] Harrison, R. R., Bragg, J. A., Hasler, P., Minch, B. A., and Deweerth,
S. P., “A CMOS programmable analog memory-cell array using floating-gate cir-
cuits,” IEEE Trans. Circuits Syst. II, vol. 48, pp. 4–11, January 2001.

[57] Hasler, P., “Low-power programmable signal processing,” in Proc. 5th IEEE
Intl. Workshop on System-on-Chip for Real-Time Appl., (Banff, Alberta - Canada),
pp. 413–418, July 2005.

[58] Hastings, W., “Monte Carlo sampling methods using Markov chains and their ap-
plications,” Biometrika, vol. 57, pp. 97–109, 1970.

151



[59] Hong, S., Bolić, M., and Djurić, P. M., “An efficient fixed-point implementation
of residual resampling scheme for high-speed particle filters,” IEEE Signal Processing
Letters, vol. 11, no. 5, pp. 482 – 5, 2004.

[60] Hong, S., Chin, S.-S., Djurić, P. M., and Bolić, M., “Design and implementation
of flexible resampling mechanism for high-speed parallel particle filters,” Journal of
VLSI Signal Processing, vol. 44, pp. 47–62, August 2006.

[61] Hong, S., Liang, X., and Djurić, P. M., “Reconfigurable particle filter design using
dataflow structure translation,” 2004 IEEE Workshop on Signal Processing Systems
Design and Implementation, pp. 325 – 30, 2004.

[62] Ihler, A. T., III, J. W. F., and Willsky, A. S., “Particle filtering under communi-
cations constraints,” in Proc. 13th IEEE/SP workshop on Statistical Signal Processing,
(Bordeaux, France), July 2005.

[63] Isard, M. and Blake, A., Active Contours. Springer, 2000.

[64] Isard, M. and MacCormick, J., “BraMBLe: A Bayesian multiple-blob tracker,”
in 8th Int. Conf. on Computer Vision, 2001.

[65] Isard, M. and Blake, A., “CONDENSATION – conditional density propagation
for visual tracking,” Int. J. Computer Vision, vol. 29, pp. 5–28, August 1998.

[66] Johnson, D. H. and Dudgeon, D. E., Array Signal Processing: Concepts and
Techniques. Prentice Hall, 1993.

[67] Karlsson, R. and Gustafsson, F., “Monte Carlo data association for multiple
target tracking,” in IEE Target Tracking: Algorithms and Applications, (Netherlands),
Oct 2001.

[68] Karlsson, R., Particle Filtering for Positioning and Tracking Applications. PhD
thesis, Linkoping University, Linkoping, Sweden, January 2005.

[69] Karlsson, R., Schön, T., and Gustafsson, F., “Complexity analysis of the
marginalized particle filter,” IEEE Trans. Signal Processing, vol. 53, pp. 4408–4411,
Nov 2005.

[70] Khan, Z., Balch, T., and Dellaert, F., “An MCMC-based particle filter for track-
ing multiple interacting targets,” Tech. Rep. GIT-GVU-03-35, College of Computing,
Georgia Institute of Technology, Oct. 2003.

[71] Kitagawa, G., “Monte-Carlo filter and smoother for non-Gaussian nonlinear state
space models,” J. Comp. and Graph. Stat., vol. 5, no. 1, pp. 1–25, Mar 1996.

[72] Kwok, C., Fox, D., and Meila, M., “Adaptive real-time particle filters for robot
localization,” in Proc. IEEE Intl. Conf. Robotics and Automation ICRA ’03, vol. 2,
pp. 2836 – 2841, September 2003.

[73] Kwok, C., Fox, D., and Meila, M., “Real-time particle filters,” Proc. of the IEEE,
vol. 92, pp. 469– 484, March 2004.

152



[74] Larocque, J. R., Reilly, J. P., and Ng, W., “Particle filters for tracking an un-
known number of sources,” IEEE Trans. Signal Processing, vol. 50, no. 12, pp. 2926–
2937, Dec. 2002.

[75] Li, X. and Jilkov, V. P., “A survey of maneuvering target tracking - Part III:
Measurement models,” in Proc. SPIE Conf. on Signal and Data Processing of Small
Targets, vol. 4473, pp. 423 – 446, July 2001.

[76] Li, X. and Jilkov, V. P., “Survey of maneuvering target tracking - Part I: Dynamic
models,” IEEE Trans. Aerosp. Electron. Syst., vol. 39, pp. 1333 – 1364, October 2003.

[77] Linebarger, D. A. and Bryan, T. A., “An introduction to fixed-point signal pro-
cessing,” in Proc. IEEE 11th Digital Signal Processing Workshop, (Taos Ski Valley,
New Mexico, USA), August 2004.

[78] Liu, J. S. and Chen, R., “Sequential Monte Carlo methods for dynamic systems,”
J. American Statistical Association, vol. 93, pp. 1032–1044, Sep 1998.

[79] MacCormick, J. and Isard, M., “Partitioned sampling, articulated objects, and
interface-quality hand tracking,” in Proc. of the Europen Conference on Computer
Vision, 2000.

[80] Mallat, S. and Zhang, S., “Matching pursuits with time-frequency dictionaries,”
IEEE Trans. Signal Processing, vol. 41, no. 12, pp. 3397–3415, Dec. 1993.

[81] Maskell, S., Alun-Jones, B., and Macleod, M., “A single instruction multiple
data particle filter,” in Proc. IEEE Nonlinear Statistical Signal Processing Workshop,
(Cambridge, UK), September 2006.

[82] Maybeck, P. S., Stochastic models, estimation, and control, vol. 1. New York, NY:
Academic Press, 1979.

[83] Mentor Graphics Corporation, ModelSim Xilinx User’s Manual, Product version
6.1e ed., March 2006.

[84] Metropolis, N., Rosenbluth, A., Rosenbluth, M., Teller, A., and Teller,
E., “Equations of state calculations by fast computing machines,” J. Chemical
Physics, vol. 21, pp. 1087–1092, 1953.

[85] Miller, M. L., Stone, H. S., and Cox, I. J., “Optimizing Murty’s ranked as-
signment method,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, pp. 851–862, July
1997.

[86] Minch, B. A., “Construction and transformation of multiple-input translinear ele-
ment networks,” IEEE Trans. Circuits Syst. I, vol. 50, pp. 1530–1537, Dec. 2003.

[87] Minch, B. A., “Synthesis of static and dynamic multiple-input translinear element
networks,” IEEE Trans. Circuits Syst. I, vol. 51, pp. 409–421, Feb. 2004.

[88] Minch, B. A., Diorio, C., Hasler, P., and Mead, C. A., “Translinear circuits
using subthreshold floating-gate MOS transistors,” Analog Integrated Circuits and
Signal Processing, vol. 9, no. 2, pp. 167–179, 1996.

153



[89] Minch, B. A., Analysis, Synthesis, and Implementation of Networks of Multiple-
Input Translinear Elements. PhD thesis, California Institute of Technology, May
1997.

[90] Muller, J.-M., Elementary Functions: Algorithms and Implementation. Birkhäuser
Boston, 1997.

[91] Musicer, J. and Rabaey, J. M., “MOS current mode logic for low power, low
noise CORDIC computation in mixed-signal environments,” in Proc. Intl. Symp. Low
Power Electronics and Design, pp. 102–107, 2000.

[92] Ng, L. and Bar-Shalom, Y., “Multisensor multitarget time delay vector estima-
tion,” IEEE Trans. ASSP, vol. ASSP-34, pp. 669–677, Aug. 1986.

[93] Ng, W., Reilly, J. P., Kirubarajan, T., and Larocque, R.-R., “Wideband ar-
ray signal processing using MCMC methods,” IEEE Trans. Signal Processing, vol. 53,
pp. 411–426, February 2005.

[94] Ng, W., Li, J., Godsill, S., and Vermaak, J., “Tracking variable number of
targets using sequential monte carlo methods,” in Proc. IEEE/SP 13th workshop on
Statistical Signal Processing, (Bordeaux, France), Jul 2005.

[95] Nocedal, J. and Wright, S. J., Numerical Optimization. Springer-Verlag, 1999.

[96] Opencores. http://www.opencores.org, January 2007. Last accessed February, 2007.

[97] Orton, M. and Fitzgerald, W., “A Bayesian approach to tracking multiple targets
using sensor arrays and particle filters,” IEEE Trans. Signal Processing, vol. 50, no. 2,
pp. 216–223, February 2002.

[98] Papoulis, A. and Pillai, S. U., Probability, random variables and stochastic pro-
cesses. McGraw Hill, 2002.

[99] Pedram, M. and Rabaey, J. M., eds., Power aware design methodologies. Norwell,
MA, USA: Kluwer Academic Publishers, 2002.

[100] Poor, H., An Introduction to Signal Detection and Estimation. Springer-Verlag,
1994.

[101] Reid, D. B., “An algorithm for tracking multiple targets,” IEEE Trans. Automat.
Contr., vol. 24, pp. 843–854, Dec 1979.

[102] Ripley, B., Stochastic Simulation. John Wiley & Sons Inc., 1987.

[103] Ristic, B., Arulampalam, S., and Gordon, N., Beyond the Kalman Filter: Par-
ticle Filters for Tracking Applications. Artech House, 2004.

[104] Ristic, B., Arulampalam, S., and McCarthy, J., “Target motion analysis using
range-only measurements: algorithms, performance, and application to ISAR data,”
Elsevier Signal Processing, vol. 82, pp. 273–296, 2002.

[105] Rutten, M. G., Ristic, B., and Gordon, N. J., “A comparison of particle filters
for recursive track-before-detect,” in 8th Int. Conf. on Info. Fus., vol. 1, pp. 169–175,
July 2005.

154



[106] Sadasivam, M. and Hong, S., “Application specific coarse-grained FPGA for pro-
cessing element in real time parallel particle filters,” Proc. 3rd IEEE Intl. Workshop
on System-on-Chip for Real-Time Applications, pp. 116 – 19, 2003.

[107] Seevinck, E., Analysis and Synthesis of Translinear Integrated Circuits. Amsterdam:
Elsevier, 1988.

[108] Serrano, G., Smith, P. D., Lo, H. J., Chawla, R., Hall, T. S., Twigg,
C., and Hasler, P., “Automatic rapid programming of large arrays of floating-gate
elements,” in Proc. Intl. Symp. on Circuits and Syst., vol. 1, pp. I–373 – I–376, May
2004.

[109] Shabany, M., Shojania, H., Zhang, J., Omidi, J., and Gulak, P., “VLSI archi-
tecture of a wireless channel estimator using sequential Monte Carlo methods,” 2005
IEEE 6th Workshop on Signal Processing Advances in Wireless Communications,
pp. 450–454, Jun 2005.

[110] Song, T. L., “Observability of target tracking with range-only measurements,” IEEE
Journal of Oceanic Engineering, vol. 24, pp. 383–387, July 1999.

[111] Spectrum Digital, Inc., Stafford, TX, USA, TMS320C6713 DSK Technical Reference,
November 2003. Document ID 506735-0001 Rev. B.

[112] Stanacevic, M. and Cauwenberghs, G., “Micropower gradient flow acoustic lo-
calizer,” IEEE Trans. Circuits Syst. I, vol. 52, pp. 2148–2157, Oct 2005.

[113] Stoica, P. and Nehorai, A., “Music, maximum likelihood, and Cramér-Rao
bound,” IEEE Trans. ASSP, vol. 37, no. 5, pp. 720–741, May 1989.

[114] Strid, I., “Parallel particle filters for likelihood evaluation in DSGE
models: An assesment,” report, Stockholm School of Economics, Stock-
holm, Sweden, June 2006. version 2006-06-19, accessed on 2006-12-17 at
“http://people.su.se/ pzaga/research/particle strid.pdf”.

[115] Subramanian, S., Anderson, D. V., Hasler, P., and Minch, B. A., “Optimal
synthesis of MITE translinear loops.” Proc. Intl. Symp. on Circuits and Syst., May
2007. accepted.

[116] Texas Instruments, Dallas, TX, USA, How to Begin Development Today With the
TMS320C6713 Floating-Point DSP, October 2002. TI Document ID SPRA809A.

[117] Texas Instruments, Dallas, TX, USA, TLC5615C, TLC5615I – 10-BIT DIGITAL-
TO-ANALOG CONVERTERS, August 2003. TI Document ID SLAS142D.

[118] Texas Instruments, Dallas, TX, USA, ADS7830 - ANALOG-TO-DIGITAL CON-
VERTER, March 2005. TI Document ID SBAS302A.

[119] Texas Instruments, Dallas, TX, USA, DSP/BIOS Sizing Guidelines for
TMS320C2000/C5000/C6000 DSPs, May 2006.

[120] Texas Instruments, Dallax, TX, USA, TMS320C6713B Floating-Point Digital Signal
Processor, June 2006. TI Document ID SPRS294B.

155



[121] Tierney, L., “Markov chains for exploring posterior distributions,” The Annals of
Statistics, vol. 22, no. 4, pp. 1701–1728, 1994.

[122] Tierney, L. and Kadane, J. B., “Accurate approximations for posterior moments
and marginal densities,” J. American Statistical Association, no. 81, pp. 82–86, 1986.

[123] Velmurugan, R., Subramanian, S., Cevher, V., Abramson, D., Odame,
K. M., Gray, J. D., Lo, H., McClellan, J. H., and Anderson, D. V., “On
low-power analog implementation of particle filters for target tracking,” in Proc. 14th
European Signal Processing Conf. EUSIPCO 2006, EUSIPCO, September 2006.

[124] Vermaak, J., Andrieu, C., Doucet, A., and Godsill, S. J., “Particle methods
for Bayesian modeling and enhancement of speech signals,” IEEE Trans. Speech Audio
Processing, vol. 10, pp. 173–185, March 2002.

[125] Vermaak, J., Godsill, S. J., and Pérez, P., “Monte Carlo filtering for multi-
target tracking and data association,” IEEE Trans. Aerosp. Electron. Syst., vol. 41,
pp. 309 – 332, January 2005.

[126] Vittoz, E. A., “Low-power design: Ways to approach the limits,” in Proc. IEEE
Intl. Solid-State Circuits Conf., pp. 14–18, Feb 1994.

[127] Wang, A. and Chandrakasan, A., “A 180-mv subthreshold FFT processor using a
minimum energy design methodology,” IEEE J. Solid-State Circuits, vol. 40, pp. 310–
319, 599, Jan 2005.

[128] Wang, H. and Kaveh, M., “On the performance of signal-subspace processing-part
II: Coherent wide-band systems,” IEEE Trans. Acous., Speech, and Signal Processing,
vol. ASSP-35, pp. 1583–1591, Nov. 1987.

[129] Wang, S., Piuri, V., and Swartzlander Jr., E. E., “A unified view of CORDIC
processor design,” in Proc. IEEE 39th Midwest Symp. Circuits and Syst., vol. 2,
pp. 852–855, 1996.

[130] Wilkinson, J. H., Rounding Errors in Algebraic Processes. National Physical Lab-
oratory (Great Britain). Notes on applied science no. 32, London: Her Majesty’s
Stationery Off., 1963.

[131] Xilinx, San Jose, CA, PowerPC Processor Reference Guide Embedded Development
Kit, September 2003. EDK 6.1, version 1.1.

[132] Xilinx, San Jose, CA, Embedded System Tools Reference Manual - Embedded Devel-
opment Kit EDK 8.1i, October 2005. Xilinx ID: UG111 (v5.0).

[133] Xilinx, San Jose, CA, PowerPC 405 Processor Block Reference Guide - Embedded
Development Kit, July 2005. Xilinx ID: UG018 (v2.1).

[134] Xilinx, San Jose, CA, MicroBlaze Processor Reference Guide - Embedded Development
Kit EDK 8.1i, February 2006. Xilinx ID: UG081 (v5.4).

[135] Xilinx, San Jose, CA, Xilinx University Program Virtex-
II Pro Development System, May 2006. Online at:
“http://www.xilinx.com/univ/XUPV2P/Documentation/XUPV2P User Guide.pdf”.

156



[136] Xilnx, San Jose, CA, Xilinx System Generator for DSP v8.1 User Guide, April 2006.
Online at: “http://www.xilinx.com/support/sw manuals/sysgen ug.pdf”.

[137] Zhang, R., Han, J. H., Erdogan, A., and Arslan, T., “Low power CORDIC IP
core implementation,” in Proc. IEEE Intl. Conf. Acoustics, Speech, and Signal Proc.
ICASSP’06, vol. 3, pp. 956–959, May 2006.

[138] Zhou, Y., Yip, P. C., and Leung, H., “Tracking the direction-of-arrival of multiple
moving targets by passive arrays: Algorithm,” IEEE Trans. Signal Processing, vol. 47,
pp. 2655–2666, Oct 1999.

[139] Zou, J., On Systems with Limited Communication. PhD thesis, Harvard University,
Cambridge, Massachusetts, May 2004.

157



VITA

Rajbabu Velmurugan was born in Vridhachalam, India in November 1973. He received
his B.E. degree from Government College of Technology, Coimbatore, India in 1995 and
M.S. degree from Clarkson University, Potsdam, NY, USA in 1998, both in electrical en-
gineering. He will receive his Ph.D. in electrical engineering from Georgia Institute of
Technology, Atlanta, GA, USA in May 2007. He worked in Larsen & Toubro Ltd., India
from 1995 to 1996 and in The MathWorks, Natick, USA from 1998 to 2001. His research
interests include particle filtering techniques, design and implementation of real-time sig-
nal processing systems, and array signal processing. He is also interested in teaching and
actively involved in projects related to signal processing education.

158


