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Abstract

In this paper we investigate several tests for the hypothesis of a parametric form of
the error distribution in the common linear and nonparametric regression model, which
are based on empirical processes of residuals. It is well known that tests in this context
are not asymptotically distribution-free and the parametric bootstrap is applied to deal
with this problem. The performance of the resulting bootstrap test is investigated from
an asymptotic point of view and by means of a simulation study. The results demonstrate
that even for moderate sample sizes the parametric bootstrap provides a reliable and easy
accessible solution to the problem of goodness-of-fit testing of assumptions regarding the
error distribution in linear and nonparametric regression models.
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1 Introduction

Parametric and nonparametric models are widely used in subject areas such as biology, chemistry

or economics. The general model is usually written in the form

Y = m(x) + ε, (1.1)
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where m is the regression function, the error ε satisfies E[ε] = 0, E[ε2] > 0 and x is an ex-

planatory variable. Throughout this paper we assume that the errors corresponding to different

observations are independent identically distributed. The most popular model is certainly the

linear model where m(x) can be represented in the form xTβ, β is an unknown parameter and

classical inference in this model assumes a normal distribution for the error ε. However, occa-

sionally statisticians are confronted with results arising from an experiment with data, which

do not necessarily satisfy the assumption of normality. In some cases a transformation of the

observations allows to apply classical techniques. Although this approach may lead to a sat-

isfactory analysis, the results may be questionable in many situations. For this reason several

authors have proposed procedures for analyzing the data with the linear model without the

assumption of a normal distribution for the error [see for example Randles and Wolfe (1979),

Denker (1985), Thompson (1991), Brunner and Neumann (1987), Marden and Muyot (1995)

among many others]. On the other hand, statistical analysis in the linear model under the

assumption of normality is still attractive to practioners due to its simplicity and efficiency (if

the assumption of a normal distributed error is met). Therefore many authors point out that it

is important to apply a goodness-of-fit test for the error distribution before analyzing the data

with the linear model under a specific assumption for the error distribution.

Moreover, even in the general nonparametric regression model (1.1) additional knowledge about

the error distribution can improve the efficiency of the statistical analysis. For example under the

additional assumption of a Gaussian error exact or optimal tests can be derived in many cases.

A typical example is the problem of goodness-of-fit testing regarding the regression function m

[see Eubank and Hart (1992), Milhem (2003) or Young and Bowman (1995)]. Furthermore, the

nonparametric regression model with normal errors is asymptotically equivalent to a Gaussian

White Noise model [see Brown and Low (1996) and Brown, Cai, Low and Zhang (2002)]. In this

context a huge amount of literature about optimal statistical procedures is available [see among

others Lepski and Tsybakov (2000) or Birgé and Massart (2001)].

It is the purpose of the present paper to investigate the performance of bootstrap tests for a

parametric hypothesis regarding the error distribution in models of the form (1.1). To be precise

let

F = {Fϑ | ϑ ∈ Θ} (1.2)

denote a parametric class of distribution functions Fϑ with densities fϑ, where ϑ =

(ϑ1, . . . , ϑk)
T ∈ Θ ⊂ IRk. For reasons of identifiability we assume Fϑ �= Fϑ′ whenever ϑ �= ϑ′. If

F denotes the error distribution in the model (1.1) we are interested in a test for the hypotheses

H0 : F ∈ F vs H1 : F �∈ F . (1.3)

Since the early work of Darling (1955) much effort has been spent to the problem of testing the

parametric form of a distribution function [see for example Sukhatme (1972), Durbin (1973),

Pierce and Kopecky (1979), Loynes (1980), Beran (1982), Koul and Lahiri (1994) or Koul (2002)
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among many others]. Most of the work concentrates on the linear regression model and compares

the empirical distribution function F̂n of the residuals obtained from an appropriate estimator

of the parameters of the mean with the function Fϑ̂, where ϑ̂ is an estimator of ϑ usually also

based on the residuals. However, the application of the proposed tests based on a norm of the

process √
n
(
F̂n(·) − Fϑ̂(·)

)
(1.4)

is limited, because in general these test statistics are not asymptotically distribution-free under

the null hypothesisH0. The asymptotic distribution depends on the structure of the design and on

the type of statistic used for the estimation of the parameters β and ϑ. Recently, in a remarkable

paper, Khmaladze and Koul (2004) proposed martingale transformations of residual empirical

processes in order to obtain an asymptotically distribution-free test for the hypotheses (1.3) in

linear regression models. However, these transformations have to be calculated separately for

each testing problem, which makes their direct implementation sometimes difficult.

One purpose of the present paper is to demonstrate that the residual based bootstrap provides a

simple and reliable alternative for goodness-of-fit testing regarding the error distribution in lin-

ear models. Although the application of the bootstrap appears naturally in the present context,

to the knowledge of the authors this topic has not found too much attention in the literature.

The work most similar in spirit with the results of the present paper is the paper of Koul and

Lahiri (1994), which discusses a smoothed bootstrap procedure for the linear model, where the

class F consists of a singleton. The second purpose of the paper is to provide an omnibus test

for the hypotheses (1.3) in the general nonparametric regression model (1.1). To the knowledge

of the authors this problem has not been considered so far in the literature. A Pearson type

statistic based on the two cells (−∞, 0), (0,∞) for the problem of testing for a standard normal

distribution has been recently considered by Akritas and van Keilegom (2001). Obviously this

test is only consistent against particular alternatives. In the second part of the paper we demon-

strate that a bootstrap test based on an empirical process of the form (1.4) with nonparametric

residuals yields a consistent test for the hypotheses (1.3).

The remaining part of this paper is organized as follows. In Section 2 we discuss some preliminary

assumptions and properties of M-estimators in linear regression models. We introduce the

empirical process F̂n based on the estimated residuals, compare this process with the distribution

function Fϑ̂ obtained under the parametric assumption F ∈ F and establish weak convergence

of the difference process (1.4). In order to obtain critical values for test statistics based on

real valued functionals of this process we propose a parametric bootstrap procedure and prove

its consistency. Section 3 deals with the problem of testing the hypotheses (1.3) in the general

nonparametric regression model (1.1). In Section 4, we illustrate the finite sample performance of

the bootstrap test by means of a simulation study considering an ANOVA, a linear regression and

a nonparametric regression example. Our results indicate that tests based on empirical processes

of residuals and the parametric bootstrap are a powerful tool for analyzing the error distribution

in parametric and nonparametric regression models. These tests are asymptotically distribution-
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free, easily implementable in practice and have reasonable accuracy, even for moderate sample

sizes. Finally, some of the proofs and more technical details are deferred to the Appendix.

2 Testing for a parametric class of error distributions in

linear models

2.1 M -estimators in linear models

We begin our investigations with the classical linear model with a fixed design

Yni = xT
niβ + εni (i = 1, . . . , n) (2.1)

where β ∈ IRp denotes an unknown parameter and the errors εn1, . . . , εnn are assumed to be

independent identically distributed. Note that any linear regression model of the form (1.1)

can be written in this form [see Pukelsheim (1993), chapter 1], and that the notation used in

(2.1) allows us to treat parametric regression and ANOVA models simultaneously. Throughout

this section let Xn ∈ R
n×p denote the design matrix in the linear model (2.1), where the vector

xT
ni = (xni1, . . . , xnip) corresponds to the ith row of matrix Xn. We consider the model (2.1)

under the following assumptions.

[A 1] The density f of the error distribution exists, is uniformly continuous, positive and we

denote with F the corresponding distribution function.

[A 2] The design matrix Xn ∈ IRn×p is not random, of rank p ≤ n and satisfies the following

regularity assumptions,

max
i=1,...,n

xT
ni(X

T
nXn)−1xni = O(

1

n
),

lim
n→∞

1

n
XT

nXn = Σ ∈ IRp×p,

lim
n→∞

1

n

n∑
i=1

xni = m ∈ IRp,

where the matrix Σ is assumed to be positive definite.

Throughout this section let β̂n denote an M-estimator for the parameter β. More precisely, let

ψ : IR → IR denote a right continuous function with left limits, nondecreasing, with bounded

total variation, such that
∫
F dψ <∞, E[ψ2(εni)] =

∫
ψ2(t)f(t) dt <∞ and

E[ψ(εni)] =

∫
ψ dF = 0,
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then the M-estimator β̂n of β is defined as a solution of the system of equations

XT
n


ψ(Yn1 − xT

n1β̂n)
...

ψ(Ynn − xT
nnβ̂n)

 =
n∑

i=1

xniψ(Yni − xT
niβ̂n) = 0.

For example, with the choice ψ(x) = x we obtain the least squares estimator

β̂n = (XT
nXn)−1XT

n Yn = β + (XT
nXn)−1XT

n εn

(with the notations Yn = (Yn1, . . . , Ynn)
T , εn = (εn1, . . . , εnn)

T ) for which the above conditions

can easily be verified if the second moment of the error distribution exists. A further important

class of M-estimators is obtained by the function ψ(x) = sign(x), which corresponds to the

median [see e. g. Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. Other classes are the Huber

estimators and quantiles [see e. g. van der Vaart (1998), p. 43]. The results of this paper are

applicable for a broad class of M-estimators in linear models, but in the examples presented

below we concentrate on the least squares and median case for the sake of brevity.

The important properties of M-estimators in linear models with fixed design are carefully de-

scribed in the nice monograph of Koul (2002, p. 103) and briefly mentioned here for the sake of

completeness. In particular we have under the assumptions stated above

||(XT
nXn)1/2(β̂n − β)|| = OP (1), (2.2)

and the stochastic expansion

(XT
nXn)1/2(β̂n − β) =

1∫
f dψ

(XT
nXn)−1/2

n∑
i=1

xniψ(εni) + oP (1) (2.3)

is valid. In order to investigate the properties of the error distribution we introduce the residuals

ε̂ni = Yni − xT
niβ̂n = εni − xT

ni(β̂n − β)

and the corresponding empirical distribution function

F̂n(y) =
1

n

n∑
i=1

I{ε̂ni ≤ y}.

It is intuitively clear that – under the assumption that the linear model is correctly specified

– this function is an approximation of the empirical distribution function of the unobservable

errors,

Fn(y) =
1

n

n∑
i=1

I{εni ≤ y}.

This statement has been made precise in Theorem 6.2.1 in Koul (2002, p. 232).
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2.2 The testing procedure and its asymptotic analysis

The special case, where F is a scale family (k = 1)

F = {F (·/ϑ) | ϑ > 0}

with a known distribution function F is certainly the most important situation from a practical

point of view and several test statistics have been proposed by Koul (2002) for this situation.

As can be seen in Theorem 2.1 below the asymptotic distribution of the process (1.4) depends

in a complicated manner on the structure of the design and on the type of statistic used for the

estimation of the parameters β and ϑ. In the following we will demonstrate that a residual based

parametric bootstrap provides a simple and reliable solution of these difficulties, especially for

moderate sample sizes. For our theoretical investigations we require several additional regularity

assumptions under the null hypothesis H0 : F ∈ F , where F is defined in (1.2). Let Eϑ[·], Varϑ(·)
denote the expectation resp. variance under the distribution associated with Fϑ.

[A 3] The density fϑ(y) is uniformly continuous with respect to y and continuous with respect

to ϑ.

[A 4] The function ψ defining the M-estimator β̂n satisfies

Eϑ[ψ(εni)] =

∫
ψ dFϑ = 0 for all ϑ ∈ Θ,

Eϑ[ψ2(εni)] =

∫
ψ2 dFϑ <∞ for all ϑ ∈ Θ .

[A 5] Each Fϑ ∈ F is continuously differentiable with respect to ϑi (i = 1, . . . , k) such that for

all ϑ ∈ Θ the partial derivatives

∂Fϑ(y)

∂ϑi

are bounded and uniformly continuous with respect to y.

Throughout this section let ϑ̂ = (ϑ̂1, . . . , ϑ̂k)
T denote an estimator for the parameter ϑ ∈ Θ

(usually based on the residuals ε̂n1, . . . , ε̂nn from the parametric fit).

[A 6] We assume that the following linear expansion of ϑ̂j (j = 1, . . . , k) with respect to the

residuals ε̂n1, . . . , ε̂nn, is valid,

ϑ̂j − ϑj =
1

n

n∑
i=1

hϑj
(ε̂ni) + oP (

1√
n

)

=
1

n

n∑
i=1

hϑj
(εni) − 1

n

n∑
i=1

h′ϑj
(εni)x

T
ni(β̂n − β) + oP (

1√
n

), (2.4)
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where ϑ = (ϑ1, . . . , ϑk)
T denotes the ‘true parameter’. Here hϑj

is a continuously differen-

tiable ‘influence’ function such that

Eϑ[hϑj
(εni)] =

∫
hϑj

(t)fϑ(t) dt = 0,

Eϑ[h2
ϑj

(εni)] =

∫
h2

ϑj
(t)fϑ(t) dt <∞

for all ϑ ∈ Θ, where the functions ϑ �→ hϑ(·) and ϑ �→ h′ϑ(·) are assumed to be continuous.

We remark that if the estimator ϑ̂ is efficient, then an expansion of the form (2.4) is typically

satisfied, where (hϑ1 , . . . , hϑk
)T is the score vector times the inverse information matrix [see van

der Vaart (1998)]. The proof of the following theorem is deferred to the Appendix.

Theorem 2.1 Assume model (2.1) under the assumptions [A 1]–[A6]. Under the null hypo-

thesis H0 : F = Fϑ for some ϑ ∈ Θ the estimated empirical process

√
n
(
F̂n(F−1

ϑ (t))) − Fϑ̂(F−1
ϑ (t))

)
; t ∈ [0, 1],

converges weakly to a Gaussian process G with covariance kernel

Covϑ(G(s), G(t)) = s ∧ t− st+
k∑

j=1

k∑
�=1

∂Fϑ

∂ϑj

(F−1
ϑ (s))

∂Fϑ

∂ϑ�

(F−1
ϑ (t))

∫
hϑj

(y)hϑ�
(y)fϑ(y) dy

+mT Σ−1m

∫
ψ2(y)fϑ(y) dy cϑ(F−1

ϑ (s))cϑ(F−1
ϑ (t))

−
k∑

j=1

∂Fϑ

∂ϑj
(F−1

ϑ (t))

∫ s

0

hϑj
(F−1

ϑ (x)) dx

−
k∑

j=1

∂Fϑ

∂ϑj
(F−1

ϑ (s))

∫ t

0

hϑj
(F−1

ϑ (x)) dx

+mT Σ−1m
(
cϑ(F−1

ϑ (t))

∫ s

0

ψ(F−1
ϑ (x)) dx+ cϑ(F−1

ϑ (s))

∫ t

0

ψ(F−1
ϑ (x)) dx

)
−mT Σ−1m

k∑
j=1

(
cϑ(F−1

ϑ (t))
∂Fϑ

∂ϑj

(F−1
ϑ (s)) + cϑ(F−1

ϑ (s))
∂Fϑ

∂ϑj

(F−1
ϑ (t))

)
×
∫
hϑj

(x)ψ(x)fϑ(x) dx,

where the matrix Σ and the vector m are defined in assumption [A 2] and

cϑ(y) =
1∫
fϑ dψ

(
fϑ(y) +

k∑
j=1

∂Fϑ(y)

∂ϑj

∫
h′ϑj

(t)fϑ(t) dt
)
, y ∈ IR.
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For a construction of a test for the hypotheses (1.3) we propose to compare the estimators of the

distribution function of the errors under the null hypothesis and alternative. The null hypothesis

is rejected for large values of a continuous functional of the process

Ŝn(y) =
√
n(F̂n − Fϑ̂)(y), y ∈ IR, (2.5)

where ϑ̂ is an appropriate estimate for the parameter ϑ satisfying the assumption [A 6]. Consider,

for instance, the Kolmogorov-Smirnov statistic

Tn = sup
y∈IR

|Ŝn(y)| = sup
t∈[0,1]

∣∣∣√n(F̂n(F−1
ϑ (t)) − Fϑ̂(F−1

ϑ (t))
) ∣∣∣ (2.6)

or the Cramér-von Mises statistic

Yn =

∫
Ŝ2

n(x)dF̂n(x) =

∫ [√
n
(
F̂n(F−1

ϑ (t)) − Fϑ̂(F−1
ϑ (t))

)]2
dt+ oP (1).

Theorem 2.1 and the application of the Continuous Mapping Theorem specify the asymptotic

behaviour of these statistics under the null hypothesis F = Fϑ. The limiting distributions depend

in a complicated way on the design, the parametric family F and the function ψ used for the

M-estimation, and as a consequence tests based on the empirical process (2.5) are difficult

to implement in practice. For this reason we investigate the performance of the parametric

bootstrap in this problem.

2.3 A parametric bootstrap procedure

Throughout this section let Yn = {Yn1, . . . , Ynn} denote the sample of observations and ϑ̂ an

estimator for the parameter ϑ based on Yn. For a sample of independent identically uniformly

distributed random variables U1, . . . , Un ∼ U [0, 1] we define

ε∗ni = F−1

ϑ̂
(Ui) ∼ Fϑ̂, i = 1, . . . , n,

and bootstrap observations

Y ∗
ni = xT

niβ̂n + ε∗ni (i = 1, . . . , n),

where β̂n is an M-estimator for the parameter β based on the sample Yn. Let β̂∗
n denote the

analogue of β̂n, based on bootstrap observations, defined by the equation

n∑
i=1

xniψ(Y ∗
ni − xT

niβ̂
∗
n) = 0, (2.7)

then the bootstrap residuals are given by

ε̂∗ni = Y ∗
ni − xT

niβ̂
∗
n = ε∗ni − xT

ni(β̂
∗
n − β̂n).
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The analogues of the empirical distribution functions F̂n and Fn in the bootstrap setting are the

processes

F̂ ∗
n(y) =

1

n

n∑
i=1

I{ε̂∗ni ≤ y},

F ∗
n(y) =

1

n

n∑
i=1

I{ε∗ni ≤ y},

respectively. In the following let ϑ̂∗ = (ϑ̂∗1, . . . , ϑ̂
∗
k)

T denote the estimator analogous to ϑ̂ =

(ϑ̂1, . . . , ϑ̂k)
T based on the bootstrap observations Y ∗

ni, i = 1, . . . , n. Some regularity conditions

are required to establish consistency of this bootstrap approach.

[A 7] The M-estimate β̂∗
n in the bootstrap setting has the following stochastic expansions,

||(XT
nXn)1/2(β̂∗

n − β̂n)|| = OP (1), (2.8)

(XT
nXn)1/2(β̂∗

n − β̂n) =
1∫
fϑ̂ dψ

(XT
nXn)−1/2

n∑
i=1

xniψ(ε∗ni) + oP ∗
n
(1) (2.9)

in probability, where the notation Zn = oP ∗
n
(1) in probability means that for all δ > 0

P (|Zn| > δ | Yn) = oP (1).

[A 8] We also assume convergence in probability of the estimator ϑ̂ to some value ϑ0 ∈ Θ, where

ϑ0 = arg inf
ϑ∈Θ

d(F, Fϑ)

for some metric d. Under the null hypothesis H0 : F ∈ F , ϑ0 is the true parameter, while

under the alternative ϑ0 corresponds to the best approximation Fϑ0 of F in the class F
with respect to the metric d.

[A 9] We assume the following uniform convergence,

sup
x∈IR

|fϑ̂(x) − fϑ0(x)| = oP (1),

sup
x∈IR

∣∣∣∂Fϑ(x)

∂ϑ
|ϑ=ϑ̂ − ∂Fϑ(x)

∂ϑ
|ϑ=ϑ0

∣∣∣ = oP (1).

[A 10] For the estimator ϑ̂∗ = (ϑ̂∗1, . . . , ϑ̂
∗
k)

T from the bootstrap sample Y ∗
n1, . . . , Y

∗
nn we assume

that the stochastic expansion

ϑ̂∗j − ϑ̂j =
1

n

n∑
i=1

hϑ̂j
(ε∗ni) −

1

n

n∑
i=1

E[h′
ϑ̂j

(ε∗ni) | Yn]xT
ni(β̂

∗
n − β̂n) + oP ∗

n
(

1√
n

)

is valid in probability (see also assumption [A 6] and Proposition A.1 in the Appendix),

where

E[hϑ̂j
(ε∗ni) | Yn] =

∫
hϑ̂j

(t)fϑ̂(t) dt = 0.
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Remark 2.2 (a) Condition (2.9) is obviously fulfilled for least squares estimators, where

β̂∗
n − β̂n = (XT

nXn)−1XT
n Y

∗
n − β̂n = (XT

nXn)−1

n∑
i=1

xniε
∗
ni.

Condition (2.8) can then be concluded under the additional assumption E[
∫
x2fϑ̂(x)dx] = O(1).

(b) If ψ is differentiable with Lipschitz continuous derivative, assumption (2.9) can be deduced

analogously to Proposition 2.1 in Koul and Lahiri (1994).

(c) In definition (2.7) of the M-estimator in the bootstrap setting it is not necessary to center

like in Koul and Lahiri (1994) because

E[ψ(ε∗ni) | Yn] =

∫
ψ(x)fϑ̂(x) dx = 0.

Theorem 2.3 Assume model (2.1) under assumptions [A 1]–[A10]. Under the null hypothesis

and under fixed alternatives the process

√
n
(
F̂ ∗

n(F−1

ϑ̂
(t)) − Fϑ̂∗(F

−1

ϑ̂
(t)
)

; t ∈ [0, 1],

conditionally on Yn, converges weakly to a Gaussian process in probability. The asymptotic

covariance structure is the same as defined in Theorem 2.1, where the parameter ϑ has to be

replaced by the value ϑ0 defined in assumption [A 8].

The proof of Theorem 2.3 is deferred to the Appendix. From the theorem the consistency of a

bootstrap test for the hypothesis (1.3) in the linear model (2.1) can be deduced as follows. Let

Tn denote the test statistic based on a continuous functional of the process Ŝn defined in (2.5)

and let T ∗
n denote the corresponding bootstrap statistic based on

Ŝ∗
n(y) =

√
n(F̂ ∗

n(y) − Fϑ̂∗(y)), y ∈ IR.

Consider, for instance, the Kolmogorov–Smirnov statistic

T ∗
n = sup

y∈IR
|Ŝ∗

n(y)| = sup
t∈[0,1]

|√n(F̂ ∗
n(F−1

ϑ̂
(t)) − Fϑ̂∗(F

−1

ϑ̂
(t)))|.

If tn is the realization of the test statistic Tn defined in (2.6) based on the sample Yn then a level

α–test is obtained by rejecting the null hypothesis whenever tn > c1−α, where PH0(Tn > c1−α) =

α. The quantile c1−α can now be approximated by the bootstrap quantile c∗1−α defined by

P (T ∗
n > c∗1−α | Yn) = α.

From Theorem 2.3 and the Continuous Mapping Theorem we obtain a consistent asymptotic

level α–test by rejecting the null hypothesis if tn > c∗1−α. We will illustrate the finite sample

properties of this approach by means of a simulation study in Section 4.
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Remark 2.4 Note that we restricted our investigations to the linear model with a fixed design,

which has mainly technical reasons (most of the results of Koul (2002) were formulated for this

design). Under certain changes in the assumptions and in the derivation of the expansion of the

process F̂n in the proof of Theorem 2.1 the testing procedure can be generalized to the random

design case in linear regression models as well.

3 Goodness-of-fit testing in nonparametric regression

We now consider the problem of testing parametric hypotheses regarding the error distribution

in nonparametric regression models. As pointed out in the introduction additional knowledge

on the error distribution can improve the efficiency of the statistical analysis and can lead to

optimal procedures from an asymptotic point of view. Again the fixed and random design have

to be treated separately and for the sake of brevity and transparency we restrict ourselves to

the case of a random design, for which some of the technical arguments are slightly simpler.

Throughout this section we assume that independent observations (X1, Y1), . . . , (Xn, Yn) from

the nonparametric regression model

Yi = m(Xi) + εi (i = 1, . . . , n) (3.1)

are available. We are interested in testing the hypothesis H0 : F ∈ F , where the parametric class

F of distribution functions is defined in (1.2). In order to derive bootstrap tests in the general

nonparametric regression model and to prove consistency we require the following assumptions.

[A 11] The design points X1, . . . , Xn are independent identically distributed random variables,

independent from the errors, with density fX , which has compact support, say [0, 1], such

that fX is bounded away from zero. The design density fX and the regression function m

are assumed to be twice continuously differentiable on the interval [0, 1].

[A 12] The random variables ε1, . . . , εn are independent with distribution function F such that

E[ε1] = 0, Var(ε1) <∞.

[A 13] (Compare with assumption [A 2]) The distribution function F of the errors is twice

continuously differentiable with uniformly continuous density f , such that f ′ is bounded

(for all F ∈ F).

[A 14] Let K be a symmetric twice continuously differentiable density with compact support

and vanishing first moment
∫
uK(u) du = 0 and h = hn denote a sequence of band-

widths converging to zero for an increasing sample size n → ∞ such that nh4 = o(1) and

nh3+δ/ log(1/h) → ∞ for some δ > 0.
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For the estimation of the residuals nonparametrically we use the well known Nadaraya–Watson

kernel estimator for the unknown regression function m(·), which is defined by

m̂(x) =

∑n
i=1K(Xi−x

h
)Yi∑n

j=1K(
Xj−x

h
)
. (3.2)

The residuals from the nonparametric fit are given by

ε̂ni = Yi − m̂(Xi) (i = 1, . . . , n).

The choice of this estimator is mainly motivated to keep the technical arguments simple and

the results can easily be extended to more advanced kernel estimators as the Gasser-Müller or

local polynomial estimator. Let F̂n and Fn denote the empirical distribution functions based on

the nonparametric residuals ε̂n1, . . . , ε̂nn and on true errors ε1, . . . , εn, respectively. The weak

convergence of the process
√
n(F̂n −F ) in the nonparametric setting was established by Akritas

and van Keilegom (2001). Let ϑ̂ = (ϑ̂1, . . . , ϑ̂k)
T denote an estimator for the parameter ϑ ∈ Θ

based on the residuals ε̂n1, . . . , ε̂nn.

[A 15] (Compare with assumption [A 6]) We assume that the following stochastic expansion

for the estimates ϑ̂j (j = 1, . . . , k) with respect to the errors is valid,

ϑ̂j − ϑj =
1

n

n∑
i=1

hϑj
(εi) − 1

n

n∑
i=1

h′ϑj
(εi)(m̂(Xi) −m(Xi)) + oP (

1√
n

),

where hϑj
is continuously differentiable such that Eϑ[hϑj

(εi)] = 0, Eϑ[h2
ϑj

(εi)] < ∞ for all

ϑ ∈ Θ. Moreover, the functions ϑ �→ hϑ(·) and ϑ �→ h′ϑ(·) are assumed to be continuous.

Theorem 3.1 Assume model (3.1) under the assumptions [A3], [A 5] and [A 11]–[A15]. Under

the null hypothesis H0 : F = Fϑ for some ϑ ∈ Θ the estimated empirical process

√
n
(
F̂n(F−1

ϑ (t)) − Fϑ̂(F−1
ϑ (t))

)
; t ∈ [0, 1]

converges weakly to a Gaussian process G with covariance kernel Covϑ(G(s), G(t)) from Theorem

2.1, where mT Σ−1m has to be replaced by 1 and ψ(x) = x.

For a bootstrap procedure based on a sample Yn = {(X1, Y1), . . . , (Xn, Yn)} and independent

identically uniformly distributed random variables U1, . . . , Un ∼ U [0, 1] we consider random

variables ε∗ni = F−1

ϑ̂
(Ui) (i = 1, . . . , n) with distribution function Fϑ̂. Analogous to the linear

case bootstrap observations are then defined by

Y ∗
ni = m̂(Xi) + ε∗ni (i = 1, . . . , n).

12



Let m̂∗ denote the regression estimate (3.2) based on the bootstrap sample (X1, Y
∗
n1), . . . , (Xn, Y

∗
nn),

then the bootstrap residuals are given by

ε̂∗ni = Y ∗
ni − m̂∗(Xi).

Finally we denote the empirical distribution functions based on bootstrap residuals ε̂∗n1, . . . , ε̂
∗
nn

and bootstrap errors ε∗n1, . . . , ε
∗
nn by F̂ ∗

n and F ∗
n , respectively. In order to prove consistency of the

parametric bootstrap in the nonparametric regression model we require one more assumption

regarding a stochastic expansion of the bootstrap estimate under the null hypothesis.

[A 16] (Compare with assumption [A 10]) For the estimator ϑ̂∗ = (ϑ̂∗1, . . . , ϑ̂
∗
k)

T based on the

bootstrap sample (X1, Y
∗
n1), . . . , (Xn, Y

∗
nn) we assume that the stochastic expansion

ϑ̂∗j − ϑ̂j =
1

n

n∑
i=1

hϑ̂j
(ε∗ni) −

1

n

n∑
i=1

E[h′
ϑ̂j

(ε∗n1) | Yn]ε∗ni + oP ∗
n
(

1√
n

)

is valid in probability, where E[hϑ̂j
(ε∗n1) | Yn] = 0.

Theorem 3.2 Assume model (3.1) under the assumptions [A 1], [A 5], [A 8], [A 9], [A 11]–

[A 16]. Under the null hypothesis and under fixed alternatives the process

√
n
(
F̂ ∗

n(F−1

ϑ̂
(t)) − Fϑ̂∗(F

−1

ϑ̂
(t))
)

; t ∈ [0, 1],

conditionally on Yn, converges weakly to a Gaussian process in probability. The asymptotic

covariance structure is the same as defined in Theorem 3.1, where the parameter ϑ has to be

replaced by the value ϑ0 defined in assumption [A 8].

4 Finite sample properties

In this section we investigate the finite sample properties of the bootstrap test proposed in

Sections 2 and 3. We consider the classical one-way-layout in analysis of variance, a quadratic

regression and a nonparametric regression model on the interval [0, 1]. If Tn is a continuous

functional of the empirical proces (2.5), then the null hypothesis is rejected at level α if

Tn > T ∗
n(�B(1−α)�), (4.1)

where T ∗
n(1) < . . . < T ∗

n(B) denote the order statistics of the bootstrap sample T
∗(1)
n , . . . , T

∗(B)
n ,

where the bootstrap is described in Section 2 and 3, respectively. We use B = 200 replica-

tions for the resampling procedure and 2000 simulation runs for the estimation of the rejection

probabilities.
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4.1 Testing for normality in a regression model

In this example we investigate the finite sample performance of the bootstrap procedure for

testing for a normal error distribution in a homoscedastic quadratic regression model. The

model under consideration is

Yni = β1xni + β2x
2
ni + εni, i = 1, . . . , n, (4.2)

with xni = i/n (i = 1, . . . , n) corresponding to the uniform design. The hypothesis of interest is

H0 : F (x) = Φ
(x
σ

)
(4.3)

for some σ > 0, where Φ denotes the cumulative distribution function of the standard normal

distribution, and F is the distribution function of the random variables εni. The parameters β1

and β2 are estimated by least squares technique, while the scale factor σ is estimated by

σ̂2 =
1

n− 2

n∑
j=1

ε̂2
nj, (4.4)

where ε̂nj = Ynj − β̂1xnj − β̂2x
2
nj denote the residuals from the least squares fit. The test statistic

is given by the Kolmogorov-Smirnov statistic

Tn = sup
x∈R

|F̂n(x) − Φ
(x
σ̂

)
|, (4.5)

and the null hypothesis is rejected if the inequality (4.1) is satisfied. In the simulation the

parameters are chosen as β1 = β2 = 1, σ2 = 0.5 and for the error distribution five cases are

considered, that is

εni ∼ N (0, 0.5) (null hypothesis),

εni ∼ (X 2
k − k)/

√
4k, k = 1, 2, 3, 4. (4.6)

n 25 50 75 100

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 0.024 0.044 0.087 0.027 0.054 0.105 0.031 0.050 0.094 0.030 0.051 0.096

df1 0.719 0.800 0.886 0.982 0.994 0.999 1.000 1.000 1.000 1.000 1.000 1.000

df2 0.410 0.507 0.615 0.845 0.906 0.951 0.980 0.992 0.998 0.997 0.998 0.999

df3 0.281 0.371 0.485 0.673 0.767 0.851 0.871 0.924 0.963 0.965 0.984 0.995

df4 0.228 0.317 0.412 0.507 0.616 0.732 0.740 0.828 0.904 0.888 0.941 0.969

Table 4.1: Simulated rejection probabilities of the test (4.1) for various error distributions.

The model is given by (4.2) and the error distribution is normal (df0) and chi-square with k

degrees of freedom (dfk) such that E[εni] = 0 and E[ε2
ni] = 0.5.
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The results are depicted in Table 4.1 for the sample sizes n = 25, 50, 75, 100 and levels α =

2.5%, 5% and 10 %. We observe a good approximation of the nominal even if the sample size

is n = 25. The alternatives are detected with reasonable probabilities, which increase with the

sample size and decrease with increasing degrees of freedom.

4.2 Testing for normality in ANOVA models

In this example we investigate the properties of the bootstrap procedure in the classical ANOVA

model of a one-way-layout, that is

Ynij = µi + εij, i = 1, . . . , p; j = 1, . . . , ni. (4.7)

Classical theory of analysis of variance assumes a normal distribution for the iid errors, that is

εij ∼ N (0, σ2), i = 1, . . . , p; j = 1, . . . , ni.

We have applied the bootstrap test with the statistic

Tn = sup
x∈R

|F̂n(x) − Φ(
x

σ̂
)|,

where

σ̂2 =
1

n− p

p∑
i=1

ni∑
j=1

(Ynij − Ȳni·)2

is the common least squares estimate of the variance. We considered the case of p = 4 factors

and n = 20 and n = 40 total observations, where the sample sizes for the different groups are

A : n1 = n2 = n3 = n4 =
n

4
;

(4.8)

B : n1 =
3n

20
;n2 =

n

4
;n3 =

n

4
;n4 =

7n

20
;

the variance is given by σ2 = 0.5 and the means are µi = i; i = 1, 2, 3, 4. The rejection proba-

bilities of the bootstrap test (4.1) are displayed in Table 4.2 for the null hypothesis of a normal

distribution and the four alternatives presented in (4.6).

We observe a reasonable approximation of the nominal level for the sample size n = 40, while for

the sample size n = 20 the bootstrap test is conservative. Deviations from the null hypothesis

are detected with a probability which decreases with increasing degrees of freedom of the chi-

square distribution. It is interesting to note that for the sample size n = 40 the unbalanced

design B yields a slightly better approximation of the nominal level than the balanced design

A. However, for more unbalanced designs the approximation of the nominal level is slightly less

accurate compared to the balanced design [these results are not depicted for the sake of brevity].
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n = 20 n = 40

A B A B

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 0.018 0.037 0.074 0.015 0.038 0.069 0.021 0.045 0.091 0.024 0.049 0.092

df1 0.431 0.525 0.645 0.432 0.532 0.643 0.922 0.953 0.974 0.919 0.948 0.975

df2 0.210 0.280 0.370 0.190 0.264 0.365 0.663 0.775 0.843 0.640 0.735 0.832

df3 0.122 0.173 0.262 0.134 0.193 0.274 0.472 0.564 0.670 0.462 0.565 0.681

df4 0.094 0.140 0.207 0.097 0.145 0.214 0.345 0.438 0.553 0.361 0.460 0.578

Table 4.2: Simulated rejection probabilities of the bootstrap test (4.1) for normality in the one-

way-layout (4.7) with four factors for various distributions defined in (4.6) and designs given in

(4.8).

4.3 Different M -estimators

In this example we briefly investigate the effect of the function ψ on the performance of the

bootstrap tests for the error distribution. We consider the location-scale model

Yni = µ+ εni, i = 1, . . . , n, (4.9)

where µ ∈ R, E[εni] = 0 and E[ε2
ni] = σ2. For the function ψ two cases are considered, that is

ψ(x) = x; ψ(x) = sign(x);

and the corresponding M-estimators µ̂ are the sample mean and median, respectively. The

variance of the error distribution has been estimated by the residual sum of squares in both

cases, that is

σ̂2 =
1

n− 1

n∑
i=1

(Yni − µ̂)2.

We consider the performance of the test (4.1) for a normal distribution based on the Kolmogorov-

Smirnov statistic, where the resampling scheme has been described in Section 3. The rejection

probabilities of the bootstrap test are presented in Table 4.3 for sample sizes n = 25, 50 and the

error distributions given in (4.6). The results are very similar, where the function ψ(x) = sign(x)

yields better results for larger deviations from the null hypothesis (df1, df2). However, if the

alternative is closer to the null (df3, df4) the test based on the least squares estimator is more

powerful. This corresponds to intuition, because it is known that for a normal distribution the

M-estimator corresponding to the function ψ(x) = −f ′(x)
f(x)

= x is the best M-estimator [see

Serfling (1980)].
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ψ(x) = x ψ(x) = sign(x)

n=25 n=50 n=25 n=50

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 0.029 0.057 0.107 0.029 0.058 0.100 0.026 0.052 0.101 0.029 0.057 0.107

df1 0.921 0.955 0.975 0.999 1.000 1.000 0.965 0.978 0.985 1.000 1.000 1.000

df2 0.590 0.687 0.802 0.929 0.963 0.985 0.683 0.747 0.814 0.964 0.974 0.984

df3 0.427 0.532 0.654 0.740 0.822 0.897 0.427 0.507 0.601 0.784 0.833 0.887

df4 0.316 0.418 0.540 0.585 0.697 0.810 0.297 0.368 0.473 0.559 0.639 0.730

Table 4.3. Simulated rejected probabilities of the test (4.1) for a normal distribution in the

model (4.9) and two different M-estimators corresponding to the functions ψ(x) = x and ψ(x) =

sign(x). The error distributions are given by (4.6), where df0 corresponds to a normal distribution

and dfk (k = 1, 2, 3, 4) to a X 2
k -distribution standardized such that E[εni] = 0 and E[ε2

ni] = 0.5.

4.4 Nonparametric regression

Our final example considers the problem of testing for a normal distribution (4.3) in a nonpara-

metric regression model. For this we simulated data according to the regression model (4.2),

where the variance of the error is given by 0.5. Note that we consider a fixed design in order

to compare the results with the situation described in Section 4.1. The results for the random

design are very similar and for this reason not displayed. We have applied the bootstrap test

based on the Cramér-von Mises statistic

Yn =

∫ {
F̂n(x) − Φ

(x
σ̃

)}2

dF̂n(x), (4.10)

and the Kolmogorov-Smirnov statistic (4.5), where F̂n is the empirical distribution function from

the nonparametric residuals ε̂ni = Yi − m̂(Xi) and σ̃2 the common estimator of the variance in

the nonparametric regression model (1.1), that is

σ̃2 =
1

n

n∑
i=1

ε̂2
ni.

For the estimation of the regression function we used a local linear estimator [see Fan and Gijbels

(1996)] because of its better performance at the boundary of the design space. The results are

shown in Tabel 4.4 and 4.5 corresponding to the L2- and sup-norm. The bandwidth is chosen as

ĥ =
( σ̂2

n

)1/5

where σ̂2 is the nonparametric estimator of Rice (1984). We observe a reasonable approximation

of the nominal level in all cases under consideration. The Cramér-von Mises test usually yields
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larger rejection probabilities than the Kolmogorov-Smirnov test, but in all cases the deviation

from normality is detected with reasonable probabilities.

It is also of interest to compare the results in Table 4.5 with the corresponding values in Table 4.1,

where the hypothesis of normality has been tested under the additional assumption of a linear

regression model. The tests using the knowledge of the parametric form of the regression function

yield a better approximation of the nominal level than the purely nonparametric procedures. As

expected the tests of normality of this section are usually less powerful than the tests constructed

in Section 4.1, which use the specific information of the structure of the regression function.

Nevertheless, the results of this section demonstrate, that the bootstrap tests based on empirical

processes yield also reliable procedures for goodness-of-fit testing in nonparametric regression

models.

n 25 50 75 100

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 0.037 0.052 0.103 0.033 0.055 0.103 0.038 0.057 0.101 0.035 0.049 0.099

df1 0.752 0.808 0.885 0.991 0.993 0.997 1.000 1.000 1.000 1.000 1.000 1.000

df2 0.547 0.631 0.734 0.947 0.961 0.983 0.995 0.996 0.998 1.000 1.000 1.000

df3 0.432 0.516 0.613 0.819 0.869 0.927 0.962 0.977 0.987 0.994 0.998 0.998

df4 0.332 0.394 0.499 0.734 0.794 0.880 0.917 0.943 0.964 0.977 0.984 0.996

Table 4.4: Simulated rejection probabilities of the bootstrap test (4.1) for a normal distribution

in the nonparametric regression model (3.1). The test is based on the Cramér-von Mises statistic

(4.10) and the error distribution is normal (df0) and chi-square with k degrees of freedom (dfk)

such that E[εi] = 0 and E[ε2
i ] = 0.5.

n 25 50 75 100

α 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10% 2.5% 5% 10%

df0 0.040 0.062 0.100 0.041 0.060 0.108 0.038 0.060 0.104 0.032 0.054 0.107

df1 0.567 0.631 0.728 0.860 0.898 0.935 0.942 0.957 0.974 0.968 0.979 0.999

df2 0.444 0.514 0.638 0.806 0.853 0.914 0.944 0.963 0.984 0.965 0.977 0.994

df3 0.314 0.389 0.504 0.677 0.742 0.821 0.858 0.896 0.934 0.961 0.978 0.988

df4 0.256 0.323 0.452 0.545 0.636 0.753 0.792 0.848 0.915 0.914 0.948 0.971

Table 4.5: Simulated rejection probabilities of the bootstrap test (4.1) for a normal distribution

in the nonparametric regression model (3.1). The test is based on the Kolmogorov-Smirnov

statistic (4.5) and the error distribution is normal (df0) and chi-square with k degrees of freedom

(dfk) such that E[εi] = 0 and E[ε2
i ] = 0.5.
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A Appendix: Proofs

A.1 An auxiliary result

In order to prove Theorem 2.1 we need the following proposition.

Proposition A.1 Under the assumptions of Theorem 2.1 we have for all j = 1, . . . , k

1√
n

n∑
i=1

xT
ni(β̂n − β)h′ϑj

(εni) =
1√
n

n∑
i=1

xT
ni(β̂n − β)Eϑ[h′ϑj

(εn1)] + oP (1).

Proof: The proof follows from expansion (2.3), which gives

1√
n

n∑
i=1

xT
ni(β̂n − β)(h′ϑj

(εni) −Eϑ[h′ϑj
(εn1)])

=
1∫
f dψ

1√
n

n∑
i=1

n∑
j=1

ψ(εnj)(h
′
ϑj

(εni) − Eϑ[h′ϑj
(εni)])x

T
ni(X

T
nXn)−1xnj + oP (1).

Now a calculation of the variance of the dominating term yields

Var
( 1∫

f dψ

1√
n

n∑
i=1

n∑
j=1

ψ(εnj)(h
′
ϑj

(εni) − Eϑ[h′ϑj
(εni)])x

T
ni(X

T
nXn)−1xnj

)
=

1

n

n∑
i=1

n∑
j=1

n∑
k=1

n∑
�=1

E
[
ψ(εnj)(h

′
ϑj

(εni) −Eϑ[h′ϑj
(εni)])ψ(εnk)(h

′
ϑj

(εn�) − Eϑ[h′ϑj
(εn�)])

×xT
ni(X

T
nXn)−1xnjx

T
nk(X

T
nXn)−1xn�

] 1

(
∫
f dψ)2

= O(
1

n
)
( n∑

i=1

xT
ni(X

T
nXn)−1xni

)2

+O(
1

n
)

n∑
i=1

n∑
j=1

xT
ni(X

T
nXn)−1xnjx

T
nj(X

T
nXn)−1xni

= O(
1

n
) = o(1),

where the last line follows from assumption [A 2] and the representation

XT
nXn =

n∑
j=1

xnjx
T
nj .

�

A.2 Proof of Theorem 2.1

We only state the proof for the case of a one-dimensional parameter space Θ, that is k = 1. The

general case k ≥ 2 is treated exactly in the same way with an additional amount of notation.

An application of Theorem 6.2.1 from Koul (2002, p. 232), (2.7) and the expansion

Fϑ̂(y) − Fϑ(y) =

k∑
j=1

∂Fϑ(y)

∂ϑj
(ϑ̂j − ϑj) + oP (

1√
n

) (A.1)
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yield uniformly with respect to y ∈ IR,

√
n(F̂n(y) − Fϑ̂(y)) =

√
n(Fn(y) − Fϑ(y)) −√

n(Fϑ̂(y) − Fϑ(y))

+ fϑ(y)
1√
n

n∑
i=1

xT
ni(β̂n − β) + oP (1)

=
√
n(Fn(y) − Fϑ(y)) − ∂Fϑ(y)

∂ϑ

1√
n

n∑
i=1

hϑ(εni)

+
1√
n

n∑
i=1

xT
ni(β̂n − β)

(
fϑ(y) +

∂Fϑ(y)

∂ϑ
h′ϑ(εni)

)
+ oP (1).

From the expansion (2.3) of the M-estimator β̂n, Proposition A.1 and the assumption [A 5] we

obtain uniformly with respect to t ∈ [0, 1],

√
n
(
F̂n(F−1

ϑ (t)) − Fϑ̂(F−1
ϑ (t))

)
= Gn(t) + oP (1). (A.2)

Here the process Gn is defined by

Gn(t) =
1√
n

n∑
i=1

{
I{εni ≤ F−1

ϑ (t)} − t− ∂Fϑ

∂ϑ
(F−1

ϑ (t))hϑ(εni) + x̃niψ(εni)cϑ(F−1
ϑ (t))

}
,

where we have used the notation

x̃ni =

n∑
j=1

xT
nj(X

T
nXn)−1xni. (A.3)

and cϑ(F−1
ϑ (t)) is given in Theorem 2.1 (for the case k = 1). Note that assumption [A 2] implies

1

n

n∑
j=1

x̃2
nj =

1

n

n∑
j=1

x̃nj −→ mT Σ−1m for n→ ∞ (A.4)

max
j=1,...,n

x̃nj = O(1). (A.5)

A straightforward but tedious calculation of the covariance gives

Covϑ(Gn(s), Gn(t)) = Eϑ[Gn(s)Gn(t)]

=
1

n

n∑
i=1

Eϑ

[{
I{εni ≤ F−1

ϑ (s)} − s− ∂Fϑ

∂ϑ
(F−1

ϑ (s))hϑ(εni) + x̃niψ(εni)cϑ(F−1
ϑ (s))

}
{
I{εni ≤ F−1

ϑ (t)} − t− ∂Fϑ

∂ϑ
(F−1

ϑ (t))hϑ(εni) + x̃niψ(εni)cϑ(F−1
ϑ (t))

}]
= Eϑ

[
(I{εn1 ≤ F−1

ϑ (s)} − s)(I{εn1 ≤ F−1
ϑ (t)} − t)

]
+
∂Fϑ

∂ϑ
(F−1

ϑ (s))
∂Fϑ

∂ϑ
(F−1

ϑ (t))Eϑ[h2
ϑ(εn1)]
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+ cϑ(F−1
ϑ (s))cϑ(F

−1
ϑ (t))Eϑ[ψ2(εn1)]

1

n

n∑
i=1

x̃2
ni

− ∂Fϑ

∂ϑ
(F−1

ϑ (t))Eϑ[I{εn1 ≤ F−1
ϑ (s)}hϑ(εn1)]

− ∂Fϑ

∂ϑ
(F−1

ϑ (s))Eϑ[I{εn1 ≤ F−1
ϑ (t)}hϑ(εn1)]

+ cϑ(F−1
ϑ (t))Eϑ[I{εn1 ≤ F−1

ϑ (s)}ψ(εn1)]
1

n

n∑
i=1

x̃ni

+ cϑ(F−1
ϑ (s))Eϑ[I{εn1 ≤ F−1

ϑ (t)}ψ(εn1)]
1

n

n∑
i=1

x̃ni

−
{∂Fϑ

∂ϑ
(F−1

ϑ (s))cϑ(F
−1
ϑ (t)) +

∂Fϑ

∂ϑ
(F−1

ϑ (t))cϑ(F−1
ϑ (s))

}
Eϑ[hϑ(εn1)ψ(εn1)]

1

n

n∑
i=1

x̃ni

= Covϑ(G(s), G(t)) + o(1),

where Covϑ(G(s), G(t)) is defined in Theorem 2.1, and the last equality follows with (A.4).

Finally, the weak convergence of the process Gn to the Gaussian process G follows from the

convergence of the finite dimensional distributions and tightness. The proof of the convergence

of the finite dimensional distributions to normal distributions can be done by a straightforward

application of the Cramér–Wold device and a verification of Lindeberg’s condition. Tightness of

the process Gn can be shown in terms of asymptotic equicontinuity, that is for all ε > 0

lim
δ↘0

lim sup
n→∞

P
(

sup
s,t∈[0,1]
|s−t|≤δ

∣∣∣Gn(s) −Gn(t)
∣∣∣ > ε

)
= 0,

which follows from tightness of the standard empirical process and from the uniform continuity

of the functions fϑ ◦ F−1
ϑ and ∂Fϑ

∂ϑ
◦ F−1

ϑ . �

A.3 Proof of Theorem 2.3

For the sake of transparency we only consider the case k = 1 of a one-dimensional parameter

space. The general case is treated exactly in the same way with an additional amount of notation.

Additionally, we assume without loss of generality the almost sure convergence of ϑ̂ to ϑ0 (note

that every subsequence contains a subsequence that converges almost surely). From Lemma 3.1

in Koul and Lahiri (1994) and assumption (2.8) it follows for all δ > 0

P

(
sup

t∈[0,1]

∣∣∣√n(F̂ ∗
n(F−1

ϑ̂
(t)) − F ∗

n(F−1

ϑ̂
(t)) − fϑ̂(F−1

ϑ̂
(t))

1

n

n∑
i=1

xT
ni(β̂

∗
n − β̂n)

)∣∣∣ > δ

∣∣∣∣ Yn

)
= oP (1).

This estimate implies equivalence, in the sense of conditional weak convergence, of the processes√
n(F̂ ∗

n(F−1

ϑ̂
(t)) − Fϑ̂∗(F

−1

ϑ̂
(t))) and

√
n(F ∗

n(F−1

ϑ̂
(t)) − Fϑ̂(F−1

ϑ̂
(t))) −√

n(Fϑ̂∗(F
−1

ϑ̂
(t)) − Fϑ̂(F−1

ϑ̂
(t)))
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+ fϑ̂(F−1

ϑ̂
(t))

1√
n

n∑
i=1

xT
ni(β̂

∗
n − β̂n)

=
√
n(F ∗

n(F−1

ϑ̂
(t)) − Fϑ̂(F−1

ϑ̂
(t))) − ∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))

1√
n

n∑
i=1

hϑ̂(ε∗ni)

+
1√
n

n∑
i=1

xT
ni(β̂

∗
n − β̂n)

(
fϑ̂(F−1

ϑ̂
(t)) +

∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))E[h′

ϑ̂
(ε∗n1) | Yn]

)
+ oP ∗

n
(1)

= G∗
n(t) + oP ∗

n
(1)

in probability, where we used (2.9), [A 10], the bootstrap analogue of (A.1) and the process G∗
n

is defined by

G∗
n(t) =

1√
n

n∑
i=1

e∗ni(t)

with

e∗ni(t) =
{
I{Fϑ̂(ε∗ni) ≤ t} − t− ∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))hϑ̂(ε∗ni) + x̃niψ(ε∗ni)cϑ̂(F−1

ϑ̂
(t))
}

and

cϑ̂(y) =
1∫
fϑ̂ dψ

(
fϑ̂(y) +

∂Fϑ(y)

∂ϑ

∣∣∣
ϑ=ϑ̂

∫
h′

ϑ̂
(t)fϑ̂(t) dt

)
, y ∈ IR. (A.6)

Noting that E[G∗
n(t) | Yn] = 0 and that cϑ̂(y) converges in probability to the quantity cϑ0(y)

defined in Theorem 2.1 we obtain for the conditional covariance of the bootstrap process

Cov(G∗
n(s), G∗

n(t) | Yn) = E[G∗
n(s)G∗

n(t) | Yn] =
1

n

n∑
i=1

E[e∗ni(s)e
∗
ni(t) | Yn]

= s ∧ t− st+
∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(s))

∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))

∫
h2

ϑ̂
(x)fϑ̂(x) dx

+

∫
ψ2(x)fϑ̂(x) dx cϑ̂(F−1

ϑ̂
(s))cϑ̂(F−1

ϑ̂
(t))

1

n

n∑
i=1

x̃2
ni

−∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))

∫ s

0

hϑ̂(F−1

ϑ̂
(x)) dx− ∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(s))

∫ t

0

hϑ̂(F−1

ϑ̂
(x)) dx

+
(
cϑ̂(F−1

ϑ̂
(t))

∫ s

0

ψ(F−1

ϑ̂
(x)) dx+ cϑ̂(F−1

ϑ̂
(s))

∫ t

0

ψ(F−1

ϑ̂
(x)) dx

)1

n

n∑
i=1

x̃ni

−
(
cϑ̂(F−1

ϑ̂
(t))

∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(s)) + cϑ̂(F−1

ϑ̂
(s))

∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))
)

×
∫
hϑ̂(x)ψ(x)fϑ̂(x) dx

1

n

n∑
i=1

x̃ni ,

which converges in probability to the covariance kernel defined in Theorem 2.1 where the pa-

rameter ϑ has to be replaced by ϑ0.
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Conditional weak convergence of the process G∗
n to a Gaussian process in probability follows

from conditional convergence of the finite-dimensional distributions in probability and condi-

tional tightness [compare the proofs of Lemma A.2 and Lemma A.3 of Stute, González Manteiga

and Presedo Quindimil (1998)]. To prove convergence of the finite-dimensional distributions we

fix constants a1, . . . , a� ∈ IR, t1, . . . , t� ∈ [0, 1] and consider the linear combination

�∑
j=1

ajG
∗
n(tj) =

1√
n

n∑
i=1

( �∑
j=1

aje
∗
ni(tj)

)
= Ḡ∗

n,1 − Ḡ∗
n,2 + Ḡ∗

n,3,

where

Ḡ∗
n,1 =

1√
n

n∑
i=1

�∑
j=1

aj(I{ε∗ni ≤ F−1

ϑ̂
(tj)} − tj),

Ḡ∗
n,2 =

1√
n

n∑
i=1

hϑ̂(ε∗ni)
( �∑

j=1

aj
∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

F−1

ϑ̂
(tj)
)
,

Ḡ∗
n,3 =

1√
n

n∑
i=1

x̃niψ(ε∗ni)
( �∑

j=1

ajcϑ̂(F−1

ϑ̂
(tj))

)
.

We show, conditionally on the sample, that Lindeberg’s condition is fulfilled in probability. The

verification of the Lindeberg condition for the sum Ḡ∗
n,1 − Ḡ∗

n,2 + Ḡ∗
n,3 follows from the validity

of the Lindeberg condition for each summand Ḡ∗
n,i (i = 1, 2, 3) by a standard argument. For the

sake of brevity we only consider Ḡ∗
n,3, the remaining terms are treated similarly. For δ > 0 we

obtain for the Lindeberg condition

Ln(δ)

=
1

n

n∑
i=1

E

[
x̃2

niψ
2(ε∗ni)

( �∑
j=1

ajcϑ̂(F−1

ϑ̂
(tj))

)2

I
{∣∣∣x̃niψ(ε∗ni)

( �∑
j=1

ajcϑ̂(F−1

ϑ̂
(tj))

)∣∣∣ > √
nδ
} ∣∣∣∣ Yn

]

≤
( �∑

j=1

ajcϑ̂(F−1

ϑ̂
(tj))

)2 1

n

n∑
i=1

x̃2
ni

∫
ψ2(t)fϑ̂(t)I

{
|x̃ni||ψ(t)|

∣∣∣ �∑
j=1

ajcϑ̂(F−1

ϑ̂
(tj))

∣∣∣ > √
nδ
}
dt

= oP (1),

where the last line follows with the relations (A.4) and (A.5) and the convergence of cϑ̂ [defined

in (A.6)] and fϑ̂ in probability for n→ ∞.

To prove tightness, conditionally on the sample in probability, we consider the following decom-

position of the process,

G∗
n(t) = G∗

n,1(t) +G∗
n,2(t) +G∗

n,3(t),

where

G∗
n,1(t) =

1√
n

n∑
i=1

(I{Fϑ̂(ε∗ni) ≤ t} − t) =
1√
n

n∑
i=1

(I{Ui ≤ t} − t)
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G∗
n,2(t) = (

∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

◦ F−1

ϑ̂
)(t)

1√
n

n∑
i=1

hϑ̂(ε∗ni)

G∗
n,3(t) = (cϑ̂ ◦ F−1

ϑ̂
)(t)

1√
n

n∑
i=1

x̃niψ(ε∗ni).

The random variables Ui are independent and have a uniform distribution on the interval [0, 1]

and from this follows tightness of G∗
n,1. In the following we show that for almost all samples Yn,

the process G∗
n,2 is tight in terms of stochastic equicontinuity. Tightness of G∗

n,3 follows similarly.

We have for all ε > 0, δ > 0

P
(

sup
s,t∈[0,1]
|s−t|≤δ

|G∗
n,2(s) −G∗

n,2(t)| > ε
∣∣∣ Yn

)
≤ 1

ε2

∫
h2

ϑ̂
(x)fϑ̂(x) dx sup

s,t∈[0,1]
|s−t|≤δ

∣∣∣∣∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

◦ F−1

ϑ̂
(s) − ∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

◦ F−1

ϑ̂
(t)

∣∣∣∣ .
The integral on the r.h.s. of the inequality is bounded almost surely. The supremum can be

estimated as follows,

sup
s,t∈[0,1]
|s−t|≤δ

∣∣∣∣∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(s)) − ∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))

∣∣∣∣
≤ sup

s,t∈[0,1]
|s−t|≤δ

∣∣∣∣∂Fϑ

∂ϑ
|ϑ=ϑ0(F

−1
ϑ0

(s)) − ∂Fϑ

∂ϑ
|ϑ=ϑ0(F

−1
ϑ0

(t))

∣∣∣∣
+2 sup

t∈[0,1]

∣∣∣∣∂Fϑ

∂ϑ
|ϑ=ϑ0(F

−1

ϑ̂
(t)) − ∂Fϑ

∂ϑ
|ϑ=ϑ0(F

−1
ϑ0

(t))

∣∣∣∣ .
The first term on the r.h.s. converges to zero for δ ↓ 0 because of the uniform continuity of ∂Fϑ

∂ϑ
.

The second term converges to zero almost surely for n → ∞ by assumption [A 9]. This proves

tightness of G∗
n,2 for almost all samples Yn and completes the proof of Theorem 2.3. �

A.4 Proof of Theorem 3.1

The main difference in the proof of Theorem 3.1 compared to the proof of Theorem 2.1 is a

different derivation of expansion (A.2). For this we need the following two propositions.

Proposition A.2 Under the assumptions of Theorem 3.1 we have for all j = 1, . . . , k

1√
n

n∑
i=1

h′ϑj
(εi)(m̂(Xi) −m(Xi)) =

1√
n

n∑
i=1

εiEϑ[h′ϑj
(ε1)] + oP (1).

Proof: The proof is similar to the proof of Proposition A.1, but uses standard calculation

techniques for nonparametric regression estimation and is omitted for the sake of brevity. �
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Proposition A.3 Under the assumptions of Theorem 3.1 we have the expansion

F̂n(y) = Fn(y) + f(y)
1

n

n∑
i=1

εi + oP (
1√
n

)

uniformly with respect to y ∈ IR.

Proof: Analogous to Lemma B.1 of Akritas and van Keilegom (2001) one can derive the following

expansion of the empirical process based on residuals,

F̂n(y) =
1

n

n∑
i=1

I{ε̂i ≤ y} =
1

n

n∑
i=1

I{εi ≤ y + m̂(Xi) −m(Xi)}

=
1

n

n∑
i=1

I{εi ≤ y} + P (ε ≤ y + m̂(X) −m(X) | Yn) − F (y) + oP (
1√
n

)

uniformly with respect to y ∈ IR, where (ε,X) has the same distribution as (ε1, X1) but is

independent from the sample Yn = {(X1, Y1), . . . , (Xn, Yn)}. Now by a Taylor expansion it

follows

F̂n(y) = Fn(y) +

∫
(F (y + m̂(x) −m(x)) − F (y))fX(x) dx+ oP (

1√
n

)

= Fn(y) + f(y)

∫
(m̂(x) −m(x))fX(x) dx+ oP (

1√
n

).

Inserting the definition (3.2) of the regression estimator m̂ and some straightforward calculations

of expectations and variances yield the assertion of the Proposition. �

For the proof of Theorem 3.1 we only consider the case k = 1 for the sake of transparent notation.

From the two propositions above and (A.1) analogous to the expansion (A.2) in the linear case

we obtain the representation

√
n(F̂n(F−1

ϑ (t)) − Fϑ̂(F−1
ϑ (t))) = Gn(t) + oP (1)

uniformly with respect to t ∈ [0, 1]. Here the process Gn is defined by

Gn(t) =
1√
n

n∑
i=1

{
I{εi ≤ F−1

ϑ (t)} − t− ∂Fϑ

∂ϑ
(F−1

ϑ (t))hϑ(εi) + εicϑ(F−1
ϑ (t))

}
,

where

cϑ(y) = fϑ(y) +
∂Fϑ(y)

∂ϑ

∫
h′ϑ(z)fϑ(z) dz, y ∈ IR.

Now the proof of Theorem 3.1 follows exactly the lines of the proof of Theorem 2.1. �
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A.5 Proof of Theorem 3.2

For the proof of Theorem 3.2 we need the following two propositions.

Proposition A.4 Under the assumptions of Theorem 3.2 we have the expansion

F̂ ∗
n(y) = F ∗

n(y) +
1

n

n∑
i=1

(
Fϑ̂(y + m̂∗(Xi) − m̂(Xi)) − Fϑ̂(y)

)
+ oP (

1√
n

)

uniformly with respect to y ∈ IR.

Proof: We consider the empirical process

Zn(g) =
1√
n

n∑
i=1

g(Xi, Ui),

indexed by a class G of functions defined by

G =
{
gy, ϑ, �

∣∣∣ y ∈ IR, ϑ ∈ Θ, ||ϑ− ϑ0|| ≤ M, 
 ∈ C1+δ/2
1 [0, 1]

}
where M is a fixed positive constant, C1+δ/2

1 [0, 1] denotes a class of bounded smooth functions


 : [0, 1] → IR [see van der Vaart and Wellner (1996, p. 154) for the exact definition], and

gy, ϑ, � (x, u) = I{u ≤ Fϑ(y + 
(x))} − I{u ≤ Fϑ(y)}
− E[I{U ≤ Fϑ(y + 
(X))}] + E[I{U ≤ Fϑ(y)}].

With these definitions we have

√
n
(
F̂ ∗

n(y) − F ∗
n(y) − 1

n

n∑
i=1

(Fϑ̂(y + m̂∗(Xi) − m̂(Xi)) − Fϑ̂(y))
)

= Zn(gy, ϑ̂, m̂∗−m̂),

where lim
n→∞

P (gy, ϑ̂, m̂∗−m̂ ∈ G) = 1. The proof of the assertion

sup
y∈IR

|Zn(gy, ϑ̂, m̂∗−m̂)| = oP (1)

follows along the lines of the proof of Lemma B.1 of Akritas and van Keilegom (2001), but is

more complicated due to the fact that our function class is additionally indexed by the parameter

ϑ. For the sake of self-consistency we will explain the main differences here. First we show that

the bracketing number satisfies the integral condition∫ 1

0

√
logN[ ](ε,G, L2) dε <∞. (A.7)

To keep the proof of this property readable we confine ourselves to a proof of condition (A.7)

for the class

G1 =
{

(x, u) �→ I{u ≤ Fϑ(y + 
(x))}
∣∣∣ y ∈ IR, ϑ ∈ Θ, ||ϑ− ϑ0|| ≤ M, 
 ∈ C1+δ/2

1 [0, 1]
}
.
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To this end we fix for ε > 0 a grid ϑ1, . . . , ϑK in Θ to cover {ϑ ∈ Θ | ||ϑ − ϑ0|| ≤ M} with

K = O(ε−2k) balls of radius ε2. Using Example 19.7. in van der Vaart (1998, p. 271) and

assumption [A 5] we obtain K brackets of the form

[Fϑj
−Bε2, Fϑj

+Bε2], j = 1, . . . , K,

for the parametric class of functions {Fϑ | ϑ ∈ Θ, ||ϑ − ϑ0|| ≤ M}, where the constant B is

defined as

B = sup
y∈IR

sup
||ϑ−ϑ0||≤M

∣∣∣∣∣∣∂Fϑ(y)

∂ϑ

∣∣∣∣∣∣.
For some constant C, the class C1+δ/2

1 [0, 1] can be covered by m = O(exp(Cε−2/(1+δ/2))) brackets

[
Li , 

U
i ], i = 1, . . . , m [see Corollary 2.7.2 in van der Vaart and Wellner (1996)]. For fixed

j ∈ {1, . . . , K} and i ∈ {1, . . . , m} we choose M = O(ε−4) brackets for y ∈ IR analogous to the

argument in Lemma B.1 of Akritas and van Keilegom (2001). Now G1 can be covered by KmM

brackets of the form[
I{u ≤ Fϑj

(yL
jih + 
Li (x)) − Bε2}, I{u ≤ Fϑj

(yU
jih + 
Ui (x)) +Bε2}

]
(j = 1, . . . , K, i = 1, . . . , m, h = 1, . . . ,M). The L2–distance between upper and lower bracket

is then [
P
(
Fϑj

(yL
jih + 
Lji(Xn1)) −Bε2 < U1 ≤ Fϑj

(yU
jih + 
Uji(Xn1)) +Bε2

)]1/2

≤
[ ∫

sup
y∈IR

(
Fϑj

(y + 
Uji(x)) − Fϑj
(y + 
Lji(x))

)
fX(x) dx+ B̃ε2

]1/2

≤ O(ε),

with the same reasoning as in the proof of Lemma B.1 of Akritas and van Keilegom (2001).

We have N[ ](ε,G1, L
2) = O(ε−4−2k exp(Cε−2/(1+δ/2))) brackets in total. This yields the assertion

(A.7) for the class G1 and therefore by a similar argument for the remaining cases the weak

convergence of the process {Zn(g)}g∈G to a Gaussian process {Z(g)}g∈G. For the next step of

the reasoning one can show in a similar way as in the aforementioned proof the estimate

sup
y∈IR

sup
||ϑ−ϑ0||≤M

Var(gy, ϑ, � (X1, U1)) ≤ c

∫

(x)fX(x) dx

for some constant c. From this it follows directly

sup
y∈IR

E
[
g2

y, ϑ̂, m̂∗−m̂
(X,U)

∣∣∣ Yn, U1, . . . , Un

]
= op(1),

where (X,U) has the same distribution as (X1, U1) but is independent from the sample. Now the

assertion of the proposition can be deduced by applying Corollary 2.3.12. in van der Vaart and

Wellner (1996) [confer the end of the proof of Lemma B.1, Akritas and van Keilegom (2001)] or

by making use of a uniform version of Lemma 19.24 [compare with the proof of Theorem 19.26.]

in van der Vaart (1998). �
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Proposition A.5 Under the assumptions of Theorem 3.2 we have the expansion

F̂ ∗
n(F−1

ϑ̂
(t)) = F ∗

n(F−1

ϑ̂
(t)) + fϑ̂(F−1

ϑ̂
(t))

1

n

n∑
i=1

ε∗ni + oP ∗
n
(

1√
n

)

uniformly with respect to t ∈ [0, 1].

Proof: By Proposition A.4, Markov’s inequality, and a Taylor expansion we directly obtain

F̂ ∗
n(F−1

ϑ̂
(t)) − F ∗

n(F−1

ϑ̂
(t)) =

1

n

n∑
i=1

(
Fϑ̂(F−1

ϑ̂
(t) + m̂∗(Xi) − m̂(Xi)) − t

)
+ oP ∗

n
(

1√
n

)

= fϑ̂(F−1

ϑ̂
(t))

1

n

n∑
i=1

(m̂∗(Xi) − m̂(Xi)) +
1

2
f ′

ϑ̂
(ξt,i)

1

n

n∑
i=1

(m̂∗(Xi) − m̂(Xi))
2 + oP ∗

n
(

1√
n

)

= fϑ̂(F−1

ϑ̂
(t)) +

1

n

n∑
i=1

ε∗ni + oP ∗
n
(

1√
n

),

uniformly with respect to t ∈ [0, 1], where the last equality follows by inserting the definition of

the estimators m̂∗ and m̂ and some straightforward but cumbersome calculations of expectations

and variances. �

Proposition A.5 yields together with assumptions [A 5] and [A 17] the following stochastic

expansion

√
n
(
F̂ ∗

n(F−1

ϑ̂
(t)) − Fϑ̂∗(F

−1

ϑ̂
(t))
)

=
√
n
(
F ∗

n(F−1

ϑ̂
(t)) − t+ fϑ̂(F−1

ϑ̂
(t))

1

n

n∑
i=1

ε∗ni − Fϑ̂∗(F
−1

ϑ̂
(t)) + t

)
+ oP ∗

n
(1)

= G∗
n(F−1

ϑ̂
(t)) + oP ∗

n
(1),

where

G∗
n(F−1

ϑ̂
(t)) =

1√
n

n∑
i=1

{
I{Fϑ̂(ε∗ni) ≤ t} − t− ∂Fϑ

∂ϑ

∣∣∣
ϑ=ϑ̂

(F−1

ϑ̂
(t))hϑ̂(ε∗ni) + ε∗nicϑ̂(F−1

ϑ̂
(t))
}
,

cϑ̂(y) = fϑ̂(y) +
∂Fϑ(y)

∂ϑ

∣∣∣
ϑ=ϑ̂

∫
h′

ϑ̂
(z)fϑ̂(z) dz, y ∈ IR.

The rest of the proof follows exactly in the same way as the proof of Theorem 2.3. �
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L. Birgé and P. Massart (2001). Gaussian model selection. J. Eur. Math. Soc. 3, 203–268.

L. D. Brown and M. G. Low (1996). Asymptotic equivalence of nonparametric regression

and white noise. Ann. Statist. 24, 2384–2398.

L. D. Brown, T. T. Cai, M. G. Low and C.-H. Zhang (2002). Asymptotic equivalence the-

ory for nonparametric regression with random design. Ann. Statist. 30, 688–707.

E. Brunner and N. Neumann (1987). Nonparametric methods for the 2-period-crossover

design under weak model assumptions. Biom. J. 29, 907-920.

D. A. Darling (1955). The Cramér-Smirnov test in the parametric case. Ann. Math. Statist.

26, 1-20.

M. Denker (1985). Asymptotic Distribution Theory in Nonparametric Statistics. Vieweg &

Sons, Braunschweig.

J. Durbin (1973). Weak convergence of the sample distribution function when the parameters

are estimated. Ann. Statist. 2, 279-290.

R. L. Eubank and J. D. Hart (1992). Testing goodness-of-fit in regression via order selection

criteria. Ann. Statist. 20, 1412–1425.

J. Fan and I. Gijbels (1996). Local polynomial modelling and its applications. Chapman

and Hall, London.

F. R. Hampel, E.M. Ronchetti, P. J. Rousseeuw and W.A. Stahel (1986). Robust Statis-

tics. Wiley, New York.

E. V. Khmaladze and H. L. Koul (2004). Martingale transforms goodness-of-fit tests in re-

gression models. Ann. Statist., to appear.

H. L. Koul and S. N. Lahiri (1994). On Bootstrapping M-Estimated Residual Processes in

Multiple Linear Regression Models. Journal Multivariate Analysis 49, 255–265.

H. L. Koul (2002). Weighted Empirical Processes in Dynamic Nonlinear Models (Second Edi-

tion). Springer, New York.

29



O. V. Lepski and A.B. Tsybakov (2000). Asymptotically and exact nonparametric hypoth-

esis testing in sup-norm and at a fixed point. Probab. Theory Related Fields 117, 17–48.

R. M. Loynes (1980). The empirical distribution function of residuals from generalized regres-

sion. Ann. Statist. 8, 285-298.

J. I. Marden and M. E.T. Muyot (1995). Rank tests for main and interaction effects in

analysis of variance. J. Amer. Stat. Assoc. 90, 1388-1398.

H. Milhem (2003). Testing the Goodness-of-Fit in a Gaussian Regression. Proceedings of the

EYSM 2003, 101–111.

D. A. Pierce and K. J. Kopecky (1979). Testing goodness of fit for the distribution of errors

in regression models. Biometrika 66, 1-6.

F. Pukelsheim (1993). Optimum Experimental Design. Wiley, N.Y.

R. H. Randles and D. A. Wolfe (1979). Introduction to the Theory of Nonparametric Statis-

tics. Krieger Publishing Company.

J. Rice (1984). Bandwidth choice for nonparametric regression. Ann. Statist. 12, 1215-1230.

R. J. Serfling (1980). Approximation Theorems of Mathematical Statistics. Wiley, N.Y.
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