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Abstract 

The paper deals with a method for the analysis of highly fractionated factorial designs proposed 

by Raghavarao and Altan (2003). We show that the method will find "active" factors with almost 

any set of random numbers. Once that an alias set is found active, Raghavarao and Altan (2003) 

claim that their method can resolve the alias structure of the design and identify which of several 

confounded effects is active. We show that their method cannot do that. The error in Raghavarao 

and Altan's (2003) arguments lies in the fact that they treat a set of highly dependent (sometimes 

even identical) F-statistics as if they were independent. 
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1. Introduction 

In a seminal paper, Daniel (1959) introduced the half-normal plot for the analysis of unreplicated 

fractional factorial designs. Since the appearance of Daniel (1959), a lot of work has been done to 

generalize and/or formalize Daniel's (1959) method. The literature on the analysis of such designs 

is abundant. Some papers propose alternative estimates for the variance, like e.g. Lenth (1989) 

and Dong (1993). Others have tried to derive the statistical properties of existing methods and get 

critical values based on the distribution of the estimates (like e.g. Zahn, 1975a, or Kunert, 1997). 

Another group of publications compare several proposed methods, mainly with the help of 

simulations, like e.g. Zahn (1975b) or Haaland and O'Connell (1995).  

An interesting group of papers has tried to develop methods of analysis that are based on some 

formal statistical principle, like e.g. multiple testing (e.g. Voss, 1999) or a Bayesian approach (e.g. 

Box and Meyer, 1986).  

Finally, there is a group of papers that propose methods, the justification of which is purely based 

on intuition. Although this may lead to sensible procedures, there also is a danger. A statistician 

has the duty to separate what part of an apparent structure in a given data set is due to a true 

structure in the data and what part is due to noise. To do this we usually have a model in mind, 

and we have to have some knowledge what our methods are doing when this model holds. This 

knowledge can be based on a mathematical theory, or, if the situation gets too complicated, it can 

be based on simulations.  

Simple intuition can lead to highly questionable methods. If the intuition is not backed up by 

proper thinking, the resulting procedures may become nonsensical. They may lead to conclusions 

that are entirely arbitrary. An example for such a procedure that leads to arbitrary results is the 

one proposed by Raghavarao and Altan (2003). 

In what follows, we try to point out why the method put forward by Raghavarao and Altan (2003) 

should not be used. We demonstrate that this method will lead to conclusions that are arbitrary 

and not backed by the data. One problem is that it will find "active" factors with almost any set of 

random numbers. The other problem is that even in cases where there are truly active factors, it 

tries to resolve the confounding structure of the fractional factorial design in a way that is not 

reasonable. 

 

 

2. Method of Raghavarao and Altan 

Raghavarao and Altan (2003) propose a method to identify active effects in unreplicated 2n 

fractional factorial experiments. They describe their method with the help of an example. For this 

example they use a 25-2 fractional factorial. We begin with a short review of their method and the 

example. 
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The confounding pattern of the 25-2 design used is given by the relation ABC=ADE=BCDE. This 

means that e.g. the main effect of treatment A is confounded with the interaction BC and the 

interaction DE. On the other hand, the main effect B is confounded with AC, and no other two 

factor interaction. For an explanation of how the confounding structure can be derived, see e.g. 

Box, Hunter, Hunter (1978, Section 12). 

The 25-2 design has 8 observations. Raghavarao and Altan (2003) in their method propose to 

consider each of the 10 possible models allowing for two factors and their interaction and 

neglecting the other factors and interactions. This leaves f = 4 degrees of freedom for each of 

these models. For each of these models they calculate the three corresponding F-statistics to 

estimate the three terms in the model, see Table 1. Note that each of the F-statistics in Table 1 has 

1 degree of freedom for the numerator and f = 4 degrees of freedom for the denominator. Hence, 

under the null-hypothesis of no active factors, each F-statistic has the same expectation f/(f–2). 

Unfortunately, for f = 4 the variance does not exist. In a larger example, where f is greater than 4, 

however, the variance of the F-statistic exists. Under the null-hypothesis the F-statistics then all 

have the same variance. 

 

Table 1*. All possible two factor models and corresponding F-statistics for the 25-2-design 

Model Number Terms in Model F-Statistics 
1 A, B, AB 1

AF , 
1
BF , 

1
ABF  

2 A, C, AC 2
AF , 

2
CF , 

2
ACF  

3 A, D, AD 3
AF , 

3
DF , 

3
ADF  

4 A, E, AE 4
AF , 

4
EF , 

4
AEF  

5 B, C, BC 5
BF , 

5
CF , 

5
BCF  

6 B, D, BD 6
BF , 

6
DF , 

6
BDF  

7 B, E, BE 7
BF , 

7
EF , 

7
BEF  

8 C, D, CD 8
CF , 

8
DF , 

8
CDF  

9 C, E, CE 9
CF , 

9
EF , 

9
CEF  

10 D, E, DE 10
DF , 

10
EF , 

10
DEF  

* Table 3 from Raghavarao and Altan (2003) 

 

 

To identify the active factors, Raghavarao and Altan (2003) calculate an adjusted F-Statistic 

)(Fadj  for each alias set. This is derived as follows. 

Assume that e.g. factor A was active. Then we could expect that the F-statistics 1
AF , 2

AF , 3
AF , 4

AF , 

but also 5
BCF  and 10

DEF  should be large. This is due to the fact that the main effect A and the 

interactions BC and DE are in the same alias set. 
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Therefore, it looks sensible to take the average F  of all the F-statistics corresponding to an alias 

set. From this average the expected value for such an F-statistic, i.e. f/(f-2), is subtracted. Then 

this difference is standardized by multiplication with the square root of the number of F-statistics 

used to derive it. Note that under the null-hypothesis and if all the F-statistics were independent, 

this would lead to an ( )adj F  with expectation 0 and (if the variance exists) with a variance that 

does not depend on the number of F-statistics used to derive it. If for an alias set, all the F-

statistics are large, then the adjusted F-statistic will be larger than for an alias set where just one of 

the F-statistics is large. Therefore a large ( )adj F  looks more convincing than just one large F-

statistic. This argumentation sounds intuitively appealing - we will, however, see below that there 

is a fundamental error in the argumentation. 

For the 25-2 design considered in the example, the 7 alias sets, the formulae for the average of the 

F-statistics and the adjusted F-statistics are given in Table 2. 

 

 

Table 2*. Alias sets with main effects and two factor interactions along with F  and adjusted F  

values 

Alias Set Main Effects and  
2 Factor Interactions F  )(Fadj  

I A = BC = DE ( ) 61054321
DEBCAAAAI FFFFFFF +++++=  ( ) 62−IF  

II B = AC ( ) 527651
ACBBBBII FFFFFF ++++=  ( ) 52−IIF  

III C = AB ( ) 519852
ABCCCCIII FFFFFF ++++=  ( ) 52−IIIF  

IV D = AE ( ) 5410863
AEDDDDIV FFFFFF ++++=  ( ) 52−IVF  

V E = AD ( ) 5310974
ADEEEEV FFFFFF ++++=  ( ) 52−VF  

VI BD = CE ( ) 296
CEBDVI FFF +=  ( ) 22−VIF  

VII BE = CD ( ) 287
CDBEVII FFF +=  ( ) 22−VIIF  

* Table 4 from Raghavarao and Altan, corrected for misprints  

 

The so calculated adjusted F-statistics are now plotted in descending order. One expects that the 

adjusted F-statistic of an alias set containing an active factor or interaction will be large compared 

to the other F-statistics. Raghavarao and Altan (2003) claim that if there are active factors then 

there will be an "elbow shape formation". Here elbow shape means that the adjusted F-statistics 

roughly speaking are arranged along two lines, one with a greater slope with the large F-statistics 

(presumably the ones corresponding to active factors), one with a smaller slope, with the small F-

statistics. 

If the plot has an elbow shape formation, the method declares those F-statistics to be significant, 

which lie along the line with the steeper slope. Again, we will point out in the next section why 

this approach is highly questionable. 
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When an alias set is assumed to be active, the method computes adjusted F-statistics for the main 

effects and 2 factor interactions in that set. These adjusted F-statistics are calculated analogous to 

the ones for the alias sets, but we take the average only over those F-statistics which test the factor 

that we are interested in, not the ones which test the alialised factors. For instance, to calculate the 

adjusted F-statistic for the factor A we would take the mean of the four statistics 1
AF , 2

AF , 3
AF , 

4
AF , subtract 2 and multiply by the square root of 4, i.e. 2. The adjusted F-statistic for the 

interaction BC would be 5
BCF  minus 2 (multiplied by 1). For each alias set that was declared 

active, the method then chooses the factor or interaction with the largest adjusted F-statistic, and 

claims that this is the one that is active and therefore responsible for the size of the contrast. 

 

 

3. Discussion of the method 

The method of Raghavarao and Altan (2003) is developed using heuristic arguments only. 

Although there are many good heuristic methods in the literature, intuition sometimes can 

lead to questionable results. In our experience it is important to examine the mathematical 

properties of a method or at least do some simulation runs to get a feeling of what a method 

really does. 

For these reasons we found it interesting to have a closer look at the proposed method. 

In their 25-2 design, Raghavarao and Altan (2003) consider all possible sub-models with two 

factors and the corresponding interaction. For each of the factors of each of these models they 

calculate the F-statistic. This procedure will lead to valid F-tests whenever all contrasts not in the 

model are not active. There are similar approaches in the literature: e.g. Berk and Picard (1991) as 

well as Al-Shiha and Yang (1999) would calculate similar F-statistics and compare the largest of 

those to an appropriate critical value.  

To identify which F-statistic indicates significance, Raghavarao and Altan (2003) go another way. 

They calculate their adjusted F-Statistic. When they do that, however, they do not realise that the 

F-statistics used for the calculation of an adjusted F-statistic are not independent at all.  

In the 25-2 design, there are exactly 7 independent contrasts. If we assume a model with two main 

effects and their interaction, then there are three contrasts used to estimate the effects in that 

model. The other four contrasts can be used to estimate the variance. Hence, each of the F-

statistics in Table 1 is the quotient of the square of one of these contrasts, divided by the mean of 

the square of four others. The confounding structure in Table 2 helps to see which contrast plays 

which role in each of the models. For instance model 1 in Table 1 uses the factors A and B and the 

interaction AB. From Table 2 we see that the contrasts corresponding to the alias sets I, II and III 

are used to estimate the parameters of the model, while the alias sets IV, V, VI and VII are used to 

calculate the variance. Hence, 1
AF  uses the square of the contrast corresponding to alias set I as 
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numerator and the mean square of the alias sets IV, V, VI and VII as denominator. However, 

model 2 from Table 1 uses the same three contrasts to estimate the parameters, since AC is 

confounded with B and C is confounded with AB. Therefore, it also uses the same four contrasts 

to estimate the variance. Consequently, 2 1
A AF F= . 

In Table 3 we list the contrasts used for numerators and denominators of the 30 F-statistics in 

Table 1. We find that quite a few of them are identical.  

 

Table 3 

Contrasts used to calculate the F-statistics of the two factor models proposed by Raghavarao and 

Altan (2003) 

Model No Terms in the 

model 

F-statistics with corresponding contrasts in 

the numerator 

contrasts used for the 

denominator 

1 A, B, AB 1
AF  with I, 1

BF  with II, 1
ABF  with III IV, V, VI, VII 

2 A, C, AC 2
AF  with I, 2

CF  with III, 2
ACF  with II IV, V, VI, VII 

3 A, D, AD 3
AF  with I, 3

DF  with IV, 3
ADF  with V II, III, VI, VII 

4 A, E, AE 4
AF  with I, 4

EF  with V, 4
AEF  with IV II, III, VI, VII 

5 B, C, BC 5
BF  with II, 5

CF  with III, 5
BCF  with I IV, V, VI, VII 

6 B, D, BD 6
BF  with II, 6

DF  with IV, 6
BDF  with VI I, III, V, VII 

7 B, E, BE 7
BF  with II, 7

EF  with V, 7
BEF  with VII I, III, IV, VI 

8 C, D, CD 8
CF  with III, 8

DF  with IV, 8
CDF  with VII I, II, V, VI 

9 C, E, CE 9
CF  with III, 9

EF  with V, 9
CEF  with VI I, II, IV, VII 

10 D, E, DE 10
DF  with IV, 10

EF  with V, 10
DEF  with I II, III, VI, VII 

 

It follows from Table 3 that the F-statistics  

1
AF , 2

AF  and 5
BCF , 

1
BF , 2

ACF  and 5
BF , 

1
ABF , 2

CF  and 5
CF , 

3
AF , 4

AF  and 10
DEF , 

3
DF , 4

AEF  and 10
DF , 

3
ADF , 4

EF  and 10
EF  

are respectively the same, whatever observations we might have. Hence there are only 18 different 

F-statistics possible and e.g. the adjusted F-statistics for the alias set I, in reality is based on the 
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sum of just two F-statistics, not 6. The adjusted F-statistic for the alias set II is based on the sum 

of three F-statistics, where one is weighted three times higher than the others. This shows that the 

argumentation in Raghavarao and Altan (2003) is untenable when claiming that the adjusted F-

statistics for the alias set I should be multiplied by 6  and that for the alias set II should be 

multiplied by 5 . 

Things are even worse than that. Note that even those F-statistics for a given alias set which are 

not identical are clearly not independent: they all use the same numerator. Hence, they will not be 

uncorrelated, but highly positively correlated (whenever the correlation exists). In fact, if the 

correlation exists, it will be close to 1. This implies that the means F  of the F-statistics 

corresponding to a given alias set, will have a variance that almost is the same as the variance of 

the single F-statistics (provided these variances exist). For this it follows that the adjusted F-

statistics will not have identical variances, but that the variance of an adjusted F-statistic will 

equal k times the variance of a single F-statistic, where k is the number of F-statistics used to 

calculate it. In the 25-2 design considered to explain the method, this implies that compared to the 

alias sets II, III, IV and V, the adjusted F-statistic for alias set I will be pushed away from 0, while 

the adjusted F-statistics for alias sets VI and VII will be pushed towards 0, whatever observations 

we might have. 

Now assume we observe a set of random numbers. Note that this may happen in practice, even 

with industrial experiments. In our practical experience, we have seen more than one expensive 

experiment, where the measuring device did not work like we had expected, or where there were 

such strong uncontrolled influences on the observations that any possible effect of the factors 

could not be seen. In some of these cases, the problems were only realized in retrospect after the 

experiment had been done, when a global test could not reject the null-hypothesis that none of the 

factors had any effect. 

We therefore think that any reasonable method should allow for such a test and should make sure 

that the probability to find "active" effects in a set of random numbers is controlled. 

With the method of Raghavarao and Altan (2003), however, we will almost surely identify 

"active" factors. To demonstrate this we have done a simulation study where we used a formalized 

version of Raghavarao and Altan's method. In this simulation study, we produced 10,000 sets of 8 

independent and identically normally distributed observations, which we analysed as if they were 

the response of the 25-2 design. We analysed each of the data sets with the proposed method. 

Figure 1 displays the adjusted F-statistics for one of these random samples. We think that this is 

one instance where the method would identify an elbow-structure.  

To produce Figure 1, we sorted the adjusted F-statistics according to size, and plotted them such 

that the x-coordinate of the i-th point was i, the y-coordinate of the i-th point was the i-th largest 

adjusted F-statistic. If in Figure 1 we would fit a straight line to the smallest four points, then the 

largest two points would be clearly above the line. We therefore might fit another line to the three 
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largest points. The two lines would meet approximately at the third point. We think that this is 

what Raghavarao and Altan (2003) termed elbow shape. 

 

 

Figure 1: An example of adjusted F-statistics with an elbow structure 
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To formally identify whether there was an elbow shape in a given sample, we always fitted a 

straight line to the smaller 4 of the 7 adjusted F-statistics. If the largest of the F-statistics was 

more than 3 times larger than the value of the straight line at x = 1, we concluded that there was an 

elbow shape. This happened in more than 85% of all random data sets in our study. Hence, the 

method clearly does not help to see whether there are truly active factors or not. An easier way to 

analyse (with almost the same statistical properties) would be to simply declare the two or three 

largest of the contrasts as active. 

 

To explain why such a high fraction of plots with an elbow shape had to be expected, we might 

consider the theoretical distribution of an F-statistic with 1 and 4 degrees of freedom. If each point 

of the empirical distribution function lay on the theoretical distribution function, then the i-th 

largest observation would equal ( )7
81

4,1
iF −− , where  1

4,1
−F  is the inverse of the F-distribution with 1 

and 4 degrees of freedom. Since this would mean that the largest observation had to be ∞ , it is 

customary to plot ( )8
81

4,1
iF −−  against i. This produces Figure 2 which clearly shows the elbow 

shape.  
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Figure 2: Theoretical observations from a F distribution with 1 and 4 degrees of freedom 

1 2 3 4 5 6 7

0
1

2
3

th
eo

re
tic

al
 o

bs
er

va
tio

ns

 

However, what makes Raghavarao and Altan's (2003) method particularly questionable is their 

claim that they can resolve the alias structure of the design.  

Raghavarao and Altan (2003) claim, that their method can identify which of the effects in an alias 

set is active. This certainly would be nice, but of course it is not possible. To give an example, we 

considered the 25-2 design and the situation where the factors A and B both have a main effect but 

there is no interaction. All other factors had no effect. 

To get data with an effect of A and of B, we simulated 8 independent normally distributed 

observations, each with expectation 0 and variance 8. To those observations corresponding to runs 

with factor A at +1, we added 10, from those observations corresponding to runs with factor A at 

–1 we subtracted the same number. Further, we added 3 to all observations with B at +1 and 

subtracted 3 from all observations with B at –1. It is easy to see that then the squared estimate for 

the half-effect of A has expectation 101, while the squared estimate for B has expectation 10. The 

squared estimates for the factors in other alias sets have expectation 1. 

We then calculated the adjusted F-statistics for the factors and interactions within alias sets I and 

II. Note that the method would correctly decide that A and B are active only if both 

{ }( ) max ( ), ( )A BC DEadj F adj F adj F≥ , 

and 

( ) ( )B ACadj F adj F≥ . 

We did this simulation 10,000 times and counted the number of simulation runs where the 

inequalities were true. It turned out that the first inequality was true in all runs, but the second 

inequality only held in 2 out of 10,000 runs. So the estimated probability is 0.9998 that the 

method falsely concludes that AC is active and B is not active. A very poor performance, indeed. 



 

 10 

 

Table 4. Expected Sum of Squares due to the alias sets 

Alias Set Main Effects and  
2 Factor Interactions 

Sum of Squares 

I A = BC = DE xSSI =  
II B = AC 10=SSII  
III C = AB 1=SSIII  
IV D = AE 1=SSIV  
V E = AD 1=SSV  
VI D = CE 1=SSVI  
VII BE = CD 1=SSVII  

 

 

To get some more insight in what is going on, we let the effect of A vary and consider the 

simplified situation where each squared estimate is equal to its expectation. Assume A has the 

effect 1x −  (instead of 10) and B has the effect 3 as before. Table 4 lists the expected sum of 

squares of the 7 contrasts for this situation.  

 

Table 5. F-statistics for the data in Table 4 

Model Number Terms in Model F Statistics 
1 A, B, AB xFA =1

, 101 =BF , 11 =ABF  

2 A, C, AC xFA =2
, 12 =CF , 102 =ACF  

3 A, D, AD 
13

43 x
FA = , 

13

43 =DF , 
13

43 =ADF  

4 A, E, AE 
13

44 x
FA = , 

13

44 =EF , 
4 4

13
AEF =  

5 B, C, BC 105 =BF , 15 =CF , xFBC =5
 

6 B, D, BD 
3

406

+
=

x
FB , 

3

46

+
=

x
FD , 

3

46

+
=

x
FBD  

7 B, E, BE 
3

407

+
=

x
FB , 

3

47

+
=

x
FE , 

3

47

+
=

x
FBE  

8 C, D, CD 
12

48

+
=

x
FC , 

12

48

+
=

x
FD , 

12

48

+
=

x
FCD  

9 C, E, CE 
12

49

+
=

x
FC , 

12

49

+
=

x
FE , 

12

49

+
=

x
FCE  

10 D, E, DE 
13

410 =DF , 
13

410 =EF , 
13

410 x
FDE =  

 

According to Raghavaraos and Altan's (2003) method we start by computing the F-statistics for 

each of the 10 models in Table 1. For example, for model 3 we get as the denominator SSE of the 

F-statistic 
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( ) ( )
4

13
11110

4

1

4

1 =+++=+++= SSVIISSVISSIIISSIISSE . 

Thus we get the following F-statistics  

13

43 x

SSE

SSI
FA == , 

13

43 ==
SSE

SSIV
FD  and 

13

43 ==
SSE

SSV
FAD . 

The F-statistics for each of the 10 models are given in Table 5. 

 

From these F-statistics the F -values and the adjusted F-statistics can be derived, see Table 6. 

 

Table 6. The adjusted F-statistics 

Alias Set Main Effects and  
2 Factor Interactions 

F  )(Fadj  

I A = BC = DE x
26

17
 62

26
17

�
�

�
�
�

� −x  

II B = AC 
3

16
6

+
+

x
 5

3
16

4 �
�

�
�
�

�

+
+

x
 

III C = AB ( )125

8

5

3

+
+

x  ( ) 5
125

8

5

2
��
�

�
��
�

�

+
+−

x
 

IV D = AE ( ) ( )125

4

35

4

65

12

+
+

+
+

xx  ( ) ( ) 5
125

4

35

4

65

53
��
�

�
��
�

�

+
+

+
+−

xx
 

V E = AD ( ) ( )125

4

35

4

65

12

+
+

+
+

xx  ( ) ( ) 5
125

4

35

4

65

53
��
�

�
��
�

�

+
+

+
+−

xx
 

VI BD = CE 
12

2

3

2

+
+

+ xx
 22

12
2

3
2

�
�

�
�
�

� −
+

+
+ xx

 

VII BE = CD 
12

2

3

2

+
+

+ xx
 22

12
2

3
2

�
�

�
�
�

� −
+

+
+ xx

 

 

To decide whether B or AC is active, the method computes and compares the corresponding 

adjusted F-statistics as follows 

( )BFadj 42
4

7651

�
�
	



�
�

−
+++

= BBBB FFFF
22

4
3

40

3

40
1010



�


�

	







�

�

−+
+

+
++

= xx
3

40
6

+
+=

x

( ) 821022 =−=−= ACAC FFadj . 

We find that 

()ACBFadjFadj≥ ( ) ( )ACB FadjFadj ≥ 8
3

40
6 ≥

+
+⇔

x
17≤⇔ x . 

Hence, Raghavarao and Altan (2003) will falsely conclude that the interaction AC is active 

whenever x > 17. They will only see that B is active if x � 17. 
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To resolve the alias set A=BC=DE one has to compute the adjusted F-statistics for A, BC and DE, 

which give ( ) 4
3

17 −= xFadj A , ( ) 2−= xFadj BC  and ( ) 2
13

4 −= xFadj DE . 

Comparing these values, it is easy to see that again the decision only depends on the size of x: 

we get a 
6.5,

decision for ,  if 
6.5.

A x

BC x

≥�
� <


 

So we get the correct conclusion that A and B are active only if the effect 1x −  of A is between 

2.1 and 4. Note that the situation in our simulation corresponds to the case x=101. 

To understand what is going on here, we should realize that e.g. the interaction AC gets tested 

only in models where factor A is present. Hence, the F-statistics for AC will never have A in the 

denominator. The main effect of B, however, gets tested with some F-statistics that do have A in 

the denominator (and therefore are rather small). This is why, for a large effect of A, the method 

thinks that AC and not B is active. Obviously, when there are two active main effects, the method 

tries to explain the smaller of these as an interaction of the larger factor with some other factor.  

We therefore can see that the complicated method of resolving the alias structure breaks down to 

the following simple algorithm: If there is an active alias group containing a main effect M, say, 

and some two factor interactions, then check whether one of the interactions contains a factor L, 

say, whose main effect is in another active alias set. If the estimate for the effect of L is "much" 

larger than M, then declare the interaction as active, if L is about the same size or smaller than M, 

then declare M itself as active. 

In their paper, Raghavarao and Altan (2003) do a reanalysis of an example from Box and Meyer 

(1993). Box and Meyer (1993) identified the main effects of factors B, D and E as active, where 

the estimated effect of B was largest of the three. We were not surprised to read that Raghavarao 

and Altan (2003) claim that their method identified B and the two factor interactions BD and DE 

instead. 

Raghavarao and Altan (2003) motivated their method with the data from a 29-5 design. For the 

data, see Table 1 in Raghavarao and Altan (2003). They had used the Bayesian analysis of Box 

and Meyer (1993) and a method implemented in SAS to analyse these data. (They write in their 

paper that they used the macro ADXCODE, but this macro cannot be used not for the analysis of 

data. Presumably they used the macro ADXFFA.) They found that both standard methods did not 

find any active factors. So they came to the conclusion that these methods are not able to detect 

active contrasts and decided to develop a new method. 

Applying their method, they claim that the factors and interactions BF, J, E, G and DE should be 

active. 

For data like these, we would start the analysis with a half normal plot. Note that SAS, in their 

explanation of the ADXFFA-macro, recommend to use a normal probability plot, see Box, Hunter 

and Hunter (1978, section 10.9). We prefer the half-normal plot for various reasons, but this is a 
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matter of taste. In this example both the normal plot and the half normal plot would lead to very 

similar conclusions. 

When we did the half normal plot for Raghavarao and Altan's data, we got the graph in Figure 3. 

 

Figure 3. Half-Normal-Plot for the data in Raghavarao and Altan's Table 1 
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This half-normal plot looks exactly like what we would expect from a set of random numbers. 

Whenever we have seen a half-normal plot like that in our consulting work, we could verify in 

discussions with the experimenters that we had the following situation: There were no active 

factors in this experiment, the random error was too large compared to any possible signal. 

 

4. Summary 

We think that the method of Raghavarao and Altan (2003) is fundamentally wrong and should not 

be used. The heuristic arguments used to motivate the method cannot work. The fact that they 

cannot work is related to a lesson that we try to teach to our students in their first year: 

While the mean over several numbers intuitively seems more convincing than a single number, 

this only is true if the numbers were derived in separate, preferably independent, measurements. 

Writing down the same number 5 times and taking the average, is by no means more convincing 

than just one single number. 
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