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Abstract
In this paper robust and efficient designs are derived for several exponential decay models.

These models are widely used in chemistry, pharmacokinetics or microbiology. We propose
a maximin approach, which determines the optimal design such that a minimum of the
D-efficiencies (taken over a certain range for the nonlinear parameters) becomes maximal.
Analytic solutions are derived if optimization is performed in the class of minimal supported
designs. In general the optimal designs with respect to the maximin criterion have to be
determined numerically and some properties of these designs are also studied.

AMS Subject Classification: 62K05
Keywords and phrases: exponential regression model, D-optimal design, robust design, maximin design,
pharmacokinetics, microbiology

1 Introduction

Exponential regression models are widely used in subject areas such as biology, chemistry, phar-
macokinetics or microbiology. For example in microbiology these models are usually applied for
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describing growth and death of microorganisms, dose-response analysis and risk assessment (Cole-
man, Marks, 1998), and kinetics of metabolite production. These models are also incorporated in
the numerous models in predictive microbiology for describing effects of temperature (Geeraerd
et al, 2000). Other applications of exponential regression models include pharmacokinetics [see
Landaw and DiStefano (1984)], biology [see Liebig (1988), or Krug and Liebig (1988)] or toxicol-
ogy [Becka and Urfer (1993, 1996)]. Several applications involving more complicated exponential
regression models can be found in Cobaleda et al. (1994), Alvarez et al. (2003) or Pruitt and
Kamau (1993).
An appropriate choice of the experimental conditions can improve the quality of statistical infer-
ence substantially and therefore many authors have discussed the problem of designing experiments
for exponential regression models. Usually optimal or efficient designs maximize an appropriate
function of the Fisher information matrix in the particular model and this matrix depends on the
nonlinear parameters of the model. Numerous authors investigate local optimal designs [see Melas
(1978), Han and Chaloner (2003) or Dette, Melas and Pepelysheff (2003)], which assume some
prior guess for the unknown parameters in the regression model [see Chernoff (1953)]. Because this
approach is not necessarily robust with respect to a misspecification and may result in an ineffi-
cient design several authors use a Bayesian approach to obtain robust designs [see Mukhopadhyay
and Haines (1994), Dette and Neugebauer (1997) or Han and Chaloner (2003) among others]. The
Bayesian methodology requires the specification of a prior distribution for the nonlinear param-
eters in the models. As an alternative for the construction of robust designs, we propose in this
paper a maximin approach based on the D-optimality criterion, which only requires the specifica-
tion of a certain range for the unknown parameter of the model. This method determines a design,
which maximizes a minimum of D-efficiencies [see Müller (1995), Dette (1997), Imhof (2001)] and
is motivated by the fact that in some cases practitioners will have difficulties to specify a prior
distribution for the unknown parameter, especially if this is multidimensional.
We will concentrate on the exponential regression model

E(Y |t) = η(t, θ) = a + be−λt, D(Y |t) = σ2(1.1)

and several simplifications, where the explanatory variable t varies in the design space

T = [tmin, tmax] ⊂ R,

θ = (a, b, λ)T is a vector of unknown parameters (λ > 0) and different measurements are as-
sumed to be independent. This model has applications in agricultural sciences, where it is called
Mitscherlichs growth law (b < 0) and used for describing the relation between the yield of a crop
and the amount of fertilizer [see Box and Lucas (1959)]. In fisheries research this model is called
Bertalanffy growth curve (b < 0) and used for the description of the length of a fish in dependence
of its age [see Ratkowsky (1983, 1990)]. The model (1.1) contains several sub-models which are
also widely used. For example, the model

E(Y |t) = η(t, θ) = a + e−λt(1.2)

is obtained from (1.1) assuming that b = 1 and model (1.1) reduces to

E(Y |t) = η(t, θ) = a(1 − e−λt),(1.3)
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if it is assumed that b = −a. These models are often used for analyzing the growth of crops [see
Liebig (1988) or Krug and Liebig (1988)]. A further simplification appears if the parameter a is
known to be 0 which yields the model

E(Y |t) = η(t, θ) = be−λt.(1.4)

The regression model (1.4) has applications in pharmacokinetics [see Landaw and DiStefano
(1984)]. Local D- and c-optimal designs for the model (1.1) and the sub-models (1.2) and (1.4)
have been recently found in Han and Chaloner (2003), some Bayesian D-optimal designs for these
models are given in Dette and Neugebauer (1997).
It is the purpose of the present paper to complete these results by presenting some optimal designs
for the models (1.1) - (1.4) with respect to a maximin efficiency criterion. In Section 2 we state
some preliminary notation and general results on maximin efficient designs. The definition of the
maximin optimality criterion requires the knowledge of the local D-optimal designs, which are
given in Section 3 (for most but not for all of the models under consideration, these designs are
available from the literature). Section 4 is devoted to the problem of constructing maximin optimal
designs. Optimal designs supported on a minimal number of points are determined explicitly, but
the answer to the question if these designs are optimal within in the class of all designs depends
on the size of the range specified for the parameter. In the case where the minimal supported
designs are not optimal, the maximin optimal designs are found numerically. Finally some of the
proofs are given in an appendix in Section 5.

2 Maximin efficient designs

Following Kiefer (1974) we call any probability measure ξ with finite support on the interval T an
(approximate) design. The support points give the locations where observations have to be taken,
while the masses correspond to the relative proportions of total observations to be taken at the
particular points. If the distribution of Y in (1.1) is normal then the Fisher information matrix
of a design ξ in one of the models (1.1) - (1.4) is defined by

M(ξ, θ) =

∫
T

f(t, θ)fT (t, θ)dξ(t),(2.1)

where

f(t, θ) =
∂η

∂θ
(t, θ)(2.2)

is the vector of partial derivatives of the regression function. It is easy to see that in general the
Fisher information matrix depends on the parameters a, b, λ. In the exponential regression models
(1.1) - (1.4) these matrices can easily be calculated and are given by

M(ξ, θ) =

∫
T


 1 e−λt −bte−λt

e−λt e−2λt −bte−2λt

−bte−λt −bte−2λt b2t2e−2λt


 dξ(t)(2.3)

for the model (1.1),

M(ξ, θ) =

∫
T

[
1 −te−λt

−te−λt t2e−2λt

]
dξ(t) ,(2.4)
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for the model (1.2),

M(ξ, θ) =

∫
T

[
(1 − e−λt)2 at(1 − e−λt)e−λt

at(1 − e−λt)e−λt a2t2e−2λt

]
dξ(t)(2.5)

for the model (1.3), and

M(ξ, θ) =

∫
T

[
e−2λt −tbe−2λt

−tbe−2λt b2t2e−2λt

]
dξ(t)(2.6)

for the model (1.4).
A local optimal design maximizes an appropriate function of the information matrix [see Silvey
(1980) or Pukelsheim (1993)], which is called optimality criterion. There are numerous optimality
criteria proposed in the literature to discriminate between competing designs and we restrict
ourselves to the famous D-optimality criterion. A design is called local D-optimal if it maximizes

det M(ξ, θ).(2.7)

Local D-optimal designs have been found for some of the models (1.1) - (1.4) [see Dette and
Neugebauer (1996,1997) and Han and Chaloner (2003)]. Note that the implementation of local
optimal designs in practice requires a prior guess for the unknown parameter, which is rarely
available in real experiments. Because statistical inference based on a local optimal design might
be very sensitive with respect to a misspecification of this preliminary guess, several alternative
procedures have been proposed in the literature to obtain designs, which are on the one hand
efficient for parameter estimation and on the other hand robust with respect to misspecifications
of the unknown parameter θ [see Pronzato and Walter (1985) or Chaloner and Verdinelli (1995)].
In the present paper we will use an alternative approach to obtain efficient and robust designs for
the exponential regression models (1.1) - (1.4), which is based on the maximin concept.
To be precise assume that the regression function η under consideration contains m unknown
parameters, i.e. θ ∈ R

m and let ξD
θ denote a local D-optimal design, i.e. the design which

maximizes (2.7) under the assumption that θ is the ’true’ parameter. For a given design ξ the
D-efficiency of ξ (with respect to the local optimal design) is defined by

effD(ξ, θ) = m

√
det M(ξ, θ)

det M(ξD
θ , θ)

,(2.8)

[see Pukelsheim (1993)] and a design ξ∗ is called standardized maximin D-optimal (with respect
to Θ) if it maximizes the worst D-efficiency, i.e.

min
θ∈Θ

effD(ξ, θ) → max
ξ

,(2.9)

where Θ ⊂ R
m is a given set of possible values for the parameter θ, which has to be specified by

the experimenter [see Müller (1995), Dette (1997) or Imhof (2001)].
Note that the optimality criterion (2.9) is not differentiable and as a consequence the problem of
determining standardized maximin D-optimal designs is not trivial. This difficulty is also reflected
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in the following equivalence theorem for this type of optimality criterion [see Dette, Haines and
Imhof (2003)] which gives a characterization of standardized maximin D-optimal designs.

Theorem 2.2. A design ξ∗ is standardized maximin D-optimal if and only if there exists a
probability distribution πω on the set N (ξ∗) ⊆ Θ such that the inequality∫

N (ξ∗)

f(t, θ)TM−1(ξ∗, θ)f(t, θ) dπw(θ) ≤ m(2.10)

holds for all t ∈ T , where the set N (ξ∗) is defined by

N (ξ∗) =
{
θ ∈ Θ | effD(ξ∗, θ) = min

θ∈Θ
effD(ξ∗, θ)

}
.(2.11)

Moreover, there is equality in (2.10) for all support points of ξ∗.

The distribution πω is called least favourable prior. Note also that the definition of the standardized
maximin D-optimality criterion requires the knowledge of the local D-optimal designs ξD

θ , or at
least knowledge of the value of the optimal determinant detM(ξD

θ , θ). For this reason we give in
the next section some results on local D-optimal designs for the models introduced in Section 1.

3 Local optimal designs

It is easy to see from the representation of the information matrices (2.3) - (2.6) that local D-
optimal designs for the exponential regression models (1.1) - (1.4) do not depend on the parameters
a, b. For this reason the local D-optimal designs will be denoted by ξD

λ throughout this paper. We
start with a simple auxiliary result, which relates local D-optimal designs on different design spaces
and simplifies the calculation of local D-optimal designs substantially. The proof is straightforward
and therefore omitted.

Lemma 3.1.
a) Assume that µ ∈ R. In the models (1.1) and (1.4) the local D-optimal designs ξD

λ and ξ̃D
λ on

the design spaces T = [tmin, tmax] and T̃ = [tmin − µ, tmax − µ] are related by the transformation
t → t + µ, that is

ξD
λ (t) = ξ̃D

λ (t + µ)

b) Assume that γ > 0. In the models (1.1) - (1.4) the local D-optimal designs ξD
λ and ξ̃D

λ on
the design spaces T = [tmin, tmax] and T̃ = [ tmin

γ
, tmax

γ
] are related by the transformations t → γt,

λ → γλ that is
ξD
λ (t) = ξ̃D

γλ(γt)

Note that the first part of Lemma 3.1 does not apply to the exponential regression model (1.2)
and (1.3). In the following we will restrict ourselves to the interval

[tmin, tmax] = [0, T ] ,

which is most important from a practical point of view. For model (1.1) and (1.4) the local D-
optimal designs on a general interval are obtained by a linear transformation [for model (1.2) and
(1.3) see the examples below]. The following Lemma specifies the local D-optimal designs on the
interval [0, T ] for the exponential regression models introduced in Section 1.
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Lemma 3.2.

(a) The local D-optimal design for the exponential regression model (1.1) on the interval [0, T ]
is given by

ξD
λ =

(
0 t∗D T

1/3 1/3 1/3

)
,

where the point t∗D is defined by

t∗D =
1

λ
− Te−λT

1 − e−λT
.(3.1)

(b) The local D-optimal design for the exponential regression model (1.2) on the interval [0, T ]
is given by (

0 t∗D
1/2 1/2

)
,(3.2)

where t∗D = min{1/λ, T}.

(c) The local D-optimal design for the exponential regression model (1.3) on the interval [0, T ]
is given by (

t∗D T
1/2 1/2

)
,

where the point t∗D is defined by (3.1)

(d) The local D-optimal design for the exponential regression model (1.4) on the interval [0, T ]
is given by the design (3.2).

Example 3.3.

(a) It follows from Lemma 3.1 that local D-optimal designs on the interval [tmin, tmax] for the
models (1.1) and (1.4) are obtained from the designs on the interval [0, tmax − tmin] by the
transformation t → t + tmin. For example, the local D-optimal design for the exponential
regression model (1.1) puts equal masses at the points tmin, tmax and

tmin +
1

λ
− (tmax − tmin)e

−λ(tmax−tmin)

1 − e−λ(tmax−tmin)
=

1

λ
+

tmine
−λtmin − tmaxe

−λtmax

e−λtmin − e−λtmax

[see Han and Chaloner (2003)].

(b) For the model (1.2) the local D-optimal design on the interval [tmin, tmax] has equal masses
at the points t0 and t1, where

t0 = tmin , t1 = tmax

if 1/λ �∈ T and
t0 = 1/λ , t1 = argmaxt∈{tmin,tmax}{−te−λt}

if 1/λ ∈ T [see Han and Chaloner (2003)].

(c) For the model (1.3) the local D-optimal design on the interval [tmin, tmax] with tmin > 0 has
equal masses at the points t0 and tmax, where t0 = tmin if tmin > t∗D, t0 = t∗D if tmin < t∗D and
the point t∗D is defined in (3.1).
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4 Standardized maximin D-optimal designs

The determination of standardized maximin D-optimal designs is usually substantially more dif-
ficult, because in contrast to the local D-optimal designs discussed in Section 3 the number of
support points of the standardized maximin D-optimal designs is not necessarily equal to the
number of parameters in the regression model. Nevertheless some simplification of the optimiza-
tion problem is possible. For this recall the definition of the information matrices in (2.3) - (2.6),
then it is easy to see that the D-efficiency (2.8) of any design depends only on the parameter λ.
We reflect this fact using the notation effD(ξ, λ) for the efficiency and

min
λ∈Λ

effD(ξ, λ)(4.1)

for the optimality criterion (2.9), where Λ is an interval in the positive real line, that is Λ = [λ1, λ2].
The standardized maximin D-optimal design (for the set Λ) is denoted by ξD

Λ . Moreover an
analogue of Lemma 3.1 is readily available.

Lemma 4.1.

(a) Assume that µ ∈ R. In the models (1.1) and (1.4) the standardized maximin D-optimal
designs ξD

Λ and ξ̃D
Λ on the design spaces T = [tmin, tmax] and T̃ = [tmin − µ, tmax − µ] are

related by the transformation t → t + µ, that is

ξD
Λ (t) = ξ̃D

Λ (t + µ).

(b) Assume that γ > 0 and define γΛ = [γλ1, γλ2]. In the models (1.1) - (1.4) the standardized
maximin D-optimal designs ξD

Λ and ξ̃D
λ on the design spaces T = [tmin, tmax] and T̃ =

[ tmin

γ
, tmax

γ
] are related by the transformation t → γt, λ → γλ, that is

ξD
Λ (t) = ξ̃D

γΛ(γt).

4.1 Minimal supported designs

We begin our investigations by optimizing the criterion (2.9) in the class of all minimal supported
designs. Throughout this paper we call an optimal design with k support points an optimal k-point
design.

Theorem 4.2.

(a) The standardized maximin D-optimal three point design for the exponential regression model
(1.1) on the interval [0, T ] is given by

ξD
Λ (t∗) =

(
0 t∗ T

1/3 1/3 1/3

)
,

where the point t∗ is defined as the unique solution of the equation

effD(ξD
Λ (t), λ1) = effD(ξD

Λ (t), λ2)(4.2)

and

effD(ξD
Λ (t), λ) =

(1 − e−λT )te−λt − (1 − e−λt)Te−λT

(1 − e−λT )( 1
λ

+ T
1−eλT )e

−1− λT

1−eλT − (1 − e
−1− λT

1−eλT )Te−λT
(4.3)
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(b) The standardized maximin D-optimal two point design for the exponential regression model
(1.2) on the interval [0, T ] is of the form

ξD
Λ =

(
0 t∗

1/2 1/2

)
,(4.4)

where the point t∗ satisfies

t∗ =




log λ2 − log λ1

λ2 − λ1
if T >

1

λ1

log(Tλ2) + 1 − Tλ1

λ2 − λ1
if

1

λ2
≤ T ≤ 1

λ1

T if T <
1

λ2

(c) The standardized maximin D-optimal two point design for the exponential regression model
(1.3) on the interval [0, T ] is given by

ξD
Λ (t∗) =

(
t∗ T

1/2 1/2

)
,

where the point t∗ is defined as the unique solution of (4.2) and (4.3).

(d) The standardized maximin D-optimal two point design for the exponential regression model
(1.4) on the interval [0, T ] is given by the design (4.4).

It follows from the proof of Theorem 4.2 that in all cases the non-trivial support point t∗ of
the standardized maximin D-optimal design ξD

Λ (t∗) is determined as the unique solution of the
equation

eff(ξD
Λ (t∗), λ1) = eff(ξD

Λ (t∗), λ2).

Note also the equations for the model (1.1) and (1.3) are identical. As a consequence we obtain
the following statement.

Corollary 4.3. Let u∗(λ1, λ2) denote the unique solution of the equation (4.2) and

ξD
Λ =

(
u∗(λ1, λ2) T

1/2 1/2

)

denote the standardized maximin D-optimal two-point design for the exponential regression model
(1.3) with respect to the interval Λ = [λ1, λ2], then the design(

0 u∗(λ1, λ2) T
1/3 1/3 1/3

)

is the standardized maximin D-optimal three-point design for the exponential regression model
(1.1) (with respect to the interval Λ = [λ1, λ2]).
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Remark 4.4. Note that Theorem 4.2 does not guarantee that the minimal supported designs
are in fact standardized maximin D-optimal within the class of all designs. This property has
to be checked by an application of the equivalence Theorem 2.2. However, it follows from the
proof of Theorem 4.2 that the least favourable distribution πω required for the inequality (2.10)
is supported on the set {λ1, λ2}. The corresponding weights can then easily be determined by
the fact that there must be equality in (2.10) for the support points of the standardized maximin
D-optimal design. Thus the global optimality of the minimal supported standardized maximin
D-optimal designs for the models (1.1) - (1.4) can easily be checked by an application of Theorem
2.2 using a prior supported on the boundary of Λ.

Example 4.5. Consider the exponential regression model (1.2) and assume that the parameters
λ1 and λ2 specified by the experimenter satisfy T > 1

λ1
. It then follows from Theorem 4.2 that

the best two point design (with respect to the standardized maximin criterion), say ξ∗, has equal
masses at the points 0 and

t∗ =
log λ2 − log λ1

λ2 − λ1
.

By Theorem 2.2 the design ξ∗ is a standardized maximin D-optimal design within the class of all
designs if and only if there exists a prior πω supported on the set N (ξ∗) defined in (2.11) such
that the inequality

g(t, λ1, λ2) =

∫
[λ1,λ2]

fT (t, λ)M−1(ξ∗, λ)f(t, λ)πω(dλ) ≤ 2(4.5)

is satisfied, where there is equality for the support points 0 and t∗. It also follows from the proof
of Theorem 4.2 that N (ξ∗) = {λ1, λ2}. For the calculation of the least favourable distribution

πω =

{
λ1 λ2

w0 w1

}

with w1 = 1 − w0, we note that a straightforward calculation yields for the function g(t, λ1, λ2)
defined in (4.5)

g(t, λ1, λ2) =

∫ λ2

λ1

(
2 + 4

(
g2
1(t, λ) − g1(t, λ)

))
πω(dλ)

= w0

(
2 + 4g2

1(t, λ1) − 4g1(t, λ1)
)

+ (1 − w0)
(
2 + 4g2

1(t, λ2) − 4g1(t, λ2)
)

where g1(t, λ) = eλ(t∗−t)t(t∗)−1. By Theorem 2.2 this function must satisfy g(0, λ1, λ2) = 2 =
g(t∗, λ1, λ2) and g′(t∗, λ1, λ2) = 0, which yields

w0(1 − λ1t
∗) + (1 − w0)(1 − λ2t

∗) = 0.

With the notation k = λ1

λ2
∈ (0, 1] we obtain t∗ = − log k/(λ2(1 − k)) and the weights of the least

favourable distribution are given by

w0 =
1

1 − k
+

1

log k
, w1 =

k

k − 1
− 1

log k
.
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Figure 1: The function g(t, λ1, λ2) for the standardized maximin D-optimal two-point design ξ∗

in the regression model a + e−λt for the cases Λ = [0.6, 1] (solid line), Λ = [0.6, 2] (dotted line),
Λ = [0.6, 5] (dashed line).

In Figure 4.1 we present plots of the function g(t, λ1, λ2) for the cases Λ = [0.6, 1], Λ = [0.6, 2]
and Λ = [0.6, 5]. The standardized maximin D-optimal two point design has equal masses at
the set {0, 1.28}, {0, 0.86} and {0, 0.48}, respectively. We observe that two point designs are
only globally standardized maximin D-optimal in the first case, and that standardized maximin
D-optimal designs with respect to larger parameter spaces require more than two support points.
We finally note that it follows by numerical calculations that the two point standardized maximin
D-optimal design coincides with the standardized maximin D-optimal design within the class of
all design if and only if

0.342 <
λ1

λ2
< 1.

Remark 4.6. It can be shown numerically, that for the model (1.4) with T > 1
λ1

the two point
standardized maximin D-optimal design is optimal within the class of all designs if and only if

0.292 <
λ1

λ2

< 1.

For the models (1.1) and (1.3) similar bounds exist, but these bounds depend on the length T of
the design space and are not given here for the sake of brevity.

4.2 Maximin optimal designs

It is indicated in the previous paragraph that in general standardized maximin D-optimal designs
for exponential regression models have to be found numerically and their optimality has to be
confirmed by an application of Theorem 2.2. Note that a check of the inequality requires the
determination of the least favourable distribution [see Example 4.5]. A formal difficulty is that
there is no bound on the number of support points of a standardized maximin D-optimal design.
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Table 1: Standardized maximin D-optimal designs for the exponential regression model a + e−λt

for various sets Λ = [Λ1, λ2]. The table shows the support points and weights of the optimal design
and the minimal efficiency over the interval Λ = [λ1, λ2].

λ1 λ2 t1 t2 t3 t4 w1 w2 w3 w4 min eff
0.6 1 0 1.28 0.5 0.5 0.9680
0.6 1.5 0 1.02 0.5 0.5 0.9015
0.6 2 0 0.65 1.83 0.45 0.33 0.22 0.8493
0.6 2.5 0 0.53 1.68 0.44 0.31 0.25 0.8372
0.6 3 0 0.47 1.53 0.43 0.30 0.26 0.8259
0.6 4 0 0.38 1.34 0.43 0.30 0.27 0.8049
0.6 5 0 0.28 0.92 1.92 0.40 0.25 0.22 0.13 0.7899
0.5 1 0 1.39 0.5 0.5 0.9421
0.4 1 0 1.53 0.5 0.5 0.9015
0.3 1 0 1.31 3.67 0.45 0.33 0.22 0.8493
0.2 1 0 1.40 4.60 0.43 0.30 0.26 0.8259
0.1 1 0 1.23 4.21 10.00 0.38 0.22 0.23 0.17 0.7810

Table 2: Standardized maximin D-optimal designs for the exponential regression model be−λt for
various Λ = [Λ1, λ2]. The table shows the support points and weights of the optimal design and
the minimal efficiency over the interval Λ = [λ1, λ2].

λ1 λ2 t1 t2 t3 w1 w2 w3 min eff

0.6 1 0 1.28 0.5 0.5 0.9680

0.6 1.5 0 1.02 0.5 0.5 0.9015

0.6 2 0 0.86 0.5 0.5 0.8372

0.6 2.5 0 0.49 1.68 0.47 0.35 0.18 0.8007

0.6 3 0 0.39 1.67 0.46 0.35 0.20 0.7875

0.6 4 0 0.32 1.46 0.45 0.34 0.20 0.7678

0.6 5 0 0.27 1.31 0.45 0.34 0.21 0.7501

0.5 1 0 1.39 0.5 0.5 0.9421

0.4 1 0 1.53 0.5 0.5 0.9015

0.3 1 0 1.72 0.5 0.5 0.8372

0.2 1 0 1.16 5.01 0.46 0.35 0.20 0.7875

0.1 1 0 1.41 7.37 0.45 0.35 0.21 0.7345
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Usually the number of support points depends on the size of the parameter space Λ [see also the
numerical examples given below].
A solution to this problem is to start with the determination of a minimal supported standardized
maximin D-optimal design and to check the optimality by an application of Theorem 2.2. If the
design is not standardized maximin D-optimal the procedure is repeated, where the number of
support points in the class of designs under investigation is increased by 1. The calculation of
the least favourable distribution in the application of Theorem 2.2 is performed similarly. If the
optimality of a k-point standardized maximin D-optimal design has to be checked by Theorem 2.2,
then it follows from Pshenichnyi (1971) that there exists a least favourable distribution associated
with the standardized maximin optimal design which is based on at most 2k support points.
The second part of Theorem 2.2 shows that there must be equality at the support points of
the standardized maximin D-optimal design and therefore yields a system of 2k − 2 equations
for the determination of the least favourable distribution (if only one or two of the boundary
points are not contained in the support of the candidate designs, Theorem 2.2 yields 2k − 1 or
2k equations, respectively). It follows from the equivalence Theorem 2.2 that the least favourable
distribution corresponding to the standardized maximin D-optimal design has at least 2 support
points. Therefore for a given standardized maximin D-optimal k-point design we start determining
a two point prior using the (at least) 2k − 2 conditions provided by Theorem 2.2. We use this
prior to check the optimality of the k point design [see also Example 4.5]. If the inequality (2.10)
is not satisfied, we increase the number of support points of the prior and repeat this procedure.

In all our examples this procedure terminates after a few steps and the standardized maximin
D-optimal designs were found numerically. In the following we present some of our results for the
design space [0, 10] and some selected parameter spaces Λ = [λ1, λ2]. We begin our investigations
with the models (1.2) and (1.4), for which the local D-optimal designs are identical. The corre-
sponding standardized maximin D-optimal designs are given in Table 1 and 2 for various values of
λ1 and λ2. We observe that for a small length of the interval Λ two point designs are standardized
maximin D-optimal and that in this case the maximin optimal designs in the models (1.2) and
(1.4) are identical [see also Theorem 4.2]. However, for larger parameter spaces the standardized
maximin D-optimal designs are supported on more than two points and the designs in the models
(1.2) and (1.4) are not identical any more. For example, if Λ = [0.6, 2] a three point design is
standardized maximin D-optimal for the model (1.2), while the two-point design from Theorem
4.2(d) is still standardized maximin D-optimal for the model (1.4). We observe a minimal effi-
ciency over the range Λ of at least 73%, even in the ratio λ2/λ1 is 10. Thus the standardized
maximin D-optimal designs yield reasonable D-efficiencies over the full parameter space Λ. Of
course the efficiency of the designs is increased if the length of the interval is decreased.
Table 3 and 4 show the corresponding results for the exponential regression model (1.1) and
(1.3). Note that for the minimal supported designs the interior support point of the standardized
maximin D-optimal two-point design for the model (1.3) coincides with the interior support point
of the standardized maximin D-optimal three-point design for the model (1.1) [see Corollary 4.3].
If the standardized maximin D-optimal design is supported on more points this relation does not
hold any more. Again the standardized maximin D-optimal designs yield good D-efficiencies for
a broad range of the parameter λ (in the displayed cases the minimal efficiency is at least 78%).
We finally investigate the performance of the standardized maximin D-optimal designs for the
model (1.1) in the three sub-models (1.2) - (1.4). Note that the designs for model (1.1) have at
least three support points. Consequently, the application of these designs for parameter estimation
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Table 3: Standardized maximin D-optimal designs for the exponential regression model a(1−e−λt)
for various sets Λ = [Λ1, λ2]. The table shows the support points and weights of the optimal design
and the minimal efficiency over the interval Λ = [λ1, λ2].

λ1 λ2 t1 t2 t3 t4 w1 w2 w3 w4 min eff

0.6 1 1.27 10 0.5 0.5 0.9696

0.6 1.5 1.01 10 0.5 0.5 0.9041

0.6 2 0.71 1.91 10 0.35 0.19 0.46 0.8507

0.6 2.5 0.51 1.81 10 0.27 0.29 0.43 0.8314

0.6 3 0.45 1.67 10 0.27 0.30 0.43 0.8192

0.6 4 0.36 1.46 10 0.26 0.32 0.43 0.7966

0.6 5 0.30 1.34 10 0.25 0.32 0.43 0.7765

0.6 6 0.25 1.07 1.82 10 0.23 0.22 0.13 0.41 0.7607

0.5 1 1.37 10 0.5 0.5 0.9469

0.4 1 1.48 10 0.5 0.5 0.9148

0.3 1 1.62 10 0.5 0.5 0.8719

0.2 1 1.34 3.79 10 0.31 0.24 0.45 0.8375

0.1 1 1.25 4.40 10 0.26 0.31 0.43 0.8193

Table 4: Standardized maximin D-optimal designs for the exponential regression model a + be−λt

for various sets Λ = [Λ1, λ2]. The table shows the support points and weights of the optimal design
and the minimal efficiency over the interval Λ = [λ1, λ2].

λ1 λ2 t1 t2 t3 t4 t5 w1 w2 w3 w4 w5 min eff

0.6 1 0 1.27 10 0.33 0.33 0.33 0.9797

0.6 1.5 0 1.01 10 0.33 0.33 0.33 0.9350

0.6 2 0 0.60 1.95 10 0.32 0.22 0.17 0.29 0.9110

0.6 2.5 0 0.51 1.77 10 0.31 0.21 0.18 0.29 0.9038

0.6 3 0 0.45 1.61 10 0.31 0.21 0.19 0.29 0.8967

0.6 4 0 0.36 1.44 10 0.31 0.21 0.20 0.29 0.8833

0.6 5 0 0.26 0.94 1.97 10 0.30 0.18 0.14 0.11 0.27 0.8738

0.5 1 0 1.37 10 0.33 0.33 0.33 0.9643

0.4 1 0 1.48 10 0.33 0.33 0.33 0.9424

0.3 1 0 1.34 3.26 10 0.32 0.25 0.11 0.31 0.9170

0.2 1 0 1.17 3.85 10 0.31 0.21 0.19 0.29 0.9061

0.1 1 0 1.25 4.27 10 0.31 0.21 0.19 0.29 0.8985
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Figure 2: D-efficiencies of the standardized maximin D-optimal design ξD
Λ for the model ( 1.1) in

the exponential regression models (1.2), (1.3), (1.4), where Λ = [0.6, 1.5], [0.6, 2.5], [0.6, 4], [0.6, 5].

in the models (1.2) - (1.4) with two parameters gives the experimenter the additional flexibility
to perform a goodness-of-fit test regarding the model assumptions. In Figure 2 we display the
D-efficiencies of the standardized maximin D-optimal design for the model (1.1) in the three
sub-models. We consider four cases for the set of parameters, namely Λ = [0.6, 1.5], [0.6, 2.5],
[0.6, 4], [0.6, 5]. We observe that the standardized maximin D-optimal designs from model (1.1)
yield reasonable D-efficiencies in the exponential regression model (1.2) (between 80%-90%), while
the D-efficiencies of these designs in the models (1.3) - (1.4) are substantially smaller. Thus if
standardized maximin D-optimal designs from model (1.1) are used in model (1.2), these designs
allow for some goodness-of-fit testing against the model (1.1), without loosing too much efficiency
for estimating the parameters in the model (1.2). On the other hand some more care is necessary
with the application of the standardized maximin D-optimal designs from model (1.1) in the
sub-models (1.3)-(1.4), because the loss of efficiency for the estimation of the parameters in these
two-dimensional sub-models can be substantial.

14



5 Appendix: Proofs

5.1 Proof of Lemma 3.2.

The cases (a), (b) and (d) have been proved by Han and Chaloner (2003) and it remains to show
the assertion (c). In a first step we prove that the local D-optimal design is supported at two
points. In a second step we show that the right boundary point T of the design space is a support
point of the local D-optimal design. For this let t1, . . . , tn denote the different support points of
a local D-optimal design ξD

λ . Because the information matrix of ξD
λ should be non singular we

obtain n ≥ 2. Due to the equivalence theorem for the D-optimality criterion [see Kiefer (1974)] it
follows that the design ξD

λ is local D-optimal if and only if the inequality

g(t) = fT (t, θ)M−1(ξD
λ , θ)f(t, θ) ≤ 2

holds for all t ∈ [0, T ], where the vector f(t, θ) is defined by

f(t, θ) = (1 − e−λt, ate−λt)T ,

and there is equality for all support points of ξD
λ , that is g(ti) = 2, i = 1, . . . , n. Note that

g is nonnegative and a linear combination of the functions {1, e−λt, te−λt, e−2λt, te−2λt, t2e−2λt}.
Moreover g(0) = 0,

g(t) → c,

and g(t) → ∞ if t → ∞ and t → −∞, respectively. This implies that the function g′ has at
least 2n − 1 roots [note that g′(ti) = 0 for i = 1, . . . n − 1, g′(0) = 0 and that there must exist n
points ν1, . . . , νn such that t1 < ν1 < t2 < . . . < νn−1 < tn ≤ νn and g′(νi) = 0 for i = 1, . . . , n].
Corresponding to the size of the limit c there appear two situations for the n support points
t1 < . . . < tn of the D-optimal design

1. If tn = T , then the function g′ has at least 2n − 1 zeros at the points ti, νi, i = 1, . . . , n − 1
and at the point 0.

2. If tn < T , then the function g′ has at least 2n + 1 zeros at the points ti, νi, i = 1, . . . , n and
the point 0.

On the other hand the functions {1, e−λt, te−λt, e−2λt, te−2λt, t2e−2λt} generate a Chebyshev system
on the real line [see Karlin and Studden (1966)] and consequently g(t) − 2, which is a linear
combination of these functions, cannot have more than 5 roots. This implies n = 2 and proves
the assertion regarding the number of support points of the local D-optimal design.
By a standard argument [see Silvey (1980)] the weights of the 2-point D-optimal design are equal
to 1/2. Now let

ξt1,t2 =

(
t1 t2

1/2 1/2

)
be a 2-point design with arbitrary support points, t2 > t1 then we have

∂

∂t2

(√
det M(ξt1,t2)

)
= a/2

(
λt1e

−λt2e−λt1 + (1 − e−λt1)(λt2 − 1)e−λt2
)

> 0 ,

which implies det M(ξt1,t2) < det M(ξt1,T ). Consequently a design ξt1,t2 with t2 < T is not D-
optimal, and a direct maximization shows that the maximum det M(ξt1,T ) with respect to t1 is
attained at the point t1 = t∗D defined in (3.1). �
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5.2 Proof of Lemma 4.1.

The statement (a) of Lemma 4.1 follows from the following identities

det
∫
T I(t)ξ(dt)

det
∫
T I(t)ξD

λ (dt)
=

det
∫
T̃ I(t − µ)ξ(d(t− µ))

det
∫
T̃ I(t − µ)ξD

λ (d(t − µ))
=

det
∫
T̃ I(t)ξ(d(t− µ))

det
∫
T̃ I(t)ξ̃D

λ (dt)
,

where
I(t) = I(t, λ) = f(t, λ)fT (t, λ).

denotes the Fisher information at the point t. Similarly, assertion (b) is obtained from

det
∫
T I(t, λ)ξ(dt)

det
∫
T I(t, λ)ξD

λ (dt)
=

det
∫
T̃ I(tγ, λ)ξ(d(tγ))

det
∫
T̃ I(tγ, λ)ξD

λ (d(tγ))
=

det
∫
T̃ I(t, γλ)ξ(d(tγ))

det
∫
T̃ I(t, γλ)ξ̃D

γλ(dt)

�

5.3 Proof of Theorem 4.2.

We restrict ourselves to a proof of part (b). All other cases are treated similarly. For an arbitrary
two-point design

ξt1,t2,w =

(
t1 t2
w 1 − w

)
with t2 > t1 we calculate the determinant of the information matrix (2.3) and obtain

det M(ξt1,t2,w) = w(1 − w)(t2e
−λt2 − t1e

−λt1)2

It is now easy to see that for any t1 > 0

det M(ξt1,t2,w) < det M(ξ0,t2,w)

Consequently a design ξt1,t2,w with t1 > 0 cannot be standardized maximin D-optimal. By a
standard argument [see Silvey (1980)] the weights of the standardized maximin D-optimal two
point design are equal to 1/2. Thus the standardized maximin D-optimal two point design is of
the form ξt = ξ0,t,1/2 and we have to solve problem

min
λ∈[λ1,λ2]

eff(ξt, λ) → max
t>0

Assume that t∗ is a solution of this optimization problem and define ξ∗ = ξt∗ . We now have to
consider the different cases separately

(i) Consider first the case T > 1/λ1. It is easy to see that for fixed t the function eff(ξt, λ) = λte−λt

has at most one local maximum with respect to λ > 0. Consequently

min
λ∈[λ1,λ2]

eff(ξt, λ) = min
λ∈{λ1,λ2}

eff(ξt, λ).

Suppose that the minimum for the standardized maximin D-optimal design is attained in the
point λ1. Then it follows that t∗ = 1/λ1 and from the representation

e−1 = eff(ξ∗, λ1) = min
λ∈{λ1,λ2}

eff(ξ∗, λ) = min{e−1, he−h} = he−h
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where h = λ2

λ1
. But this is a contradiction to the well known inequality he−h < e−1.

By a similar argument it follows that the minimum of the function eff(ξ∗, λ) cannot be attained
at the point λ2. Consequently, we obtain the equation eff(ξt, λ1) = eff(ξt, λ2), which is equivalent
to

λ1te
−λ1t = λ2te

−λ2t.

and determines the point t∗ uniquely, that is

t∗ =
log λ2 − log λ1

λ2 − λ1
.

(ii) Secondly, consider the case T < 1/λ2, then it follows from the discussion of Section 3 that the
local D-optimal design ξD

λ has equal weights at the points 0 and T and does not depend on the
parameter λ. Consequently, this design is also the standardized maximin D-optimal two-point
design and eff(ξ∗, λ) ≡ 1 for all λ ∈ [λ1, λ2].
(iii) Finally we consider the case 1/λ2 ≤ T ≤ 1/λ1, where a direct calculation shows that t∗ ≥ 1/λ2.
The same arguments as in the first part of the proof show that t∗ is a solution of the equation
eff(ξt, λ1) = eff(ξt, λ2), which reduces for the case under consideration to

te−λ2t

1/(eλ2)
=

te−λ1t

Te−λ1T
.

A straightforward calculation shows that the solution of this equation is given by

t∗ =
log(λ2T ) + 1 − λ1T

λ2 − λ1
,

which satisfies t∗ ≥ 1/λ2 and proves the assertion of Theorem 4.2 for the case (b). �
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