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Abstract: We describe a computer intensive method for linear dimension re-
duction which minimizes the classi�cation error directly. Simulated annealing
(Bohachevsky et al. (1986)) is used to solve this problem. The classi�cation error
is determined by an exact integration. We avoid distance or scatter measures
which are only surrogates to circumvent the classi�cation error. Simulations (in
two dimensions) and analytical approximations demonstrate the superiority of
optimal classi�cation opposite to the classical procedures. We compare our pro-
cedure to the well{known canonical discriminant analysis (homoscedastic case) as
described in Mc Lachlan (1992) and to a method by Young et al. (1987) for the
heteroscedastic case. Special emphasis is put on the case when the distance based
methods collapse. The computer intensive algorithm always achieves minimal
classi�cation error.

1 Introduction

Classi�cation deals with the allocation of objects to g predetermined groups
G = f1; 2; : : : ; gg, say. The goal is to minimize the misclassi�cation rate
over all possible future allocations, characterized by the conditional densities
pi(x) ( i= 1 ;2; : : : ; g). The minimal error is the so{called Bayes error (Mc
Lachlan (1992)). Often we want to reduce the dimension of the classi�cation
problem to one or two dimensions in order to support human imagination
without signi�cantly increasing the misclassi�cation rate. This article deals
with linear combinations of the original variables to achieve this goal: Lin-
ear Dimension Reduction. The next section reviews the classical approach
based on distance measures and presents the idea of Young et al. (1987)
in a way that facilitates such a distance formulation. Section 3 introduces
computerintensive dimension reduction and simulated annealing. Section 4
compares the classical and the computerintensive method.
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2 Classical Linear Dimension Reduction

The intuitive idea is to project the data in a way that maximizes the distance
between the groups (hopefully this will also minimize the misclassi�cation
rate). The distance measure relates the between{group scatter matrix

SB =

gX
i=1

p(i)(�i � ��)(�i � ��)0 ; �� =

gX
i=1

p(i)�i (1)

to the pooled within{group scatter matrix

SW =

gX
i=1

p(i)�i; (2)

where p(i) ( i= 1 ;2; : : : ; g) denotes the apriori probability of the di�erent
groups, �i their means and �i their covariance matrices. The maximal rank
of SB is g�1. If we project on direction a, we have to maximize the quotient

a0SBa

a0SWa
(3)

by variation of a. The maximum is attained at the eigenvector v1 cor-
responding to the largest eigenvalue �1 of S

�1
W SB.

Formula (3) is equivalent to

�1 :=
a0SBa

a0SW a
=

1

g � 1

gX
i=1

(�i � ��)2; (4)

where

�i =
a0�i

(a0SWa)1=2
and �� =

a0��

(a0SWa)1=2
: (5)

This expression is easier to analyze.

An idea of Young et al. (1987) incorporates di�erent covariance matrices for
di�erent groups. First we build the matrix

M = [ �2 � �1j � � � j�g � �1j�2 � �1j � � � j�g � �1]; (6)

where M 2 Rd�s ; s = ( g� 1)(d + 1) by juxtaposition of the vectors and
matrices. We assume �i 6= �1 for at least one i 2 G.

The analogon to (4) is

�2 := a0MM 0a =

gX
i=2

(a0(�i � �1))
2

| {z }
mean portion

+

gX
i=2

dX
j=1

(a0(�j
i � �j

1))
2

| {z }
covariance portion

; (7)
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where �j
i denotes the jth column vector of the ith covariance matrix. The

term is divided into a pure mean portion and a pure covariance portion.

We get a similiar result to �1 (apart from a di�erent origin: �� in �1 and �1 in
�2) if all covariance matrices are identical and the variables are transformed
in such a way that �i = Id (identity matrix). This corresponds to

M = [ �2 � �1j � � � j�g � �1]: (8)

Further directions can be calculated by means of the eigenvectors of S�1W SB
and MM 0 respectively.

3 Computerintensive Dimension Reduction
and Optimization

3.1 Computerintensive Dimension Reduction

This section applies simulated annealing to the linear dimension reduction.
The algorithm optimizes the entries in the projection matrix. The optimiza-
tion problem is therefore

Minimizef : R
dimred�dim ! R

+ (9)

projection matrix 7! error rate;

where dimred and dim denote the dimension of the lower dimensional space
and the original one, respectively.
We now sketch the simulated annealing algorithm used as an optimization
tool.

Simulated annealing does not need derivatives, a great advantage compared
to gradient methods. It can also be used if the function values are dis-
crete. On the other hand you need more function evaluations than common
gradient algorithms.

The computerintensive method achieves minimal misclassi�cation error if
adequately implemented.

3.2 Simulated Annealing

The freezing and crystallizing of liquids overcomes local energy minima. This
physical strategy serves as the prototype for a computer program: Simulated
Annealing (Bohachevsky (1986)). To model the natural procedure, we need
a con�guration space (a discrete or continous domain), a mechanism which
describes how to get from one con�guration to another and a cooling schedule
describing how to decrease the temperature T (T0 ! T1 ! : : : ! Tn !
: : : ). At each temperature { beginning at an optional con�guration x0 {
we start a markov chain. Each trial point xp is accepted with probability
exp(�(f(xp) � f(x0))=T ). After a number of steps in the markov chain,
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the temperature will be decreased, for example Tn = �Tn�1 (0 < � < 1),
and a new chain will be created (the starting point of the new chain is the
end point of the last one, see Figure 1). In a concrete optimization, the
temperature T is not a physical quantity but an abstract parameter which
controls the optimization.
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Figure 1: Flow chart of the simulated annealing algorithm.

In our application of simulated annealing, the function to be optimized is the
misclassi�cation rate. In each optimization step we calculate the error by
exact integration using the conditional densities, that is for each group i 2 G,
we determine the regions where at least one of the other conditional densities
is greater. We integrate pi(x) over these regions and get the misclassi�cation
error conditional on this group i. The total error is calculated as an average
over all groups weighted by their apriori probability.

4 Comparison with the Classical Approach

The optimization algorithm introduced in section 3 is now compared to the
classical approach. The classical procedures do not provide a direct link to
the misclassi�cation rate (that is, from a small perturbation of the direction
a, you can not analytically derive the corresponding variation in the misclas-
si�cation rate). In fact, in some special cases (depending on constellation
of the groups, form of the covariance matrices), a signi�cant di�erence be-
tween the two procedures can be detected. Apart from the pure comparison,
emphasis is put on the question when distance based "analytical" methods
collapse. In these cases only the algorithm in section 3 supplies valid results.
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4.1 Equal Covariance Matrices and g = 3 Groups

In formula (4), assume

j�i � ��j � j �j � ��j 8 j6= i; (10)

for one i. Then the sum has one dominant term which is maximized at
the cost of the other summands, because the distances in (4) are squared.
Therefore we get the approximation

�1 :=
a0SBa

a0SW a
=

gX
i=1

(�i � ��)2 � 1

a0�a
((�i � ��)0a)2: (11)

Maximization yields the value

(�i � ��)0��1(�i � ��) attained at a / ��1(�i � ��): (12)

Henceforth, we project on a direction that is dominated by �i. The other
means are only incorporated by ��. This behaviour leads to suboptimality.

To get a better understanding, we conduct some simulations. First, we
transform the common covariance matrix � by the transformation xnew :=
��1xold to the identitymatrix Id. This does not increase the misclassi�cation
rate. Because of the symmetry induced by three groups, it su�ces to take
d = 2. Therefore we set

�1 = (0 ;0)0; �2 = (2 ;0)0 and �3 = ( x; y)0: (13)

Mean �1 only determines the origin and �2 is somewhat arbitrary. A vari-
ation of �2 would only alter the misclassi�cation level, not the qualitative
conclusion. The third mean contains two variables x and y. This two di-
mensional surface can be conveniently plotted. Once again because of the
symmetry of the constellation, it is enough to regard the positive quadrant.
We take the range 0 � x � 2:5 and 0 � y � 2:5.

Figures 2 and 3 show the misclassi�cation rates of the classical and the
optimized procedure, respectively (simulated annealing given the means and
the covariance matrix). Note the di�erent scales of the two graphs.

The results of the classical procedure are qualitatively similiar in the "front"
range (0 � x � 2:5 and 0 � y � 1:7), whereas there is a signi�cant di�erence
in the "back". We now analyze the reason of the "mountain ridge" in the
classical case in more detail. To achieve this goal, we calculate SB.

A special situation arises, if the means of the three groups constitute a
regular triangle. For that reason, we reparametrize the third mean: �3 =
(1 + �x;

p
3 + �y). Then we have

SB =
2

9

�
�2x+ 3

p
3�x+ �x�yp

3�x+ �x�y �2y + 3 + 2
p
3�y

�
: (14)
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Figure 2: Misclassi�cation rate classical procedure.

The special case �x = 0 yields

a0SBa

a0SWa
=

2

9

n
1 � a21

�
(�y +

p
3)2 � 3

�o
; (15)

and after maximization we get the following distinction of cases:

(�y +
p
3)2 > 3 , �y >

p
3 ) a1 = 0 ; a2 = 1 (16)

(�y +
p
3)2 < 3 , 0 � �y <

p
3 ) a1 = 1 ; a2 = 0

(�y +
p
3)2 = 3 , �y = 0 ) a1; a2 arbitrary:

The mean �3 = (1 ;
p
3)0 results in a singularity (projection vector a =

(a1; a2)0 not de�ned). But this mean is realized with probability zero by
the empirical mean value and is therefore unimportant. But important is
the fact that the projection behaviour "turns over" at this value. Up to
�y <

p
3, the projection is onto the x{axis (like the optimized procedure),

then onto the y{axis. This causes a higher misclassi�cation rate compared
to the optimized procedure, because the projected �rst group coincides with
the second one, while the optimized method still projects onto the x{axis.
The classical approach even more often fails for more than g = 3 groups,
because there are more critical constellations.

6



0.5 1 1.5 2

0.5

1

1.5

2

2.5

25

30

35

40

45

y

x

Figure 3: Misclassi�cation rate optimized procedure.

4.2 Unequal Covariance Matrices and g = 3 Groups

The central formula (7)

�2 := a0MM 0a =

gX
i=2

(a0(�i � �1))
2 +

gX
i=2

dX
j=1

(a0(�j
i � �j

1))
2 (17)

yields more possibilities for dominant terms than (4).
For example, assume

j�j
i � �j

1j � j �j0i0 � �j0

1 j 8 (i0; j0) 6= ( i; j); (18)

true for one i, then only the jth column in the ith group di�ers from the
pendant in the �rst group. Thus we get

�2 � (a0(�j
i � �j

1))
2: (19)

The inequality of Schwarz supplies the maximum at

a / (�j
i � �j

1): (20)

This solution uses only a small part of the available information and we
therefore get { once again { a di�erence between the optimized and classical
solution.

A small simulation study in two dimensions demonstrates the key issue. The
means are now �xed at

�1 = (0 ;0)0; �2 = (2 ;0)0 and �3 = (1 ;1)0: (21)
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The covariance matrices are

�1 = I2; �2 = I2 and �3 = diag(1 + x; 1 + y): (22)

We take again the range 0 � x � 2:5 and 0 � y � 2:5. This time, the
graphical representation does not show the constellation of the groups, but
in a more abstract manner the variance of the third group. The �gures 4 and
5 plot the misclassi�cation rate of the classical and optimized procedure.
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Figure 4: Misclassi�cation rate classical procedure.

The di�erences are signi�cant, especially if y is large and x small. In this
case, the classical method projects onto the y{axis and the �rst and second
group collapse. The optimized procedure still projects onto the x{axis.

In a concrete application, it is useful to compare the classical procedure with
the optimized method in one dimension. If the results di�er signi�cantly,
we have to use the optimized approach in higher dimensions (even if the
computational burden is higher), otherwise we use the idea of Young et al.
(1987), if the covariance matrices are unequal (especially if d0 > 2).

5 Conclusions

After we introduced the classical discriminant analysis based on scatter ma-
trices, we discussed a less well-known approach of Young et al. (1987) which
we have reformulated using a distance measure.

These classical procedures were compared to an optimized procedure based
on simulated annealing by means of simulations and analytical approxima-
tions. The di�erences and drawbacks of the classical approach were dis-
cussed in detail. The di�erences for more than two groups can be severe. It
is exactly this case that is mainly ignored in the literature.
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Figure 5: Misclassi�cation rate optimized procedure.

This article clearly demonstrates the power of computerintensive methods.
They help the statistician to concentrate on the real problem at hand: here
the minimization of the misclassi�cation rate.
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