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Abstract

We investigate the behaviour of S - estimators in the linear regression
model, when the error terms are long - memory Gaussian processes. It
turns out that under mild regularity conditions S - estimators are still
normally distributed with a similar variance - covariance structure as
in the i.i.d. case. This assertion holds for the parameter estimates as
well as for the scale estimates. Also the rate of convergence is for S
- estimators the same as for the least squares estimator and for the
BLUE.
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1 Introduction

Consider the linear regression model

yi = xTi � + ei i = 1 ; : : : ; n; (1)

where yi is the dependent variable, xi is a p - dimensional vector of possibly

stochastic regressors with distribution function G, � is the p - dimensional para-

meter vector and ei is an error process independent of xi. Here we consider the

case where ei is a long - memory stationary process.
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De�ning R(k) := Cov(ei; ei+k) long - memory time series can be modeled as

stationary processes satisfying

R(k)

L(k)jkj2H�2
! 1;

where 1
2
< H < 1, L(k) is a slowly varying function and k ! 1 .R(k) has the

form

R(k) =
�2e(jk + 1 j2H � 2jkj2H + jk � 1j2H)

2
:

The equation var(�en) = �2en
2H�2 also holds so that we have the convergence

n2�2HL�1V ar(n)var(�en) to 1, where LV ar(n) = L(n)=(H(2H � 1)).

So the main property of long - memory processes is the slow decay of the cor-

relations. This is a big problem for applied statisticians, because the standard

assumption of independence is often a bad approximation. Small but slowly de-

caying correlations are dangerous for experimental statisticians, because they can

often not be detected by standard test but they have a strong e�ect. For example

the standard error of the arithmetic mean �n�1=2 has to be replaced by n�� for

0 < � < 1=2. This phenomenon has been observed by many applied statisticians.

For a review see Cox(1984), Beran(1992) or Beran(1994).

For the situation of independence Rousseeuw/Yohai(1984) proposed S - esti-

mators and their asymptotic properties. Maronna/Yohai(1981) established the

asymptotic properties of regression M - estimates. Davies(1987) considered the

asymptotic properties of S - estimators of multivariate location parameters and

Davies(1991) extended the results of Rousseuw/Yohai to S - estimators with a

smooth � - function.

However, nothing is known about the behaviour of robust estimators in the linear

regression model with long - memory error terms. For this model Yajima(1988,
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1991) shows that the least - squares estimator is no longer e�cient relative to the

BLUE. But it is well known that neither the least - squares estimator nor the

BLUE is robust anyhow.

So the aim of this article is to extend the asymptotic normality of S - estimators

as established by Rousseeuw/Yohai(1984) to the linear regression model with long

- memory error terms.

S - estimators are of special interest because of their good asympotic properties

and their high breakdown point. Here the breakdown point introduced by Ham-

pel(1971) is used as the measure of robustness of an estimator in the presence of

outliers. The empirical breakdown point, which is used most of the time in the

literature, is de�ned as the smallest fraction of contaminated data that can cause

the estimator to take values arbitrarily far from the values obtained when the

data are not contaminated. For example the least squares estimator has an em-

pirical breakdown point of 1=n. But some robust methods have a low breakdown

point as well. For instance, Huber's M - estimator with monotonous  - function

has an empirical breakdown point of 1=n, too, which means that one outlier can

break down the estimation.

S - estimators have an asymptotical breakdown point of 1=2, which is the best

possible asymptotic breakdown point. Moreover there are other good robustness

properties, such as the exact �t property, which are ful�lled by S - estimators.

The idea of the S - estimators is based on a scale M - estimation, but in contrary

to M - estimators the S - estimators �rst estimate the scale and subsequently,

the regression parameter. So this estimator is scale invariant in contrary to M -

estimators.

To de�ne the S - estimators, let � be a real function satisfying the following

assumptions:
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1. � is symmetric, continuously di�erentiable and �(0) = 0;

2. there exists a c > 0, such that � is monotonously increasing in [0; c ] and

constant in [c;1).

For every set fe1; : : : ; eng the scale estimator s(e1; : : : ; en) is then de�ned as a

solution of the equation

1

n

nX
i=1

�(
ei
s
) = K; (2)

where the constant K is given by E�[�] = K and � denotes the standard normal

distribution. If (2) has more than one solution, s(e1; : : : ; en) is the supremum of

all the solutions. If there is no solution, s(e1; : : : ; en) = 0.

The S - estimator �̂ of the regression parameter � is de�ned as

�̂ = min
�
fs[e1(�); : : : ; en(�)]g (3)

and the scale estimator �̂ is

�̂ = s[e1(�̂); : : : ; en(�̂)]: (4)

2 Asymptotic normality

Unlike the consistency and the breakdown point of the estimator, the asymptotic

normality depends on the properties of the error term. So we consider the linear

regression model (2) and assume in what follows that the error term is a Gaussian

long - memory process.

To investigate the asymptotic behaviour of S - estimators we need the Hermite

rank of a function:
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De�nition (Hermite rank)

Let X be a standard normal random variable. A function G : IR ! IR

with E[G(X)] = 0 and E[G2(X)] < 1, is said to have Hermite rank m,

if E[G(X)Pq(X)] = 0 for all Hermite polynomials Pq; q = 1 ; : : : ; m� 1 and

E[G(X)Pm(X)] := JG(m) 6= 0 .

The function JG(l) is de�ned by

JG(l) := E[G(X)Pl(X)]; l 2 IN: (5)

Hermite polynomials, normalized by q! provide an orthonormal basis in the L2 -

space with respect to the standard normal distribution. So every such function

G(�) can be expanded into a series

G(X) =
1X
q=m

JG(q)
Pq(X)

q!
:

For G(X) with Hermite rank 1, Taqqu(1975) showed that the normalized sum

n�HL
�

1

2

V ar(n)
nX
i=1

G(Xi)

JG(1)

is asymptotically standard normal. Before proving the asymptotic normality of S

- estimators we establish the consistency. Let X be the n � p matrix with rows

xT1 ; : : : ; x
T
n . We have the following Lemma:
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Lemma (consistency)

Let �̂n and �̂n be the S - estimators for the regression parameter and scale respec-

tively, in the linear regression (1) with long memory errors and let � be a function

satisfying the assumptions 1) and 2) above with derivative �0 =  . If �0 > 0 and

1.  (u)
u

is nonincreasing for u > 0;

2. EH [kXk] <1, and H has a density,

then

�̂n ! �0 a. s.

�̂n ! �0:

Proof

The consistency of the S - estimators is independent of the long - memory property

of the error term. So the proof follows directly from Rousseeuw/Yohai(1984),

Theorem 2. }

In the following theorem denote by  the derivative of the function � from (2).

Thus, we obtain a limit theorem for S - estimators:
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Theorem (asymptotic normality)

Let �̂n and �̂n again be the S - estimators for the regression parameter and scale

respectively, in the linear regression (1) with long - memory errors. Then

if the conditions of the Lemma hold and

1)
Pn
i=1 xi (

yi�x
T

i
�̂n

�̂n
) = 0 ,

where  is odd, continuously di�erentiable with absolutely continuous derivative  0

and bounded second order derivative  00, which ful�ll  0(b)�  0(a) =
R b
a  

00(x)dx;

2) EH(jxijxklxrsj) <1 8 i; k; r= 1 ; : : : ; n ; j; l; s = 1 ; : : : ; p ;

3) E� 
0 6= 0 for all � > 0.

Then we have:

n1�HL
�

1

2

V ar(n)J (Q)(1)
�1(�̂n � �0)

d
�! N(0; �20

E� 
2

(E� 0)2
EG[X

TX]�1)

n1�HL
�

1

2

V ar(n)J�(T )(1)
�1(�̂n � �0)

d
�! N(0; �20E�((��K)2)((E�e

T e )2)�1);

where the function � is de�ned as �(x) = �(x)�K.

Proof

We �rst prove the �rst relation. From assumption 1) we have

0 = n�H
nX
i=1

xi (
yi � xTi �̂n

�̂n
)

= n�H
nX
i=1

xi (
yi � xTi �0 � xTi �̂n + xTi �0

�̂n
)
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= n�H
nX
i=1

xi (
ei � xTi (�̂n � �0)

�̂n
); (6)

where 0 is the p - dimensional vector (0; : : : ; 0)T .

For the function  we have the Taylor expansion

 (y + h) =  (y) + h
Z 1

0
 0(y + th)dt: (7)

Applying relation (7) twice to  we obtain

 (y + h) =  (y) + h
Z 1

0
 0(y)dt+ h2

Z 1

0

Z t

0
 00(y + sh)dsdt: (8)

Applying Fubini's theorem to the right - hand side of equation (8) gives

 (y + h) =  (y) + h[ 0(y) + h
Z 1

0
(1� s) 00(y + sh)ds]: (9)

Setting hi := xTi (�̂n � �0)=�̂n, relation (9) gives for (6)

1

n

nX
i=1

[ 0(
ei
�̂n

)� hi

Z 1

0
(1� s) 00(

ei
�̂n

� shi)ds]xix
T
i n

1�H �̂n � �0
�̂n

=

n�H
nX
i=1

 (
ei
�̂n

)xi: (10)

We now have to prove two assertions:

1)
1

n

nX
i=1

[ 0(
ei
�̂n

)�
xTi (�̂n � �0)

�̂n

Z 1

0
(1� s) 00(

ei � sxTi (�̂n � �0)

�̂n
)ds]xix

T
i

P
�! E� 

0EG[X
TX] (11)
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and

2) n�H
nX
i=1

 (
ei
�̂n

)xi
d
�! N(0; E�[ 

2]EG[X
TX]): (12)

Let us prove assertion 1) �rst.

To this end, we show �rst:

j
1

n

nX
i=1

xTi (�̂n � �0)

�̂n

Z 1

0
(1� s) 00(

ei � sxTi (�̂n � �0)

�̂n
)dsxijxilj

P
�! 0: (13)

For this expression the following inequality holds, where kfk1 denotes the 1 -

norm of the function f :

j
1

n

nX
i=1

xTi (�̂n � �0)

�̂n

Z 1

0
(1� s) 00(

ei � sxTi (�̂n � �0)

�̂n
)dsxijxilj �

j
1

�̂n
j j�̂n � �0j k 

00k1
1

n

nX
i=1

jxij j xijxilj �

j
1

�̂n
j j�̂n � �0j k 

00k1
1

n

nX
i=1

(max
j
jxijj)

3: (14)

Because of the consistency of �̂n and because the other terms on the right - hand

side are restricted by assumptions 1) and 2), the right - hand side converges to

zero. So relation (13) is veri�ed.

To show (11) the �rst term on the left - hand side of this equation has to be

considered. We have:

j
1

n

nX
i=1

xijxil[ 
0(
ei
�̂n

)�  0(
ei
�0
)]j ! 0: (15)
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This follows from the following inequality, which holds because of assumption 1):

j
1

n

nX
i=1

xijxil[ 
0(
ei
�̂n

)�  0(
ei
�0
)]j � j

1

�̂n
�

1

�0
jk 00k1

1

n

nX
i=1

jxijxiljjeij

P
�! j

1

�̂n
�

1

�0
j k 00k1EjXTXjEjej

�! 0: (16)

The right - hand side also converges to 0 because of the assumed consistency of

�̂n and because the other terms are limited. It was also assumed that �0 > 0.

To prove the second assertion (12) let Q : IR ! IR be a function de�ned as

follows:

Q(�) :=
�

�̂n
: (17)

This function has Hermite rank 1 (see Taqqu(1975)). De�ne J (Q)(1) as in (5).

In view of the limit theorem 5.1 from Taqqu(1975) we see that

n�HL
�

1

2

V ar(n)J (Q)(1)
�1

nX
i=1

 (Q(ei))xi

is a normal random variable. To compute the mean and the covariance of this

variable we get from  odd and because ei is Gaussian:

E (
ei
�0
) = �E (�

ei
�0
)

= �E (
ei
�0
): (18)
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Hence

E (
ei
�0
) = 0 (19)

and consequently by the independence of the ei and xi

E( (
ei
�0
)xi) = 0: (20)

Again because the ei are independent of the xi, we have

Cov( (
ei
�0
)xi) = E�( 

2(
ei
�0
))EG[xix

T
i ]: (21)

Altogether we obtain from (11):

n1�HL
�

1

2

V ar(n)J (Q)(1)
�1(�̂n��0)

d
�! N(0; �0

E� 
2

(E� 0)2
EG[X

TX]�1);(22)

which is the �rst part of the theorem.

The proof of the second assertion is similar to the proof above. From (2) we have

n�H
nX
i=1

�(
ei
�̂n

)�K = 0 : (23)

For the function �(ei=�̂n) we can write:

�(
ei
�̂n

) = �(
ei
�̂n

�
ei
�0

+
ei
�0
)

= �

 
(�0 � �̂n)ei

�0�̂n
+
ei
�0

!

= �(
ei
�0
�

(�̂n � �0)ei
�̂n�0

): (24)
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The function � is now de�ned by

�(x) = �(x)�K: (25)

Similar to the �rst part of the proof, � ful�lls the following equation:

�(y + h) = �(y) + h[�0(y) + h
Z 1

0
(1� s)�00(y + sh)ds]: (26)

Because of (24) we set

y :=
ei
�0

(27)

and

hi := �
(�̂n � �0)ei

�̂n�0
: (28)

From (26) we obtain:

1

n

nX
i=1

ei[�
0(
ei
�0
)� hi

Z 1

0
(1� s)�00(

ei
�0
� s

(�̂n � �0)ei
�̂n�0

)ds]n1�H
�̂n � �0
�̂n�0

=

n�H
nX
i=1

�(
ei
�0
) (29)

Similar to the �rst part of the proof we have to prove two assertions:

1)
1

n

nX
i=1

ei[�
0(
ei
�0
)� hi

Z 1

0
(1� s)�00(

ei
�0
� s

(�̂n � �0)ei
�̂n�0

)ds]

P
�! E�[e

T e ] (30)
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and

2) n�H
nX
i=1

�(
ei
�0
)

d
�! N(0; E��

2): (31)

Once again, we show assertion 1) �rst. To do this we prove:

j
1

n

nX
i=1

�̂n � �0
�̂n�0

Z 1

0
(1� s)�00(

ei
�0
� s

(�̂n � �0)ei
�̂n�0

)dse2i j
P
�! 0: (32)

In view of assumptions 2) and 3), this can be seen as follows:

j
1

n

nX
i=1

�̂n � �0
�̂n�0

Z 1

0
(1� s)�00(

ei
�0
� s

(�̂n � �0)ei
�̂n�0

)dse2i j �

j�̂n � �0jj
1

�̂n�0
jk�00k1

1

n

nX
i=1

je2i j
P
�! 0: (33)

The �rst term after the � converges to zero because of the consistency of �̂n, the

second term converges to 1=�20 and the other parts of this side are bounded. Note

that again �0 > 0.

The following result also holds

1

n

nX
i=1

ei�
0(
ei
�0
)

P
�! E[e�0]: (34)

So the �rst assertion follows from �0(ei=�0) = ei (ei=�0) because of (25).

Once again, the assertion 2) follows from Taqqu's limit theorem (Taqqu 1975

Theorem 5.1). To see this, let T : IR! IR be de�ned as

T (�) :=
�

�0
: (35)
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The function T has Hermite rank 1. De�ne J�(T )(1) as in (5).

Then Taqqu's limit theorem gives

n�HL
�

1

2

V ar(n)J�(T )(1)
�1

nX
i=1

�(T (ei))
d
�! N(0; E��

2): (36)

With �(x) = �(x)�K the assertion follows from (36). }

The theorem above establishes the asymptotic normality of S - estimators, when

the error terms have long - memory. It also establishes a good asymptotic e�-

ciency of S - estimators as compared to the least - squares estimator and the

BLUE, because S-estimators have the same rate of convergence compared to the

least-squares estimator and the BLUE.
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