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Zusammenfassung

In der medizinischen Forschung finden automatische Klassifikationsregeln ihre

Anwendung häufig als Hilfsmittel zur untersucherunabhängigen Entscheidungs-

findung. So kann in Screeningprogrammen mit einer solchen Klassifikations-

vorschrift, welche die Probanden automatisch in „krank” und „gesund” einteilt,

teures und erfahrenes Fachpersonal durch weniger teure Hilfskräfte entlastet wer-

den. In der vorliegenden Arbeit wird diskutiert, wie sowohl das a priori Wis-

sen eines Arztes über eine Erkrankung, als auch die medizinischen Messungen,

welche nur für den Lerndatensatz, nicht jedoch für spätere Testdatensätze er-

hoben werden, zur Verbesserung einer solchen automatischen Klassifikationsvor-

schrift genutzt werden können.

Ausgangspunkt aller Überlegungen ist hierbei eine irreversible Erkrankung der

retinalen Nervenfaserschicht, genannt der grüne Star (Glaukom). Diese Erkrank-

ung ist derzeit Gegenstand aktueller medizinischer Forschung. Daher sind durch

verschiedenste Forschungsansätze im Erlanger Glaukomregister Lerndatensätze

entstanden, welche Ergebnisse vieler medizinischer Untersuchungen beinhalten,

obwohl die eigentliche medizinische Diagnose dieser Erkrankung meist auf nur

zwei konventionellen Untersuchungsverfahren basiert.

In der vorliegenden Arbeit wird zunächst der Ansatz der indirekten Klassi-

fikation beschrieben. Der konventionelle indirekte Klassifikator unterscheidet

zwischen so genannten „erklärenden” Variablen, welche sowohl für derzeitige,

als auch für zukünftige Beobachtungen erhoben werden, und „intermediären”

1
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Variablen, auf denen die Diagnose basiert. Dieser konventionelle Ansatz der

indirekten Klassifikation kann in Situationen, in denen ein detailliertes a priori

Wissen einschließlich einer medizinischen Diagnosevorschrift, basierend auf in-

termediären Variablen, bekannt ist, angewendet werden.

In einem weiteren Schritt wird die indirekte Klassifikation auf Situationen, in

denen weniger Wissen über einen gegebenen Lerndatensatz vorhanden ist, aus-

geweitet. Allgemeiner wird ein indirekter Klassifikator als ein Klassifikator defi-

niert, der alle im Lerndatensatz vorhandenen Variablen in einer gewissen Form

für die Klassifikation nutzt. Der algorithmische Vorschlag „indirect subagging”

kombiniert eine beliebige Anzahl von Vorhersagemodellen für intermediäre Vari-

ablen, welche für zukünftige Probanden nicht erfaßt werden. Im Gegensatz zur

konventionellen indirekten Klassifikation, kann „indirect subagging” auch in Sit-

uationen angewendet werden in denen nur wenig a priori Wissen vorhanden ist.

Ein direkter Klassifikator nutzt ausschlieSSlich die erklärenden Variablen und die

Klassenvariable zur Erstellung einer automatischen Entscheidungsregel.

Eine bekannte medizinische Diagnosevorschrift, wie sie im konventionellen

Ansatz der indirekten Klassifikation einbezogen wird, ermöglicht die Unterschei-

dung zwischen einer diagnostizierten Klassenzugehörigkeit bzgl. der Diagno-

sevorschrift und einer wahren Klassenzugehörigkeit. Es wird im folgenden zwis-

chen diesen beiden möglichen Erkrankungszuständen unterschieden.

Asymptotische Eigenschaften der indirekten Klassifikation werden untersucht,

und es wird gezeigt, daß der konventionelle indirekte Ansatz unter bestimmten

Modellannahmen Bayes konsistent bzgl. des diagnostizierten Erkrankungszus-

tandes ist, während „indirect subagging” auch unter allgemeineren Annahmen

Bayes konsistent ist.

Ein abstraktes Simulationsmodell führt zu der Erkenntnis, daSS die korrekte For-

mulierung der Diagnosevorschrift im konventionellen indirekten Ansatz aus-

schlaggebend für dessen Misklassifikationsrate ist. Insgesamt erreichten die in-
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direkten Klassifikatoren niedrigere Fehlerraten, als die direkten.

Im weiteren wird ein komplexes Simulationsmodell beschrieben, welches eine

ähnliche Datenstruktur, wie sie bei der Glaukomklassifikation gegeben ist, gener-

iert. Es wird untersucht, wie indirekte und direkte Klassifikatoren auf verschie-

dene Varianzen der erklärenden bzw. der intermediären Variablen reagieren.

Die Anwendung der diskutierten Verfahren auf eine Fall-Kontroll-Studie von

Glaukompatienten und gesunden Probanden macht den Nutzen der indirekten

Klassifikation bei realen Fragestellungen deutlich. Anwendungen auf zwei weit-

ere Datensätze weisen darauf hin, daß der Ansatz „indirect subagging” vergleich-

bar gute oder bessere Misklassifikationsraten wie die entsprechenden direkten

Klassifikatoren zu erreichen scheint. Die Güte der indirekten Klassifikation scheint

auch von dem Informationsgehalt der intermediären Variablen abzuhängen.

Abschließend wird die Durchführung der indirekten Klassifikation mit Hilfe des

Zusatzpaketes ipred in der Programmierumgebung R demonstriert.



Abstract

Automated classification rules are often required tools in medical research. In

screening programs, an automated classification rule is desired which can accu-

rately identify the subjects as being “healthy” or “affected”, allowing expensive

and experienced specialised staff to be replaced by cheaper assistants. In the cur-

rent thesis we examine how to make use of medical examinations and a priori

knowledge, which are given for learning samples but not for later test samples,

in order to improve an automated classification rule.

The starting point of all considerations was glaucoma, an affection of the retinal

nerve fibre layer. Glaucoma is an irreversible disease and focus of recent research.

Several medical approaches lead to learning samples in the Erlanger Eye Registry.

The registry includes a magnitude of medical examinations, although the diag-

nosis is usually based on two conventional examination tools.

At the beginning, we describe the approach of indirect classification. The

conventional indirect classifier distinguishes between explanatory variables, i.e.

variables which are available for recent and future observations, and intermedi-

ate variables, i.e. variables the diagnosis is based on. This approach of indirect

classification can be applied in situations where detailed a priori knowledge, in-

cluding a diagnostic rule based on the intermediate variables, is given.

In the following, we extend indirect classification to situations where such a di-

agnostic tool is not known. We define an indirect classifier more generally, as a

classification rule, which makes use of all variables given in the learning sample.

4
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We make the algorithmic proposal “indirect subagging”. Indirect subagging is a

generalised indirect classification approach which combines an arbitrary number

of prediction models for intermediate variables, which are not collected for future

observations. In contrast to the conventional indirect approach, we can apply in-

direct subagging in situations where only little a priori knowledge is given. In

contrast to the framework of indirect classification we define a direct classifier as

a classifier which only uses the set of explanatory variables.

A given diagnostic function, incorporated into the conventional indirect clas-

sification approach, enables the distinction between an observed class member-

ship following the diagnostic function and a true class membership. We distin-

guish between these two possible states of the disease in following investigations.

Furthermore, we examine asymptotic properties of indirect classification and show

that the conventional indirect approach is Bayes consistent with respect to the ob-

served class membership and under certain model assumptions, while indirect

subagging is Bayes consistent under more general assumptions.

An artificial simulation model leads to the conclusion, that a correct specification

of the fixed diagnostic function is crucial for the performance of the conventional

indirect classifier. All in all, the indirect classifiers outperform direct ones within

this simulation framework.

Moreover, we develop a complex simulation setup, which generates the data

structure as given by the task of glaucoma classification. We investigate the per-

formance of direct and indirect classifiers for different variances of explanatory

and intermediate variables here.

Application to a case-control study of glaucoma and healthy subjects show the

gain of indirect classification. The application to two additional datasets indicate

that indirect subagging performs comparably or even better than the correspond-

ing direct classifiers. The performance of the classifier seems to depend on the

diagnostic value of the intermediate variables.
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Finally, we demonstrate the application of indirect classification, using the add-

on package ipred in the programming environment R.



Chapter 1

Introduction

Medical decision making is often a complex process based on several high di-

mensional measurements obtained by different examinations. The experience of

the physician is precondition for a reliable classification of patients to diseased or

healthy. Especially in screening programs, the observers are often unexperienced

assistants, hence, the construction of automated classification rules is a desirable

aim. Biostatistic and machine learning propose a magnitude of such automated

classification techniques, usually constructed on study populations.

On the one hand, there are mechanisms which search for similar clusters within a

study population where the class membership of the observations is not known,

e.g. the state of disease for each patient is unknown. This is called “unsupervised

learning”. On the other hand, one can be interested in the development of a rule

which assigns future patients. Such rules are constructed on a study population

(learning sample) with known class membership of the observations. We call that

“supervised learning”. This manuscript focuses on the latter classification tech-

nique.

Supervised classification rules are usually assessed with respect to their error

rates, i.e. by the proportion of misclassified patients. Error rates can either be

estimated by applying a rule on an independent sample, called “test sample” or

7
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by the calculation of an error rate estimator (Efron and Tibshirani, 1997; Schiavo

and Hand, 2000).

However, the starting point of all following consideration was the task of

medical decision making in glaucoma diagnosis. Glaucoma is a neuro-degenera-

tive disease which affects the retinal nerve fibre layer. Nowadays it is the sec-

ond most frequent cause for blindness worldwide, see Coleman (1999). This dis-

ease is irreversible, however, state-of-the-art therapy can slow down its progres-

sion. Therefore, early detection of glaucoma is helpful for the conservation of

visual faculty. A case-control study of glaucomatous and healthy subjects was

performed.

Classification of glaucoma is embedded with a quantity of typical difficulties

arising from the development of supervised classification techniques in medical

applications.

A common difficulty is the aim to classify an observation based on a small num-

ber of variables, although the learning sample contains more information, i.e. ad-

ditional “intermediate” variables are available. The glaucoma dataset for exam-

ple includes numerous medical examinations: Three dimensional measurements

of the optic nerve head indicate the proportion of degenerated retinal nerve fi-

bres. A two dimensional photo of the eye background is an established but less

informative tool to measure this decrease and visual field tests assess the visual

faculty of a patient. A reduction of medical examinations is required to spare

patients’ time and costs for the diagnostic procedure. Hence, a classification rule

should be based only on three dimensional examinations, which have the ability

to detect glaucoma early.

Different solutions are proposed in literature on how to make use of additional in-

termediate variables, i.e. variables available in learning samples but not in later

test samples. Classification approaches dealing with latent variables establish

a possibility to incorporate intermediate variables but can’t handle additional a
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priori knowledge. The inclusion of latent variables often leads to an improve-

ment of error rates, Vermunt and Magidson (2003) provides an overview of re-

cent developments. Tibshirani and Hinton (1998) proposes the use of additional

intermediate variables as a structuring component. In “mixture coaching” the

authors subdivide a model to predict the response variable based on the explana-

tory variables into a model for predicting the response in different partitions

of the intermediate variables and a model for predicting the partition member-

ship of the intermediate variable from the explanatory variable only. “Response

coaching” predicts intermediate and response variables from explanatory vari-

ables only and integrates over the intermediate variables. Martus (2001) applied

latent variable techniques for the evaluation of diagnostic measurements of glau-

coma concerning paired organs.

Furthermore, in medical diagnosis a priori information about the relationship be-

tween the disease and the outcome of some of these examinations is given. Sta-

tistical classification methods that mimic this process of medical decision making

should pay attention to the distinction between such a priori knowledge and the

information about measurements required to predict the parameters defining the

diagnosis. In glaucoma diagnosis, a priori knowledge about the definition of the

disease is given, although there exists a magnitude of morphological variations

of glaucoma, e.g. primary or secondary open angle glaucoma, glaucoma with or

without an increased intra-ocular pressure etc.. All variations are uniformly de-

fined by variables describing the visual field defect and the loss of retinal nerve

fibres (Lee et al., 1998). A classification rule incorporating this diagnostic infor-

mation can be based on a reduced set of examinations while making use of the

full information of the data. The task was to use the a priori known definition

of the disease and develop an early detecting automated classification based on

modern clinical examination tools. A difficulty is the correct specification of the

medical decision rule, because mis-specifying can lead to poor results of the au-
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tomated procedure.

An approach suggested by Hand et al. (2001) allows the incorporation of inter-

mediate variables and connected medical a priori knowledge into a statistical

classification method. As introduced above, it assumes that the outcomes of the

examinations are subdivided into three groups of variables: those to be used

predicting the diagnosis, those to be used defining the diagnosis and the final

diagnostic variable itself. The indirect classification process is executed in two

separate steps. In the first step, prediction models for the defining variables em-

bedding all other variables of potential influence are created based on a learning

sample. In the second step, these defining variables are classified according to

a deterministically known classifying function to yield the final medical diagno-

sis. The medical a priori knowledge is used twofold in this approach: (i) it is the

criterion for the subdivision of variables into the different groups and (ii) it de-

termines the fixed classifying function used in the second step of the procedure.

Moreover, in other applications a definition of a disease is often not known. A

priori knowledge can be reduced to information whether medical tests are per-

formed on future patients or not. Even the informative matter of intermediate

and explanatory variables is often not known. Consider for example classification

of diabetes and healthy subjects. To our knowledge there are no standard med-

ical measurements used to diagnose the disease and it is not clarified, whether

it is e.g. age dependent or not. That means, the a priori knowledge is reduced

on informations about e.g. costs and availability of medical tests. An automated

rule is required, which does not depend on the correct specification of a medical

decision rule and nevertheless uses all available variables of the learning sample

but predicts on a reduced set of variables.

However, a given definition of a disease, as in glaucoma diagnosis, leads to a

possible distinction between a true and an observed class membership. The defi-

nition reflects the experienced based diagnosis of the physician, whereas the true
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diagnostic state of a patient causes an underlying data structure. For example,

patients have smaller visual field defects if the true diagnostic state is healthy

rather than if they are diagnosed as healthy. This type of error, called differential

misclassification, is often discussed in epidemiological context (Flegal et al., 1991;

Rothman and Greenland, 1998; Grimes and Schulz, 2002) but usually neglected in

classification tasks. The distinction between observed and true class membership

results in two possible assessments of the classification rule: a misclassification

error in terms of the observed and one in terms of the true class membership.

In this thesis, we give a generalised definition of the framework of indirect

classification as suggested by Hand et al. (2001). We define indirect classification

as classification that incorporates information connected with the intermediate

variables. In contrast, we define direct classifiers as those using the information

of variables available in learning and later test samples only. We combine indirect

classifiers following the framework of Hand et al. (2001) with bootstrap aggrega-

tion which leads to an improvement of error rates in application (Breiman, 1996a;

Peters et al., 2003).

However, the difficulty of how to deal with situations where information about

the medical decision rule is missing or moreover, where it is even not known

which examinations contain more or less diagnostic value, remain unsolved. The

a priori knowledge is reduced to a criterion for the subdivision of variables here.

We propose a procedure which is based on the indirect approach and which

makes use of a rating of variables by classification trees (Breiman et al., 1984).

Combining predictive models for the intermediate variables with subagging

(Bühlmann and Yu, 2002) leads to the automated classification approach “indirect

subagging”. A difficulty associated with the prediction of intermediate variables

is deciding which model is appropriate. Indirect subagging enables us to com-

bine an arbitrary number of regression models with subagging and Hothorn and

Lausen (2003c) demonstrate in a direct classification framework that additional
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variables can improve the performance of bagging (or subagging) if they contain

information about the underlying data structure and they do not affect the per-

formance if they are uninformative. Resulting, the indirect subagging approach

should perform comparably to direct classification in situations where the pre-

dicted intermediate variables embed no diagnostic value and should outperform

it otherwise.

Error rates are often used to assess supervised classification techniques. Through-

out this thesis an analysis of error rates of indirect classifiers is performed with re-

spect to a distinction between an observed class membership, given by the fixed

classifying function and a true class membership, causing an underlying data

structure (Peters and Lausen, 2003). We define differential misclassification for a

classification task as well as error rates with respect to the true and with respect

to the observed class membership. Error rate calculations are performed for a

simple discriminant model with normally distributed variables. We investigate

asymptotic properties of indirect classification in situations with and without a

fixed classifying function.

The performance of indirect classification techniques in finite sample situations

are analysed within different simulation studies. On the one hand we consider

different structures of the decision space, on the other hand we evaluate a classifi-

cation rule for glaucoma diagnosis which is based on three dimensional measure-

ments of the optic nerve head morphology. The indirect approach classifies pa-

tients using a definition of glaucoma based on measurements obtained by visual

field tests and two dimensional fundus photos but requires three dimensional

information about the optic nerve head only, to classify future patients. Such a

rule reduces the number of necessary examinations, which in turn decreases the

amount of time demanded from patients and reduces medical costs. A simula-

tion study which mimics the data structure of the glaucoma dataset is our tool to

assess the performance of direct and indirect classifiers for the task of glaucoma
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diagnosis.

To illustrate the practical application of indirect classification and to demonstrate

the gain achieved by its utilisation we apply indirect classifiers to different data

sets, including situations with and without a known and fixed classifying func-

tion.

More specifically, this thesis is organised as follows. In chapter 2 we discuss

medical decision making for classification of glaucoma and introduce a case-

control study. We describe the considered discriminant model in section 3.1 and

define and contrast indirect and direct classification in sections 3.3 and 3.2. In

section 4 we analyse the performance of indirect classifiers and the direct Bayes

classifier under certain model assumptions and consider asymptotic properties.

Classification errors with respect to the true class membership and those with re-

spect to the observed class membership are distinguished.

Chapter 5 includes different simulation approaches. We focus on the analysis of

different dependencies within training and test samples in section 5.1. In section

5.2 we discuss a simulation model which mimics data structures of a case-control

study of normal and glaucoma subjects.

Applications are performed in chapter 6. The proposed techniques are imple-

mented in a computer package, which is described in chapter 7.
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Chapter 2

Classification of Glaucoma

The starting point of all considerations was the task of glaucoma classification.

Typical difficulties of medical decision making occur here. We have a magnitude

of variables from different medical examinations but a diagnosis which is only

based on a very limited number of variables. Moreover, the given a priori know-

ledge enables us to formulate a simplified diagnosis of the disease.

In the following we describe the process of medical decision making which leads

to the assignment of a given set of variables into explanatory, intermediate and

response variables and to the simplified diagnosis of the disease. We describe a

case-control study of normal and glaucomatous subjects afterwards.

2.1 Medical Decision Making of Glaucoma

Glaucoma is a slow and irreversible neuro-degenerative disease which affects

the retinal nerve fibre layer and often occurs in a population of elderly people,

see Coleman (1999). The diagnosis of glaucoma is based on examinations of the

visual field defect and the morphology of the optic nerve head (ONH). Since the

onset of the disease is usually not detected and the state-of-the-art therapy of

glaucoma is to slow down its progression, early detecting classification rules are

15
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required.

There are several possibilities to examine the visual field defects and the op-

tic nerve head (ONH). A common examination of the visual field is performed

with the octopus, this tool gives impulses of light within the visual field of a pa-

tient. The patient signals whether he or she sees the flicker or not. Photographs

of the ONH (papillometry) or a three dimensional topographical analysis of it

by the Heidelberg Retina Tomograph (HRT) (see Swindale et al., 2000; Mardin

et al., 1999) are often used to assess the ONH morphology. The HRT is a confocal

scanning laser tomograph that produces a series of 32 images, each of 256 × 256

pixels, which are converted to a single topography image where each pixel rep-

resents a depth value (see Heidelberg Engineering, 1997).

As mentioned above, variables which describe the visual field defect and the

wclv ≥ 5.1

wlora ≥ 49.23 wlora ≥ 58.55

glaucoma normal wcs < 1.405 normal
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Figure 2.1: Diagnosis of glaucoma: Based on the intermediate variables wlora (loss

of rim area), wcs (contrast sensitivity), wclv (corrected loss variance) a patient is

classified according to the graph.

proportion of retinal nerve fibres lost are used to define the disease, although

a unique definition of glaucoma is controversial. For example Lee et al. (1998)

observed that there are several different definitions of normal tension glaucoma,

which is a special case of glaucoma. We introduce a simplified definition of glau-

coma which is based on medical knowledge and depends on the following inter-

mediate variables: Loss of rim area wlora, corrected loss variance wclv and contrast
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sensitivity wcs. Loss of rim area describes the proportion of the papilla which

does not consist of the rim area, i.e. which does not consist of retinal nerve fibres,

and is measured using optic nerve head photographs. Corrected loss variance

describes the loss of variance of the visual field corrected by the short-time fluc-

tuation, observed by the octopus. This examination also measures the contrast

sensitivity of the eye. Based on these three intermediate variables a patient is

classified as normal, if g(w) = 0 and as glaucomatous if g(w) = 1, where

g(w) := χ{wclv≥5.1}(wclv)χ{wlora≥49.23}(wlora) + (2.1)

χ{wclv<5.1}(wclv)χ{wlora≥58.55}(wlora)χwcs<1.405(wcs),

with w = (wlora, wcs, wclv) and χ(.) denotes the indicator function. The function

g(w) for glaucoma diagnosis is also displayed in figure 2.1.

2.2 Case-Control Study

Data from a cross-sectional study including 85 glaucomatous and 85 normal eyes

from the Erlangen Glaucoma Registry are given (cf. Mardin et al., 1999, 2003).

Only the measurements of the first examination of one eye of each patient are

taken. The variables are obtained by HRT, papillometric and visual field exami-

nations and include anamnestic information. Normal and glaucomatous subjects

are matched by age and sex, to adjust for possible confounding.

We assume that for future examinations only HRT data will be available. Hence,

only these sets of variables are used as explanatory variables, there are 62 HRT

explanatory variables. The HRT variables include several measurements of the

volume and areas of certain portions of the papilla. Some major HRT variables

are displayed in table 2.1 and their detailed description is given in section 5.2.

The main characteristic of glaucoma is a reduced number of retinal nerve fibres.

Consequently, the morphology of the papilla becomes less prominent, volumes
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describing the upper part of the papilla decrease and those describing the pro-

portion of volume not covered by retinal nerve fibres increase. Figure 2.2 shows

a two dimensional profile of a model of a healthy (solid line) and a glaucomatous

papilla (dashed line), respectively.

Figure 2.2: Two dimensional profile of a model of a healthy (solid line) and a

glaucomatous (dashed line) papilla.

The HRT variables varg and abrg reflect the change in the upper part of the

papilla, eag, mhcg and vbrg describe the increase of volume not covered by retinal

nerve fibres. tmg is a measure for steepness and ag reflects the size of the papilla.

We assign variables obtained by papillometry and visual field examinations (see

section 2.1) to intermediate variables. To describe the structure of the study popu-

lation, we also report the anamnestic variables age and intra-ocular pressure (iop)

at the examination day.

Table 2.1 includes summary statistics of some explanatory and intermediate

variables as well as of some clinical characteristics of the population. The match-

ing by age and sex guarantees a similar distribution of these variables in both

groups. The wilcoxon p-values of intermediate and explanatory variables indi-

cate the differences between normal and glaucoma subjects.



2.2. CASE-CONTROL STUDY 19

normal glaucoma p-value

clinical number 85 85 -

characteristics sex (f/m) 48/37 48/37 -

iop 16.00 [14.00, 19.00] 16.00 [14.00, 19.00] 0.60

age 56.00 [51.00, 62.00] 56.00 [51.00, 62.00] 0.93

intermediate wclv 1.40 [0.50, 2.30] 32.60 [0.50, 2.30] 0.00

variables wcs 1.47 [1.29, 1.58] 1.20 [1.29, 1.58] 0.00

wlora 45.31 [36.55, 55.86] 69.84 [36.55, 55.86] 0.00

explanatory ag 2.44 [2.07, 2.86] 2.57 [2.07, 2.86] 0.09

variables abrg 0.86 [0.38, 1.37] 1.58 [0.38, 1.37] 0.00

eag 1.54 [1.03, 2.12] 2.04 [1.03, 2.12] 0.00

varg 0.35 [0.29, 0.50] 0.15 [0.29, 0.50] 0.00

vbrg 0.19 [0.05, 0.37] 0.50 [0.05, 0.37] 0.00

mhcg 0.07 [0.03, 0.11] 0.12 [0.03, 0.11] 0.00

tmg −0.15 [−0.22, −0.07] −0.03[−0.22, −0.07] 0.00

Table 2.1: Median, lower and upper quantile ([·, ·]) and p-value of wilcoxon rank

sum test of intermediate variables and explanatory variables obtained by HRT

examinations and some clinical characteristics. iop is intra-ocular pressure, a de-

tailed description of explanatory variables is given in chapter 5.2.1.
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Chapter 3

Indirect and Direct Classification

We assume a situation with three types of variables: the response variable (class

membership), a set of explanatory variables (available for the prediction of future

observations) and a set of intermediate variables (variables available in learning

samples but not collected for future observations). In the medical context a reduc-

tion of examinations especially avoiding invasive medical tests of future patients

is appropriate to spare patients’ time and costs. Our aim is to construct classifiers

which use the full information of the learning sample but classify a future obser-

vation based on only the reduced set of explanatory variables.

Furthermore, we distinguish between two types of class memberships: (i) the di-

agnosis given by the observer, i.e. for example the fixed classifying function of

glaucoma diagnosis described in figure 2.1 and (ii) the true (but not observable)

state of a patient. In medical application a discrepancy between observed and

true diagnostic state occurs e.g. in situations where the misclassification depends

on exposure. Older subjects are, for example, more often misclassified as having

glaucoma, since this is an age dependent disease. In epidemiology this phenom-

ena is called differential misclassification.

In this chapter we describe the considered discriminant model more formally and

define direct and indirect classification.

21
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3.1 The Discriminant Model

Let L := {(yi, wi, xi), i = 1, . . . , n} denote a learning sample of n independent

observations and three groups of variables: the responses yi ∈ {1, . . . , J} are the

class labels, the intermediate variables are q-dimensional vectors

wi = (wi1, . . . , wiq)> ∈ Rq and the p explanatory variables are denoted by

xi = (xi1, . . . , xip)> ∈ Rp.

We assume the explanatory variables are related to the intermediate variables by

a function

k : Rp −→ Rq

xi 7−→ wi,

i.e. wi = k(xi) +ε, where ε is a random error. The class labels yi are related to the

intermediate variables by

g : Rq −→ {1, . . . , J}

wi 7−→ yi,

which classifies an observation based on intermediate variables only: yi = g(wi).

Furthermore, we assume an underlying data structure, determined by a true class

membership variable y0
i . In a medical context, the assigned intermediate variable

yi = g(wi) represents the diagnosis of an observer, whereas y0
i is the real state of

a patient. Therefore, explanatory, intermediate and response variables given the

true state of the patient are distributed following

(Y, W, X) ∼ F , (3.1)

where (Y, W, X) are random variables and random vectors with realizations

(yi, wi, xi), i = 1, . . . , n. Restricted learning samples Ly,x := {(yi, xi), i = 1, . . . , n}

andLw,x := {(wi, xi), i = 1, . . . , n} are random samples from the conditional mar-

ginal distributions FY,X and FW,X, respectively.



3.2. DIRECT CLASSIFIERS 23

We define a classifier as a function

C : Rp −→ {1, . . . , J}

xi 7−→ yi.

The classifier, denoted by C(xnew;L), assigns a future explanatory variable xnew

to a class membership and is trained on a given learning sample L.

The two frameworks of direct and indirect classification differ in their usage of

the underlying data structure and restricted learning samples.

Furthermore, the discriminant model results in three possible errors: The first

reflects the difference between true and observed diagnosis, the second is the

misclassification error of a classifier with respect to the true and the third is the

misclassification error with respect to the observed class membership. A detailed

description of these possible misclassification results is given in chapter 4.

3.2 Direct Classifiers

Direct classification methods try to estimate the relation between explanatory xi

and observed response variable yi. i.e. the composition g ◦ k. More formally, a

direct classifier

Cd(xnew) := Cd (xnew;Ly,x
)

predicts ynew-values for a new observation xnew based on a learning sample of

responses and explanatory variables, see figure 3.1. Examples of direct classifiers

are linear discriminant analysis (LDAd) and classification trees (CTREEd). Boot-

strap aggregation of classification trees (bagging− CTREEd) leads to a reduction

of error rates in many applications, Breiman (1996a, 1998).

We repeat these direct classifiers in this section, since we use them as comparison

to indirect classification techniques.
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xi1
...

xip
&%
'$
g◦k(xi) y = {1, . . . , J}- -

Figure 3.1: Direct classification rules are constructed based on the explanatory

variables xi := (xi1, . . . , xip)> and estimate the composition g◦k(·).

Linear Discriminant Analysis We apply the classical methods of linear dis-

criminant analysis (LDAd) as described by Fisher (1936) and Rao (1948).

The LDAd seeks a linear combination xa of the explanatory variables which max-

imises the ratio of its between-group variance to its within-group variance, where

x ∈ Rn×p is the matrix of explanatory variables of a given learning sample,

a = (a1, . . . , aJ′) and ai ∈ Rp for i = {1, . . . , J′} with J′ = min{p, J − 1}.

Let S j = (n j − 1)−1(x j − x̄ j1>n j
)(x j − x̄ j1>n j

)>, the within group j variance matrix.

We have x j ∈ Rp×n j is the matrix for the j-th group with n j observations, x̄ j ∈ Rp

is the vector of means over the observations and 1n j = (1, . . . , 1)> ∈ Rn j , where

j = {1, . . . , J}. The (pooled) within group variance is defined by

W = (n− J)−1 ∑J
j=1(n j − 1)S j and the between group variance is

B = (J − 1)−1 ∑J
j=1 n j(x̄ j − x̄)(x̄ j − x̄)>, where x̄ ∈ Rp is the vector of means over

all observations.

Differentiating the ratio of between and within group of variance λ =
a>Ba
a>Wa

with

respect to a and equating to zero yields Ba− λWa = 0. This eigenvalue equation

has solutions for values of λ satisfying |B − λW| = 0, i.e. it has solutions for

eigenvalues of W−B. The eigenvector a1 corresponding to the largest eigenvalue

is the direction which leads to a maximum separation. We call this direction the

first discriminant function and we have J′ = min{p, J − 1} distinct eigenvalues.

We calculate subsequent eigenvectors corresponding to maxima of λ under the
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constraints a>k Wah = 0 for h = 1, . . . , k− 1, i.e. a>k X and a>h X are uncorrelated for

h 6= k and X ∈ Rp the explanatory random vector.

In a situation with J = 2 groups the eigenvector a1 is the only discriminant func-

tion, resulting in the allocation of a new observation to group j′ if the discrimi-

nant score h(xnew) := a>1 xnew is minJ
j=1|h(xnew)− a>1 x̄ j| = h(xnew)− a>1 x̄ j′ . h(xnew)

is called Fisher’s linear discriminant function, more details are given in Hand

(1997).

Classification Tress Given a learning sample Ly,x where the response variable

y ∈ {1, . . . , J} defines the class membership we construct a classification tree by

recursive partitioning the learning sample, following Breiman et al. (1984). At

each node Ly,x is divided into two daughter nodes according to a splitting crite-

rion which allows us to choose the best splitting covariate and the corresponding

cut-point. We need an impurity measure to access the decrease of impurity from

one node to its daughter nodes. Let i(t) be the impurity measure of node t and

i(tR), i(tL) the impurity measures of the right and left daughter nodes.

Hence we want to maximise

maxs∆i(t, s) = maxs{i(t)− (i(tL)pL + i(tR)pR)},

where pL and pR are the proportions of observations falling in the left and right

daughter nodes and s is the split, corresponding to a certain variable and a cut-

point.

Let s∗ be the best split at node t, the tree decrease in impurity is given by

∆I(t, s∗) = ∆i(t, s∗)p(t),

where p(t) = “number of observations in node t′′
“number of total observations′′ is the weight of the node. Breiman et al.

(1984) define the total impurity of a tree as T as

I(T) = ∑
t∈T̃

I(t) = ∑
t∈T̃

i(t)p(t),
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where T̃ is the set of terminal nodes and T is the set of splits used together with

the order in which they were used.

We use Gini’s index as impurity measure. The index is defined by

i(t) = ∑
j′ 6= j

p( j|t) ∗ p( j′|t),

where p( j|t), p( j′|t) are the proportions of observations in node t belonging to

classes j and j′. Hence the Gini index is smaller the greater the differences in

proportions p( j|t) and p( j′|t) are, i.e. the better node t separates the groups.

Bootstrap Aggregation An aggregated direct classifier Cd
A is defined by

Cd
A(xnew;Ly,x) := EFY,X Cd(xnew;Ly,x), (3.2)

i.e. the expectation of Cd(xnew;Ly,x) with respect to the distribution of the learn-

ing sample. It is estimated by the bootstrap:

Ĉd
A(xnew;Ly,x) = EF̂Y,X

Cd(xnew;L∗
y,x), (3.3)

where the expected value is over L∗
y,x, a random sample with replacement from

the empirical distribution function F̂Y,X. Ĉd
A(xnew;Ly,x) is approximated by draw-

ing a finite number of bootstrap samples, for details see Breiman (1996a). More

detailed a bootstrap aggregated direct classifier is calculated in three steps:

1. Draw B samples L∗(1)

y,x , . . . ,L∗(B)

y,x of size n with replacement.

2. Calculate a classifier for each bootstrap sample L∗(b)

y,x , b = 1, . . . , B.

3. Classify a new observation xnew by majority voting over all predicted class

memberships Cd(xnew;L∗(1)

y,x ), . . . , Cd(xnew;L∗(B)

y,x ).

In the following we consider especially bootstrap aggregated classification trees

(baggingd) as bootstrap aggregated classifiers. Classification trees are quite un-

stable in the sense that small changes in the learning sample can lead to large
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differences in the resulting trees. Breiman (1996a) shows that bagging can give

substantial gains in accuracy. We stabilise classification trees by 50 bootstrap

replications.

3.3 Indirect Classifiers

Indirect classification methods make use of all variables available in the learning

sample. In the following we consider two situations. On the one hand, the clas-

sifying function g is known and fixed and on the other hand it is unknown and

therefore has to be estimated. In clinical context a known function g is given if e.g.

a disease is defined based on certain cut-points of clinical parameters. Situations

with an unknown function g occur whenever the learning sample contains more

"informative” variables than the later test sample. We are interested in replacing

the missing measurements with estimations based on the explanatory variables

only and use this additional information to improve the indirect classifier.

Let k̂ be any appropriate predictive model for the intermediate variables and de-

note ŵnew := k̂(xnew;L(k)), where L(k) contains a subset of observations and p + q

variables and L(k) ⊆ Lw,x. Hence, k̂ predict future intermediate variables wnew

for a new observation xnew based on a restricted learning sample of explanatory

and intermediate variables only.

We generally define an indirect classifier by

Cind(xnew) := Cind(xnew;L) (3.4)

= Cind(znew;L(C)),

where znew = (x>new, ŵ>
new)>. L(C) has m ≤ n observations and

L(C) ⊆ Ly,ŵ,x = {(yi, ŵi, xi), i = 1, . . . , n}, i.e. a learning sample including re-

sponse, predicted intermediate and explanatory variables.
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Known classifying function Indirect classification methods in situations with

known classifying function use g and estimate k instead of the composition

g ◦ k, see section 3.1. It predicts future ynew-values for a new observation xnew

based on the complete learning sample L by applying g to the predicted interme-

diate variables. The indirect classifier of equation (3.4) becomes:

Cind(xnew;L) = g(k̂(xnew;Lw,x)), (3.5)

see figure 3.2.

xi1
...

xip
&%
'$

k(xi)

wi1
...

wiq
&%
'$
g(wi) y ∈ {1, . . . , J}- - - -

Figure 3.2: Indirect classification with known classifying function g: Models are

constructed based on the explanatory variables xi := (xi1, . . . , xip)> to predict the

intermediate variables wi := (wi1, . . . , wiq)>. Suspects are classified according g.

We can use any appropriate prediction model to estimate the function k. We

focus on linear models (LMind) and regression trees (RTREEind) as predictors for

the intermediate variables in the following.

Furthermore, we try to improve the misclassification error by bagging indirect

classification and define the aggregated indirect classifier as

Cind
A (xnew) = EFCind(xnew;L) = EF g(k̂(xnew;Lw,x)), (3.6)

where the expectation is with respect to learning samples L.

Cind
A (xnew;L) is estimated by the bootstrap in the usual way

Ĉind
A (xnew;L) = EF̂Cind(xnew;L∗

w,x) = EF̂ g(k̂(xnew;L∗
w,x)), (3.7)

and approximated by the following procedure:
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1. Draw B bootstrap samples L∗(1)

w,x, . . . ,L∗(B)

w,x from Lw,x.

2. Construct a predictor k̂ for each bootstrap sample L∗(b)

w,x, b = 1, . . . , B.

3. A new observation xnew is classified by majority voting over all predictions

of the response g(k̂(xnew;L∗(b)

w,x)) for b = 1, . . . , B.

Although Hothorn (2003) proved that bootstrap aggregating over estimations

of the conditional class probabilities is Bayes consistent in a direct classifica-

tion framework, we choose majority voting over all predictions of the response,

since indirect classification does not offer reliable estimates of the class proba-

bilities in any circumstances. Moreover Breiman (1996a) indicates that majority

voting leads roughly to the same results as averaging over estimations of the

conditional class probabilities. Furthermore, note that we aggregate with re-

spect to the predicted class membership variable since we are interested in re-

ducing the misclassification error rather than to improve the prediction model

for the intermediate variables. Friedman (1997) gives a discussion on the con-

nection of mean squared error and misclassification error in the context of esti-

mated class probabilities. Using regression trees we denote the procedure out-

lined above "bagging − RTREEind" (bootstrap aggregated indirect classification

using RTREE) and do 50 bootstrap replications, see Peters et al. (2002a).

Unknown Classifying Function In the application of an indirect classifier with

an unknown classifying function g(·) several difficulties occur. One has to de-

cide which model is appropriate to predict the intermediate variables and how to

construct a classification rule. The relationship between explanatory, intermedi-

ate and response variables is not known and has to be estimated. Therefore, the

classification rule should incorporate explanatory variables as well as predicted

intermediate variables. To prevent the chance of over-fitting, prediction models

for the intermediate variables should be trained on an independent learning sam-
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ple L(k) ⊆ Lw,x from the learning sample L(C), where the classifier Cind is trained

on. More formally we require L(k) ∩ L(C) = ∅, with respect to the n observations.

Moreover, it is not known whether a “good” prediction of the intermediate vari-

ables, assessed by e.g. the sum of squares, results into a “good” indirect clas-

sification rule, assessed by its misclassification error. In the following we pro-

pose an algorithm which combines an arbitrary number of regression models for

the intermediate variables with a subsample aggregated classifier (subagging).

Bühlmann and Yu (2002) derived theoretical results of the effect of subagging de-

cision trees in a direct classification context. They show that subagging is Bayes

consistent if the size of the subsamples is chosen to be 50% of the size of the full

learning sample and performs comparable to the bagging approach of Breiman

(1996a).

In situations where model assumptions concerning the discriminant model of

section 3.1 are not fulfilled and explanatory variables are related to response vari-

ables directly we ensure that the proposed algorithm achieves at least comparable

results to direct classifiers by training the classifier on an independent learning

sample which includes explanatory, predicted intermediate and response vari-

ables.

We denote this procedure by “indirect subagging” (ISB) and it works as follows:

1. Random sampling m = [a ∗ n] observations B times L∗(1), . . . ,L∗(B) without

replacement from L, where 0 < a < 1 and let x∗(b) denote the matrix of

explanatory variables fromL∗(b) , b = 1, . . . , B and [. . . ] is the floor operation.

2. Compute r predictive models k̂1(· · · ), . . . , k̂r(· · · ) for the intermediate vari-

ables based on the explanatory variables using the so called “out-of-subag”

sample L∗(b)(k) := L\L∗(b) .

3. Construct a classification tree based on the original explanatory variables as

well as the predicted intermediate variables of the subag sample
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L∗(b)(C) := (x∗(b) , k̂1(x∗(b)), . . . , k̂r(x∗(b))).

4. Apply step II) and III) to all subag samples and classify a new observation

by majority voting.

We use subagging as an criterion to split the learning sample into L(k) and L(C),

respectively and vary the parameter a ∈ {0.25, 0.5, 0.75} in applications of indi-

rect subagging on real data sets.

We choose regression models incorporated in the indirect subagging approach

covering different types of possible relationships between explanatory and in-

termediate variables: Linear models are appropriate to estimate linear depen-

dencies, regression trees estimate tree-based dependencies and projection pursuit

regression is appropriate to model nearly every continuous relationship (Fried-

man and Stuetzle, 1981; Meyer et al., 2003). Consequently, we calculate differ-

ent indirect subagging classifiers using linear models (LMisb) or regression trees

(RTREEisb) to predict intermediate variables for future datasets. The classifier

LM + RTREEisb uses both techniques and LM + RTREE + PPRisb combines lin-

ear models, regression trees and projection pursuit method, where the plus sign

indicates the combination of the different regression methods.

In contrast to “indirect subagging”, Hothorn (2003) and Hothorn and Lausen

(2003b) propose the combination of different classification models via a boot-

strap aggregated classifier in a direct classification framework. Their approach

“bundling” combines different direct classifiers, whereas “indirect subagging”

deals with an indirect classification approach. Our proposal improves the dis-

criminant value of the predictors where the final classifier is based on, rather

than combining different types of direct classifiers.

More detailed, indirect subagging applies the described regression models to

each “out-of-subag” sample L∗(b)(k) , b = 1, . . . , B in a first step. In a second step,

a classification tree is fitted based on the extended set of predictors of the subag

samples. These extended sets of predictors consist of the original explanatory
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variables and one set of predicted intermediate variables for each fitted regres-

sion model. Consequently, the classification trees constructed within the indirect

subagging algorithm LM + RTREE + PPRisb are based on three times as many

predicted intermediate variables as these trees fitted within the algorithm LMisb.

We draw B = 50 subag samples to improve indirect subagging.



Chapter 4

Error Rates

As described in section 3.1 we differentiate between two types of class member-

ships: a true class membership y0
i , which causes an underlying data structure,

and an observed class membership yi, which mimics the diagnosis assigned by

a physician, see Peters and Lausen (2003). This results in different types of er-

rors caused by a wrong class labelling and by a wrong decision of the applied

classification rule.

In the following we use the notation of Efron and Tibshirani (1997). Q1 de-

notes the misclassification loss function, where

Q1(z1, z2) =

 1, if z1 6= z2

0, if z1 = z2.
(4.1)

Given a new observation (y0
new, ynew, wnew, xnew), where ynew = g(wnew) is the ob-

served diagnosis and y0
new is the true disease state, we have three types of losses:

1. Q1(y0
new, ynew), loss caused by the observed diagnosis,

2. Q1(ynew, C(xnew;L)), loss caused by classifier C(xnew;L),

3. Q1(y0
new, C(xnew;L)), overall loss caused by the whole classification process.

33
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Resulting true error rates, i.e. the probabilities that the classifier will misclassify

a new observation, corresponding to the three loss functions are denoted by

µ1 := E[Q1(Y0
new, Ynew)],

µ2(C(Xnew;L)) := E[Q1(Ynew, C(Xnew;L)] and

µ3(C(Xnew;L)) := E[Q1(Y0
new, C(Xnew;L)],

where the expectation is with respect to the unconditional distribution of the

learning sample. The µ1 error describes the discrepancy between the true state

of the patient and the observed diagnosis and is therefore a measure for the de-

gree of label correctness in test samples. This type of error, called differential

misclassification, is often discussed in epidemiological context (Flegal et al., 1991;

Rothman and Greenland, 1998; Grimes and Schulz, 2002). In epidemiology it de-

scribes the difference between the true and the observed state of a patient, where

the proportion of misclassification depends on exposure. In the medical field this

situation may occur, for example, lunge cancer is less likely to be detected within

a group of non-smokers or glaucoma is more often false diagnosed within a pop-

ulation of elderly people.

The misclassification rate with respect to the observed diagnosis (µ2) corresponds

to misclassification results in real data situations, whereas the µ3 error rates of the

classifier is the true misclassification error, i.e. the error with respect to the true

state of the patient. Although a good classification rule should minimise this kind

of error, there is often no opportunity to assess it in reality.

Consequently, the expected true error rates µd
2 and µd

3 for direct classification,

i.e. error rates over a design set of a given size, are denoted by

µd
2 (Cd(Xnew;Ly,x)) = EF ′

Y,X
EF ′

Ynew,Xnew
Q1(Ynew, Cd(Xnew;Ly,x)) and

µd
3 (Cd(Xnew;Ly,x)) = EF ′

Y,X
EF ′

Y0
new,Xnew

Q1(Y0
new, Cd(Xnew;Ly,x)),

where EF ′
Ynew,Xnew

and EF ′
Y0

new,Xnew
refers to unconditional expectation (with respect

to the true class membership) over future observations (Ynew, Xnew) and
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(Y0
new, Xnew). The expectation EF ′

Y,X
is over the unconditional distribution of the

restricted learning samples Ly,x.

Furthermore, for indirect classification, the expected true error rates are given by

µind
2 (Cind(Xnew;L)) = EF ′EF ′

Ynew,Xnew
Q1(Ynew; Cind(Xnew;L)) and (4.2)

µind
3 (Cind(Xnew;L)) = EF ′EF ′

Y0
new,Xnew

Q1(Y0
new; Cind(Xnew;L)) (4.3)

EF ′ refers to the unconditional distribution of the complete learning sample L.

In contrast to misclassification loss, let Q2 denote squared error loss

Q2(k̂(Xnew;Lw,x), wnew) =
q

∑
j=1

(k̂(Xnew;Lw,x) j − (wnew) j)2. (4.4)

The mean squared error is defined by

µMSE = EF ′EF ′
Wnew,Xnew

Q2(Wnew, k̂(Xnew;Lw,x)), (4.5)

where again EF ′ is with respect to learning samples Lw,x and EF ′
Wnew,Xnew

refers

to unconditional expectation over future explanatory and intermediate variables

(Wnew, Xnew).

However, there is no indication that improving the prediction model k̂ with re-

spect to mean squared error µMSE does improve the misclassification errors µ2 or

µ3 of the indirect classifier Cind simultaneously.

4.1 Bayes and Indirect Classifier using a known Clas-

sifying Function - Asymptotic Properties

The Bayes error is the minimum possible error rate in a given learning sample and

therefore provides a lower bound on any error rate which may be achieved by a

real classification rule. In the following we analyse the performance of µ1, µ2 and

µ3 errors of the Bayes classifier and an indirect classifier with known classifying
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function under a certain discriminant model. Note that we calculate the Bayes er-

ror following the framework of direct classification, hence it neglects knowledge

connected with the group of intermediate variables and therefore stands for the

minimal error rate achieved on a reduced learning set.

The discriminant model of chapter 3.1 is a framework which allows a magnitude

of different distributions of the learning sample. The calculation of error rates

under these general model assumptions is highly complicated. In the following

section we restrict the model to normally distributed explanatory and interme-

diate variables to analyse the performance of error rates of direct and indirect

classifiers.

Simple discriminant model In order to analyse asymptotic behaviours of the

discussed classifiers we have to restrict ourselves to a “simple” discriminant mo-

del, i.e. we impose model assumptions of normally distributed explanatory and

intermediate variables. We assume a binary true state y0
i ∈ {0, 1} and a binary

class membership variable yi ∈ {0, 1} describing the observed diagnosis. X ∈ Rp

denotes the multivariate normal random vector of explanatory variables,

X ∼ Np(c,σ2
xIp), where Ip represents the identity matrix of dimension p and

σ2
x > 0. Given the true state of the patient Y0, we have c =

 c(1), if y0 = 1

c(0), if y0 = 0
,

where c, c(0), c(1) ∈ Rp.

We decompose X = c +εX and define εX ∼ Np(0,σ2
xIp) as the measurement error

of explanatory variables.

We calculate error rates for a simplified situation with one intermediate variable

W, i.e. q = 1. The random variable W ∈ R is a linear transformation of the ex-

planatory variables: W = β>X + εW , where εW ∼ N(0,σ2
w) is the measurement
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error of the intermediate variables. The observed class membership is defined by

Y =

 1, if W > δ

0, else,

where δ is a given cut-point.

As an indirect classification rule, we incorporate the ordinary least squares esti-

mator β̂ to predict the intermediate variables. The intermediate variable of a new

observation (y0
new, ynew, wnew, xnew) is predicted following

ŵnew = β̂>xnew,

where β̂ = (x>x)−1x>w, x = (x1 · · · xn)> ∈ Rn×p, w = (w1 · · ·wn)> ∈ Rn×q and

q = 1, i.e. the outcomes of the learning sample.

Differential misclassification The µ1 error rate represents the difference be-

tween true state of the patient and observed diagnosis, which depends on the

intermediate variables, in given test samples. In our setup it is

µ1 = π0 · P(Y = 1|Y0 = 0) + π1 · P(Y = 0|Y0 = 1)

= π0 ·
{

1−Φ

(
δ− c(0)>β

σ

)}
+ π1 ·Φ

(
δ− c(1)>β

σ

)
,

where π0 = P(Y0 = 0), π1 = P(Y0 = 1), σ2 := var(W) = σ2
xβ

>β +σ2
w and Φ(·)

is the standard normal distribution function. The given cut-point δ is chosen

with respect to 0 < δ − β>c(0) and 0 > δ − β>c(1), hence Φ
(

δ−c(0)>β

σ

)
∈ [0.5, 1]

and decreases with increasing σ and Φ
(

δ−c(1)>β

σ

)
∈ [0, 0.5] and increases with

increasing σ . Resulting, differential misclassification is high for large variances

of the measurement error of explanatory or intermediate variables. The change

of the µ1 error rate is displayed in figure 4.1. For this graphical representation we

choose β = (0.1, . . . , 0.1)> ∈ R10, δ = 2, c(0) = (0, . . . , 0)> ∈ R10,

c(1) = (4, . . . , 4)> ∈ R10 and display σx and σw ∈ {0, . . . , 5} on the x and y axis.

The z axis describes the value of the resulting µ1 error.
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Figure 4.1: µ1 error plotted against increasing variation of explanatory and inter-

mediate variables.

Observed misclassification The discrepancy between predicted class member-

ship following a classification rule and the observed class membership is mea-

sured in terms of the µ2 error rate. In a real data example, calculated error rates

reflect the µ2 error rate, because one does usually not distinguish between a

real state and an observed class membership variable. We investigate the per-

formance of an indirect classifier with respect to this observable error rate and

calculate the µ2 errors of the Bayes and the indirect classifier. The Bayes classifier

is given by

CBayes(xnew) =

 1, if P(Y = 1|X = xnew) = maxk∈{0,1} P(Y = k|X = xnew)

0, else.
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Hence, it allocates a new observation xnew to class “1” whenever

P(Y = 1|X = xnew) > P(Y = 0|X = xnew). We rewrite

P(Y = 1, X = xnew|Y0) > P(Y = 0, X = xnew|Y0)

⇔ P(β>xnew +εW > δ|Y0) > P(β>xnew +εW ≤ δ|Y0)

⇔ 0 > δ−β>xnew.

The µ2(CBayes(xnew)) error of the Bayes classifier is calculated:

µ2(CBayes(Xnew)) (4.6)

= π0 · P(Y 6= CBayes(X)|Y0 = 0) + π1 · P(Y 6= CBayes(X)|Y0 = 1)

= π0 ·
{

P(W > δ, β>X < δ|Y0 = 0) + P(W < δ, β>X > δ|Y0 = 0)
}

+

π1 ·
{

P(W > δ, β>X < δ|Y0 = 1) + P(W < δ, β>X > δ|Y0 = 1)
}

,

where (W, β>X|Y0 = j), j = {0, 1} is bivariate normal with mean (β>c( j), β>c( j))>

and restricted covariance matrix cov(W, β>X|Y0 = j) =

 σ2 σ2 −σ2
w

σ2 −σ2
w σ2 −σ2

w

 .

The µ2 error rate for the described indirect classifier is calculated analogously:

µ2(Cind(Xnew;Lw,x)) (4.7)

= π0 · P(g(W) 6= g(Ŵ)|Y0 = 0) + π1 · P(g(W) 6= g(Ŵ)|Y0 = 1)

= π0 ·
{

P(W > δ, Ŵ < δ|Y0 = 0) + P(W < δ, Ŵ > δ|Y0 = 0)
}

+

π1 ·
{

P(W > δ, Ŵ < δ|Y0 = 1) + P(W < δ, Ŵ > δ|Y0 = 1)
}

,

where (W, Ŵ|Y0 = j), j = {0, 1} is bivariate normal with mean (β>c( j), β̂>c( j))>

and restricted covariance matrix cov(W, Ŵ|Y0 = j) =

 σ2 σ2
x β̂

>β

σ2
x β̂

>β σ2
x β̂

>β̂

 .

We rewrite the summands of the Bayes classifier (4.6):

P(Y 6= CBayes(X)|Y0)

= P(Y = 0, CBayes(X) = 1|Y0) + P(Y = 1, CBayes(X) = 0|Y0)

= P(β>X +εW < δ, β>X > δ|Y0) + P(β>X +εW > δ, β>X < δ|Y0).
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The summands of the µ2 error rate of the indirect classifier (4.7) can be rewritten

analogously. This representation reveals that we obtain large µ2 errors for in-

creased absolute values of εW in situations where the variance σ2
x is small. The ex-

pressions β>X + εW < δ and β>X > δ are determined by the measurement error

of the intermediate variables εW. Therefore, the probability P(Y 6= CBayes(X)|Y0)

should be larger for small variances σx, since either

P(β>X + εW < δ, β>X > δ|Y0) or P(β>X + εW > δ, β>X < δ|Y0) becomes large

for a large negative or positive measurement error εW. Considering a situation,

where var(W) = σ2 causes the variance of var(β>X) = σ2 −σ2
w. The µ2 errors of

the Bayes and indirect classifiers should decrease here, since for large σ2 it fol-

lows σ2 ≈ σ2 −σ2
w and P(β>X−W < δ, β>X > δ|Y0) decreases with increasing

σ2
x . We display the performance of the µ2(CBayes(·)) error in figure 4.2, using the

same parameters as in figure 4.1.

Moreover, considering asymptotic properties of the indirect classifier, from the

consistency of β̂ follows the consistency of the indirect classifier.

Lemma:

Given the data structure described in chapter 4.1, the indirect classifier using the

ordinary least squares estimate to predict intermediate variables of future obser-

vations is Bayes consistent with respect to the µ2 error rate, i.e.

P(|µ2(CBayes(Xnew))−µ2(Cind(Xnew;Ln))| > ε) n→∞−→ 0 ∀ε > 0,

where Ln is a sequence of learning samples Ln := {(wi, xi), i = 1, . . . , n}.
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Figure 4.2: µ2(CBayes(·)) error plotted against increasing variation of intermediate

and explanatory variables.

Proof:

We rewrite

|µ2(CBayes(Xnew))−µ2(Cind(Xnew;Ln))| ≤ (4.8)∣∣∣∣π0

(∫ δ

−∞
∫ ∞

δ

( f(W,Ŵn|Y0=0)(x, y)− f(W,X>β|Y0=0)(x, y))dx dy
)∣∣∣∣+ (4.9)∣∣∣∣π0

(∫ ∞
δ

∫ δ

−∞( f(W,Ŵn|Y0=0)(x, y)− f(W,X>β|Y0=0)(x, y))dx dy
)∣∣∣∣+∣∣∣∣π1

(∫ δ

−∞
∫ ∞

δ

( f(W,Ŵn|Y0=1)(x, y)− f(W,X>β|Y0=1)(x, y))dx dy
)∣∣∣∣+∣∣∣∣π1

(∫ ∞
δ

∫ δ

−∞( f(W,Ŵn|Y0=1)(x, y)− f(W,X>β|Y0=1)(x, y))dx dy
)∣∣∣∣ ,

where Ŵn = β̂>
n X, β̂n := (x>x)−1x>w, x = (x1 · · · xn)> and w = (w1 · · ·wn)>.

f(W,Ŵn|Y0= j)(x, y) is the conditional bivariate normal density function with mean
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(β>c( j), β̂>c( j))> and covariance cov(W, Ŵn|Y0 = j) =

 σ2 σ2
x β̂

>
n β

σ2
x β̂

>
n β σ2

x β̂
>
n β̂

 and

f(W,X>β|Y0= j)(x, y) is the bivariate normal density function with mean

(β>c( j), β>c( j))> and covariance cov(W, β>X|Y0 = j) =

 σ2 σ2
x −σ2

w

σ2 −σ2
w σ2 −σ2

w

,

with j ∈ {0, 1}. We know that under the assumed normal distribution, β̂n is

consistent for β and therefore x>β̂n is consistent for x>β.

From the consistency of the estimator x>β̂n follows the convergence in law (The-

orem 2.3.5, Lehmann, 1999), i.e.

FW,X>β̂n

n→∞−→ FW,X>β,

where F·, · notate conditional distributions. This is equivalent to∫ ∫
S

f(W,X>β̂n|Y0)(x, y)dx dy n→∞−→
∫ ∫

S
f(W,X>β|Y0)(x, y)dx dy,

∀ sets S for which the probabilities in question are defined and for which the

boundary of S has probability zero under the distribution of (W, X>β|Y0) (Theo-

rem 1.7, p. 343, Lehmann, 1991). Hence, each addend of equation (4.9) converges

to zero and

P(|µ2(CBayes(xnew))−µ2(Cind(xnew;Ln))| > ε) ≤ P(expression(4.9)︸ ︷︷ ︸
−→0

> ε) n→∞−→ 0.

�

True misclassification Although in real data examples we can only assess the

error with respect to the observed class membership, the µ3 error quantifies the

discrepancy between the true state of the patient and the predicted class mem-

berships. The Bayes rule for the µ3 error is

CBayes(xnew) =

 1, if P(Y0 = 1|X = xnew) = maxk∈{0,1} P(Y0 = k|X = xnew)

0, else.
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Hence, it allocates to class “1” whenever

P(Y0 = 1|X = xnew) > P(Y0 = 0|X = xnew). We rewrite

A = (c(0) − c(1))>(σ2
XIq×q)−1(xnew −

1
2
(c(0) + c(1))) > log

(
π0

π1

)
,

for details see Ripley (1996), pp. 21-22.

If X comes from class “0” then A ∼ N( 1
2ζ

2,ζ2) and A ∼ N(− 1
2ζ

2,ζ2) if X comes

from class “1”, where ζ =
√

(c(0) − c(1))>(σ2
xIq×q)−1(c(0) − c(1)). Hence,

µ3(CBayes(Xnew)) (4.10)

= π0 ·Φ
(
−1

2
ζ +

1
ζ

log
(

π1

π0

))
+ π1 ·Φ

(
−1

2
ζ − 1

ζ
log

(
π1

π0

))
.
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Figure 4.3: µ3(CBayes(·)) error plotted against increasing variation of intermediate

and explanatory variables.
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The performance of the µ3 Bayes error is displayed in figure 4.3, choosing the

parameters of figure 4.1. We calculate the µ3(Cind(xnew;Lw,x)) error analogously:

µ3(Cind(Xnew;Lw,x)) (4.11)

= π0 ·

1−Φ

δ− c(0)>β√
σ2

x β̂
>β̂

+ π1 ·Φ

δ− c(1)>β√
σ2

x β̂
>β̂

 .

The variance of the measurement error of the intermediate variable does not in-

fluence the µ3 Bayes error rate, see equation (4.10). In comparison, the µ3 error

rate of the indirect classifier increases with an increase of σw, since the estima-

tion of β̂ achieves absolute larger values for large σw and, consequently, the ad-

dends in expression (4.11) increase with increasing variance, compare paragraph

“differential misclassification”. The variance of the measurement error of the ex-

planatory variables affects the µ3 error of the Bayes classifier as well as the error

of the indirect rule.

4.2 Indirect Subagging - Asymptotic Properties

In the previous section, we discussed asymptotic properties of an indirect clas-

sifier using a fixed classifying function by imposing very restrictive model as-

sumptions. Results of Hothorn and Lausen (2003b) and Hothorn (2003) enable

us to examine the asymptotic performance of the indirect subagging approach

without these restrictions in this paragraph.

Hothorn and Lausen (2003b) proved the Bayes consistency of bootstrap aggre-

gated classifiers in a direct classification framework. The authors do not distin-

guish between a true and an observed class membership, they consider a learning

sample with one class membership variable reflecting the observed class mem-

bership in our framework. Furthermore they assume an aggregation that aver-

ages the conditional class probability estimators per bootstrap (or subag) sample
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and chooses the class with highest average class probability, rather than the ap-

proach of majority voting. However, Breiman (1996a) indicates that these two

voting algorithms lead roughly to the same results. Consequently, we conclude

based on the results of Hothorn (2003) that the observed misclassification error

of indirect subagging approximates the observed misclassification error of the

Bayes classifier. This Bayes consistency is proofed in Theorem 1 and 2 of Hothorn

(2003) for an indirect subagging approach that aggregates over conditional class

probability estimators.

More specifically, Theorem 1 of Hothorn (2003) shows the Bayes consistency

of a classification tree calculated on a united subag sample L∗(b)(C) , where

b = 1, . . . , B is the number of subag samples to be drawn and

L∗(b)(C) ⊂ L(C) := {(yi, xi, k̂1(xi), . . . , k̂r(xi)), i = 1, . . . , n} is a learning sample in-

cluding explanatory and response variable and a limited number of additional

predictors, see section 3.3. They prove this theorem by an extension of the proof

of Theorem 3, Lugosi and Nobel (1996) where the Bayes consistency of classifica-

tion trees is shown.

In Theorem 2 Hothorn (2003) proves that subagging (or bagging) by averaging

over conditional class probability estimators with a fixed and finite number of

subag samples and classification trees corresponding to each subag sample con-

structed in the described way is again Bayes consistent.

Altogether we conclude that the proposed procedure of indirect subagging is

Bayes consistent with respect to the observed misclassification error. However,

theoretic considerations of the true misclassification error of indirect subagging

are complicated, since the true class membership does not appear in learning

samples but affects the distribution of intermediate, explanatory and, consequently,

observed class membership variables. We avoid these calculations and refer to

simulation results.
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4.3 Comparison of Error Rates - Finite Sample Situa-

tion

In section 4.1 we calculated error rates of Bayes and indirect classifiers incorpo-

rating a fixed classifying function and a linear model and analysed asymptotic

properties for indirect subagging and this specialised indirect classifier. In this

section we indicate the performance of direct and indirect classification in finite

sample situations.

We compare calculated error rates of the Bayes classifier and the indirect classifier

with a known classifying function with simulated error rates of the direct classi-

fier LDAd and indirect subagging in the discriminant model described in section

4.1. We choose the linear discriminant analysis as a comparable direct classifica-

tion rule since it is optimal in situations with normally distributed data and does

a linear separation of the decision space of explanatory variables. The calculation

of LDAd error rates is widely discussed, but complicated in situations where the

exact distribution of the given learning sample is not known (McLachlan, 1975;

Läuter, 1992). Our focus is the comparison between direct and indirect classifi-

cation rules, therefore we simulate the misclassification results for the LDAd and

the indirect subagging classifier. For indirect subagging we include the ordinary

least squares and do 50 subag samples (LMisb).

We restrict ourselves to a situation with p = 2, i.e. X ∼ N2(c,σxI2), to visu-

alise the analysed behaviour of an indirect classifier compared to the Bayes error

and the direct classification rule LDAd. Additionally, for given learning samples

we approximate µ2(Cind(xnew;Lw,x)) and simulate misclassification errors for the

linear discriminant analysis by generating 100 observations per class and doing

1000 iterations. The error rates for the Bayes classifier and µ3(Cind(xnew;L)) are

calculated numerically.

Figures 4.4 and 4.5 display calculated error rates for c(0) = (0.5, 0.5)>,
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c(1) = (1.5, 1.5)>, β = (0.5, 0.5)> and δ = 1. In figure 4.4 we increase

σx = (0.1, . . . , 5)> and set σw = 0.1.
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Figure 4.4: µ2 (left side) and µ3 (right side) misclassification errors of Bayes (dot-

ted), direct (dashed), indirect (solid) classifiers, indirect subagging (longdash)

and differential misclassification (dotdash) with increasing standard deviations

σx of the measurement error of the explanatory variables and σw = 0.1.

A direct classifier predicts future class memberships based on explanatory vari-

ables only. Therefore, we expect a superiority of the discussed indirect classifier

compared to the LDAd for large values of σ2
x and small values of σ2

w.

Simulated results in Figure 4.4 show, that the applied indirect classification tech-

nique outperforms the LDAd with respect to the µ2 error especially for large vari-

ances of the explanatory variables. We achieve µ2 and µ3 errors almost equal to

the Bayes errors using indirect classification. Differential misclassification reflects

the difference between the observed and the true class membership. We exam-

ined in section 4.1 that it increases with an increase of the variance of the mea-

surement error. The divergence of these prior probabilities of true and observed
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class memberships does not lead to an increase of the misclassification results of

different classification techniques simultaneously (Hand et al., 1998). Resulting,

the µ1 error diverges from µ2 and µ3 error.

We demonstrate the performance for an increasing measurement error of the in-

termediate variables σw = (0.1, . . . , 5)> and σx = 0.1 in figure 4.5
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Figure 4.5: µ2 (left side) and µ3 (right side) misclassification errors of Bayes (dot-

ted), direct (dashed), indirect (solid) classifiers, indirect subagging (longdash)

and differential misclassification (dotdash) with increasing standard deviations

σw and σx = 0.1.

The indirect classifier is superior to the LDAd with respect to the µ2 and µ3 errors

for large variances of the measurement error of the intermediate variables. Per-

formances of indirect classifier and Bayes classifier with respect to the observed

diagnosis are calculated in equations (4.7, 4.6). These error rates are influenced

by the variance of the measurement error σw in the same way, therefore the re-

sulting µ2 errors of the Bayes classifier and indirect classifier are almost the same,

see Figure 4.5. In contrast to an indirect approach, a direct classification rule does
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not incorporate the definition of the observed diagnosis, i.e. it does not reflect the

distinction between an observed and a true class membership. A direct classifier

seeks for similarities within the groups determined by the observed class mem-

bership and therefore, considering the error with respect to the true state of the

patient, the direct classification rule appears to be more affected by differential

misclassification than the indirect one. Indirect subagging is highly influenced

by an increase of σw.
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Chapter 5

Simulation

The usage of simulation models is an established tool to mimic data structures

and to generate independent learning and test samples. Therefore, we construct

simulation models with a known distribution of the generated samples to anal-

yse general characteristics of indirect vs. direct classifiers.

First, we investigate the performance of direct classifiers versus indirect classi-

fiers using a known classifying function and indirect subagging in situations with

three different dependencies between explanatory, intermediate and response

variables. For this purpose we extend the simple discriminant model of section

4.3 and mimic data structures where the intermediate variables embed all, little

and none of the discriminant information. Note that the indirect classifier using

the fixed classifying function g(·) as defined in section 3.3 works with a mislead-

ing classifying function if the intermediate variables do not embed the whole dis-

criminant information. g(·) reflects a misspecified relation between intermediate

and observed response variables, i.e. a misspecified decision rule of a physician,

in these situations.

Second, we investigate different classifiers for the task of glaucoma classification.

We examine the performance of direct and indirect classifiers for glaucoma diag-

nosis by an extending the simulation model of Hothorn and Lausen (2003a).

51
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5.1 Simple Model

We generate learning and test samples using the following simulation model. We

have a binary class membership variable y0
i ∈ {0, 1} which describes the true

state of the patient. Furthermore, X ∈ Rp is the p dimensional multivariate nor-

mal random vector of explanatory variables X ∼ Np(c,σ2
xI), where Ip represents

the identity matrix of dimension p. Given the true class membership of a patient

we have c =

 c(0), if y0
i = 0

c(1), if y0
i = 1

. The random vector of intermediate variables

W ∈ Rq is a linear transformation of the explanatory variables: W = β>X + ε,

where β ∈ Rq×p and ε ∈ Rq is a normal distributed measurement error with

ε ∼ Nq(0,σ2
wIq). We define the observed diagnosis Y of a patient as Y = h(Z),

where Z = (W>, X>)> ∈ Rp+q.

We set the parameters X ∈ R10, p = 10, σ2
x = 2, σ2

w = 1,

c =

 c(0) = (0, . . . , 0)>, if y(0)
i = 0

c(1) = (4, . . . , 4)>, else.
and choose the linear dependence between

explanatory and intermediate variable W ∈ R2 by

β j = (1, . . . , 1)> ∈ R10, j = {1, 2}. Note that the data generating process differs

from the model assumptions, introduced in section 3.1. The observed diagnosis is

defined on explanatory and intermediate variables Y = h(Z), whereas an indirect

classifier incorporates a classifying function, which is based on the intermediate

variables only: Cind(xnew;L) = g(ŵnew).

5.1.1 Setups

We consider situations with a decision surface following a cut-point model on the

one hand and with a tree-based decision surface on the other hand.
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Setup 1 In this setup we choose a cut-point model as the relationship between

Z and the response Y:

Y =

 1, if γ>Z > 0

0, else.

We simulate three sub-setups.

Setup 1.1: Response depends only on intermediate variables:

γ = (0.5, 0.5, 0, . . . , 0)> ∈ R12,

Setup 1.2: Response depends on intermediate and explanatory variables:

γ = (1/12, . . . , 1/12)> ∈ R12,

Setup 1.3: Response depends only on explanatory variables:

γ = (0, 0, 0.1, . . . , 0.1)> ∈ R12

and fix the differential misclassification (difference between true and observed

class membership) to about 25% for all sub-setups by the choice of the cut-point

and the weightings for intermediate and explanatory variables.

The indirect classification approach incorporates a fixed classifying function, com-

pare section 3.3. We determine this fixed classifying function in setups 1.1 − 1.3

by

Cind(xnew;L) = g(k̂(xnew;Lw,x))

= g(ŵnew)

=

 1, if (0.5, 0.5) · ŵnew > 0

0, else,

i.e. it is based on intermediate variables only and reflects the true data structure

in setup 1.1. Note that in setups 1.2 and 1.3 this function does not reflect the func-

tional relationship between explanatory, intermediate and response variables, it

stands for a misspecified decision rule of a physician. For example, in setup 1.3
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the observed class membership is defined by a linear combination of explana-

tory variables only, whereas the classifying function incorporated in the indirect

classification approach depends only on intermediate variables and is therefore

totally misspecified.

Setup 2: We consider a tree-based relationship between intermediate and re-

sponse here, see figure 5.1.

More detailed, the conditions cond1, cond2 and cond3 are in the three sub-setups:

Setup 2.1: Response depends only on intermediate variables:

cond1 : w1 ≥ 20; cond2 : w2 < 44.5; cond3 : w2 < −4.5,

Setup 2.2: Response depends on intermediate and explanatory variables:

cond1 : w1 ≥ 20; cond2 : x1 < 5.35; cond3 : x1 < −1.35,

Setup 2.3: Response depends only on explanatory variables:

cond1 : x1 ≥ 2; cond2 : x2 < 6.5; cond3 : x2 < −2.5.

cond1

cond2 cond3

0 1 0 1
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��+

Q
Q

QQs

Q
Q

QQs

�
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��+

Q
Q

QQs
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�

��+

Figure 5.1: Tree-based relationship between intermediate and response.

Again the cut-points are chosen with respect to a differential misclassification

of 25%. The fixed classifying function incorporated in the indirect classification

framework is given by:
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ŵ1 ≥ 20

ŵ2 < 44.5 ŵ3 < −4.5
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Figure 5.2: Fixed classifying function incorporated into indirect classification.

As described for setups simulating linear dependencies in the previous section,

this function simultaneously reflects the true relationship between intermediate

and observed class membership variables in setup 2.1 and differs from the ob-

served diagnosis in setups 2.2 and 2.3.

The simulation model is our tool to investigate the performance of different clas-

sifiers in learning and test samples following different decision surfaces, i.e. we

have six different relationships between observed class membership and explana-

tory and intermediate variables. Therefore we generate cases and controls of

learning and a test sample following the true class membership and apply the

decision surfaces to the generated data. More specifically, we generate a learning

and test sample with 200 observations: 100 with true class membership “0” and

100 with true class membership “1”. We do 1000 replications.

We divide the learning sample into 50% out-of-subag and subag samples for the

indirect subagging classifiers. Subagging and bagging are performed with 50

subag and bootstrap samples, respectively.
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5.1.2 Results

The observed misclassification µ2, i.e. the difference between predicted class

membership and observed class membership, is minimised for the indirect clas-

sification approach in most setups.

Considering the setups where the indirect classifier incorporates the true rela-

tionship between intermediate and response variable (setup 1.1 and 2.1), indirect

approaches perform well as long as linear models are used to predict the interme-

diate variables, which is the true data structure here. In setup 1.1 the µ2 error of

LMind achieves an error rate of 1.8% and of 4.1% in setup 2.1. Indirect subagging

has comparable results in these setups. In contrast, the best results of the direct

classifiers are achieved by baggingd of about 11.8% in setup 1.1 and 24% in setup

2.1.

Direct classifiers in setups 2.2 and 2.3 are improved for these decision surfaces

not following the assumptions of the discriminant model, described in chapter

3.1. baggingd is a tree-based classifier constructed on explanatory variables only.

It performs best in setup 2.3 with an error rate of 0.8%. However it is superior

to LDAd even in situations where the decision space is generated by a cut-point

model in setups 1.1− 1.3. This can be caused by subgroups generated by differ-

ent distributions of the learning sample with respect to the true diagnosis.

The indirect subagging classifiers always perform at least comparable to the indi-

rect classifiers and better in situations where indirect classifiers LMind, RTREEind

and bagging − RTREEind incorporate misleading decision rules, i.e. fixed clas-

sifying functions which differ from the true relationship between explanatory,

intermediate and response variables. They achieve good results as long as the

linear model, which represents the relationship between explanatory and inter-

mediate variables, is included. Adding several "alternative” regression models,

e.g. regression trees or projection pursuit method, does not affect their perfor-

mance.
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1.1 1.2 1.3 2.1 2.2 2.3

µ1 0.250 0.250 0.250 0.242 0.251 0.248

µ2 LDAd 0.131 0.131 0.131 0.329 0.149 0.148

baggingd 0.118 0.118 0.117 0.240 0.022 0.008

LMind 0.018 0.013 0.250 0.041 0.304 0.369

RTREEind 0.205 0.206 0.250 0.333 0.319 0.295

bagging-RTREEind 0.137 0.137 0.249 0.275 0.279 0.264

LMisb 0.020 0.014 0.006 0.044 0.010 0.048

RTREEisb 0.144 0.144 0.142 0.291 0.037 0.046

LM + RTREEisb 0.020 0.014 0.006 0.044 0.010 0.047

LM + RTREE + PPRisb 0.021 0.015 0.006 0.044 0.010 0.046

µ3 LDAd 0.161 0.158 0.161 0.107 0.264 0.202

baggingd 0.262 0.258 0.259 0.164 0.265 0.246

LMind 0.250 0.249 0.500 0.238 0.239 0.240

RTREEind 0.211 0.210 0.500 0.122 0.121 0.124

bagging-RTREEind 0.270 0.272 0.500 0.052 0.054 0.053

LMisb 0.246 0.248 0.250 0.246 0.255 0.240

RTREEisb 0.287 0.285 0.285 0.139 0.283 0.241

LM + RTREEisb 0.247 0.246 0.252 0.247 0.254 0.244

LM + RTREE + PPRisb 0.246 0.247 0.250 0.247 0.254 0.238

Table 5.1: Simulation results of setups 1.1 − 2.3 of the simple model. a = 0.5 for

indirect subagging.
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Considering the µ3 error rates, i.e. the difference between predicted class mem-

bership and the true diagnostic state of a patient, direct classifiers perform sat-

isfactorily in many situations. Especially LDAd errors are about 15% in setups

1.1− 1.3, whereas the other classification techniques have a misclassification rate

of at least 20%. The indirect subagging classifiers often achieve misclassification

errors similar to the proportion of differential misclassification. In setup 2.1− 2.3

the indirect approach bagging − RTREEind achieves the best results among all

considered classifiers with a misclassification rate of about 5%.

Figures 5.3 and 5.4 show the distribution of µ2 and µ3 error rates of setups 1.1, 1.3,

2.1 and 2.3 and for selected classifiers. Considering figure 5.3, the µ2 error is

smaller than the estimated µ3 error for all classifiers, the differences between these

error rates of indirect classifiers is larger than the differences of direct classifiers.

The variance is minimised for indirect subagging in most situations, the µ3 error

rates for the indirect classifiers LMind and bagging − RTREEind in setup 1.3 are

about 50% for each replication of the Monte-Carlo simulation.

Estimated error rates of direct, indirect and indirect subagging classifiers are less

uniformly distributed for the tree-based decision surface in setups 2.1 − 2.3, see

figure 5.4.

In setup 2.1, the variance of estimated error rates of indirect subagging is again

smaller than the variance of the other classification techniques but it is increased

in setup 2.3. Moreover, the difference between µ2 and µ3 errors of the direct clas-

sifier LDAd is as large as the differences corresponding to indirect classifiers and

indirect subagging in setup 2.1. In setup 2.3 the direct classifier baggingd has the

larger difference. Even the relation between these two kinds of errors shifts be-

tween setups 2.1 and 2.3 for some classifiers. In setup 2.1 it is µ3 < µ2 for direct

classifiers and µ2 < µ3 for LMind, whereas the relation of these three classifiers is

the other way round in setup 2.3.

Altogether, indirect subagging appears to estimate the observed diagnosis
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Figure 5.3: Distribution of estimated µ2 (white boxes, left) and µ3 (grey boxes,

right) error rates of selected classifiers in setup 1.1 and 1.3.
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Figure 5.4: Distribution of estimated µ2 (white boxes, left) and µ3 (grey boxes,

right) error rates of selected classifiers in setup 2.1 and 2.3.
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better than the true class membership and achieves the smallest variance of all

considered classification techniques. This result is plausible, since it does not

include the definition of the observed class membership, which is correctly spec-

ified in setups 1.1 and 2.1 but totally misspecified in setups 1.3 and 2.3. Further-

more, it combines linear relationships and tree-based relationships and therefore,

the incorporated data structures in every setup.

The direct classifiers also estimate the observed class membership better than the

true class membership in most situations (setups 1.1, 1.3 and 2.3). In setups 1.3

and 2.3 the diagnosis of the observed class membership depends only on the ex-

planatory variables and the direct classifier is appropriate to model this relation-

ship. On the contrary, if the observed diagnosis is exclusively determined by the

intermediate variables and additionally the relationship between intermediate

and response variables is not the same kind of relationship between explanatory

and intermediate variables, direct classifiers have smaller µ3 errors than µ2 errors

(setup 2.1). If both relationships are linear, a direct classifier is again appropriate

to model the combination of the linear relation between explanatory and inter-

mediate variables and intermediate variables and response.

Indirect classifiers which include a fixed classifying function based on the set

of intermediate variables only, mimic the process of medical decision making in

setups 1.1 and 2.1. Therefore, they achieve smaller errors due to the observed

diagnosis in these situations. The results of setups 1.3 and 2.3 indicate that a per-

formance of this kind of classification technique is also affected by the underlying

data structure. In these setups the observed diagnosis depends on explanatory

variables only. The µ2 error rate of the indirect classifier is smaller than its µ3

error rate in a situation where the dependencies between intermediate and re-

sponse variables are linear. This relation is the other way round in tree-based

situations.
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5.2 Glaucoma Model

We evaluate the discussed direct and indirect classifiers based on the example of

glaucoma classification. We consider glaucoma classification as an example of

medical decision making. Hence a true classifying function g(·) is known and we

incorporate it into the indirect classification approach. We discussed some details

about the disease in section 2.1 and introduced the classifying function. In this

section we propose a simulation model which mimics data structures of the given

case-control study described in section 2.2.

5.2.1 Model

In the following we present a simulation model which mimics HRT measure-

ments as well as the outcome of visual field and papillometric data. Parameters

included in the simulation model are extracted from the case-control study intro-

duced in section 2.2, the simulated data structure is similar to the real-life data

structure in the case-control study. Therefore, this model is our tool to investigate

the performance of direct and indirect classifiers in the task of glaucoma classifi-

cation.

We simulate HRT and visual field measurements as well as parameters ex-

tracted from photographs of the optic nerve head. More specifically, we derive 26

variables for the HRT simulation characterising the optic nerve head morphology,

two variables wcs (contrast sensitivity) and wclv (corrected loss variance) charac-

terising the visual field defect and one variable wlora (loss of rim area) approxi-

mating measurement results from fundus photography.

For HRT measurements we use the simulation model proposed by Hothorn

and Lausen (2003a). This model calculates the morphology of the optic nerve

head (ONH) as introduced in Swindale et al. (2000), where the surface (sη) is
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defined by:

sη(u, v) =

−
(

z
1 + e(r−r0)/s + a(u− u0) + b(v− v0) + c(u− u0)2 + d(v− v0)2 + z0

)
,

with r = ‖(u− u0, v− v0)‖2, the 2-norm, and parameter vector

η = (z, z0, r0, s, u0, v0, a, b, c, d).

The optic nerve head has the shape of a cup, a two dimensional profile of a model

image is displayed in figure 5.5.

3u0
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Horizontal Distance u (mm)

D
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th
 z

z
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Figure 5.5: Two dimensional profile of a model image along the horizontal axis at

v0 = v illustrating the meaning of some of the model parameters.

Swindale et al. (2000) discuss the interpretation of the different parameters, and

a detailed description is given in table 5.2.

The arguments u and v vary between 0 and 3 mm, which is the area scanned by

the HRT. The parameter vector η(N) is estimated from the normal subjects and η(G)

from the glaucoma subjects of the case-control study introduced in the previous

chapter. These vectors help to achieve a more realistic model of an artificial nor-

mal and glaucomatous ONH morphology and are summarised in table 5.3. Given

a surface sη we simulate predictors derived by the HRT as described in Hothorn
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(u0, v0) centre of the cup

z measure of cup depth

z0 baseline height of all images

s steepness of slope of the cup walls

r0 distance of the cup wall (at half-height) from the canter of the cup

a overall component of tilt along the nasotemporal axis

b overall component of tilt along the vertical axis

c overall curvature along the nasotemporal axis

d overall curvature along the vertical axis

Table 5.2: Description of the elements of the parameter vector η.

u0 v0 z0 r0 z

η(N) 1.489 1.404 0.755 0.525 0.726

η(G) 1.489 1.404 0.755 0.640 0.697

s a b c d

η(N) 0.118 0.009 0.027 0.046 −0.045

η(G) 0.094 0.013 0.012 −0.019 −0.083

Table 5.3: Values for HRT simulation.

and Lausen (2003a) and Hothorn and Lausen (2002). The surface is computed on

a grid over the scanning area [0, 3]2 segmented into 40× 40 points. To model the

measurement error by the HRT we add independent identically distributed nor-

mal errors with variance σ2
HRT to the surface at each point of the grid. Increasing

variances of the measurement error σ2
HRT of the explanatory variables leads to an

increasing overlap of distributions of the variables corresponding to normal and

glaucomatous eyes respectively.

Several morphological variables are extracted from the simulated surfaces, which
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mimic parameters of the commercial HRT software (Heidelberg Engineering, 1997).

Figure 5.6 displays Swindale et al. (2000) model of the ONH morphology of a nor-

mal and a glaucomatous eye respectively for the parameters of table 5.3.

u
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Figure 5.6: Morphology of a normal (left) and glaucoma (right) ONH.

The size of the cup, describing the ONH, is determined by a circle called contour

line. Volumes and areas are extracted with respect to a reference plane. We define

the reference plane as the mean height of the contour line minus 30 µm. Figure 5.7

visualises the position of contour line and reference plane in a two dimensional

profile. More specifically, the HRT simulation calculates 31 values describing the

ONH morphology: area global (ag) is the overall area of the papilla; area below

reference global (abrg) is the area surrounded by the cut of the surface and the

reference plane; effective area global (eag) is the area above the reference plane

within the contour line; volume above reference global (varg) is the volume above
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Contour Line

Reference Plane

Figure 5.7: Two dimensional profile through the model image with contour line

and reference plane.

the reference plane within the contour line; volume below reference global (vbrg)

is the volume of the cup below the reference plane; mean height in contour global

(mhcg) describes the depth of the cup and third moment global (tmg) the kurtosis

of the cup. These global measurements are subdivided into segments of 90o: tem-

poral, nasal, inferior and superior. That means there are four additional results

corresponding to each described morphological value. For example, the kurtosis

is subdivided into: tmt, tmn, tmi and tms, which is third moment temporal, third

moment nasal, etc..

We obtain variables describing the visual field defect (wcs, wclv) and the pro-

portion of intact nerve fibres (wlora) by transformations of simulated HRT val-

ues x(HRT) plus a normal measurement error with expectation zero and variance

σ2
wcs

,σ2
wclv

or σ2
wlora

, respectively. We simulate wcs, wclv and wlora by

wlora = α(lora) + β(lora)>x(HRT) +εwlora ,

wclv = α(clv) + β(clv)>x(HRT) +εwclv and (5.1)

wcs = α(cs) + β(cs)>x(HRT) +εwcs .

The parameter vectors β(lora), β(clv) and β(cs) and the intercepts α(lora),α(clv) and

α(cs) are extracted from the case-control study. Each element of the parameter vec-

tors is set to zero except those corresponding to the HRT variables summarised
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in table 5.4.

α(lora) α(clv) α(cs)

Intercept 45.490 25.710 0.9440

β(lora) β(clv) β(cs)

abri 00.000 88.680 0.0000

abrn 00.000 00.000 -0.2840

abrs 37.980 170.63 0.0000

abrt 00.000 -132.83 0.0000

eag 00.000 -28.350 0.0000

eat 00.000 00.000 0.7962

vbrg -40.54 00.000 0.0000

vbri 130.21 00.000 0.0000

mhcg 51.160 82.380 -1.4601

mhct 00.000 00.000 0.9726

tmi 00.000 00.000 -0.6972

tms 60.050 00.000 0.0000

Table 5.4: Parameters β(lora), β(clv) and β(cs) and intercepts α(lora),α(clv) and α(cs) for

the transformation of HRT variables to wcs, wclv and wlora. The variables in the

first column describe quantities derived from the HRT simulation.

Since the three intermediate variables have different measurement scales, we de-

termine the variances σ2
wcs

,σ2
wclv

and σ2
wlora

of the measurement errors by the co-

efficient of variation τ , where τ =
σwclv

ηwclv

=
σwlora

ηwlora

=
σwcs

ηwcs

. We extract ηwcs , ηwclv

and ηwlora from the study population and simulate an increasing overlap of the

distributions of the variables of the two classes by increasing the coefficient of

variation τ .
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The classifying function g(w), where w = (wclv, wcs, wlora)> in this simulation

model is given by:

g(w) =


glaucoma, if χwclv≥163.15(wclv)+

χwcs<0.2559(wcs) + χwlora≥147.42(wlora) ≥ 1

normal, else

(5.2)

and χ(·) is the indicator function. The function g(w) is chosen with respect to

an µ1 error, i.e. a difference between true and observed diagnosis of about 10%

for τ = σ2
HRT = 0.05. This function is incorporated into indirect classification ap-

proaches. g(w) is based on visual field and papillometric values only and stands

for the diagnosis of a physician. Hence, using this simulation model, the true

state of the patient and the diagnosis are known. The true state is given by the

simulation setup and the observed diagnosis is given by the classifying function

g(w).

5.2.2 Setups

We choose two simulation setups to compare error rates of direct and indirect

classification methods. For each setup samples of 200 patients are generated with

100 observations classified to “glaucoma” and 100 observations classified to “nor-

mal”, following the classifying function (5.2). This configuration of the samples

mimics a realistic situation of a case-control study, where observations are col-

lected following their observed class membership.

In the first setup we increase the variance of the simulated explanatory HRT

variables. In other words, we examine the performance of direct and indirect

classifiers with highly varying predictive values in the simulation model imitat-

ing the task of glaucoma classification. 4 levels of variation for the HRT simula-

tion are used: σ2
HRT = 0.05, 0.20, 0.35 and 0.50. The coefficient of variation for the

intermediate variables is fixed at τ = 0.05.
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The second setup models the discrepancy between true state and observed

diagnosis by altering the coefficient of variation τ . Hence, direct classifiers are

trained on observed diagnosis diverging from the true underlying data structure

and indirect classifiers model intermediate variables based on a highly varying

learning sample. The coefficient of variation τ varies for 0, 0.02, 0.05, 0.08 and

0.10, the variance of the measurement error in the HRT simulation is fixed at

σ2
HRT = 0.20. Fixed and varying parameters of both setups are summarised in

table 5.5. We construct direct and indirect classifiers based on the learning sample

fixed parameters varying parameters

Setup 1 τ = 0.05 σ2
HRT ∈ {0.05, 0.20, 0.35, 0.50}

Setup 2 σ2
HRT = 0.20 τ ∈ {0, 0.02, 0.05, 0.08, 0.10}

Table 5.5: Parameter settings for setup 1 and 2.

and test them on the test sample. The size of the Monte-Carlo Study is 1000.

5.2.3 Results

Simulated misclassification errors for the diagnosis g(w) with fixed variance of

the intermediate variables and increasing variance of the explanatory HRT vari-

ables are summarised in table 5.6.

The discrepancy between observed diagnosis and true state of the patient in-

creases with σ2
HRT. Consequently, misclassification results of all applied classifiers

are affected as well. In real-data examples one assesses the error between ob-

served diagnosis and predicted class membership (µ2). Direct classifiers perform

comparably to indirect ones for small variances of the explanatory variables. At

σ2
HRT = 0.2 this relation shifts and indirect methods outperform direct ones as

long as regression models are included which reflect, in this application, the true

data structures. The indirect classifier LMind achieves especially good results for
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σ2
HRT 0.05 0.2 0.35 0.5

µ1 0.099 0.231 0.338 0.400

µ2 LDAd 0.099 0.216 0.236 0.230

CTREEd 0.113 0.269 0.328 0.336

baggingd 0.119 0.233 0.274 0.273

LMind 0.109 0.199 0.203 0.181

RTREEind 0.152 0.273 0.317 0.315

bagging− RTREEind 0.098 0.223 0.280 0.289

LMisb 0.099 0.187 0.208 0.200

RTREEisb 0.099 0.223 0.269 0.272

LM + RTREEisb 0.099 0.188 0.208 0.199

LM + RTREE + PPRisb 0.099 0.187 0.207 0.201

µ3 LDAd 0.001 0.131 0.299 0.379

CTREEd 0.019 0.177 0.309 0.382

baggingd 0.028 0.117 0.249 0.344

LMind 0.014 0.191 0.326 0.393

RTREEind 0.068 0.198 0.311 0.368

bagging− RTREEind 0.003 0.126 0.268 0.350

LMisb 0.002 0.153 0.284 0.358

RTREEisb 0.003 0.093 0.236 0.335

LM + RTREEisb 0.002 0.151 0.284 0.357

LM + RTREE + PPRisb 0.002 0.153 0.283 0.356

Table 5.6: Simulated error rates for several classifiers, τ = 0.05 and increasing

σ2
HRT. We set a = 0.5 for indirect subagging classifiers.
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large values of σ2
HRT, indirect subagging performs comparably.

The µ3 errors of the direct classifiers are smaller than the µ3 errors of the indirect

classifiers. Altogether, the µ3 error rate of all classifiers seem to be influenced

more by the classification technique (tree-based or linear) rather than by the clas-

sification framework (direct or indirect).

Simulated misclassification rates of the second scenario with increasing variance

of the intermediate variables, are summarised in table 5.7.

Most applied indirect classifiers achieve smaller misclassification rates for small

values of τ , considering the µ2 error rate. Indirect classification trees outperform

direct classification trees, and bagging reduces misclassification rates further. For

larger values of τ the situation changes and direct methods are comparable to

indirect classification incorporating the fixed classifying function. Indirect sub-

agging achieves an estimated misclassification error of about 3− 5% less than the

errors of all other classifiers in a situation with τ = 0.08 and τ = 0.1, respec-

tively. The regression model incorporated in the indirect classification frame-

work determines the performance of the classifier. LMind achieves the smallest

simulated misclassification results among all applied classifiers and values of

τ ∈ {0, 0.02, 0.05}, indirect subagging performs well as long as linear models

are included in this setup. For τ ≥ 0.05 the indirect subagging classifiers, which

incorporate linear models gain the best results among all considered classifica-

tion techniques. For τ = 0.1 these misclassification errors are about 24.6%, i.e.

about 4% smaller than the best direct classifier LDAd. If the linear regression mo-

del is not included in the indirect subagging approach, these classifiers achieve

misclassification errors which are about 3 − 5% larger than the results of the in-

direct subagging classifiers which include linear regression models. This result

is plausible, since the simulation model includes linear transformations to model

the intermediate variables, see section (5.1). Considering the error between the

true state of the patient and the classification results, direct methods are superior
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τ 0 0.02 0.05 0.08 0.1

µ1 0.158 0.177 0.231 0.268 0.285

µ2 LDAd 0.110 0.140 0.216 0.269 0.291

CTREEd 0.169 0.196 0.269 0.321 0.343

baggingd 0.136 0.163 0.234 0.279 0.301

LMind 0.000 0.098 0.199 0.260 0.290

RTREEind 0.151 0.182 0.273 0.326 0.352

bagging− RTREEind 0.130 0.157 0.223 0.269 0.295

LMisb 0.090 0.120 0.187 0.232 0.257

RTREEisb 0.141 0.164 0.223 0.265 0.285

LM + RTREEisb 0.090 0.120 0.188 0.233 0.257

LM + RTREE + PPRisb 0.090 0.119 0.187 0.232 0.256

µ3 LDAd 0.088 0.098 0.131 0.155 0.166

CTREEd 0.1440 0.147 0.177 0.214 0.230

baggingd 0.099 0.098 0.116 0.135 0.146

LMind 0.158 0.177 0.192 0.207 0.221

RTREEind 0.141 0.152 0.198 0.238 0.258

bagging− RTREEind 0.123 0.123 0.128 0.140 0.153

LMisb 0.157 0.159 0.152 0.150 0.149

RTREEisb 0.097 0.096 0.093 0.103 0.109

LM + RTREEisb 0.156 0.159 0.151 0.149 0.147

LM + RTREE + PPRisb 0.156 0.159 0.153 0.150 0.148

Table 5.7: Simulated error rates for several classifiers, σ2
HRT = 0.2 and increasing

τ . We set a = 0.5 for indirect subagging classifiers.
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to indirect ones in situations with a small measurement error of the intermediate

variables (τ ∈ {0, 0.02}). For large variance (τ = 0.1) indirect subagging outper-

forms all other classification techniques in terms to the µ3 error rate. However,

again the tree-based methods are superior to the linear ones, perhaps because of

possible subgroups generated by the distinction between a true and an observed

diagnosis.

Figure 5.8 shows the distribution of simulated error rates from setup 1 for se-

lected classifiers and variances σ2
HRT = {0.05, 0.5}. The difference between direct

and indirect classifiers is small for a small variance of the explanatory variables.

The observed misclassification error is larger than the true misclassification error

for all classifiers here and it varies more. Considering a situation with a large vari-

ance of the explanatory variables (σ2
HRT = 0.5), the µ2 error is smaller than the µ3

error for all classifiers. The variance of the true misclassification error is increased

compared to the situation with σ2
HRT = 0.05. Indirect classifiers outperform direct

ones here, as long as linear models are used to predict the intermediate variables.

Figure 5.9 shows the distribution of simulated error rates from setup 2 for se-

lected classifiers and coefficient of variation τ = {0, 0.1}. Most indirect classifiers

outperform direct classifiers in a situation with a small variance of the measure-

ment error of the intermediate variables τ = 0. The observed misclassification er-

ror is larger than the true misclassification error for direct classifiers and smaller

than the true misclassification error for most indirect classifiers. The indirect clas-

sifier LMind mimics the true data structure here and achieves optimal results.

Observed misclassification errors are larger than true misclassification errors for

direct and indirect classifiers in a situation with τ = 0.1. Variances of the µ2 and

µ3 errors are in creased compared to the situation with τ = 0. The difference be-

tween the performance of direct and indirect classifiers is small in this situation.

In both setups classifiers including linear modelling techniques gain better results

than tree-based methods, although bagging improves misclassification errors of
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Figure 5.8: Distribution of estimated µ2 (white boxes, left) and µ3 (grey boxes,

right) error rates of selected classifiers.
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Figure 5.9: Distribution of estimated µ2 (white boxes, left) and µ3 (grey boxes,

right) error rates of selected classifiers.
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regression and classification trees. An indirect classifier includes the diagnos-

tic function that is the discrepancy between true state and observed diagnosis.

Therefore, the performance of an indirect classification rule depends on the per-

formance of the diagnostic function as well as the measurement errors incorpo-

rated in the given learning and test samples. Nevertheless, the indirect method

outperforms the direct method for situations with small variances of the measure-

ment error of the intermediate variables and large variances of the measurement

error of the explanatory variables.



Chapter 6

Applications

The evaluation of classification techniques in terms of their application to real

data sets is an established tool. We apply direct and indirect classifiers to dif-

ferent data sets to avoid the criticism that the artificial data favours a particular

methods. On the one hand we consider a situation where the true classifying

function is known. We use the diagnosis of glaucoma described in chapter 2.1

to formulate an indirect classification rule using this a priori knowledge. On the

other hand we calculate direct and indirect subagging classifiers for two data sets

where no fixed classifying function is given. For indirect subagging classifiers

we vary the proportion of the subag sample between 25, 50 and 75% of the total

datasets.

6.1 Glaucoma Classification

We apply direct and indirect classification techniques to the cross sectional study

described in chapter 2.1. We assume that for future examinations only HRT data

are available. Hence, only the 62 HRT variables are used as explanatory variables

x. The HRT variables include several measurements of the volume and areas of

certain sections of the papilla.
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We calculate direct and indirect classifiers using the fixed classifying function

as well as indirect subagging introduced in chapter 3.3. Bagging and subagging

are performed using B = 50 random samples. 50 10-fold-cross-validations (CV)

are calculated on the given set of observations to compute an estimate of misclas-

sification error. The results of the indirect and direct classification approaches are

listed in Table 6.1.

Classifier Error Rate Estimation

LDAd 0.219

CTREEd 0.273

baggingd 0.191

LMind 0.243

RTREEind 0.213

bagging− RTREEind 0.179

a = 0.25 0.5 0.75

LMisb 0.174 0.188 0.209

RTREEisb 0.180 0.189 0.207

LM + RTREEisb 0.178 0.188 0.211

LM + RTREE + PPRisb 0.165 0.179 0.202

Table 6.1: Error rate estimation via 10 fold-cross validation for different direct and

indirect classifiers applied onto the Glaucoma Data.

The CV error is 24.25% for the indirect approach using LMind. The error is

smaller if a regression tree is used to predict the intermediates, namely 21.3%.

bagging− RTREEind results in a misclassification error estimate of 17.9%. Direct

classification by LDAd achieves an error estimation of 21.9%. Training a CTREEd

on the given data set of explanatory variables, the misclassification error estimate

is 27.30%. The error can be reduced onto 19.1% by bagging the tree. Compar-
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ing bagged direct and indirect classifiers, the reduction in estimated misclassi-

fication error from 19.1% to 17.9% indicates the gain achieved by using a priori

knowledge. Furthermore indirect subagging performs comparably to the indi-

rect approach using a fixed classifying function. The proportion of out-of-subag

and subag samples influences the performance of these classifiers. In situations

where predictive models for the intermediate variables are calculated on 75% of

the data, whereas the classification rule is calculated on 25%, indirect subagging

performs best. It achieves an estimated misclassification rate of 16.5% if we in-

clude all considered regression techniques (LM + RTREE + PPRisb).

6.2 Datasets with Unknown Classifying Function

We consider two datasets where the a priori knowledge defines explanatory and

intermediate variables only. We apply direct classifiers and indirect subagging to

these datasets.

Dystrophy Data Duchenne Muscular Dystrophy (DMD) is a genetically trans-

mitted disease, passed from a mother to her children. Affected female offspring

usually suffer no apparent symptoms, male offspring with the disease die at

young age. Although female carriers have no physical symptoms they tend to

exhibit elevated levels of certain serum enzymes or proteins.

The dystrophy dataset contains 209 observations of 75 female DMD carriers

and 134 female DMD non-carrier. The data is given by Andrews and Herzberg

(1985). It includes 6 variables describing age of the female and the serum param-

eters serum marker creatine kinase (CK), serum marker hemopexin (H), serum

marker pyruvate kinase (PK) and serum marker lactate dehydroginase (LD).

The serum markers CK and H may be measured rather inexpensively from frozen

serum, while PK and LD require fresh serum. Therefore, we assign age, CK and
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H to explanatory and LD and PK to intermediate variables.

0.25 0.5 0.75

LDAd 0.155

CTREEd 0.157

baggingd 0.118

LMisb 0.124 0.123 0.117

RTREEisb 0.130 0.139 0.143

LM + RTREEisb 0.122 0.122 0.119

LM + RTREE + PPRisb 0.120 0.120 0.116

Table 6.2: Results of dystrophy dataset.

The classifying function is not known for this dataset, hence only the new

algorithm can be applied as indirect classifiers. Direct classifiers are based on

the explanatory variables CK and H only. Tibshirani and Hinton (1998) analysed

that the usage of the additional intermediate variables LD and PK does not im-

prove misclassification results very much. Consequently, the new approach is

comparable to the direct classifiers. Error rates are approximately the same for all

considered proportions of the subag sample.

Pima Indian Diabetes The diabetes dataset was collected by the National In-

stitute of Diabetes and Digestive and Kidney Diseases and contains 768 observa-

tions from females of Pima Indian heritage, including 500 healthy subjects and

268 diabetics. It contains 8 variables describing the number of times pregnant,

plasma glucose concentration (glucose tolerance test), diastolic blood pressure

(mm Hg), triceps skin fold thickness (mm), 2-hour serum insulin (mu U/ml),

body mass index (weight in kg/(height in m)2), diabetes pedigree function and

age (years), see Smith et al. (1988).

We assign body mass index, diabetes pedigree function and age to explanatory
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variables since they are easy to collect and do not need serum probes, the remain-

ing variables are assigned to intermediate variables.

0.25 0.5 0.75

LDAd 0.310

CTREEd 0.325

baggingd 0.317

LMisb 0.295 0.298 0.298

RTREEisb 0.300 0.305 0.315

LM + RTREEisb 0.295 0.297 0.300

LM + RTREE + PPRisb 0.296 0.297 0.299

Table 6.3: Results of diabetes dataset with explanatory variables body mass index,

pedigree function and age.

Again no fixed classifying function is available, hence we apply direct classi-

fiers to the three explanatory variables and indirect subagging to the full informa-

tion of the learning sample. The results indicate the gain of indirect classification.

The inclusion of intermediate variables lowers the misclassification rate of direct

vs. indirect approach by about 2%. We achieve smallest estimated misclassifica-

tion errors in situations with a large out-of-subag sample.
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Chapter 7

Implementation

The software to calculate indirect classifiers and error rate estimations, used in

the current thesis were implemented in the R package ipred. In the following

we will introduce the programming environment R and the package ipred and

demonstrate its functionality with the example of direct and indirect glaucoma

classification.

7.1 R - A Statistical Programming Environment

The R environment is a coherent system which provides a programming lan-

guage, high level graphics, interfaces to other languages and debugging facilities.

R is available as free software under http://www.r-project.org.

The programming language is a dialect of the S language which was developed

at Bell Laboratories. The principle designer of the S language was John Cham-

bers. Since 1997, an R core group has existed which focuses on the maintenance

and the development of efficient and scientifically valuable software, especially

in areas of statistics. The object oriented programming and the opportunity to

define objects associated with attributes enables us to provide user friendly inter-

faces. We avoid the re-specification of arguments within different working steps
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by detaching these objects to corresponding methods via so called generic func-

tions. Many modern statistical techniques have been implemented in R, mainly

supplied as packages. R packages are available under http://cran.r-project.org.

7.2 ipred: Improved Predictors and Error Rate Esti-

mators

The ipred package is an attempt to create a unified interface for improved pre-

dictors and error rate estimators, Peters et al. (2002b).

In the current thesis we discussed improved predictions of class memberships

by bootstrap aggregation of classification trees and by indirect classification ap-

proaches. The function bagging implements e.g. bootstrap aggregation of classi-

fication trees in a direct classification framework. It also provides an interface for

the new classification technique "bundling", which combines an arbitrary number

of classifiers with bagging (Hothorn and Lausen, 2003b). The approaches of indi-

rect classifiers with known and unknown classifying function, discussed in this

thesis are implemented in the functions inclass and inbagg. Furthermore, dif-

ferent re-sampling based error rate estimators can be calculated with errorest,

particularly it includes cross-validation, a bootstrap estimator and its bias cor-

rected version .632+ (Efron and Tibshirani, 1997).

The package also contains different datasets, e.g. the glaucoma and dystrophy

datasets, discussed in chapter 2.1 and section 6.2, respectively. In the following

we demonstrate the performance of the functions by their application to the glau-

coma data set.

The functions inbagg and inclass Approaches of indirect classification are im-
plemented in the functions inclass(...) and inbagg(...).
inclass(...) performs indirect classification as described in Hand et al. (2001),
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and inbagg(...) implements indirect classification combined with bagging as
well as the new approach of indirect subagging described in chapter 3.3. To pro-
vide a user friendly interface with as few necessary specifications as possible, we
define generic functions which determine e.g. print methods.
In the following we demonstrate how to fit the indirect classifier for glaucoma
classification. We want to use linear models to predict the intermediate variables
(LMind).

R> # load glaucoma dataset

R> data(GlaucomaMVF)

R> fit.ind <- inclass(formula = Class~clv+lora+cs~., data = GlaucomaMVF,

+ pFUN = list(list(model = lm)), cFUN = classify)

We have four non-optional arguments to fit this indirect classifier. The formula

consists of three parts:
formula = response∼intermediate∼explanatory. The left hand side assigns the
response variable, the middle part defines the intermediate variables and the
right hand side the explanatory variables. With data = GlaucomaMVF we assign
the dataset in use. The argument cFUN is either a fixed classifying function which
assigns the intermediate (and explanatory) variables to a certain class member-
ship or a list with elements formula, model, predict and training.set, speci-
fying how to estimate the relationship between intermediate and response vari-
ables. We give a more specific description of the list cFUN below, in the context of
the functionality of the function inbagg(...). For our application a fixed classify-
ing function is given and displayed in figure 2.1. We combine this fixed function
with indirect classification by setting cFUN = classify.
The argument pFUN is a list of lists with elements specifying how to model the
functional relationship between intermediate and explanatory variables. We ap-
plied indirect classifiers which predict each intermediate variable with the same
regression model, e.g. the linear regression model for the classifier LMind. in-

class(...) provides the opportunity to use different models to predict inter-
mediate variables. For example, if we want to model the variables wlora and wcs

by regression trees based on all explanatory variables and wclv by a linear model
based on some explanatory variables only, we choose
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R> pFUN <- list(list(formula = cs+lora~., model = rpart),

+ list(clv~ag+abrg+varg+vbrg, model = lm))

and assign pFUN to the function inclass(...). The generic determined print
method of the fitted object fit.ind of class inclass gives information about the
intermediate variables and the predictive model:

R> fit.ind

Indirect classification, with 3 intermediate variables:

clv lora cs

Predictive model per intermediate is lm

Furthermore, the fitted object contains among other information the fitted re-
gression models corresponding to each intermediate variable and the classifying
function. These values can be extracted easily by calling

R> fit.ind$model.intermediate

$clv

Call:

formula.list[[i]]$model(formula = formula, data = data)

Coefficients:

(Intercept) ag at as an ai

123.6510 -1197.0967 1549.9025 1220.8971 1140.7330 1131.0894

eag eat eas ean eai abrg

4296.2945 -4494.1603 -4353.4151 -4281.0329 -4169.7150 130.4761

...

A detailed documentation is given in the appendix.
The usage of the function inbagg(...) is straightforward. Beneath necessary

arguments to specify predictive models for intermediate and response variables,
one has to provide information about how the subsampling procedure shall be
performed. Hence, we fit an indirect subagging classifier with 25 subsamples
and an out-of-subag of 50% using linear regression models (LMind) by
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R> fit.isb <- inbagg(formula = Class~clv+lora+cs~., data = GlaucomaMVF,

+ pFUN = list(list(model = lm)),

+ cFUN = list(formula = Class~.),

+ nbagg = 25, ns = 0.5, replace = FALSE)

The arguments formula, data, pFUN and cFUN are used similarly as described
for inclass(...) above. pFUN is again a list of lists where each element speci-
fies a regression model for the intermediate variables. Note that indirect subag-
ging enables us to combine an arbitrary number of regression models, whereas
the number of models is limited by the number of intermediate variables in the
traditional indirect classification approach using a fixed classifying function. A
list assigned to cFUN specifies how to calculate the classification rule. This list
has the arguments formula, specifying which variables are to be used to predict
the response variables, model specifying the classifier, training.set indicating
whether the classifier shall be trained based on the subag sample and the argu-
ment predict specifying a predictive function of the regression model if neces-
sary. The arguments nbagg, ns and replace determine how many subag sam-
ples are to be drawn, the size of each subag sample and whether to draw with or
without replacement.
The default of the argument cFUN is set to a classification tree, trained on the
subag sample. Hence, we only add the information that the tree shall be trained
on explanatory and intermediate variables by cFUN = list(formula= Class∼.).
The print output looks as follows

R> fit.isb

Indirect bagging, with 25 bootstrap samples and intermediate variables:

clv lora cs

We get information about the number of subag samples and the selected interme-

diate variables.

The function errorest We use 10−fold cross-validation to estimate error rates
in different applications. However, ipred provides an interface for different re-
sampling based estimators. Our aim was an interface which requires as few user
specifications as possible and which covers a wide range of error rate estimators
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for any classifier. Therefore, we defined generic functions, which determine the
appropriate method.
The user can specify different error rate estimations of any classifier implemented
in R using errorest with the basic arguments formula, data, model, predict

and estimator. We perform a 10−fold cross validation of the linear discriminant
analysis by calling:

R> # exclude intermediate variables

R> study.group <- GlaucomaMVF[ ,

+ !(names(GlaucomaMVF) %in% c(‘‘clv’’, ‘‘cs’’, ‘‘lora’’))]

R> # define predict function

R> mypredict.lda <- function(object, newdata) predict(object, newdata)$class

R> error.lda <- errorest(Class~., data = study.group,

+ model = lda, predict = mypredict.lda)

Note that the glaucoma dataset includes explanatory, intermediate and response
variables. The formula based interface enables us to define response and ex-
planatory variables easily. We reduce the input dataset data = study.group to
explanatory and response variables only, since we use the short-cut
“formula = Class∼.”. The argument model = lda determines the classification
techniques, and the method for predicting a fixed classification rule is specified
by mypredict.lda.
Due to a unified interface the definition of the wrapper function mypredict.lda is
necessary, since predict.lda does not return the predicted class membership by
default (as required). A description of all optional arguments of errorest(...)
is given in the appendix. For improved classifiers implemented in ipred, the stan-
dard output is adapted. For example the error rate for an bootstrap aggregated
classifier is estimated by:

R> error.bagging <- errorest(Class~., data = study.group, model = bagging)

For indirect classifiers inclass(...) and inbagg(...) the input arguments are

more complex, since we have to distinguish between explanatory, intermediate

and response variables. We specify a crossvalidation of the classifier bagging −

RTREEind defined in chapter 3.3 by
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R> error.ind <- errorest(Class~clv+lora+cs~., data = GlaucomaMVF,

+ model = inbagg, cFUN = classify, pFUN = list(model = rpart,

+ training.set = ‘‘bag’’), replace = TRUE, ns = 1)

where cFUN = classify is the fixed classifying function of figure 3.2 and pFUN

specifies how to calculate predictive models for the intermediate variables. The
argument replace = TRUE is logical and indicates whether we want to perform
bagging or subagging, ns = 1 specifies the proportion of observations to be drawn.
The print output of the calculated error rate of linear discriminant analysis is:

R> error.lda

Call:

errorest.data.frame(formula = Class ~ ., data = study.group,

model = lda, predict = mypredict.lda)

10-fold cross-validation estimator of misclassification error

Misclassification error: 0.2229

Hence it returns the call, information about the chosen error rate estimator and

the estimation itself.
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Chapter 8

Discussion and Outlook

Automated classification techniques are often useful in medical applications. An

automated rule can be applied by any even unexperienced observer to pre-select

subjects into healthy or diseased, e.g. during medical screening programs.

We concentrate on situations where these rules are based on a reduced set of

variables, although more variables are available in the study population. This

corresponds to situations in the medical field, where the number of examinations

is reduced, to avoid invasive procedures, spare patients’ time, or reduce medical

costs.

Furthermore, a priori knowledge about a disease is often available. In the exam-

ple of glaucoma diagnosis the a priori knowledge is the definition of glaucoma,

in many other applications it includes the separation between medical tests per-

formed only for the current study population (learning sample) and those per-

formed for future patients (test sample).

An exact definition of a disease given by a physician leads to the distinction be-

tween two types of diagnosis: (i) the diagnosis given by the observer and (ii)

the diagnosis reflecting the true state of a patient. In epidemiology the differ-

ence between the observed and true state of the patient is known as differential

misclassification (Song and Ahn, 2002; Bratcher and Stamey, 2002).
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The indirect classification approach (Hand et al., 2001) is a framework that

combines medical and statistical knowledge. A learning sample is subdivided

into variables available for future patients (explanatory variables) and variables

defining a disease and not observed in the future (intermediate variables). After-

wards a classification rule is constructed with respect to medical a priori infor-

mation. The advantage of this procedure is that the classification rule is based

on a reduced set of necessary diagnostic tests, while incorporating the medical a

priori information from the full set of measurements.

We define the framework of indirect classification more generally as suggested by

Hand et al. (2001) and distinguish between indirect and direct classification tech-

niques. The basic difference between these techniques is that direct classifiers re-

quire the same variables available in learning and test samples, whereas indirect

classifiers replace missing future examinations incorporating a priori knowledge.

However, a statistical difficulty is the choice of an analysis technique, which is

able to model the given data adequately. The incorporation of classification trees

in a medical context is widely discussed (Zhang and Singer, 1999; Lausen et al.,

1994; Ciampi, 1991). Combining classifiers with bagging reduces misclassification

errors in both the direct and indirect approaches. We define bagging for indirect

classification in situations where the a priori knowledge includes the definition

of a disease.

As described above, the a priori knowledge often includes the distinction

between recent and future examinations only. We propose an algorithm which

makes use of all variables available in the learning sample and classifies future

observations based only on a reduced set of variables. The procedure “indi-

rect subagging” enables us to calculate an arbitrary number of regression mod-

els to predict variables missing for future observations and incorporates them

into the classification technique subagging. In the literature different approaches

have been proposed, which combine different classification techniques or im-
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prove them with additional variables. Mojirsheibani (2001) discuss an iterated

classification rule, based on additional pseudo-predictors. Other approaches for

the combination of different classification techniques are suggested by LeBlanc

and Tibshirani (1996) and Mojirsheibani (1999). Our algorithmic proposal “indi-

rect subagging” has several advantages:

• it avoids the model selection problem i.e. the choice of an adequate regres-

sion model to predict the intermediate variables;

• it does an automated rating of variables for the classification task since it is

a tree based method; and

• it prevents over-fitting since it calculates predictive models for additional

variables on the so called “out-of-subag” sample that is independent from

the subag sample that the classification rule is based on.

The out-of-subag sample includes the observations not included in the subag

sample, for bagging these subsamples are called out-of-bag and bag, respectively.

The idea of using these independent data sets for the improvement of classifiers is

discussed in literature several times. Hothorn (2003) proposes “bundling” which

combines several classifiers with bagging, Rao and Tibshirani (1997) use the out-

of-bootstrap to calculate weights for model averaging and Breiman (1996b) use

the out-of-bag to form estimates, for example, for node probabilities or node er-

rors in decision trees.

In contrast to these improvements of direct classification techniques, indirect sub-

agging offers the opportunity to make use of the out-of-subag sample within an

indirect classification framework. This method increases the discriminant value

of the set of predictors, which are available for the final classifier, rather than

making use of the discriminant value of the out-of-subag.

We investigate the performance of direct and indirect classifiers in situations

with known distribution of learning and test samples. Furthermore, we distin-
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guish between different types of classification errors: the difference between true

and observed state of a patient (differential misclassification), misclassification

with respect to the observed state (observed misclassification) and a misclassi-

fication with respect to the true state (true misclassification). We derive explicit

formulae for these errors of the indirect classifier using a fixed classifying func-

tion and the Bayes classifier in an artificial example with normal distributed vari-

ables.

Results indicate that indirect classifiers outperform direct ones for small mea-

surement errors of intermediate variables and large measurement errors of the

explanatory variables with respect to the observed misclassification. The true

misclassification errors of all considered classifiers increase simultaneously with

increasing variance of the intermediate variables. They perform differently if we

increase the variance of the intermediate variables only.

Error rates of true and observed misclassification of all considered classifiers di-

verge for an increasing differential misclassification error. This result confirms

theoretical results of Hand et al. (1998). They analysed that error rates of optimal

classification rules dealing with the true and with the observed class member-

ship, respectively, are very different in situations where the prior probabilities

corresponding to true and observed class membership are markedly different. In

our framework differential misclassification reflects the difference between these

prior probabilities. Hand (2001) gives examples showing different interpretations

of diagnostic performance.

Considering asymptotic behaviours of indirect classifiers with respect to the ob-

served diagnosis, we demonstrate Bayes consistency of a specified indirect classi-

fier using a fixed classifying function under constrictive model assumptions con-

cerning the distribution of learning and test samples. Indirect subagging is Bayes

consistent with respect to the observed diagnosis under more general model as-

sumptions.
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Furthermore, we investigate the performance of direct and indirect classifica-

tion techniques in different simulation models. We generate different structures

of the decision space using normal distributed explanatory and intermediate vari-

ables with fixed variances.

Considering the observed misclassification error, the indirect classifier using the

fixed classifying function performs best, as long as all parameters within this ap-

proach are correctly specified. Indirect subagging outperforms direct classifiers

using a fixed classifying function and does not require as detailed specifications.

It achieves results comparable to direct methods in situations where additional

variables do not influence the response variable, i.e. the diagnosis of a patient,

and it outperforms direct classifiers in situations where the intermediate vari-

ables contribute some diagnostic value.

The true misclassification error is small for the direct classifier linear discriminant

analysis in a decision space following an easy cut-point model. Indirect classifi-

cation achieves the best results for a tree based decision space.

A modification of the simulation model of the optic nerve head by Hothorn and

Lausen (2003a) and the subsequent Monte-Carlo study indicate that an indirect

classifier is an appropriate tool for glaucoma classification in situations with large

variance of explanatory variables and small measurement errors of the interme-

diate variables.

The framework of indirect classification has been applied to the problem of

glaucoma classification. This is an example where the given a priori knowledge

covers a simple classifying function, which can be incorporated into a classifi-

cation task. The set of variables from different examination tools has been struc-

tured into explanatory, intermediate and response variables. The division of vari-

ables has been performed, considering the important aspect of glaucoma that pa-

tients do usually not detect the onset of the disease. However, early detection is

of main importance, since adequate therapy can slow down the progression of
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the disease. It is known that damage in the optic nerve head precede visual field

defects of the patients (Eid et al., 1997). A good classification rule should be based

on measurements of the optic nerve head, which are able to detect early damage

in the retinal nerve fibre layer. The HRT is an appropriate tool for detecting early

damage Kamal et al. (1999); Iester et al. (1997), hence, the ideal explanatory vari-

ables are HRT variables. Moreover, the definition of the disease is based on the

optic nerve head morphology and the visual field defects of the patient. The three

intermediate variables employed in the procedure also belong to these two areas.

Estimated error rates indicate that indirect approaches outperform direct ones in

this application. Indirect subagging performs comparably well to indirect classi-

fication rules incorporating a fixed classifying function, but requires less specifi-

cations. Furthermore, we analysed datasets which embed less a priori informa-

tion, in particular, we do not know a fixed classifying function. The first dataset

include information of a group of women that are carriers and non-carriers of

Duchenne Muscular Dystrophy (Dystrophy Data) and the second dataset is a

study population of female Pima Indians with healthy and diabetes affected sub-

jects (Diabetes data). The subdivision of the available variables in the study pop-

ulation into explanatory and intermediate variables was with respect to the cost

of the medical examinations in the case of the Dystrophy data and with respect

to the effort of the collection of the data in the case of the Diabetes data. Since

no classifying function is known, which determines the class membership, we

compare indirect subagging with direct approaches. Misclassification errors are

reduced by indirect subagging in the Diabetes dataset and comparable for the

Dystrophy Data. Application to data sets indicates that the percentage of obser-

vations used to calculate the regression models and the classification rule influ-

ences the performance of the indirect subagging classifier.

All in all, the application of the indirect approaches demonstrate the fruitful

synergy of medical knowledge acquisition and statistical classification methods.
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Bagging the classification process leads to a further reduction of the estimated er-

ror rates in the considered applications. The advantages of the indirect approach

are of interest for various areas of medical decision making challenged by the fact

that patients may be investigated with several tools. A natural first aim is to re-

veal the relationship between different examinations in order to decide whether

some medical examinations can be disregarded. The division of variables used

in the indirect classification is an approach similar to the framework of graph-

ical modelling (Cox and Wermuth, 1996), which can be seen as an example for

an unknown relationship between intermediate and response. Extracted a priori

information from this procedure of structuring offers the opportunity to build an

indirect classification rule based on a reduced set of examinations. The indirect

classifier can be used to provide statistical insight in knowledge based decision

support (Wetter, 2002). Another approach would be using clustering techniques

in the predictive step. Torgo and da Costa (2000) proposed a method which inte-

grates a clustering technique with regression trees. Tibshirani and Hinton (1998)

make use of the structuring information of the group of intermediate variables.

In contrast, an indirect classifier provides a flexible framework to incorporate

medical knowledge. The extension to indirect subagging is an opportunity to do

indirect classification in situations where no fixed classifying function is given.

A distinction between error rates corresponding to the diagnosis given by an ob-

server and those describing a misclassification of the true diagnostic state of the

patient is often not considered in classification tasks. Theoretical and simulation

results indicate that this distinction can lead to different results about the perfor-

mance of classification techniques.

Altogether, results of theoretical considerations, simulation and application

suggest that a fixed classifying function should be included in an indirect classifi-

cation method, whenever it is defined correctly, see sections 5.2 and 6.1. The gain

is an understandable decision rule, which combines medical a priori knowledge
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and statistical classification techniques and uses the full information of a given

learning sample.

In contrast to that, in situations where additional and informative intermediate

variables are given, but a fixed classifying function is not known or doubtful, one

should use indirect subagging. On the one hand this technique again uses the full

information of the learning sample and should therefore outperform direct clas-

sifiers, which neglect these additional informations (section 5.1). On the other

hand, the interpretability of indirect subagging is as difficult as it is for any other

direct bootstrap aggregated classification technique. Furthermore, the discrim-

inant value of the set of intermediate variables determines the performance of

indirect classification. In situations, where they are not informative, one should

use direct classifiers, compare section 6.2.

However, several difficulties remain unsolved. It is not known, how to opti-

mise indirect subagging with respect to the percentage of out-of-subag and subag

samples. Moreover, since we know that good regression models do not necessar-

ily result in a good classification rule, boosting approaches could be developed

which would optimise the new procedure in terms of the misclassification error.

Even the linkage of indirect classification using a fixed classifying function with

recent developments in boosting algorithms may lead to further improvements.

Chawla et al. (2002) proposes a technique to extend bagging and boosting for

massive datasets. We assess the performance of classifiers with respect to their

error rates. Investigating sensitivity and specificity rather than the total error rate

for direct and indirect classification could simultaneously lead to different inter-

pretations of their performance.
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Implementation

The documentation of the functions inclass(...) and inbagg(...) is given in

the following.

inbagg Indirect Bagging

Description

Function to perform the indirect bagging and subagging.

Usage

inbagg.data.frame(formula, data, pFUN=NULL,

cFUN=list(model = NULL, predict = NULL, training.set = NULL),

nbagg = 25, ns = 0.5, replace = FALSE, ...)

Arguments

formula formula. A formula specified as y~w1+w2+w3~x1+x2+x3 describes

how to model the intermediate variables w1, w2, w3 and the

response variable y, if no other formula is specified by the ele-

ments of pFUN or in cFUN
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data data frame of explanatory, intermediate and response variables.

pFUN list of lists, which describe models for the intermediate vari-

ables, details are given below.

cFUN either a fixed function with argument newdata and returning

the class membership by default, or a list specifying a classi-

fying model, similar to one element of pFUN. Details are given

below.

nbagg number of bootstrap samples.

ns proportion of sample to be drawn from the learning sample.

By default, subagging with 50% is performed, i.e. draw 0.5*n

out of n without replacement.

replace logical. Draw with or without replacement.

... additional arguments (e.g. subset).

Details

A given data set is subdivided into three types of variables: explanatory, in-

termediate and response variables.

Here, each specified intermediate variable is modelled separately following

pFUN, a list of lists with elements specifying an arbitrary number of mod-

els for the intermediate variables and an optional element training.set =

c("oob", "bag", "all"). The element training.set determines whether,

predictive models for the intermediate are calculated based on the out-of-bag

sample ("oob"), the default, on the bag sample ("bag") or on all available ob-

servations ("all"). The elements of pFUN, specifying the models for the inter-

mediate variables are lists as described in inclass. Note that, if no formula is
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given in these elements, the functional relationship of formula is used.

The response variable is modelled following cFUN. This can either be a fixed

classifying function as described in Peters et al. (2003) or a list, which spec-

ifies the modelling technique to be applied. The list contains the arguments

model (which model to be fitted), predict (optional, how to predict), formula

(optional, of type y~w1+w2+w3+x1+x2 determines the variables the classifying

function is based on) and the optional argument

training.set = c("fitted.bag", "original", "fitted.subset") specify-

ing whether the classifying function is trained on the predicted observations

of the bag sample ("fitted.bag"), on the original observations ("original")

or on the predicted observations not included in a defined subset

("fitted.subset"). Per default the formula specified in formula determines

the variables, the classifying function is based on.

Note that the default of

cFUN = list(model = NULL, training.set = "fitted.bag") uses the func-

tion rpart and the predict function

predict(object, newdata, type = "class").

Value

An object of class "inbagg", that is a list with elements

mtrees a list of length nbagg, describing the prediction models corre-

sponding to each bootstrap sample. Each element of mtrees is

a list with elements bindx (observations of bag sample), btree

(classifying function of bag sample) and bfct (predictive mod-

els for intermediates of bag sample).
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y vector of response values.

W data frame of intermediate variables.

X data frame of explanatory variables.

Author(s)

Andrea Peters <Peters.Andrea@imbe.imed.uni-erlangen.de>

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification

with structured class definitions. Computational Statistics & Data Analysis 36,

209–225.

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003),

Diagnosis of glaucoma by indirect classifiers. Methods of Information in Medicine

1, 99-103.

See Also

rpart, bagging, lm

Examples

library(mvtnorm)

y <- as.factor(sample(1:2, 100, replace = TRUE))

W <- rmvnorm(200, mean = rep(0, 3))

X <- rmvnorm(200, mean = rep(2, 3))

colnames(W) <- c("w1", "w2", "w3")

colnames(X) <- c("x1", "x2", "x3")

DATA <- data.frame(y, W, X)
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pFUN <- list(list(formula = w1~x1+x2, model = lm, predict = mypredict.lm),

list(model = rpart))

inbagg(y~w1+w2+w3~x1+x2+x3, data = DATA, pFUN = pFUN)

inclass Indirect Classification

Description

A framework for the indirect classification approach.

Usage

inclass(formula, data, pFUN = NULL, cFUN = NULL, ...)

Arguments

formula formula. A formula specified as y~w1+w2+w3~x1+x2+x3 models

each intermediate variable w1, w2, w3 by wi~x1+x2+x3 and the

response by y~w1+w2+w3 if no other formulas are given in pFUN

or cFUN.

data data frame of explanatory, intermediate and response variables.

pFUN list of lists, which describe models for the intermediate vari-

ables, see below for details.

cFUN either a function or a list which describes the model for the re-

sponse variable. The function has the argument newdata only.

... additional arguments, passed to model fitting of the response

variable.
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Details

A given data set is subdivided into three types of variables: those to be used

predicting the class (explanatory variables) those to be used defining the class

(intermediate variables) and the class membership variable itself (response

variable). Intermediate variables are modelled based on the explanatory vari-

ables, the class membership variable is defined on the intermediate variables.

Each specified intermediate variable is modelled separately following pFUN

and a formula specified by formula. pFUN is a list of lists, the maximum length

of pFUN is the number of intermediate variables. Each element of pFUN is a list

with elements:

model - a function with arguments formula and data;

predict - an optional function with arguments object, newdata only, if predict

is not specified, the predict method of model is used;

formula - specifies the formula for the corresponding model (optional), the

formula described in y~w1+w2+w3~x1+x2+x3 is used if no other is specified.

The response is classified following cFUN, which is either a fixed function or

a list as described below. The determined function cFUN assigns the interme-

diate (and explanatory) variables to a certain class membership, the list cFUN

has the elements formula, model, predict and training.set. The elements

formula, model, predict are structured as described by pFUN, the described

model is trained on the original (intermediate variables) if

training.set="original" or if training.set = NULL, on the fitted values if

training.set = "fitted" or on observations not included in a specified sub-

set if training.set = "subset".
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A list of prediction models corresponding to each intermediate variable, a pre-

dictive function for the response, a list of specifications for the intermediate

and for the response are returned.

For a detailed description on indirect classification see Hand et al. (2001).

Value

An object of class inclass, consisting of a list of

model.intermediate

list of fitted models for each intermediate variable.
model.response

predictive model for the response variable.
para.intermediate

list, where each element is again a list and specifies the model

for each intermediate variable.
para.response

a list which specifies the model for response variable.

Author(s)

Andrea Peters <Peters.Andrea@imbe.imed.uni-erlangen.de>

References

David J. Hand, Hua Gui Li, Niall M. Adams (2001), Supervised classification

with structured class definitions. Computational Statistics & Data Analysis 36,

209–225.

Andrea Peters, Berthold Lausen, Georg Michelson and Olaf Gefeller (2003),

Diagnosis of glaucoma by indirect classifiers. Methods of Information in Medicine

1, 99-103.
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See Also

bagging, inclass

Examples

data(Smoking)

# Set three groups of variables:

# 1) explanatory variables are: TarY, NicY, COY, Sex, Age

# 2) intermediate variables are: TVPS, BPNL, COHB

# 3) response (resp) is defined by:

classify <- function(data){

data <- data[,c("TVPS", "BPNL", "COHB")]

res <- t(t(data) > c(4438, 232.5, 58))

res <- as.factor(ifelse(apply(res, 1, sum) > 2, 1, 0))

res

}

response <- classify(Smoking[ ,c("TVPS", "BPNL", "COHB")])

smoking <- data.frame(Smoking, response)

formula <- response~TVPS+BPNL+COHB~TarY+NicY+COY+Sex+Age

inclass(formula, data = smoking, pFUN = list(list(model = lm, predict =

mypredict.lm)), cFUN = classify)
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