
, , 1{34 ()
c Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Algorithm for Hardware/Software Partitioning

Using Mixed Integer Linear Programming

RALF NIEMANN AND PETER MARWEDEL

DEPT. OF COMPUTER SCIENCE XII, UNIVERSITY OF DORTMUND, D-44221 DORTMUND, GER-

MANY

niemann@ls12.informatik.uni-dortmund.de,marwedel@ls12.informatik.uni-dortmund.de

Received May 1, 1991

Editor:

Abstract. One of the key problems in hardware/software codesign is hardware/software par-
titioning. This paper describes a new approach to hardware/software partitioning using integer

programming (IP). The advantage of using IP is that optimal results are calculated for a chosen
objective function. The partitioning approachworks fully automatic and supports multi-processor
systems, interfacing and hardware sharing. In contrast to other approaches where special estim-

ators are used, we use compilation and synthesis tools for cost estimation. The increased time
for calculating values for the cost metrics is compensated by an improved quality of the values.

Therefore, fewer iteration steps for partitioningare needed. The paper presents an algorithmusing
integer programming for solving the hardware/software partitioning problem leading to promising

results.

Keywords: hardware/software codesign, hardware/software partitioning, embedded systems,
mixed integer linear programming

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Eldorado - Ressourcen aus und für Lehre, Studium und Forschung

https://core.ac.uk/display/46901972?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1. Introduction

Embedded systems typically consist of application speci�c hardware parts and pro-
grammable parts, i.e., processors like DSPs, core processors or ASIPs. In com-
parison to the hardware parts, the software parts can be developed and modi�ed
much easier. Thus, software is less expensive in terms of costs and development
time. Hardware, however, provides better performance. For this reason, a system
designer's goal is to design a system ful�lling all performance constraints and using
a minimum amount of hardware.
Hardware/software codesign deals with the problem of designing embedded sys-

tems, where automatic partitioning is one key issue. This paper describes a new
approach in hardware/software partitioning for multi-processor systems working
fully automatic. The approach is based on integer programming (IP) to solve the
partitioning problem. A formulation of the IP-model will be introduced in detail.
The drawback of solving IP-models often is a high computation time. To reduce
the computation time, an algorithm using IP has been developed which splits the
partitioning approach in two phases. In a �rst phase, a mapping of nodes to hard-
ware or software is calculated by estimating the schedule times for each node with
heuristics. During the second phase a correct schedule is calculated for the resulting
HW/SW-mapping of the �rst phase. It will be shown that this heuristic schedul-

ing approach strongly reduces the computation time while the results are nearly
optimal for the chosen objective function.
Another new feature of our approach is the cost estimation technique. The cost

model is not calculated by estimators like in other approaches, because the quality
of estimations is often poor and estimators do not consider compiler e�ects. In
our approach, a compiler and a high-level synthesis tool are used instead of special
estimators. The disadvantage of an increased runtime for calculating values for
the cost metrics is compensated by a higher precision of these values. A higher
precision leads to fewer partitioning iterations.
The outline of the paper is as follows: Section 2 gives an overview of related work

in the �eld of hardware/software partitioning. Our system speci�cation method is
introduced in section 3. In section 4 our own approach to partitioning is presented.
A formulation of the hardware/software partitioning problem follows in section 5.
Section 6 describes the IP-model of the problem. Experimental results of solving
these IP-models are presented in section 7 and a conclusion is given in section 8.

3

2. Related Work

There are many approaches to hardware/software partitioning. One of these is the
COSYMA system [3], where hardware/software partitioning is based on simulated
annealing using estimated costs. The partitioning algorithm is software-oriented,
because it starts with a �rst non-feasible solution consisting only of software com-
ponents. In an inner loop partitioning (ILP) software parts of the system are
iteratively realized in hardware until all timing constraints are ful�lled. To handle
discrepancies between estimated and real execution time, an outer loop partition-

ing (OLP) restarts the ILP with adapted costs [8]. The OLP is repeated until all
performance constraints are ful�lled.
Another hardware/software partitioning approach is realized in the VULCAN

system [5]. This approach is hardware-oriented. It starts with a complete hardware
solution and iteratively moves parts of the system to the software as long as the
performance constraints are ful�lled. In this approach performance satis�ability is
not part of the cost function. For this reason, the algorithm can easily be trapped
in a local minimum.
The approach of Vahid [16] uses a relaxed cost function to satisfy performance in

an inner partitioning loop and to handle hardware minimization in an outer loop.
The cost function consists of a very heavily weighted term for performance and
a second term for minimizing hardware. The authors present a binary-constraint

search algorithm which determines the smallest size constraint (by binary search) for
which a performance satisfying solution can be found. The partitioning algorithm
minimizes hardware, but not execution time.
Kalavade and Lee [11] present an algorithm (GCLP) that determines for each node

iteratively the mapping to hardware or software. The GCLP algorithm does not use
a hardwired objective function, but it selects an appropriate objective according a
global time-criticality measure and another measure for local optimum. The results
are close to optimal and the runtime grows quadratically to the number of nodes.
This approach has been extended to solve the extended partitioning problem [12]
including the implementation selection problem.
Eles [4] presents a two-stage partitioning approach, where in the �rst step a

VHDL system speci�cation is partitioned into two sets of candidates for hardware
and software using pro�ling and user-interaction. In the second step a process
graph is constructed and partitioned into hardware and software parts using a
simulated-annealing algorithm [15].
Jantsch [10] presents a partitioning approach where hardware candidates are pre-

selected using pro�ling. All of these selected hardware candidates realize a system
speedup of greater than 1. The goal is to speed-up a system by incorporating
hardware. A key feature is a memory allocation method which minimizes the
interface tra�c between hardware and software. The disadvantage of this approach
is that hard timing constraints can not be guaranteed because the cost model is
based on pro�ling.

4

3. System Speci�cation

One of the key problems in hardware/software codesign is speci�cation of large
systems. Many system speci�cation languages have been developed in the last
years. One of the most frequently used ones is VHDL, because many CAD tools
supporting VHDL exist. In our approach, we also specify systems in VHDL. In [2],
[7] the advantages and disadvantages of several system speci�cation languages have
been compared and the results for VHDL are promising.
To specify a system that has to be partitioned, the designer has to de�ne the

following:

1. The target technology has to be speci�ed by de�ning the set of processors
for the software parts and the component library for synthesizing the hardware
parts of the embedded system.

2. The system has to be de�ned in VHDL as a set of interconnected instances of
components (behavioural VHDL-entities).

3. The design constraints have to be de�ned, including performance constraints
(timing) and resource constraints (area, memory).

In our approach the target technology, the system, and the design constraints
are speci�ed by using the speci�cation tool COSYS 1 which is part of the codesign
tool COOL 2. COSYS is a graphical VHDL-based interface for hierarchical system
speci�cation. In the following, specifying systems with COSYS will be illustrated
by an MPEG audio system.
First, the designer de�nes behavioural entities using VHDL source code. These

behavioural entities, called components, are instantiated to form structural en-

tities. This is done by connecting instances of these components by wires (VHDL
signals). Structural entities may also be instantiated. Thus, COSYS allows the
designer to describe the system hierarchically. In �gure 1 the speci�cation of a
hierarchical system is illustrated.
Example 1:

The system mpeg audio depicted in �gure 1 realizes an MPEG audio encoder and de-

coder. The upper part of the system represents the encoder that encodes incoming PCM
audio samples. The result is an encoded bit-stream of the MPEG audio format. The

lower part of the system realizes the decoder that decodes MPEG audio bit-streams into
PCM samples. The structural entity quantizer coding is instantiated in this hierarch-
ical speci�cation. Quantizer coding is de�ned with help of two behavioural entities. It
contains an instance of component quantizer and another instance of component coding
which have been speci�ed in VHDL code.

The partitioning approach for these speci�ed systems will be described in the
following sections.

5

frame_packing

psycho_model

reconstructionframe_unpacking inverse_mapping

pcm_samples_in

encoded_bits_in

encoded_bits_out

pcm_samples_out

Hierarchical system ’mpeg_audio’

mpeg_audio

mapping

o

o

o

 ...

 ...
end behavior;

 ...

 ...
end behavior;

quantizer
entity quantizer is

end quantizer;

architecture behavior of quantizer is

coding
entity coding is

end coding;

architecture behavior of coding is

quantizer_coding

i

i

model
quantizer

sample

modelp_model

Structural system ’quantizer_coding’

coding

Behavioral entities

quantizer_coding

Figure 1. Hierarchical system speci�cation of an MPEG audio system

6

4. Hardware/Software Partitioning Approach

Design constraints

else

Syntax Graph Model

C code generation

SW costs HW costs

Partitioning Graph

Solving ILP model

Cluster SW nodes

Refine Partitioning Graph

SW costs

If Solution exists

then

VHDL system specification

VHDL code generation

High-Level Synthesis

Target technology definition

Result := Valid_Partitioning

(Retargetable) Compilation

Valid_Partitioning := Partitioning

(Retargetable) Compilation

Figure 2. Hardware/Software Partitioning

After the system has been speci�ed with COSYS, the VHDL speci�cation is com-
piled into an internal syntax graph model. For each component (behavioural VHDL-
entity) of this model, software source code (C or DFL) and hardware source code
(VHDL) is generated. The software parts are compiled and the hardware parts are
synthesized by a high-level synthesis tool (OSCAR [13]). The results are values
for software cost metrics (software execution time, memory usage) and values for
hardware cost metrics (hardware execution time, area) for the components. The
disadvantage of an increased runtime for calculating the cost metrics by running
compilers and synthesizers is compensated by a better quality. Moreover, a higher

7

precision of the cost values leads to fewer partitioning iterations. After the com-
pilation/synthesis phase, a partitioning graph is generated in two steps. First, the
hierarchy of the system is attened. Then, a partitioning graph is created in which
each node of the graph represents an instance of a component in the attened sys-
tem. Edges of the partitioning graph represent the wires between these instances.
In �gure 3 the partitioning graph is calculated for a hierarchical system.
Example 2:

o

v1
v3

v5

v2
v4

o

v1 v2

v3 v4

v5

x1
x2
x3

x6

x4
x5

x3
x2
x1

x4
x5
x6

Flattened systemHierarchical system Partitioning graph

Figure 3. Calculation of the partitioning graph

In the �rst step, the structural entities are attened resulting in a set of instances of

components. Then for each instance (v1 : : : v5) a node is added to the partitioning graph.
The edges between the nodes represent the wires between the instances.

Nodes are weighted with hardware and software costs, edges are weighted with
interface costs which reect the cost of hardware/software interfaces. Interface
costs are approximated by the number and type of data owing between both
nodes. User-de�ned design constraints are also attached to the graph. Thus, the
partitioning graph includes all information needed for partitioning.
The partitioning graph is then transformed into an IP-model, which is the key

issue of this paper. Afterwards, the model is solved by an IP-solver. The calculated
design is optimal for the chosen objective function using the generated cost model,
but nevertheless it is possible to improve the design, because although sharing
e�ects between di�erent instances of the same components is considered, sharing
e�ects between di�erent components is not. This limitation can be removed by
an iterative partitioning approach. We use a software oriented approach, because
compilation is faster than synthesis and software oriented approaches seem to be
superior to hardware oriented approaches (see [16]).
Sets of nodes which have been mapped on the same processor are clustered. For

each cluster, a new cost metric is calculated by compiling all nodes of the cluster
together. Then, the partitioning graph is transformed by replacing each cluster
by a new node with the new cost metric attached. Finally, the rede�ned graph
is repartitioned. This iteration will be repeated until no solution is found. The
last valid partitioning represents the resulting design. The clustering technique is
illustrated in �gure 4.

8

Example 3:

v1

v2

v4 v5 v7

v8 v9

v1

v2 v3,v6

v7v9
v5v4

v1

v2

v4 v5

v8

v3,v6,
v7,v9,

v12 v12 v12

v10,
v11

2nd
Partitioning

1st 3rd
Partitioning Partitioning

v10

v11

v8
v10,v11

v6

v3

Figure 4. Partitioning re�nement

The �rst partitioning iteration results in 4 software nodes (v3,v6,v10,v11). The nodes
v3; v6 and v10; v11 are clustered. After the second iteration it is now possible to execute

v7,v9 on the processor, so the new cluster contains v3,v6,v7,v9,v10,v11. In the third
iteration no more nodes can be moved from hardware to software.

9

5. Formulation of the HW/SW Partitioning Problem

This section introduces a formulation of the hardware/software partitioning prob-
lem. This formulation is necessary to simplify the description of the problem with
the help of an IP-model. We have to de�ne the system which has to be partitioned
and the target technology used to implement the system.

5.1. Target Technology and System Speci�cation

De�nition 1 A target technology T is de�ned as a tuple

T = (V; E); V = H [P [M; E � PS(V) n
�
fvg j v 2 V

	

containing all target technology components and interconnections. The target tech-

nology components V are de�ned as a set of hardware components (ASICs) H =
fh1; : : : ; hnHg, processors P = fp1; : : : ; pnPg and memories M = fm1; : : : ;mnMg.

The target technology interconnections E are de�ned as a set of busses E = fe1; : : : ; enEg

connecting these components (at least 2) where PS(V) represents the power set of

V.

Example 4:

processor
p1

memory
m1

hardware
component

h1

bus b1

Figure 5. Target technology

In �gure 5 an example for a target technology is given. It contains a processor p1, a
hardware component h1, external memorym1 and a bus b1 connecting p1; h1 and m1.

A system that has to be mapped to the target technology consists of several
instances of di�erent system components and interconnections between them. The
formal de�nition is as follows:

10

De�nition 2 A system S is de�ned as a 4-tuple

S = (C; V;E; I)

with the following de�nitions:
C = fc1; : : : ; cnCg set of system components,

V = fv1; : : : ; vnV g set of nodes, representing instances of system components,

E � V � V set of edges, representing interconnections between nodes,

I : V ! C I(vi) = cl de�nes that vi is an instance of component cl.

Example 5:

System components

FIR

+

*

v9 v10

v11

v5

v1 v2

v6

v3

v7

v4

v8

System specification

Figure 6. System speci�cation

In �gure 6 a 4-band-equalizer is speci�ed. It consists of 3 system components: an FIR-
�lter, a multiplier and an adder. The equalizer is speci�ed by using 4 instances of the

FIR-�lter (v1 : : : v4), 4 instances of the multiplier (v5 : : : v8) and 3 instances of the adder
(v9 : : : v11). This 4-band-equalizer is a well suited example to demonstrate the scheduling,
hardware sharing and interfacing problem. Therefore, it will be used in the rest of the

paper as a demonstrator example.

5.2. Hardware and Software Implementation

Parts of the system may be implemented in hardware or in software. The main
di�erence between implementing system instances vi1 ; vi2 on a processor or on a
hardware component is that vi1 ; vi2 can not be executed in parallel on a processor.
On the software side, a system component cl is implemented as a function on a
processor. Each system instance vi of cl which is mapped to the processor uses a
corresponding function call for this function. On the hardware side however, two
instances vi1 and vi2 of cl may be executed in parallel on a hardware component.
Therefore, it is possible that vi1 and vi2 are mapped to di�erent hardware instances
of cl. The following de�nition will de�ne the di�erent implementation possibilities.

11

De�nition 3

Let S = (C; V;E; I) be a system.

Let T = (V; E) be a target technology. V = H [P [M

Let pk 2 V be a processor and hk 2 V a hardware component.

The sets of possible hardware implementations Implhw(cl; hk) and software

implementations Implsw(cl; pk) for a system component cl are de�ned as:

Implhw(cl; hk) = fhl;1;k : : :hl;N;kj N =j fvi j I(vi) = clg j g

Implsw(cl; pk) = fpl;kg

The sets of possible hardware implementations Implhw(S; T) and software imple-

mentations Implsw(S; T) for S on T are then de�ned as:

Implhw(S; T) =
[

cl2C;hk2H

Implhw(cl; hk)

Implsw(S; T) =
[

cl2C;pk2P

Implsw(cl; pk)

Example 6:

bus b1

hardware component h1

FIR1 FIR2 FIR3 FIR4

MUL1 MUL2 MUL3 MUL4

ADD1 ADD3ADD2

processor p1

function FIR(...)

function ADD(...)

function MUL(...)

v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

v1

Figure 7. Hardware/software implementations

The possible hardware/software implementations for the 4-band-equalizer are depicted in
�gure 7. Three functions may be implemented in software, one for an FIR-�lter (FIR),
one for multiplying (MUL) and one function for adding (ADD). On the hardware side,

4 hardware instances of an FIR-�lter may be needed. In such a case, the highest speed
can be reached, because all 4 hardware instances are able to work in parallel. Finally,

the hardware may contain a maximum of 4 hardware multipliers and 3 hardware adders.

12

5.3. Cost Model

Hardware/software partitioning algorithms need cost metrics for the nodes and
the edges of the system to evaluate di�erent partitionings. The values for these
cost metrics are calculated for the possible hardware and software implementations
of system components. This is done during the compilation and synthesis phase,
described in section 4. In our approach, we partition systems based on the following
cost metrics:

De�nition 4

Let S = (C; V;E; I) be a system and T = (V; E) a target technology.

Let c 2 C be a system component and e 2 E an edge of system S.

Let p 2 V be a processor, h 2 V a hardware component and b 2 E a bus of T .

The cost metrics are de�ned as follows:
cdm(c; p) represents the software data memory required by c on p,

cpm(c; p) the software program memory required by c on p,

cts(c; p) the software execution time required by c on p,

ca(c; h) the hardware area required by c on h,

cth(c; h) the hardware execution time required by c on h,

cia(e,b) the additional interface hardware area required by e on b and

cit(e; b) the additional interface communication time required by e on b.

These costs are also de�ned for instances v of these system components c. They
are denoted by cdm(v; p), cpm(v; p), cts(v; p), ca(v; h) and cth(v; h) for a system
component c. The costs for di�erent instances of the same system component are
obviously equal:
Let T = (V;E) be a target technology.

Let p 2 V be a processor and h 2 V a hardware component of T .

8p 2 V : I(vi1) = I(vi2)) cts(vi1 ; p) = cts(vi2 ; p)^ c
dm(vi1 ; p) = cdm(vi2 ; p)^

cpm(vi1 ; p) = cpm(vi2 ; p) (1)

8h 2 V : I(vi1) = I(vi2)) cth(vi1 ; h) = cth(vi2 ; h) ^ ca(vi1 ; h) = ca(vi2 ; h) (2)

According to the cost metrics de�nition for system components, we can de�ne
the resource costs for each target technology component. The resource costs of a
target technology component tk represent the sum of cost metrics used by the nodes
mapped to tk.

De�nition 5

Let S = (C; V;E; I) be a system and T = (V; E) a target technology.

Let p 2 V be a processor, h 2 V a hardware component and b 2 E a bus of T .

The resource costs required for implementing S on target technology components

13

are de�ned as follows:
Cdm(p) represents the software data memory required on p,

Cpm(p) the software program memory required on p,

Ca(h) the hardware area required on h and

CIa(b) the additional interface hardware area required for b.

For each of these resource costs maximumvalues can be de�ned. These values are
called resource constraints for the target technology, e.g. the maximal number
of CLBs of an FPGA or the amount of internal memory of a processor. They are
denoted by MAXdm(p), MAXpm(p) and MAXa(h).
A design represents the realization of a system S on a target technology T . The

design quality can be expressed by evaluating the resource costs. The results are
the following design costs:

De�nition 6 The design costs of a system S are de�ned as follows:
Cdm(S) represents the used software data memory,

Cpm(S) the used software program memory,

Ca(S) the hardware area and

Ct(S) the total execution time.

The design costs may also be constrained, e.g. the total execution time of a system
has to ful�ll a timing constraint to guarantee real-time conditions. These design
constraints are denoted by MAXdm(S);MAXpm(S);MAXa(S) and MAXt(S).
With help of this complex cost model, the hardware/software partitioning problem
can be de�ned as follows.

5.4. Hardware/Software Partitioning

The task of the hardware/software partitioning problem is to map nodes to target
technology components and edges (if communication is necessary) to busses of the
target technology (see �gure 8). The goal of partitioning algorithms is to minimize
the design costs, while meeting all requirements. The design costs are calculated
with help of a given cost model.

De�nition 7

Let S = (C; V;E; I) be a system.

Let T = (V; E) be a target technology. V = H [P [M

Let Implhw(S; T) be the set of possible hardware implementations of S on T .

Let Implsw(S; T) be the set of possible software implementations of S on T .

The hardware/software partitioning problem is de�ned as the problem of

�nding a mapping from S to T given by two mapping functions:

mv : V ! Impl V � Implhw(S; T) [Implsw(S; T)

me : E ! Impl E � E

14

such that

mv(vi) =

8>><
>>:

pl;k 2 Implsw(cl; pk) ; if vi is implemented by function

pl;k on pk calculating cl = I(vi)
hl;j;k 2 Implhw (cl; hk) ; if vi is implemented by the j�th

instance hl;j;k of cl = I(vi) on hk:

me(ei) =

�
bk 2 E ; if ei is needed to realize an interface on bus bk

; ; if no interface is needed for ei

and design costs are minimized and resource and design constraints are met.

The following example illustrates this complex de�nition of the problem.
Example 7:

bus b1

hardware component h1

FIR1 FIR2 FIR3 FIR4

MUL1 MUL2 MUL3 MUL4

ADD1 ADD3ADD2

processor p1

function FIR(...)

function ADD(...)

function MUL(...)

v1 v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

e1 e2 e3 e4

Figure 8. Hardware/software partitioning

The hardware/software partitioning problem is illustrated in �gure 8. Two FIR-�lters

(v1; v2) are mapped to a �rst hardware instance (FIR1) on h1. Two other FIR-�lters
(v3; v4) are mapped to a second hardware instance (FIR2). The multipliers (v5; : : : ; v8)

are implemented as a function MUL on processor p1. The function ADD on p1 imple-
ments the adders (v9; : : : ; v11). The results of the FIR-�lters are calculated by h1 and

have to be transported to p1. Therefore the edges e1; : : : ; e4 realize the interfaces on bus
b1. In summary, two instances of an FIR-�lter are implemented by hardware instances
on h1, and two functions (MUL;ADD) are implemented in software on p1.

15

6. The IP-Model

Many optimization problems can be solved optimally by using integer program-
ming (IP). This paper will show that our IP-model allows us to solve the hard-
ware/software partitioning problem with the following characteristics:

� optimal solution for an objective function,

� support for multiprocessor and multi-ASIC target technologies,

� timing constraints are guaranteed by scheduling the nodes,

� bus conicts are prevented by scheduling communication events on edges,

� interface costs are considered,

� instances of the same system component can share their implementation on
hardware,

� interactive support for user-de�ned constraints.

The following paragraphs describe the IP-model for performing hardware/software
partitioning with these characteristics. To simplify the description of the IP-model,
the following notations are used:

De�nition 8 Sets of nodes and edges
Let S = (C; V;E; I) be a system.

pred nodes(v 2 V) = fw j 9p : p = (w; : : : ; v)g
succ nodes(v 2 V) = fw j 9p : p = (v; : : : ; w)g
pred edges(v 2 V) = fe j e = (x; y) [y 2 pred nodes(v)g
succ edges(v 2 V) = fe j e = (x; y) [x 2 succ nodes(v)g
pred edges(e 2 E) = ff j e = (v;w) [f 2 pred edges(v)g
succ edges(e 2 E) = ff j e = (v;w) [f 2 succ edges(w)g
instances of(c 2 C) = fv j I(v) = cg

share nodes(v 2 V) = fw j w 6= v ^ I(v) = I(w)g
schedule nodes(v 2 V) = fw j w 6= v ^w =2 fpred nodes(v)[succ nodes(v)gg
schedule edges(e 2 E) = ff j f 6= e ^ f =2 fpred edges(e) [succ edges(e)gg
path nodes(v1; v2 2 V) = fw j w 2 succ nodes(v1) ^w 2 pred nodes(v2)g
path edges(v1; v2 2 V) = fe j e 2 succ edges(v1) ^ e 2 pred edges(v2)g
dominator nodes(v 2 V) = fw j 8p : p = (s; : : : ; v) ^ pred nodes(s) = ; : w 2 pg

Furthermore, the following indices and variables are used:

De�nition 9 Indices
L = f1; : : : ; nCg indices for system components cl 2 C,

I = f1; : : : ; nV g indices for nodes vi 2 V ,

J 2 N+

0 indices for hardware instances of system components,

KH = f1; : : : ; nHg indices for hardware components hk 2 H,

KP = f1; : : : ; nPg indices for processors pk 2 P,

KB = f1; : : : ; nEg indices for busses bk 2 E .

16

De�nition 10 Variables for costs and constraints

Let S = (C; V;E; I) be a system and T = (V; E) a target technology.

Let cl 2 C be a system component, vi 2 V a node and e 2 E an edge of system S.

Let pk 2 V be a processor, hk 2 V a hardware component and bk 2 E a bus of T .
ctsl;k, c

dm
l;k , c

pm
l;k cost metrics cts(cl; pk), cdm(cl; pk), cpm(cl; pk),

cthl;k, c
a
l;k cost metrics cth(cl; hk), ca(cl; hk),

ctsi;k, c
dm
i;k , c

pm
i;k cost metrics cts(vi; pk), cdm(vi; pk), cpm(vi; pk),

cthi;k, c
a
i;k cost metrics cth(vi; hk), ca(vi; hk),

citi1;i2;k, ci
a
i1;i2;k

cost metrics cit(e; bk), cia(e; bk) for e = (vi1 ; vi2),
Cdm
k , C

pm

k resource costs Cdm(pk), Cpm(pk),
Ca
k resource costs Ca(hk),

CIak resource costs CIa(bk),
MAXdm

k , MAX
pm

k resource constraints MAXdm(pk), MAXpm(pk),
MAXa

k resource constraints MAXa(hk),
Ct, Cdm, Cpm, Ca design metrics Ct(S), Cdm(S), Cpm(S), Ca(S),
MAXt, MAXa design constraints MAXt(S);MAXa(S)
MAXdm, MAXpm design constraints MAXdm(S);MAXpm(S)
TS
i starting time of node vi,

TD
i execution time of node vi,

TE
i ending time of node vi,

TISi1;i2 starting time of edge e = (vi1 ; vi2),
TIDi1;i2 execution time of edge e = (vi1 ; vi2),
TIEi1;i2 ending time of edge e = (vi1 ; vi2).

6.1. The Decision Variables

The IP-model needs decision variables for de�ning mapping, scheduling, sharing
and interfacing constraints. Thus, the solution of the IP-model is driven by the
following variables:

De�nition 11

xi;j;k =

8<
:

1 : vi is mapped to the j�th hardware instance of c = I(vi)
on hardware component hk;

0 : otherwise:

Xi;k =

�
1 : vi is mapped to hardware component hk;

0 : otherwise:

Yi;k =

�
1 : vi is mapped to processor pk;

0 : otherwise:

Zi1;i2 =

�
1 : an interface is needed between vi1 and vi2 ;

0 : otherwise:

zi1;i2;k =

�
1 : communication between vi1 ; vi2 is realized on bus bk;

0 : otherwise:

17

nxl;j;k =

8<
:

1 : at least 1 instance of cl is mapped to the j�th

hardware instance of cl on hk;

0 : otherwise:

NYl;k =

�
1 : at least 1 instance of cl is mapped to processor pk;

0 : otherwise:

NXl;k : number of hardware instances of cl realized on hk:

bi1;i2 =

�
1 : vi1 ends before vi2 starts;

0 : otherwise:

bii1;i2 =

�
1 : communication time for ei1 ends before ei2 starts;

0 : otherwise:

Example 8:

processor
p1 h1

bus b1

FIR1 FIR2

v1 v2 v3 v4

p1

b1

t

v5

e1

v1

FIR2 on h1

FIR1 on h1 v2

v3 v4

e2

v6

e3

v7 v8

e4

v9 v10 v11
v9 v10

v11

v5 v6 v7 v8

e1 e2 e3 e4

Figure 9. Hardware sharing

To visualize usage of these variables, �gure 9 shows a partitioningof the 4-band-equalizer.
v1 : : : v4 are mapped to hardware componenth1 (X1;1 = : : : = X4;1 = 1). All other nodes
v5 : : : v11 are mapped to processor p1 (Y5;1 = : : : = Y11;1 = 1). This mapping forces

interfaces for edge e1 = (v1; v5); : : : ; e4 = (v4; v8) (Z1;5 = : : : = Z4;8 = 1) to be needed,
because data has to be transported from h1 to p1. Therefore, e1 : : : e4 are mapped to bus

b1 (z1;5;1 = : : : = z4;8;1 = 1). To reduce the amount of hardware area, v1 and v2 share
the same hardware instance of an FIR-�lter on h1 (x1;1;1 = x2;1;1 = 1). v3 and v4 share
the second one (x3;2;1 = x4;2;1 = 1).
The variables get the following values: nx1;1;1 = nx1;2;1 = 1; nx1;3;1 = nx1;4;1 = 0,
because only the �rst two hardware instances of four possible FIR-�lters (c1) are required

on h1 (NX1;1 = 2). All multiplications (c2) and adders (c3) are realized on processor
p1. Therefore, one function is needed for multiplying (NY2;1 = 1) and another function
is needed for adding (NY3;1 = 1) incoming values. The timing diagram shows a possible
schedule for this partitioning. In the depicted case b5;6 = 1, because v5 is executed before

v6 on p1; bi1;2 = 1, because the transfer for e1 is executed before the transfer for e2.

18

6.2. The Constraints

The following constraints have to be ful�lled:

1. General Constraints: Each node vi is executed exactly on one target tech-
nology component tk, a processor or a hardware component (eq.5). If a system
component cl has been realized on a processor pk, then it is not necessary to
implement it more than once (eq.6), because it can be implemented as one func-
tion and several function calls (see de�nition 3). Therefore, the number NYl;k
is calculated by equations 7 and 8. In contrast to the binary variable NYl;k,
the number of hardware instances NXl;k of a system component cl realized on
a hardware component hk may be greater than one. If no hardware sharing is
considered, then NXl;k is equal to the sum of system instances of cl that have
been mapped to hk (eq.9).

8i 2 I : 8k 2KH : Xi;k � 1 (3)

8i 2 I : 8k 2KP : Yi;k � 1 (4)

8i 2 I :
P

k2KH

Xi;k +
P

k2KP

Yi;k = 1 (5)

8l 2 L : 8k 2KP : NYl;k � 1 (6)

8l 2 L;8i : I(vi) = cl;8k 2KP : NYl;k � Yi;k (7)

8l 2 L;8k 2KP : NYl;k �

X
i:I(vi)=cl

Yi;k (8)

8l 2 L;8k 2KH : NXl;k =
X

i:I(vi)=cl

Xi;k (9)

2. Resource Constraints: The area Ca
k (eq.10) used on a hardware component

hk is calculated by accumulating the costs for all hardware instances of system
components realized on hk. The amount of used memory (eq.11,12) on a pro-
cessor pk is calculated by summing up the costs for implementing these system
components as functions. The resource costs may not violate their resource
constraints.

8k 2KH : Ca
k
=
P
l2L

NXl;k � c
a
l;k

�MAXa
k (10)

8k 2KP : Cdm
k

=
P
l2L

NYl;k � c
dm
l;k

�MAXdm
k (11)

8k 2KP : C
pm

k
=
P
l2L

NYl;k � c
pm

l;k
�MAX

pm

k
(12)

19

3. Design Constraints: The design costs for the complete system are calculated
by accumulating the resource costs required by the components of the target
technology (eq.13-15). These design costs may not exceed their given design
constraints. The required hardware area includes additional hardware CIak used
for interfaces (eq.13). If interfacing is not considered, CIak = 0 for all busses bk.
The design costs Ct will be described separately.

Ca =
P

k2KH

Ca
k
+
P

k2KB

CIa
k

�MAXa (13)

Cdm =
P

k2KP

Cdm
k

�MAXdm (14)

Cpm =
P

k2KP

C
pm

k
�MAXpm (15)

4. Timing Constraints:
The timing costs cannot be calculated by accumulating the execution time of
the nodes, because two nodes v1; v2 can be executed in parallel if they do not
share the same resources and if there is no path from v1 to v2 and vice versa.
To determine the starting time and ending time for each node, scheduling has
to be performed. The execution time TD

i (eq.16) of vi is either a hardware or a
software execution time. The ending time TE

i (eq.17) of vi is the sum of starting
time TS

i and execution time TD
i . The system execution time Ct (eq.18) is the

maximum of the ending times of all nodes vi and may not violate the global
design timing constraint. Data dependencies (eq.19) have to be considered
for all edges e = (vi1 ; vi2) including interface communication time TIDi1;i2 of

equation 35. If interfacing is not considered, TIDi1;i2 = 0. The starting times TS
i

(eq.20) of nodes have to be in their ASAP/ALAP-range which can be calculated
in a preprocessing step.

8i 2 I : TDi =
X
k2KH

Xi;k � c
th
i;k +

X
k2KP

Yi;k � c
ts
i;k (16)

8i 2 I : TE
i

= TSi + TDi (17)

8i 2 I : TE
i

� Ct � MAXt (18)

8e = (vi1 ; vi2) 2 E : TS
i2

� TEi1
+ TIDi1;i2

(19)

8i 2 I : ASAP (vi) � TSi � ALAP (vi) (20)

6.3. Hardware Sharing

If hardware sharing is considered, then it is not su�cient to model bindings between
nodes vi and hardware components hk with help of the binary variable Xi;k. In
order to consider hardware sharing, the binding of vi to the j-th hardware instance

20

(of system component cl = I(vi)) contained in hk has to be modelled. This binding
is modelled using the binary binding variable xi;j;k (eq.21).
Example 9:

processor
p1 h1

bus b1

FIR1 FIR2

v1 v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

t

v1

FIR2 on h1

FIR1 on h1 v2

v3 v4

x1,1,1=1; x2,1,1=1

x3,2,1=1; x4,2,1=1

Figure 10. Hardware sharing

In �gure 10 an example is given for sharing hardware resources to minimize the amount

of hardware area. The system instances v1; v2 of an FIR-�lter are mapped to the �rst
hardware instance FIR1 of an FIR-�lter on hardware componenthk (x1;1;1 = x2;1;1 = 1).
v3 and v4 share the second hardware instance (x3;2;1 = x4;2;1 = 1). Therefore, 4 system

instances are realized by two hardware instances of FIR-�lters on hk. The timing diagram
shows that v1; v2 and also v3; v4 have to be scheduled. But both hardware instances FIR1

and FIR2 are able to work in parallel on h1.

A node vi is realized on hk, if vi is bound to one hardware instance of system
component cl = I(vi) on hk (eq.22). If at least one instance vi of system component
cl is bound to the j-th hardware instance of cl on hk, then nxl;j;k = 1 (eq.23,24).
The number NXl;k of used hardware instances of cl on hk is calculated by accu-
mulating the variables nxl;j;k (eq.25).

8k 2KH : 8l 2 L : N =j instances of(cl) j:

8i : I(vi) = cl : 8j 2 f1; : : : ; Ng : xi;j;k � 1 (21)

8i : I(vi) = cl : Xi;k =

NX
j=1

xi;j;k (22)

8i : I(vi) = cl : 8j 2 f1; : : : ; Ng : nxl;j;k � xi;j;k (23)

8j 2 f1; : : : ; Ng : nxl;j;k �

X
i:I(vi)=cl

xi;j;k (24)

NXl;k =

NX
j=1

nxl;j;k (25)

21

If hardware sharing is not considered, then equation 9 is used instead of equations
21-25.

6.4. Interfacing

An interface has to be realized for an edge e = (vi1 ; vi2), if vi1 and vi2 are realized
on di�erent target technology components.
Example 10:

processor
p1

memory
m1

hardware
component

h1

bus b1

v9 v10

v11

v5

v1 v2

v6

v3

v7

v4

v8

h1

b1

p1

t

v4

e4

v8

e1 e2 e3 e4

X4,1=1

Y8,1=1

z4,8,1= Z4,8= 1

Figure 11. Interface

In �gure 11 an example is given for a required interface. v4 has been mapped to hardware

component h1 (X4;1 = 1) and v8 to processor p1 (Y8;1 = 1). Therefore, the output data
of v4, calculated on h1 has to be moved to v8, implemented on p1. Thus, an interface is

needed for e4, indicated by Z4;8 = 1. For this reason, edge e4 = (v4; v8) is mapped to
bus b1 (z4;8;1 = 1), to realize the data transfer. The timing diagram shows that v8 starts
after the data has been transfered from v4 using b1.

An interface is needed between two nodes vi1 ; vi2, indicated by Zi1;i2 = 1, if they
are mapped to di�erent target technology components (eq.27-31). With help of
the interface binding variable zi1;i2;k, a bus is selected realizing the data transfer
from vi1 to vi2 (eq.33). The additional amount of hardware area CIak and the com-
munication delay TIDi1;i2 used for an interface are calculated in equations 34-35.
Additional constraints for the starting and ending time of communication are ad-
ded in equations 36-39.

22

8e = (vi1 ; vi2) 2 E :

Zi1;i2 � 1 (26)

8k 2 KH : Zi1;i2 � Xi1 ;k
�Xi2;k

(27)

8k 2 KH : Zi1;i2 � Xi2 ;k
�Xi1;k

(28)

8k 2KP : Zi1;i2 � Yi1 ;k � Yi2;k (29)

8k 2KP : Zi1;i2 � Yi2 ;k � Yi1;k (30)

Zi1;i2 ! minimize (31)

8k 2 KH : zi1 ;i2 ;k � 1 (32)

Zi1;i2 =
X
k2KB

zi1 ;i2 ;k (33)

8e = (vi1 ; vi2) 2 E :

8k 2 KB : CIa
k

=
X
e2E

zi1 ;i2;k � ci
a
i1 ;i2 ;k

(34)

TIDi1;i2
=
X
k2KB

zi1 ;i2 ;k � ci
t
i1;i2 ;k

(35)

TIEi1;i2
= TISi1;i2 + TIDi1;i2 (36)

TIS
i1;i2

� TEi1
(37)

TIEi1;i2
� TSi2 (38)

ASAP (ei1) � TISi1;i2 � ALAP (ei1) (39)

6.5. Scheduling

Two nodes vi1 ; vi2 which can be executed in parallel have to be sequentialized, if

� vi1 and vi2 are executed on the same processor or

� vi1 and vi2 share the same hardware instance on the same hardware component.

To sequentialize two nodes vi1 ; vi2, the binary decision variable bi1;i2 is used.
Two edges ei1 ; ei2 have to be sequentialized, if ei1 and ei2 represent interfaces and

both edges use the same bus to realize the communication. In this case, the binary
decision variable bii1;i2 is used to schedule ei1 and ei2 . The following example will
illustrate all situations where scheduling constraints are required.
Example 11:

In �gure 12 all three possibilities are depicted when scheduling constraints are required.

1. v7 and v8 are mapped to the same processor p1: Then, v7 has to be executed before
v8 (b7;8 = 1) or v8 before v7 (b8;7 = 1).

2. v3 and v4 are mapped to the same hardware instance of an FIR-�lter on h1: There-
fore v3 and v4 have to be scheduled.

23

processor
p1 hardware component h1

bus b1

FIR1 FIR2

v1 v2 v3 v4

v9 v10

v11

v5 v6 v7 v8

e3 e4

t

p1

v8 v7

v7 v8

or

...

... ...

...

t

b1

or

...

... ...

...e3

e3

e4

e4

b3,4=1 or b4,3=1

bi3,4=1 or
bi4,3=1

b7,8=1 or
b8,7=1

t

FIR2 on h1

v4 v2

v3 v4

or

...

... ...

...

Figure 12. Scheduling

3. e3 realizes an interface for transferring data from v3 (on p1) to v7 (on h1). e4
realizes an interface between v4 and v8. Both edges have been mapped to bus b1 to

transferring the data. For this reason, the communication times of e3 and e4 have
to be scheduled. If e3 is scheduled before e4, then the schedule variable bi3;4 = 1,

otherwise bi4;3 = 1.

The following constraints are necessary, to schedule nodes and edges:
8k 2KP;8vi1; vi2 2 V : vi1 2 schedule nodes(vi2)

TE
i1

� TSi2
+ (3� bi1;i2 � Yi1 ;k � Yi2 ;k) � C1 (40)

TEi2
� TSi1 + (2 + bi1;i2 � Yi1 ;k � Yi2 ;k) � C2 (41)

8l 2 L :j instances of(cl) j� 2 :

8k 2KH;8vi1 ; vi2 2 V : vi1 ; vi2 2 instances of(cl)

TEi1
� TSi2 + (3� bi1;i2 � xi1;j;k � xi2;j;k) � C3 (42)

TE
i2

� TSi1
+ (2 + bi1;i2 � xi1;j;k � xi2;j;k) � C4 (43)

8k 2KB;8ei1 = (vi11 ; vi12); ei2 = (vi21 ; vi22) 2 E : ei1 2 schedule edges(ei2) :

TIEi11;i12
� TISi21;i22 + (3� bii1;i2 � zi11 ;i12 ;k � zi21 ;i22;k) � C5 (44)

TIE
i21;i22

� TISi11;i12
+ (2 + bii1;i2 � zi11 ;i12 ;k � zi21 ;i22;k) � C6 (45)

The idea of these constraints is equivalent in all three cases. For this reason,
only the constraints 40 and 41 for scheduling nodes vi1 and vi2 using the same

24

processors pk are described in the following. If vi1 and vi2 have to be scheduled
(Yi1;k = Yi2;k = 1), then one of the following conditions has to be ful�lled:

1. vi1 is executed before vi2 (bi1;i2 = 1)) TE
i1
� TS

i2
, or

2. vi2 is executed before vi1 (bi1;i2 = 0)) TE
i2
� TS

i1
.

This fact is modelled by the constraints de�ned in equations 40 and 41:

Yi1 ;k = Yi2 ;k = 1 bi1;i2 equation 40 equation 41

yes 0 TE
i1
� TS

i2
+ C1 TE

i2
� TS

i1

yes 1 TE
i1
� TS

i2
TE
i2
� TS

i1
+ C2

no 0;1 TE
i1
� TS

i2
+ n1 �C1; n1 � 1 TE

i2
� TS

i1
+ n2 �C2; n2 � 1

If vi1 and vi2 have to be scheduled (Yi1;k = Yi2;k = 1), only one of equations 40 and
41 results in hard constraints. If bi1;i2 = 0, equation 40 has no e�ect and if bi1;i2 = 1
equation 41 can be ignored. If either Yi1;k = 0 or Yi2;k = 0, both constraints have
no e�ect, if C1 and C2 are dimensioned correctly. It can be shown, that C1 and C2

have the following lower bounds:

Let MaximalExecutionT ime(vi) =Max
�
fcts
i;k1

j k1 2 KPg [fcth
i;k2

j k2 2KHg
	

1. C1 = dALAP (vi1) +MaximalExecutionT ime(vi1)� ASAP (vi2)e, because

TEi1
� TSi2

+ C1

� TSi2 + ALAP (vi1) +MaximalExecutionT ime(vi1)� ASAP (vi2)

� ALAP (vi1) +MaximalExecutionT ime(vi1) 2

2. C2 = dALAP (vi2) +MaximalExecutionT ime(vi2)� ASAP (vi1)e : : :2

6.6. Heuristic Scheduling

Resource constrained scheduling is a NP-complete problem [6]. Therefore, it is clear
that solving the scheduling problem optimally can not be done e�ciently. For this
reason, we have developed an algorithm using integer programming that solves the
partitioning problem while iterating the following steps:

1. Solve an IP-model for the hardware/software mapping with help of approxi-
mated time values.

2. Solve an IP-model for calculating a valid schedule with nodes mapped to hard-
ware or software.

3. If the resulting total time violates the timing constraint, repeat the �rst two
steps with a timing constraint that is tighter than the approximated total time
of step 1. (see �gure 13).

25

Example 12:

t

Exact

CONSTRAINT

Approximation

Exact

Approximation

1. Iteration 2.Iteration

new Constraint

t

Figure 13. Heuristic scheduling

The �rst partitioning results in an approximated execution time which ful�lls the given

timing constraint. However, the exact execution time violates this constraint. For this
reason, a second partitioning with a new timing constraint is executed. This new con-

straint is tighter than the approximation of the �rst partitioning. The second parti-
tioning results in a decreased approximated execution time. The exact execution time

of the second partitioning ful�lls the original timing constraint. Therefore, the second
partitioning represents the solution.

The following constraints are used in addition to the equations 16-20 to approximate
time values:

� Predecessor nodes:

A node v is ready to start, if all its predecessors have �nished their execution.
The e�ect of being forced to schedule some of these predecessor nodes can be
exploited to estimate the starting time of v.
Example 13:

v3 v4

v1 v2

v5

processor
p1

bus b1

hardware
component

h1

Figure 14. Using predecessor nodes in heuristic scheduling

In �gure 14 the starting time of v5 is at least the sum of execution times of v1; v2; v3,
because all 3 nodes have been mapped to p1 and have to be scheduled.
) TS

5
� cts

1;1 + cts
2;1 + cts

3;1.

26

The starting time of a node vi is equal or greater to the accumulated software
execution times of all predecessor nodes vi (eq.46) on a processor pk. Similar
constraints can be added if hardware sharing (eq.47) and/or interfacing (eq.48)
are considered.
8i1 2 I : 8l 2 L : N =j instances of(cl) j:
Let LV = pred nodes(vi1) and LE = pred edges(vi1) :

8k 2 KP : TS
i1

�

X
vi2

2LV

Yi2 ;k � c
ts
i2;k

(46)

8j 2 f1; : : : ; Ng : 8k 2KH : TS
i1

�

X
vi2
2LV;

I(vi2
)=cl

xi2;j;k � c
th
l;k (47)

8k 2 KB : TSi1
�

X
e=(vi2 ;vi3)2LE

zi2 ;i3 ;k � ci
t
i2;i3 ;k

(48)

� Dominator nodes:

Another possibility to estimate the starting time of a node v is to look at
dominator nodes. A dominator node w of v is a node, such that each path to
v contains w (see de�nition 8). v is able to start if dominator w and all nodes
between w and v have been executed.
Example 14:

processor
p1

bus b1

hardware
component

h1

v4 v5

v7

v2

v3

v1

v6

v0

v8

Dominator(v7)

Figure 15. Using dominator nodes in heuristic scheduling

In �gure 15 the starting time of v7 is at least the sum of the ending time of v2 and
the execution times of v4; v5, because v4; v5 have to be scheduled after executing

v2.
) TS

7
� TE

2
+ cts

4;1 + cts
5;1.

The starting time of a node vi1 is equal or greater to the sum of the ending time
of the dominator node vi0 of vi1 and the software execution times on processor

27

pk of all nodes on the paths between vi0 and vi1 (eq.49). Equation 50 de�nes
the same constraint for the hardware execution times of all shared nodes on
the paths between vi0 and vi1 . Equation 51 de�nes the equivalent constraint
considering communication times of required interfaces.

8i0; i1 2 I : vi0 2 dominator nodes(vi1) : 8l 2 L : N =j instances of(cl) j:
Let LV = path nodes(vi0 ; vi1) and LE = path edges(vi0 ; vi1) :

8k 2 KP : TS
i1

� TEi0
+
X

vi2
2LV

Yi2 ;k � c
ts
i2 ;k

(49)

8j 2 f1; : : : ; Ng : 8k 2KH : TS
i1

� TEi0 +
X

vi2
2LV;

I(vi2
)=cl

xi2;j;k � c
th
l;k (50)

8k 2 KB : TSi1
� TEi0 +

X
e=(vi2 ;vi3)2LE

zi2 ;i3;k � ci
t
i2 ;i3;k

(51)

28

7. Results

To evaluate the quality of our partitioning approach we have done an application
study in the area of audio algorithms. We have implemented systems between 6 and
29 nodes (between 6 and 37 edges) which have to be partitioned. The partitioning
results in this section have been calculated for the following systems:

� n-band-equalizers with n � 7,

� a system called audiolab including a mixer, a fader, an echo, an equalizer and a
balance ruler, and

� an MPEG audio encoder (layer II).

These systems were mapped to a target architecture (see �gure 16) containing a
SPARC processor, an ASIC manufactured in a 1� CMOS technology (COMPASS
library) and external memory. A bus connects these components.

SPARC
processor

external
memory

ASIC
(Compass,

1.0µ)

Figure 16. Target architecture

All calculated partitionings consider interface costs and hardware sharing e�ects
between nodes. The IP-models were solved by using the IP-solver package OSL 3

from IBM. The computation times of the examples represent CPU seconds on a
RS6000. The heuristic partitioning approach can be evaluated by examining

� the quality and

� the computation time

compared to optimal solutions.
The quality of the heuristic approach can be derived from the deviation between

the exact and the approximated solutions. Two equalizers, a 2-band- and a 3-band-
equalizer, were partitioned with the optimal and the heuristic approach. For each
system, solutions were calculated for a set of 8 timing constraints, resulting in a set
of designs ranging from a complete software to a complete hardware solution.
The hardware area deviation is zero for both benchmarks. The total system exe-

cution time di�ers between both approaches (see �gure 17). The optimal approach

29

1 2 3 4 5
6

7
8

2-band-eq.

3-band-eq.
0

1

2

3

4

5

6

7

D
ev

ia
tio

n
(T

im
e)

 [%
]

Design

Figure 17. Deviation System Execution Time (exact/heuristic approach)

calculates a mapping �rst using a minimal amount of hardware area, and then
minimizes the system execution time. The heuristic approach tries to minimize the
hardware area and �nding a valid schedule in a second step. For this reason, the
resulting system execution times may di�er. The deviation in our experiments is
not greater than 6.4%. The average deviation is smaller than 1%.

The main di�erence of both approaches is the computation time (see �gure 18).
The computation time for both benchmarks is below one second for all designs using

1 2 3 4 5 6 7 8

2-band-eq. (heuristic)

2-band-eq. (optimal)

3-band-eq. (heuristic)

3-band-eq. (optimal)

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

1600,00

1800,00

S
ol

ut
io

n
T

im
e

[s
]

Design

Figure 18. Computation Time (exact/heuristic approach)

the heuristic approach. The computation time calculating the optimal solution is
1773 seconds in the worst case. It becomes clear that solving the hardware/software
partitioning problem optimally is not applicable to systems with a larger number
of instances.

In �gure 19 an overview of partitioning all benchmarks using the heuristic ap-
proach is given.

30

1 2 3 4 5 6 7 8

2-band-eq.

3-band-eq.

4-band-eq.
5-band-eq.

6-band-eq.
7-band-eq.

audiolab
mpeg encoder

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

S
ol

ut
io

n
T

im
e

[s
]

Design

Figure 19. Computation Time (heuristic approach)

The largest computation time is 16.9 seconds for partitioning the mpeg system
(containing 29 nodes and 37 edges).
Clearly, the heuristic approach is more practical than the optimal approach, be-

cause the results are always nearly optimal and the computation times are signi�c-
antly lower.
Finally, the trade-o� between hardware area and system execution time is demon-

strated for the audiolab system (containing 25 nodes and 31 edges). 8 di�erent
partitionings (see �gure 20) have been calculated for 8 di�erent timing constraints.

0

78,4

0

50

100

150

200

250

300

350

400

450

500

3060 12470 18600 28510 41420 48080 60410 72900

Time [ns]

A
re

a
[1

0
6 λ2]

Figure 20. Area/Time Curve for the Audiolab System

A pure software realization of the audiolab system would result in a system exe-
cution time of 72900 ns, but this solution is too slow. The fastest realization would
have a system execution time of 3060 ns, but it would be a complete hardware
realization using 457; 9 � 106�2 chip area. This solution is a too expensive. The

31

best solution is a hardware/software solution which ful�lls the timing constraint of
22675 ns (44.1 kHz sample frequency) with a minimal amount of hardware. The
calculated solution has a system execution time of 18600 ns and would require
78; 4 � 106�2 chip area.

32

8. Conclusion

This paper presents a new approach of fully-automated hardware/software parti-
tioning supporting multi-processor systems, interfacing and hardware sharing. An
algorithm has been developed, which is able of solving the hardware/software parti-
tioning problem using integer programming and leading to (nearly) optimal results.
In contrast to other approaches, where hardware and software costs are estimated,
our approach follows the idea of 'using the tools' for cost estimation. The dis-
advantage of an increased calculation time is compensated by better metrics and
therefore fewer iteration steps. The presented results are very promising, because
nearly optimal results are calculated in short time. Future work will deal with fur-
ther re�nement of the IP-model for target architecture selection and design studies
of other system level examples.

33

Notes

1. COSYS: (Codesign System speci�cation tool)

2. COOL: (Codesign Tool)

3. OSL : Optimal Subroutine Library

References

1. A. Bender. Design of an Optimal Loosely Coupled Heterogeneous Multiprocessor System.
European Design & Test Conference (ED&TC), pages 275{281, 1996.

2. W. Ecker. Using VHDL for HW/SW Co-Speci�cation. International Conference on
Computer-Aided Design (ICCAD), pages 500{505, 1993.

3. R. Ernst, J. Henkel, and T. Benner. Hardware-software Cosynthesis for Microcontrollers.
IEEE Design & Test, Vol.12, pages 64{75, 1993.

4. P. Eles, Z. Peng, and A. Doboli. VHDL System-level Speci�cation and Partitioning in a

Hardware/Software Co-Synthesis Environment. Third International Workshop on Hard-
ware/Software Codesign, Grenoble, pages 49{55, 1994.

5. R.K. Gupta, C. Coelho, and G. De Micheli. Synthesis and Simulation of Digital Systems
Containing InteractingHardware and Software Components. 29th ACM, IEEE Design Auto-

mation Conference, pages 225{230, 1992.

6. M.R. Garey and D.S. Johnson. Complexity Results for Multiprocessor Scheduling under

Resource Constraints. SIAM J. Comput., pages 397{411, 1975.

7. D. Gajski, F. Vahid, S. Narayan, and J. Gong. Speci�cation and Design of Embedded
Systems. Prentice-Hall, 1994

8. D. Henkel, J. Herrmann, and R. Ernst. An Approach to the Adaption of Estimated Cost
Parameters in the COSYMA System. Third International Workshop on Hardware/Software

Codesign, Grenoble, pages 100{107, 1994.

9. J. Henkel, R. Ernst, W. Ye, M. Trawny, and T. Benner. COSYMA: Ein System zur Hard-

ware/Software Co-Synthese. GME Fachbericht Nr. 15 Mikroelektronik, pages 167{172, 1995.

10. A. Jantsch, P. Ellervee, J. �Oberg, A. Hemani, and H. Tenhunen. Hardware/Software Parti-
tioning and Minimizing Memory Interface Tra�c. European Design Automation Conference
(EURO-DAC), pages 226{231, 1994.

11. A. Kalavade and E.A. Lee. A Global Critically/Local Phase Driven Algorithm for the Con-

strained Hardware/Software Partitioning Problem. Third International Workshop on Hard-
ware/Software Codesign, Grenoble, pages 42{48, 1994.

12. A. Kalavade and E.A. Lee. The Extended Partitioning Problem: Hardware/Software Map-
ping and Implementation-Bin Selection. Proceedings of the 6th International Workshop on

Rapid Systems Prototyping, 1995.

13. B. Landwehr, P. Marwedel, and R. D�omer. OSCAR: Optimum Simultaneous Scheduling,

Allocation and Resource Binding Based on Integer Programming. Proceedings of the EURO-
DAC, pages 90{95, 1994.

14. R. Niemann, and P. Marwedel. Hardware/Software Partitioning using Integer Programming.
European Design & Test Conference (ED&TC), pages 473{479, 1996.

15. Z. Peng and K. Kuchcinski. An Algorithm for Partitioning of Application Speci�c Systems.
Proceedings of the European Conference on Design Automation (EDAC), pages 316{321,
1993.

16. F. Vahid, J. Gong, and D. Gajski. A Binary-Constraint Search Algorithm for Minimizing
Hardware duringHardware/SoftwarePartitioning.European Design Automation Conference
(EURO-DAC), pages 214{219, 1994.

34

Received Date
Accepted Date
Final Manuscript Date

