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Abstract

Convergence Behavior of Evolution Strategies on Ridge Functions

Ahmet _Irfan Oyman

University of Dortmund, 1999

Keywords. evolutionary algorithms, evolution strategy, ridge functions,

convergence behavior, progress rate, systems analysis.

This work is dedicated to the analysis of the convergence behavior of evolution strate-

gies (ES). The ridge functions are used in the theoretical and empirical analysis. The

analysis is carried out both in the �tness space (the space of objective function values) and

in the search space (the space of object variables). The ES algorithms are probabilistic

optimization algorithms. Therefore, stochastic measures are used to formalize the con-

vergence. The progress rate ', the quality gain Q, and the success probabilities Ps1 and

Ps� are measures known from the ES literature. Because of the special structure of ridge

functions, some additional convergence measures are de�ned in this work based on the

quantity r. This quantity measures the Euclidean distance of a given point in the search

space to the ridge axis.

One obtains several di�erent ridge functions depending on the two real-valued parame-

ters in the de�nition of ridge functions. The ridge functions are symmetrical around their

axis. Their optimum is at in�nity, but on this axis. Therefore, the progress is measured

along the ridge axis. The minimization of r appears as a subgoal, and the distance r has

an important role in the analysis. The maximization of the distance traveled along the

ridge axis and the minimization of the distance r become con
icting goals if the ridge axis

is not aligned with a variable axis. This inseparable case is principally considered in the

analysis. For a speci�c ES algorithm, the aligned case has given additional results.

In this work, the convergence measures de�ned in the search space (i.e. the search

space measures) are primarily used in the analysis, since they have given more reliable

information on the convergence to the optimum. Additionally, it is investigated whether

the �tness space measures are useful in the estimation of the search space measures. In

general, such a relation could not be established. Conversely, the quality gain Q (a �tness

measure) is obtained by an alternative formula of search space measures.

The most important part of this work consists of the derivations of search space mea-

xv



sures using the induced order statistics of relevant probability distributions. The simulation

results are used together with these analytical results to examine some hypotheses in the

ES literature. The optimum value of the mutation strength for some ridge functions con-

tradicts to the hypothesis on the \evolution window" and to the universal progress law.

As another example, the convergence behavior on ridge functions cannot be explained by

a \di�usion along the gradient path".

Additionally, the elitist and non-elitist versions of an exemplary ES algorithm are com-

pared under the same conditions for both: The results illuminated other aspects of the

convergence behavior. A new form of the evolutionary progress principle is observed on

the progress rate formulae of ridge functions. The genetic repair hypothesis is used together

with this principle to explain how recombination can help in obtaining larger progress rate

values. Some of these selected results may help in the near future to understandthe working

mechanisms of multiplicative self-adaptation operators better.

xvi



xvii





Chapter 1

Introduction

This work attempts to analyze the convergence behavior of evolution strategies (ES) on

ridge functions. The analysis is carried out both theoretically and empirically. Evolution

strategy is a class of \evolutionary algorithms" (EA), which are probabilistic optimization

algorithms that have operators inspired from the evolution in the nature. These algorithms

are easy to code in computer programs. Since they do not require additional information

other than the �tness function values, �rst and second order partial derivatives of the �t-

ness function are not needed. Therefore, these algorithms are applied in a wide spectrum

of optimization problems. Unfortunately, the research on how these algorithms work in

general is not established in that scale. This work extends the theoretical analysis of ES

algorithms to the ridge functions and provides results on the working principles of ES

algorithms. If these principles are understood better, the parameters of these algorithms

(such as the mutation strength (�), the number of parents (�), and the number of descen-

dants (�)) can be adjusted better. Moreover, further problem-speci�c algorithms can be

developed more e�ectively.

The analysis of the convergence behavior is carried out using the measures de�ned in

the space of �tness values (objective function values) and in the space of object variables

(also called search space). These measures represent expected values of respective random

variables, or they are de�ned using the distributions of these variables. Therefore, they

are expected to provide an adequate framework for a theoretical investigation. The anal-

ysis concentrates on the search space measures since they give direct information on the

convergence to the optimum. The �tness space measures are used to estimate the search

space measures.

The ridge function family is used as the �tness function in the theoretical and empirical

analysis. The ridge functions are unimodal. In their simplest form, the optimum lies at

in�nity for one variable and at zero for all other variables. Unlike the sphere model,

this function tests the EA's capability to converge to a distant optimum in the search

space. This �tness function demands an algorithm to take larger and larger values in the

neighborhood of (and along) a progress axis. By tuning the two parameters of the ridge

functions, one can obtain di�erent �tness landscapes. This function family is conjectured

to model the �tness landscapes distant from the optimum, i.e. the regions of the search

1



space from which the optimum is not expected to be reached in a few generations. As a

result of the structure of the ridge functions, a long term goal and a short term goal will

be de�ned for the analysis. Brie
y, the long term goal is formalized as maximizing the

single variable along the ridge axis, and the short term goal as minimizing the remaining

N � 1 variables. These two subgoals are not necessarily separable, since the ridge axis

can be rotated in the search space. These subgoals are necessary in understanding the

operating principles of the ES algorithms on ridge functions. Naturally, these principles

will be re
ected in the structure of the conclusions.

In the theoretical analysis, a local model is used for the explanation of the search

behavior of ES algorithms. Thereafter, many results are obtained analytically using the

induced order statistics. The experiments will serve to verify the applicability of the

theoretical results. Moreover, additional interesting observations will be outlined in the

experimental chapter. In the analysis, the mutation strength � is assumed to be constant.

Therefore, the e�ect of the self-adaptation on the convergence behavior is to be considered

in the future research. Some comments on self-adaptation can be found in Section 8.2.

The results obtained in this work will establish a good starting point for this analysis.

The formal de�nitions of the terms used can be found in the respective chapters while the

relevant references are given in the index. Therefore, a list of important symbols is not

provided.

The remainder of the thesis is organized as follows. Chapter 2 starts with a detailed

description of some ES algorithms. Some possible alterations and further extensions are

speci�ed. Furthermore, a brief overview on the algorithms related to the ES is given.

The ridge function family and related functions are introduced in Chapter 3. The

measures used in the convergence behavior analysis are de�ned in Chapter 4. These are the

progress rate ', the quality gainQ, the self-adaptation response  (given for completeness),

the success probabilities Ps1 and Ps�, and the measure r. In the �nal remarks, some

notations are introduced and the three types of the analysis applied are explained.

Chapter 5 summarizes the state of the theoretical research on ES algorithms. This

chapter starts with a brief history of the ES, continues with some hypotheses from the ES

literature, supplies the background used in the analysis of this work, and gives some impor-

tant formulae and results. The method applied in the theoretical analysis is also sketched

at the end, which uses the induced order statistics of normally distributed functions.

Chapter 6 consists of the analysis of convergence measures. The results on the �tness

space measures (the quality gain Q and the success probabilities Ps1 and Ps�) are presented

�rst. Thereafter, the progress rate ' is obtained using a local model. These results

are followed by the ones obtained using induced order statistics. Finally, the theoretical

formulae on the distance r to the ridge axis are determined, which will enlighten several

aspects of the analysis.

In Chapter 7, the simulation results are compared with the theoretical ones. Some

other quantities are analyzed only empirically, since no theoretical results are available to

date. Chapter 8 concludes the research results of this study and suggests a number of

extensions to this work.
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Chapter 2

Algorithms

Evolution strategies (ES) is the generic name for a special type of evolutionary algorithms

that search for the object variables of the optimum of a given �tness function. The opera-

tors used in this search process are inspired from the evolution in nature. Formal de�nitions

for the search space, optimum, object variable, �tness function, etc. can be found in the

chapter for �tness functions (Chapter 3).

This chapter is organized as follows: The �ve algorithms given in Section 2.1 through

Section 2.5 describe the evolutionary operators in their simplest form. Some e�ective

expansions to or alterations in the algorithms presented are mentioned in Section 2.6.

Section 2.7 is devoted to the hierarchical ES, i.e. to the meta level search strategy of ES.

In Section 2.8, a short categorization of the related search methods is given brie
y, as well

as the similarities and di�erences between those and ES. For the short history of the ES,

see the chapter dedicated to the state of the research (Chapter 5).

Table 2.1: The �ve ES algorithms sorted according to their complexity, and their 18 algorithm

lines (L0{L17). The �rst occurrence of an algorithm line is denoted by \?", its modi�cation by

\�". A simple notation change is indicated by \�"; and \y" means that the corresponding line

has reached its �nal form in this algorithm with respect to these �ve algorithms. Mutation (L10)

and selection (L14) operators are introduced already in the �rst algorithm, the recombination

operator (L9) in Algorithm 4. The last algorithm introduces the self-adaptation operator (L7

and L8), it will be denoted as (�=�; �)-ES with �-SA.

A 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

(1 + 1) 1 ? ?y ?y ? ?y ? ? ? ? ?y ?y ?y
(1; �) 2 � � ?y � �y ?y � �
(�; �) 3 � � ? � �y
(�=�; �) 4 � �y ? �
(�=�; �) (SA) 5 � �y ?y ?y �y �y �y

In Section 2.1 through Section 2.5, the lines of the algorithms are not numbered con-
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secutively, indicating that some lines will be inserted for more complicated algorithms.

The lines shown will either remain unchanged or be altered, preserving their respective

line numbers, in order to ease the comparison of the algorithms. Table 2.1 should give an

overview for the introduction and alterations of the eighteen lines in these �ve algorithms.

A few words should be added here for the symbols used that are related to the �tness

functions: The number of variables in the �tness function F , which occurs in the explana-

tion of the algorithms, is denoted by N . As to the Algorithms 1{5, it is assumed without

loss of generality (w.l.o.g.) that F returns a scalar �tness value for the given variable

setting, i.e. F : IRN ! IR. How other types of �tness functions are treated is mentioned

in Section 2.6. This work is not directly concerned with constrained optimization (see

Subsection 2.6.3).

2.1 The (1 + 1)-ES

The (1+1)-ES is presented as Algorithm 1. This algorithm is also called the two-membered

ES. The zeroth line (L0) gives the name of the algorithm. The symbols used in L0 for the

identi�cation of the algorithm are explained at the end of the subsection where they appear

�rst. The beginning of the algorithm is marked by L1. Firstly, the generation counter is

L0 procedure (1 + 1)-ES

L1 begin

L2 g := 0

L3 initialize(P(0))
h
P(0) :=

�
y
(0)
P ; F (y

(0)
P )

�i
L4 while not terminate() do

L10 yC := mutate(y
(g)
P ; �)

L11 FC := F (yC)

L13 C := (yC; FC)

L14 P(g+1) := select(C;P(g))

L15 g := g + 1

L16 od

L17 end

Algorithm 1: The (1 + 1)-ES.

initialized (L2). The starting point is initialized next in L3. This location is named as

the initial parent, denoted as P(0), which consists of its coordinates in the search space,

indicated by the vector y
(0)

P , and the corresponding �tness function value F (y
(0)

P ). P(0) can

be chosen by the user of the algorithm, or set up at random.

The loop of generations starts at L4. L16 marks the end of the loop. The loop is

repeated until the termination criterion is ful�lled. In the simplest case, it is executed

for a �xed number of times (G, total number of generations), and than the algorithm

terminates (L17).
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The single descendant, called child C in this algorithm, is created in L10 using the

variable setting of the parent y
(g)

P . The variable setting of the child, yC, is generated by

adding the N-dimensional pseudo-random vector z to y
(g)
P . In other words, the mutations

are imitated here by z. Each component zi of each z is a new pseudo-random sample

of the normal distribution, with zero mean and variance �2. The exogenous parameter

parameter � is stated by the user. If we denote a pseudo-random sample of the standard

normal distribution byN (having the mean zero and standard deviation one), the mutation

operator can be formalized as follows:

yC := y
(g)

P + z; z := (z1; z2; : : : ; zN)
T

(2.1)

8i 2 f1; : : : ; Ng : zi := � � N (2.2)

p(z) =
hp

2��
i�N

exp

�
�1

2

zTz

�
2

�
(2.3)

Note that the same standard deviation � is used in this work for all components of z. Such

mutations are isotropic. In the ES terminology, � is called the mutation strength.

The (1 + 1)-ES algorithm is presented here in the simplest possible form. Originally,

the (1 + 1)-ES has an external control mechanism for � based on the �tness value of the

child with respect to its parent. This control method is called \1=5-th success rule" (Ein

F�unftel Regel) [Rec65]. Using that, � can be controlled externally during the simulation

run. It is shortly described in Subsection 2.6.11.

After the creation of C in L10, yC is evaluated in L11 using the �tness function F ,

yielding FC. In L13, C is de�ned as comprising yC and FC.

The �tness function values of P(g) and its child C are compared in L14. The better one

is assigned as P(g+1), the parent of the next generation. The child substitutes its parent

also for the case of �tness equality, enabling a movement in a 
at search space. Lastly,

the generation counter g is incremented in L15. The lines L1, L2, L4, L15, L16, and L17

in Algorithm 1 remain unchanged for the algorithms considered here in detail; therefore,

they are not explained repeatedly.

In the terminology of the ES, this selection method is named as the plus strategy,

indicating that the parent P(g) itself is included in the candidate set for P(g+1). P(g) is not

substituted by C if the child has a worse �tness function value; therefore, the plus strategy

uses the elitist selection.

The notation (1+1)-ES stands for \one parent, plus selection strategy, one descendant",

respectively, i.e. it states the number of parents and o�spring, as well as the selection

method.

In the scope of the (1 + 1)-ES, mutation and selection operators are introduced. This

algorithm is the simplest ES, and the one with least memory requirements. Moreover, it

is the simplest evolutionary algorithm possible (see Section 2.8).
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2.2 The (1; �)-ES

The (1; �)-ES is shown in Algorithm 2. In this algorithm, the �rst expansion beyond

Algorithm 1 is carried out: Not just one, but � descendants are generated in a single

generation. Furthermore, the other selection method (the comma strategy) is introduced.

First of all, notations di�ering from those used in Algorithm 1 are introduced for the parent

L0 procedure (1; �)-ES

L1 begin

L2 g := 0

L3 initialize(P(0))
�
P(0) :=

�
y
(0); F (y(0))

��
L4 while not terminate() do

L5 for l := 1 to � do

L10 ~yl := mutate(y(g); �)

L11 ~Fl := F (~yl)

L12 od

L13 ~P(g) :=
n
8l 2 f1; : : : ; �g : (~yl; ~Fl)

o
L14 P(g+1) := select( ~P(g))

L15 g := g + 1

L16 od

L17 end

Algorithm 2: The (1; �)-ES.

and the descendants. That is, the variable setting of the parent individual is denoted as

y(g) (for g = 0 as y(0)), and the l-th descendant generated as ~yl, respectively. Accordingly,

notations of �tness function values are changed to F (y(g)) and F (~yl) (or alternatively ~
Fl).

These cosmetic changes are made in L3, L10, and L11; further changes in L13 and L14 are

explained below.

As already said, � descendants are generated using the mutation operator in this al-

gorithm. The construct shown in L5 and L12 is introduced for this purpose, indicating

that the lines in-between should be executed � times, for the consecutive integer values

between 1 and � for l. The resulting � pairs of (~yl; ~Fl) constitute the o�spring population
~P(g) (L13).

Instead of the plus selection strategy introduced in Algorithm 1, the comma selection

strategy is used here (L14). In this selection scheme, the parent individual gets lost for the

next generation; therefore, the individual having the best �tness value in ~P(g) is selected

as P(g+1), no matter whether it is worse than the parent P(g).

The notation in L0 stands for \one parent, comma selection strategy, � descendants".

Therefore, as compared to Algorithm 1, another selection strategy and the notion of o�-

spring population is introduced here. The notation (1 + �)-ES stands for the counterpart

with elitist selection, di�ering only in the selection operator, select( ~P(g)
;P(g)). Therefore,

Algorithm 1 is a special case of Algorithm 2, with � = 1 and elitist selection. Addition-

ally, the notation \+;", speci�cally (1 +
; �)-ES, is used to mention both selection strategies.
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The symbol tilde \~" is used to mark the o�spring population and the components of the

descendants.

The lines L5, L11, and L12 of Algorithm 2 are used unchanged in Algorithms 3{5,

whereas L13 is upgraded only for Algorithm 5.

2.3 The (�; �)-ES and the (� + �)-ES

The (�; �)-ES is given in Algorithm 3. Di�ering from Algorithm 2, each generation will

consist of � individuals here, denoted as P(g). The population P(g) is de�ned formally in

L3 for g = 0, the subscript m is used to identify the � parent individuals.

The use of P(g) instead of P(g) requires several upgrades in Algorithm 2. Firstly, since

P(g) consists of � individuals, the initialization in L3 should generate � individuals. The

L0 procedure (�; �)-ES

L1 begin

L2 g := 0

L3 initialize(P(0))
h
P

(0) :=
n
8m 2 (1; : : : ; �) :

�
y
(0)
m ; F (y

(0)
m )

�oi
L4 while not terminate() do

L5 for l := 1 to � do

L6 El := mate(P(g))

L10 ~yl := mutate(El; �)

L11 ~Fl := F (~yl)

L12 od

L13 ~P(g) :=
n
8l 2 f1; : : : ; �g : (~yl; ~Fl)

o
L14 P

(g+1) := select( ~P(g))

L15 g := g + 1

L16 od

L17 end

Algorithm 3: The (�; �)-ES.

second change is in the way mutations are applied. The descendants are generated around

the parents as in Algorithm 2. However, since � > 1, the individual El in P
(g) should be

determined �rst, which will act as the parent in L10. El is selected in L6. A special case

of the mating selection operator is introduced here. In this case, mate does not favor any

of the � parents, and selects one of them with probability 1=�:

r := Uniformf1; : : : ; �g ; therefore (2.4)

El :=
�
y(g)
r
; F (y(g)

r
)
�
; as a result (2.5)

~yl := y(g)
r

+ z : (2.6)

L6 is implemented by (2.4) and (2.5). First, one of the � parents is selected randomly
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according to the discrete uniform distribution. And then, ~yl is generated using its object

variables y
(g)
r . Equation (2.6) is analogous to (2.1) and corresponds to L10.

The last change is at L14, where the best � individuals in ~P(g) are selected to compose

P(g+1). If we are trying to maximize F , the �tness function values of the � descendants

can be sorted as

~
F1:� � ~

F2:� � : : : � ~
F��1:� � ~

F�:� ; (2.7)

where ~
F1:� denotes the smallest �tness function value, and ~

F�:� the largest one, respectively.

According to the comma selection strategy, the individuals with ~
F�:� for all � 2 f� � � +

1; : : : ; �g will compose P(g+1). Therefore, the condition � > � must be ful�lled to ensure

enough o�spring.

If the plus strategy is concerned, L14 becomes

L14 P(g+1) := select( ~P(g)
;P(g)) : (2.8)

In this case, the candidate pool has 
 := �+ � individuals. The 
 �tness function values

are sorted as

F1:
 � F2:
 � : : : � F
�1:
 � F
:
 : (2.9)

The individuals with F�:
 for all � 2 f� + 1; : : : ; � + �g are selected to compose P(g+1).

Therefore, � � 1 is su�cient in this case.

The selection operator in L14 is not altered in further algorithms, and is called \trun-

cation selection" in the ES terminology. It imitates the livestock breeding. Other selection

methods are shortly mentioned in Subsection 2.6.4. In L6, a special case of sexual selection

is introduced. The operator mate will be expanded further in the next algorithm to select

more than one parent per descendant.

Algorithm 3 has more than one parent per generation; therefore, it implements a

parental population. In L0, (�; �) indicates \� parents, comma selection strategy, � de-

scendants". Actually, the evaluation of the y
(0)
m settings in L3 yielding the �tness value

F (y
(0)
m ) is not necessary for the comma strategy, since this strategy does not use F (y

(0)
m ).

The (� + �)-ES would use a di�erent L14, as explained above. In order to obtain the

plus versions of Algorithm 4 and Algorithm 5, one should just substitute L14 with (2.8).

Algorithm 2 is a special case of Algorithm 3 for � = 1.

2.4 The (�=�; �)-ES

The (�=�; �)-ES is presented as Algorithm 4. The recombination operator is introduced

as the only di�erence to Algorithm 3. In this case, � parent individuals take part in

the generation of one descendant, � � �. Firstly, these � parents should be determined.

This step is similar to L6 in Algorithm 3, which generated a single parental individual El.

Here, the sub-procedure mate determines an intermediate population of size �. It selects �

8



L0 procedure (�=�; �)-ES

L1 begin

L2 g := 0

L3 initialize(P(0))
h
P

(0) :=
n
8m 2 (1; : : : ; �) :

�
y
(0)
m ; F (y

(0)
m )

�oi
L4 while not terminate() do

L5 for l := 1 to � do

L6 El := mate(P(g); �)

L9 yl := recombine(El; �)

L10 ~yl := mutate(yl; �)

L11 ~Fl := F (~yl)

L12 od

L13 ~P(g) :=
n
8l 2 f1; : : : ; �g : (~yl; ~Fl)

o
L14 P

(g+1) := select( ~P(g))

L15 g := g + 1

L16 od

L17 end

Algorithm 4: The (�=�; �)-ES.

parents, that make up together the parent pool or the parental set El for the generation

of the l-th descendant. As in (2.4), all parents in P(g) have the same probability to be

selected for El. If � = �, El is per de�nition identical to P(g), and if � < �, any parental

individual may principally occur more than once in El.

The individuals in El are recombined in L9. This step is explained in detail in the

following two subsections. The resulting temporary state in the search space is denoted by

yl. The l-th descendant is created around yl by the mutation operator in L10, similar to

(2.1) and (2.6):

~yl := yl + z (2.10)

Algorithm 4 uses more than one parent in the generation of a single descendant. This is

expressed with the notation in L0, with the meaning \� parents, � parents per individual

generated, comma selection strategy, � descendants". The slash \=" symbol stands for

recombination. The type of recombination will also be expressed in this notation, as

explained in the following. The special case � = 1 is the (�; �)-ES in Algorithm 3, the case

� = 2 is called bisexual, the one � > 2 multi-sexual, and � = � panmictic.

In Algorithm 4, L9 (recombination) is introduced, and the lines L6 and L10 are altered

to adapt Algorithm 3 for this upgrade. L6 is not altered further in Algorithm 5. The two

recombination types analyzed in this work are introduced next.

2.4.1 The (�=�I; �)-ES

The �rst one of the two recombination operators analyzed in this work, the intermediate

recombination, will be introduced here. Actually, the adjective \intermediary" describes
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the type of the operation better [SR95]; however, it is used less frequently. The special

case � = � will be explained �rst.

For � = �, we have El � P(g), as already mentioned. Therefore, all El parent pools for

di�erent l are identical; consequently, L6 becomes redundant. Moreover, L9 becomes

L9 yl := recombine(P(g)
; �) : (2.11)

In this case, L9 calculates the intermediate point of P(g) in the search space; more formally,

their arithmetic mean, center of gravity, or in short, their centroid. Consequently, all yl
are identical for the � = � case, and the centroid of � parents can be denoted as hyi, and
if necessary as hyi(g). Therefore, L9 can be formalized in this case as

hyi := 1

�

�X
m=1

y(g)
m

: (2.12)

Since hyi is independent of l, L9 can be executed after L4 and before L5, just once per

generation g, yielding a structure similar to Algorithm 2.

For the general case � < �, yl is the centroid of the El concerned, i.e. of the � individuals

selected randomly from P(g). Of course, any parent individual may occur more than once

in El for this case.

The notation (�=�I; �) di�ers from (�=�; �) by the subscript I, which denotes that the

recombination operator used is the unweighted intermediate one.

2.4.2 The (�=�D; �)-ES

The second one of the recombination operators analyzed in this work is called the dominant

recombination. This recombination type is also called \global discrete" in the literature.

The object variables of a single individual in the parental set are used predominantly over

the others; and this predominant (or prevailing, prominent) individual is sampled anew

in the parental set for each variable of yl. This recombination type is explained in detail

next.

In this recombination method, the temporary state yl is generated actually in N steps,

N being the number of variables. For each variable i, the individual numbered with r is

picked randomly from the � parents in El (Equation (2.13)). The i-th component of y
(g)
r

is used as the i-th component of yl, i.e. the parent r dominates all other parents in El

for the component i. Note that r is sampled anew for each variable i, descendant l, and

obviously, for each generation g.

For a formal de�nition of the dominant recombination, ei is introduced to denote

the unit vector in the direction of the i-th variable in the N dimensional search space.

Therefore, the set f8i 2 f1; : : : ; Ng : eig forms an orthonormal basis of the search space.

Consequently, the dominant recombination (L9) is composed of the two steps

ri := Uniformf1; : : : ; �g and (2.13)

yl :=

NX
i=1

�
eT
i
y(g)
ri

�
ei : (2.14)
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Equation (2.13) is similar to (2.4). The subscript D in (�=�D; �) denotes that the recombi-

nation operator used is the dominant one.

2.5 The (�=�; �)-ES, with self-adaptation

The (�=�; �)-ES algorithm with self-adaptation of the mutation strength � (in short: �-SA)

is shown in Algorithm 5. It introduces the lines L7 and L8, dedicated to the endogenous

change of the parental mutation strength for the descendant. The lines L3, L9, L10, and

L13 of Algorithm 4 are upgraded in order to facilitate this �-SA mechanism. In the four

L0 procedure (�=�; �)-ES, with self-adaptation

L1 begin

L2 g := 0

L3 initialize(P(0))
h
P

(0) :=
n
8m 2 (1; : : : ; �) :

�
y
(0)
m ; s

(0)
m ; F (y

(0)
m )

�oi
L4 while not terminate() do

L5 for l := 1 to � do

L6 El := mate(P(g); �)

L7 sl := recombine.s(El; �)

L8 ~sl := mutate.s(sl)

L9 yl := recombine.y(El; �)

L10 ~yl := mutate.y(yl; ~sl)

L11 ~Fl := F (~yl)

L12 od

L13 ~P(g) :=
n
8l 2 f1; : : : ; �g : (~yl; ~sl; ~Fl)

o
L14 P

(g+1) := select( ~P(g))

L15 g := g + 1

L16 od

L17 end

Algorithm 5: The (�=�; �)-ES, with self-adaptation.

algorithms introduced up to now, � is an external (exogenous) parameter, or a strategy

parameter, of the ES algorithm. If it is allowed to vary, it becomes a strategy variable. In

order to express this change, the mutation strength is denoted here as \s" instead of �.

The �-SA mechanism will be introduced here, starting with the necessary upgrades

beyond Algorithm 4 �rst. The following subsection (Subsection 2.5.1) is devoted to the

actual implementation of the self-adaptation rules, i.e. to some established methods of

adapting the mutation strength endogenously (L8).

As already mentioned, the mutation strength is not an externally given constant of

Algorithm 5, but an endogenous variable of this algorithm. Therefore, each individual

of P(g) and ~P(g) may have a di�erent mutation strength. Consequently, the de�nition of

an individual must be upgraded accordingly: In Algorithm 5, an individual consists of
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its variable setting, its �tness value, and the mutation strength used for its generation.

Formally, P(g) is de�ned in L3 for g = 0, and ~P(g) in L13.

Beyond the re-de�nition of P(g) and ~P(g), further changes are necessary in L3, L9, and

L10 of Algorithm 4. In L3, � di�erent mutation strength values, denoted as s
(0)
m , can be

speci�ed for the initial population. The notation for the recombination operator in L9

is changed to recombine:y, to contrast the recombination in the domain of the strategy

variables (see L7), explained below. L9 is executed in the same way as in Algorithm 4, and

operates in the domain of the object variables.

The last change is in L10, where the mutation strength used is explicitly stated in

the mutation operator. The notation for the mutation operator itself is also renamed to

express that it works in the domain of object variables. It operates as in (2.10), provided

that ~sl is used as the mutation strength.

Two new lines are introduced in Algorithm 5. The former one, L7, generates a tem-

porary sl using the � mutation strengths of the parental pool El. This operator functions

analogous to the recombination methods for the object variables, explained in Subsections

2.4.1 and 2.4.2, with the simpli�cation that it recombines scalar quantities. The latter line

introduced, L8, generates the mutation strength ~sl, which will be used in the generation

of the l-th descendant, using sl and some external strategy parameters. L8 is explained in

Subsection 2.5.1.

To summarize, the self-adaptation operator is introduced in Algorithm 5. If this oper-

ator is used, the mutation strength evolves during the loop of generations, simultaneous

to the search for an optimum. The �-SA operator, its type (see Subsection 2.5.1), and the

�-recombination rule used in L7 must be stated explicitly, since it cannot be given in the

compact \(: : : )-ES" notation. Algorithm 5 can easily be adapted for the (1; �)-ES and the

(�; �)-ES algorithms. In both cases, L7 becomes obsolete.

2.5.1 Multiplicative �-SA rules (MSR)

In L8, ~sl is generated using sl and some exogenous parameters, by simply multiplying sl
with a pseudo-random number �

~sl := � � sl : (2.15)

There are several ways of generating �. Four of the proposed ones are listed here. More

information can be found in [Sch95], [Fog95] (in a slightly di�erent form), [Rec94], and

[Bey96c, Bey96b], respectively.

LogNormal � := exp (�N ) (2.16)

� := 1 + �N (2.17)

(Symmetric) TwoPoint � :=

�
1=(1 + �) if U < 1=2

1 + � if U � 1=2
(2.18)

Generalized TwoPoint � :=

�
1� �

� if U < p�
1 + �

+ if U � p�
(2.19)
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In these equations, N stands for a pseudo-random sample of the standard normal distri-

bution, as introduced in Section 2.1. Equation (2.17) is obtained as the �rst two terms of

the Taylor expansion of (2.16). A pseudo-random sample of the uniform distribution with

the range [0; 1) is represented by U . The other symbols (�; �; ��; �+
; p�) are exogenous

strategy parameters, i.e. the user has to specify them. The operation intervals can be

given as

�
�
> 0 �

+
> 0 0 < p� < 1 � > 0 (2.20)

The values of these exogenous parameters a�ect the self-adaptation process of �. The

optimal values of them depend on �, �, �, N , on the ES algorithm used, and of course on the

�tness function. For more information, the reader is referred to the related works mentioned

in the chapter for State of Research, Chapter 5. For p� = 1=2; �+ = �; �
� = �=(1 + �),

the Generalized TwoPoint rule reduces to the TwoPoint rule.

2.6 Some possible alterations

In the previous sections, �ve standard ES algorithms are given exemplarily in their basic

form. However, there are many other ways to implement each step of these algorithms.

Some suggestions are mentioned here without a claim of completeness.

The ideas stated in this section as well as the �ve algorithms given previously are not

canonical rules. The user can tailor them to the application needs. However, any alteration

of the algorithms may alter their convergence properties.

The reader is referred to [SR95] for the contemporary state of the ES, and to [BFM97,

Rec94, Sch95, Bey96c, B�ac96, Rud97] for further literature and thorough information.

Naturally, almost all alterations mentioned in this section can be used in combination;

but they may make the theoretical analysis much more di�cult.

2.6.1 L3: Where to start

At which state of the search space should an algorithm start, or what is the best location to

start searching? This is a philosophical question which is hard to answer. The object vari-

ables for the optimum describe the best location to start; however, no search is necessary

if it is known. If we do not know at all what we are looking for, or speci�cally, where the

optimum is located, we can start anywhere: The starting point can be selected randomly.

Generally, it is assumed in optimization that optimum variables (object variables for the

optimum) are unknown.

If other search algorithms already delivered some results, these can be used in L3.

Conversely, the results of the ES can be used as starting point by other algorithms.

It is practical to start at previously obtained variable settings with high �tness values,

hoping to be near to optimum variables; it is also wise to start at a very di�erent variable

setting in each simulation run if the �tness function is multi-modal [Rec94, p. 155].
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If the mutation strength is variable (as in Algorithm 5), it also has to be initialized in

L3: In this case, each one of the s
(0)
m values can be di�erent. In general, if s

(0)
m or �(0) are

chosen to be too large, the comma strategy may lose the good start position.

If the �tness function handles constraints, P(0) must ful�ll all of these. Lastly, the local

performance of an ES can be measured statically. For this purpose, one determines the

local conditions of interest and expresses these as variable settings on the search space.

These settings are used as object variables of the individuals in P(0), with the desired

population distribution. L14 is removed from the algorithm, i.e. P(g+1) := P(g). Therefore,

the algorithm is repeated at the same initial conditions. This local performance can be

measured in formal terms using convergence measures (see Chapter 4).

2.6.2 L4: Termination condition

The most trivial way to terminate an evolutionary search algorithm is to execute the loop

of generations just for a �xed number of times. This number, G, gives the simulation

length.

Other conditions may also be used, these are de�ned formally in [SR95]. Such condi-

tions are mostly based on the quantity of, and/or relative/absolute change in the �tness

values of (successive) populations, in their variable settings or strategy variables, and re-

quire the collection of simple statistics. They contain comparisons based on the best or

worst individual in the population, or in the mean value of the respective quantity. The

comparisons can be made over successive generations, or repeatedly after several genera-

tions; furthermore, di�erent criteria can be used in the di�erent phases of the simulation

run, or the criterion itself can depend on time.

If the performances of other algorithms are known, these can be stated to serve as

minimum requirements. For example, simulation length can be limited by the execution

time, i.e. by the \wall-clock".

2.6.3 L5: Variable �

All of the �ve algorithms introduced in Section 2.1 through Section 2.5 produce � o�spring

per generation throughout the whole simulation run.

Practically, the user can alter these algorithms to generate more or less o�spring in each

generation, based on his own criteria, e.g. based on the �tness function values. Therefore,

� becomes a variable which can be changed during the simulation. For instance, if the

descendants created already yield a large quantitative improvement in the �tness space,

one may stop creating further individuals in this generation, provided that � individuals

are available for the next generation. Therefore, less than � descendants may be created

in a single generation.

Handling constraints. Actually, more than � descendants per generation may also be

created. This is for example the case if constraints should be handled in addition to the
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�tness function evaluation. If an individual does not ful�ll all constraints, it is called lethal;

its �tness value is unde�ned, it cannot produce further individuals, and it should not be

included in P(g+1). Therefore, the loop L5-L12 is executed until � feasible descendants are

produced, i.e. inde�nite number of times. Other methods also exist for constraint handling

[BFM97, Chapter C5], [Deb98].

2.6.4 L6: Mating selection

In L6, � parental individuals for the recombination are selected. For the (�; �)-ES case,

we have � = 1. Principally, the �tness values of the individuals in P(g) are not considered

in the ES at this step. However, one can de�ne the probability to occur in El using the

�tness values of the individuals in P(g); the parents can be selected depending on their

�tness values. As a result, individuals with higher �tness will occur more frequently in the

parental pool. Consequently, the o�spring are generated by the parents with better �tness

values.

The determination of the mating pool El based on the �tness values introduces a com-

putational overhead which may be small compared to the �tness evaluations. Only some

selection schemes will brie
y be mentioned here. Actually, these are used in algorithms

closely related to ES, see Section 2.8 for literature references.

In proportional selection, each parent is assigned a selection probability proportional

to its �tness. For this case, a scaling based on the �tness values, or on a function of

�tness values, is necessary. That is, in order to be able to determine the proportion of each

individual, all �tness values should be larger than zero, or they should be mapped to the

interval IR+ �rst. Actually, such a scaling can also be used even in the case when all �tness

values are already positive; in order to �ne-tune the proportions of individuals with �tness

values above or below the average. For example, if a su�ciently large number is added to

the �tness values, the proportional selection can be switched o�: The case explained for

the mating selection in Section 2.3, which is used as standard in ES, emerges as a special

case of the proportional selection.

In q-tournament selection, q � � individuals are randomly selected from P(g) �rst. The

one with the largest �tness joins El. This tournament is repeated � times. If q = � is

chosen in this scheme, only the best parent generates o�spring; therefore, � e�ectively

reduces to one.

The linear ranking selection scheme ranks the parents in P(g) according to their �tness

values. The probability to be selected for the mating pool depends neither directly nor

absolutely on the �tness values, but on their ranking order instead.

The e�ect of such �tness-based schemes on the convergence behavior is not analyzed in

this work. Such schemes are especially of interest in case of the (� +
; �)-type algorithms,

which are also not analyzed here. Actually, combining them with truncation selection may

be harmful, since it may cause an overemphasis of �tness values. Additional mating restric-

tions may be introduced, so that similar individuals may be encouraged (or discouraged)

to recombine (see [BFM97] for more information).
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2.6.5 L10: The mutation distribution

Several distributions can be used to generate mutations for real-valued variables, other

than the normal distribution used in this work. The basic requirements on the mutation

distribution are stated in [Bey96c, p.8]. They can be summarized as follows:

� reachability: Any state of the search space should be reachable from any other

state in a �nite number of generations.

� scalability: The distribution should be scalable by using the strategy parameter(s).

� no bias: The distribution should be chosen according to the maximum entropy

principle.

� symmetry: The expected value of the mutation distribution should be zero.

These requirements are not very stringent. Several probability density functions are

applied in the literature to generate mutations in the ES algorithm. For example, the

spherically symmetric distribution is used in [Rud97]. In [Kap96], the performance of the

Cauchy-distributed mutations are compared against the normally distributed ones. A more

broad comparison can be found in [M�uc89].

2.6.6 L10: The mutation vector/matrix

In Equation (2.2), the same mutation strength is used for the mutations on N variables.

Therefore, using a single �, an N -dimensional pseudo-random vector is generated. Princi-

pally, a di�erent mutation strength can be used for each variable. In this case, one would

have an N -dimensional � vector, emphasizing the search in each direction with di�erent

mutation strengths. The mutation operator obtained in this way is aligned with the vari-

able axes: Using a covariance matrix with non-zero o�-diagonal entries, the emphasized

directions can be directed freely in the N -dimensional space. A � vector has up to N pa-

rameters, and a mutation matrix has up to N(N +1)=2 parameters; see [SR95] for details.

Scaling the mutation strength di�erently in di�erent directions will guide the search, or

at least weight it in the preferred directions; although ful�lling the requirements stated in

Subsection 2.6.5. This methods are expected to alter the convergence properties of ES.

2.6.7 L10: Other data types

The mutation operator should be adapted if the �tness function is only de�ned for the set

of integer or discrete values. That is, the variable settings of the descendants should be in

the same set as their parents.

The �rst way is to use a geometric distribution, which is similar in shape to the normal

distribution, but has only integer values in its range. The second way is to use a normal

distribution, and round the real numbers produced to the nearest integer. In case of discrete

values, a mapping scheme should be introduced additionally to obtain the corresponding

16



discrete value for any given real value. Please note that the set IB = f0; 1g (binary

values) is a special case of discrete sets, further examples are fA;C;G; Tg, f|;};~;�g,
and f�;�;�;�;�;~;}g.

The search spaces with variables of di�erent types (real, integer, and/or discrete) are

called mixed-integer. For instance, one can construct a search space with �ve real values,

seven natural numbers, and ten boolean variables, in short IR5 � IN7 � IB10; the mutation

distribution of each variable should accord the data type of the variable on which it is

operating. Obviously, ES is not a method which is restricted to the search space IRN .

2.6.8 L9: Other recombination operators

The intermediate and dominant recombination operators are introduced in Subsection 2.4.1

and Subsection 2.4.2, respectively. These can be extended to weight the parents. This

weighting can be based on the �tness values of the parents, or on user-de�ned heuristics.

It both cases, one assumes that the individuals with higher �tness values are nearer to

the optimum than others. Further extensions which try to approximate the local topology

and thereby make estimates for regions with higher �tness values are also possible, see

[Rud97, Ost97, SV98]. All these extensions are expected to alter the performance of the

standard ES in Section 2.4, in a good or bad sense.

For the dominant case, the weighting causes that some parents in El are selected more

frequently than the others to determine the variable settings in yl (see (2.13) and (2.14)). In

the intermediate recombination, such weights cause that yl gets nearer in the search space

to the parents which are higher-weighted. Note that yl is always placed in the subspace

covered by El. A recombination operator similar to the dominant recombination is used

in the research �eld of genetic algorithms (see Section 2.8, cross-over, k-point cross-over).

2.6.9 L11: The evaluation of the o�spring

Depending on the �tness function, the operation of L11 may di�er from the case explained

in Algorithm 1. Furthermore, some extensions may be necessary in the structure of the

P(g) for the realization. Some of these cases will be mentioned brie
y in this subsection.

Variable N . For some technical optimization problems, the number of variables itself

in the �tness function can be considered as variable. Introduction of further variables will

increase the complexity of the technical constellation, reduction of these will simplify it.

Therefore, N must be represented in the �tness function with a punishment term. The

alteration of N can be realized in L10, causing a change in the structure of ~P(g). The

reader interested in an example where the gene deletion and duplication are realized is

referred to the nozzle experiments [KS70].

Multi-criteria optimization, also called vector optimization. The �tness function may

be expected to optimize multiple criteria simultaneously. If these cannot be weighted to
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give a scalar �tness value, then the ES algorithm must optimize a vector. Consequently,

the ~
Fl values become vectors, and are principally not comparable beyond the limits of a

Pareto set. For more information on multiple criteria decision making and optimization,

see e.g. [HM79].

Moving optima. The �tness function may change over time. As a consequence, the

�tness landscape changes. Therefore, the ~
Fl (and F (y

(g)
m )) values are only valid for the

generation in which they are evaluated. If the plus selection strategy is used, it is advisable

to reevaluate the parents since their �tness values may change drastically after several

generations.

Noise-perturbed �tness. Actually, perfect and exact measurements do not exist in

the nature. All measurements are perturbed with noise. Therefore, formal algorithms

are required to function also under noise-perturbed noise for real world applications. The

convergence behavior of ES under noise is investigated e.g. in [Rec94, Ch. 14], [Ott93],

and [Bey93, Bey96c].

Polyploidy. An individual may have more than one set of variable settings (alleles).

In nature, the existence of multiple sets of chromosomes in the genetic code (genome) of

a single individual is called polyploidy. A single functional set of chromosomes is called

haploid. Individuals having two such complete sets are called diploid. All of these three

cases exist in nature. Polyploidy can be imitated in the optimization, e.g. for multi-

criteria optimization. For the ES, it requires the rede�nition of the �tness evaluation: The

�tness value should be obtained based on multiple variable settings of the individual. This

approach is already used in the literature for multi-criteria optimization (e.g. [Kur91]).

2.6.10 L14: Other selection strategies

The plus and comma selection strategies are introduced in Section 2.1 and Section 2.2,

respectively. Others beyond these are also thinkable. The individuals may be allowed to

live a �xed number of generations, �, at most [SR95]. This strategy comprises the comma

and plus strategies as the two extremes, for � = 1 and � = 1, respectively. Additional

to the variable settings, �tness value, and strategy parameters, the \age" of the individual

must also be stored in the population. Some other possible alterations related to the

selection operator are brie
y mentioned below.

Variable �. The number of parents may also be considered as variable. This makes the

ES algorithm more complicated, and requires rules for determining �(0) and �(g+1) based

on the ~P(g). This extension, the variation of the selection pressure during the simulation,

may be useful in some applications. For more details, see [Rec94, p. 96].
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Best so far. By de�nition, the plus strategy always contains the best � individuals

obtained during g generations in P(g+1). In contrast, the comma strategy moves through

the search space without registering the individuals with good �tness values, and the

individuals of the �nal population may have moderate �tness values when the simulation

run ends. Therefore, the algorithm can be extended to store the best �tness values and

corresponding variable settings in an external list. The maximum length and the structure

of this list can be speci�ed by the application programmer.

Time dependent selection. After the generation of � descendants using P(g), the in-

dividuals of the next generation are selected in the next step. One can de�ne a probability

distribution to generate pseudo-random values to be used by the selection scheme. This

algorithm is a hybrid of the plus and comma selection strategies: A child better than its

parent is selected always. Otherwise, it is selected if the randomly generated value is larger

than a prede�ned threshold. This threshold can be changed during the simulation run so

that the selection scheme is similar to the comma strategy at the beginning and to the plus

strategy at the end. This scheme is adapted from simulated annealing (see Section 2.8).

2.6.11 L8: Other self-adaptation rules

In Section 2.5, the mutation distribution was assumed to be isotropic. Other mutation

distributions were introduced in Subsection 2.6.6. If the strategy variables used to generate

mutations constitute a vector, each entry in the vector can be adapted separately using

the �-SA rules. If we have a covariance matrix, the matrix generated by the �-SA rule

must obey the rules stated in Subsection 2.6.5. The principal axes of this matrix can be

rotated using the matrix transformation rules. For more information on self-adaptation of

the covariance matrix, see [Sch75, SR95]. Some further ideas will be brie
y mentioned

below.

Adapt sometimes. The �-SA rule is applied in each generation as to Algorithm 5.

Other algorithms can be designed which adapt the mutation distribution less frequently,

such as every n-th generation, or based on some heuristics. Moreover, one may suggest not

to alter the mutation distribution for each of the descendants generated: Some part of the

o�spring population may get the strategy parameters of the parents unaltered.

Additive �-SA rules. Di�ering from the scheme in (2.15) of Subsection 2.5.1, one may

suggest �-SA rules of type

~sl := sl + �; Ef�g � 0; P(� > 0) � 1

2
; (2.21)

i.e. with the expected value Ef~slg � sl and with the same probability for increasing

or decreasing the mutation strength. Such �-SA rules are called additive, and are not

investigated in the literature.
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The 1=5-th success rule. The control of the mutation strength � is actually part of

the original (1 + 1)-ES algorithm [Rec65]. It was not given in the algorithm in Section 2.1

in order to present the algorithm in its simplest form. The creation of a descendant with

a �tness value better than its parent is considered as success. The \one-�fth" rule is an

external control mechanism based on the �tness values of the descendants, which tries to

hold the proportion of the successful descendants to the total number of individuals gen-

erated close to the ratio 1=5. For this purpose, one collects the statistics for the successful

and unsuccessful individuals. In user-de�ned periods, the ratio of the number of successful

descendants to the total number of o�spring generated is calculated. If this measured ratio

is larger than 1=5, than � is increased, otherwise � is decreased. The optimal ratio for

maximal progress toward optimum depends on the �tness function, and on the local state

in the search space. How much � should be changed with respect to the parental value

requires another heuristic.

Derandomization of �-SA rules. The rules in Subsection 2.5.1 use pseudo-random

numbers for �-SA. There exist other methods for �-SA without using random numbers.

The interested reader is referred to [Ost97].

2.6.12 L7: Recombining strategy parameters

We limited the strategy parameters to the parameters used by the mutation distribution,

although one could think of further uses for these. If the recombination operator is used

together with the self-adaptation operator, the strategy parameters of a descendant are

generated using the ones of its parents. The case for isotropic mutations is explained in

Section 2.5. If the extensions introduced in Subsection 2.6.6, i.e. the mutation vector

and the covariance matrix, are used, the same steps for recombination should be repeated

separately for each member of the strategy parameter set. Any weighting scheme analogous

to the ones introduced in Subsection 2.6.8 is also plausible. Additional to these, the

geometrical mean of the parental � values ( �
p
s1 � s2 � � � s�) can also be used in the generation

of the o�spring [Ost97].

2.7 The hierarchical ES

Since resources like computation time or memory space are not as scarce as in the days

the (1+1)-ES was �rst designed [Rec65], other more complex ES algorithms are suggested

and applied in the literature [Rec78, Her92].

The basic idea behind such algorithms is the realization of parallel sub-populations. In

this way, populations with di�erent �, �, or � values, or with di�erent strategy parameters

can be executed simultaneously. As a result, the performance obtained for di�erent algo-

rithms can be used to optimize the parameters of the ES algorithm (e.g. �, �, �, mutation

distribution, etc.). In other words, di�erent ES algorithms run in the �rst level; and in the

second level we have another ES algorithm which evaluates the outputs of these algorithms.

20



Using this information, it chooses and/or generates the algorithms to be used in the next

\algorithm generation".

The �rst subsection supplies some preliminary information on the time and space com-

plexity. The second subsection gives some examples for the hierarchical ES, extracted

from [Rec94, pp.81-100].

The hierarchical ES is also called nested ES in the literature [BFM97]. Actually, it

is also denoted as Meta-ES, since we evaluate the populations in the second level and

individuals of these populations in the �rst level.

Some examples for hierarchical ES algorithms will be given below. Only the two-level

hierarchical ES will be mentioned here, although algorithms with more levels are thinkable

(e.g. [Her92]). Any of the ES algorithms mentioned in the �rst �ve sections can be used

in the �rst level. The functioning mechanism of the second level will be explained by

examples.

The simulation length of the �rst and second level will be indicated in the concise ES

notation in this subsection, as 
 and 

0

, respectively. For example, (�=�I; �)


-ES compactly

denotes the �rst level. 
 is also called the isolation time or isolation period of the (: : : )-ES

concerned. Of course, if the �-SA operator is applied, its type (L8, Subsection 2.5.1) and

the sort of recombination used in L7 must be stated explicitly.

It is already stated that the second level works on the level of populations, and it uses

complete populations (or, as a special case, a single individual) in its operators. There are

many ways to do this, and some of these will be explained here using examples.

The [3; 5(4; 7)
30
]
10
-ES. This notation describes that we have a (�; �)



-ES running on the

�rst (or lower) level, with � = 4, � = 7, for 
 = 30 generations each. The second level has

initially 3 populations, which are selected and duplicated to give 5 populations. For this

duplication, the parent populations are selected analogous to (2.4). How one can design a

mutation operator on the population level is open for discussion. Each of these populations

have 4 individuals, and perform the (4; 7)
30
-ES algorithm for the isolation length of 30

generations. Thereafter, the average �tness values of these 5 populations are computed,

and the populations having the best 3 values are selected as the next generation in the

second level. The second level is executed 

0

= 10 times. Actually, 

0

can be omitted in the

compact notation, as one must not explicitly state G in a single-level ES. The number of

parental populations and the number of parental individuals per population are indicated

here in bold face.

The [�
0 +
; �

0

(� +
; �)



]


0

-ES. This one is the general case of the previous example. Please

note that we have �
0

parental populations of � individuals each. Instead of this algorithm,

one might prefer (�
0 � � +

; �

0 � �)

0



-ES. However, the essential power of hierarchical ES is

that one can use di�erent strategy parameters in the isolated populations. The populations

operating with di�erent mutation strengths are expected to yield di�erent average �tness

values at the end of the isolation period 
.
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The [�
0

=�

0 +
; �

0

(�=� +
; �)



]


0

-ES. In this example, the �rst level is the (�=� +
; �)-ES ex-

plained in Algorithm 4, with the isolation time 
. Also Algorithm 5 (with self-adaptation)

can be used here as well. Please note �
0

> �

0

and � > � if the comma selection strategy

is used. The recombination operator on the second level is introduced in this example.

It is analogous to the dominant recombination operator explained in Subsection 2.4.2. In

the second level, the dominant recombination produces populations using the complete

individuals of the parental populations, as it uses complete variables in the �rst level to

produce individuals. The number of populations recombined per population produced is

given by �
0

, �
0 � �

0

.

The [2; (1; 5)
20
; (1; 10)

10
; (1; 20)

5
]
30
-ES. Here, the �rst level consists of three di�erent

algorithms: The (1; 5)
20
-ES, the (1; 10)

10
-ES, and the (1; 20)

5
-ES. These three algorithms

are expected to consume roughly equal amount of computation time. After the isolation

period, the best two of three resulting individuals (since � = 1) are selected for the next

generation. The second level is executed 

0

= 30 times.

Note that \;" is used here to separate the algorithms of the �rst level, instead of the

\+" symbol proposed in [Rec94, p. 98]: The aim is not to overload the \+" symbol, which

also represents the plus selection strategy.

(� +
; �1 ; �2)-ES. This notation is invented to express that �1 and �2 are generated using

di�erent mechanisms, e.g. di�erent mutation distribution. It can be considered as the

[1; (� +
; �1)

1
; (� +

; �2)
1
]-ES.

Further ideas. One can design some heuristics for generating other, more promising

strategy parameter values for the next generation in the second level, based on the aver-

age �tness values supplied by the �rst level after the isolation period 
. If di�erent ES

algorithms are running in parallel, similar heuristics can be designed which should suggest

more promising algorithm parameters (such as �, �, �, etc.). Based on the performance

of di�erent algorithms in the previous isolation period, these parameters can be adjusted

before the next isolation period.

2.8 Related algorithms

This chapter introduced some typical ES algorithms. Thereafter, it gave an overview of

the extensions, that can be made on these �ve fundamental algorithms; some of these

have already been realized. In Subsection 2.7, the hierarchical ES was introduced. This

subsection will brie
y mention some related evolutionary optimization techniques.

Evolution strategy (ES) belongs with evolutionary programming (EP), genetic algo-

rithms (GA), and genetic programming (GP) to the class of evolutionary algorithms (EA).

The research area of EA is also named as evolutionary computation (EC). The EA, arti�-

cial neural networks (ANN), and fuzzy logic (FL) are branches of computational intelligence
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(CI). These relations can be summarized as

CI := EA + ANN+ FL

EC � EA := ES + EP +GA+GP :

The similarities and di�erences between the three primary members of the EA (ES, EP,

and GA) can be read in [BS93]. The genetic algorithm originated in the early Sixties from

the modeling of general adaptive processes [Hol75]. It is later applied to a rich number

of domains [Gol89]. Evolutionary programming was constructed �rst in the early Sixties

by L. J. Fogel for the evolution of �nite state machines [FOW66]. For the current state

of EP, the reader is referred to [Fog92]. Evolution strategies were �rst used for discrete

experimental optimization tasks [Rec65], but later also to real-valued and mixed-integer

problems on computers. For a brief history of the ES, see the chapter devoted to State of

Research (Chapter 5).

Nowadays, all these three subclasses of EA are used primarily for optimization. The dif-

ferences between them become vague. However, some of these di�erences, mostly historical

ones, will be mentioned here brie
y.

The operators of canonical GA work on the binary coding of the variables; however,

there exist other GA versions that do not code the variable settings at all. Whereas ES

directly uses the �tness values, EP and GA make use of a scaling. The self-adaptation

operator is applied in ES and modern EP; principally, the mutation rate is kept constant

in GA. For the GA community, mutation is originally assumed to be a background operator

of negligible importance, emphasizing the importance of recombination (called also cross-

over). However, for EP, mutation is the only variation operator, since the recombination

is not used at all in this subclass. The EP models the evolution at the level of species, as a

competition between the old and new species [Fog92]. In general, we know that species do

not recombine. The modern EP uses a rule similar to (2.17) for the self-adaptation of the

mutation strength. In contrast, the recombination operator is generally considered as the

main variation operator in the GA community, and numerous methods exist to perform

that. Both mutation and recombination are considered as being equally important for ES.

Several selection methods were mentioned in Subsection 2.6.4. A characteristic di�er-

ence between the EA exists on the selection of the mating pool (L6). This view to the

selection operation imitates the sexual selection, the selection of the parents for the genera-

tion of a descendant. Originally, GA used proportional selection; whereas ES used uniform

selection and did not emphasize any parent by their �tness function values. However, these

original schemes are not restrictive. Traditionally, EP uses repeated q-tournament selection

in L14; actually, it can also be used in L6, as proposed in Subsection 2.6.4. GA uses all the

o�spring generated, unless the elitist selection is used. The truncation selection obviously

needs a birth surplus. It is applied in L14, and imitates the population reduction caused

by environmental e�ects. This could also be imitated in GA; however, any research in this

direction is unknown to the author.

The cross-over operator used in GA di�ers from the intermediate and dominant re-

combination in ES, although being similar to the latter. In GA, the number of parents
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selected for the cross-over operation is traditionally two, although � > 2 yields very good

results [ERR94]. The cross-over may be realized anywhere on the bit-strings of the parents,

but at the same position(s) on both parental bit-strings. One or both of the bit-strings

produced may be used, depending on the implementation. The number of cross-over points

(one-, two-, or k-point cross-over) as well as the cross-over probability are also implemen-

tation dependent.

The mutation operators of modern EP and ES both use normal distributions (Equations

(2.1) and (2.2)), and are very similar to each other. In GA, the mutations applied invert the

bits of the coding: The expected value of the number of bits inverted per individual depends

on the mutation rate, given by the user. The bit inversions can occur anywhere, they are

distributed uniformly. As a result, small changes and large changes on the variable settings

are equally likely. For the GA without coding (also called real-coded GA if operating on

real values only), other mutation schemes are also conceivable which generate small changes

more frequently than large ones.

As one can see, it makes not much sense to discuss which speci�c algorithm should be

applied. Such discussions are becoming more and more obsolete. Actually, it is essential

to ask which operators are appropriate for a speci�c �tness function, or which speci�c type

of an operator gives better results than others. A speci�c algorithmic approach may be

more appropriate than the others for a given problem class.

Genetic programming. The fourth member of EA is GP. It developed from the GA

approach, and can be formulated as a struggle for �nding the optimal computer program

for a given task. It is a member of EA since the programs of variable length are considered

as individuals, and the search process can be seen as the evolutionary loop L4-L17. Mostly,

these programs are represented in LISP code, or in corresponding trees [Koz94]. However,

this is not a must. For example, the same evolution process is realized in [Nor97] using

machine code, considering the set of instructions as a linear list. The book [BNKF98] is

another good reference to GP.

The breeder genetic algorithm (BGA), introduced in 1992, lies between ES and

GA. It uses the truncation selection in L14 as in ES, but emphasizes the importance of

the recombination operator and considers the mutation as a background operator. The

mutation rate used is inversely proportional to N . Therefore, only one variable is mutated

at a time on the average. However, there are BGA variants for which this conclusion is

not true [VMC95].

Simulated annealing. This iterative search method imitates the cooling process of liq-

uid materials [KGV83]. It is normally not considered as a member of EA; however, it can

be seen as the (1+1)-ES, with a constant mutation strength and stochastic time-dependent

selection operator. The descendant always substitutes its parent if it has a better �tness

value. If its �tness is worse, it substitutes its parent based on a heuristic: A pseudo-

random number is generated using a probability distribution. If this number is larger than
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a threshold, the o�spring substitutes its parent. The acceptance probability for this latter

case decreases over time, since the threshold is increased over generations based on another

heuristic. This scheme allows random movements in the search space at the beginning of

the simulation run, and it becomes more and more similar to the (1 + 1)-ES in the later

generations (see also Subsection 2.6.10; time dependent selection). The massively parallel

SA is compared to the (1 + 1)-ES in [Rud94]. There are also simulated annealing variants

that possess an external control mechanism for the mutation strength.

Tabu search. If somebody tries to �nd the optimum of a multi-modal �tness function,

he has to overcome the local optimality traps. Tabu Search (TS) is designed for this

purpose [Glo86, Glo89a, Glo89b, GTdW91]: It categorizes the old trials as \good" or \bad"

based on their relative �tness values, and stores these in three levels of memory (short-

term, intermediate term, and long-term). The good trials indicate candidate aspiration

regions to be searched in the future (in the diversi�cation phase); whereas the bad ones

mark the opposite regions yielding an intensi�cation caused by some tabu restrictions.

The generation of new trials is named as aggressive exploration in TS. This phase is

the most essential part of the algorithm, it is guided by the short-term memory. The

intensi�cation and diversi�cation modes use intermediate term and long-term memories,

respectively, and guide where the search will continue. The tabu restrictions (criteria)

and the aspiration regions should be updated continuously during the search since the

categorization as good or bad is relative,

A recent book [GL97] is suggested for the interested reader; unfortunately, TS is not in

the scope of this work. As a meta-level algorithm, it can be combined with other methods.

It de�nitely has many interesting application areas as can be seen in the literature, mostly

on integer and discrete domains.

Other methods. This section does not serve as a complete list of algorithms which

are related to ES. Many other approaches to the search for the optimum exist. The

book [Sch95] is advised for an overview of the direct (numerical) optimization methods.

These methods are superior for some special �tness functions.
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Chapter 3

Fitness functions

This chapter is dedicated to the �tness functions analyzed in this work. In addition, some

related functions are mentioned. The �tness function is supplied by the user to the ES

algorithm. It is used for the evaluation of the individuals in the lines L3 and L11. Only

the �tness values obtained hereby are used by the selection operator (L14). The details

can be found in the previous chapter, Section 2.3.

This chapter has three subsections. The �rst section supplies an overview of some

mathematical terms, which can be considered as common knowledge. Thus, Section 3.1

can be skipped by the informed reader. The second section gives the core concepts on

optimization relevant to this work. Finally, Section 3.3 introduces the �tness functions

used in the analysis of the performance of the algorithms in Chapter 2. Furthermore, this

last section presents some few other functions related.

3.1 Background on functions

This work is concerned with functions of the type

F : x 7! F (x); F : IRN ! IR; N 2 IN; (3.1)

that return a scalar real value for each arbitrary input vector x. The vector x has N

real-valued components that represent a point in the N -dimensional domain of F . The

value F (x) is in the range of F , which is the set of real numbers in this work. IR denotes

the set of real numbers, and IN the set of natural numbers (without zero), respectively.

For functions with a domain other than IRN , see Subsection 2.6.7; for a range other than

IR, see Subsection 2.6.9.

This quite informal section brie
y mentions some notions of the calculus. These terms

are introduced in any regular freshman course in mathematics, e.g. [TF96]. Therefore, they

are assumed to be a part of the common knowledge of university students and graduates.

This section serves as a smooth refreshment, and Section 3.2 will be based on these terms.

The important terms mentioned are given in italic so that the reader informed in these

basic terms can just scan over this section.
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As a demonstrative example, consider

y := F (x) = ax1 + bx2 + cx3 + d; a; b; c; d 2 IR; x = (x1; x2; x3)
T
; (3.2)

with the constants a, b, c, and d; and with three (independent) variables x1, x2, and

x3. The function value y is also called the dependent variable. Using this function, the

notion of monotonicity will be introduced. For instance, if we have a > 0 in (3.2), then

F (x) is monotonically increasing in x1: That is, if all other variables are constant, any

increase in x1 will de�nitely give a larger F (x) value. Analogously, a < 0 causes F (x) to

be monotonically decreasing in x1. The special case a = 0 causes F (x) to be independent

of x1.

These terms on monotonicity can be used to de�ne maximum and minimum of a func-

tion. A change from being monotonically increasing to monotonically decreasing with

respect to all independent variables locates a maximum, the reverse way of change a min-

imum. A formal de�nition is based on �rst and second order partial derivatives. This

de�nition, along with the de�nitions of smooth, discontinuous, continuously di�erentiable,

one-to-one, and onto, can be found in a regular calculus textbook.

The maximum with the largest function value is called the global maximum, all other

maxima are called local. If two or more vectors in the domain of a function yield the value

of the global maximum, then the global maximum is called degenerate. The global and

local minima are de�ned analogously.

In the domain of a function, the independent variables can be restricted by some end

points or limits. Such restrictions make the intervals closed, in their absence one has an

open interval. For example, F (x) = log(x) has a domain x > 0, which is bounded in only

one direction.

The variables describing the domain of a function are called object variables, implying

that our objective is �nding the maximum values of these. The term object variable is

preferred in this work to the terms \search space variable" and \decision variable". The

N variables span an N dimensional space. The distance between any two points in this

space can be given by di�erent measures. The Euclidean distance measure is of concern in

this work. The term vicinity will be used in this work with the meaning \the immediate

neighborhood of a point, where the properties of the quantity observed (mostly F (x)) does

not change or changes very slightly".

3.2 Measuring the �tness value

In this section, some relevant terms in optimization will be introduced based on the basic

terms of calculus mentioned in the previous section. In this way, the shift in the terminology

will be represented. In the jargon of evolutionary algorithms, some notions of the calculus

are renamed in order to stress the analogy to the selection process in biology. For example,

the term search space is used instead of the domain of the �tness function, and �tness

value instead of the dependent variable. Similarly, some other terms in optimization are

equivalent to the respective notions in the calculus, as to be described next.
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In general, optimum means [Yer96, p. 1011]

1. the best or most favorable point, degree, amount, etc. as of temperature,

light, and moisture for the growth or reproduction of an organism.

2. the greatest degree or best result obtained or obtainable under speci�c conditions.

3. (adjective) best or most favorable.

The �rst meaning of optimum leads us to the �eld called multi-criteria optimization (see

Subsection 2.6.9). This work will be restricted to the second meaning of optimum.

The process of searching for the optimum is called optimization, and the optimum can

be de�ned either as the global maximum or as the global minimum. The search for the

maximum of a �tness function is called maximization; and analogously, minimization is

the search for the minimum. The ES algorithms try to �nd the optimum of a given �tness

function.

Without loss of generality, the case of maximization is considered in this work. There-

fore, the global maximum is called global optimum or just optimum. The local maxima

will be named as local optima. Formally, the optimum will be denoted by F̂ in this work,

and the object variable vector of the optimum by x̂,

8x 2 IRN : F̂ := F (x̂) such that F (x̂) > F (x) if x 6= x̂ (3.3)

where F (x) is de�ned in (3.1). If the optimum is degenerate, we have the same F̂ value for

di�erent x̂ vectors (plural: optima). If F (x) has several local optima, the search space is

called multi-modal, otherwise unimodal. Please note that (3.3) is only valid for unimodal

functions.

The term \�tness" should actually be formalized in order to use it unambiguously. The

dictionary [Yer96, p. 537] gives 23 di�erent explanations to \�t". In this work, \�tness"

is concerned with the function F that is used to evaluate the individuals. The function

F itself is called �tness function. Other equivalent names for it are objective function or

quality function. The �tness space means nothing more than its range. The �tness (value)

is just a member of this range (IR). In (2.9), the �tness values of parental and o�spring

populations of the (� + �)-ES are sorted in increasing order. This equation is repeated

here for the reader's convenience, where 
 := �+ �:

F1:
 � F2:
 � : : : � F
�1:
 � F
:
 : (3.4)

The best (or �ttest) individual has the �tness value F
:
 . Similarly, F
:
 is the best �tness

value in this set of 
 individuals. The individual with F
�k:
 is �tter than the one with

F
�l:
 if F
�k:
 > F
�l:
 (1 � k < 
 � 1, 1 � l < 
; of course, l > k). The m-th �ttest

(or m-th best) individual has the �tness value F
�m+1:
 (0 � m � 
); the special case

m = 
 gives the �tness value of the worst individual, the worst �tness. Note that if the

probability distribution generating the �tness values of the o�spring population is known,

one can predict all F
�m+1:
 values. The study discipline is called order statistics [ABN92].
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However, the detailed knowledge is not a prerequisite for the comprehension of this work.

The order statistics relevant to this work will be derived where necessary.

Lastly, some more terms on the constraints applied to the �tness function will be given.

Formally, additional restrictions stated by the user on the domain are called constraints.

The variable setting x ful�lling all speci�ed constraints is called a feasible solution. Ac-

cordingly, the constraints are satis�ed if they are not violated; and a satis�ed constraint

can be active or inactive.

From the viewpoint of the implementation, the �tness value given by F (x) becomes

invalid even if a single constraint is violated by x. Such an individual is not directly usable

(in scope of this work). Its �tness value must be altered accordingly: It is either reassigned

to an arbitrary value smaller than all �tness values obtainable from the search space, or

simply to �1 in order to indicate constraint violation.

3.3 Fitness functions of interest

In this section, the �tness functions of interest in the scope of this work are introduced.

The case of maximization is considered in this work without loss of generality. The �rst

subsection is devoted to the sphere model function. It has a great importance in the

theoretical analysis of ES. Its relevance to this work is established in the next subsection

(Subsection 3.3.2). This work is dedicated to the theoretical analysis of ridge functions,

introduced in the second subsection. In the third subsection, the corridor models are

introduced to the reader. This work will also investigate whether these models serve as

asymptotic limit cases of ridge functions. Lastly, a one-dimensional polynomial function is

introduced. It will be used in the visualization of the convergence measures (see Chapter 4).

3.3.1 The sphere model

The sphere model is the �tness function that is mostly used as the �tness function in

the theoretical analysis of the performance of ES. In this model, the �tness values are

distributed in a sphere-symmetrical manner around the optimum [Rec73, p. 115]. In Fig-

ure 3.1, a contour plot of such a model is given. The curves in the �gure connect the

states of the search space with equal �tness value. These curves will be named as iso�tness

curves (equivalent to isoquality or isometric curves; or isohypses). For N = 3, they become

iso�tness surfaces; for N > 3 iso�tness hyper-surfaces. In this case, the iso�tness hyper-

surfaces compose concentric hyper-spherical shells. The optimum is located at the center

of these shells. The �tness value increases monotonically as the distance D to this center

decreases. Therefore, the sphere model can be formalized using a one-dimensional, mono-

tonically increasing function W of the distance D to the optimum, for D � 0. Figure 3.2

exemplarily presents some members of the sphere model family.

The general case of the sphere model is given in (3.5), as Fs(x). The Euclidean

distance D to the optimum is de�ned in (3.6); and Fs(x) is rede�ned using D. Several

members of the sphere model are stated in (3.7), (3.8), (3.9), and (3.10). The contour
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Figure 3.1: The contour plot of the sphere model for N = 2. F (x) = �x21 � x22 is plotted

here in the interval fx1 2 f�100; 100g; x2 2 f�100; 100gg. The concentric shells connect the

sphere-symmetric states with equal �tness value, x̂ = (0; 0)T. The brighter areas have higher

�tness values. The axis labeling is omitted since it depends on x̂ and the function W (:) chosen

(see Equation 3.6).

Fs(x) � F1(x) := �W
0
@
vuut NX

i=1

(xi � x̂i)
2

1
A (3.5)

Fs(x) := �W (D); D :=

vuut NX
i=1

(xi � x̂i)
2

(3.6)

F2(x) := �D2 (3.7)

F3(x) := �
1X
j=0

ajD
bj (3.8)

F4(x) := �
1X
k=0

ck exp(dkD) (3.9)

F5(x) := F3(x) + F4(x) (3.10)

Figure 3.2: The sphere model is introduced in (3.5). In Equation (3.6), D denotes the distance

to the optimum, x̂i denote the components of object variable vector x̂ for the optimum. The

optimum F̂ := Fs(x̂) depends on the monotonically increasing function W used. Additionally,

some concrete members of the sphere model family are given (F2(x), F3(x), F4(x), and F5(x)).

N 2 IN, xi 2 IR, x 2 IRN , aj ; bj ; ck; dk 2 IR+
0 .
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plots of these for N = 2 are similar to Figure 3.1; however, the �tness values for the same

D will depend on the function used. F5(x) is the sum of F3(x) and F4(x), and F2(x) is a

special case of F3(x). The symbol IR
+
0 represents the set of nonnegative real numbers, i.e.

aj 2 IR+
0 means \aj 2 IR ^ aj � 0".

The sphere model establishes the framework for the analysis of ridge functions. For

x̂ = 0, the similarity will become more clear. Note that the set of symbols used here

di�er from the ones used in the original work of Rechenberg. The symbols Q, r and R will

represent other quantities in this work.

3.3.2 The family of ridge functions

The family of ridge functions will be introduced in this subsection. The overview of this

function family is given in Figure 3.3. Equation (3.11) states the general case of ridge

FR(x) � F6(x) := x0 � d

"
N�1X
i=1

x
2
i

#�

2

(3.11)

r :=

vuutN�1X
i=1

x
2
i

(3.12)

FR(x) := x0 � dr
� (3.13)

F7(x) := x0 � d (3.14)

F8(x) := x0 � dr (3.15)

F9(x) := x0 � dr
2 (3.16)

FRR(x) � F10(x) := vTx� d[k(vTx)v � xk]� (3.17)

Figure 3.3: The family of ridge functions is presented here. The general case of ridge functions

is given in (3.11). The distance to the ridge axis, r, is de�ned in (3.12), yielding (3.13) from

(3.11). Equation (3.14) is obtained for � = 0, (3.15) for � = 1, and (3.16) for � = 2. These three

cases are called hyperplane, sharp ridge, and parabolic ridge, respectively. The last equation,

(3.17), represents FRR(x), the rotated form of the general ridge function with the unit vector v

in the ridge axis direction. N 2 IN, � 2 IR, d 2 IR+
0 , v 2 IRN , kvk = 1.

functions. The object variable vector for the optimum of this unimodal function for � > 0

reads

x̂0 ! +1; 8i 6= 0 : x̂i = 0 : (3.18)

Since (3.18) lies outside the de�nition interval, one can say that ridge functions do not

have any optimum. However, one also can take another point of view by considering ridge

functions as a limit case. The aim is to obtain (3.13) as a limit case of another function.
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The following function (a 2 IR, a < 0, see (3.12) for the de�nition of r) may serve this

purpose

F (x0; r) := x0 + ax
2
0 � dr

�
: (3.19)

It has its maximum at (x̂0 = �1=2a, r̂ = 0). As a! 0, the optimal x0 gets the limit value

x̂0 !1 (remember that a is negative). At this limit, one obtains the function

F (x0; r) := x0 � dr
� (3.20)

which is nothing but the general ridge function in (3.13). Therefore, the optimum of ridge

functions will be considered as a limit case in the following. For FRR(x) in (3.17), x̂ depends

on v. The object vector is denoted as x = (x0; x1; : : : ; xN�1)
T
in order to underline the

specialty of the �rst variable. Any movement in the search space causing an increase in

the object variable x0 is privileged linearly. The search for the optimum is unbounded in

this direction. Hence, the subspace having relatively better �tness values around any state

in the search space is unbounded. This subspace de�ned by relatively �tter neighboring

states is called the success region. The success region is even larger for � � 0. For the

� = 0 case, the x̂i values do not appear in the de�nition of the object variable vector of

the optimum (c. f. Equation (3.18)).

However, as shown in (3.18), the success region is bounded with respect to other xi
for � > 0. This becomes more clear when the variable r introduced in (3.12) is used in

the function de�nition: r can only be decreased down to zero, but not further. Addi-

tionally, the minimization of r should be accomplished simultaneous to the maximization

of x0. Since the ES algorithm does not have any internal information about the �tness

function, these subgoals of maximization and minimization must be accomplished together

and simultaneously, weighted by d and �.

One highly signi�cant property of ridge functions becomes more clear if we express this

observation in other words: The maximization subgoal is unbounded, and the parameters

d (multiplicative weight) and � (exponential weight) can be tuned to in
uence the e�ect

of the object variables in r on the �tness value. Therefore, the maximization of x0 can

be made more di�cult than the minimization of r, since only the scalar �tness values are

available to ES. Consequently, the maximization of x0 becomes automatically an implicit

long term goal. Moreover, with its various values for d and �, the simply-structured family

of ridge functions serves us as a simple and scalable test-bed of functions for optimization.

One should expect a change in the convergence behavior of the ES on the ridge functions

depending on the values chosen for d and �.

As already mentioned, the minimization of r in (3.13) is the second subgoal for the

maximization of FR(x). Especially for � ' 2, or for smaller � values (� ' 1) with large

d (d � 1), a change in the value of a variable in r makes a larger e�ect on the �tness

value than the same quantitative change in x0. For the same Euclidean distance traveled,

a change in r will cause a greater e�ect on the �tness value than the change in x0. Since

the selection in line L14 of the ES algorithm is based on the �tness values, this expectation
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should be observable in the behavior of the algorithm over generations. Consequently, the

minimization of r will be named as an implicit short term goal.

The important members of the ridge family are obtained for � 2 f0; 1; 2g. These three
functions are named as hyperplane, sharp ridge, and parabolic ridge, respectively. They

will be introduced next, using contour plots of the latter two. Thereafter, the general

rotated ridge function will be introduced. Its interpretation establishes another reason

for investigating ridge functions. The explanation of two important properties of ridge

functions concludes this subsection: The relation of the ridge functions to the sphere

model will be explained, and the case for large � values will be shortly mentioned.

The hyperplane. The hyperplane function is obtained for � = 0, given as F7(x) in

(3.14). For N = 2, the contour plot of this function consists of iso�tness lines parallel to

each other. The general case of the hyperplane can be given as

Fhp(x) � F11(x) := c � vTx� d; c 2 IR; v 2 IRN
; (3.21)

where v indicates the unit vector in the direction of the gradient, therefore the direction

of the largest �tness increase. The constant �d determines the �tness value at the origin

(x = 0). For the case c = 1, v = (1; 0; : : : ; 0)
T
, (3.21) becomes (3.14). Conversely, (3.21)

is obtained from (3.14) by rotating the coordinate axes, and setting c = 1.

Note that the counting bits function (OneMax), F1M(x) : IBN ! f0; : : : ; Ng, N 2 IN,

F1M(x) � OneMax(x) :=

NX
i=1

xi (3.22)

is a special case of (3:21), with IBN as the search space, c =
p
N , d = 0, and v =

1p
N
(1; 1; : : : ; 1)

T
. The di�erence in the indexing of the variables xi does not change the

nature of the �tness function. OneMax is a well known function in the research area of

genetic algorithms (GA). It is commonly used in the theoretical analysis of the convergence

properties of GA.

The sharp ridge. The second important member of the ridge family is the sharp ridge.

It is obtained for � = 1, given as F8(x) in (3.15). In Figure 3.4, the sharp ridge is shown

for d = 0:01 (left) and d = 1 (right), respectively (N = 2). The iso�tness lines can be

used for the visualization of the success regions, i.e. they indicate the regions with higher

�tness values.

Obviously, for small values of d, the sharp ridge becomes similar to the hyperplane.

For 0 < � < 1 and � < 0, one obtains other ridge functions. These functions do not

yield interesting results as far as the convergence measures (Chapter 4) are concerned, see

Chapter 6 for more information.

The parabolic ridge. The third important member of the family is the parabolic ridge.

It is obtained for � = 2, given as F9(x) in (3.16). A gentle picture of it is shown in
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Figure 3.4: Two contour plots of the sharp ridge, for d = 0:01 (left) and d = 1 (right), with two

variables (N = 2). The variable x0 is indicated on the horizontal axis, x1 on the vertical one.

The brighter areas have higher �tness values. F8(x) = x0 � d
p
x21 is plotted here in the interval

fx0 2 f0; 15g; x1 2 f�85; 85gg.

Figure 3.5: The contour plot of the parabolic ridge with two variables (N = 2), for d = 0:01.

F9(x) = x0 � dx21 is plotted here in the interval fx0 2 f0; 15g; x1 2 f�85; 85gg. See also the

caption of Figure 3.4.
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Figure 3.5, for N = 2 and d = 0:01, using iso�tness curves on a contour plot. A change in

d a�ects the contour plot of the parabolic ridge case, as well as for other cases with � 6= 0.

Suppose that we are comparing the �tness values of two states, x1 and x2 in the search

space, with di�erent corresponding r values. The di�erence FR(x2)�FR(x1) increases if d
is increased. Therefore, any change in d should generate a di�erent convergence behavior

(see Chapter 4 for the de�nitions). However, for constant �, one can re-scale the axes so

that the same contour plot is obtained. A similar rescaling is not possible for the case with

constant d and variable �. As a result, one can foretell that � and d should in
uence the

convergence behavior in di�erent ways.

Based on the contour plots for � = 1 and � = 2, it becomes visually clear that the

optimum is far right (maximize x0), and on the x0 axis (i.e. 8i 6= 0 : x̂i = 0), as indicated

in (3.18). Therefore, the x0 axis is also named as the progress axis or the ridge axis. The

variable r is called the distance to the progress axis.

The general rotated ridge function. Actually, the ridge axis does not have to coincide

with the x0 axis. An example is given in Figure 3.6. The ridge axis can be in any direction

Figure 3.6: The contour plot of the general rotated parabolic ridge, with d = 1, N = 2,

v =
p
5
5 (1; 2)T. In this case, F10(x) =

p
5
5 (x0 + 2x1) �

�p
5
5

q
(2x0 � x1)

2

�2
is plotted in the

interval fx0 2 f�15; 15g; x1 2 f�15; 15gg. The iso�tness lines are drawn for F10(x0; x1) 2
f�200;�100;�50;�25;�10; 0; 5; 10g. See also the caption of Figure 3.4.

of the N -dimensional search space. If one formalizes this direction using the unit vector v,

one obtains the general rotated ridge function FRR(x) as shown in Equation (3.17). The
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special case � = 0 is already de�ned in (3.21). As it is done in (3.12) for FR(x), we can

also de�ne the distance to the ridge axis for FRR(x): the scalar quantity v
Tx is analogous

to the linear component x0, and k(vTx)v � xk to r, respectively. Thereby one obtains

an important result: The maximization of vTx and the minimization of k(vTx)v � xk
are contradicting goals. Di�ering from the aligned simple case given in (3.11), a change

in a single variable in
uences both of these parts of the �tness function FRR(x). This

di�erence between FRR(x) and FR(x) is caused only by the rotation of the search space

itself. The contradicting goals for FRR(x) were denoted as long term and short term goals,

respectively. The nature of these goals do not change by the rotation, since the shape of the

�tness function remains unchanged. By using a simple rotation, one obtains FR(x) from

FRR(x). An obvious side bene�t of such a rotation is the decoupling of the subgoals, which

may in
uence the performance of some optimization algorithms on the ridge functions.

Both FR(x) and FRR(x) are considered in this work, see the chapters for theoretical and

empirical results (Chapter 6 and Chapter 7).

Relation to the sphere model. Many theoretical results are obtained by the analysis

of ES for the sphere model. If the relation of ridge functions to the sphere model is well-

established, some theoretical results obtained for the sphere model can be used in the

theoretical analysis of ridge functions. Comparing the de�nitions of r in (3.12) and of D in

(3.6), respectively, one realizes that the variable r is nothing but D in N�1 dimensions (for

x̂i = 0). In this (N � 1)-dimensional subspace, we have a special case of the sphere model

(see Figure 3.1). Additionally, r has generally much more in
uence than x0 on the �tness

function. The minimization of r has been named as the short term goal in this subsection.

The earlier results on the sphere model are used in the chapter for the theoretical analysis

(Chapter 6, Section 6.4).

Ridge functions for large �. Another important property of the ridge functions is

observed on the iso�tness lines as � goes to in�nity (see Figure 3.7). For large � (� > 2),

the �tness function is dominated by the e�ect of r if r > 1. In this case, a movement in a

direction perpendicular to the ridge axis causes a much greater change in the �tness value

than a movement along. As a result, for � > 0, the iso�tness curves bend further toward

the ridge axis as � is increased further. Consequently, the same quantitative increase in

r has a larger e�ect on the �tness function for larger values of �: The picture of the

function becomes like an inclined razor, that is most clearly observed on the contour plot

for r-versus-x0.

Eventually, the mathematicians de�ne the \ridge function" as [Pin97]

F (x) := f

 
NX
i=1

aixi

!
; (3.23)

for some �xed choice of constants ai 2 IR, and using a one-variable function f . Therefore,

f has constant values on the iso�tness hypersurfaces of the respective hyperplane. The

function family given in (3.23) is not considered in this work.
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Figure 3.7: The contour plot of FR(x) = x0 � r10 (� = 10, d = 1). The iso�tness lines

are drawn for FR 2 f�2 � 106;�106;�105;�104;�103; 0; 100; 500g. The plot shows the interval

x0 2 f0; 1000g on the horizontal axis and r 2 f0; 5g on the vertical axis. For r < 1, FR(x) is a

function similar to the hyperplane F7(x); otherwise, the iso�tness lines are almost parallel to the

horizontal axis x0.
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3.3.3 The corridor models

The corridor model constitutes of a simple monotonically increasing function that is sym-

metrical around its corridor axis, and a set of constraints applied to it. Originally, the

FC(x) � F11(x) :=

�
cx0 if all constraints ful�lled

�1 otherwise
(3.24)

Gj(x) : jxjj � b; j = 1; : : : ; N � 1 (3.25)

H(x) :

vuutN�1X
i=1

x
2
i
� b

0

(3.26)

F12(x) :=

�
c � vTx if all constraints ful�lled

�1 otherwise
(3.27)

H2(x) := k(vTx)v � xk � b

0

(3.28)

Figure 3.8: The two corridor models are given with their constraints. FC(x) with the constraints

Gj(x) is named as rectangular corridor, withH(x) the cylindrical corridor. The rotated cylindrical

corridor model with the corridor axis v is given in (3.27), and its constraint H2(x) in (3.28).

c; b; b
0 2 IR+, v 2 IRN , kvk = 1.

hyperplane function is chosen as the monotonically increasing function [Rec71, Rec73].

The same case is considered in this work, as indicated in (3.24) and (3.27). The states

of the search space that do not ful�ll all corresponding constraints have a �tness value

�1 (see also Subsection 2.6.3). The two corridor models of interest are introduced in

Figure 3.8; they are explained in the following.

The corridor models are named after the shape of the feasible region imposed by the

corresponding constraints. Only rectangular and cylindrical ones will be mentioned here.

They have (3.25) and (3.26) as the constraints, respectively. IR+ represents the set of

positive real numbers, i.e. b 2 IR+ means \b 2 IR ^ b > 0".

The rectangular corridor model is named after the shape of the feasible region imposed

by N � 1 constraints given in (3.25). The width of each edge is 2b; however, one can

de�ne a di�erent corridor width bi for each variable. The cylindrical corridor has a single

constraint; H(x) imposes a hyper-cylinder since x0 is not bounded.

Actually, the corridor should not always be aligned with the x0 axis. The rotated

cylindrical corridor model F12(x) is given in (3.27), with its constraint H2(x) in (3.28).

The rectangular corridor model was introduced in [Rec73, p. 105]. Its de�nition can

also be found in [Sch95, p. 134, p. 351] along with the rotated case. The cylindrical corridor

is included in the large problem catalog of Schwefel [Sch75], [Sch95, p. 361].

Using the convergence measures to be introduced in Chapter 4, this work will investigate

whether the corridor models can be considered as the limit cases of the ridge functions for

�!1.
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3.3.4 The demonstrative polynomial

This subsection will introduce a simple, one-dimensional polynomial. This fourth-degree

polynomial

F13(x) := �3x4 + 16x3 + 66x2 � 360x; x 2 IR (3.29)

will serve in visualizing the convergence measures in Chapter 4. This �tness function will

not be further investigated in other parts of this work. By di�erentiating F13(x) with

respect to x,

dF13(x)

dx
= �12x3 + 48x2 + 132x� 360 = �12(x� 2)(x� 5)(x+ 3) ; (3.30)

one �nds that F13(x) has its local optimum (maximum) for x = 5, and its (global) optimum

for x = �3 (x̂ = �3, F̂13 = 999). F13(x) can be extended for N > 1 as

F14(x) :=

NX
i=1

(�3x4
i
+ 16x3

i
+ 66x2

i
� 360xi) ; (3.31)

with (x̂ = (�3;�3; : : : ;�3)T, F̂14 = 999N), being the global optimum. Note that this

function F14(x) has 2
N local optima, of which one is global.
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Chapter 4

Convergence measures

This short chapter introduces the convergence measures that are considered in this work.

These measures consist of progress measures, success measures, and the distance r to the

progress axis. The progress measures are the quality gain Q, the progress rate ', and the

self-adaptation response  (SAR). The success is measured by using the success probability,

denoted by Ps1 for a single descendant and by Ps� for whole o�spring population. The

symbol r stands for the distance to the ridge axis, as introduced already in Subsection 3.3.2.

It is repeated here for reasons of completeness.

The convergence measures can alternatively be classi�ed according to the space where

they are de�ned. Therefore, the progress rate ' and the distance r will be called the search

space measures. Similarly, the quality gain Q and the success probabilities Ps1 and Ps� will

be called the �tness space measures. The self-adaptation response  cannot be classi�ed

in this way.

Before starting with the de�nitions of these measures, the approach chosen for the

convergence analysis should be justi�ed. As will be seen, these measures do not directly

give the convergence order, i.e. the order of generations necessary to reach the optimum

for a given ES algorithm. Nor do they directly ensure the global convergence, i.e. that

the optimum will be reached independently of the initial state P(0). The initial population

P(0) is de�ned in line L3 of the ES algorithm used, as described in Chapter 2. However,

they describe the quantitative nature of the evolution of the population over generations.

Convergence measures serve as a basis of the global convergence measures, e.g. the number

of generations required to reach a pre-speci�ed �tness value. Instead of global convergence

measures, microscopic aspects of evolution are considered in this work.

These measures serve for the understanding how the ES algorithm functions; they

explain the evolution over time on a microscopic scale, i.e. from one generation g to

the next generation g + 1. They explain the local behavior of the ES algorithm (local

in time, not in space). Moreover, they contain enough information for answering the

above-mentioned questions on the convergence order and global convergence (also called

convergence reliability).

Actually, one can argue that the global behavior of an algorithm cannot be understood

if the local behavior remains uncovered. Since the microscopic behavior causes the global
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behavior, the accuracy of the estimates on the global behavior are not trustworthy if

they are derived without noticing the local behavior. Consequently, the in
uences of

the evolutionary operators (selection, recombination, mutation, etc.) should essentially

be investigated locally. For the investigation of these operators, only the local analysis

based on statistical measures is of practical importance. Otherwise, global investigations

ignoring the statistical quantities may lead to inaccurate, or practically unusable results.

In the worst case, the interpretations of such results will trigger incorrect conclusions.

Another theoretical tool for describing the transition P(g) �! P(g+1) is the Markov

process of �rst order. Since P(g+1) only depends on P(g), such a transition can be perfectly

formalized using a Markov chain. This stochastic evolution can be expressed by Chapman-

Kolmogorov equations [Fis76]. The population density of P(g+1) can be stated using the

parental populationP(g), the o�spring population ~P(g), and the parameters of the algorithm

[Bey96c, p. 26]. However, such integral equations expressing P(g+1) do not have a general

analytical solution for any �tness function. Moreover, such population transitions do not

describe the functioning mechanism of the ES algorithms, either. Therefore, although

remaining theoretically important, they are of no practical merit.

Before starting with the de�nitions, two short remarks are necessary on the notation.

In this work, x or y stand equivalently for the states in the search space. The vector z

stands for the N -dimensional mutation vector, de�ned again in the search space.

4.1 Progress measures

Three progress measures will be introduced here. They are measured in three di�erent

spaces. The quality gain Q is measured in the �tness space, based on the scalar �tness

function values. The progress rate ' is measured in the search space, based on the object

variables of successive generations and of the optimum. The third measure is the self-

adaptation response  . It is de�ned in the space of strategy parameters. The former two

progress measures will be considered in this work. The third one is given for completeness.

These three measures correspond to the three di�erent features of an individual, as

described in Algorithm 5: F (y
(g)
m );y

(g)
m , and s

(g)
m . The ordering of the progress measures

re
ects the level of di�culty of the analysis: One may easily get very accurate formulae

for Q, as to be shown in the section dedicated to Q in Subsection 5.3.6, or in Section 6.1.

However, the same accuracy for ' is bound with tedious and di�cult analytical derivations.

The problem is yet more severe for the third measure: Only empirical results of preliminary

nature are obtained for  in the scope of this work.

4.1.1 Quality gain Q

The quality gain Q is de�ned in the �tness space as

Q := E
�
F

(g+1) � F
(g)
	
= Ef�Fg (4.1)
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for � = 1. For the general case � > 1, hF i

hF i := 1

�

�X
m=1

Fm (4.2)

should be used instead of F , and Q is de�ned using hF (g+1)i and hF (g)i then. This notation
for the average value was already introduced in (2.12). Please note that knowing the

optimum F̂ is not necessary for the de�nition of Q. Formally, Q is de�ned as the expected

progress in the �tness space over a single generation. The case of maximization is considered

in this work without loss of generality.

Q for the (1 +
; �)-ES. For � = 1, Q can easily be speci�ed further. For this purpose, we

de�ne another important measure in the �tness space. The local quality function Q(z)

Q(z) � Qx(z) := �F = F (x+ z)� F (x) (4.3)

gives the di�erence of the �tness values between the parent and one of its descendants,

generated by the mutation z. The subscript x in the de�nition of this quantity should

denote that this function is strongly dependent on the local conditions. In order to simplify

the notation, Q(z) will be used for the local quality function instead of Qx(z).

Actually, Q(z) is generated by a speci�c random vector z. In the analysis, Q(z) will be

used to de�ne the random variable Q induced by the mutation distribution. The derivation

of an integral expression for Q will �nish this subsection.

For � = 1, the quality gain Q is the expected value of the change in the �tness value of

the parent individual in a single generation. Consequently, Q is the expected value for the

di�erence of the �tness values of the parent individual and of its best descendant. Since

we are trying to �nd the maximum of F (x), this di�erence reduces to an expression based

on Q(z)

Q := EfF (g+1) � F
(g)g = EfF (g)

1;� � F
(g)g = EfQ(z1;�)g ; (4.4)

where z1;� stands for the mutation vector which generated the best descendant and F
(g)

1;�

for its �tness value. This notation di�ers from the one used in Equation (2.9). It is

introduced to denote the best sample of both minimization or maximization cases with the

same symbol. For � > 1, it provides convenience in the notation of induced order statistics

(see Page 67 and Page 105). The expected value of the local quality function for the �ttest

descendant can be stated as an integral

Q := EfQ(z1;�)g = EfQ1;�g =
Z
Q

0

= Q̂

Q

0

= Ql

Q

0

p�:�(Q
0

)dQ
0

: (4.5)

In this equation, Q
0

denotes the random variable for the local quality function of the best

o�spring, and p�:�(Q
0

) its probability density function. The upper limit of the integral is
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the maximum possible value for Q
0

, Q̂ = F̂ � F
(g). The lower limit Ql depends on the

selection strategy used: For the plus strategy, Ql = 0 since the parent survives to the next

generation if F
(g)

1;� < F
(g); therefore, Q � 0 in this case. For the (1; �)-ES, Ql = �1 or

Ql = �
F � F

(g), if �
F should denote the worst attainable �tness value.

4.1.2 Progress rate '

The progress rate ' de�nes the expected progress in the search space in one generation. It

will be used to formalize the long term goal introduced in Subsection 3.3.2. More formally,

it is the expected value of the decrease in the distance to the optimum in a single generation,

' := Efkx̂� x(g)k � kx̂� x(g+1)kg : (4.6)

In this equation, x̂ stands for the object variables of the optimum. For the general case

� > 1, x should be replaced by hxi, giving hxi(g) and hxi(g+1). It is important to note that

' is not the expected distance traveled in the search space, such as Efkx(g) � x(g+1)kg.
For the ridge functions, the ' de�nition (4.6) reduces to the expected distance trav-

eled in the direction of the progress axis (see Equation (3.18)). This follows immediately

as a by-product of the discussion of the optimum of ridge functions which follows after

Equation (3.18). It has been shown there that the optimum of ridge functions can be

considered as a limit value and the ridge function as the limit of another function family.

The same argumentation can be used here to simplify the progress rate formula (4.6) for

ridge functions. For the other function family (3.19), the distance r to the ridge axis must

be considered in the progress rate calculation. As a gets smaller, however, the change in

r decreases in importance. If the optimum is at a very large distance in x0 direction, a

change in r direction does not re
ect itself in ' as high as a change in x0 direction. This

can be proven by a respective Taylor expansion, however, it is omitted here. Therefore,

for (3.19), the e�ect of r in the calculation of ' decreases as a gets smaller. Finally, for

the limit a! 0, it can be neglected. For this limit, one obtains the general ridge function

from (3.19). As a result, if x0 denotes the progress axis, one gets

' = Ef�x(g)0 g = Efx(g+1)
0 � x

(g)
0 g : (4.7)

Alternatively, without considering a limit process, this equation can also be seen as a

rede�nition of the progress rate. That is, as has been argued in [Bey96c, p. 28], in general

the progress need not to be de�ned with respect to the optimum. It can also be de�ned

in an arbitrary direction. For example, in case of the hyperplane test function (3.14), the

progress is de�ned in the gradient direction.

Additionally, one should use hx0i instead of x0 for � > 1. The ES algorithm selects the

best � individuals based on the �tness values as P(g+1). However, the �ttest individual

does not necessarily have the largest contribution to '. Therefore, Q is a direct result of

the selection process, whereas ' is just one of its by-products. Another by-product of the

selection process is the progress measure 'R (cf. (6.20) and (6.177)). It will be introduced

in Chapter 6 and not here, in order to avoid the confusion with the progress rate '.
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Demonstrative comparison of ' and Q. The progress measures ' and Q will be

demonstrated in Figure 4.1 using the univariable function F13(x) (Page 39). For F13(x),
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Figure 4.1: The comparison of the quality gain Q and the progress rate ' using the univariable

�tness function F13(x). F13(x) was introduced in Equation 3.29 on Page 39. (x̂; F̂13) = (�3; 999).
Some hypothetical movements on the search space will be used in considering these two progress

measures. x1 = 1, x2 = 5, and x3 = 6; with F13(x1) = �281, F13(x2) = �25, and F13(x3) = �216.

we have x̂ = �3, F̂ = F13(x̂) = 999; and a further local optimum at x = 5, F (x) = �25.
In the following example, the three states x1 = 1, x2 = 5, and x3 = 6 are considered in the

search space. One can easily give the ' and Q values, assuming the movement denoted as

x
(g) �! x

(g+1). The values for �x can be read on the horizontal axis (search space), and

for �F on the vertical one (�tness space). Three scenarios are given below.

1. x3 �! x2: �x > 0, �F > 0.

2. x1 �! x2: �x < 0, �F > 0.

3. x3 �! x1: �x > 0, �F < 0.

It is important to note that both ' and Q require a corresponding probability density

function for their de�nition. This density function must cover all possible mutations.

Therefore, the desired theoretical quantities cannot be obtained by stating just a single

expected movement. That is, ' or Q values can only be computed using the respective

probability density, as it will be done in Chapter 6.

De�nitely, Scenario (3) cannot happen under elitist selection. The latter two scenarios

indicate that ' and Q may have di�erent tendencies in multimodal landscapes. Presum-

ably, one expects principally di�erent behavior for Q and '.
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The tendencies of these two progress measures will be analyzed in this work on unimodal

functions. However, even on unimodal functions, Q and ' may show di�erent characteris-

tics. This becomes more clear after observing the contour plots given for the sharp ridge

and the parabolic ridge in Subsection 3.3.2 (Figure 3.4 and Figure 3.5, respectively). In

both plots, a movement along the vertical axis causes drastic changes in the �tness space;

however, it yields exactly no progress toward the optimum in the search space. More for-

mally, a change in r does not have any e�ect on ' (See Equation 3.12 and Section 4.3 for r).

These �gures indicate that generally ' 6= Q. The empirical part verifying the theoretical

analysis for arbitrary mutation vectors will follow in Chapter 7, yielding more surprising

results.

4.1.3 Self-adaptation response  

In the previous two subsections, the progress measures Q and ' were introduced. The

former one measures the progress in the �tness space, the latter in the search space,

respectively. The third progress measure is the self-adaptation response  (SAR). It is

of interest if the self-adaptation operator (L7, L8) is used in the ES algorithm.

As a result of self-adaptation of the mutation strength (�-SA), the mutation distribution

applied changes over generations. Principally,  depends on the state of the population at

generation g, namely on P(g). The de�nition of P(g) is given in line L3 of the (�=�; �)-ES

algorithm with �-SA, on Page 11. Since the mutation strength is expected to vary, the �

values of � individuals in P(g) are denoted by s
(g)
m .

This work only considers isotropic mutations. As can be seen in the literature, even the

theoretical analysis of this case, and even for the (1; �)-ES, is very complicated [Bey96c,

Ch. 7], [Bey96b]. The theoretical quantity  measures the expected relative change in the

mutation strength in a single generation

 =  (P(g)) := E

�
s
(g+1) � s

(g)

s
(g)

����P(g)

�
: (4.8)

Obviously,  depends on the local state r(g). For ridge functions, r(g) stands for the distance

to the ridge axis. For a given r
(g), x

(g)
0 , and s

(g),  can be used to predict the expected

value of the mutation strength s(g+1) for the next generation. For � > 1, the average values

of the respective quantities over � parents should be used instead, i.e. hsi(g), hri(g), hx0i(g),
etc.

The special case  = 0 is observed for the ES algorithms without �-SA. For the algo-

rithm with �-SA, this would mean that no change is expected in the value of the mutation

strength. We have  < 0 if the mutation strength is expected to decrease. More formally,

the expected value of s(g+1) will be less than s(g). This means that the descendants gen-

erated with the mutation strengths less than s
(g) are expected to have relatively better

�tness values. Consequently, they will be selected. Of course, depending on r(g) and s(g),

one may also have  > 0. This case can be explained analogously.

The SAR gives monotonically decreasing functions of s(g) on the sphere model, using

the �-SA rule given in (2.16) [Bey96c, p. 276], [Bey96b]. The slope of  depends on
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the actual value of the strategy parameter � used. Further information on � will follow

in Section 5.1.1. For large s(g) and small D(g) (residual distance to the optimum), one

observes  < 0 for the sphere model, where su�ciently small s(g) will give  > 0. The

self-adaptation response  is given here for completeness. It is not used in this work, i.e.

the mutation strength is kept constant in the analysis.

4.2 Success measures

In the ES terminology, each mutation z applied to the parent P(g) at x(g) is called successful

if F (x(g) + z) � F (x(g)). Equivalently, this condition can be stated using the local quality

function introduced in Equation 4.3, yielding Q(z) � 0.

The probability of obtaining a successful individual at a given state is described formally

by the success probability. For the (1 + 1)-ES case, the success probability is de�ned

in [Rec73, p. 94]. For � > 1, this probability can be computed for a single descendant

or for all of the � o�spring created in a single generation. Both of these measures re
ect

di�erent aspects of the analysis, and will be denoted by Ps1 for the single descendant case,

and by Ps� for the whole o�spring population, respectively. Naturally, Ps� denotes having

at least one successful descendant. Therefore, one can write

Ps1 := P (Q(z) � 0) (4.9)

Ps� := 1� [1� Ps1]
�
: (4.10)

The iso�tness curves on the contour plots connect the states of the search space that

have the same �tness value (Chapter 3). Therefore, they can be used in the visualization of

a successful mutation. For � > 1, the success probabilities will be computed with respect

to hF i(g) in this work, i.e. Q(z) = ~
Fl � hF i(g). Alternatively, F (hxi(g)) could be used

instead.

The Ps1 values can easily be stated for the ridge functions at r = 0. For � > 0, we

have Ps1 � 1
2
. For � > 1, Ps1 decreases for increasing mutation strength. For the special

case � = 0, the hyperplane, one has Ps1 =
1
2
(for any � and r). The cases with � < 0 and

r = 0 are peculiar since they yield Ps1 � 1
2
, decreasing down to Ps1 '

1
2
as � ! 1. The

corresponding Ps� values always depend on �. For example, Ps1 =
1
5
for � = 10 corresponds

to Ps� = 1 � (1� 0:2)
10 � 0:893. De�nitely, the success probability values change with

respect to r for all ridge functions with � 6= 0.

A last remark should be made on notation. If one has to give explicitly the actual value

of � and the ES algorithm used, the Ps� notation becomes cumbersome. As a result, one

needs a simpli�cation. For example, the Ps� value for the (1; �)-ES with � = 10000 will be

denoted as Ps 1;10000, and not as Ps10000 1;10000.
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4.3 Other measures

For the analysis of the sphere model, the measures mentioned in the previous two sections

are su�cient. However, an additional measure is necessary for the analysis of the ridge

functions: The distance to the progress axis (Equation 3.12 on Page 32). It is represented

by r, its value for the special case � = 1 at generation g by r(g), and for � > 1 by hri(g).
The value of r is considered in the static, dynamic, and stationary analysis. These

three cases are explained in the following section, Section 4.4. The value of r(g) in
uences

the values of the progress and success measures [';Q;  ; Ps1; Ps�]. This in
uence cannot

be canceled out by normalization (see Section 4.4).

The e�ect of r on other convergence measures will be analyzed in this work (static anal-

ysis). Thereafter, the stationary value R(1) will be computed theoretically. Additionally,

the investigation of r(g+1) for a given r(g) is also concerned in this work (dynamic analysis).

The theoretical analysis follows in Section 6.4.

4.4 Final remarks

This section will summarize some remarks on the notation. Some of these notations were

already introduced. Additionally, three important terms describing the type of analysis

applied are explained in detail.

Optimal, peak performance. The optimum value of an observed quantity will be

indicated by the hat \^" symbol. On Page 29 of Chapter 3, x̂ was used to denote the

object variables of the optimum, and F̂ for the (global) optimum. Similarly, one can

introduce the symbols '̂, �̂, Q̂, etc. for the optimal value of the quantity concerned. The

case of maximization is considered in this work without loss of generality.

Normalization. If the �tness function is analyzed for speci�c values of its parameters,

the results obtained will also depend on these speci�c values. Naturally, more general

results are more valuable since they indicate the characteristics of the convergence behavior

in general.

The generalization of the results obtained are achieved by normalizations. For example,

the following equation

'
� := d

1
��1 (N � 1)'; �

� := d

1
��1 (N � 1)� (4.11)

introduces the normalizations used for the ridge functions. The star \�" symbol is used

to indicate the normalized items. Naturally, any normalization is expected to simplify

the formulae, and will be speci�c to the �tness function of interest. Therefore, they are

not arbitrary: They strongly depend on the analytical formulae. Equation 4.11 will be

introduced in the chapter for theory, in Section 6.3.
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Indicating algorithms. In this work, the ES algorithms considered throughout the

analysis will be indicated by a subscript to the convergence measures of concern, where

necessary. For instance, this is the case when the results for di�erent algorithms are

compared, and when the results for the convergence measures should be given compactly,

such as for '1+; 10, Q1+�, R
(1)

1;� , Ps1 1+; �, Ps 1+10, Ps� 1;�, and  1;10. The subscripts for the

algorithms will be avoided if possible, in order to simplify the notation. In this case, the

algorithm analyzed should be obvious from the context.

In the following, the three important categories of the analysis done will be mentioned.

As one can infer, static is the opposite of dynamic; and stationary is a special case of the

dynamics. After this overview, the formal de�nitions follow.

Static. As mentioned in Section 4.3, the values of the progress and success measures

depend on r(g). Therefore, it is advisable to carry out the theoretical analysis for di�erent

r values. In other words, the results of these measures will be parameterized by r. Corre-

spondingly, the empirical analysis is also made statically, as described in Subsection 2.6.1.

In this case, the search space values of P(0) are dictated by x(0) in L3, and L14 is removed

from the algorithm. Each generation of such a simulation run is called a \one-generation

experiment".

Dynamic. Although the static case of the empirical analysis gives very accurate results,

it does not give any information on the dynamic nature of the ES algorithm. For example,

the static analysis explains the r(g) �! r
(g+1) transition. Moreover, such transitions can be

used to compute r(g) �! r
(g+k) or r(0) �! r

(1) type of transitions. However, for the em-

pirical veri�cation of these k-generation transitions, one needs corresponding experiments.

For instance, one can verify the theoretical estimations for such transitions by averaging

multiple experiments with the same starting condition. Additionally, if a �nite limit is

expected for a convergence measure, the veri�cation by the empirical analysis is advisable.

Furthermore, the number of generations required to attain this limit can be theoretically

estimated and empirically veri�ed. As to the ridge functions, r is such a measure (See the

chapter on theory, Section 6.4). See Section 4.3 for the consequences.

Stationary. A special case of the dynamic analysis is called stationary. For example,

the stationary value for r is analyzed in this work. As mentioned in the description of

the dynamic analysis, the value of r averaged over generations for g !1 goes to a limit.

Thereafter, the r(g) values 
uctuate around a value denoted by R(1). As the number of

measurements is increased, the standard deviation of the time average of r over generations

goes toward zero, although the 
uctuations themselves do not vanish. The calculation of

R
(1) will be an important part of the chapter on theory (Section 6.4). For � > 1, the

notation hRi(1)
may be used. However, this notation is too cumbersome, and therefore

will be avoided where possible.
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The number of generations necessary to reach R(1) is called the transition period, or

more frequently the transient time. This period must be passed before collecting statisti-

cally relevant data onR(1). The measurements taken after this period are called stationary.

The stationary data collected for the convergence measures di�er slightly from the static

measurements at R(1), caused by the 
uctuations in r.
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Chapter 5

State of Research

This chapter summarizes the state of research in three parts. Section 5.1 presents the

historical development of the ES algorithms. Some hypotheses in the ES literature are

collected in Section 5.2, �ltering only those relevant for this underlying work. Section 5.3

has seven parts; it lists formulae and methods adopted from the ES literature. This last

section establishes the basis of this work.

5.1 History of the ES

The details on the �rst decade of the ES can be found in [Rec73]. The reader is referred to

the Handbook of Evolutionary Computation [BFM97] for more elaborate information on

ES. A huge collection of bibliography on evolutionary computation can be found in [Ala94],

and in later surveys of Alander. Additionally, several institutes make their literature lists

and/or publications available on the Internet.

Evolution Strategies were �rst explored in the 1960s at the Technical University of

Berlin by Bienert, Rechenberg, and Schwefel. The name \Evolution Strategies" covers a

large number of algorithms; most of them introduced in Chapter 2. This section will give

an overview of the ES history.

The idea of ES originated during the attempts of solving experimental, discrete-valued

problems of hydrodynamics, see e.g. [Rec65]. Initially, the mutation distribution was bi-

nomial. The board of Sir Francis Galton (1822-1911) was used for generating these muta-

tions [Rec73, p. 26]. The diploma thesis of Schwefel [Sch65] indicated the danger of stag-

nation if the binomial distribution is used; suggesting continuous distributions instead. In

1965, the �rst experiments on a Zuse Z23 computer were done by Schwefel.

The �rst algorithm of the ES family was the (1+1)-ES, introduced in 1964 by Rechen-

berg. In 1968, the (1 + 1)-ES was used in order to optimize the shape of a two-phase


ashing nozzle [KS70]. The number of nozzle segments was also considered as a variable in

this work. This was the �rst known application of the gene deletion and gene duplication

operators.

Although the �rst experiments were done in discrete search spaces, the �rst theoretical
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results were obtained for high-dimensional (N ! 1) real valued search spaces. Rechen-

berg introduced two �tness landscapes called sphere model and (rectangular) corridor

model [Rec71]. For the (1 + 1)-ES case, he was able to carry out the theoretical analysis,

and obtained asymptotically (N !1) correct ' and Ps1 values for isotropic normally dis-

tributed mutations. Also the noise-perturbed case is considered in his PhD thesis. In his

analysis, he calculated the success rate values at '̂, and obtained Ps1 � 0:270 for the sphere

model and Ps1 =
1
2e
� 0:184 for the corridor model. Based on these results, he devised the

1=5-th success rule. The 1=5-th success rule is principally attached to the (1 + 1)-ES in

order to control the mutation strength upwards and downwards (see Subsection 2.6.11).

Moreover, Rechenberg argued that the behavior of the ES on any �tness landscape

can be obtained at the �rst order approximation by observing its behavior on these two

models. In other words, the sphere model is expected to approximate the neighborhood or

the vicinity of the optimum, as far as the progress behavior is concerned, and the mutation

strength should be decreased to come even closer to the optimum. If one is far away

from the optimum, the progress behavior should be similar to the one observed for the

(rectangular) corridor model. In this latter case, the optimum mutation strength could be

set once and for all.

In [Rec73, p. 83-88], one can �nd the experimental application of the (10 + 1)-ES and

of the (10=2D + 1)-ES, as special cases of the (�+ 1)-ES and (�=2D + 1)-ES, respectively.

The aim of the experiment was getting a speci�c wing spot pattern for a butter
y model.

The �tness value for each spot setting was given by a �tness value based on the Hamming

distance to the desired pattern. The search space was IB81. The colors white and black were

symbolized on the symmetric wings as 0 and 1 on the respective position of a representing

bit-string. Starting at an initial setting of all zeros, the number of generations necessary

to reach a desired pattern is measured. The initial setting had a Hamming distance of

40 to the desired pattern. This experiment indicated that recombination can increase

the progress rate. Another interesting fact on this experiment is how the mutation and

recombination operators were applied. Since the search space was binary, the mutations

are applied by 
ipping the bits with a certain probability. The recombination operator

with � = 2 generated a bit-string in IB81. The �rst bit is obtained from the �rst parent.

Between each bit, the parent supplying the bit that codes the respective variable of the

descendant can be changed with probability 1=2. The similarity of this recombination

scheme to the uniform cross-over in genetic algorithms (GA) is remarkable, as well as the

similarity of the mutation scheme to the mutations applied in GA.

The PhD thesis of Schwefel [Sch75] extended the theoretical analysis of the ES to

the (1 +
; �)-ES on the two above-mentioned models and on the hyperplane function. His

thesis is reprinted [Sch77]; and translated to English with an additional part on correlated

mutations [Sch81]. Later, its revised version is printed with including sections on genetic

algorithms, simulated annealing, and tabu search [Sch95]. The notation \(1 +
; �)" was used

for the �rst time in his PhD thesis, in order to indicate both (1; �) and (1 + �) at the same

time in an elegant manner [Rec78, p.104]. Schwefel was able to determine the optimal

number of descendants �̂ for the hyperplane, sphere model, and (rectangular) corridor

model [Sch95, p. 127,133,141]. Moreover, the progress rate '� for the corridor model is
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also derived [Sch95, p. 139]. For the �-SA, he proposed the log-normal self-adaptation,

and the value � / 1=
p
N [Sch95, p. 144]. Rechenberg proposed a di�erent multiplicative

self-adaptation rule as shown in (2.18) [Rec78]. In [Rec73, p. 135], Rechenberg proposed a

further self-adaptation rule with three cases (increase mutation strength, do not change it,

and decrease it). He investigated experimentally the sphere model and the (rectangular)

corridor model for N = 10, and used a strategy vector for applying mutation.

Beyond the introduction of the log-normal self-adaptation, the introduction of the

(� +
; �)-ES in [Sch75], [Sch95, p. 119] opened further horizons to evolution strategies.

The notation \(� +
; �)-ES" is used to mention the (�; �)-ES and the (� + �)-ES at the

same time. Both of these algorithms are introduced in Schwefel's PhD thesis, and their

performance is measured on several �tness functions by experiments. The (� +
; �)-ES

imitates the simultaneous character of the evolution, having a population of parents as

well as of descendants. In his work, the performance of the ES was compared to several

traditional optimization methods, e.g. hill-climbing strategies. The comparison is done on

a large number of problems. Additionally, three recombination operators were introduced

in his work. He showed that recombination provides additional bene�t over the (� +
; �)-ES

in the progress behavior using comparative experiments. The overall performance of the

ES was better than the others, whereas the algorithms specially tailored for some problems

could surpass the ES at these.

Selection strategies other than the plus and comma selection can also be used in the ES.

Schwefel introduced a more general scheme with �nite life span � [SR95]. It comprises the

plus strategy for � =1, and the comma strategy for � = 1. This scheme was supposed to

be advantageous for collectively adapting the mutation strength. The contemporary state

of the single-population ES is also described in this work.

Experiments with several populations are also being done in the ES research. The

hierarchical ES (Section 2.7) imitates the parallel (non-identically structured) populations.

They were introduced in [Rec78], and implemented e.g. in [Her92]. Additionally, the

notation \(�=�; �)" was introduced in [Rec78].

5.1.1 Some recommendations

This subsection will summarize some advises and theoretical results related to the �-SA.

Additionally, it will give a tentative list of problem classes where the application of the ES

(or generally, EA) is expected to give successful results.

The strategy parameters � and � for the �-SA were introduced in Subsection 2.5.1.

The optimal values of these parameters depend on the �tness function, on the problem

dimension N , and on the ES algorithm used. The � / 1=
p
N scaling rule was already

proposed in [Sch75], [Sch95, p. 144]. For the sphere model, the optimal value of � for the

(1; �)-ES is given as [Bey96b], [Bey96c, p. 295]

� ' c1;�p
N

: (5.1)
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The symbol (or constant) c1;� is the progress coe�cient for the (1; �)-ES, which will be

introduced in (5.18) of Subsection 5.3.4. The notation \'" indicates that the absolute

as well as the relative error is asymptotically zero; in this case for N ! 1; � ! 1.

Nevertheless, because of the approximations used in the analytical derivation, this formula

for � should be considered as a \rule", and not as a law. In order to generalize this result

to the (�; �)-ES or to the (�=�I; �)-ES, one may use the respective progress coe�cients.

This estimate would be speculative, but could be used as the �rst rule of thumb.

For the value of �, Rechenberg proposes � � 0:3 [Rec94, p. 48]. He advises to decrease

� for N > 100. After long analytical derivations, Beyer found the following correspondence

principle [Bey96c, p. 291], [Bey96b]:

�
2 = �

2(1� �) : (5.2)

Therefore, the value of � can be speci�ed at least for the (1; �)-ES case.

The �-SA can also be applied to other mutation distributions. For the normal distribu-

tion, the mutation operators for the cases other than the isotropic one were mentioned in

Subsection 2.6.6. The reader is referred to [SR95] for the self-adaptation of the mutation

vector or the mutation (correlation) matrix.

When to use ES? In other words, when should we prefer using evolution strategies?

In [Rec71],[Rec73, p. 126], it is proposed that the ES attains larger progress rates than the

gradient strategies for N ' 4. In [Rec94, p. 218], four principal conditions are listed at

which the application of the ES is advisable. These principles also hold to some extent for

other evolutionary algorithms:

1. If the �tness landscape is �ssured, extremely unsmooth, or noise-perturbed.

2. If the number of variables is large (N > 20).

3. If the problem is new and the optimum or optimum variables is unknown.

4. If no problem-speci�c optimization algorithm is known.

These principles clearly describe the advantages of the ES.

A characteristic property of the ES should be mentioned at the end. From the begin-

ning, all variables are mutated in the ES algorithm for generating a descendant. This is

a signi�cant di�erence between the ES and algorithms that mutate a single variable on

the average (such as the breeder genetic algorithm (BGA)), caused by their speci�c mu-

tation operator. The performances of these two mutation philosophies di�er signi�cantly

if the object variables are correlated. Such correlations cause epistatic e�ects, requiring

the mutation of two or more variables simultaneously for any progress in the search space

coupled with the �tness increase. The reader interested in an empirical comparison of the

performances of the (1; 10)-ES and the BGA is referred to [Sal96].
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5.2 Hypotheses in the ES literature

This section summarizes several hypotheses in the ES literature. Only a few of the im-

portant works in the ES literature are considered here. The hypotheses mentioned below

are all related to this work, and this criterion was considered in the selection. Further

hypotheses can be found in the literature.

5.2.1 Evolution window

The de�nition of the evolution window (in German: Evolutionsfenster) can be found

in [Rec71], reprinted as [Rec73]. In [Rec73, p. 139�], or [Rec94, p. 37], the results obtained

for the sphere model and corridor model are generalized to \universal laws". According

to one of these laws, a positive progress rate '� is only obtainable for an interval of the

mutation strength �
� 2 [a; b], where 0 < a < b < 1. This interval is called evolution

window. The value of the optimal mutation strength �̂� should be in this interval, whereas

a � �̂
�
=k and b � k�̂

� are supposed to hold practically [Rec73, p. 140], where k / �

p
N .

For �� / a, the value of '� approaches zero very fast; and for �� ' b, it may even become

negative.

5.2.2 The di�usion along the gradient path

In [Rec94, p.75,130,etc.], it is claimed that the populations of the ES algorithms follow

the path dictated by the local gradient in the search space. The deviations from this path

are explained by the stochastic 
uctuations. It will be an interesting task to investigate

whether the ES algorithms follow this path on the case of ridge functions. In [Sch75, p. 257],

this hypothesis is substantiated by the fact that the ES avoids a systematic sampling over

the whole search space. It would be interesting to investigate whether the ES algorithm

follows the gradient direction for very small values of the mutation strength, i.e. � ! 0.

Rechenberg stated in [Rec73, p. 127] that the maximal possible gain is achieved by

progressing in the direction of the steepest ascent, in other words, in the direction shown

by the gradient. This assumption seems to be plausible on the search space, provided

that the mutation strength is su�ciently small. However, if ridge functions are considered,

one observes that this direction does not always coincide with the direction toward the

optimum. Furthermore, the direction of the gradient is not necessarily directed toward the

optimum in all �tness landscapes. Therefore, this principle should be formalized further.

5.2.3 Elitist strategies and the progress rate

The nature of elitist strategies is perfectly described in [Rud97, p. 185] by the example of

the (1 +
; �)-EA as follows:

\Since a (1 + �)-EA rejects the best o�spring if it is worse than its parents,

the expected improvement of the (1 + �)-EA is at least as large as the improve-

55



ment of the (1; �)-EA, provided that the same step size rules and the mutation

distributions are used."

As the only di�erence to the (1 +
; �)-ES, the (1 +

; �)-EA de�ned in [Rud97] uses spherically

symmetric distribution instead of the normal distribution in generating mutations. The

Central Limit Theorem [Roh76, p.282] can be used to establish the relationship of the EA to

the evolution strategy. For (N ! 1), isotropic mutations are asymptotically distributed

on a hyperspherical shell, where the variance of their length decreases for increasing N .

Therefore, this quoted statement is also expected to be valid for the ES. In the �tness space,

the correctness of this statement is obvious, if the quality gain Q is measured statically.

For the stationary Q measurement, as well as for the value of the progress rate ', this

hypothesis must be revisited. From the context, one may also conclude that this statement

on the (1 +
; �)-EA is only intended for the progress measures in the �tness space, and on

a speci�c �tness function type, and cannot be generalized to any other �tness function.

Two important remarks in [Sch75] should be repeated here for completeness. Schwefel

argued that the strategies which do not allow a worsening in the �tness value in the sub-

sequent generation (namely, the elitist strategies) may search in wrong directions [Sch75,

p. 256]. Furthermore, he added that a worsening in the �tness values at the subsequent

generation should be allowed if the search is stagnated, remarking the importance of a

limited life span [Sch75, p. 264]. Such a worsening (i.e. Q < 0) is not allowed by the

plus strategy. These two hypotheses of Schwefel will be considered in the analysis of ridge

functions.

5.2.4 The universal progress law

Rechenberg postulated in [Rec94, p. 60] the universal progress rate law of the evolution

strategy:

� = ���2 (5.3)

In this formula, � stands for the normalized progress rate ', and � for a normalized

quantity proportional to the normalized mutation strength �.

Equation 5.3 is expected to give negative values as the normalized mutation strength

goes to in�nity. Since this formula is derived using the information on the �tness space, it

is expected to re
ect the tendency of the quality gain, i.e. Q < 0 for � !1. Additionally,

the value of the local gradient vector is also used in the derivation of (5.3). According to

the considerations in Section 4.1, the derivation of ' based on the values of Q is generally

not possible. This work will try to enlighten whether Equation (5.3) is relevant to ridge

functions.

5.2.5 Limit cases for the �tness landscapes

The convergence measures were introduced in Chapter 4. These are used to measure

di�erent aspects of the optimization process. The convergence behavior can be formalized
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using these measures, and this behavior depends among others also to the �tness function

analyzed. If it would be possible to construct �tness landscapes having certain extreme

values for these measures, the analysis of any �tness function could be reduced to these

speci�c cases. In the ES theory, a well known aim was the construction of typical cases

for the �tness landscapes as well as the convergence measures are concerned. In [Rec73,

p. 104], these were also called \extreme cases". Especially the values of ' and Ps1 on

di�erent �tness functions played an important role in these considerations. In the historical

development, the sphere model was accepted to describe landscapes in the neighborhood of

the optimum, and the (rectangular) corridor model landscapes distant from the optimum,

respectively. These two �tness functions are expected to stand at the ends of a scale of

possible properties; therefore, any given �tness function is approximated in the �rst order

by these two models. In [Sch75], a counter-example to this hypothesis can be found; the �̂

value for the hyperplane is not between the ones obtained for the corridor model and the

sphere model. The progress rate �gures of the ridge functions will be used to investigate

this hypothesis in detail.

5.2.6 Evolutionary Progress Principle (EPP)

This principle formulated by Beyer states that the evolutionary progress consists of a gain

part and a loss part [Bey96c, p. 19], [Bey97]. This principle is explained in this subsection

for the search space, although it is also valid for the �tness space. The gain part in the

EPP indicates the progress toward optimum. The loss part is caused as an inevitable

consequence of the movements perpendicular to this progress direction. The actual form

of these parts depend on the �tness function used; however, the loss part always increases

faster than the gain part with respect to the mutation strength.

By observing the progress rate formulae for di�erent ES algorithms on the sphere

model (Point 5.3.5.2), one can easily identify that the progress rate has a positive term

that is linear in ��, which can easily be identi�ed as the gain part. The other term in the

asymptotic (N !1) formulae is negative, and quadratic in �� (for the sphere model). A

similar observation is also true for the quality gain formulae.

At the �rst sight, one may argue that EPP is equivalent to the universal progress law,

mentioned in Subsection 5.2.4. However, the arithmetic structure of the gain and loss parts

is not postulated in EPP. These two parts are also expected to emerge in the progress rate

formulae of ridge functions. The exceptional cases � = 0 and � < 0 of ridge functions

{which do not have a loss part{ will be considered as well.

5.2.7 Genetic Repair Hypothesis (GR)

For most �tness landscapes, it is observed that the progress rate for the (�=�I; �)-ES

or for the (�=�D; �)-ES is larger than the one of the (�; �)-ES. The introduction of the

recombination operator mostly increases the progress rate. This can be explained by

the decrease in the loss term, named as genetic repair [Bey95a], [Bey96c, p.235-241].

In [Bey96c, p. 218-219], it is stated that the recombination operator is not expected to
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increase the progress rate ' if Ps1 = 1=2 or Ps1 > 1=2. The former statement is true

for the hyperplane function (� = 0), and the latter one for � < 0. In both of these

landscapes, Beyer advises to increase the mutation strength � to attain a larger '. A more

formal explanation to this hypothesis can be found in the progress rate formula of the

the (�=�I; �)-ES on the sphere model (Point 5.3.5.2) and in the ones on ridge functions

(Chapter for theory, Subsection 6.3.3).

5.2.8 Mutation induced speciation by recombination (MISR)

A special feature of the (�=�D; �)-ES is observed if the selection operator is switched o�;

e.g. for the � = � case [Bey96c, p. 235-241], [Bey97]. In this case, although the population

starts to walk randomly in the search space, it does not di�use arbitrarily. The average

standard deviation of the population, as well as the transient time to attain this standard

deviation, can be approximated analytically. This phenomenon can also be observed on

the selection-invariant variables of the individuals.

5.3 Background

This section consists of some formulae which are derived in earlier works of the ES the-

ory. The derivation of these formulae will be avoided here, giving just the citations to

the relevant literature. These formulae will be used primarily in the chapter for theory,

Chapter 6. This section has seven parts. Some formulae related to the normal distribution

are given in Subsection 5.3.1. The local quality function (LQF) is formally introduced

in Subsection 5.3.2. A theoretical formula related to the success probability Ps1 is stated

in Subsection 5.3.3. In Subsection 5.3.4, the progress coe�cients that inevitably occur in

the progress rate and quality gain formulae are given. Subsection 5.3.5 summarizes the

progress rate formulae of the �tness functions relevant to this work. A technique for ob-

taining the quality gain formulae is shortly described in Subsection 5.3.6. Lastly, a method

based on induced order statistics is summarized for the reader in Subsection 5.3.7. This

method will be used in calculating expected values in the search space.

5.3.1 The normal distribution

This subsection will repeat some de�nitions from probability theory. These de�nitions are

given for completeness, they can be found in the relevant literature, e.g. [Fis76, BS91].

The de�nition of the normal distribution is followed by the values of its moments, some

important integral equalities, and the de�nition of Hermite polynomials.

The normal distribution is used in the implementation of the mutation operator. The

N -dimensional probability density function of the normal distribution was already intro-

duced in (2.3). The one-dimensional case and the corresponding cumulative distribution
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function �(x) after the normalization x := z

�
can be stated as follows

p(z) =
1p
2��

e�
1
2(

z
� )

2

; (5.4)

�(x) := P (t < x) =
1p
2�

Z
t=x

t=�1
e�

1
2
t2dt : (5.5)

The error function erf(x) is also used in the literature as an alternative to �(x). They can

be converted to each other as follows

erf(x) :=
2p
�

Z
t=x

t=0

e�t
2

dt ; (5.6)

�(x) =
1

2

�
1 + erf

�
xp
2

��
; erf(x) = 2�(

p
2x)� 1 : (5.7)

The normal distribution with zero mean is denoted by N (0; �2). The standard normal

distribution N (0; 1) is obtained simply for � = 1. Its k-th moment xk := Efxkg is zero if

k is odd. Otherwise, xk for even k reads

x
k =

1p
2�

Z 1

�1
x
ke�

1
2
x
2

dx = 1 � 3 � � � (k � 1) : (5.8)

Similarly, the moments of yk of N (0; �2) are yk = x
k
�
k.

Integral equalities. The integral expressions containing the normal distribution must

be solved for the analytical derivation of the progress rate '. The following three equalities

derived in [Bey96c, Appendix A1, p.322] are used in this work:

1p
2�

Z 1

�1
e�

1
2
t2e�

1
2
(at+b)2 dt =

1p
1 + a

2
exp

�
�1

2

b
2

1 + a
2

�
(5.9)

1p
2�

Z 1

�1
te�

1
2
t
2

e�
1
2
(at+b)2 dt = � ab

(1 + a
2)

3
2

exp

�
�1

2

b
2

1 + a
2

�
(5.10)

1p
2�

Z 1

�1
e�

1
2
t2�(at + b) dt = �

�
bp

1 + a
2

�
(5.11)

Hermite polynomials. The quality gain formula (5.39) is derived using Hermite poly-

nomials Hek(x) [Fel71, p. 532], [Bey94], [Bey96c, p. 329]

Hek(x) := (�1)k e 12x2 � dk

dxk
e�

1
2
x2

; (5.12)

Hek(x) = x
k � 1 �

�
k

2

�
x
k�2 + 1 � 3 �

�
k

4

�
x
k�4 � 1 � 3 � 5 �

�
k

6

�
x
k�6 + : : : (5.13)

They also occur in the more accurate success probability formula (Subsection 5.3.3).
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5.3.2 The local quality function (LQF)

The local quality function Q(z) was introduced in (4.3) in order to further formalize the

quality gain Q in the (1 +
; �)-ES case. The LQF itself will be formalized here.

The �tness value F (x+ z) can be approximated according to Taylor by expanding the

�tness function at F (x). The values of �rst and second order derivatives can be expressed

using the gradient vector a := rF (x) and the matrix Q, respectively. Using this scheme,

Q(z) can be neatly described [Bey94], [Bey96c, p. 35]:

F (x+ z) = F (x) +

NX
i=1

@F

@xi

zi +
1

2

NX
i=1

NX
j=1

@
2
F

@xi@xj

zizj + : : : (5.14)

F (x+ z)� F (x) = Q(z) := aTz� zTQz (5.15)

(a)i :=
@F

@xi

; (Q)ij := �1

2

@
2
F

@xi@xj

(5.16)

This approximation is exact if all third and higher order derivatives of F vanish, e.g. for

the parabolic ridge F9(x). The vector a and the matrixQ will also be used in the de�nition

of the quality gain Q.

5.3.3 The success probability Ps1

The success probability Ps1 was de�ned in (4.9) as Ps1 := P (Q(z) � 0). Actually, it

can be expressed as Ps1 = 1 � P (Q(z) < 0). The aim here is to approximate the local

quality function Q(z) by a probability density function (pdf), in the scope of the Central

Limit Theorem [Roh76, p.282]. The random variable of this pdf is symbolized by Q. If

one names the mean value and the standard deviation of Q as MQ and SQ, respectively,

one may introduce a standardized variable z :=
Q�MQ

SQ
with zero mean and variance one,

Ps1 := 1� Pz(z < 0). However, even after the standardization, the higher order moments

of Q will di�er from the ones of N (0; 1). The cumulants �k re
ect this di�erence in the

skew, kurtosis, and higher order moments. The Hermite polynomials (Subsection 5.3.1)

are used for this adaptation. The cdf Pz(z) can be expressed by using this polynomial

series by [Bey94], [Bey96c, p.116]

Pz(z) = �(z)� 1p
2�

e�
1
2
z
2

�
�3

3!
He2(z) +

�
�4

4!
He3(z) +

�
2
3

2 � 3! � 3!He5(z)
�

+

�
�5

5!
He4(z) +

�3�4

3! � 4!He6(z) +
�
3
3

(3!)
4
He8(z)

�
+ : : :

�
: (5.17)

The symbol �k stands for the k-th semi-invariant or k-th cumulant of the standardized

Q(z) distribution. Naturally, they would be zero if the standardized Q(z) distribution

would be N (0; 1). The formulae for �3 and �4 will be given in Subsection 5.3.6. They

serve as the correction to the skew and kurtosis, respectively. The second line of (5.17)

can often be neglected for practical purposes. As a �rst order estimate, Ps1 � �(MQ=SQ)

will be used.
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5.3.4 The progress coe�cients

The progress coe�cients inevitably occur in the progress rate and quality gain formulae

of the ES algorithms. They stand for integral expressions that usually cannot be solved

analytically for any given � (number of descendants). The de�nitions for the progress

coe�cients will be given here. The values of these coe�cients can be obtained by numerical

integration. Alternatively, the tabulated values of c1;�, c�;�, and c�=�;� can be found e.g. in

[Rec94, Bey95a, Bey95b, Bey96c]. The subscripts of these three coe�cients indicate the

corresponding ES algorithm; the third one is obtained for the (�=�I; �)-ES. The analytical

formulae can be found in [Bey96c, p. 71], [Bey96c, p. 184], and [Bey96c, p. 241], respectively.

The d
(k)

1;� coe�cient [Bey96b], [Bey96c, p. 117] emerges in the quality gain analysis of the

(1; �)-ES, and the equality d
(1)

1;� = c1;� holds; for example d
(2)
1;10 � 2:7121 and d

(3)
1;10 = 5:3158.

There is also a d
(k)

1+� function [Bey96c, p. 118], corresponding to the (1 + �)-ES; however,

it will not be presented here since the analysis of the quality gain Q for the (1 + �)-ES will

not be considered in this work. The e
�;�

�;�
coe�cient [Bey95b], [Bey96c, p. 167] occurs in

the analysis of the (�; �)-ES. For the special case e
1;0
�;�
, one obtains the progress coe�cient

c�=�;� [Bey95a], [Bey96c, p. 211]. The approximate analytical formula of c�;� is complicated:

It contains nine di�erent e
�;�

�;�
coe�cients [Bey95b], [Bey96c, p. 184]; therefore, it will be

omitted here. The c�;� values obtained from the simulations will be used where necessary.

The coe�cients relevant to this work read

c1;� :=
�p
2�

Z 1

�1
t e�

1
2
t
2

[�(t)]
��1

dt ; (5.18)

d

(k)

1;� :=
�p
2�

Z 1

�1
t
k e�

1
2
t
2

[�(t)]
��1

dt ; (5.19)

e

�;�

�;�
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�� ��p
2�
��+1

�
�

�

� Z 1

�1
t
� e�

�+1
2

t2 [�(t)]
����1

[1� �(t)]
���

dt ; (5.20)

c�=�;� :=
�� �

2�

�
�

�

�Z 1

�1
e�t

2

[�(t)]
����1

[1� �(t)]
��1

dt : (5.21)

Additional to these formulae, two small tables for c1;�, c�;� and c�=�;� will be given on

Table 5.1 (Page 62). The few values in these tables may help the reader to get a feeling on

the order of these coe�cients. On the table right, the c�=�;10 and c�;10 values are listed for

1 � � � 10. These values are obtained from simulation runs with G = 102000, where the

�rst 2000 generations served as transient time. The standard error for the c�=�;10 values is

around 0:0004, for the c�;10 values around 0:0005. The theoretical values agree for c�=�;10,

whereas the theoretical c�;10 are about one to two per cent larger, caused by the analytical

approximations. The following values should be mentioned for completeness: c1=1;10 = c1;10

for � = 1, and c10=10;10 = c10;10 = 0 for � = � = 10. Obviously, one observes c�=�;10 � c�;10,

although this ordering relation is not formally proven yet; and the equality only holds for

� = 1 and � = �. Any c coe�cient can be determined experimentally by measuring the

progress rate ' of the respective ES algorithm on the hyperplane �tness function for � = 1

and N = 1. The progress rate formulae of the hyperplane can be found in Point 5.3.5.1.
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Table 5.1: A collection of progress coe�cients: c1;�, c�=�;10, and c�;10. On the left table, the

c1;� values are listed for some selected �, obtained from [Rec94, p. 236-240]. All other c1;� values

(1 � � � 1000) can be found in the table cited. A smaller table for selected � values between 1

and 10000 is given in [Bey96c, p. 351]. The values of c�=�;10 and c�;10 coe�cients can be obtained

from the right table. Please note that c10=10;10 = c10;10 = 0 and c1=1;10 = c1;10.

� c1;�

1 0

2 0:564189583548

5 1:162964473641

10 1:538752730835

20 1:867475059798

50 2:249073629390

100 2:507593636442

200 2:746042447452

500 3:036699345857

1000 3:241435770486

� c�=�;10 c�;10

1 1:539 1:539

2 1:270 1:350

3 1:065 1:187

4 0:893 1:041

5 0:739 0:902

6 0:595 0:765

7 0:456 0:625

8 0:317 0:476

9 0:171 0:296

10 0 0

5.3.5 The progress rate formulae

The determination of the progress rate is of ultimate importance in the ES theory. The

value of ' depends on the �tness function analyzed and on the ES algorithm used. Several

progress rate formulae can be found in the literature. For the sake of simplicity, only

the progress rates for the hyperplane, the sphere model, and the parabolic ridge will be

mentioned in this subsection.

5.3.5.1 The hyperplane

The formulae for the progress rate ' are proposed and derived in the literature for di�erent

ES algorithms. The progress rate for the (1; �)-ES is given in [Rec94, p. 62]. A derivation

can be found in [Bey96c, p. 33]. For the (�; �)-ES case, the formula is proposed in [Rec94,

p. 241], and derived in [Bey96c, p. 187�]. Similarly, the progress rate for the (�=�I; �)-ES

is stated in [Rec94, p. 242], and derived in [Bey96c, p. 218]. These three formulae read

(1; �)-ES : ' = c1;�� ; (5.22)

(�; �)-ES : ' = c�;�� ; (5.23)

(�=�I; �)-ES : ' = c�=�;�� : (5.24)

Naturally, these values are independent of the number of variables N , and of rotations of

the variable axes. The independence of N is speci�c for this �tness function, whereas the
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independence of rotations is provided by the isotropic mutation distribution; therefore, it

is a property of these ES algorithms.

5.3.5.2 The sphere model

The asymptotically (N ! 1) exact formulae for the progress rate ' of di�erent ES

algorithms on the sphere model can be found in the literature. The following normaliza-

tion [Bey96c, p. 32], [Rec78]

'
� := '

N

D

; �
� := �

N

D

(5.25)

can be used to make the progress rate formulae stated in [Rec94, p. 64,68,146] independent

of the number of variables N and of the residual distance D to the optimum. The N -

dependent progress rate formulae are derived in [Bey95a, Bey95b, Bey96b, Bey96c]. The

resulting formulae [Bey96c, p. 71,184,212,235] asymptotically (N !1) become the same

with the ones proposed by Rechenberg without derivation

(1; �)-ES : '
� = c1;��

� � �
�2

2
; (5.26)

(�; �)-ES : '
� = c�;��

� � �
�2

2
; (5.27)

(�=�I; �)-ES : '
� = c�=�;��

� � �
�2

2�
; (5.28)

(�=�D; �)-ES : '
� =

p
� c�=�;��

� � �
�2

2
: (5.29)

These progress rate formulae can be used for deriving the expected average residual distance

D
(1) at the stationary case without self-adaptation (� = const). By equating '�

!
= 0, and

using the normalization for �� in (5.25), one obtains the following D(1) values:

(1; �)-ES : D
(1) =

�N

2c1;�
; (5.30)

(�; �)-ES : D
(1) =

�N

2c�;�
; (5.31)

(�=�I; �)-ES : D
(1) =

�N

2�c�=�;�
; (5.32)

(�=�D; �)-ES : D
(1) =

�N

2
p
�c�=�;�

: (5.33)

These formulae will be used in the approximate progress rate formulae as well as in the

crude estimation of the stationary distance R(1) of ridge functions.
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5.3.5.3 The parabolic ridge

The ridge function family has not been analyzed as intensely as the sphere model in the

literature. Some analytical formulae are proposed by Rechenberg. In the following, these

results and statements in [Rec94, p. 65-66,76-78,214] will be summarized. The paragraphs

below mostly consist of the translations from this book.

Rechenberg de�nes the parabolic ridge using the object variable vector y as

Q = Q0 + cy1 � d

NX
k=2

y
2
k
: (5.34)

This de�nition is equivalent to (3.16). The constant Q0 does not a�ect the behavior of

the ES algorithms. Similarly, one may divide Q by c, and only the quality gain formulae

will be a�ected. One may choose Q0 = 0 and c = 1 to ease the comparison of these two

equations. The progress rate ' and the success probability Ps1 of the (1; �)-ES are given

by Rechenberg as (on the ridge axis and for N � 1)

' = c1;�� � Nd�
2

c

; (5.35)

Ps1 =
1

2

�
1� erf

�
Nd�p
2c

��
: (5.36)

Using Equation (5.7), one gets for c = 1

' = c1;�� �Nd�
2
; Ps1 = �(�Nd�): (5.37)

Actually, Rechenberg did not formally de�ne the distance r to the ridge axis (Equa-

tion (3.12)). He does not give any formulae for r 6= 0, and does not suggest any nor-

malization scheme for the parabolic ridge.

In his work [Rec94, p. 65-66,76-78,214], he states that the ES algorithm will follow the

ridge axis in the long run. This can be interpreted as \the expected distance r to the ridge

axis should be low". Actually, no expected value for r is mentioned in his work. He adds

that the progress in the �tness space does not necessarily yield the progress in the search

space, and that a general progress rate theory of the ES should still be devised so that it

will also be appropriate for the ridge functions.

Based on the smallness of the curvature radius on the ridge axis, Rechenberg asserts

that the progress rate ' is small on the ridge axis. However, he adds, the local gradients

at the states other than the ones on the ridge axis are directed toward the axis, where the

progress rate is smaller. He gives the optimal mutation strength on the ridge axis as

�̂ = c1;�c=2d
p
N : (5.38)

In all �tness landscapes, the aim is to increase the (global) progress rate of the ES

algorithm applied. For such special landscapes similar to the parabolic ridge, Rechenberg
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proposes to increase the mutation strength beyond the values advised by the evolution

window in order to reach this goal. Using pictures, he asserts that the length of a mutation

vector can be much larger than the distance to the ridge axis.

As to the multiplicative self-adaptation rules (MSR), he notes that these are inappro-

priate for �nding the optimal mutation strength (in the ridge case). For the explanation

of this observation he uses the principle of the MSR method: Since the MSR method uses

only the (�tness) information of a single generation, it is expected to maximize the qual-

ity gain Q by using the self-adaptation operator. In order to obtain long term progress,

he advises to hold the mutation strength constant for several generations. If one would

operate di�erent � values on di�erent populations, one could compare the results after an

isolation period. As he stated, this scheme leads to the hierarchical ES.

According to Rechenberg, the hierarchical ES is the only way to maximize the (global)

progress rate '. Furthermore, he advises the parabolic ridge as a test function for genetic

algorithms. Actually, the rotated ridge function (3.17) can also be used by other evolution-

ary algorithms. The values obtained for the convergence measures can be used to compare

the performances of evolutionary algorithms with each other.

5.3.6 The quality gain Q

In [Bey94], [Bey96c, Chapter 4], the quality gain formulae are derived for the (1 +
; �)-ES.

These two formulae can also be used for mutation distributions other than the normal

distribution. Moreover, a search space other than IRN can also be used for the �tness

function. For example, the quality gain Q of the OneMax �tness function (3.22) is derived

in [Bey96c, pp. 125-128].

In scope of this work, only the search space IRN is investigated; and the normal distri-

bution is used to generate mutations. The derivation of Q is explained here under these

conditions. An explanation of this case can be found in [OBS97], an overview of the

derivation will be given below.

The derivation of the quality gain formulae is based on the approximation of the local

quality function (LQF) Q(z) (Subsection 5.3.2). The Q(z) values are scalar random quan-

tities. In general, they are not expected to be normally distributed, even if the mutations

on the search space are generated using the normal distribution.

In the �nal quality gain formulae for the (1 +
; �)-ES, only certain statistical parameters

describing the Q(z) distribution remain as unknowns. This is also true for the Q formula

of the (1 + �)-ES; however, this formula is not investigated in this work. The progress

coe�cients c1;�, d
(2)

1;�, and d

(3)

1;� {which also occur in the Q formula{ were introduced in

Subsection 5.3.4. Their values can be read from tables [Bey96b], [Bey96c, p. 351], or

computed using numerical integration tools (such as Mathematica).

For a given state x in the search space, the local quality function Q(z) describes the

scalar �tness values for any z. Because of the approximation of Q(z) in (5.15) using

the vector a and matrix Q, the Q(z) values are accurate for su�ciently small mutation

strengths. As a result, the Q formula is expected to be less accurate for ridge functions
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with � 6= 2, i.e. if higher order derivatives are not negligible. For � = 2 (and for the trivial

case � = 0), the Q(z) approximation is exact.

Assume that the random variable Q describes the Q(z) values. The ultimate aim of the

derivation of the Q formula is the determination of the probability density function (pdf) of

Q. The mean valueMQ and the standard derivation SQ of this pdf can easily be computed.

In the next step, the pdf of Q is standardized so that it has the mean zero and variance one,

yielding the standardized variable z := (Q�MQ)=SQ. Even after this standardization, the

pdf does not become a normal distribution. The mean value and variance of the pdf of z

match to the ones of N (0; 1); however, the higher order moments di�er. This di�erence

in the normal estimation can be corrected using Hermite polynomials (Subsection 5.3.1,

(5.13)). After this correction, the cumulative distribution function of the standardized

variable z was given in Subsection 5.3.3 using the cumulants �k. The cumulants emerge

as a consequence of the di�erence in the higher order moments to the normal distribution.

In the last step of the quality gain derivation, the quantile density P�1
z
(f), i.e. the inverse

function of Pz(z), is approximated using a power series of ��1(f) (quantile function of the

normal distribution). Using this approximation for the cumulative distribution, and the

progress coe�cients introduced in Subsection 5.3.4, the quality gain formula is derived for

the (1; �)-ES [Bey94], [Bey96c, p. 118]

Q =MQ + SQ

(
� �3

6
+ c1;�

 
1 +

5

36
�
2
3 �

�4

8

!
+ d

(2)

1;�

�3

6
+ d

(3)

1;�

 
�4

24
� �

2
3

18

!
+ : : :

)
: (5.39)

The calculation of the Q value for the (1; �)-ES is a technical task. The values of the

progress coe�cients can be obtained numerically or read from tables. The values of the

parametersMQ, SQ, �3, and �4 depend on the �tness function to be analyzed and mutation

distribution used. The formulae for correlated mutations can be found in [Bey96c, pp. 120-

122]. The case of isotropic normal mutations is considered in this work, and the relevant

formulae can be found below. In these formulae, the notation qi is used for the diagonal

entries (Q)i i of the matrix Q (Equation (5.16)). The trace of the matrix Q, i.e. the sum

of its diagonal entries, is denoted by Tr[Q] :=
P

N

i=1 qi.

The complete Q matrix. If the o�-diagonal entries of theQmatrix (see Equation (5.16))

are nonzero, then one has to use the following formulae to describe the local quality dis-

tribution [Bey94], [Bey96c, p. 123]:

MQ = ��2Tr[Q]; SQ = �

p
kak2 + 2�2Tr[Q2]; (5.40)

�3 = � �
4

S
3
Q

�
6aTQa + 8�2Tr[Q3]

�
; �4 =

48�6

S
4
Q

�kQak2 + �
2Tr[Q4]

�
: (5.41)

The value of kak2 =PN

i=1 a
2
i
can be computed easily, but the calculation of Tr[Q2] requires

more e�ort. As a result, one can at least compute MQ and SQ with a moderate e�ort

for any �tness function. As explained in Subsection 5.3.3, one can obtain a �rst order

approximation for the success probability as Ps1 � �(MQ=SQ). Therefore, a �rst estimate
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of the success probability Ps1 will be possible. The calculation of Tr[Q
3] and Tr[Q4] is very

lengthy, but mathematically it is a trivial task.

The diagonal Q matrix. If all o�-diagonal entries of Q are zero, the computation of

these four quantities is much simpler. This is for example the case for the parabolic ridge,

hyperplane, and the member (3.7) of the sphere model family:

MQ = ��2
NX
i=1

qi; SQ = �

vuutkak2 + 2�2
NX
i=1

q
2
i
; (5.42)

�3 = � �
4

S
3
Q

 
6

NX
i=1

a
2
i
qi + 8�2

NX
i=1

q
3
i

!
; �4 =

48�6

S
4
Q

 
NX
i=1

a
2
i
q
2
i
+ �

2

NX
i=1

q
4
i

!
: (5.43)

5.3.7 Induced order statistics

As compared to the calculation of the quality gain Q, the calculation of the progress rate

' poses several analytical di�culties. An overview will be given here for the (1; �)-ES

case. This method was developed by Beyer for the progress rate analysis of ES algorithms.

It is called \induced order statistics" and occurs in almost all progress rate derivations

in [Bey96c].

The progress rate ' was de�ned as the expected value of the decrease in the distance

to the optimum (Subsection 4.1.2). In other words, ' gives the e�ective distance traveled

toward the optimum in a single generation. If one denotes this distance by the random

variable z, and its pdf by p1;�(z), respectively, the progress rate of the (1; �)-ES can be

expressed using the de�nition of the expected value

' = Efzg =
Z 1

�1
z p1;�(z) dz : (5.44)

The integral is taken over all possible values of z: The comma selection strategy accepts

worsenings; therefore, z can have all values of IR. For the plus strategy, an additional

pdf should be multiplied by p1;�(z) to obtain p1+�(z) (See [Bey96c, p. 82]). This addi-

tional pdf re
ects the condition that the best o�spring should be better than the parent.

Alternatively, the integration limits are to be changed appropriately.

Since isotropic mutations are used in generating the descendants, the mutations have

the expected value zero and the variance �2 around the parent, in any direction of the search

space. Therefore, also the random variable z is generated according to this distribution,

denoted by pz(z) � N (0; �2) (See Equation 5.4). However, in order to be selected as the

best individual, a descendant having the pdf pz(z) must have a better �tness than the other

��1 descendants. This condition is re
ected by the cumulative distribution of acceptance,

Pa 1;�(z). Since any of the � descendants can principally have the best �tness value, there

are � di�erent constellations. Therefore, p1;�(z) can be further speci�ed as

p1;�(z) = � pz(z)Pa 1;�(z) : (5.45)
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The probability distribution Pa 1;�(z) states the probability that ��1 descendants have

�tness values that are worse than the �tness value of the individual with a given z. For this

individual, the probability distribution of the local quality function (LQF) conditional to

a given z is denoted by p(Qjzjz). Therefore, Qjz denotes the conditional random variable

specifying the LQF value for a given z. Let P1(Qjz) denote the cumulative distribution

that a single descendant out of �� 1 others has a LQF value less than Qjz. Consequently,

[P1(Qjz)]
��1 states the probability that all � � 1 descendants have LQF values less than

Qjz. As a result, the Pa 1;�(z) value can be stated as

Pa 1;�(z) =

Z 1

�1
p(Qjzjz) [P1(Qjz)]

��1 dQjz : (5.46)

The distribution P1(Qjz) can be speci�ed further. It is obtained as the probability

distribution which gives the probability of all possible LQF values worse than Qjz for

all possible z values. This can be expressed as a double integral. The inner integral is

taken for all possible z values, the outer one from the worst possible LQF value (that is,

practically �1) up to Qjz. The density p(Qjzjz) will be approximated using the normal

distribution. If the integral boundaries are �nite, they could be extended to �1 and 1
because of an interesting property of the normal distribution: The normal distribution

is massively concentrated around its mean. For example, the distribution N (0; �2) has

68:3% of its density in the interval [��; �], 95:5% in [�2�; 2�], and 99:7% in [�3�; 3�],
respectively. Therefore, the integration limits can be extended to �1, respectively, by

accepting relatively negligible errors. This extension yields integrals which can be treated

analytically, or at least partially.

Since the inner integral is taken for all possible z values, the result is no more dependent

on z. Therefore, this distribution is denoted by P1(Q) in the following. One obtains

P1(Q) =

Z
Q

�1

Z 1

�1
p(Qjzjz) pz(z) dz dQjz (5.47)

=

Z 1

�1
pz(z)

Z
Q

�1
p(Qjzjz) dQjz dz : (5.48)

The exchange of the integration order gives (5.48). Note that the density pz(z) was already

used in (5.45) as the distribution that generated the mutation z.

The equations (5.44), (5.45), and (5.46) can now be combined together to yield

'1;� = �

Z 1

�1
z pz(z)

Z 1

�1
p(Qjzjz)

�
P1(Qjz)

���1
dQjz dz : (5.49)

Since P1(Q) is independent of z, the integration order can be exchanged in order to simplify

the integration. The substitution Q := Qjz for the parameter of P1(Q) underlines the

independence of P1(Q) from z. One obtains for the progress rate '

'1;� = �

Z 1

�1
[P1(Q)]

��1
Z 1

�1
z pz(z) p(Qjz) dz dQ : (5.50)
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The de�nition of the progress rate ' in (5.50) is a four-tuple integral (see also the

de�nition of P1(Q) in (5.47)). In the scope of this work, the density p(Qjz) will be approx-
imated by a normal distribution. As a result, the integral expression for P1(Q) in (5.48)

becomes manageable by using the integral expressions given in Subsection 5.3.1. Actually,

the distribution P1(Q) is given in (5.17), after normalizing the random variable Q. On this

approximation level, the cumulants will be neglected, and the cumulative distribution will

be approximated by

P1(Q) � �

�
Q�MQ

SQ

�
: (5.51)

The normal approximation of p(Qjz) and the approximation for P1(Q) cause a negligible

error if � is small as compared to N , as to be shown by simulations. The formula (5.50) is

derived for the asymptotics (N ! 1); however, one obtains satisfactory results even for

N ' 30.

For the (�; �)-ES, this technique is not su�cient. Since the mutations are practically

generated from � di�erent states, the o�spring are not normally distributed in the search

space. In [Bey95b], [Bey96c, Chapter 5], a correction term for the skewness of the o�spring

distribution is introduced. The derivation of '�;� is very lengthy for the sphere model. Such

an additional approach is not considered in the scope of this work.
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Chapter 6

Theory

This chapter consists of results obtained by analyzing ES algorithms on ridge functions.

It contains four sections on the respective convergence measures. The ES algorithms, the

ridge function family, convergence measures, and the analysis methods were introduced in

the four previous chapters, respectively. The results here are organized in sections with

respect to the convergence measures of interest. The sequence of sections re
ect also the

degree of complexity of the analysis, where the most challenging results can be found in the

last section. Conversely, some intermediate results in earlier sections are used in deriving

some results in the following sections.

The quality gain Q is analyzed in Section 6.1. It is a progress measure in the �tness

space. Two alternative approaches will be given for the derivation. The results are obtained

for the (1; �)-ES on the parabolic ridge; whereas both approaches are also applicable to

other ridge functions. In Section 6.2, the success measures Ps1 and Ps� will be derived for

the (1; �)-ES on ridge functions. The relation between the stationary Ps1 formulae of the

sphere model and parabolic ridge is obtained using the asymptotic limit (� !1).

Section 6.3 is the most challenging section of this chapter. The progress rate ' will be

derived for several ES algorithms on the general case of ridge functions. The results for

the stationary case will additionally be obtained using a local model. For the static case,

the method called \induced order statistics" will be applied to the (1; �)-ES and to the

(�=�I; �)-ES. The latter result will be generalized to the (�=�D; �)-ES. For the (�; �)-ES,

the respective formula is obtained by a simple heuristic reasoning.

The distance r to the ridge axis will be analyzed in Section 6.4 on the parabolic ridge.

The state equation obtained for the (1; �)-ES will be used to calculate the stationary R(1)

value, the progress measure 'R for the alternative Q formula, and the time constant for a

given r(0) value. A similar state equation will be obtained analytically for the (�=�I; �)-ES,

and the corresponding R(1) value will be derived. For the (�=�D; �)-ES, this stationary

value will be calculated using the relationship to the (�=�I; �)-ES. It will be obtained for

the (�; �)-ES by reasoning on other R(1) formulae.

The analysis will be carried out for isotropic mutations and for the asymptotic case

(N ! 1). However, the results can be extended to �nite N as long as the condition

N � � holds, i.e. if � is constant, or small as compared to N . It will be assumed that the
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�tness values are obtained without perturbation of noise. The theoretical results will be

compared with experiments in the next chapter (Chapter 7).

A small notice on the notation should be added here. The static formulae derived in

this chapter for the theoretical quantities ', Q, Ps1, etc. contain r as a variable. For

the stationary case, the stationary value for r is only available for the parabolic ridge.

Therefore, in all other cases, r should be treated as an independent variable. Strictly

speaking, this fact should be re
ected in the notation. For instance, the notation 'jr
should be used to symbolize the progress rate formula containing r as a variable. This

notation would successfully re
ect that the progress rate formula is conditional to r, which

is an unknown quantity. The symbol ' should be reserved for the stationary progress rate

with a known R(1), which is already inserted to the formula. Furthermore, the dependence

on r should also be re
ected on the quantities used in derivations if they contain r. Since

such formal notations make the derivations less readable, they are omitted. The static

formulae always depend on r, the R(1) values are inserted in the stationary ones if they

were available.

6.1 The quality gain Q

This section is dedicated to the calculation of quality gain values for the (1; �)-ES. The

Q formula for the parabolic ridge will be derived. Additionally, another approach for

calculating the Q value of the parabolic ridge will be given, based on the expected values

of progress measures in the search space. Using these two approaches, the Q formula for

the general ridge function can also be derived.

The quality gain gives the same values as the progress rate ' if some conditions are

satis�ed. Two of such conditions will be stated in this section. Furthermore, the local

quality function Q(z) will be derived for the general case of ridge functions. Two function-

dependent parameters of Q, namely the mean and the variance of Q(z), will be calculated

for the general case, too.

6.1.1 The local quality function Q(z)

The local quality function was introduced in (4.3) for further formalizing the quality gain

Q. The quantity Q(z) was approximated using a Taylor series in Subsection 5.3.2 on

Page 60. In this approximation of Q(z), the vector a and the matrix Q were introduced

(cf. Equations (5.15) and (5.16)). As already mentioned, this approximation is exact if all

third and higher order derivatives of the �tness function vanish at the given state. This is

for example the case for the hyperplane test function and for the parabolic ridge F9(x) in

(3.16).

In this subsection, the values of a and Q will be computed for the general ridge function

FR(x) in (3.11) on Page 32, and for the rotated general case of the hyperplane Fhp(x) in

(3.21) on Page 34.
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6.1.1.1 For ridge functions

The components of the vector a and the entries in the matrix Q will be computed next

for the general case of ridge functions. For the vector a, they consist of �rst order partial

derivatives, whereas the entries of Q are obtained by partially di�erentiating the �tness

function with respect to the two corresponding variables. Hence applying the de�nitions

in (5.16) to the de�nition of FR(x) in (3.11), and using the de�nition of the distance r to

the ridge axis in (3.12), one obtains

(a)i :=
@F

@xi

=

�
1 for i = 0

�d�r��2xi otherwise,
(6.1)

and

(Q)ij := �1

2

@
2
F

@xi@xj

=

8<
:

0 for i = 0 or j = 0
1
2
d�r

��4[(�� 2)x2
i
+ r

2] for i = j and i 6= 0
1
2
d�(�� 2)r��4xixj otherwise.

(6.2)

These formulae get simpler for the parabolic ridge F9(x) in (3.16), i.e. for � = 2. The

results can be written shortly as

a =

0
BBBBB@

1

�2dx1
�2dx2

...

�2dxN�1

1
CCCCCA ; Q =

0
BBBBB@

0 0

d

d

. . .

0 d

1
CCCCCA : (6.3)

6.1.1.2 For the rotated hyperplane

This function was de�ned as Fhp(x) in (3.21). The components of vector v occur in the

de�nition of a, and the matrix Q is simply the null matrix. The application of (5.16) on

(3.21) yields

a = c �

0
BBBBB@

v0

v1

v2

...

vN�1

1
CCCCCA ; Q = 0: (6.4)

The variables are numbered starting from zero in order to simplify the comparison with

ridge functions. For v = (1; 0; : : : ; 0)
T
and c = 1, the same result can be read in (6.1) and

(6.2) for � = 0.
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6.1.2 The pdf of Q(z)

The quality gain formula for the (1; �)-ES was stated in (5.39). In this formula, the

parametersMQ, SQ, �3, and �4 depend on the �tness function of interest. These parameters

stand for the moments of the pdf Q(z). They will be computed here using the values for

the vector a and the matrix Q given in the previous subsection. For the general ridge

function FR(x), only the values of MQ and SQ will be given.

6.1.2.1 The rotated hyperplane

The values of a and Q can be obtained from (6.4). Since the null matrix Q = 0 is a

special case of diagonal matrices, the formulae in (5.42, 5.43) can be used. As a result, one

immediately obtains

MQ = 0; SQ = c�; �3 = 0; �4 = 0 : (6.5)

The equality kvk = 1 is used in the calculation of SQ.

6.1.2.2 The parabolic ridge F9(x)

The four above-mentioned parameters will be computed here for the �tness function F9(x)

in (3.16). The same calculation becomes very complicated for the rotated case, since the Q

matrix will not be diagonal anymore. Using the values of a and Q in (6.3), the parameters

are obtained here using (5.42) and (5.43).

Some important notes will help the reader in the recalculation of these parameters.

Firstly, it is essential to remember that the variables are numbered for ridge functions

from zero up to N � 1. Therefore, this fact should be considered in the application of the

parameter de�nitions. Additionally, the following equalities are used in the calculations:

N�1X
i=0

q
k

i
= (N � 1)dk; k 2 IN (6.6)

kak2 =

N�1X
i=0

a
2
i
= 1 + 4d2

N�1X
i=1

x
2
i
= 1 + (2dr)

2
(6.7)

The de�nition of r was given in (3.12). Using the intermediate results in (6.6) and (6.7),

the parameters read

MQ = �(N � 1)d�2 SQ = �

q
1 + (2dr)

2
+ 2d2(N � 1)�2 ; (6.8)

�3 = � �
4

S
3
Q

�
6d(2dr)

2
+ 8d3(N � 1)�2

�
�4 =

48�6

S
4
Q

�
d
2(2dr)

2
+ d

4(N � 1)�2
�
: (6.9)
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6.1.2.3 The general ridge function FR(x)

Similarly, the parameters for the quality gain Q can also be computed for the general

ridge function FR(x) in (3.11). However, since the Q matrix is not diagonal, one has to

use the general de�nitions in (5.40) and (5.41) to derive these parameters. Therefore, the

calculation of these become quite more di�cult. The di�culty is mainly caused by the

calculation of Tr[Q2], Tr[Q3], and Tr[Q4].

In scope of this work, only MQ and SQ will be computed. Therefore, the quantities

kak2, Tr[Q], and Tr[Q2] must be derived. After combining these partial results, MQ and

SQ will be obtained. They will be used in the �rst order approximation of the success

probability Ps1 (cf. Subsection 5.3.3) and in the derivation of the progress rate formulae.

The quantity kak2 is obtained in a straightforward manner. Starting at the de�nition

of a in (6.1), and using the de�nition of r (3.12) in the last step, one obtains

kak2 =
N�1X
i=0

�
@F

@xi

�2

= 1 + (d�r��2)
2
N�1X
i=1

x
2
i
= 1 + (d�r��1)

2
: (6.10)

The trace of the matrix Q in (6.2) is determined in a relatively simple manner, by using

(3.12) again

Tr[Q] = �1

2

N�1X
i=0

@
2
F

@x
2
i

=
1

2
d�r

��4

"
(N � 1)r2 + (�� 2)

N�1X
i=1

x
2
i

#

=
1

2
d(N + �� 3)�r��2 : (6.11)

Unfortunately, Tr[Q2] is not as easy to compute as Tr[Q]. First of all, at least the

diagonal of matrix Q2 should be obtained by matrix multiplication. For the calculation of

Tr[Q2] for matrix Q in (6.2),

Tr[Q2] :=

N�1X
i=0

(Q2)i i =

N�1X
i=1

N�1X
k=1

(Q)i k(Q)k i ; (6.12)

the �rst row and the �rst column of Q is ignored since their entries are zero. One can

introduce the substitutions

A :=
1

2
d�(�� 2)r��4; B :=

1

2
d�r

��2
; (6.13)

in order to simplify the de�nitions of the matrix Q entries in (6.2) to

(Q)i i = Ax
2
i
+B; (Q)i k = (Q)k i = Axixk : (6.14)

After this simpli�cation, the values in (6.14) can be inserted in (6.12) in order to

75



compute the inner sum

N�1X
k=1

(Q)i k(Q)k i = (Q)2
i i
+

N�1X
k=1
k 6=i

(Q)i k(Q)k i = B
2 + 2ABx2

i
+ A

2
x
4
i
+ A

2

N�1X
k=1
k 6=i

x
2
i
x
2
k

= B
2 + 2ABx2

i
+ A

2
x
2
i

N�1X
k=1

x
2
k
= B

2 + 2ABx2
i
+ A

2
r
2
x
2
i
: (6.15)

Considering (3.12), (6.13), (6.15), and A = (� � 2)B=r2, the calculation of the outer

sum in (6.12) will give us the desired value

Tr[Q2] =

N�1X
i=1

(B2 + 2ABx2
i
+ A

2
r
2
x
2
i
) = (N � 1)B2 + (2AB + A

2
r
2)

N�1X
i=1

x
2
i

= (N � 1)B2 + 2ABr2 + A
2
r
4 = (N � 2)B2 + (B + 2Ar2)

2

= (N � 2)B2 + (B + (�� 2)B2)
2
= (N � 2)B2 + (�� 1)

2
B

2

=
�
N � 2 + (�� 1)

2
�
B

2 =
�
N � 2 + (�� 1)

2
��d�

2
r
��2
�2

: (6.16)

After the computation of kak2, Tr[Q], and Tr[Q2], the values of MQ and SQ can be

determined for the general ridge function FR(x). Please note that these values are valid in

scope of the Q(z) approximation introduced in Subsection 5.3.2, since the values of a and

Q are obtained based on this approximation. Using (5.40) and (6.11), the parameter MQ

reads

MQ = ��2Tr[Q] = �1

2
d��

2(N + �� 3)r��2 : (6.17)

If one inserts zero for �, the MQ value for the hyperplane in (6.5) is obtained as a special

case. Similarly, theMQ value for the parabolic ridge (Equation (6.8)) is obtained for � = 2.

The calculation of SQ will follow next. Using (5.40), (6.10), and (6.16), the parameter SQ
reads

SQ = �

r
1 + (d�r��1)

2
+
�
2

2

�
N � 2 + (�� 1)

2
�
(d�r��2)

2
: (6.18)

The special case � = 2 gives the SQ value in (6.8). Similarly, the SQ value in (6.5) is

obtained for � = 0 and c = 1, as expected. Please note that MQ (6.17) and SQ (6.18) are

both conditional to r.

At this point, it should be remembered that the mean value and standard deviation

of the Q(z) distribution is approximated by MQ and SQ, respectively. Therefore, the

knowledge of these two quantities yield a �rst order estimation on this distribution. As

mentioned in Subsection 5.3.3, the success probability Ps1 is de�ned usingMQ, SQ, and the
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cumulants. Therefore, the results obtained here for these parameters will be used in the

approximation of the success probability in Section 6.2. Furthermore, these two parameters

will be used in Section 6.3 for estimating Q(z) by a normal distribution. In Section 6.4,

this estimation will be used for the parabolic ridge case only.

6.1.3 Two Q formulae

The quality gain formula for the (1; �)-ES was given in (5.39). In the previous subsection,

the �tness dependent parameters of the quality gainQ are calculated for the parabolic ridge

and hyperplane. These parameters must be calculated anew for each �tness function. The

remaining constants are �tness-independent progress coe�cients. The properties of these

two quality gain formulae will be discussed in this subsection. For the rotated hyperplane,

the quality gain formula will be compared with the one for the progress rate. For the

parabolic ridge case, the order of parameters will be given with respect to the mutation

strength � and number of parameters N .

6.1.3.1 The rotated hyperplane

The quality gain formula for the �tness function Fhp(x) in (3.21) is obtained by inserting

the values of the respective parameters given in (6.5) into the Q de�nition in (5.39). The

result reads

Q = c � c1;�� : (6.19)

Comparing this result with the progress rate formula in (5.22), one observes the relation

Q = c'. Hence, for the hyperplane case, the quality gain and the progress rate can

be converted to each other. The proportionality constant c for this relation is used in

transforming the expected values of these measures in the �tness space and search space

to each other. For the special case c = 1, both measures become equal on the hyperplane.

In the next subsection (Subsection 6.1.4), we will investigate whether such a relation is

possible for the parabolic ridge case.

Please note that the components of the unit vector v do not occur in the quality gain

formula (6.19). This vector indicates the direction of the hyperplane gradient, and it does

not occur in the ' formulae of the hyperplane in Point 5.3.5.1, either. As for the ' case, this

observation can be explained by the nature of isotropic mutations. This observation for '

will be investigated further for ridge functions by comparing empirical results obtained for

randomly selected unit vectors v (e.g. Subsection 7.2.4 and Subsection 7.2.7). However,

for the Q case, such a proof of rotation independence is too cumbersome by deriving the

parameters for the rotated case of general ridge function. One may still suppose that

Q is also rotation-independent, as ' is for isotropic mutations. This presumption seems

plausible since the iso�tness lines are not deformed by rotation.

77



6.1.3.2 The parabolic ridge

The quality gain formula (5.39) for the parabolic ridge (3.21) is obtained simply by inserting

the parameters given in (6.8) and (6.9) into the Q de�nition. The resulting formula is not

as simple as the one for the hyperplane case. Therefore, this formula will not be explicitly

displayed here. It will be compared with empirical results and to the progress rate formula

in the chapter for experiments, Section 7.3. At this point, it is important to summarize the

order relations of these parameters with respect to the isotropic mutation strength � and

the number of variables N . The results are summarized in Table 6.1. The parameters SQ,

Table 6.1: The order relations of the parameters in the quality gain Q formula in (5.39) for the

static and stationary case. The (1; �)-ES on the parabolic ridge.

order in � order in N

MQ SQ �3 �4 MQ SQ �3 �4

static �
2

�
2 1 1 N

p
N N

�1=2
N
�1

stationary �
2

�
2 1 1 N N N

�1
N
�2

�3, and �4 contain the unknown variable r. The value of r may a�ect these order relations.

In the static analysis, the value of r is constant. The order relations with respect to the

mutation strength � are given �rst. These are obtained from the terms which have the

higher order in �. In the order derivation for the cumulants, please note that SQ is ofO(�2).
One obtains O(�2) for MQ and SQ, and O(1) for �3 and �4, respectively. Therefore, the

cumulants can be neglected relatively. If one considers the asymptotics for N , N ! 1,

one obtains O(N) for MQ, O(
p
N) for SQ, O(N�1=2) for �3, and O(N�1) for �4. Again,

the e�ect of the cumulants is asymptotically negligible. However, for �nite values of � or

N , they should be taken into account. The Q formula for �nite N will be examined in the

chapter for experiments, Subsection 7.3.1.

For the stationary case, r is of O(�) and of O(N) (cf. the formulae obtained in Sub-

section 6.4); therefore, it must be considered in order estimations. One obtains the same

values for the asymptotics with respect to �. For N ! 1, one obtains again O(N) for

MQ, but O(N) for SQ, O(N�1) for �3, and O(N�2) for �4, respectively.

6.1.4 An alternative approach to Q

The quality gain was de�ned in Subsection 4.1.1 using the local quality function Q(z). For

the (1; �)-ES, it was formalized as the expected value of the Q(z) for the best descendant.

The resulting formula based on the statistical moments of the o�spring distribution can

be found in (5.39). For the parabolic ridge, the required parameters are computed in

Subsection 6.1.2.
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In this subsection, the de�nition of Q(z) will be used to derive an alternative Q formula

for the (1; �)-ES on the parabolic ridge. The �nal formula will be based on the expected

values of two progress measures (' and 'R) in the search space. The �rst measure is

the progress rate ' (4.6). It measures the expected useful distance traveled toward the

optimum in one generation. The second one, 'R, measures the progress in the direction

orthogonal to the ridge axis, i.e. in the r direction. After the formal de�nition of 'R, the

alternative derivation of Q will follow.

The ridge functions were introduced in Subsection 3.3.2. For these �tness functions,

the minimization of r is de�ned as the short term goal, and the maximization of x0 as long

term goal. The measure 'R is introduced here to formalize the progress orthogonal to the

ridge axis, i.e. the short term goal. It gives the expected decrease in the distance to the

ridge axis in a single generation. For the (1; �)-ES, it can be de�ned as

'R := Efr(g) � r
(g+1)g = Ef�r(g)g : (6.20)

One obtains 'R < 0 for r(g) < R
(1) and 'R > 0 for r(g) > R

(1). The symbol R(1)

was introduced in Page 49 to denote the stationary value of r. For the stationary case

(r(g) � R
(1)), 'R is small; and for r(g) = R

(1) it is zero.

For the formalization of the quality gain Q according to (4.4), the �tness values at

generations g and g + 1 should be used

F
(g) = x

(g)
0 � dr

(g)2 (6.21)

F
(g+1) = x

(g+1)
0 � dr

(g+1)2 = x

(g)
0 + z

(g)
0 � d

h
r
(g) ��r(g)

i2
: (6.22)

The symbol z
(g)
0 stands for the component of the mutation which generated the best o�-

spring in the progress direction. The de�nition of �r(g) can be found in (6.20). After

inserting (6.21) and (6.22) in (4.3), one obtains for Q(z)

Q(z) = F
(g+1) � F

(g) = z

(g)
0 + 2dr(g)�r(g) � d(�r(g))

2
: (6.23)

The quality gain Q was de�ned in (4.4) using the expected value of the local quality

function. It reads for the parabolic ridge using (6.23)

Q := EfF (g+1) � F
(g)g = Efz(g)0 g+ 2dr(g) Ef�r(g)g � dEf(�r(g))2g : (6.24)

As discussed in Subsection 4.1.2, the �rst term gives '. Using the de�nition of 'R in

(6.20), the second term becomes 2dr(g)'R. The expression Ef(�r(g))2g will be assumed to

be approximately equal to
h
Ef(�r(g))g

i2
. The error made will be discussed below. Using

this assumption, (6.24) becomes

Q = '+ 2dr(g)'R � d'
2
R
+ : : : : (6.25)

By this equation, the quality gain value can be obtained using the measures in the

search space. This relation is also expected to hold for ES algorithms other than the
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(1; �)-ES, and therefore, it serves as a more general approach than (5.39). The third term

in (6.25) is expected to be negligible as compared to the second term for su�ciently large

r
(g). This formula will be veri�ed empirically in Section 7.3. For 'R = 0, one has Q = ', in

other words, for r = R
(1), the quality gain is expected to be equivalent to the progress rate.

Therefore, one can expect Q � ' for the stationary case (r � R
(1)). Additional to the case

mentioned in (6.19), we observe a further case in (6.25) where this equivalence is expected

to hold. This condition can be observed on the static experiment in Subsection 7.3.2. A

theoretical formula for 'R can be found in Point 6.4.1.8, Equation (6.177).

Estimating the error for Ef(�r(g))2g �
h
Ef(�r(g))g

i2
. The de�nition of the variance

will be used to estimate the error made by this assumption. The variance D2fxg of a

random variable x is de�ned as [BS79, p. 704]

D
2fxg := Efx2g � [Efxg]2 : (6.26)

Therefore, Efx2g can be approximated by [Efxg]2 if the variance of x is su�ciently small.

This estimation would also be valid for the random variable �r(g) under this condition.

For the theoretical estimation of this error, one has to consider

E
n
(�r(g))

2
o

= E
n
(r(g) � r

(g+1))
2
o
= r

(g)2 � 2r(g) E
�
r
(g+1)

	
+ E

n
r
(g+1)2

o
;(6.27)

E
n
�r(g)

o
= r

(g) � E
�
r
(g+1)

	
; (6.28)h

E
n
�r(g)

oi2
= r

(g)2 � 2r(g) E
�
r
(g+1)

	
+
�
E
�
r
(g+1)

	�2
: (6.29)

Equations (6.27) and (6.29) di�er only by their third terms from each other. Therefore, one

can equivalently investigate whether Efr(g+1)2g � [Efr(g+1)g]2 or
q
Efr(g+1)2g � Efr(g+1)g

holds. Unfortunately, it was not possible in scope of this work to determine the conditions

for this approximate equality.

80



6.2 The success probability: P
s1 and P

s�

The success measures Ps1 and Ps� were introduced in Section 4.2. The former one stands for

the probability to generate an o�spring with a �tness value not worse than the parent. The

latter one gives the same probability for the whole set of � o�spring, i.e. the probability

that at least one of the descendants is better than or as good as its parent. They will be

computed here for the (1; �)-ES on the parabolic ridge �rst. A reasonable estimate to Ps1
is given, the error made thereby is calculated. Finally, an approximate formula for Ps1 of

the (1; �)-ES is given on the general ridge function.

The Ps1 formula can be used to derive Ps� using Equation (4.10), Ps� = 1� [1� Ps1]
�
.

Therefore, the formulae are not explicitly repeated in this section for Ps�. The values of

success measures at the optimal mutation strength �̂� will be compared with the simulation

results in the next chapter, Section 7.4.

6.2.1 The parabolic ridge case

The parameters for the pdf of the o�spring distribution were derived in Point 6.1.2.2.

Therefore, the calculation of Ps1 is a simple task. In Subsection 5.3.3, the Ps1 formula

has been given using the local quality function Q(z) as Ps1 = 1 � P (Q(z) < 0). Using

the standardized variable z := (Q �MQ)=SQ, the cumulative density function Pz(z) can

be used to express Ps1. The density itself Pz(z) is expressed by the series (5.17). For the

(1; �)-ES on the parabolic ridge, all of the parameters required in this equation can be

found in Point 6.1.2.2 (except �5). The distribution Pz(z) can be approximated by

Pz(z) � �(z)� 1p
2�

e�
1
2
z2
�3

3!
He2(z) : (6.30)

Only the �rst term in the bracket of (5.17) is considered. The Hermite polynomial He2(z)

can be calculated using (5.13)

He2(z) = z
2 � 1 : (6.31)

In the following, the second term in (6.30) will be neglected in the calculations. The error

made thereby is asymptotically (N ! 1) negligible; however, for �nite N an approx-

imation error should be expected. In Section 7.4 of the next chapter, it will be shown

by experiments that also this error is relatively small. The approximate Ps1 formula is

obtained using (4.9), (5.17), and (6.8)

Ps1 = 1� P (Q(z) < 0) = 1� Pz(z)jQ=0 � 1� �

�
0�MQ

SQ

�
(6.32)

Ps1 � �

�
MQ

SQ

�
= �

0
@� (N � 1)d�q

1 + (2dr)
2
+ 2d2(N � 1)�2

1
A

: (6.33)

81



This formula will be used in the static analysis. It attains its minimum value for r = 0,

and its maximum value P̂s1 = 1
2
for r ! 1 (cf. Section 4.2). The value of Ps� can be

obtained using (4.10). For the stationary case, the R(1) value in (6.166) from Section 6.4.1

must be inserted in (6.33). One obtains

Ps1 � �

2
6666664
� d(N � 1)�vuut1 +

[d(N�1)�]2

2c2
1;�

 
1 +

r
1 +

�
2c1;�

d(N�1)�

�2!

3
7777775

: (6.34)

This result was obtained for N ! 1 and after approximating the distributions of the

Q variates by normal distributions. Please note that Ps1 is conditional to r in Equation

(6.33), but not in Equation (6.34). In (6.34), the term \d(N � 1)�" occurs three times. As

will be seen in the derivation of the normalized progress rate formula in Section 6.3, this

term appears to be the appropriate de�nition for the normalized mutation strength �
�.

The same de�nition can be obtained by substituting � = 2 in (4.11). For �� := d(N � 1)�,

one gets the normalized stationary Ps1 value

Ps1 � �

2
64�
0
@ 1

�
�2 +

1

2c21;�

0
@1 +

s
1 +

�
2c1;�

�
�

�2

1
A
1
A
� 1
2

3
75 : (6.35)

One obtains asymptotically

lim
��!1

Ps1 = �(�c1;�) : (6.36)

This limit and the formulae (6.33), (6.34), and (6.35) are obtained for the asymptotic limit

case (N ! 1). However, they also yield accurate results for �nite N , especially at the

stationary case (r � R
(1)). The principal requirement for that is N � �; otherwise, no

accuracy can be guaranteed.

As will be seen in Subsection 6.3.1, the maximum normalized progress rate '̂� will be

obtained on the parabolic ridge as �� goes to in�nity. Therefore, (6.36) gives the value

of Ps1 at optimal ��, i.e. at �̂�. In other words, the maximum progress rate is obtained

where the success probability Ps1 attains its minimum value. This value for Ps1 di�ers

considerably from the corresponding values for the hyperplane, sphere model, and corridor

model [Rec73, p. 122], [Sch95, p. 143], which are 0:5, 0:27, and 1=2e, respectively (see

Page 52). Depending on the value of �, (6.36) is much smaller than the values obtained

for these three functions analyzed in the literature.

The relation to the sphere model. The relation of ridge functions to the sphere model

was explained at the end of Subsection 3.3.2. Therefore, it is reasonable to compute the
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limit value of Ps1 for � ! 1 on the sphere model, and compare it to the limit in (6.36)

on the parabolic ridge.

For the function F2(x) := �D2 in (3.7), one can obtain the vector a and the matrix Q

to approximate the local quality function Q(z). Using (5.16) the result reads

a =

0
BBBBB@

�2x1
�2x2
�2x3
...

�2xN

1
CCCCCA ; Q =

0
BBBBB@

1 0

1

1
. . .

0 1

1
CCCCCA : (6.37)

Using the de�nition of MQ and SQ given in (5.42), the de�nition of D in (3.6), and

(6.32) for approximating Ps1, one gets

Ps1 � �

�
MQ

SQ

�
= �

�
� N�

2

�

p
4D2 + 2N�2

�
: (6.38)

Since the limit in (6.36) was obtained for the stationary case, the Ps1 value will also

be evaluated here for the same case. Inserting the D(1) value from (5.30) in (6.38), the

formula reads

Ps1 � �

0
BB@� N�r

4
�
N�

2c1;�

�2
+ 2N�2

1
CCA = �

0
@� 1q

c
�2
1;� + 2N�1

1
A

: (6.39)

For N ! 1, (6.39) is equivalent to the value in (6.36) since c�21;� � 2N�1. In the sphere

model case, this limit means also '� = 0, i.e. no progress toward the optimum is expected

for the (1; �)-ES if D � D
(1). In the parabolic ridge case, this limit corresponds to the

maximum progress rate for the stationary case, as will be seen in Subsection 6.3.1.

6.2.2 The general ridge case

In the previous subsection, the Ps1 formula has been derived for the (1; �)-ES on the

parabolic ridge. Naturally, similar formulae can be derived for other ES algorithms on

the parabolic ridge, or for the (1; �)-ES on other ridge functions. The derivation of the

Ps1 formula for the (1; �)-ES on the general ridge function will analogously be done as the

derivation of (6.33) or (6.38). The required MQ and SQ values can be found in (6.17) and

(6.18), respectively. Therefore, Ps1 reads

Ps1 � �

�
MQ

SQ

�
= �

0
@� d��(N + �� 3)r��2

2

q
1 + (d�r��1)

2
+ �2

2

�
N � 2 + (�� 1)

2
�
(d�r��2)

2

1
A
: (6.40)

Naturally, this result reduces for � = 2 to the Ps1 formula for the parabolic ridge in (6.33).
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Unfortunately, the estimation of the error made in (6.40) has not been done yet, since

the �3 parameter is necessary in (6.30) for that. Its computation is lengthy. Equation (6.40)

is expected to yield useful results as least for the stationary case (see Subsection 7.4.3).

6.2.3 Final remarks on the success probability

The success measures Ps1 and Ps� are based on the local quality function Q(z). Therefore,

it is related directly to the quality gain Q. Consequently, similar to the quality gain Q,

success measures are also measured in the �tness space. The progress rate ', however, is

measured in the search space. The success rate Ps1 and the progress rate ' will be used in

the static analysis of the parabolic ridge to investigate the relationship between ' and Ps1
for this �tness function. These empirical results for Ps1 in Section 7.4 will be compared

with the ones in Section 7.2 obtained for the (1; �)-ES, yielding interesting observations.

Measures on both �tness and search spaces are concerned in this work. The analysis

of measures in the search space will be carried out in the following two sections. The

important task thereafter is to speculate on the role of the measures of these two spaces,

and on the relative merit obtained from them.

84



6.3 The progress rate '

This section is devoted to the analysis of the progress rate on ridge functions. Using

a local model, the stationary case will be investigated for the general ridge function on

various ES algorithms (Subsection 6.3.1). Thereafter, the (1; �)-ES case will be analyzed in

Subsection 6.3.2 for the static case. The same analysis will be repeated for the (�=�I; �)-ES

in Subsection 6.3.3. In Subsection 6.3.4, the results from the (�=�I; �)-ES will be adapted

to the (�=�D; �)-ES. For the (�; �)-ES, the analytical results from the (1; �)-ES will be used

to obtain the static ' formula (Subsection 6.3.5). For each static result mentioned, the

parabolic ridge case is considered in detail using respective R(1) results from Section 6.4.

The maximum ' value for these four algorithms on the parabolic ridge will be compared

to each other in Subsection 6.3.6, which immediately leads to the notion of progress rate

per descendant for fair performance comparisons, namely the progress e�ciency �. The

results of this section are summarized in Subsection 6.3.7.

6.3.1 A local model for the stationary case

Principally, the progress rate values can be computed using the method based on induced

order statistics. This method was described in Subsection 5.3.7; and it will be used for the

analytical derivation of the progress rate formulae for the (1; �)-ES and for the (�=�I; �)-

ES in the next two subsections. In this section, an alternative method based on geometric

relations will be provided. This method is much simpler. It yields satisfactory results for

the general case of ridge functions and for a large spectrum of ES algorithms.

This local model is based on two assumptions: The iso�tness surface can be locally

approximated for the stationary state by a hyperplane and the progress attained can be

decomposed in two directions perpendicular to each other. The former precondition -the

hyperplane approximation- will prove itself to be valid at least for the mutation strength

corresponding to R(1). This observation will be veri�ed by comparing the ' formulae ob-

tained in this subsection with the ones obtained in Subsection 6.3.2 and Subsection 6.3.3.

This comparison will be done on the formulae themselves to identify the negligible terms

for the stationary case, and using simulation results in Section 7.2. The latter statement

-decomposition of progress- is validated by the evolutionary progress principle (EPP, Sub-

section 5.2.6); and it will serve as an interesting example on how the loss term and the

gain term may be placed in the progress rate formula.

6.3.1.1 Approximating R(1) by using D(1)

The stationary r was introduced on Page 49, denoted by R(1). The relation of the distance

r to the quantity D on the sphere model was established on Page 37. The D(1) values

for di�erent ES algorithms are given on Page 63. Based on the relation between R(1) and

D
(1), the R(1) values can be approximated by using D(1), and using N � 1 instead of N .
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To give an example, the approximate R(1) value for the (1; �)-ES reads

R

(1)

1;� � (N � 1)�

2c1;�
: (6.41)

The validity of this approximation is dependent on �, as will be seen in Section 6.4.

The stationary value R(1) has an important role in the analysis of ES algorithms on

ridge functions. The term with r dominates the �tness value for ridge functions with

� > 1 if � � 1 (cf. FR(x) de�nition in Equation (3.13)). Therefore, one expects in

this N � 1 dimensional subspace a progress behavior similar to the one on the sphere

model. In Point 6.4.1.4, this assumption will be veri�ed for the (1; �)-ES, by comparing

the actual analytical formula with the �rst level estimates from the sphere model theory

for large values of the mutation strength: Equation (6.166) asymptotically (� ! 1)

becomes equivalent to (6.41). A similar behavior is observed in Section 6.4 for the respective

R
(1) values of other ES algorithms. For small � values, the actual stationary distance is

even larger, this means that the iso�tness line can be approximated even better by the

hyperplane since the local curvature decreases further for larger r. The e�ect of d on R(1)

can be seen in the analytically derived formulae in Section 6.4, and therefore it will not be

discussed here in detail.

6.3.1.2 Local approximation by hyperplane

The local property of the iso�tness surface can be approximated by a hyperplane (see e.g.

Figure 3.5). A typical plot is shown in Figure 6.1. In this �gure, the stationary case is

depicted for the parabolic ridge with d = 0:01, N = 100, and � = 8. The expected length

kzk of a mutation vector can be calculated by using the Central Limit Theorem [Roh76,

p. 282] since all N variables are mutated normally (cf. Equation (6.174)). Hence, the

length of the mutation vector is roughly the square root of the sum of variances for all

variables. One obtains kzk � �

p
N = 80, where the relative error in this result vanishes

for N !1.

The relevant part of Figure 6.1 is focused in Figure 6.2. Another mutation vector z is

shown here. The di�erence between the iso�tness line and the hyperplane is exaggerated,

and the vector z is shown in a fraction of its original size. In scope of this approximation,

the iso�tness line of the hyperplane is considered in the analysis, instead of the iso�tness

curve of the parabolic ridge. This is admissible because they locally do not di�er much.

Consequently, one expects for the parabolic ridge a progress rate equivalent to the one

of the hyperplane, however, in the direction of the gradient a. This expected progress is

indicated as '.

Since the progress rate is measured in the direction of the ridge axis (indicated as e0
in the �gure), one has to consider only the e0 component of the vector '. As a result, the

component orthogonal to the ridge axis cannot be considered as progress. These N � 1

directions are represented in the �gure by the unit vector er. The next step is the formal

calculation of these two components of the vector '.
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Figure 6.1: The search space plotted r versus x0 for the parabolic ridge (d = 0:01, N = 100).

The iso�tness line and the approximating hyperplane are shown. The progress vector (the almost

vertical one) and an arbitrarily chosen mutation vector (the longer one) for the stationary case

(r � R(1), � = 8) are depicted. The value R(1) � 257:4 is obtained using (6.41), which is used

in the �gure. Equation (6.166) yields 259 for these values. The length of the mutation vector is

kzk � �
p
N = 80.

6.3.1.3 The (1; �)-ES case

In Point 6.3.1.2, the �tness landscape of the parabolic ridge has been locally approximated

by an hyperplane for the stationary case. This model can also be applied to ridge functions

with � > 2 since the curvature of the iso�tness line for the stationary distance R(1) is even

smaller for these functions (cf. Figure 3.7 for � = 10). Such small curvature values yield a

better local approximation by a hyperplane. Additionally, this model is also applicable for

the stationary case of ridge functions with � < 2, since the curvature of these functions is

less than the one of the parabolic ridge for the same r. Furthermore, their observed R(1)

value can be larger than the one for the parabolic ridge. The value of R(1) for both cases

will be investigated by experiments in Subsection 7.1.3. The stationary ' value for a given

� can be obtained as �rst order approximation by inserting the empirical R(1) value into

the ' formulae obtained in this subsection using the local model.

The progress rate ' for the (1; �)-ES on ridge functions can be calculated approximately

for the stationary case using the local model introduced in Figure 6.2. The progress rate

' of the hyperplane (Equation (5.22)) is written in vector form as

' =
a

kak' =
a

kakc1;�� : (6.42)

By using e0 and er, and the de�nition of r in (3.12), the gradient vector a (Equation (6.1))
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Figure 6.2: The local approximation for the stationary case. This �gure magni�es the

relevant parts of Figure 6.1, however uses a di�erent mutation vector z, shown as a fraction

of its actual length. The unit vectors e0 and er, the progress vector ' for the hyperplane,

and the gradient vector a are shown. The progress rate ' of the parabolic ridge is the

component of ' in e0 direction.

can be rewritten as

a =

0
@ @F

@x0

@F

@r

1
A =

�
1

�d�r��1
�
= e0 � d�r

��1er : (6.43)

The component of ' in e0 direction gives the stationary progress rate value of the (1; �)-ES

on the ridge functions

' � eT0 �' =
c1;��

kak e
T

0 � a =
c1;��

kak ; (6.44)

and therefore

' � c1;��q
1 + (d�r��1)

2
: (6.45)

This result was obtained by assuming that the isometric hypersurface can locally be ap-

proximated by a hyperplane. For � = 0, (6.45) can be investigated further. It becomes an

exact equation (see Equation (5.22)).

Please note that this static progress rate formula is also applicable for any arbitrary

r value (see Subsection 7.2.10). The static progress rate formula of the (1; �)-ES will be
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derived in Subsection 6.3.2 for a given r value. This static result (6.84) can be used for the

stationary case, using the R(1) value which will be derived in Subsection 6.4.1. Actually,

the theoretical R(1) value can also be inserted into (6.45). Both formulae will be compared

with the simulation results in Section 7.2.

In the following, the asymptotic (� ! 1) properties of (6.45) will be investigated by

assuming that R(1) can be approximated by D
(1) in (6.41). The reader is referred to

Point 6.3.1.1 for explanations on the applicability of this approximation. The parabolic

ridge case (� = 2) is considered �rst. After substituting (6.41) for r, the steady state

progress rate formula reads

' � c1;��q
1 + (2dr(�))

2
=

c1;��

1 +
�
d

(N�1)�
c1;�

�2 : (6.46)

Taking the limit one obtains the asymptotic progress rate ' for the parabolic ridge

lim
�!1

' � c
2
1;�

d(N � 1)
: (6.47)

This result for ' will be shown to be the maximum possible static progress rate '̂ for

the (1; �)-ES. The appropriateness of this asymptotic equality will be shown in the next

subsection (see Equation (6.90)). By introducing a normalization, this result can be ex-

pressed independent of the parameters d and N . Furthermore, a similar normalization for

the mutations strength � will make the stationary progress rate formula simpler:

�
� := d(N � 1)�; '

� := d(N � 1)' (6.48)

This normalization is of di�erent nature than the one for the sphere model (Equation (5.25)).

It will be used to simplify formulae and to generalize simulation results (cf. Subsection 4.4

for the bene�ts of normalization). As an example, the limit of the normalized progress

rate '� will be computed for the parabolic ridge case. Applying (6.48) to (6.46), one gets

lim
��!1

'
� � lim

��!1

c1;��
�q

1 + ( ��

c1;�
)
2
= c

2
1;� : (6.49)

For the general case of ridge functions, the limit for (6.45) becomes using (6.41)

lim
�!1

' � lim
�!1

c1;��q
1 + (�dr��1)

2

� lim
�!1

c1;��s
1 +

�
�d

h
(N�1)�
2c1;�

i��1�2
= lim

�!1

c1;��

�d

�
2c1;�

(N � 1)�

���1

: (6.50)

In this partial result, a normalization of � similar to (6.48) would again give an equation

independent of d and N . This normalization must be nonlinear in d. One obtains

�
� := d

1
��1 (N � 1)�; '

� := d

1
��1 (N � 1)' : (6.51)
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In the simulations chapter, this normalization will be used to compare the progress results

obtained for di�erent ridge functions. Such a comparison cannot be made theoretically,

since a general R(1) formula has not been derived yet.

Unfortunately, this general normalization cannot be applied to the sharp ridge case

(� = 1). However, (6.45) becomes for this case so simple that no normalization is needed

'j�=1 � c1;��p
1 + d

2
: (6.52)

This result will be investigated by experiments in Subsection 7.2.5.

Discussion. The results obtained for the (1; �)-ES on ridge functions using the local

model in Figure 6.2 for the stationary case (r � R
(1)) will be discussed.

The progress rate of the parabolic ridge is expected to go to a nonzero limit as the

mutation strength goes to in�nity (cf. (6.47) and (6.49)). This is a new result as compared

to the limits observed for the hyperplane and sphere model: For the hyperplane case,

the limit lim�!1 ' goes to in�nity (see Equation (5.22)), and for the sphere model, it

goes to �1 for constant R and N (see Equation (5.26) and the normalization in (5.25)).

Therefore, one observes a di�erent convergence behavior for the parabolic ridge.

The same limit can also be investigated for cases other than � = 2, using the asymptotic

approximation for R(1) in (6.41). For � < 2, the numerator of (6.45) is of higher order in

� than the denominator, as can be seen in (6.50). As a result, the limit will be in�nite.

The hyperplane case (� = 0) is included in this case. As a by-product, the progress rate

for � < 0 becomes equivalent to the one of the hyperplane. In this case, the e�ect of r

becomes negligible in the denominator: Since it has a negative exponent, the second term

in (6.45) can be neglected as compared to the �rst one.

Since progress is measured in the direction speci�ed by the ridge axis, the ES algo-

rithm cannot get a higher progress rate value for � < 0 than it attains for the hyperplane.

The progress coe�cient de�nes the progress limit for a given direction and unit muta-

tion strength. Therefore, the case � < 0 (concave functions) is not interesting for the

investigation of the progress rate.

On the other case, � > 2, the dominator of (6.45) is of higher order in � (see also

Equation (6.50)); therefore, the limit lim�!1 ' is zero. Since ' is zero for � = 0 and

for � ! 1, one expects a maximum for a value of � in-between. The values for the

optimum progress rate '̂ and optimum mutation rate �̂ (or '̂� and �̂�) can be determined

numerically. For � = 2, one obtains �̂ = �̂
� = 1 and therefore the '̂ value in (6.47) and

the '̂� value in (6.49), respectively. The proof of this fact will follow in Subsection 6.3.2.

From the ' formula (6.45), one can infer that the (stationary) progress rate for any

ridge function must be nonnegative, independent of the values of �, d, N , and r. It becomes

also clear that the static value of the progress rate is maximal for r = 0 (in other words,

on the ridge axis). For r !1, the progress rate approaches zero for the � > 1 case. The

cases � = f1; 2; 8g will be investigated in Subsection 7.2.10.
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Other ES algorithms. Up to now, the (1; �)-ES algorithm was considered. Actually,

the local model in Figure 6.2 can be applied to other ES algorithms. As a result, one can

obtain approximate formulae for the respective progress rates. Firstly, Equation (6.45)

shall be adapted to other algorithms. This will be done basically by using the appropriate

progress coe�cient in the numerator of (6.45). As a result, the approximate stationary

formulae for the general ridge function can simply be obtained.

In the following, only the � = 2 case is shown in order to reduce the number of formulae

to be considered, and since the asymptotic (� !1) limit of the stationary progress rate is

of utmost interest for di�erent algorithms. This limit will be determined for each algorithm

considered. For the (1; �)-ES, this limit was obtained as 1 for � < 2 and as 0 for � > 2,

respectively. These two limits will also be valid for other ES algorithms.

The derivation of the progress rate formulae for other ES algorithms are based on the

same two assumptions made for the (1; �)-ES: The local iso�tness curve is approximated

by a hyperplane. Thereafter, the progress rate for this hyperplane is decomposed using

the evolutionary progress principle. In the second step, the component giving the progress

rate of the parabolic ridge is obtained using the gradient vector.

6.3.1.4 The (�=�I; �)-ES

The progress rate of the (�=�I; �)-ES on the hyperplane was given in (5.24). In this

algorithm, the mutations are generated from the centroid of � parents in the search space

(see Subsection 2.4.1 for the algorithm). Therefore, the distance r corresponds to the

distance of this centroid to the ridge axis. Consequently, the formula for the (�=�I; �)-ES

reads

' � c�=�;��q
1 + (2dr)

2
: (6.53)

The stationary value of r is approximated by using the D(1) value in (5.32). Similar to the

considerations in Point 6.3.1.1, and using (6.48) for the normalization, the approximate

stationary value R(1) is inserted in (6.53). The asymptotic limits read

lim
�!1

' � lim
�!1

c�=�;��r
1 + (2d

(N�1)�
2�c�=�;�

)
2
=

�c
2
�=�;�

d(N � 1)
; lim

��!1
'
� � �c

2
�=�;�

: (6.54)

These asymptotic limits will be calculated formally using the asymptotically (N ! 1)

exact formulae for ' and R(1) of the (�=�I; �)-ES in Subsection 6.3.3. The values obtained

accord the ones in (6.54).

6.3.1.5 The (�=�D; �)-ES

Up to now, the full analysis of the (�=�D; �)-ES is an open problem in the ES theory.

In [Rec94, p. 150], it is asserted that the e�ects of dominant and intermediate recombination
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are the same if the (�=�I; �)-ES operates at a mutation strength
p
� times larger than the

� value for the (�=�D; �)-ES. An approximate theoretical approach for N !1 to explain

this observation can be found in [Bey95a], [Bey96c, p. 227-235] which uses a surrogate

mutation model. The idea of surrogate mutations consists of substituting the e�ect of

mutation and recombination operators with a mutation operator alone. The resulting

mutations are applied to the centroid of the population. This centroid is virtual since the

(�=�D; �)-ES does not compose the centroid explicitly. The �rst step is �nding the strength

�s of the surrogate mutations. The asymptotic (N ! 1) result is obtained by Beyer as

�s =
p
�� for the stationary distribution of the population. The statistical estimate for

the strength of the surrogate mutations veri�es the relation proposed by Rechenberg. This

relation has an hypothetical character, and it is not formally proven yet. The necessary

conditions for its correctness are unknown. The progress rate formula for the (�=�D; �)-ES

is obtained by substituting the mutation strength by
p
�� in the progress rate formula in

(6.53) for the (�=�I; �)-ES. The resulting formula reads

' �
p
�c�=�;��q
1 + (2dr)

2
: (6.55)

The asymptotic (� ! 1) value for the stationary case is obtained by approximat-

ing R(1) by D
(1). The same consideration has also been used for the (�=�I; �)-ES in

Point 6.3.1.4, it was explained in detail in Point 6.3.1.1. The respective D(1) formula can

be found in (5.33). Therefore, using the normalization in (6.48), one gets

lim
�!1

' � lim
�!1

p
�c�=�;��r

1 + (2d
(N�1)�

2
p
�c�=�;�

)
2
=

�c
2
�=�;�

d(N � 1)
; lim

��!1
'
� � �c

2
�=�;�

: (6.56)

Please note that the formulae in (6.55) and (6.56) are valid for the parabolic ridge if

the ridge axis is diagonally placed in the N dimensional search space (see Equation (3.17)

for the de�nition of the rotated ridge function). If the unit vector v shows a di�erent

direction, a lower progress rate is observed in simulations. Even for the diagonal case, the

derivation has an hypothetical character.

For the explanation of this observation, one has to look closer to the local model

(Figure 6.2 on Page 88). This model was used to derive the progress rate formulae for the

ridge functions. It is based on locally approximating the iso�tness curve by a hyperplane.

Since the progress direction is given by the unit vector v, the component of the progress

vector of the hyperplane in the v direction gave us the progress rate of the ES algorithm.

The progress rates of all ES algorithms do not depend on how the coordinate axes are

placed, except the algorithm which uses dominant recombination. This statement is valid

for isotropic mutations, and for the cases both with or without intermediate recombina-

tion. However, the progress performance of ES algorithms with dominant recombination is

a�ected by rotations. The investigation of the general case for the diagonal v and a formal

proof that (6.55) gives the maximum progress rate for any v could not be done in scope
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of this work. Some simulation results obtained using the (�=�D; �)-ES on ridge functions

can be found in Subsection 7.2.4 and Subsection 7.2.7. In the following, the progress rate

of the (�=�D; �)-ES will be considered for the hyperplane case (� = 0).

6.3.1.6 The (�=�D; �)-ES on the hyperplane

The progress rate ' will be considered for two cases using the same �. Although unproven,

these two cases seem to yield the two extreme values for the progress rate: If the unit

vector v indicating the progress direction is aligned with the unit vector for a variable,

' is minimized; however, if it is diagonally placed with respect to the unit vectors for

variables, it is maximized. These two cases can be formalized as follows for the general

rotated hyperplane in (3.21):

1: v := (v0; v1; : : : ; vN�1)
T
; vi = �1 and 8k 6= i : vk = 0 (6.57)

2: v :=
1p
N

(v0; v1; : : : ; vN�1)
T
; vi = �1 (6.58)

In the former case, there are 2N di�erent choices for v. The progress axis is aligned with

the unit vector of a variable. As a result, other N � 1 variables do not appear in the

�tness function (see e.g. Equation (3.14)). Consequently, they are selection-invariant. The

selection is done by using the value of the single variable xi with nonzero vi only.

It is interesting to investigate the operation of the (�=�D; �)-ES algorithm on this single

variable: As can be seen in Algorithm 5 on Page 11, the recombination operator is applied

before the mutation operator. It produces a temporary state, and the mutation operator

is applied later at this state. In dominant recombination (see Subsection 2.4.2), each

component of this temporary state is selected randomly in the parental pool. Since v is

aligned, N � 1 of these components are selection-invariant. The variable which is used in

the �tness evaluation is selected from the pool of � parents, and the mutation is applied

thereafter. However, this is exactly the way how the (�; �)-ES operates. As a consequence,

the (�=�D; �)-ES gives exactly the same progress rate as the (�; �)-ES, i.e. ' = c�;�� as

given in (5.23).

The latter case shown in (6.58) describes the vector v diagonal in the search space

spanned by the unit vectors for variables. For the realization, one has 2N di�erent choices

for v. At any of these choices, all variables will have the same e�ect on the �tness value

(see Equation 3.21). The population distribution of the parental generation is necessary

for the exact calculation of the progress rate '. Alternatively, one can model the e�ect

of mutation and recombination operators by a surrogate mutation. An overview to this

model was given in Point 6.3.1.5. The progress rate for dominant recombination can be

obtained by substituting � by
p
�� in the progress rate formula for the (�=�I; �)-ES. In

summary, one obtains the progress rate of the (�=�D; �)-ES on the hyperplane for the two

cases in (6.57) and (6.58) as follows

' =

�
c�;�� if v is alignedp

�c�=�;�� if v is diagonal.
(6.59)
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This result will be compared with simulation results in Subsection 7.2.7. Please note that

the result for the aligned v is valid for any N . For the diagonal case, it is obtained

asymptotically for N !1.

6.3.1.7 The (�; �)-ES

The observations on the local model will be �nished with the (�; �)-ES case. The per-

formance of the (�; �)-ES on ridge functions is estimated using the same scheme already

used above for other algorithms. Considering the progress rate of this algorithm on the

hyperplane (Equation (5.23)), the local model in Figure 6.2 on Page 88, and the progress

rate formula in (6.45), one obtains the progress rate of the (�; �)-ES as

' � c�;��q
1 + (2dr)

2
: (6.60)

The approximation of R(1) by D(1) was explained in Point 6.3.1.1. After inserting the sta-

tionary value D(1) (Equation (5.31)) in (6.60) for r, the asymptotic limit for the stationary

progress rate can be computed (consider (6.48) for the normalization)

lim
�!1

' � lim
�!1

c�;��q
1 + (2d

(N�1)�
2c�;�

)
2
=

c
2
�;�

d(N � 1)
; lim

��!1
'
� � c

2
�;�

: (6.61)

6.3.1.8 Summary

In this subsection, the progress rate of general ridge functions has been investigated using

a simple local model. As a result, a progress rate formula (Equation (6.45)) has been

obtained for the stationary case. This formula can be adapted for other ES algorithms,

as it is done subsequently for the parabolic ridge case. For other ridge functions, this

extension is also possible (cf. the two paragraphs ending Point 6.3.1.3).

The progress rate of ES algorithms strongly depends on the value �. The asymptotic

limit of ' is observed for � !1 on the parabolic ridge. It is �nite for the ES algorithms

investigated, although the same limit gives �1 for the sphere model and 1 for the hy-

perplane. One observes that this limit for the (�; �)-ES is smaller than the one for the

(1; �)-ES. Additionally, it is equal for the (�=�I; �)-ES and for the (�=�D; �)-ES if the unit

vector v is chosen to be diagonal for the (�=�D; �)-ES. The value obtained for these two

latter cases is larger than the (1; �)-ES case depending on the � value used. In the next two

subsections, it will be shown that this asymptotic limit (� !1) gives the maximum sta-

tionary progress rate '̂ for the parabolic ridge. In Subsection 6.3.6, the progress e�ciency

� will be used to compare the progress rates of di�erent ES algorithms.

The stationary progress rate formulae for the (1; �)-ES on the sharp ridge is also ob-

tained as a by-product of the analysis (Equation (6.52)). Similarly, the ' formulae for other

ES algorithms can be obtained by using corresponding values for R(1) and the progress

coe�cient, as it is done here for the parabolic ridge case.
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The (�=�D; �)-ES algorithm has been discussed for the hyperplane case in Point 6.3.1.6.

Two di�erent progress rate formulae are obtained depending on the direction of the vector

v. The performance of the (�=�D; �)-ES depends on the v value also for other ridge

functions, as will be seen in Subsection 7.2.4 and Subsection 7.2.7.

The analytical derivation of the progress rate formulae for the (1; �)-ES and for the

(�=�I; �)-ES on the general ridge function follows in the next two subsections, respectively.

The obtained results are asymptotically (N ! 1) exact for N � �. The analytical

derivation of the two respective R(1) values will be carried out in Section 6.4. The formulae

asserted for the (�=�D; �)-ES and for the (�; �)-ES can also be found there.

6.3.2 The (1; �)-ES

In this subsection, the method described in Subsection 5.3.7 will be used to derive the

progress rate ' for the (1; �)-ES on the general ridge function FRR(x) (Equation 3.17).

The principal idea of induced order statistics [Bey93, Bey96c] is used for the analytical

calculation of the progress component of the mutations that generated the selected indi-

viduals; i.e. the expected progress in the search space obtained by �tness-based selection.

Only the e�ect of mutation and selection is considered in this subsection. The analysis for

the (�=�I; �)-ES will follow in Subsection 6.3.3.

The progress rate of the (1; �)-ES can be expressed as an expected value integral

' = Efzg =
Z 1

�1
z p1;�(z) dz : (6.62)

The random variable z describes the progress toward the optimum in the search space.

In other words, it is the component of the mutation generating the best descendant (with

respect to the �tness) in the progress direction. This direction is given by the unit vector

v. The integral is taken over all possible values of z. Since the functioning mechanism

of the (1; �)-ES with isotropic mutations is not a�ected by rotations, it will be assumed

that the progress direction coincides with a coordinate axis (cf. Equation (3.11)), and the

progress is measured using the values for this variable.

The probability density of z is described by p1;�(z), where the ES algorithm is indicated

in the subscript. This density is to be speci�ed next. All � descendants are generated using

isotropic mutations (cf. Equations (2.1){(2.3)). Therefore, the o�spring are normally-

distributed in any arbitrary direction, indicated as pz(z) � N (0; �2) (cf. Equation (5.4)).

This is also true for the descendant with the best �tness value among all � o�spring, i.e.

the best individual is also generated by such a mutation. The component of this mutation

in the progress direction is described by the variable z in (6.62). Per de�nition, the best

individual has a �tness value better than all remaining �� 1 descendants generated. This

condition can be expressed by the acceptance probability Pa 1;�(z). Anyone of � descendants

can principally be the best one; therefore, the product pz(z)Pa 1;�(z) must be multiplied by

�. As a result, the pdf p1;�(z) reads

p1;�(z) = � � pz(z)Pa 1;�(z) : (6.63)
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The cdf Pa 1;�(z) remains to be determined. It describes the acceptance probability for

a given z value; i.e. the probability that the �tness of an individual with this z value is

better than all other �� 1 �tness values. Equivalently, Pa 1;�(z) can be de�ned using local

quality function (LQF) values, since the parent of all descendants is the same. The LQF

was de�ned in (4.3). In the following, the LQF value for a given progress component z

will be denoted by Qjz, which can take any real value. The pdf of Qjz can be written

as p(Qjzjz). The probability that a descendant has an LQF value less (worse) than Qjz

will be denoted by P1(Qjz); consequently, this probability will be [P1(Qjz)]
��1

for � � 1

descendants. The resulting integral for the cdf Pa 1;�(z) reads

Pa 1;�(z) =

Z 1

�1
p(Qjzjz) [P1(Qjz)]

��1
dQjz : (6.64)

The Qjz value for a given z can practically have all possible values for the LQF; the

interval for these possible values is therefore considered as (�1;1), as for the range of z

in (6.62). This range is appropriate in both cases for ridge functions: The optimum is at

in�nity, therefore the z range is appropriate. The interval for Qjz was formally discussed

for Equation (4.5), and it is bounded depending on the worst and best possible �tness

values. Since both of these values are unbounded for ridge functions, the Qjz value can

take all possible real values.

The progress rate ' can be expressed after combining the partial results in (6.62),

(6.63), and (6.64)

' = �

Z 1

�1
z pz(z)Pa 1;�(z) dz = �

Z 1

�1
z pz(z)

Z 1

�1
p(Qjzjz) [P1(Qjz)]

��1
dQjz dz : (6.65)

One can observe an important point in (6.65): The complicated expression [P1(Qjz)]
��1

does not directly depend on z. Therefore, one can exchange the integration order, and

substitute Q := Qjz; resulting

' = �

Z 1

�1
[P1(Q)]

��1
�Z 1

�1
z pz(z) p(Qjz) dz

�
dQ : (6.66)

This equation is the starting point of the progress analysis for the (1; �)-ES, and was

already given in (5.50).

The functions P1(Q) and p(Qjz) are �tness-dependent; therefore, they must be deter-

mined anew for each �tness function of interest. A �rst order approximation to P1(Q) is

given in (5.51), P1(Q) � �[(Q �MQ)=SQ]. The MQ and SQ values can be calculated for

any function, as shown in (5.40). However, this approximation may not be accurate for

all �tness functions. This case was already mentioned in Subsection 5.3.3. The cdf Pz(z)

in (5.17) is nothing but the normalized form of the distribution P1(Q). If the simplest

approximation in (5.51) is not accurate enough, one has to use the additive terms given.

As a result, (6.66) becomes much harder to integrate.

The density p(Qjz) is obtained using the LQF by keeping z (the component of the

mutation vector in progress direction) as a conditional variable. The mean value and
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standard deviation of the LQF are easy to calculate. The density p(Qjz) is approximated

by a normal distribution conditional to z. The mutations are normally distributed in the

search space; however, the �tness values are in general not normally distributed in the

�tness space. Since p(Qjz) is de�ned in the �tness space, this normal approximation is

not valid for any arbitrary function. As in any approximation, a computation error is

caused by the normal approximation of p(Qjz). The theoretical formulae obtained for '

are therefore compared with the simulation results in Section 7.2. The results obtained are

quite satisfactory.

6.3.2.1 The calculation of P1(Q)

At the end of Subsection 5.3.7, the approximation P1(Q) � �[(Q�MQ)=SQ] was suggested

in (5.51). The error made by this approximation depends on the �tness function analyzed.

In the following, the cdf P1(Q) is derived using the density functions p(Qjzjz) and pz(z).
The P1(Q) is obtained from the de�nition of conditional probability functions

P1(Q) :=

Z
Q

�1

Z 1

�1
p(Qjzjz) pz(z) dz dQjz : (6.67)

The inner integral is taken for all possible values of z, it gives the expected value of the

density p(Qjzjz) for all values of z. The outer integral gives the probability that this

expected value is below a given value Q, i.e. the cdf for the values of Qjz less than Q. The

probability density pz(z) was already used in (6.63). After the inner integral is taken over

z, the outer integral and the �nal result is no more dependent on z. The conditional pdf

p(Qjzjz) must be determined next and then the integration of (6.67) can be carried out.

The density p(Qjzjz) is approximated by the normal distribution. Therefore, the mean

value MQjz and the standard deviation SQjz of this conditional density function are to be

calculated. The subscript Qjz (instead of Q) indicates that this LQF is conditional to z.

The values of MQjz and SQjz are computed next using the conditional LQF; i.e. condi-

tional to the random variable z which presents the mutations in x0 direction. This LQF is

determined for the ridge function (3.11) according to the de�nition in (4.3). One obtains

FR(x
(g)) = x

(g)
0 � d

"
N�1X
i=1

x

(g)
i

2

#�
2

(6.68)

FR(x
(g+1)) = x

(g)
0 + z

(g)
0 � d

"
N�1X
i=1

�
x

(g)
i

+ z

(g)
i

�2#�
2

(6.69)

Q(z) = FR(x
(g+1))� FR(x

(g))

= z

(g)
0 � d

0
@
"
N�1X
i=1

�
x

(g)
i

+ z

(g)
i

�2#�
2

�
"
N�1X
i=1

x

(g)
i

2

#�
2

1
A

: (6.70)

The values ofMQjz and SQjz are determined conditional to z
(g)
0 (which is simply denoted

as z). The �rst component of the vector a (6.1) and the �rst row and �rst column of
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matrix Q (6.2) are a�ected by this condition. Therefore, they are renamed as a
0

and Q
0

,

respectively. The �rst component of a
0

becomes zero. The matrix Q
0

does not di�er from

Q since the �rst row and �rst column of Q consist of zeroes anyway. Consequently, the

conditional mean valueMQjz is computed as the expected value of the LQF in (6.70). Using

(5.40) and (6.17), one obtains

MQjz = z � �
2Tr[Q

0

] = z � 1

2
d��

2(N + �� 3)r��2 = z +MQ ; (6.71)

The conditional variable z added is the only di�erence between MQ and MQjz, for the

unconditional case one has Efz(g)0 g = Efzg = 0. The conditional standard deviation SQjz
is obtained using the de�nition (5.40) and the unconditional SQ in (6.18). Since the �rst

component of a
0

is zero, the �rst term \1" of the unconditional SQ does not appear in SQjz.

This is the only di�erence between SQjz and SQ. The standard deviation of z
(g)
0 in (6.70)

is zero, since z
(g)
0 is considered as a constant in the conditional Q(z). One obtains

SQjz = �

s
(d�r��1)

2
+ 2�2

�
N � 2 + (�� 1)

2
��d�

2
r
��2
�2

=
q
S
2
Q
� �

2
: (6.72)

The density p(Qjzjz) is approximated by N (MQjz; S
2
Qjz). Using (6.67), (6.71), and (6.72),

p(Qjzjz) reads

p(Qjzjz) � 1p
2�SQjz

exp

"
�1

2

1

S
2
Qjz

�
Qjz �MQ � z

�2#
: (6.73)

The actual values ofMQjz and SQjz will not be inserted into the formulae. In the following,

their values will be expressed by MQ and SQ.

Using the approximation (6.73) for p(Qjzjz), Equation (6.67) can be integrated. In

the �rst step, the integration order is exchanged. Since pz(z) is independent of Qjz, the

integration of p(Qjzjz) can be carried out. In the result below, the density pz(z) is inserted

from (5.4)

P1(Q) =
1p
2��

Z 1

�1
exp

�
�1

2

z
2

�
2

�
�

2
664� �

SQjz| {z }
a

z

�

+
Q�MQ

SQjz| {z }
b

3
775 dz : (6.74)

The substitutions \a" and \b" are introduced for conciseness. After the transformation

t := z=�, the formula (5.11) can be used to solve the integral

P1(Q) =
1p
2�

Z 1

�1
e�

1
2
t
2

� [at + b] dt = �

�
bp

1 + a
2

�
: (6.75)

The value of the denominator can be calculated as

p
1 + a

2 =

s
1 +

�
2

S
2
Qjz

=

vuut�
2 + S

2
Qjz

S
2
Qjz

=
SQ

SQjz
: (6.76)
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Therefore, the result for P1(Q) reads

P1(Q) � �

�
Q�MQ

SQ

�
: (6.77)

Please note that the approximation for P1(Q) in (6.77) is exactly the same as (5.51). The

value of MQ can be found in (6.17), and of SQ in (6.18), respectively.

In the following, the derivation of the progress rate ' will be carried out for the ridge

function class. The distribution P1(Q) and the density p(Qjz) are not exact for all ridge
functions. Therefore, the progress rate formulae obtained using them are valid in scope

of the approximation for these probability functions. The resulting formula will mainly

be used for the parabolic ridge case, since the LQF approximation in Subsection 5.3.2 is

exact for this case. For other ridge functions, however, larger approximation errors are to

be expected.

6.3.2.2 The progress rate for ridge functions

The progress rate ' can be obtained for the (1; �)-ES by using (6.66) for any �tness

function, if the required probability densities are available. In the following, this task

will be carried out for the general ridge function. The evaluation has three steps. First,

the quantity P1(Q) must be determined. This has already been done in Point 6.3.2.1

with the result (6.77). It accords to the general �rst order estimate in (5.51) for any

�tness function. The second step is the evaluation of the inner integral in (6.66). For this

purpose, the function-speci�c density p(Qjz) is needed. This density was already used in

the derivation of P1(Q): An approximation to it can be found in (6.73). The inner integral

is computed using the integral formula (5.10). Third, the terms will be reordered and the

progress coe�cient c1;� is substituted from (5.18). After this overview, we can now start

with the derivation.

The formulae of p(Qjz) in (6.73) (writing Q instead of Qjz) and of P1(Q) in (6.77) are

inserted in the integral (6.66). After using the de�nition of pz(z) in (5.4), the result reads

' =
�

2��SQjz

Z 1

�1

�
�

�
Q�MQ

SQ

����1 Z 1

�1
ze�

1
2
z2

�2 exp

"
�1

2

(Q�MQ � z)
2

S
2
Qjz

#
dzdQ: (6.78)

This expression can be simpli�ed by using the substitutions

t :=
z

�

dt :=
dz

�

s :=
Q�MQ

SQ

ds :=
dQ

SQ

: (6.79)

Two further substitutions a and b(s) are introduced

Q�MQ � z

SQjz
=
SQ � s� z

SQjz
=

SQ

SQjz
s| {z }

=: b

+� �

SQjz| {z }
=:a

t = at+ b(s) : (6.80)
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Using (6.79) and (6.80), the expression for the progress rate ' in (6.78) becomes

' =
�

2�

�SQ

SQjz

Z 1

�1
[� (s)]

��1
Z 1

�1
t e�

1
2
t2 exp

�
�1

2
(at + b(s))

2

�
dt ds : (6.81)

The inner integral is evaluated using the formula (5.10)

1p
2�

Z 1

�1
t e�

1
2
t2 exp

�
�1

2
(at + b(s))

2

�
dt = � ab

(1 + a
2)

3
2

exp

�
�1

2

b
2

1 + a
2

�

=
�SQjz

S
2
Q

s e�
1
2
s2

: (6.82)

Equation (6.76) is used in the calculation. Thereafter, the result in (6.82) is inserted back

in (6.81). After rearranging terms, one obtains

' =
�p
2�

�
2

SQ

Z 1

�1
s e�

1
2
s2 [�(s)]

��1
ds : (6.83)

The de�nition of c1;� (5.18) is easy to identify in (6.83). The value of SQ can be obtained

from (6.18). Thus, one obtains the progress rate of the (1; �)-ES for ridge functions

' =
c1;� �

2

SQ

=
c1;� �q

1 + (d�r��1)
2
+ �2

2

�
N � 2 + (�� 1)

2
�
(d�r��2)

2
: (6.84)

This result was obtained for N ! 1 and after approximating the distributions of the

Q variates by normal distributions. Please note that this static result contains r as an

independent variable. Equation (6.84) stands for the progress rate for a given r.

6.3.2.3 Interpreting the result

Equation (6.84) can be used for the static evaluation of the progress rate. For the stationary

evaluation, the value of R(1) should be inserted in r. For the parabolic ridge, it will be

derived in Section 6.4.

An important information is obtained from (6.84) for ridge functions

0 � ' � c1;�� : (6.85)

The upper limit is easy to identify for � = 0, or for � < 0 and r � 1. The lower limit is

obtained for � > 1 and r � 1, for � > 2 and r � R
(1) and � !1. The stationary value

R
(1) for � !1 can be found by considering the discussion in Point 6.3.1.1. These cases

will be investigated in depth in the chapter for simulations, Section 7.2.

It is important to note that the progress rate does never become negative for ridge

functions. However, which value does it get for � < 2 as � ! 1? An estimate for the

stationary case can be obtained using the argumentation in Point 6.3.1.1. Since R(1) is
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O(�), the progress rate goes to in�nity in this case, instead of becoming zero. This result is

in contrast to the evolution window hypothesis (see Subsection 5.2.1). The ridge function

is convex for � > 0; remarkably, the stationary progress rate also goes to in�nity for some

convex ridge functions (with 0 < � < 2) as the mutation strength goes to in�nity.

If one considers the general result in (6.84), it becomes clear that ridge function do not

obey the universal progress law (see Subsection 5.2.4): This formula does not contain a

term with negative sign which is expected to be of O(�2). Additionally, the hyperplane

test function (� = 0 case) seems to give the maximum ' among ridge functions (see (6.84)

and (5.22)). The ridge functions with � < 0 cannot attain a larger progress rate since the

denominator cannot be smaller than one. Therefore, the hyperplane function should be

considered as the limit �tness function for the case when the population is far from the

optimum. This result contradicts to the assertion on the corridor model in Subsection 5.2.5.

Equation (6.84) represents an interesting example for the evolutionary progress prin-

ciple (EPP, see Subsection 5.2.6). The two components for the progress toward optimum

and perpendicular to the progress direction can be identi�ed in the denominator of this

equation. The denominator SQ is composed of kak2 and Tr[Q2] as shown in (6.18). The

magnitude of vector a is given in (6.10). If one traces SQ back, the gain part of the EPP

emerges as the component of a in x0 direction, that is, as the constant \1" in the denomi-

nator. The remaining components in the denominator act as the loss part. They vanish for

� = 0, and principally for � < 0 (concave �tness functions). Therefore, a further example

for the realization of gain and loss parts of the EPP is observed for ridge functions.

The results in (6.45) and in (6.84) can simply be compared. For the stationary case,

both formulae are expected to give comparable results. Equation (6.45) is obtained for

the stationary case using a simple local model in Subsection 6.3.1. It does not contain the

2�2Tr[Q2] term emerging in (6.84); the Q matrix in this term is obtained using second

order derivatives of the local quality function approximation in Subsection 5.3.2. In other

words, one can say that (6.45) is obtained using �rst order derivatives, whereas (6.84)

considers additionally the second order derivatives.

6.3.2.4 Linear transformation of the �tness function

Since the progress rate is measured in the search space, the linear transformations of the

�tness function (i.e. k1 � F (x) + k2; k1; k2 2 IR) should not a�ect the progress rate of ES

algorithms. In other words, the progress rate observed by using any of such transformations

as the �tness function should be the same. Particularly, this statement should also be valid

for ridge functions, and the result should always be (6.84). Such a transformation for the

parabolic ridge can be found in Equation (5.34).

For the derivation of ', the linear transformation a�ects the probability distributions

in the �tness space; in other words, the distribution P1(Q) and the density p(Qjz) (see
Equation (6.66)). Since these functions are approximated normally, we are interested in

the e�ect on the mean value and the standard deviation. These further are determined

by the approximation of the local quality function using the vector a and the matrix Q

(see (5.15), (5.16), (5.40), and Subsection 5.3.3 for explanations). Therefore, one has to
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investigate the eventual change in a and Q caused by a linear transformation of the �tness

function, and later prove why these alterations do not a�ect ' in (6.84) at all.

It is important to notice that the addition of a scalar value to the �tness function does

not change a and Q at all. Such additive values vanish in the local quality function (see the

de�nitions in (5.15) and (5.16)). Therefore, only the case of multiplication with a constant

k1 remains to be investigated. In this case, kak2 and Tr[Q2] are multiplied with k21, and

Tr[Q] with k1; therefore, MQ and SQ with k1. Since Q scales with k1, P1(Q) is not a�ected

at all (see Equation (6.77)).

One would say that the �nal result in (6.84) should be k1 times less since it contains

only SQ; however, this is not the case. A factor k comes to the numerator, caused by the

additional substitution Q

0

:= Q

k1
, dQ

0

:= dQ

k1
in (6.78). After this substitution, s can be

introduced in (6.79) next without any problem, and the result obtained will be comparable

with the ones obtained for F (x) = FR(x). As a result, the progress rate values obtained

for linear transformations of the general ridge function are also described by (6.84).

Linear transformation of the �tness function a�ects the quality gain Q. According to

the de�nition of Q in (4.1), the additional constant k2 of such a transformation does not

in
uence Q. However, k1 can be observed as a factor in the �nal formula (see e.g. (6.19)

for the hyperplane, or consider the changes in (6.37) for the sphere model F2(x) and their

e�ects in Q).

6.3.2.5 The parabolic ridge

For � = 2, the progress rate is obtained from (6.84) as

' =
c1;� �q

1 + (2dr)
2
+ 2d2(N � 1)�2

: (6.86)

This equation gives the (static) progress rate on the parabolic ridge. It can be compared

to the formula in (5.35) proposed by Rechenberg. He derived the progress rate formula

for r = 0. Therefore, Equation (6.86) should be used in this comparison only after the

substitution r = 0. Even after this substitution, it does not have a negative term of O(�2).
Both formulae will be compared to simulation results in Section 7.2.9.

For a given �, the progress rate ' in (6.86) is maximized at r = 0, i.e. on the ridge axis.

This result is contradictory to the assertion of Rechenberg that the progress rate should

be small on the ridge axis (cf. Point 5.3.5.3). One can investigate (6.86) further for the

maximal static performance of the (1; �)-ES. After inserting r = 0 in (6.86) and reordering

terms, it becomes immediately clear that the maximum value is obtained for � !1

'̂st = '̂jr=0 = lim
�!1

'jr=0 = lim
�!1

c1;�q
1
�2

+ 2d2(N � 1)
=

c1;�

d

p
2N � 2

: (6.87)

The value of the optimal mutation strength �̂ is therefore in�nity, which di�ers considerably

form the value �̂ = c1;�c=2d
p
N in (5.38) proposed by Rechenberg (see Point 5.3.5.3).
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In the next step, the stationary value of ' will be investigated by using the R(1)2 value

to be derived in Subsection 6.4.1. The stationary ' value is the expected value of the

progress rate for all possible r values. It can be obtained theoretically by considering the

probability density of r in the stationary case. Strictly speaking, ' (6.86) depends on the

random variable r, and we are interested in Ef'g in the stationary case over all possible

values of r. The value Ef'g can be approximated by the static ' value at R(1), since R(1)

is the expected value of r. The validity of this approximation will be shown by stationary

experiments in Section 7.2. Therefore, the random variable r2 in (6.86) is substituted by

its expected value R(1)2. After inserting (6.165) in (6.86), one obtains

' =
c
2
1;�vuut c2

1;�

�2
+

[d(N�1)]2
2

 
1 +

r
1 +

�
2c1;�

d(N�1)�

�2! : (6.88)

This result can be simpli�ed by applying the normalizations for �� and '� in (6.48)

'
� =

c1;� �
�vuut1 + ��2

2c2
1;�

 
1 +

r
1 +

�
2c1;�
��

�2! =
c
2
1;�s

c2
1;�

��2
+ 1

2
+ 1

2

r
1 +

�
2c1;�
��

�2 : (6.89)

The progress rate formulae in (6.88) and (6.89) attain their maximum value for � ! 1
and �� ! 1, respectively. For this limit, the respective denominator is minimized. The

resulting maximum values for ' and '� are (cf. (6.47) and (6.49))

'̂ = lim
�!1

' =
c
2
1;�

d(N � 1)
; '̂

� = lim
��!1

'
� = c

2
1;� : (6.90)

Similarly, one obtains

lim
�!0

'

�

= c1;�; lim
��!0

'
�

�
� = c1;� : (6.91)

These limits are to be compared with the simulation results in Section 7.2.1.

6.3.2.6 The sharp ridge

The sharp ridge is the member of the ridge function family with � = 1 (cf. (3.15) and

(3.13)). Therefore, its progress rate formula is obtained simply by substituting � = 1 in

(6.84)

' =
c1;� �q

1 + d
2 + 2(N � 2)

�
d

2r

�2
�
2

� c1;� �p
1 + d

2
: (6.92)
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For su�ciently large N , the third term in the denominator can be neglected if r is of O(N).

This is for example the case for r � R
(1) (see Equation (6.41) and Subsection 7.2.5). The

resulting approximation is equal to (6.52) obtained using the local model. Moreover, this

approximation is also supposed to be valid for r� R
(1) or r!1; therefore, the ' value

does not become zero for this limit. For the parabolic ridge case or for � > 2, the progress

rate goes to zero for r !1. As a result, a di�erent static progress behavior is predicted

for the sharp ridge (see Subsection 7.2.10).

Two �nal remarks should be added on the normalization of the progress rate of the sharp

ridge and on the generalization of this result to other ES algorithms. The normalization

in (6.51) cannot be applied to � = 1. On the other hand, the formula in (6.92) can be

generalized to other ES algorithms by using the appropriate progress coe�cient instead of

c1;�. For the (�=�D; �)-ES, consider the remarks in Subsection 6.3.4, Page 110.

6.3.3 The (�=�I; �)-ES

The method of induced order statistics (Subsection 5.3.7) was successfully used in the

previous subsection for the analysis of the progress rate ' of the (1; �)-ES on ridge functions.

In this subsection, it will be applied to the (�=�I; �)-ES. The progress rate formula to be

obtained is valid for all ridge functions. However, because of the approximations in the

derivation, this formula is more accurate for the parabolic ridge case (see the related notes

in Subsection 6.1.1 and Point 6.3.2.1).

The derivation of the progress rate formula is based on the same idea as on the (1; �)-

ES. However, in this case, the progress rate is de�ned using the centroids of consecutive

generations. Therefore, the progress rate de�nition in (4.6) becomes

' := Efkx̂� hxi(g)k � kx̂� hxi(g+1)kg : (6.93)

The performance of the (�=�I; �)-ES algorithm is not in
uenced by rotations, since the

mutations are isotropic, and since they are generated at the same state. As a result, the

�tness function can be rotated to simplify the analysis. If the progress direction v of the

general ridge function FRR(x) (Equation (3.17)) is aligned with the x0 axis, i.e. if x0 is the

progress axis, (6.93) can be rewritten for ridge functions as

' := Efhx0i(g+1) � hx0i(g)g = Efh�x0i(g)g ; (6.94)

i.e. the average x0 value is expected to increase over generations. This equation is the

starting point for the progress rate analysis of the (�=�I; �)-ES.

It is important to note that the analysis of the (�=�I; �)-ES is much more complicated

if 1 < � < �. As already mentioned in Subsection 2.4.1, the next generation is created by

mutations applied to the same common centroid hxi(g) for the (�=�I; �)-ES. This simpli�es

the analysis of the algorithm considerably. For the general case 1 < � < �, the intermediate

recombination of � parents (the centroid formulation) generally does not give the same

state in the search space. As a result, the mutation operator is applied on di�erent points.

Consequently, one has to estimate the distribution of these centroids of � parents each.

104



The number of such potential centroids is much larger that �, but the distribution of them

could be estimated using the parental distribution. Finally, the analysis of the (�=�I; �)-ES

is expected to be at least as complicated as the one of the (�; �)-ES, which does not use

recombination. The analysis of the (�; �)-ES was done on the sphere model in [Bey95b],

[Bey96c, Chapter 5]. It is much more complicated than the analysis of the (�=�I; �)-ES.

Therefore, the analysis of both (�; �)-ES and (�=�I; �)-ES will be avoided in scope of this

work.

In [Bey95a], [Bey96c, pp. 220-221], it was shown using plausibility arguments on the

sphere model that the performance of the (�=�I; �)-ES is maximized if � = �. This value

is found as a compromise: To minimize the loss term, � should be as large as possible; i.e.

� = �, which implies � = � and ' = 0. To maximize the gain term, one has to choose

� = � = 1, by choosing the best individual only. However, for � = 1, one has neither

recombination nor genetic repair. The value � = � appears reasonably the best choice,

where this result may be function dependent. It also assumes a certain selection ratio. For

instance, the optimal � value of the (9=�I; 10)-ES on the parabolic ridge is not � = 9.

The analysis of the (�=�I; �)-ES starts with Equation (6.94). The x0 components can

be averaged for generation g and g + 1, giving average values for successive generations.

The description of the (�=�I; �)-ES can be found in Subsection 2.4.1. In this algorithm,

the o�spring are generated by applying isotropic mutations on the centroid hxi(g). The

best � of them are selected as the next generation to yield P(g+1). The progress can simply

be measured on mutation vectors, that is, as the average of the expected values of the

components of the � best individuals. In other words, one has to determine the � best

descendants, and later the components of generating mutations in the progress direction.

Thereafter, these components should be averaged in the last step. If z denotes the com-

ponent of a mutation in the direction toward the optimum, and zm;� the corresponding

component of the m-th best individual, (6.94) can be speci�ed further

' := Efhzig = E

(
1

�

�X
m=1

zm;�

)
=

1

�

�X
m=1

Efzm;�g : (6.95)

The probability density of zm;� can be denoted as pm;�(z), which will be described next.

The expected value in (6.95) is calculated by integrating over all possible values of zm;�.

Therefore one obtains

' =
1

�

�X
m=1

Z 1

�1
z pm;�(z)dz : (6.96)

Since the descendant having zm;� has the m-th best �tness value among � o�spring,

m � 1 of the o�spring should have better �tness values, and � � m of them worse. The

number of possible constellations for the m-th best one should be calculated at this point.

For � o�spring, �! di�erent orderings are possible. Since we are interested only for the

m-th one, the partial orderings of m � 1 better individuals or � � m worse individuals

are irrelevant. Similarly, one obtains (m � 1)! and (� � m)! di�erent orderings for these
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subranks. Since these di�erent cases are irrelevant for them-th best, the number of di�erent

constellations for the m-th best is obtained as �!=(m�1)!(��m)!. The pm;�(z) density can

be seen as the product of this number, of the mutation density pz(z), and of the acceptance

probability Pam;�(z) of the mutant generated as the m-th best one. As a result, pm;�(z)

reads

pm;�(z) =
�!

(m� 1)!(��m)!
pz(z)Pam;�(z) : (6.97)

This equation is analogous to (6.63) for the (1; �)-ES. The number of constellations as

well as the acceptance probability di�er for these two algorithms. However, the mutation

distribution pz(z) (Equation (5.4)) is the same for both cases.

In the next step, the acceptance probability distribution Pam;�(z) will be derived. A

descendant is accepted as the m-th best among all � descendants if ��m of them are worse

andm�1 are better. The distribution of \being worse" is described for a single descendant
by the cdf P1(Q), and it was used in (6.64) for the acceptance probability distribution of

the (1; �)-ES. Conversely, the distribution of \being better" is described by 1 � P1(Q).

There are m� 1 better individuals with the distribution [1� P1(Q)]
m�1

, and ��m worse

with the distribution [P1(Q)]
��m

. The parameter Qjz should be used for these expressions

to indicate that these densities are calculated for an LQF value for a given z. The density

p(Qjzjz) describes the distribution of Qjz conditional to a given z. If one integrates the

product of these three quantities over all possible Qjz values, one obtains the acceptance

probability for a single constellation

Pam;�(z) =

Z 1

�1
p(Qjzjz) [P1(Qjz)]

��m
[1� P1(Qjz)]

m�1
dQjz : (6.98)

The progress rate ' can be expressed by combining the partial results in (6.96), (6.97),

and (6.98)

' =
1

�

�X
m=1

Z 1

�1
z

�!

(m� 1)!(��m)!
pz(z)Pam;�(z) dz

=
�!

�

�X
m=1

Z 1

�1
z pz(z)

Z 1

�1
p(Qjzjz)

[P1(Qjz)]
��m

[1� P1(Qjz)]
m�1

(m� 1)!(��m)!
dQjz dz: (6.99)

In order to be able to integrate this expression, the integration order should be ex-

changed �rst. Thereafter, the components containing P1(Qjz) can be taken out of the

z integral. The procedure is similar to the exchange from (6.65) to (6.66). After the

substitution Q := Qjz, one obtains

' =
�!

�

Z 1

�1

�Z 1

�1
z pz(z) p(Qjz) dz

� �X
m=1

[P1(Q)]
��m

[1� P1(Q)]
m�1

(m� 1)!(��m)!
dQ : (6.100)

Since all mutations are generated from the same point (the centroid hxi(g)), some earlier

results for the (1; �)-ES in Subsection 6.3.2 can be used in the derivation. For example, the
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density p(Qjzjz) of the LQF values conditional to a given mutation in the direction toward

optimum is also described by (6.73) for the (�=�I; �)-ES case. This is also true for the

P1(Q) value calculated using the double integral in (6.67), since the same integral is also

valid here. Therefore, the result for P1(Q) in (6.77) can be used immediately without any

change. Furthermore, the parameters in these equations (MQ, SQ, etc.) are also applicable

here, since the local quality function based on the centroid is identical to the one for the

(1; �)-ES. The parameter values can be obtained from (6.17), (6.18), (6.71), and (6.72).

The inner integral of (6.100) will be evaluated �rst. Inserting the de�nition (5.4) of

pz(z) and (6.73) of p(Qjz), one recognizes that this integral is identical to the inner integral
for the (1; �)-ES case in (6.78). After the substitutions (6.79), and considering (6.80) for

p(Qjz), the progress rate formula reads

' =
�!p
2��

�SQ

SQjz

Z 1

�1

1p
2�

Z 1

�1
t e�

1
2
t
2

e�
1
2
(at+b(s))2dt

�X
m=1

[�(s)]
��m

[1� �(s)]
m�1

(m� 1)!(��m)!
ds:(6.101)

The inner integral was already calculated in (6.82). Inserting the result into (6.101), one

gets

' =
�!p
2��

�
2

SQ

Z 1

�1
s e�

1
2
s
2

�X
m=1

[�(s)]
��m

[1� �(s)]
m�1

(m� 1)!(��m)!
ds : (6.102)

Using the following equality [AS84, p. 83], [Bey95b, p. 388], [Bey96c, p. 145]

�X
m=1

P
m�1 [1� P ]

��m

(m� 1)!(��m)!
=

1

(�� �� 1)!(�� 1)!

Z 1�P (s)

0

x
����1(1� x)

��1
dx ; (6.103)

for P = 1� �(s), and
�
�

�

�
= �!=�!(�� �)!, (6.102) becomes

' =
�
2

SQ

�� �p
2�

�
�

�

�Z 1

�1
s e�

1
2
s2

Z �(s)

0

x
����1(1� x)

��1
dx ds : (6.104)

The integrand of the inner integral is independent of s. For the inner integral, s occurs

only in the upper integration limit. The outer integral is taken for all possible values

of s. It is reasonable to exchange the integration order; and also adapt the integration

limits properly. In (6.104), the inner integral is taken from zero to �(s) for a given value

of s, where s is dictated by the outer integral from �1 to 1. Hence, the limits for a

double integral describe an area. For this special case, this area can be imagined on a

plane spanned by the horizontal axis s and vertical axis x. The area is bounded by the

inner integration limits x = 0 and x = �(s), and the outer integral over s is taken from

�1 to 1. After changing the integration order, the outer integral is to be taken over all

possible values of x, i.e. from �(�1) = 0 to �(1) = 1. The inner integral is taken from

s = ��1(x) to s =1, to describe the same integration area. The result reads

' =
�
2

SQ

�� �p
2�

�
�

�

�Z 1

0

x
����1(1� x)

��1
Z 1

��1(x)

s e�
1
2
s2 ds dx : (6.105)

107



The substitution x = �(t); dx = 1p
2�
e�

1
2
t2dt is carried out next. The lower limit of the

inner integral becomes ��1(x) = ��1(�(t)) = t. After the execution of the inner integralZ 1

t

s e�
1
2
s2 ds = �e� 1

2
s2
���1
t

= 0�
�
�e� 1

2
t2
�
= e�

1
2
t2

; (6.106)

Equation (6.105) reads

' =
�
2

SQ

�� �

2�

�
�

�

�Z 1

�1
e�t

2

[�(t)]
����1

[1� �(t)]
��1

dt : (6.107)

Taking the c�=�;� de�nition (5.21) and the SQ de�nition (6.18) into account, the static

progress rate ' of the (�=�I; �)-ES on the ridge functions is obtained (conditional to r)

' =
c�=�;��

2

SQ

=
c�=�;��q

1 + (d�r��1)
2
+ 2�2

�
N � 2 + (�� 1)

2
� �

d�

2
r
��2
�2 : (6.108)

This result was obtained for N ! 1 and after approximating the distributions of the Q

variates by normal distributions. This result is exact for N ! 1 and � = 2. For � 6= 2,

some error is expected caused by the normal approximation of P1(Q) and p(Qjz). This

formula is still useful for �nite N ; however, it should show larger approximation error than

the (1; �)-ES formula for the same N .

Equation (6.108) can be compared easily with the progress rate formula in (6.84) ob-

tained for the (1; �)-ES, ' = c1;��
2
=SQ. The only di�erence is observed on the progress

coe�cient used. Since c1;� > c�=�;� for � > 1, one may conclude that the progress rate of

the (�=�I; �)-ES is smaller than the one of the (1; �)-ES. Actually, this is true for the static

case, i.e. if the r values are the same. For the (�=�I; �)-ES, the r value of the centroid

should be used in the comparison, i.e. r =

qP
N�1
i=1 hxii2.

For the sphere model, the (�=�I; �)-ES gives better progress rate values than the (1; �)-

ES on the static case for certain values of � (see Point 5.3.5.2). The result for the ridge

functions obtained on the static case is interesting, since this observation for these two al-

gorithms does not hold for the static progress rate on ridge functions. In [Bey96c, p. 218�],

it is conjectured that the (�=�I; �)-ES surpasses the (1; �)-ES if Ps1 <
1
2
. This critical Ps1

value was stated as a prerequisite for the applicability of the genetic repair hypothesis.

According to the formula (6.40) for the (1; �)-ES on the ridge functions, the success prob-

ability values are in the interval 0 � Ps1 � 1
2
for � � 0 (see also Subsection 7.4.3). Since

the static ' values of the (�=�I; �)-ES are less than the ones of the (1; �)-ES on the ridge

functions, the prerequisite Ps1 < 1=2 does not seem to be relevant for this case. A simpler

comparison can be made on the parabolic ridge using the corresponding Ps1 formula (6.33)

for the (1; �)-ES. Considering the static case alone, one cannot verify this hypothesis on

ridge functions; however, it holds for the stationary case.

The progress rate formulae of these two algorithms can also be compared for the sta-

tionary case (r � R
(1)). The stationary distance R(1) is analyzed only for the parabolic
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ridge case (see Section 6.4), and the maximum progress rate value '̂ is only known for the

parabolic ridge (� = 2). Comparing the R(1) value (6.202) with (6.166), one concludes

that the R(1) value is considerably smaller for the (�=�I; �)-ES case. This is also true for

� � 2, as discussed in Point 6.3.1.1, Page 85 using (5.30) and (5.32); however, an ana-

lytic formula for R(1) remains to be derived for the general case. In the next chapter, in

Subsection 7.1.4, one can also see that experimental R(1) values for the (�=�I; �)-ES are

smaller than for the (1; �)-ES for the same mutation strength, if � < �� 1. The station-

ary progress rate value naturally depends on the R(1) value, since a lower R(1) means a

smaller denominator and a higher progress rate '.

For the parabolic ridge, the maximum stationary progress rate values of these two

ES algorithms are given in (6.47) and (6.54). Comparing these, one concludes that the

(�=�I; �)-ES can progress faster than the (1; �)-ES if

c
2
1;� < �c

2
�=�;�

: (6.109)

This condition is obtained using the approximate local model; however, the same result

is obtained using asymptotically (N ! 1) exact ' and R(1) formulae (cf. the limits in

(6.90) and (6.114)). One obtains the '̂ value for the parabolic ridge as � ! 1, and for

this case the di�erence between the exact and approximate formulae can be neglected.

In other words, to describe the use of recombination on the parabolic ridge, the in-

equality (6.109) can be used. For a fair comparison, the same � value should be taken for

the (1; �)-ES and the (�=�I; �)-ES. As one can see in Table 5.1 on Page 62, the c�=�;� value

decreases continuously as �! �. Therefore, the product �c2
�=�;�

should attain a maximum

value at a certain � for constant �. For example, Condition (6.109) holds for � = 10 in

the interval 2 � � � 5. Consequently, without a small selection ratio, the intermediate

recombination yields an additional performance for the same � over the mutation-selection

scheme. This result is obtained for the parabolic ridge. Some selected results for other

ridge functions (� > 2) can be found in Subsection 7.2.6. The theoretical analysis of

(6.109) is omitted in scope of this work (but, see Subsection 6.3.6). In the following, the

parabolic ridge case is investigated further.

6.3.3.1 The parabolic ridge

Some analytical results for the parabolic ridge will be summarized here analogous to

Point 6.3.2.5. The stationary case will be analyzed by using the analytically derived R(1)

formula in (6.202). The maximum progress rate '̂ will be computed for r = 0 and r � R
(1).

The normalization of � and ' is used to abstract the results where appropriate.

The progress rate formula in (6.108) becomes for the parabolic ridge case (� = 2)

' =
c�=�;��q

1 + (2dr)
2
+ 2d2(N � 1)�2

: (6.110)

This static result can simply be analyzed for r = 0 where ' gets its maximum value. The
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optimum value for this case can be obtained analogous to (6.87)

'̂st = '̂jr=0 = lim
�!1

'jr=0 = lim
�!1

c�=�;�q
1
�2

+ 2d2(N � 1)
=

c�=�;�

d

p
2N � 2

: (6.111)

One observes that the '̂st value in (6.111) is smaller than the one in (6.87) for the (1; �)-ES.

The maximum performance can also be computed for the stationary case. Firstly, the

R
(1) formula in (6.202) is inserted into (6.110), yielding

' =
�c

2
�=�;�vuut��c�=�;�

�

�2
+

[d(N�1)]2
2

 
1 +

r
1 +

�
2�c�=�;�

d(N�1)�

�2! : (6.112)

Using the normalization in (6.48), this expression simpli�es to (cf. Equation (6.89))

'
� =

�c
2
�=�;�s��c�=�;�

��

�2
+ 1

2
+ 1

2

r
1 +

�
2�c�=�;�

��

�2 : (6.113)

The genetic repair hypothesis (Subsection 5.2.7) holds here since the R(1) value of the

(�; �)-ES case (Equation (6.205)) is smaller than the (1; �)-ES case (Equation (6.166)). As

a result, the loss term in the denominator is smaller for the (�=�I; �)-ES case.

As in the (1; �)-ES case, the maximal progress is obtained as the mutation strength

goes to in�nity. The respective limits for (6.112) and (6.113) read

'̂ = lim
�!1

' =
�c

2
�=�;�

d(N � 1)
; '̂

� = lim
��!1

'
� = �c

2
�=�;�

: (6.114)

These values were already found in (6.54). They will be compared with the simulation

results in Subsection 7.2.3. They are larger than the values obtained for the (1; �)-ES

(see Equation (6.90)), although the values for the static case have shown an opposite

relationship (compare (6.84) and (6.108)).

6.3.4 The (�=�D; �)-ES

The progress rate of the (�=�D; �)-ES is obtained for ridge functions by using the surrogate

mutation model [Bey95a]. This model was already applied in Point 6.3.1.5; therefore, it

will not be explained here in detail. The formula for the (�=�D; �)-ES is obtained by usingp
�� instead of � as the mutation strength in the ' formula (6.108) for the (�=�I; �)-ES

' =

p
�c�=�;��q

1 + (d�r��1)
2
+ 2��2

�
N � 2 + (�� 1)

2
� �

d�

2
r
��2
�2 : (6.115)
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This formula will be compared to simulation results in Subsection 7.2.7. It will be seen

that this asymptotically exact formula is only useful as an approximation for larger values

of N as compared to the formula for the (1; �)-ES; e.g. for N � 1000 instead of N � 100.

An interesting property is observed for dominant recombination: The convergence

behavior of the (�=�D; �)-ES is in
uenced by rotation. The rotation-dependence of the

(�=�D; �)-ES was already mentioned in Point 6.3.1.5 for the parabolic ridge. For the hy-

perplane case, it was analyzed further in Point 6.3.1.6, with the result given in (6.59) on

Page 93. As will be shown using experimental results in Subsection 7.2.4 and Subsec-

tion 7.2.7, the progress rate of the (�=�D; �)-ES on all ridge functions depends on how the

progress vector v is chosen. Therefore, the progress rate formula for dominant recombi-

nation must contain the vector v. The analytical derivation of this general formula is too

complicated, and it is omitted in scope of this work. It is conjectured that the formula

(6.115) is valid for the diagonal v case (cf. Equation (6.58)). The observed performance

of the (�=�D; �)-ES is below these values for all other v; however, a theoretical proof is

pending.

6.3.4.1 The parabolic ridge

The progress rate ' of the (�=�D; �)-ES will be investigated here on the parabolic ridge.

The stationary ' formula and the limit values for � ! 1 will be given. The relation to

intermediate recombination will be demonstrated. It is important to note that the formulae

in this paragraph are valid for the diagonal v case (cf. Equation (6.58)).

One obtains the desired ' formula by inserting � = 2 in (6.115)

' =

p
�c�=�;��q

1 + (2dr)
2
+ 2�d2(N � 1)�2

: (6.116)

This static ' formula gets its maximum value for r = 0. The asymptotic value reads

'̂st = '̂jr=0 = lim
�!1

'jr=0 = lim
�!1

c�=�;�q
1

��2
+ 2d2(N � 1)

=
c�=�;�

d

p
2N � 2

: (6.117)

For the stationary case (r � R
(1)), the ' formula is obtained by inserting the R(1) formula

in (6.204) into (6.116)

' =
�c

2
�=�;�vuut�p�c�=�;�

�

�2
+

[d(N�1)]2
2

 
1 +

r
1 +

�
2
p
�c�=�;�

d(N�1)�

�2! : (6.118)

The normalized formula is obtained by using (6.48) for (6.118). It can also be obtained
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by substituting �� by
p
��

� in (6.113)

'
� =

�c
2
�=�;�s�p

�c�=�;�

��

�2
+ 1

2
+ 1

2

r
1 +

�
2
p
�c�=�;�

��

�2 : (6.119)

If one compares (6.119) with (6.113) for the (�=�I; �)-ES, one observes that they only di�er

in their denominators: The former one has
p
� instead of � in the two parentheses of the

denominator. The maximum progress rate reads for (6.118) and (6.119)

'̂ = lim
�!1

' =
�c

2
�=�;�

d(N � 1)
; '̂

� = lim
��!1

'
� = �c

2
�=�;�

: (6.120)

These limits accord to the ones for the (�=�I; �)-ES in (6.114). In Section 7.2.7, the

appropriateness of surrogate mutation model will be shown for the diagonal v case by

using experiments.

6.3.5 The (�; �)-ES

The progress rate of the (�; �)-ES cannot be derived using the technique applied for the

(1; �)-ES and the (�=�I; �)-ES. Since mutations are practically generated from � di�erent

states, the descendants are not normally distributed in the search space. Even if they are

assumed to be distributed normally in the search space, the parameters of the distribution

(i.e. its moments) are unknown. In [Bey95b], [Bey96c, Chapter 5], a correction term for the

skew of the o�spring distribution is introduced. The derivation of the progress rate for the

(�; �)-ES after approximating the parameters of the population distribution is very lengthy

for the sphere model. Such an additional approach is avoided in scope of this work. The

progress rate formula for the (�; �)-ES is obtained by reasoning on the respective formulae

for the (1; �)-ES.

The progress rate formulae on the hyperplane (5.23) and sphere model (5.27) can be

found for the (�; �)-ES in Subsection 5.3.5. The formulae for the (�; �)-ES and for the

(1; �)-ES di�er just by the coe�cient used. For both �tness functions, the formula for the

(�; �)-ES can be obtained by simply substituting c1;� by c�;� in the progress rate formula

for the (1; �)-ES. Therefore, the formula for the (1; �)-ES on ridge functions is also obtained

by making the same substitution in (6.84)

' =
c�;� �

2

SQ

=
c�;� �q

1 + (d�r��1)
2
+ 2�2

�
N � 2 + (�� 1)

2
� �

d�

2
r
��2
�2 : (6.121)

This result was obtained for N ! 1 and after approximating the distributions of the Q

variates by normal distributions. An alternative argumentation can be found in Point 6.3.1.7,

where the approximate ' formula is derived using a local model.
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Comparing (6.121) with (6.84), one can conclude that the (�; �)-ES has always a smaller

progress rate than the (1; �)-ES for the static evaluation: The denominator is identical for

both cases, and in the numerator one has c�;� < c1;� for all � � 2. The stationary case will

be investigated for the parabolic ridge.

6.3.5.1 The parabolic ridge

The progress rate of the (�; �)-ES on the parabolic ridge can be obtained by using the

formula for the general ridge function. By substituting � = 2 in (6.121) one obtains

' =
c�;��q

1 + (2dr)
2
+ 2d2(N � 1)�2

: (6.122)

The maximum static progress rate is obtained for r = 0, which is a general characteristic of

ridge functions. For the (�; �)-ES, r is obtained for the virtual centroid of the population.

The progress rate at r = 0 is maximized for � !1

'̂st = '̂jr=0 = lim
�!1

'jr=0 = lim
�!1

c�;�q
1
�2

+ 2d2(N � 1)
=

c�;�

d

p
2N � 2

: (6.123)

By inserting the R(1) formula in (6.205) into (6.122), one obtains the stationary ' formula

' =
c
2
�;�vuut c2

�;�

�2
+

[d(N�1)]2
2

 
1 +

r
1 +

�
2c�;�

d(N�1)�

�2! : (6.124)

Using the normalization in (6.48), one obtains

'
� =

c�;� �
�vuut1 + ��2

2c2
�;�

 
1 +

r
1 +

�
2c�;�
��

�2! =
c
2
�;�s

c2�;�

��2
+ 1

2
+ 1

2

r
1 +

�
2c�;�
��

�2 : (6.125)

The maximum progress rate for (6.124) and (6.125) reads

'̂ = lim
�!1

' =
c
2
�;�

d(N � 1)
; '̂

� = lim
��!1

'
� = c

2
�;�

: (6.126)

6.3.6 The progress e�ciency �

The progress rate ' is a measure on the progress attained per generation. Therefore, it

may not be adequate for comparisons of algorithms with di�erent �, since the number of

function evaluations of the algorithms concerned will be di�erent. As a result, one needs a
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further measure for the e�ciency of algorithms. This measure is de�ned as the optimum

progress rate per descendant generated [Bey96a], [Bey96c, p. 73]

� :=
max�� ['

�(��)]

�

=
'̂
�

�

: (6.127)

The original name for � given by Beyer is \�tness e�ciency". However, since it is

measured in the search space and de�ned using the progress rate, it will be called progress

e�ciency in this work.

Another necessary measure for the e�ciency analysis is called selection ratio. It mea-

sures the ratio of the number of parents to the number of descendants as both numbers go

to in�nity. The selection ratio gets \smaller" if � is decreased for a given �. It is synony-

mously called truncation threshold, truncation ratio, or selection strength. Its de�nition

reads for su�ciently large � and � [Bey96c, p. 27]

# :=
�

�

; 0 < # < 1 : (6.128)

For the (�; �)-ES, # can be investigated for a given �. It can be investigated for the

(�=�I; �)-ES for a given � value. In both cases, one looks for the optimum value of the

variable quantity in this ratio, with the aim of optimizing the performance of the algorithm.

For the limit in (6.128), one gets two di�erent # values for these algorithms. The values

obtained for the sphere model and for the parabolic ridge will be compared below.

For � > 1, the de�nition (6.127) must be principally extended; since the progress rate

depends also on the value of �. If one observes the progress rate formula for the (�; �)-

ES on the sphere model (5.27) or on ridge functions (6.121), one simply notes that the

algorithm with � = 1 is the most e�cient one.

For the (�=�I; �)-ES or for the (�=�D; �)-ES, however, the progress rate is notmaximum

for � = 1. If the recombination operator is applied, the optimum progress rate is obtained

for a de�nite selection ratio, in other words for a certain value of � {denoted by �̂{, which

depends on the given value of �. Furthermore, �̂ depends also on the value of N if it is

calculated using an N -dependent progress rate formula. In summary, the � value should

be calculated using �̂ for a given �. The progress rate is �rst maximized for � and then

for �. The obtained � value is optimal for a given �; therefore, it is called �̂ [Bey96a],

[Bey96c, p. 224].

In [Bey96c, p. 220-224], the progress e�ciency of the (�=�I; �)-ES is analyzed on the

sphere model. Both N -dependent and asymptotic (N ! 1) formulae are used in the

analysis. The results for �̂, �̂�, and '̂� are given using �gures as well as on tables. The

(1; �)-ES and the (�; �)-ES are also analyzed in the same work for the N -dependent case

and for (N ! 1). For the (1; �)-ES, the algorithm with �̂ = 5 is found to be the most

e�cient strategy. For the (�; �)-ES, the result �̂ = 1 is obtained for any �. The asymptotic

case is relevant to this work, since the analysis is carried out here for only N !1.

For the parabolic ridge, the maximum performance is obtained for �� !1. Using the
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stationary results mentioned in (6.90), (6.126), and (6.114), respectively, one obtains

(1; �)-ES : � = c
2
1;�=� ; (6.129)

(�; �)-ES : � = c
2
�;�
=� ; (6.130)

(�=�I; �)-ES : � = �c
2
�=�;�

=� : (6.131)

The respective progress e�ciency values for the sphere model can be obtained simply by

calculating the '̂� values for (5.26) through (5.28), and applying the de�nition in (6.127)

thereafter. After comparing the results for the parabolic ridge and sphere model, one

notes a remarkable similarity: The result for � on the sphere model becomes equal to the

corresponding result in (6.129){(6.131) after a multiplication by two. In other words, the

progress e�ciency formulae for the sphere model and for the parabolic ridge di�er by just

a scalar factor.

The consequence of this similarity in the � formulae can simply be explained. The '̂�

values for the three above-mentioned algorithms di�er by just this factor 1=2 between the

sphere model and the parabolic ridge. The normalization applied is di�erent for both cases;

moreover, the optimum mutation strength �
� is also di�erent for both �tness functions.

However, only the value of '� is relevant for the progress e�ciency �. Consequently, the

results obtained for the sphere model are immediately applicable to the parabolic ridge

[Bey96c]:

1. The optimal (1; �)-ES is obtained for �̂ = 5. For this algorithm, the creation of

more descendants per generation makes sense if and only if they can be created and

evaluated in parallel.

2. The optimal (�; �)-ES is obtained for �̂ = 1. In other words, for a given �, � = �̂ = 1

gives the most e�cient (�; �)-ES. For a given �, however, the most e�cient � is ob-

tained by empirical investigations of (6.130). ForN !1, one obtains asymptotically

#̂ := �=�̂ � 0:35 even for � ' 30.

3. If one has $ parallel processors, it is reasonable to choose the number of descendants

as � = k$; k 2 IN. For the (�=�I; �)-ES case, this yields the question of optimum

number of parents. The �̂ value depends on N . For N !1, one obtains #̂ := �̂=� �
0:27 even for � ' 30.

4. The (�=�I; �)-ES with optimum selection ratio #̂ is the most e�cient one among

these three ES algorithms if the same value is used for �.

The hyperplane. A special case of ridge functions is the hyperplane function (� = 0).

For this case, �̂ values can be obtained using the de�nition of � in (6.127) on the respective

formulae in Point 5.3.5.1. In this case, the progress rate increases proportional to the

mutation strength, and the proportionality constant is simply the progress coe�cient of

interest (cf. Point 6.3.1.6 for the exceptional case (�=�D; �)-ES). Since the progress rate is

unbounded, the comparisons will be made using the same �nite mutation strength for all
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algorithms. The magnitude of the � used is unimportant in the comparison, it is arbitrarily

chosen as one. The results are obtained by comparing the progress coe�cients used.

The empirical studies on [Sch95, p. 127] for the (1; �)-ES suggest �̂ = 2 or �̂ = 3. The

� = c1;�=� values for these two cases are very near to each other (i.e. �1;2 � 0:282 and

�1;3 � 0:282); it decreases for � � 4. This result is generalizable to the (�; �)-ES since this

algorithm gets the maximum ' value for a given � if � = �̂ = 1 on this function. For the

(�=�I; �)-ES, one can obtain �̂ for a given � using simulation results [Bey95a], [Bey96c,

p. 211]: The coe�cient c�=�;� is maximal if �̂ = 1. One observes that the c�=�;� values

monotonically decrease for �! �. This can be observed for � = 10 in Table 5.1 (Page 62).

Therefore, one has to maximize � = c1;�=� next, and obtains the same �̂ values attained

for the (1; �)-ES case.

The general ridge function. The �̂ value of the (1; �)-ES depends on the ridge function

of interest. For � = 0 (hyperplane), see the previous paragraph. For � = 1 (sharp ridge),

the same result holds, since the progress rate formulae (e.g. (6.92)) of this �tness function

asymptotically di�er only by a scalar denominator from the progress rate formulae for the

hyperplane. For � = 2 (parabolic ridge), one observes �̂ = 5 (as in the sphere model case).

The values between �̂ = 3 and �̂ = 5 are expected in the interval 1 < � < 2 as a conjecture.

Moreover, recombination is expected to have a positive e�ect on � for � > 0; therefore,

one may assert larger progress e�ciency values for the (�=�I; �)-ES as compared to the

(1; �)-ES.

For � < 0, one expects the same progress e�ciency obtained for the hyperplane, since

the maximal progress rates are expected to be the same (cf. Point 6.3.2.3). For � > 2,

one may speculate higher �̂ values since the search space gets more convex. For the

analytical investigation, the R(1) formulae should be derived for these ridge functions.

Otherwise, numerous simulations are necessary to determine the progress e�ciency of

di�erent algorithms, in other words to locate the '̂� value for di�erent � and � values.

6.3.7 Conclusions

In this section, di�erent progress rate results have been obtained for ridge functions. For

the derivation, the simple local model has been used �rst. The results obtained can at

least be used as the �rst order approximation to the stationary progress rate of several ES

algorithms on the general ridge function. Thereafter, the static case has been analyzed.

The progress rate values of the (1; �)-ES and the (�=�I; �)-ES have been derived using

induced order statistics. The result obtained for the (�=�I; �)-ES has been generalized to

the (�=�D; �)-ES using surrogate mutations. The progress rate of the (�; �)-ES has been

attained using plausibility relations.

The results for the local model contain larger approximation errors; however, it gives

su�cient results for the stationary case. The analysis continued using the stationary R(1)

value for the parabolic ridge. The formulae obtained have been normalized, and asymptotic

(N !1) values of '̂ and '̂� have been computed. Additionally, the case r = 0 has been

investigated for all four ES algorithms, and the maximum static progress rate has been
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obtained for this value. The r ! 1 case has also been investigated, and the minimum

value for the static progress rate has been observed for this limit.

In the last step, the progress e�ciency � {actually introduced as �tness e�ciency in

the literature{ has been investigated, and it has been shown that the � formulae for the

parabolic ridge and the sphere model di�er just by a constant from each other, and that

the �̂ values are the same for these if the same ES algorithm is used.

New or contradictory results. First of all, the progress rate is never negative for any

member of ridge function family (cf. Equation (5.3) and Equation (5.35)). The progress

rate of the hyperplane appears as a limit case (cf. Subsection 5.2.5).

The progress rate of the parabolic ridge is maximized as the mutation strength goes to

in�nity (cf. Subsection 5.2.1). This result for �̂ di�ers from the one derived by Rechenberg

(cf. Point 5.3.5.3).

For the static case, the progress rate is maximized on the ridge axis, which is exactly

opposite to the earlier results of Rechenberg (cf. Point 5.3.5.3). Surprisingly, the (1; �)-ES

outperforms the (�=�I; �)-ES in static progress rate �gures. This is a new and counter-

intuitive result.

For the stationary case, the genetic repair hypothesis (Subsection 5.2.7) is observed for

the (�=�I; �)-ES on the parabolic ridge: Since this algorithm attains a smaller R(1) value

than the (�; �)-ES and the (1; �)-ES, its progress rate values are also larger.

A new form of the evolutionary progress principle (EPP, Subsection 5.2.6) is emerged

on the progress rate formulae of ridge functions: The loss and gain terms appear together

in the denominator, where again the loss part increases faster than the gain part with

respect to the mutation strength �. The loss term does not appear as a negative additive

term (cf. Subsection 5.2.4). It would appear as a negative term if one would introduce a

normalization scheme based on the logarithm of unnormalized '. As can be seen in (6.51),

the normalization for ridge functions is not of the form '
� = ln('). Actually, such a

negative term emerges if one expands the square root in the denominator as a Taylor series

and cuts the series after the linear term. However, such an approach introduces numerical

errors if x in 1=
p
1 + x is not much less than one. The condition x � 1 is necessary for

the series cut, and this condition is generally not ful�lled for � � 2.
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6.4 The distance r to the ridge axis

The quantity r appears in the formulae of success and progress measures. Therefore,

the analysis of r emerges as an important prerequisite for the analysis of these measures.

Additionally, its minimization was formulated as the short term goal (see Subsection 3.3.2).

This section has three parts. In the �rst two subsections, the state equation for r2 is de-

rived analytically for the (1; �)-ES and the (�=�I; �)-ES, respectively. Using this equation,

the quantities required for the static, stationary, and dynamic analysis can be derived. Ad-

ditionally, the time constant to reach the stationary R(1) value is de�ned in Point 6.4.1.7.

Furthermore, the applicability of the methods used is discussed. Subsection 6.4.3 con-

tains only the R(1) results for the (�=�D; �)-ES and the (�; �)-ES obtained by plausibility

arguments.

The distance r to the ridge axis can be investigated using static, dynamic, and station-

ary analysis (see Section 4.4 for de�nitions). The necessary tools will be developed here. In

this section, the derivations for the (1; �)-ES and the (�=�I; �)-ES start with an expected

value integral of r(g+1)2 for a given r(g)
2
. The resulting state equation will be used for the

static analysis. For instance, theoretical results are compared to the empirical ones for the

extreme cases r(0) = 0 or r(0) ! 1 in Subsection 7.1.5. Furthermore, this state equation

is used to calculate the stationary R(1) value. Additionally, it is also used to estimate

the progress measure 'R in the r direction (see Subsection 6.1.4). Finally, using this state

equation iteratively, one obtains the mean value dynamics of r over the time.

The quantity r occurs in the formulae for Q, Ps1, Ps�, and '. These formulae derived

in the previous sections are su�cient for the static analysis of ES algorithms on ridge

functions. For the stationary analysis, however, one requires the stationary value R(1).

The quantity r is a random variable. The stationary values for Ps1, Ps�, and ' could be

obtained as expected values of the respective static formulae for the probability distribution

of r. Alternatively, one obtains satisfactory results for the stationary case by substituting r

with R(1) in the static formulae, since R(1) is the expected value of the random variable r

for the stationary case. This approach assumes that the stationary value of these quantities

(Q, Ps1, Ps�, and ') can be approximated by their static value atR(1). The appropriateness

of this assumption is veri�ed by simulation results in Chapter 7. The applicability of R(1)

approximation for ES algorithms on the parabolic ridge can be seen in Subsection 7.1.1

and Subsection 7.1.4. For stationary results on progress and success measures, this R(1)

approximation is used for the � = 2 case. For � 6= 2, the R(1) results obtained from the

respective simulation will be used, yielding quite accurate results.

Naturally, some statistical approximations are made in the derivation of R(1). Un-

fortunately, the quality gain formula does su�er from the approximation error for the

stationary R(1) and large �, although it gives very accurate results for the static r. This

will be justi�ed by the strong dependence of the Q values on the given r in Section 7.3.

In summary, the R(1) value is necessary for estimating the stationary behavior of ES

algorithms. In this section, the R(1) value is derived for the (1; �)-ES and the (�=�I; �)-

ES on the parabolic ridge. The corresponding value for the (�=�D; �)-ES is obtained

by using the relation between dominant and intermediate recombination. For the (�; �)-
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ES, the formula is constructed by reasoning; its accordance to simulation results will be

shown in Subsection 7.1.4. All of these R(1) formulae will be validated by simulation

results (Subsection 7.1.1 and Subsection 7.1.4). The theoretical results are obtained in

this section for the parabolic ridge. For other ridge functions, the respective R(1) value

will be obtained from simulations (see also Section 6.3.1.1 for additional explanations).

Subsection 7.1.3 shows such R
(1) values for the (1; 10)-ES on di�erent ridge functions.

The stationary value of Q, Ps1, Ps�, and ' can be estimated by inserting these empirical

values in the respective formula.

6.4.1 The (1; �)-ES

The derivation of R(1) for the (1; �)-ES is based on concepts familiar from progress rate

derivations. The aim is to determine the expected value of r(g+1)2 for a given r(g)
2
. Thus,

one gets a state equation. If these two values are set to be equal, one can extract the R(1)2

value. The analysis is carried out for squared variables in order to be able to use a previous

result from the sphere model theory. This state equation mentioned will also be used to

derive several important quantities additional to R(1).

An outline of this subsection will be given here �rst. The �rst step of the derivation is to

construct an expected value integral for r(g+1)2. The pdf in this integral for all possible r2

values consists of the pdf at g+1 for a given r(g)
2
, and a cdf for its acceptance probability.

That is, the best individual among � descendants is selected for the next generation, and

the r(g+1)2 value of this individual is concerned in the derivation. The best individual should

have a better �tness value than the other � � 1 descendants, and this fact is re
ected in

the cdf of the acceptance probability. The acceptance probability is de�ned using the pdf

in the �tness space conditional to a given r(g+1)2 for the best individual, and the cdf for

having a �tness worse (i.e. less) than a given value. After exchanging the integration order

and using some integral equalities, the double integral for r(g+1)2 will be solved. The result

is a state integral, and will be used for the static, dynamic, and stationary analysis of r.

After this overview, the derivation can be carried out next.

The value of r(g+1)2 can be expressed as an expected value integral for a given r
(g)2.

In the derivation, r(g+1)2 (the r2 value for the best descendant) will be denoted by u, and

r
(g)2 by R2 for notational simplicity. The expected value integral is given as

Efr(g+1)2g = Efug =
Z 1

0

u p1;�(u) du ; (6.132)

where p1;�(u) denotes the pdf of u. The integral is taken over all possible values of u. The

pdf p1;�(u) represents the density of the best descendant. It can be expressed as the product

of the pdf p(u) of u for a given R2, and the acceptance probability Pa 1;�(u) of having the

descendant with this u value as the best descendant. Since any of � descendants can have

the best (i.e. largest) �tness, this product is multiplied by � (the number of di�erent

constellations). Hence, p1;�(u) reads

p1;�(u) = � p(u)Pa1;�(u) : (6.133)
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The acceptance probability Pa 1;�(u) will be determined next. It represents the cdf that

all other descendants have worse �tness values than the �tness of an individual with a

given u. This comparison can be done using local quality function (LQF) values, since

all descendants are pro-created from the same parent. The LQF value for a given u will

be denoted by Qju. The probability density for Qju in the �tness space conditional to a

given u is represented by p(Qjuju). In order to be the best LQF value, Qju should be

better than the remaining � � 1 LQF values. The probability distribution for having an

LQF value smaller than a given Qju is denoted by P1(Qju). For � � 1 individuals, the

corresponding probability is [P1(Qju)]
��1

. If the product of this probability and the pdf

p(Qjuju) is integrated over all possible values of Qju, one obtains the acceptance probability
Pa 1;�(u)

Pa 1;�(u) =

Z 1

�1
p(Qjuju) [P1(Qju)]

��1
dQju : (6.134)

After substituting (6.134) in (6.133), and (6.133) in (6.132), one obtains the detailed

de�nition of Efug

Efug =
Z 1

0

u � p(u)

Z 1

�1
p(Qjuju) [P1(Qju)]

��1
dQju du : (6.135)

The cdf P1(Qju) does not directly depend on u. Therefore, by substituting Q := Qju and

after changing the integration order, one gets the expression

Efug = �

Z 1

�1
[P1(Q)]

��1
Z 1

0

u p(u) p(Qju) du| {z }
I(Q)

dQ : (6.136)

The inner integral is computed �rst. This integral over u is denoted by I(Q) since its result

contains Q as variable.

6.4.1.1 The inner integral I(Q)

The densities p(u) and p(Qju) are required for the calculation of I(Q) in (6.136). The

conditional pdf p(Qju) is derived �rst. It will be obtained using the local quality function

Q(z) and approximated using a normal distribution. The Q(z) value is determined at the

state x for generation g. The superscript indicating the generation counter will be omitted.

The �tness value of the parent is denoted by F (x), of its best descendant by F (x + z),

respectively. The symbol z should denote the mutation (z0; z1; : : : ; zN�1)
T
that created

the best descendant. The notations R2 and u were introduced above for r(g)
2
and r(g+1)2,

respectively. They will also be used here for de�ning F (x) and F (x+ z), respectively.

The performance of the (1; �)-ES is independent of how the ridge axis is placed in the

search space. For simplicity of derivation, the de�nition of the parabolic ridge in (3.16) is
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considered here. The result is also valid for the rotated case. The �tness values F (x) and

F (x+ z) read

F (x) = x0 � d

N�1X
i=1

x
2
i
= x0 � dR

2
; (6.137)

F (x+ z) = x0 + z0 � d

N�1X
i=1

(xi + zi)
2
= x0 + z0 � du : (6.138)

The de�nition of the local quality function in (4.3) yields

Q(z) := F (x+ z)� F (x) = z0 � d(u� R
2) : (6.139)

The conditional pdf p(Qju) in (6.136) is the density of Q(z) for a given u. Therefore, u

is a constant for this density. The mean value of (6.139) is obtained as �d(u� R
2), since

z0 is normally distributed with mean zero and mutation strength �, N (0; �2) (isotropic

mutations). The standard deviation of Q(z) is simply �2, caused by z0. Therefore, p(Qju)
reads

p(Qju) = 1p
2��

exp

�
� 1

2�2

�
Q+ d(u� R

2)
�2�

: (6.140)

The density p(u) is also estimated using normal distribution. An earlier result is used

for this purpose. According to the Central Limit Theorem [Roh76, p. 282], the quantity

u = r
(g+1)2 =

P
N�1
i=1 (xi + zi)

2
can be approximated accurately by a normal distribution

for N !1. Practically, this result holds for N ' 30. One can use the cdf P (u) = P (r2)

derived in [Bey95b, pp. 383-384], [Bey96c, pp. 104-106] for this purpose. One has to use

N � 1 instead of N , since this distribution is de�ned for N � 1 dimensional subspace for

the parabolic ridge. The formula reads

P (u) = �

 
u� R

2 � (N � 1)�2

�

p
4R2 + 2(N � 1)�2

!
: (6.141)

The standard deviation of this distribution is denoted by �S to simplify the notation,

S :=
p
4R2 + 2(N � 1)�2 : (6.142)

After di�erentiating P (u) with respect to u, one obtains

p(u) =
1p
2��S

exp

�
� 1

2�2S2

�
u� R

2 � (N � 1)�2
�2�

: (6.143)

The inner integral I(Q) can be evaluated next. The substitution

t :=
u� R

2 � (N � 1)�2

�S
; du := �Sdt;

u� R
2

�

= St+ (N � 1)� (6.144)
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is applied after inserting the de�nitions (6.143) and (6.140) in the I(Q) integral in (6.136).

This substitution aims the simpli�cation of the p(u) density to N (0; 1). One obtains

I(Q) =
S

2�

Z 1

�1
t e�

1
2
t
2

exp

"
�1

2

�
dSt +

Q

�

+ d(N � 1)�

�2
#
dt

+
R

2 + (N � 1)�2

2��

Z 1

�1
e�

1
2
t
2

exp

"
�1

2

�
dSt+

Q

�

+ d(N � 1)�

�2
#
dt: (6.145)

Please note the change in the lower integration limit u = 0 to t = �(R2 + (N � 1)�2)=�S,

which becomes exactly �1 for N !1. After introducing the quantities

a := dS; b :=
Q

�

+ d(N � 1)� ; (6.146)

Equation (6.145) can be written as

I(Q) =
S

2�

Z 1

�1
t e�

1
2
t
2

e�
1
2
(at+b)2 dt+

R
2 + (N � 1)�2

2��

Z 1

�1
e�

1
2
t
2

e�
1
2
(at+b)2 dt : (6.147)

These two integrals can be calculated using the formulae (5.10) and (5.9), respectively.

One obtains

I(Q) =

�
Sp
2�

�ab
1 + a

2
+
R

2 + (N � 1)�2p
2��

�
1p

1 + a
2
exp

�
�1

2

b
2

1 + a
2

�
: (6.148)

The values of a and b can now be substituted back from (6.146). This result can be

written simpler if one notices the de�nitionsMQ and SQ in (6.8). For example, one obtains

1 + a
2 = 1 + d

2S2 = 1 + d
2(4R2 + 2(N � 1)�2) =

S
2
Q

�
2
; (6.149)

since the symbol r in SQ stands for r(g), which is denoted as R in this section. A similar

simpli�cation is obtained for

b =
Q

�

+
d(N � 1)�2

�

=
1

�

(Q�MQ) : (6.150)

Therefore, (6.148) becomes

I(Q) =

 
�dS

2
�

S
2
Q

(Q�MQ) +
R

2 + (N � 1)�2

�

!
�p
2�SQ

exp

"
�1

2

�
Q�MQ

SQ

�2
#
: (6.151)

This result can be inserted back to (6.136) for the next step.
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6.4.1.2 The outer integral

The integral (6.136) can be evaluated now. The cdf P1(Q) was calculated in Point 6.3.2.1.

The result in (6.77), P1(Q) = �[(Q � MQ)=SQ], can be used here immediately. After

inserting (6.151) in (6.136), and using the substitution

s =
Q�MQ

SQ

; dQ = SQds (6.152)

thereafter, one obtains

Efug = �p
2�

Z 1

�1

�
R

2 + (N � 1)�2 � dS2�2

SQ

s

�
e�

1
2
s2[�(s)]

��1
ds : (6.153)

Since

�p
2�

Z 1

�1
e�

1
2
s2[�(s)]

��1
ds =

Z 1

�1

d

ds
[�(s)]

�
ds = [�(s)]

�

���1
�1

= 1 ; (6.154)

the �rst two terms in the bracket yield R2 + (N � 1)�2. The third term is compared with

the c1;� de�nition in (5.18), and this progress coe�cient is substituted appropriately. The

result reads

Efug = R
2 + (N � 1)�2 � dS2�

SQ

c1;�� : (6.155)

This equation contains several substitutions. The symbols u and R2 stand for r(g+1)2

and r(g)
2
, respectively. The value of S and SQ can be found in (6.142) and (6.8). After these

back-substitutions, one obtains Equation (6.168) on Page 125, which will be the starting

point for the analysis of the dynamic behavior of r. The stationary value R(1) will be

computed next, and the dynamics is investigated thereafter. Additionally, the expected

progress in r-direction will also be estimated using this result (cf. the measure 'R for the

alternative quality gain derivation in Subsection 6.1.4). All these cases will be revisited in

the next chapter for simulation results (Section 7.1).

6.4.1.3 The stationary value R(1)

Equation (6.155) can be used for the determination of the stationary value R(1). For the

condition

Efug � Efr(g+1)2g !
= R

(1)2 !
= r

(g)2 � R
2
; (6.156)

Efug and R2 cancel each other in (6.155), and the value SQ = �

q
1 + (dS)

2
(see (6.149))

can be inserted to simplify further calculations. One obtains

(N � 1)�2 =
dS2q

1 + (dS)
2
c1;�� : (6.157)
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Two further substitutions will be used in order to simplify the remaining steps. The �rst

one is

X := (dS)
2
= d

2(4R2 + 2(N � 1)�2) : (6.158)

After applying it to (6.157), the equation will be squared, and the terms are reordered.

The result reads

[(N � 1)d�]
2
(1 +X) = c

2
1;�X

2
: (6.159)

The second substitution

K :=
[(N � 1)d�]

2

c
2
1;�

(6.160)

makes (6.159) a nice and simple equation

X
2 �KX �K = 0 : (6.161)

This can be solved using the well-known equation for �nding the roots of a second degree

polynomial

X =
K

2
� 1

2

p
K

2 + 4K : (6.162)

Since X must be positive, the negative solution corresponding to the minus sign is rejected.

After inserting the value X back from (6.158), one gets

d
2(4R2 + 2(N � 1)�2) =

K

2

"
1 +

r
1 +

4

K

#
(6.163)

R
2 =

K

8d2

"
1 +

r
1 +

4

K

#
� 1

2
(N � 1)�2 : (6.164)

Now we can �nally insert K back from (6.160), and reorder terms

R
2 =

�
(N � 1)�

2c1;�

�28<
:1

2

2
41 +

s
1 +

�
2c1;�

d(N � 1)�

�2

3
5� 2c21;�

N � 1

9=
; : (6.165)

The �nal result is obtained after considering (6.156)

R
(1) =

(N � 1)�

2c1;�

vuuut1

2

2
41 +

s
1 +

�
2c1;�

d(N � 1)�

�2

3
5� 2c21;�

N � 1
: (6.166)
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This result was obtained for N ! 1 and after approximating the distributions of the

Q variates by normal distributions. In the derivation, the lower integration limit has

been extended to �1 to obtain (6.145), which is correct for N ! 1. This result gives

the stationary distance R(1) to the ridge axis for the parabolic ridge. For other ridge

functions, the R(1) value cannot be derived using this method, since the distribution in

(6.140) depends on the exponent �.

An important remark should be made here on the derivation. Actually, the derivation

was made for the quantity r(g+1)2, and the result stated in (6.166) is for R(1), and not for

R
(1)2. Actually, the last step from (6.165) to (6.166) introduces an error, since the expected

value was formulated for Efr(g+1)2g in (6.155). This error is tolerable if the variance of

r
(g+1)2 is small as compared to r(g+1)2 itself. A similar discussion can be found on Page 80.

The accuracy of (6.166) will be shown using experimental results in Subsection 7.1.1, see

also the notes in Point 6.4.1.8.

6.4.1.4 The relation to the sphere model

The relation between the quantity R
(1) and the residual distance D(1) for the sphere

model (cf. Point 5.3.5.2) was discussed in Point 6.3.1.1. For ridge functions other than the

parabolic ridge, this relation will be shown using simulation results in Section 7.1.3. This

relation between R
(1) and D

(1) can be formally shown using (6.166) for the parabolic

ridge case. As the mutation strength � goes to in�nity, (6.166) becomes

lim
�!1

R
(1) = lim

�!1

(N � 1)�

2c1;�

s
1� 2c21;�

N � 1
: (6.167)

For su�ciently large values of N , the square root factor approaches 1. After comparing

the result with the D(1) value (5.30) for the (1; �)-ES, one notes that R(1) can be approx-

imated by D(1) and using N � 1 instead of N . Furthermore, if the value of d is larger,

this approximation is applicable even for smaller values of �.

6.4.1.5 The mean value dynamics for r2

Equation (6.155) can also be used for investigating the mean value dynamics of the distance

r
(g) over generations. As a special case, one can estimate how many generations it would

take to attain the stationary value R(1) (or the vicinity of it), starting at a given state r(0).

In the �rst step, one inserts the values of S and SQ from (6.142) and (6.8), respectively.

The result reads

E
n
r
(g+1)2

o
= r

(g)2 + (N � 1)�2 � d(4r(g)
2
+ 2(N � 1)�2)r

1 + d
2

�
4r(g)

2
+ 2(N � 1)�2

� c1;�� : (6.168)

As a side remark, the third term contains the static progress rate formula for the parabolic

ridge (see Equation (6.86)). Equation (6.168) describes a state equation for successive r
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values. It can be used iteratively to estimate the expected required number of generations

to attain a given r(g) starting from a given r(0). By the structure of the formula, r(g) must

be between r(0) and R(1), and r(0) can be larger or smaller than R(1). In simulation runs,

the measured r(g+1) value di�ers from the value suggested in (6.168) because of statistical


uctuations. However, the static average over many one-generation-experiments for the

same r(g) gives results in agreement to the ones obtained using (6.168) iteratively. Such a

comparison will be made in Section 7.1.6 for r(0) = 0 over many generations.

6.4.1.6 The static analysis

The state equation (6.168) can be used to estimate the value of r(g+1) for a given r(g) value

statically. For any r(g) value, this formula can be used for investigating the local behavior

of the ES algorithm. If it is used in combination with the progress rate ', the state in the

search space at generation g + 1 is de�ned for a given (x
(g)
0 ; r

(g))-tuple. More information

on measuring the convergence behavior in r-direction can be found in Point 6.4.1.8.

A further important result is obtained from (6.168) for r(0) = 0. According to the

hypothesis of gradient di�usion stated in Subsection 5.2.2, the (1; �)-ES should stay on the

ridge axis and follow the local gradient (cf. the gradient vector in (6.1)). According to this

hypothesis, r(1)
2
should also be zero or at least small. By inserting g = 0 and r(0) = 0 in

(6.168), one obtains

Efr(1)2g = (N � 1)�2 � 2d(N � 1)�2p
1 + 2d2(N � 1)�2

c1;�� ; (6.169)

= (N � 1)�2

"
1� 2c1;�

�
1

d
2
�
2
+ 2N � 2

�� 1
2

#
: (6.170)

For �d � 1 or N � 1, the second term in the bracket can be neglected. For these cases,

Efr(1)2g becomes (N�1)�2. Since the state equation for r was derived under the condition

(N !1), one can notice that the value for Efr(1)2g is considerably di�erent than zero.

Another method to justify the gradient di�usion hypothesis is to compare the asymp-

totic limits for the progress rate ' and the orthogonal progress measure 'R (de�ned in

Equation (6.20)) on the ridge axis (r = 0). According to this hypothesis, the ES algorithm

should asymptotically (� ! 0) follow the gradient. If one can estimate Efr(1)2g � Efr(1)g2,
the progress measure 'R yields

'R := Efr(g) � r
(g+1)g = �pN � 1� : (6.171)

Please note that the magnitude of 'R in (6.171) does not express a given direction; it is

negative and re
ects the total magnitude of N � 1 mutation components. In other words,

it re
ects the divergence from the ridge axis as an increase in the distance to the ridge

axis. Therefore, the magnitude of 'R can become much larger than the value c1;��.

For su�ciently small values of �, the progress rate ' in (6.91) can be estimated by

lim�!0 ' = c1;��. The order of this result in N can be compared with (6.171). One
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obtains

lim
�!0

'R

'

= lim
�!0

�
p
N � 1�

c1;��
= �

p
N � 1

c1;�

: (6.172)

Therefore, the (1; �)-ES is not expected to follow the gradient for r = 0 on the parabolic

ridge. One can investigate another limit condition. For the case � !1, one obtains using

the ' limit in (6.87)

lim
�!1

'R

'

= lim
�!1

�
p
N � 1�
c1;�

d

p
2N�2

= lim
�!1

�
p
2(N � 1)d�

c1;�

= �1 : (6.173)

According to the gradient di�usion hypothesis, at least the limit in (6.172) should be

zero. However, this theoretical estimate con
icts with the hypothesis, since the orthogonal

components of mutations are not negligible.

In the general case, the length of a mutation z can be compared with the progress rate

'. For instance, this can be done for the stationary case, where 'R = 0 holds. According

to the gradient di�usion hypothesis, ' should be comparable with the length of z. One

obtains using (5.8)

Efkzk2g = E

(
N�1X
i=0

z
2
i

)
=

N�1X
i=0

Efz2
i
g = N�

2
: (6.174)

Therefore, one has \
p
N�" as the expected length of a mutation for su�ciently large N .

The progress rate limit for the (1; �)-ES can be read in the de�nition of c1;� in (5.18) for

unit mutation strength. This algorithm cannot proceed faster than this limit in a speci�ed

direction in the search space. The progress rate on the hyperplane can be found in (5.22).

This value also emerges as the maximum progress rate for ridge functions in (6.84). Using

(6.174) and an arbitrary progress rate ', one obtains

'
2

Efkzk2g �
c
2
1;��

2

N�
2
=
c
2
1;�

N

: (6.175)

Please note that this result is independent of the mutation strength �. For N = 1, this

result can be larger than one (see Table 5.1 on Page 62 for some selected c1;� values).

However, for N � 1, it is de�nitely much smaller than one. In other words, for high-

dimensional search spaces, only a small component of the mutation vector z can be directed

toward the optimum. One observes a similar ratio for the component in the gradient

direction. In general, the component of z in a given direction is of O(1) in N , whereas kzk
is of O(pN). The reader is referred to [Bey98] for similar results on the sphere model.

That work has shown that the gradient di�usion hypothesis is at least questionable.
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6.4.1.7 The time scale for R(1)

Equation (6.168) can be used to numerically calculate the time constant ! (also called

system time) required to reach the neighborhood of R(1). The time constant is generally

denoted by � ; however, it is denoted by ! in this work to avoid confusions with the self-

adaptation parameter � (see Subsection 2.5.1). For practical purposes, the number of

generations required to reach an r2 value in the interval [kR(1)2
; R

(1)2
=k], 0 < k < 1 is

of interest. Since the formula (6.168) concerns the r2-dynamics, this interval is de�ned for

R
(1)2. The number k is chosen in accordance to the usual practice in the linear system

theory as 1� 1
e
� 0:632, where e := exp(1) � 2:718. Therefore, the interval reads��

1� 1

e

�
R

(1)2
;

�
e

e� 1

�
R

(1)2
�
: (6.176)

The lower boundary is considered in the calculations if r(0) < R
(1), the upper boundary

otherwise. For the r(0) in the interval (6.176), one trivially obtains ! = 0. The time

constant ! gives the expected number of generations necessary to reach the corresponding

boundary for a given r
(0) value. The value of ! can numerically be estimated using the

state equation (6.168). It can also be obtained using simulations after averaging several

runs. In Section 7.1.6, the empirical results obtained using the state equation can be found.

6.4.1.8 The progress measure 'R

The progress measure 'R := Efr(g) � r
(g+1)g was introduced in (6.20) to obtain an alter-

native derivation for the quality gain Q of the (1; �)-ES. Equation (6.168) can be used to

obtain the expected value Efr(g)2� r(g+1)2g; therefore, it can be used to estimate 'R. The

error made in this estimation will be discussed next. Starting from the de�nition of 'R in

(6.20), one obtains

'R := Efr(g) � r
(g+1)g = r

(g) � Efr(g+1)g � r
(g) �

q
Efr(g+1)2g : (6.177)

If the variance of r(g+1) is small as compared to Efr(g+1)2g, the approximation made in

(6.177) is applicable. The accuracy of this approximation will be shown using experiments

in Subsection 7.1.1. A theoretical proof has not been done in scope of this work.

6.4.2 The (�=�I; �)-ES

The analysis of r for the (�=�I; �)-ES is the most challenging subsection of this chapter.

For this algorithm, r stands for the distance of the centroid to the ridge axis. As the �rst

goal, the state equation will be derived for r2. This state equation can be used for the

same purposes as in the (1; �)-ES case, explained in Subsection 6.4.1. This subsection aims

to get the state equation and the analytic formula for the stationary R(1) value for the

(�=�I; �)-ES. Other results like time constant, estimation error, progress measure 'R, etc.

can be obtained analogous to the (1; �)-ES case.
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This subsection has four parts. First, the considerations on the derivation of Efr2g for
the (�=�I; �)-ES are explained. Since this value cannot be derived analytically, another

quantity is proposed. Its relation to Efr2g is shown, the error made in this relation is

discussed. The derivation of this alternative quantity is the second step. Third, Efr2g
is obtained using this result. This part additionally mentions some important quantities

which can be obtained using the state equation for Efr2g. Lastly, this state equation is

used to get the stationary value R(1) for the (�=�I; �)-ES.

6.4.2.1 Preliminary considerations

The expected distance of the centroid at generation g + 1 to the ridge axis, denoted by

r
(g+1) for simplicity, can be formulated using the respective distance r(g) at generation g

and the mutations z generating the � descendants

E
n
r
(g+1)2

o
= E

(
N�1X
i=1

hx(g+1)
i

i2
)
= E

8<
:

N�1X
i=1

 
1

�

�X
m=1

x

(g+1)
im;�

!2
9=
;

= E

8<
:

N�1X
i=1

 
1

�

�X
m=1

~x
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im;�

!2
9=
; =

1

�
2
E

8<
:

N�1X
i=1

 
�X

m=1

h
hx(g)

i
i+ z

(g)
im;�

i!2
9=
; :(6.178)

Naturally, the � best descendants are concerned in this derivation, the notation \m;�"

was introduced on Page 105. As explained in Subsection 2.4.1, the mutations are applied

in the (�=�I; �)-ES to the centroid of the previous generation. The state equation must

also be formulated in that way; �rst for the self-consistency of the equation and second

for the consistency with the algorithm. However, the �nal expression in (6.178) is very

complicated to evaluate. The order of summations should be exchanged, in order to obtain

an expression for the � best mutations. This transformation cannot be done in the method

of induced order statistics. Equation (6.178) requires the calculation of hx(g+1)
i

i �rst, and
not the average over the r(g+1)2 values of the best � descendants.

The next approach is to start with an analytically tractable expression, and compare

it with (6.178) to see the di�erences. To this end, the average of the distances of � best

descendants to the ridge axis is considered

E
n
hr(g+1)2i

o
= E

(
1

�

�X
m=1

r
(g+1)
m

2

)
=

1

�

E

(
�X
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�
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m;�

�2)

=
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E

(
�X

m=1

N�1X
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(g)
im;�

�2)
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�

E

(
�X

m=1

N�1X
i=1

h
hx(g)

i
i+ z

(g)
im;�

i2)
: (6.179)

After comparing the �nal expression in (6.179) to the one in (6.178), one notes that the

brackets contain the same expression for both equations. Unfortunately, one observes two

important di�erences: The order of summations is di�erent, and the double sum is divided

by � in (6.178), and by �2 in (6.179). One may claim that Efr(g+1)2g and Efhr(g+1)2ig
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di�er very much from each other, but they do not. In the following, these two expressions

will be evaluated to the end. Equation (6.179) will be evaluated �rst. For sake of simplicity,

the superscript (g) will be omitted in the following

E
n
hr(g+1)2i

o
=

1

�

E

(
�X

m=1

N�1X
i=1

h
hxii2 + 2hxiizim;�
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: (6.180)

Please note that r2 = r
(g)2 stands for the r2 value of the centroid at generation g. Therefore,

it is identical for all descendants created in generation g. Similarly, for (6.178) one gradually

obtains
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+ T4 : (6.181)

In the last step of the derivation, the fourth term T4 is assumed to be zero. It is necessary

to investigate this assumption in more detail. The components zi of mutation vectors

are normally distributed (zi � N (hxii; �2)). Strictly speaking, this is unfortunately not

the case after selection; but the error introduced by this assumption is expected to be

asymptotically (N !1) negligible.

For the analysis of r, the N � 1 components of the mutation vector z are relevant, i.e.

we are interested in the subvector (z1; z2; : : : ; zN�1)
T
denoted by z

0

. In other words, we are

interested in the component in the direction of the (N � 1) dimensional vector er which

has been introduced in Point 6.3.1.2. For a more rigorous treatment, one has to decompose

the (N � 1)-dimensional subvector z
0

of the mutation vector z in two components. The

transformation to a local coordinate system is necessary for that. One component will be

in the eR direction (the radial progress direction) and will have the magnitude y. The

other component (denoted by h) will cover the remaining (N � 2) directions that are

selection-invariant, i.e. z
0

= �(eT
r
z)er = yeR + h. One obtains for the fourth term of
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(6.181)
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+ 0 : (6.182)

The third term (0) in (6.182) represents the other two terms obtained from the dot product.

It is zero since eR and the respective h are orthogonal to each other. The second term

in (6.182) is zero since the h components of two mutations are uncorrelated and have the

mean value zero. The �rst component is of O(�2) and of O(1) in N . It can asymptotically

(N ! 1) be neglected as compared to the third term of (6.181) which is O(�2) and

O(N). As a result, the fourth term of (6.181) is asymptotically (N !1) negligible. The

expected value EfPN�1
i=1 hz2i ig is calculated using induced order statistics similar to the

derivation of ' or Efhr(g+1)2ig (Appendix A). It will be approximated by (N � 1)�2. This

value is asymptotically (N ! 1) the length of the (N � 1)-dimensional average vector

of � mutations before selection (see also (6.174)). Please note that this expected value

also occurs in (6.180). After these considerations, one obtains by subtracting (6.180) from

(6.181)

E
n
r
(g+1)2

o
' E

n
hr(g+1)2i

o
�
�
1� 1

�

�
(N � 1)�2 : (6.183)

Therefore, one immediately gets the desired quantity E
n
r
(g+1)2

o
if (6.180) can be obtained

analytically.

6.4.2.2 Derivation of E
n
hr(g+1)2i

o
The descendants are generated in the (�=�I; �)-ES by mutations applied at the same state,

at the centroid of the population. Therefore, there are similarities to the (1; �)-ES in

the analysis. Since the (1; �)-ES generates its descendants by mutations applied to the

common parental state, some probability distributions can be immediately adopted from

Subsection 6.4.1.

The expected value Efhr(g+1)2ig can be rewritten as the sum of expected r2 values of

the best � descendants. This can be accomplished by using an expected value integral,

where the random variable u representing r2 is integrated over all possible values for r2.

In this derivation, u denotes the the random variable for the r2 value of the m-th best
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descendant. The density of u can be written as pm;�(u), for having the m-th best �tness

among all � descendants. One obtains

E
n
hr(g+1)2i

o
= E

(
1

�

�X
m=1

r
(g+1)
m

2

)
=

1

�

�X
m=1

E

��
~r
(g)

m;�

�2�

=
1

�

�X
m=1

Z 1

0

upm;�(u) du : (6.184)

The investigation of the expected value in (6.184) is similar to the derivation of ' for

the (�=�I; �)-ES in Subsection 6.3.3. Therefore, most of the technical part is analogous.

Naturally, the probability densities of interest will be obtained from Subsection 6.4.1, since

they do not di�er from the ones used for the (1; �)-ES: The centroid plays a role similar to

the single parent's in the (1; �)-ES case.

The density pm;�(u) can be further speci�ed using the acceptance probability distribu-

tion Pam;� and the corresponding number of constellations (cf. Equation (6.97))

pm;�(u) =
�!

(m� 1)!(��m)!
p(u)Pam;�(u) : (6.185)

In this equation, p(u) gives the density of u for a given r(g)
2
. It has already been introduced

in (6.143). The distribution Pam;�(u) gives the probability for having the m-th best �tness

value for a given u. It can be speci�ed further as (cf. Equation (6.98))

Pam;�(u) =

Z 1

�1
p(Qjuju) [P1(Qju)]

��m
[1� P1(Qju)]

m�1
dQju : (6.186)

The random variable Qju describes the �tness for a given u. The pdf p(Qjuju) is a condi-

tional density; it is the density for the �tness value for a given u and parental state. The

distribution P1(Qju) re
ects the probability of having a �tness value worse than Qju. Since

Qju can attain any value in the �tness space, the integration limits are chosen accordingly.

Inserting (6.186) in (6.185), and (6.185) in (6.184), one obtains

E
n
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o
=

1
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Z 1
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u
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(m� 1)!(��m)!
p(u)

�
Z 1

�1
p(Qjuju) [P1(Qju)]

��m
[1� P1(Qju)]

m�1
dQju du : (6.187)

The integration order is exchanged, and the substitution Q := Qju is used next (cf. the

step from (6.99) to (6.100))

E
n
hr(g+1)2i

o
=
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Z 1
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[P1(Q)]
��m

[1� P1(Q)]
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u p(u) p(Qju) du| {z }
I(Q)

dQ: (6.188)
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The distributions from Subsection 6.4.1 will be inserted one after the other. The inner

integral is named I(Q). It has the same structure as the inner integral which occurred in

the derivation of the state equation for the (1; �)-ES (see Equation (6.136)). Therefore,

if the distributions in the integral are also identical, the result can be adopted. Since the

mutations are applied on the centroid and the mutation operator is identical to the one in

the (1; �)-ES, and since the recombination operator yields the centroid for the (�=�I; �)-

ES case, the distributions p(u) and p(Qju) are also identical for these two algorithms.

The density p(u) is given by (6.143) and the density p(Qju) by (6.140), respectively. The

corresponding result for I(Q) can be found in (6.151), Page 122.
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The derivation continues similar to the (1; �)-ES case in Subsection 6.4.1. After apply-

ing the substitution for s in (6.152), and considering the P1(Q) de�nition in (6.77), (6.189)

becomes
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Using the identity in (6.103), the sum can be converted to an integral for P = 1� �(s)
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The integration order is exchanged next with the same considerations from (6.104) to

(6.105) for integrating over the same area
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The substitution x = �(y), dx = 1p
2�
e�

1
2
y2dy yields
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The result of the inner integral readsZ 1

y
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The outer integral in (6.194) can be taken separately for these two terms. One obtains

using the de�nition of e
�;�

�;�
in (5.20)
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The coe�cient e
0;0
�;�

gives the value 1. This can be proven by considering
R1
�1 pm;�(u)du

for pm;�(u) in (6.185) and the conversion of the sum to the corresponding integral using

the equality given in (6.103). After these steps and the evaluation of the inner integral,

one gets e
0;0
�;�
. By de�nition, the integral

R1
�1 pm;�(u)du must give the value 1.

The coe�cient e
1;0
�;�

is de�ned as c�=�;� (cf. the de�nitions in (5.20) and (5.21)). The

value of S can be substituted from (6.142), and the value of SQ from (6.8). After all these

steps and taking R2 = r
(g)2 into account, one obtains
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� c�=�;�� + (N � 1)�2 : (6.197)

6.4.2.3 The derivation of E
n
r
(g+1)2

o
The notation r(g+1)2 stands for the squared distance of the centroid to the ridge axis at

generation g + 1. Its expected value cannot be computed in a direct analytical way. How-

ever, as it was explained in Point 6.4.2.1, it can be obtained indirectly from the expected

value Efhr(g+1)2ig given by (6.197). Therefore, one can obtain an asymptotically (N !1)

exact result for Efr(g+1)2g by substituting (6.197) in (6.183). The result reads

E
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As a side remark, please note that the progress rate formula for the (�=�I; �)-ES in

(6.110) occurs as part of the second term. This state equation has a close relationship to

the one of the (1; �)-ES given in (6.168). The progress coe�cients used are di�erent, and

the r-independent term is divided by the number of parents for the (�=�I; �)-ES. Therefore,

most of the derivations for the (1; �)-ES in Subsection 6.4.1 need not to be repeated here.

As for the (1; �)-ES, the state equation (6.198) can be used to compute several quantities:

1. The derivation of the stationary value R(1) (see Point 6.4.1.3).

2. The relation of R(1) to D(1) on the sphere model (see Point 6.4.1.4).

3. The mean value dynamics of r(g) over generations (see Point 6.4.1.5).

4. The static evaluation of r(g+1) (see Point 6.4.1.6).

5. The time constant ! for a given r(0) (numerically, see Point 6.4.1.7).

6. The progress measure 'R in r direction (see Point 6.4.1.8).

7. The estimation of the error made for E
�
r
(g+1)

	 �rE
n
r
(g+1)2

o
(see Point 6.4.1.8).

These items consider di�erent aspects of analysis methods mentioned in Section 4.4.

The value R(1) is obtained by stationary analysis. The time constant re
ects an aspect of

the dynamic analysis. The progress measure 'R and the static evaluation of r(g+1) re
ect

di�erent views of the static analysis. The stationary value R(1) will be derived next; all

other items listed can be obtained using the methods described in the previous subsection

(Subsection 6.4.1).

6.4.2.4 The stationary value R(1)

The symbol R(1) represents the stationary distance of the centroid to the ridge axis. The

derivation of R(1) is analogous to the one for the (1; �)-ES in Point 6.4.1.3. The stationary

case is obtained for Condition (6.156) on Equation (6.198). After applying the substitution

X given in (6.158), the remaining terms can be written simpler. One obtains

1

�

(N � 1)�2 =
X

d

p
1 +X

c�=�;�� : (6.199)

The aim here is to get an equation on X. Both sides of the equation can be squared, and

the terms can be reordered. The substitution for L will make the following steps simpler

X
2

1 +X

=

�
d(N � 1)�

�c�=�;�

�2
=: L : (6.200)

The symbol L is analogous to K introduced in (6.160) for the R(1) derivation on the

(1; �)-ES. Since the value of X is identical for both cases, the following steps after (6.161)
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can be adopted here. The resulting equation for R(1)2 can be found in (6.164). After

inserting the value of L in (6.200) to K in (6.164), one obtains

R
(1)2 =

"
(N � 1)�

2
p
2�c�=�;�

#28<
:1 +

s
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�
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�2
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;� 1

2
(N � 1)�2 ; (6.201)

which can be rewritten as

R
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N � 1
: (6.202)

This result was obtained for N ! 1 and after approximating the distributions of the Q

variates by normal distributions. In the derivation, the fourth term in (6.181) was assumed

to be zero, and the third term was approximated by 1
�
(N � 1)�2. Furthermore, the lower

limit of the I(Q) integral in (6.188) was extended to �1 after the transformation explained

following Eq. (6.145) which is asymptotically correct for N !1.

The result obtained can be approximated for larger � and N !1 by

lim
�!1

R
(1) = lim

�!1

(N � 1)�

2�c�=�;�

s
1�

2�2c2
�=�;�

N � 1
: (6.203)

The square root gives asymptotically (N ! 1) the value one. If one compares (6.203)

with the D(1) value in (5.32) for N�1 variables, one observes asymptotically (� !1) the

relation R(1) � D
(1). Therefore, R(1) can be approximated under these conditions by the

corresponding D(1) value for the (�=�I; �)-ES on the sphere model. This approximation

gives useful results for �nite �, whereas the lowest applicable value for � depends also on

d. If d is large, this approximation can be used starting from smaller � values. For more

information on the relation between R(1) and D(1), see Point 6.3.1.1.

6.4.3 The R(1) value for the (�=�D; �)-ES and (�; �)-ES

The value of R(1) has been derived for the (1; �)-ES and (�=�I; �)-ES in the previous

two subsections, respectively. The value for the (�=�I; �)-ES can be used to estimate the

formula for the (�=�D; �)-ES. The method of surrogate mutations is used for this purpose,

which was already used in Point 6.3.1.5 and Subsection 6.3.4 for the derivation of the

progress rate formulae of the (�=�D; �)-ES. For this purpose, the mutation strength � is

substituted in (6.202) by
p
��. The result reads
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Note that this formula is only valid if the progress vector v lies diagonally in the search

space, as it was formalized in Equation (6.58). It is de�nitely not valid if v is aligned with

a coordinate axis (Equation (6.57)).

For the (�; �)-ES case, the R(1) formula is obtained by substituting c1;� by c�;� in the

R
(1) formula (6.166) for the (1; �)-ES. The similarity of the D(1) formulae (5.30) and

(5.31) and the arguments in Point 6.3.1.1 are taken into account here. One obtains

R
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2

2
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s
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3
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N � 1
: (6.205)

These two results asymptotically (� !1) yield the D(1) value from the sphere model

theory, provided that D(1) is taken for N � 1 variables in (5.33) and (5.31), respectively.

Their applicability for �nite � will be shown using experiments in Subsection 7.1.4. The

state equations for these two ES algorithms can be obtained by applying the steps for the

computation of R(1) backwards starting at these results, if necessary.

6.5 Summary and Conclusions

This chapter had four sections. They were dedicated to four convergence measures, namely

quality gain Q, success measures Ps1 and Ps�, progress rate ', and distance r to the ridge

axis. The longest section was the one devoted to the progress rate; it contains several

results on di�erent ridge functions for di�erent ES algorithms. Other sections contained

results for a subset of these cases. A summary of these sections and the important results

will be given in the following.

6.5.1 Summary

The theoretical analysis is carried out for the measures de�ned in the search space ('

and r) and in the �tness space (Q, Ps1, and Ps�). The relation between these measures

-which are de�ned in di�erent spaces- has been searched. This analysis will also continue

in the experimental chapter (Chapter 7). The determination of the search space measures

is the ultimate aim of this work. Since these measures are de�ned directly on object

variables, they have a distinguished value in the search for the optimum variable setting.

Additionally, the applicability of the �tness space measures for predicting the values of the

search space measures is also investigated. The analysis of the �tness space measures is to

be interpreted according to that criterion.

In Section 6.1, the quality gain formula for the (1; �)-ES has been derived on the

parabolic ridge case. Two di�erent methods have been shown for deriving this formula.

The former one is based on the moments of the local quality function Q(z). The �rst two

moments can be used for the normal approximation of this density. These two parameters
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have been derived for the general case of ridge functions. The derivation of the two re-

maining parameters would give us the quality gain formula for the general ridge function;

however, their computation is lengthy and therefore omitted in this work. Therefore, the Q

formula is derived only for the parabolic ridge. The latter method is intended to determine

the quality gain using progress measures in the search space. A second measure additional

to the progress rate has been introduced for this purpose: The progress measure 'R de�nes

the expected decrease in the distance to the ridge axis. The resulting formula provides as

a by-product the condition under which the quality gain Q gives results equivalent to the

progress rate ' for ridge functions. The formula for 'R has been obtained in Section 6.4

on the parabolic ridge. The latter method for determining Q can principally be applied to

other ridge functions or other ES algorithms, too. However, the derivation of 'R for the

general ridge case is still pending.

The success measures Ps1 and Ps� have been investigated in Section 6.2. The formulae

have been obtained using the values of the �rst two moments of Q(z) from Section 6.1.

The parabolic ridge case has been considered �rst, and the formulae have been derived

for the (1; �)-ES. Additionally, the relation of the parabolic ridge to the sphere model has

been established using the limit value for the success probability Ps1. Finally, the success

probability formulae have been given for the (1; �)-ES on the general ridge function. In

Chapter 7, it will be investigated whether the optimum value of the mutation strength �

-which yields the maximum progress rate '- can be predicted using Ps1 values.

The progress rate ' of the general ridge function has been derived in Section 6.3 for

several ES algorithms. A local model has been introduced �rst (Subsection 6.3.1). Using

this model, the stationary value of ' has been derived for the (1; �)-ES, the (�=�I; �)-ES,

the (�=�D; �)-ES, and the (�; �)-ES on the general ridge function. These formulae require

the stationary value R(1) of the distance r to the ridge axis. Therefore, an approximate

formula forR(1) has been provided �rst. These ' formulae yield more accurate results if the

actual value of R(1) is used. In the following subsections, the static progress rate value has

analytically been derived for the (1; �)-ES and the (�=�I; �)-ES. Additionally, it has been

shown that the value of the progress rate ' does not change for linear transformations

of the �tness function. The static progress rate has been derived for the (1; �)-ES in

Subsection 6.3.2. Some probability distributions obtained in this subsection have been used

in Subsection 6.3.3, Subsection 6.4.1, and Subsection 6.4.2. Subsection 6.3.3 investigated

the progress rate ' for the (�=�I; �)-ES. The static ' formula for the (�=�D; �)-ES has been

obtained in Subsection 6.3.4 using surrogate mutations. In Subsection 6.3.5, the (�; �)-ES

has been considered using plausibility arguments. Additionally, the parabolic ridge case has

been considered separately in Subsection 6.3.2 through Subsection 6.3.5: The respective

formula has explicitly been given for static and stationary cases. The asymptotic (� !1)

values of the stationary progress rate formula have been given as well.

The progress e�ciency � has been used in Subsection 6.3.6 to compare the performance

of di�erent ES algorithms on the parabolic ridge. The (�=�I; �)-ES appeared to be the

most e�cient one of them for a large interval of the selection ratio #. The conclusions

related to the progress rate section have been summarized in Subsection 6.3.7.

Section 6.4 provided the analysis of the distance r to the ridge axis. The (1; �)-ES
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has been analyzed in Subsection 6.4.1. The state equation obtained has mainly been used

for four di�erent purposes: To compute the stationary R
(1) value, to obtain the time

constant ! for R(1) numerically, for the dynamics, and to estimate the static progress

measure 'R for the alternative quality gain formula in Subsection 6.1.4. The analysis

of the (�=�I; �)-ES in Subsection 6.4.2 used some probability distributions introduced in

Subsection 6.4.1. The derivation itself, however, poses another additional di�culty. The

value r(g+1)2 of the centroid cannot directly be derived by analytical methods. Therefore,

the relation between the expected value of this desired quantity and of the average of

squared distances hr(g+1)2i has been shown. The analytical result for the latter has been

used to approximate the former one. The state equation for the (�=�I; �)-ES can be used

for the same purposes shown in Subsection 6.4.1, and the corresponding R(1) value has

been determined as an example. The R(1) value for the (�=�D; �)-ES has been derived

in Subsection 6.4.3, based on the surrogate mutation model. In the same subsection, the

formula for the (�; �)-ES has been obtained after some reasoning.

6.5.2 Conclusions

The most important part of the analysis was devoted to the progress rate. Therefore, a

more detailed overview is provided for this measure of progress in Point 6.3.1.8 (stationary

results obtained using the simple local model) and in Subsection 6.3.7. Some interesting

results are itemized below. The de�nition of the measures (except 'R, which is de�ned in

(6.20)) can be found in Chapter 4. Similarly, the static, dynamic, and stationary analysis

were de�ned in Subsection 4.4.

1. The progress rate ' is always nonnegative on ridge functions. This fact contradicts

the universal progress law of Rechenberg.

2. The maximum static progress is obtained on the ridge axis.

3. Among all ridge functions, the maximum progress is obtained for the hyperplane

given a �xed mutation strength �.

4. The maximum progress rate for the parabolic ridge is reached as the mutation

strength goes to in�nity. This limit is nonzero and �nite.

5. For the same distance r to the ridge axis, the static progress rate value of the (1; �)-ES

is larger than the one of the (�=�I; �)-ES.

6. The genetic repair hypothesis is observed on the stationary progress rate perfor-

mance of the (�=�I; �)-ES. This algorithm attains in general a smaller value for the

stationary distance R(1) to the ridge axis than the (1; �)-ES or the (�; �)-ES, and

consequently a larger progress rate.

7. For the parabolic ridge, recombination enables better ful�llment of the short term

goal (i.e. minimization of r). As a result of smaller R(1), the stationary progress
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rate ' is larger, which means that the long term goal is followed better. This is an

interesting example for the operation of recombination, and it should be generalizable

to other ridge functions with � > 0.

8. The progress rate of the (�=�D; �)-ES depends on how the progress axis is oriented

in the search space.

9. An \evolution window" for the mutation strength � is not observed for � � 2.

10. A new form of the evolutionary progress principle (EPP) is observed for ridge func-

tions. There is no negative term in the progress rate formula. Instead, the gain term

and the loss term are identi�ed in the denominator of the formula.

11. The progress measure 'R is de�ned in the search space as the expected decrease in

the distance r to the ridge axis in one generation. This measure has been analytically

determined for the parabolic ridge. It is used to formalize the measurement of the

short term goal (minimize r).

12. The quality gain Q is a progress measure in the �tness space. It can be expressed on

ridge functions using the progress measures ' and 'R in the search space.

13. The quality gain cannot be used in general to estimate the progress rate toward the

optimum.

14. The quality gain is expected to be equivalent or convertible to the progress rate for

the special static case r = R
(1).

15. The success probability Ps1 (or equivalently Ps�) is a measure in the �tness space,

and it is de�ned using the fundamental probability distribution used for the quality

gain. For ridge functions, it does not give further information than the quality gain

as long as the progress rate is of interest.

16. The success probability Ps1 (or equivalently Ps�) is inversely related to the progress

rate ' for the static case and a given mutation strength (at least for 1 � � � 2): For

example, ' attains its maximum value on the ridge axis (r = 0), where Ps1 attains

its minimum value. For r !1, this relation is reversed.

17. The stationary value of the success probability at the optimum progress rate �̂�

obtained for the parabolic ridge is Ps1 = �(�c1;�) (e.g. �(�c1;10) � 0:062). It di�ers

considerably from the corresponding value for the sphere model, corridor model, and

the hyperplane.

18. The D(1) values (see Point 5.3.5.2) play an important role on ridge functions for

� � 1. They emerge as the limit value of the stationary distance R(1) for � ! 1.

The asymptotic behavior depends on the value of d for �nite �. For � < 2, the R(1)

limit itself will also depend on d.
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19. The ES algorithms do not di�use along the gradient path on ridge functions.
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Chapter 7

Experiments

This chapter represents a selection of simulation results obtained. Primarily, they are

used to verify the theoretical results from Chapter 6. The asymptotic limits proposed

are also justi�ed here. Furthermore, these experiments aim at the comparison of results

obtained for convergence measures considering di�erent algorithms as well as di�erent ridge

functions. For the special case of elitist strategies, respective experiments investigate the

e�ect of the selection strategy on convergence measures, since no theoretical formulae have

been derived for this case.

The experiments are done for the static and stationary cases. Additionally, the mean

value dynamics is analyzed for the distance r to the ridge axis. These three analysis

methods were brie
y described in Subsection 4.4.

The �rst section (Section 7.1) is dedicated to the analysis of the distance r to the ridge

axis. The results obtained are used later in the stationary analysis of ' and Ps1, and in the

static analysis of Q. A further reason for this section ordering {which may seem strange{ is

that the static analysis can treat the distance r as a variable in the experiments. Therefore,

this measure was selected for starting the simulations.

Section 7.2 contains the experiments for the progress rate '. The simulation results

for the quality gain Q can be found in Section 7.3, and �nally the success probability is

investigated in Section 7.4. Section 7.5 serves to summarize the results, and concludes the

chapter.

The default cases. Each subsection of this chapter contains su�cient information de-

scribing the experimental conditions. In order to save space and to avoid repetitions, the

default values used in the simulations will be summarized here. The reader can assume

the values given here if no further description is provided in the respective subsection.

The theoretical results were derived under the conditions N � � (for constant � or for

limN!1 �=N � 1 and N � 1 (N !1). The deviations between empirical and theoretical

results are generally caused by the violation of this condition. However, the theoretical

results will prove themselves to be useful for �nite values of N .

The normalizations (6.48) and (6.51) aim at the generalization of simulation results.

The simulation results are obtained for d = 0:01 and N = 100, unless speci�ed otherwise.
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In [OBS97], the results obtained using other d values can be found, which gave the same

curve as in the d = 0:01 case after normalization. Therefore, they are omitted in this

chapter.

The simulations are mostly done on the parabolic ridge (� = 2) because of its special

properties among all ridge functions. The notation \(1 +
; �)-ES" (plural) is used to mention

both the (1; �)-ES and the (1 + �)-ES together. The analysis is done using � = 10 for

simplicity, also for other ES algorithms.

The stationary results are obtained for di�erent cases of v, i.e. for the aligned, diagonal

and randomly oriented ones (see Point 6.3.1.6 for formal de�nitions). The default case is

the aligned one. Analytical approximations are principally shown by lines and curves. A

horizontal line indicates the limit value of the theoretical curve. The simulation results

are shown as \error-bars"; that is, as the mean and its standard error (mean � s.e.). The

mean value of experimental measurements is displayed by points, and the corresponding

standard error as a vertical interval. The standard error is the standard deviation of the

mean. It is obtained by dividing the standard deviation of the measured quantity by the

square root of the number of measurements taken.

In general, G = 100 000 measurements are made for each single data point in all �gures

presented in this chapter. An additional 2000-generation period is reserved before starting

to collect data for the stationary case in order to guarantee that the transient period is over.

To ensure statistical independence, the pseudo-random number generator ran2 [PTVF92,

p.282�] is initialized to a di�erent random seed for each simulation run. For the (�=�D; �)-

ES and the (�; �)-ES, di�erent copies of the pseudo-random number generator are used

for each independent random process (generate o�spring, select parent, etc.) and they are

initialized independently.

Some simulations were done for investigating the e�ect of the values of the vector v (see

Equation (3.17)) on the progress rate of ES algorithms, in particular for the (�=�D; �)-ES.

The aligned and diagonal cases of v were formalized in (6.59) on Page 93. In the third

case, v is selected randomly for each data point in the simulation series.

As explained in Point 6.3.1.1, the stationary value R(1) can be approximated for suf-

�ciently large � by a simpler formula, which is derived from the D(1) value obtained on

the sphere model (see Point 5.3.5.2). The appropriateness of this simpli�cation will be

shown in this chapter on several experiments. It will be called shortly \the D(1)-based

approximation".

7.1 The distance r to the ridge axis

The distance r to the ridge axis is an important quantity in the analysis of ridge functions.

First of all, if its stationary value R(1) is available -either from theoretical analysis or from

simulation results- one can obtain an approximation for the stationary success probability

and progress rate. The necessary formulae were derived in Section 6.2 and Section 6.3,

respectively. The R(1) value indicates also how well a given ES algorithm satis�es the

short term goal (minimization of r, see Subsection 3.3.2).

144



Secondly, the state equation on r can be used for several purposes. It gives the expected

change in one generation. Therefore, it can also be used to estimate the number of gener-

ations required to reach the vicinity of R(1) for a given r(0). The state equation and the

R
(1) formulae have been derived for the parabolic ridge only. For other ridge functions,

the D(1)-based approximation serves as a lower limit: The ES algorithm attains on the

sharp ridge larger R(1) values for small d (see Subsection 7.1.2). On ridge function with

� > 2, larger R(1) values are observed for small � (see Subsection 7.1.3).

This section has six parts. In Subsection 7.1.1, the R(1) values of the (1 +
; 10)-ES are

compared. The comparison is repeated on the sharp ridge in Subsection 7.1.2. Subsec-

tion 7.1.3 gives the R(1) values for the (1; 10)-ES on several ridge functions. The e�ect of

recombination on the R(1) value is investigated in Subsection 7.1.4. The last two subsec-

tions summarize the static results and their application to the dynamic analysis, obtained

using the (1; 10)-ES on the parabolic ridge. Subsection 7.1.5 illustrates the progress mea-

sure 'R for various r and � values. Thereafter, the dynamic analysis shows the applicability

of the r(g) mean value dynamics given an initial r(0) value. Furthermore, the time constant

! is calculated numerically for three di�erent r(0) values depending on the product d�.

7.1.1 The R(1) value for the (1 +; �)-ES

The stationary distance R(1) measures how well an ES algorithm has ful�lled the short

term goal in the long run. The short term goal was formulated in Subsection 3.3.2 as the

minimization of the distance to the ridge axis. The selection scheme used in
uences the

R
(1) value. Several experiments are carried out for di�erent � values and ES algorithms

to measure this value.

In Figure 7.1, the R(1) values obtained using the (1 +
; 10)-ES are compared. The

plus strategy attains smaller R(1) values. In other words, it is more successful than the

respective comma strategy as long as the short term goal is considered. For small values

of the mutation strength, the performance of both algorithms are equally well.

Another aim of this �gure is the veri�cation of theoretical results for the (1; �)-ES. The

R
(1) formula in (6.166) describes the simulation results successfully. For larger values of �,

it becomes equivalent to the respective D(1)-based approximation in (6.41). Both formulae

underestimate the simulation results by a relative error of 2%, which is considerably small.

For small values of �, R(1) is considerably larger than this linear approximation.

If the d value is increased, R(1) matches to the linear approximation from a lower value

of � on. This can be easily traced back in the R(1) formula (6.166). The squared term in

the bracket can be used to express the condition for the validity of the linear D(1)-based

approximation. If d(N � 1)� � 2c1;�, this estimate is applicable. For Figure 7.1, it is

expected to hold for � � 3 (since d = 0:01, N = 100, c1;10 � 1:57), and it practically holds

for � > 6. For d = 0:1, it is expected to hold if � � 0:3, and for d = 0:001 if � � 30.
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Figure 7.1: The stationary distance R(1) versus the mutation strength � for the (1 +; 10)-ES

on the parabolic ridge. The plus strategy provides smaller R(1) values. The theoretical R(1)

curve (6.166) and the corresponding linear D(1)-based approximation (6.41) are compared with

the simulation results for the (1; 10)-ES.

7.1.2 The R(1) values for the (1 +; �)-ES on the sharp ridge

The performances of the (1 +
; �)-ES algorithms in ful�lling the short term goal were com-

pared in Subsection 7.1.1 on the parabolic ridge. A similar comparison is also possible for

the sharp ridge. As a primary di�erence to the parabolic ridge case, one observes

R
(1) / � : (7.1)

In other words, the R(1) value increases linearly in �, and a nonlinear region such as in

Figure 7.1 does not exist. As a result, a plot for various values of the mutation strength

becomes redundant. It su�ces to plot the R(1) values for a given �. The values for other

� can be obtained by a simple multiplication. Therefore, the simulation is done for � = 1

and a list of d values.

Figure 7.2 shows that the R(1) values are again smaller for the plus case. However,

a nonzero R
(1) value is obtained for both algorithms. In this experiment, the simula-

tion length was chosen as G = 200 000, which gave extremely small standard errors. An

analytically derived formula does not exist for R(1) values of the (1; �)-ES on the sharp

ridge. Therefore, these values are compared with the respective D(1)-based approximation

(Equation (6.41), indicated here as a horizontal line). For larger values of d, this result is
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Figure 7.2: The stationary distance R(1) versus d for the (1 +; 10)-ES on the sharp ridge. The re-

sults are obtained for � = 1. The horizontal line is obtained using the D(1)-based approximation

(6.41).

applicable. If one considers the opposite case, d! 0, the R(1) values of both ES algorithms

go to in�nity.

The dependence of the R(1) values on d can be explained by looking at the de�nition

of the sharp ridge (3.15). For small values of d, it becomes similar to the hyperplane, and

for larger d similar to the sphere model. This is re
ected in the ful�llment of the short

term goal, as discussed above.

7.1.3 The R(1) values for various ridge functions

The R(1) values of the (1; �)-ES obtained for various ridge functions are compared in

Figure 7.3. In order to simplify the comparison, both axes are normalized using the factor

d

1
��1 (N � 1) (see Equation (6.51)). Additional to the results shown in this �gure, this

normalization scheme gave the same normalized curve for other d values on the parabolic

ridge case; for � = 2 this is veri�ed by an experiment for d = 2.

A nonlinear region can even be observed for the � = 1:5 case; however, one observes

a di�erent asymptote than for � � 2. It seems that ridge functions with 0 < � < 2 have

an asymptotic R(1) value which cannot be described by using D(1). For 1 � � < 2, this

asymptotic value is obtained using D(1) for su�ciently large d. For � � 2, this limit is

always described using D(1), and the value of d determines at which � value the respective
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Figure 7.3: The stationary distance R(1) versus the mutation strength � for the (1; 10)-ES on

various ridge functions for � 2 f1:5; 4; 8g. Both axes are normalized using the factor d
1

��1 (N�1).

The theoretical R(1) curve for the parabolic ridge case (Equation (6.166)) and the corresponding

linear D(1)-based approximation are also displayed.

R
(1) values can be approximated by D(1). In other words, if d gets larger, this limit holds

for smaller � values.

The normalization used clearly expresses where the transition between the nonlinear

and linear regions happens for R(1). A larger � value results in a larger R(1)� in the

nonlinear region, and the linear region starts at a smaller �� value. For the � ! 1
case, one expects that this transition will be at �� � 2c1;� (please note 2c1;10 � 3 in

Figure 7.3), which would give R(1)� � �
�(N � 1)=2c1;� � N � 1. This R(1)� value

corresponds to R(1) = R
(1)�

=d

1
��1 (N � 1) � 1, independent of the value of d (d 6= 0)

since lim�!1 d

1
��1 = 1. For such large � values, the x0 component dominates the �tness

function FR(x) in (3.13) if r < 1. As a result, large R(1)� values in the nonlinear region

for �� < 2c1;� are explained. For larger values of �, the nonlinear part dominates and the

distance to the ridge axis increases proportional to �.

7.1.4 The e�ect of recombination on the R(1) value

This subsection aims at the veri�cation of theoretical R(1) formulae for ES algorithms

with more than one parent (� > 1) on the parabolic ridge. The results are shown in
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Figure 7.4: The stationary distance R(1) versus the mutation strength � for the (5; 10)-ES, the

(5=5D; 10)-ES, and the (5=5I; 10)-ES, in decreasing order. The data series for these algorithms are

labeled as \N", \D", and \I", respectively. N = 1000, � = 2. The corresponding theoretical R(1)

curves are obtained from (6.205), (6.204), and (6.202), respectively. The corresponding linear

D(1)-based approximations are also plotted.

Figure 7.4. For the (5=5D; 10)-ES, the vector v (see Equation (3.17)) was diagonal in

the simulation. If it is aligned with a coordinate axis, di�erent results are obtained for

R
(1). If R(1) values are compared quantitatively, one observes that the (5; 10)-ES attains

the largest R(1) values among these three algorithms, and the (5=5I; 10)-ES the smallest.

The R(1) values for the dominant case can be obtained by using surrogate mutations (see

Point 6.3.1.5). For N = 100, the asymptotic limits are still valid; however, the R(1) values

for �nite � are not exactly described by analytical formulae (not shown in the �gure).

In Figure 7.4, one can observe that the theoretical predictions accord to simulation

results for N = 1000. For large �, they can be approximated by the D(1)-based approx-

imation. Therefore, as in the (1; �)-ES case, the stationary analysis can be carried out

simply by substituting R(1) into r in the respective formulae for ', Ps1, or Q.

The calculation of the stationary Q is not so simple. The R(1) formula used for that

purpose contains small approximation errors. Because of these errors, the Q formula for

the (1; �)-ES does not predict the simulation results exactly after the substitution of r by

R
(1). Small approximation errors yield remarkable di�erences for the stationary analysis

of the quality gain Q. The reason is the strong r-dependence of Q values in the vicinity of

R
(1) for large � values, as will be seen in Subsection 7.3.1.
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Comparison of R(1) values for the (1; �)-ES and (�=�I; �)-ES. The theoretical R(1)

formulae of these two algorithms on the parabolic ridge can be found in (6.166) and (6.202),

respectively. It is interesting to investigate for which values of � the (�=�I; �)-ES attains

smaller R(1) values, since R(1) measures how well the short term goal (minimization of

r) is ful�lled. For this purpose, these two formulae are compared for large values of the

mutation strength (� !1). The resulting limits can alternatively be obtained using the

idea of Point 6.3.1.1. In other words, these limits are basically equivalent to D(1)-based

approximations on any ridge function for su�ciently large N . Consequently, the R(1)

value of the (�=�I; �)-ES is smaller if

�(N � 1)

2�c�=�;�
<

�(N � 1)

2c1;�
; (7.2)

c1;� < �c�=�;� : (7.3)

One can make this comparison by using numerical integration or by tables and obtain the

largest � value for which this inequality is valid. Trivially, for � = 1 one obtains equality.

For � = �� 1, the equality

c1;� = (�� 1)c��1=��1;� (7.4)

holds because of the symmetry in the de�nition of the c�=�;� integral (5.21). The necessary

intermediate step c1;� = e

0;1
0;� = e

1;0
1;� can be proven using integration by parts [Bey96c,

p. 167], [Bey95b, p. 398]. Consequently, the condition (7.3) holds for 1 < � < �� 1.

As a result of this investigation and generalization of (7.4) one obtains the relation

�c�=�;� = (�� �)c���=���;� : (7.5)

It holds as a consequence of the symmetry in the c�=�;� integral. This equality reduces the

e�orts in the preparation of c�=�;� tables.

7.1.5 The static progress measure 'R

The expected progress in r direction was de�ned in (6.20) as the progress measure 'R. This

measure was used in an alternative derivation of the quality gainQ in Subsection 6.1.4. The

'R value indicates the progress in r direction in one generation. Naturally, this measure

is de�ned in the search space, similar to the progress rate '.

As one can see in Figure 7.5, the analytical formula (6.177) predicts simulation results

well. The results are obtained statically. The stationary case r � R
(1) is also contained

in this �gure, which yields 'R = 0. The simulations are done for the (1; 10)-ES using

the values � 2 f2; 5; 15g for the mutation strength. The 'R values are in the interval

��pN � 1 � 'R � c1;10�, with c1;10 � 1:54 (see Subsection 5.3.4). The lower limit is

sharp for small � values only. It can also be obtained using (6.174). The upper limit is

simply the progress rate limit of the (1; 10)-ES in the search space. From another point

of view, the r value is expected to increase if r < R
(1), and it will decrease if r > R

(1)

yielding 'R < 0 and 'R > 0, respectively.
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Figure 7.5: The progress measure 'R versus the distance r to the ridge axis. Static experimental

measurements and the theoretical formula (6.177) are plotted for � 2 f2; 5; 15g. The value 'R = 0

indicates r = R(1). The magnitude of 'R shows how fast the parent of the (1; 10)-ES will

approach the stationary distance R(1). The upper limit 'R = c1;10� is shown for the case � = 5

with a dashed line.

7.1.6 The dynamic analysis and the time constant

The dynamic behavior of the distance r over generations (i.e. of r(g)), the so-called mean

value dynamics, is another important point to be investigated. For a given r(0) value, the

consecutive r(g) values are calculated using (6.168) for the (1; �)-ES, and compared with

averages obtained from several simulation runs.

The case r(0) = 0 is taken as an example. For the mutation strength � = 1, the r(g)

values are obtained from 100 statistically independent simulation runs. The average of r(g)

values is plotted over generations g in Figure 7.6 and compared to the analytical prediction

(the solid curve). The accordance of both curves is remarkable. A single run is shown in

the same �gure using a dotted line in order to indicate that an actual r(g) sequence does

not yield a smooth curve.

In the two previous �gures, the applicability of the state equation (6.168) was shown

for two aspects. The former one, Figure 7.5, has shown that the 'R formula can be used

to estimate the change in r in successive generations. Thereafter, the applicability of

this equation to the dynamic analysis was underlined in Figure 7.6. Actually, the most

important information obtained from this latter �gure is the time constant (see Point 6.4.1.7
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Figure 7.6: The r(g) value dynamics for the (1; 10)-ES, � = 1, r(0) = 0. The horizontal line

indicates the R(1) value in (6.166). The average over 100 runs is indicated by \mean". A typical

single simulation run is also indicated. The theoretical prediction obtained from (6.168) is shown

as a solid curve.

for its de�nition).

One can use the state equation for r(g+1)2 successively in order to determine the number

of generations necessary to reach an r(g) value in the interval (6.176) for a given r(0). After

collecting such data for various � and d values, one observes that only the product of d�

is e�ective on the time constant. The time constant depends on this product and not on

individual values of � and d. Therefore, the time constant is determined for di�erent values

of the product d�. A theoretical proof for this observation is pending. This hypothesis is

tested empirically for r(0) 2 f10R(1)
; 2R(1)g using a list of d values and � 2 f0:01; 1g. For

each r(0) case, the same value for the time constant is obtained for the product d�. Only

the case � = 1 is shown in Figure 7.7 for simplicity. For r(0) = 0, this hypothesis is tested

for a list of � values and keeping d constant at several values. The same time constant is

obtained for di�erent combinations of � and d, if their product is the same.

Figure 7.7 displays the numerically obtained time constant values for di�erent d� values

starting at three di�erent r(0) values: 10R(1), 2R(1), and zero. The last two cases both

have the same absolute di�erence from the stationary value R(1); however, in the latter

case, the time constant is far smaller. This can be explained by comparing the 'R values

in Figure 7.5 for r < R
(1) and r > R

(1). Therefore, it is advisable to initialize r(0) rather

smaller than larger if R(1) is not known: The resulting transient time will be smaller. The
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Figure 7.7: The time constant ! versus the products d� for r(0) 2 f10R(1); 2R(1); 0g. For larger
values of the product d�, the interval given in (6.176) is reached faster. These numerical results

are obtained by successively applying the state equation (6.168) for the (1; �)-ES.

�rst case r(0) = 10R(1) is depicted in order to show that even in this case the time constant

is not very large.

The calculation of the time constant for very large r(0) is relatively simple. For r(0) �
10R(1), the distance to the ridge axis decreases by 'R = c1;�� per generation. This decrease

becomes slower as the r(g) values close to 10R(1) are attained. The number of generations

to attain 10R(1) can simply be obtained, which is approximately (r(0) � 10R(1))=c1;��.

Thereafter, the time constant for r(0) = 10R(1) must be added to this partial result.

Furthermore, the lower limit for the time constant can be stated as (please note that

R
(1) / �)

time constant ! > jr(0) �R
(1)j=c1;�� : (7.6)

For instance, one obtains for the three cases r(0) 2 f10R(1)
; 2R(1)

; 0g the values 20:4, 20:4,
and 183:6 respectively (for � � 1). This lower limit is not sharp. Since j'Rj � c1;�� for

r � 0 (see e.g. Equation (6.171)), this lower limit prediction is not necessarily applicable

for r(0) < R
(1).

Figure 7.7 displays the time constant values for d� � 0:01. The state equation (6.168)

is further used to predict the time constant for larger values of the product d�. For larger

values of d�, the theoretical approximation of the time constant decreases further. It

becomes !10 = 251 for the r(0) = 10R(1) case; the number of generations obtained for
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the latter two cases were !2 = 43 and !0 = 17, respectively [OBS97, p.59-62]. In the

simulations of this work, the values d� � 0:025 are relevant since the minimum values used

were � = 0:25 and d = 0:01 for the parabolic ridge. Therefore, the number of generations

(i.e. 2000 used) for the transition to the stationary state su�ces.

7.2 The progress rate '

This section summarizes the simulation results for the progress rate '. The progress

measure ' (4.6) is de�ned in the search space. Its values naturally depend on the ridge

function analyzed and the ES algorithm used.

This section has ten subsections. The �rst eight are devoted to the stationary analysis,

the last two address the static case. The parabolic ridge is considered exclusively in �rst

four subsections and the ninth one, and the sharp ridge in the �fth one. Other subsections

are on other ridge functions, or they serve for comparisons made on di�erent ridge functions.

In Subsection 7.2.1, the N -dependence of the asymptotic (N ! 1) progress rate

formula for the (1; �)-ES is investigated on the parabolic ridge. Moreover, the performance

of (1 +
; �)-ES are compared for � = 10. The empirical results for stationary progress

rate of the (�; �)-ES on the parabolic ridge are compared with the theoretical predictions

(Subsection 7.2.2). The same comparison is done for the (�=�I; �)-ES in Subsection 7.2.3,

and for the (�=�D; �)-ES in Subsection 7.2.4. Subsection 7.2.5 investigates the progress

rate formula of the (1; �)-ES on the sharp ridge, and compares them with the simulations

of the (1 + �)-ES.

The performance of the (�=�I; �)-ES on the ridge function with � = 5 is analyzed using

the simple local model in Subsection 7.2.6. The analysis for the (1; �)-ES case can also

be found there. Subsection 7.2.7 shows the rotation-dependence of the performance of the

(�=�D; �)-ES. The results on the ridge functions with � = 4 and � = 0 are used for this

purpose. A comparison of progress rate curves of the (1; �)-ES on di�erent ridge functions

can be found in Subsection 7.2.8.

Subsection 7.2.9 shows how di�erent the progress rate ' and quality gain Q can be

if measurements are taken statically at r = 0 (see also the Subsection 7.3.2 for a static

comparison for various r values). The results of the (1; �)-ES on the parabolic ridge are

used for this purpose. Its progress rate and quality gain values are additionally contrasted

to the ones of the (1 + �)-ES. The last subsection (Subsection 7.2.10) is devoted to static

' results of the (1; �)-ES on the sharp ridge, parabolic ridge, and the ridge with � = 8.

7.2.1 The N dependence

The normalized progress rate formula of the (1; �)-ES in (6.89) was derived for the asymp-

totic (N ! 1) limit case. Formula (6.48) was used in the normalization. This progress

rate formula gives satisfactory results for �nite N . The N -dependence of simulation results

is exempli�ed in Figure 7.8 for the (1; 10)-ES. The asymptotic limit c21;� is displayed in this
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Figure 7.8: The progress rate ' on the parabolic ridge versus the mutation strength �. Both

axes are normalized using (6.48). The simulation results for N 2 f10; 30; 100g are compared to

the theoretical formula in (6.89). Additional to these results for the (1; 10)-ES, the simulation

results for the (1 + 10)-ES are also shown (N = 100 case). The horizontal line c21;10 and the limit

'� � c1;10�
� are also shown.

�gure as a horizontal line. As N is increased, the simulation results are described more

accurately by the theoretical formula (6.89).

The ' formula (6.45) derived by using the local model gives accurate results forN = 100

as long as the R(1) values obtained from simulations or from the theoretical R(1) formula

(6.166) are used. For the cases N = 10 and N = 30, it does not give accurate results. The

theoretical results obtained from the local model are omitted in the �gure since they do

not di�er much from (6.89).

The simulation results for '� obtained using the (1 + 10)-ES are also depicted in the

�gure. They are obtained for N = 100. After comparing them with the results obtained for

the (1; 10)-ES under the same conditions, one observes signi�cant di�erences. For �� < 2,

both the (1 + 10)-ES and the (1; 10)-ES attain almost the same progress rate performance.

The progress rate of the (1 + 10)-ES is slightly larger for �� values where both algorithms

attain progress rate values as large as the hyperplane. However, for larger values of ��,

the '� value of comma strategy increases further to an asymptote, whereas the values for

plus strategy gradually decrease down to zero. The peak performance '̂� of the comma

strategy is larger.

Another set of simulations was done for keeping N constant (e.g. N = 100) and
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increasing � (not shown here). The simulations for � = 100 and � = 500 gave smaller

deviations from the theoretical formula than in the low N case. These deviations have

almost vanished for larger N (e.g. at N = 1000 for � = 100). The elitist (1 + �)-ES gave

smaller progress rates and peak performances than the (1; �)-ES under the same conditions

(not shown here). The detailed results can be found in [OBS98a, p. 21�].

The quality gain Q is also measured in these simulations. It gave the same results as

' in the stationary case since the linear component of the �tness function does not have

a factor. However, the standard error of the Q measurements is much larger, since the

variables xi in (3.11) are squared for the parabolic ridge and the 
uctuations of them are

re
ected in the �tness values. Moreover, this standard error increases in � much faster than

the one of ' because of the same reason. The stationary Q measurements and comparative

�gures of standard errors for ' and Q are omitted here. Additional explanatory �gures

can be found in [OBS97, p. 43].

7.2.2 Increasing the number of parents �

The normalized progress rate '� of the (�; �)-ES on the parabolic ridge will be compared

for di�erent � values. The values � = 10 and � 2 f2; 5; 9g are used in simulations. The

results are in accordance to the formula (6.125). The asymptotic (� ! 1) '� values are

also predicted correctly.

In this simulation, one observes that the rotation of the vector v in (3.17) does not

in
uence the progress rate of the (�; �)-ES. One also observes that the simulation results for

N = 100 and N = 1000 become equivalent after normalization. The conclusion obtained

from these experiments with di�erent � values is that the (1; �)-ES attains the largest

progress rate among the (�; �)-ES. An increase in the number of parents for a given �

causes a decrease in the progress rate. The results for the (1; �)-ES case can be found in

Subsection 7.2.1.

7.2.3 The e�ect of intermediate recombination

The progress rate value for the (�=�I; �)-ES is expected to surpass the one of the (1; �)-ES

and the (�; �)-ES. The formulae derived in Section 6.3.3 support this expectation. The

prediction power of these formulae will be validated here for di�erent values of �.

The choice of the optimal � value for a given number of o�spring is investigated in

Figure 7.10 for the (�=�I; 10)-ES. An important result for larger values of � was referred

in Subsection 6.3.6. In Figure 7.10 (� = 10), one observes that � = 3 gives the largest

progress rate value, and � = 9 the smallest one. The simulation results of the (�=�I; 10)-

ES can be compared directly with the ones of the (�; 10)-ES in Subsection 7.2.2 for � = 5

and � = 9. The e�ect of recombination in increasing the progress rate performance is

remarkable. One also observes that the choice of v does not a�ect the '� values.

The progress rate curve for the (4=4I; 10)-ES and its asymptotic limit 4c24=4;10 are not

shown. This algorithm gives a progress rate performance between the cases � = 2 and

� = 5 of the (�=�I; 10)-ES. One can conclude that the recombination operator increases

156



0

0.5

1

1.5

2

2.5

0 2 4 6 8 10

1000r
r

c
2
1;10

c
2
2;10

c
2
5;10

c
2
9;10

�
�

'

�

Figure 7.9: The progress rate ' versus the mutation strength � for the (�; 10)-ES on the parabolic

ridge (� = 2). The simulation results are obtained for � 2 f2; 5; 9g. The normalization (6.48)

was used for both axes. Four horizontal lines indicate the asymptotic limits of ES algorithms in

descending order c21;10 > c22;10 > c25;10 > c29;10 (The topmost one is for the (1; 10)-ES, the lowest

for the (9; 10)-ES). The notation \r" in the legend denotes that the vector v in (3.17) was chosen

randomly and \1000" means N = 1000 was used in the simulation. The progress rate formula

(6.125) is also indicated in the �gure.

the performance of the ES algorithm for a large interval of parents: For � � 5, the

(�=�I; �)-ES surpasses the (1; �)-ES on the parabolic ridge. As an important remark, the

(5=5I; 10)-ES yields a larger '� than the (1; 10)-ES although it works with relatively large

selection ratio.

In Figure 7.10, the theoretical progress rate curve accords to simulation results for

N = 1000 (or N � 1000) and not for N = 100, which has successfully been done for the

(1; 10)-ES in Figure 7.8. This can clearly be seen for the � = 3 case. This fact should

be considered in the utilization of asymptotic (N ! 1) formulae with recombination. In

other words, the formula derived under the condition (N !1) can be used starting from

a larger value of N . Otherwise, the N -dependent progress rate formulae should be used,

which has not been derived yet. Fortunately, the asymptotic values are attained even in

this case (N = 100), although at larger �� values.
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Figure 7.10: The progress rate ' versus the mutation strength � for the (�=�I; 10)-ES on the

parabolic ridge (� = 2), � 2 f3; 5; 9g. The normalization (6.48) was used for both axes. Five

asymptotic limits drawn are 3c23=3;10 > 2c22=2;10 > 5c25=5;10 > c21;10 > 9c29=9;10. The '� values are

predicted correctly by the formula (6.113) for N = 1000. In the legend, the letters \d" and \r"

indicate that the vector v was diagonal or randomly chosen, respectively. The value of � and N

are indicated for each simulation run, too.

7.2.4 The e�ect of dominant recombination

The progress rate '� of the (�=�D; �)-ES was estimated in (6.119). The aim of this sub-

section is to �nd out whether this formula provides useful predictions and to state the

necessary conditions for that. It was conjectured that this formula is only valid for diago-

nal v (see Equation (6.58)). Therefore, one should also make an experiment for the other

extreme, i.e. if vector v is aligned (see Equation (6.57)).

The e�ect of orientation of v is tested on the (2=2D; 10)-ES. The �rst comparison is

for N = 100. The progress rate increases faster for the diagonal case: Please see (6.59)

for understanding larger '� values of the diagonal v case at low �
� values. However, the

aligned case attains similar values for larger ��. Moreover, they both attain the theoretical

limit 2c22=2;10 for �
� !1 (not shown here). If one repeats the experiment for the diagonal

case with N = 1000, one observes that the theoretical formula for '� holds. This is more

or less the case for the other experiment with � = 5, although the deviations are larger.

In summary, the theoretical formula for '� of the (�=�D; �)-ES holds for the parabolic

ridge if N is su�ciently large. For smaller N , the simulation results for the (�=�D; �)-ES

158



0

0.5

1

1.5

2

2.5

3

3.5

0 2 4 6 7

2_1000_D
2_100_D
2_100_N

5_1000_D

c
2
1;10

2c22=2;10

3c23=3;10

5c25=5;10

�
�

'

�

Figure 7.11: The progress rate ' versus the mutation strength � for the (�=�D; 10)-ES on the

parabolic ridge (� = 2), for � = 2 and � = 5, using (6.48) for normalization. Four asymptotic

limits are displayed 3c23=3;10 > 2c22=2;10 > 5c25=5;10 > c21;10. The formula (6.119) for '� is plotted

for � 2 f2; 5g. The N values (100 and 1000) and the � values are also indicated in the legend, as

well as whether v is aligned (\N") or diagonal (\D").

were smaller than the values given by this formula. In contrast, the normalized progress

rate values of the (1; �)-ES were larger than the analytical formula for smaller N (see

Subsection 7.2.1).

Furthermore, Figure 7.11 contains the asymptotic limits for some (�=�D; 10)-ES algo-

rithms (� 2 f2; 3; 5g) and for the (1; 10)-ES on the parabolic ridge. The simulation results

and the predictions are not shown for � = 3 although a good accordance is also observed for

this case. As one can see, the progress rate performance of the (1; 10)-ES is surpassed by the

(�=�D; 10)-ES for 2 � � � 5 (see also Subsection 7.2.3 for the (�=�I; �)-ES). Furthermore,

the surrogate mutation model in Point 6.3.1.5 holds to convert the results of dominant and

intermediate recombination to each other for su�ciently large N (N � 1000).

7.2.5 The (1 +; �)-ES on the sharp ridge

The progress rate of the sharp ridge in (6.92) was obtained as a special case of the general

ridge formula for � = 1. Alternatively, the local model yields the formula (6.52), which was

expected to give similar results for the stationary case. In the former formula, the R(1)

values obtained from simulation results are inserted for r. This formula gives approximately

159



0

0.4

0.8

1.2

1.6

0.1 1 10 100

c1;10

d

'

(1; 10)-ES
(1 + 10)-ES

local

Figure 7.12: The progress rate ' versus d for the (1 +; 10)-ES on the sharp ridge, � = 1.

The theoretical formula (6.52) using the simple local model is plotted. The upper limit c1;10 is

obtained for d / 0:1. The stationary progress rate of the (1 + 10)-ES appears small compared to

the (1; 10)-ES for d > 4.

the same results as the latter one in the stationary case. Therefore, it is omitted in

Figure 7.12.

The maximum ' value of the (1; 10)-ES for d ! 0 is obtained as c1;10 � 1:54 (see

Subsection 5.3.4 for c1;10). The value � = 1 is used for the mutation strength in simulations.

The results for other � can be obtained by a simple multiplication since the progress rate

is proportional to the mutation strength (' / �) for the (1 +
; �)-ES. This proportionality

also holds for � > 1. For example, the curves for the (�=�I; �)-ES and � = 1 are similar

to the (1; �)-ES case, with the maximal value c�=�;� instead. Therefore, the corresponding

�gures are omitted.

Furthermore, Figure 7.12 serves as a comparison of the (1; �)-ES and the (1 + �)-ES

on the sharp ridge. For d > 4, the stationary progress rate of the (1 + 10)-ES is small

compared to the (1; 10)-ES. The plus strategy attains poorer performance for d ' 1.

7.2.6 The (�=�I; �)-ES on the ridge function with � = 5

The e�ect of intermediate recombination on the progress rate ' is investigated in this

section on the ridge function with � = 5. Recombination is expected to increase the

progress rate in the stationary case, since the theoretical analysis predicted lower R(1)

160



0

0.5

1

1.5

2

2.5

0 1 2 3 4 5 6 7

2i-1000r

(1; 10)-ES
(2=2I; 10)-ES
(3=3I; 10)-ES

'

�

�
�

Figure 7.13: The progress rate ' versus the mutation strength � of the (�=�I; 10)-ES on the

ridge function with � = 5 using the normalization (6.51). The cases � = 2 and � = 3 are shown.

The former experiment is repeated for N = 1000 and randomly chosen vectors v (labeled as

\2i-1000r"). The normalized versions of (6.108) and (7.7) do not di�er for this case. The results

for the (1; 10)-ES are depicted for comparison along with the theoretical formula (6.45).

values than the one obtained for the (1; �)-ES. The second aim of this subsection is the

veri�cation of the theoretical formula obtained for the (�=�I; �)-ES on the general ridge

case.

Figure 7.13 shows normalized progress rate curves for the (2=2I; 10)-ES and the (3=3I; 10)-

ES (N = 100, � = 5). Equation (6.51) is used for the normalization. The de�nition of

the general ridge function can be found in (3.17). The maximum progress rate '� ob-

tained in both cases are almost the same, although the corresponding �� values di�er. The

theoretical formula obtained using the local model in Point 6.3.1.3

' � c�=�;��q
1 + (d�r��1)

2
(7.7)

overestimates these experimental results. Therefore, the curves from this formula are not

drawn for these two cases with N = 100. The normalization (6.51) and R(1) values from

simulation results are used in the comparison.

The simulation for � = 2 is repeated for N = 1000. The vector v is randomly directed

in the search space to see whether the progress rate values depend on its direction. It
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is sampled anew for each data point. As expected, (7.7) obtained using the simple local

model predicts the simulation results well. The static formula (6.108) is also shown in the

�gure with using R(1) values obtained from simulations. It gives almost the same curve

as the formula obtained using the simple local model. Additionally, one observes that the

simulation results do not depend on how v is directed.

The curve for the (1; 10)-ES is also displayed in the �gure. The formula of the local

model matches in this case even for N = 100. Since no recombination is used in the (1; �)-

ES algorithm, this simple asymptotic (N !1) formula holds for smaller values of N . An

analytic explanation for this observation is pending: The asymptotic (N ! 1) formula

of the (�=�I; 10)-ES seems to be valid for N ' 1000. The peak performances '̂� of the

(�=�I; 10)-ES with � = 2 and � = 3 surpass the one of the (1; 10)-ES.

Two interesting observations should be added at the end: Firstly, the (1; 10)-ES attains

higher '� values for small �� (�� / 1) since its R(1) value does not di�er much from the

one of the (�=�I; 10)-ES. This was also observed on the sphere model [Bey96c, p. 212�].

However, the algorithms with intermediate recombination give much better results because

of small R(1) values for �� ' 4. This becomes clear after comparing (7.7) and (6.45): The

(�=�I; �)-ES must have much smaller R(1) values to surpass the (1; �)-ES. Additionally,

one also has to consider that the c�=�;� values are smaller than the c1;� value for � > 1 (see

e.g. Table 5.1 on Page 62). Nevertheless, the progress rate of the (�=�I; �)-ES is larger.

These results should be considered as an evidence for the genetic repair hypothesis

(Subsection 5.2.7) on the distance r to the ridge axis, i.e. on the short term goal. According

to this hypothesis, a reduction in the (harmful) mutation components perpendicular to the

progress direction is expected if the recombination operator is used. This reduction caused

on the sphere model a considerable decrease in the loss term, and consequently an increase

in the progress rate value (see the evolutionary progress principle, Subsection 5.2.6). For

ridge functions, such a reduction is observed in the stationary value of the orthogonal

components (i.e. smaller R(1)). This reduction caused a smaller denominator in the

progress rate formula and consequently a larger '. In other words, the ES algorithms with

the recombination operator ful�ll the short term goal better, and as a consequence, they

are more successful in ful�lling the long term goal. The de�nitions of the long term goal

and the short term goal can be found in Subsection 3.3.2.

7.2.7 The (�=�D; �)-ES on ridge functions with � = 4 and � = 0

This subsection summarizes important results obtained for the (�=�D; �)-ES on the general

ridge function (3.17). The experiments are done for the ridge function with � = 4 and

� = 0. The dependence of its performance on the vector v is shown as well as the ap-

propriateness of the surrogate mutations' estimate. The simple local model gives accurate

results for the progress rate.

Figure 7.14 shows the dependence of the progress rate of the (9=9D; 10)-ES on the

direction of v. The progress rate limit '� =
p
9c9=9;10�

� � 0:51�� obtained from (6.59) is

also shown in the �gure (straight double dashed line). The lowest performance is obtained

if v is aligned with the ridge axis (case \N"). The results for diagonal v (case \D") and
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Figure 7.14: The progress rate ' versus the mutation strength � of the (9=9D; 10)-ES on the

ridge function with � = 4, using the normalization (6.51), N = 1000. Three cases are considered:

With an aligned v (\N", Equation (6.57)), with diagonal v (\D", Equation (6.58)), and with

randomly chosen v vectors (\R"). The results for the (9=9I; 10)-ES are shown using dotted lines

(after the appropriate transformation for surrogate mutations) as the case \I". The solid curve

shows the formula in (7.10). Using the R(1) values from simulations in (7.9), one obtains a good

accordance (the \� � �" curve).

randomly selected v (case \R") do not di�er much from each other. In the latter one, v is

selected anew for each data point of the simulation series. This data series di�ers form the

theoretical prediction more than the former one, which should be regarded as an evidence

for the in
uence of the orientation of v on the progress rate. The former case accords to

the estimate obtained using the local model, (6.45), (6.59)

' �
p
�c�=�;��q

1 + (d�r��1)
2
; (7.8)

and the normalization (6.51)

'
� �

p
�c�=�;��

�q
1 + (d�r��1)

2
: (7.9)

The R(1) values from simulation results are used. For N = 100, they do not match
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so exactly. Equation (6.115) is not shown explicitly in the �gure since its results were

equivalent to (7.9) after normalization using (6.51).

The solid curve in the �gure is obtained using (5.33) for the D(1)-based approximation

instead of R(1) from simulation results

'
� �

p
�c�=�;��

�s
1 +

�
�d

h
(N�1)�

2
p
�c�=�;�

i��1�2
=

p
�c�=�;��

�s
1 +

�
�

h
��

2
p
�c�=�;�

i��1�2
: (7.10)

It serves as an evidence for the nonlinearity of R(1) and overestimates the '̂�; however, �̂�

is predicted correctly.

Additionally, the �gure contains the dotted line labeled as \I". It is obtained using

the surrogate mutation model for the conversion of ' values of the (�=�I; �)-ES to the

(�=�D; �)-ES (see Point 6.3.1.5). The mean values of the experimental results for the

(9=9I; 10)-ES are transformed by dividing the � values by
p
� = 3, and normalized in the

same manner as done for the other curves. The data points obtained are connected by a

dotted line. The results match to the ones obtained for the (9=9D; 10)-ES with diagonal

v, which can be considered as a veri�cation of the applicability of the surrogate mutation

model.

The values for �� and '� are quite low in the �gure as compared to the ones in Fig-

ure 7.13. The purpose of this experiment was to show that the theoretical formulae obtained

are also valid for such limit values of �. The validity region of the simple local model is

remarkable.

Table 7.1: The progress rate ' of the (2=2D; 10)-ES on the hyperplane with a diagonal v vector

for various N , � = 1. The (rounded) experimental mean for ', its (rounded) standard error, the

number of variables N , and the number of generations (samples) G are shown. For N = 1, one

obtains ' � c2;10�; and for N !1, ' �
p
2c2=2;10� � 1:796�.

' s. e. N G

1:351 0:002 1 100 000

1:483 0:001 2 500 000

1:538 0:002 3 100 000

1:574 0:002 4 100 000

1:596 0:002 5 100 000

1:671 0:002 10 100 000

1:759 0:002 50 100 000

1:776 0:002 100 100 000

1:796 0:002 1000 100 000

1:795 0:002 10000 100 000
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The (�=�D; �)-ES on the hyperplane. The progress rate of the (�=�D; �)-ES on the

hyperplane was addressed in Point 6.3.1.6. The dependence of its progress rate values

on the vector v can be investigated using simulation runs. The aim of these experiments

is to show that the progress rate formulae in (6.59) hold for aligned and diagonal cases.

Furthermore, the simulation runs are expected to show that these two cases of v yield

two extremes for '. In other words, for all other choices of v, the progress rate should be

between these two values.

Since the standard error of the empirical measurements were not small enough, it was

not possible to show that these ' values are extreme: The lower limit (' = c�;��) is clearly

obtained for the aligned case. However, the experiments with randomly chosen v attained

values rather close to the upper limit (' =
p
�c�=�;��), some of them even contained this

limit in their interval (mean � standard error). These experiments were done for N = 100.

Although there are 2100 di�erent diagonal unit vectors v for this case, one can say that a

lot of other vectors will give progress rate results in the vicinity of this upper limit.

Some simulations were made to investigate the progress rate values of the (�=�D; �)-ES

on the hyperplane with a diagonal v vector. For � = 2, � = 10, and � = 1, the number of

variables is increased from N = 1 up to N = 10 000. Measured mean progress rates and

respective standard errors can be found in Table 7.1.

The values of c2;10 and c2=2;10 can be found in Table 5.1 on Page 62. These results show

that the surrogate mutation model holds for the hyperplane case if v is diagonal and if N

is su�ciently large. Obviously, the value ' = c�;�� is obtained for the (�=�D; �)-ES on the

hyperplane if v is aligned, independent of the value of N .

7.2.8 The (1; �)-ES for various �

The progress value of the (1; �)-ES depends on the ridge function concerned. Therefore,

it is important to describe the dependence of '� on � for a given set of �� values. At

this point, it should be underlined that the � values for di�erent � may di�er considerably

from each other as a result of the normalization in (6.51), although the resulting �� value

is identical. This emerges as a by-product of the generalization e�ect of the normalization.

For N = 100 and d = 0:01, which were used in this experiment, the originating values for

�
� = 1 are � � 101 for � = 1:5 and � � 0:02 for � = 8.

In Figure 7.15, the normalized progress rates of the (1; 10)-ES for di�erent � values

are compared with each other. The values � 2 f1:5; 2; 3; 4; 8g are used in the comparison.

Additionally, the theoretical formula (6.45) using the R(1) values from simulations is drawn

for these � values. Formula (6.89) for the parabolic ridge (� = 2) gives similar results (not

shown in the �gure). Unfortunately, it cannot be generalized to other ridge functions since

the R(1) formula required has not been derived for the general case. A good accordance of

theoretical and empirical results can be observed. The deviation for the peak performance

'̂
� of � = 8 vanishes if a larger N value is used in the experiments (e.g. N = 1000). The

experiment for � = 8 is repeated for d = 2. The resulting curve becomes equivalent to the

one for d = 0:01 after the normalization in (6.51).

The theoretical progress rate on the hyperplane is shown as a line in the �gure, ' =
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Figure 7.15: The progress rate ' versus the mutation strength � of the (1; 10)-ES on ridge

functions, using (6.51) for the normalization. The experimental '� values are shown for � 2
f1:5; 2; 3; 4; 8g, along with corresponding analytical approximations obtained using (6.45) and

R(1) values from simulations. The limit case � = 0 with '� = c1;10�
� and the asymptotic value

c21;10 for � = 2 are also displayed.

c1;10�. One observes that this limit becomes active if � is increased. However, one has to

consider that the actual � values also decrease in this process. Additionally, one observes

that the progress rate limit '̂� = c
2
1;� for the parabolic ridge (� = 2) seems to be an upper

limit for other ridge functions with � > 2. A proof for this observation is pending.

The di�erence in the progress behavior for � < 2 and � > 2 is clearly observed in this

�gure. The sharp ridge case (� = 1) is not shown since it cannot be normalized using (6.51)

and since the slope of its ' depends directly on the d value used in the �tness function.

The case � = 1:5 is plotted to indicate that its progress rate continues to increase if �� is

increased, although not as \fast" as in the � = 0 case, with the limit lim��!1 '
� = 1.

For � > 2, one observes a sharper decrease in '� toward zero if � is increased; however,

the progress rate values remain positive.

After considering the conjectures in Subsection 7.1.3, and the change in the '� curve

for increasing �, one can infer how the '� curve will be for � ! 1. The R(1) value is

expected to be slightly below 1 for �� / 2c1;�. A linear increase and R(1)
> 1 is expected

for larger �� values in '�, resulting a sharp decrease down to zero (see Equation (6.45)).

For � = 10, this sharp decrease is expected at �� ' 2c1;10 � 3, and the '� values are

expected to increase linearly for 0 < �
�
< 3. Such a tendency is supported by the change
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of the '� curve for � 2 f3; 4; 8g.
If one would repeat the experiment in Figure 7.15 for the (�; �)-ES, the (�=�I; �)-ES,

or the (�=�D; �)-ES, the tendencies of the curves will not be di�erent. Similar curves can

be obtained in various simulations if N is chosen su�ciently large.

7.2.9 The static progress rate on the ridge axis
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Figure 7.16: The static progress rate versus the mutation strength � of the (1 +; 10)-ES on the

parabolic ridge for r = 0 (on the ridge axis). The formula (6.86) for the (1; 10)-ES accords to

simulation results for small � values, but the simulation results go to a di�erent asymptotic limit

for � ! 1. The experimental results of the (1 + 10)-ES are shown for comparison. The third

set of simulation results represents the quality gain Q values of the (1; 10)-ES under the same

conditions, and (5.37) perfectly matches to them (\R").

The static progress rate performance of the (1 +
; �)-ES on the ridge axis will be inves-

tigated using the parabolic ridge. The simulation results of the (1; 10)-ES and (1+ 10)-ES

for r = 0 will be used for this purpose. The static progress rate attains its maximum value

for r = 0, and its limit for � ! 1 is expected to be much larger than the one for the

stationary case (compare Equation (6.87) with Equation (6.90)). It is quite interesting that

the progress rate ' is not expected to go to in�nity for r = 0 and � ! 1. Furthermore,

one expects remarkable di�erences between the values of quality gain Q and progress rate

' since the progress measure 'R is de�nitely nonzero for r = 0 (see Equation (6.25)).
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In Figure 7.16, three important series of experiments are depicted. From top to bottom,

these are the experimental results of ' of the (1; 10)-ES, ' on the (1 + 10)-ES, and Q of the

(1; 10)-ES. The progress rates for plus and comma cases strongly di�er from each other.

The approximation (6.86) accords to simulation results for lower values of �; However,

simulation results go to a larger asymptotic limit. Their accordance is expected to become

better for larger values of N . This limit is much smaller than the limit ' = c1;10� shown

in the �gure.

The progress rate results for the (1 + 10)-ES are much worse than the ones obtained

for the stationary case (Figure 7.8). The reason is simple. The plus strategy can hardly

create o�spring which are better than their parent for r = 0. Almost all descendants are

expected to have a worse �tness value than the parent. Therefore, r = 0 is not a good

starting location for the elitist strategy. It is important to note that the experimental

conditions were the same for the (1 + 10)-ES and (1; 10)-ES, and these conditions harmed

the former and favored the latter. This experimental setup is a good example for biasing

the results in a certain way. The stationary comparison gives a more objective view for

the evaluation of these strategies (see Subsection 7.2.1).

The third data series (lowest curve) gives experimental quality gain results of the (1; 10)-

ES. The formula (5.37) proposed by Rechenberg accords very well to them. It is important

to note that this formula was proposed for the progress rate ' and not for the quality

gain Q. The quality gain formula (5.39) matches exactly to these simulation results, the

values of its �tness-dependent parameters can be found in Point 6.1.2.2. This formula is

omitted in the �gure for clarity. After considering Table 6.1 and these �tness-dependent

parameters, one notes that (5.37) emerges as a special case of (5.39) for small values of

d, r = 0, and N � 1. The remaining di�erence (N instead of N � 1) is negligible for

N � 1. The terms with �3 and �4 vanish, one obtains Q � MQ + c1;�SQ, However, these

two formulae di�er considerably for d� 1.

7.2.10 The static progress rate of some ridge functions

This subsection is dedicated to the static analysis of progress rate values of the (1; �)-ES

on di�erent ridge functions. The ES algorithm with � = 10 is investigated as an example

on the sharp ridge (� = 1), the parabolic ridge (� = 2), and the ridge function with � = 8,

which has a highly nonlinear �tness landscape. The mutation strength � is kept �xed, and

the distance r to the ridge axis is varied for several orders of magnitudes.

Figure 7.17 summarizes the results for � 2 f1; 2; 8g. Both axes are logarithmic. For

� = 8, the mutation strength � = 0:034145 (�� � 1:75) is chosen, since it yields the

maximum stationary progress rate (see Figure 7.15). In the static case, it attains ' � c1;10�

for r < 1. For r ' 1, however, a sharp decrease is observed on the progress rate values.

For the parabolic ridge case, the simulation is done for � = 2. The maximum value

'̂st is held for even larger values of r. The static progress rate decreases slower than in

the � = 8 case. For both � = 8 and � = 2, simulation results are correctly predicted by

the static progress rate formula (6.84). However, this is not the case for the sharp ridge.

It can be assumed that this general formula gives erroneous results for � < 2 because of
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Figure 7.17: The static progress rate versus distance r to the ridge axis of the (1; 10)-ES on ridge

functions with � 2 f1; 2; 8g. The value � = 0:034145 is used for � = 8. For other cases, � = 2 is

used. For the sharp ridge, d = 1 was chosen. The theoretical formula (6.45) is plotted for � = 2

and � = 8. Formula (6.84) gives wrong results for � = 1. For this case, (6.52) gives a line.

the third term in the denominator. In this �gure, the value d = 1 is arbitrarily chosen

for the sharp ridge, and the lower limit of ' is correctly estimated by the general formula

(6.84) and by (6.52). The theoretical results obtained from (6.45) are depicted for � = 2

and � = 8. This formula is much simpler than (6.84), and gives similar results in this

�gure. For � = 2 and r < 10, Equation (6.84) predicts the simulation results better. It is

interesting to see that the static progress rate of the sharp ridge depends relatively little

on the r value, especially for larger r values it decreases a quite negligible amount. The

local model promises no dependence on r, which is of course not the case.

Some more static results can be added here for the (1; 10)-ES on the parabolic ridge

with � = 8, d = 0:01. The plus strategy attains equivalent static results for � = 0:034145.

However, since its R(1) value is slightly smaller, the resulting stationary '� is larger for the

elitist case. For � = 0:06829, however, the result is more interesting. Although the comma

strategy attains better static results for 1 / r / 3 (the values are equivalent for other r),

the stationary progress rate of the plus strategy is still better, because of the same reason

(small R(1)). The R(1) values of both algorithms are in the interval 1:5 / R
(1) / 2:5.

The change in the static progress rate on the functions with � � 2 for su�ciently high

r values is remarkable. This change is even sharper if � is increased. As can be seen in

this �gure, the static progress rate formulae (6.45) and (6.84) successfully estimate the
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simulation results for � � 2.

7.3 The quality gain Q

The quality gain is analyzed only for the (1; �)-ES and on the parabolic ridge function.

The results can be generalized to the (1 + �)-ES using the quality gain formula in [Bey96c,

p. 119], [Bey94]; and to comma strategies other than (1; �)-ES and to other ridge functions

using the alternative approach in Subsection 6.1.4. The generalization of (5.39) to other

ridge functions was discussed in Point 6.1.2.3. The quality gain is not analyzed further

because of its signi�cant di�erence from the progress rate ' on ridge functions: In general,

the progress rate values cannot be obtained from the quality gain values. However, the

alternative approach to the quality gain has shown that this measure in the �tness space

can be calculated using two appropriate progress measures (' and 'R) in the search space.

This subsection has two parts. In the �rst one, the dependence of the quality gain

on r values and its principal di�erence to the progress rate ' is shown. Additionally, the

approximation quality of the formulae (5.39), (6.25), and (7.11) are shown for the (1; �)-ES

on the parabolic ridge in Figure 7.18. Secondly, the values of Q and ' are compared for

the (1 +
; �)-ES under the same conditions, showing that such a characteristic di�erence

between these measures also exists for the plus strategy. In Subsection 7.3.2, it will also

be shown that plus and comma strategies can behave similarly or di�erently according to

these two progress measures, depending on the distance r to the ridge axis.

The measurements are made statically for a constant mutation strength � and varying

distance r to the ridge axis. This is a relatively new analysis method, since the reverse

way (keeping r constant and varying �) was popular in the theoretical analysis of the ES

on the sphere model.

As can be seen in Subsection 7.3.2 or in the alternative approach to the Q analysis, the

quality gain is expected to give similar results only in the stationary case. Two conditions

for this case (Q � ') were mentioned in Section 6.1 (Page 77 and Page 79), and further

additional conditions may exist. For example, the �tness function may represent a real

world problem. In this case, the �tness function values and object variables have di�erent

units. As a result, the quality gain and progress rate have di�erent units, too. Therefore,

the even if the magnitudes of Q and ' can be equivalent, their units will never be.

Although the mean values of Q and ' are similar in the stationary case, the expected

values of their second moments di�er. As a result, in stationary measurements, the Q

values possess much larger standard errors than '. This di�erence increases further if the

mutation strength is increased, and the standard error of the former one increases with an

higher order than the latter. The stationary analysis of Q is therefore omitted.

7.3.1 The static quality gain Q

This subsection aims at the veri�cation of Q formulae and the investigation of the static

Q behavior. The (1; 10)-ES algorithm is analyzed on the parabolic ridge for this purpose.
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Figure 7.18: The quality gain Q of the (1; 10)-ES on the parabolic ridge for � 2 f2; 5; 15g at

di�erent values of r. These static experimental results are compared with (5.39). For � = 15,

this formula is compared with two further formulae, (7.11) and (6.25).

The values � 2 f2; 5; 15g are used for the mutation strength.

Figure 7.18 indicates that quality gain values are negative for small r values, and that

they are at a smaller level for larger �. These values would be positive for smaller �

values (not shown here). Remarkably, progress rate values of ES algorithms become never

negative on ridge functions (see Section 7.2 and also the formulae in Section 6.3). Moreover,

progress rate values attain their maximum value for small r (see Figure 7.17).

For larger values of r, the Q values increase, become positive, and go to in�nity. A

sketch of the proof for this observation (limr!1Q = 1) on the parabolic ridge can be

stated easily. Equation (6.25) and the theoretical and empirical results obtained from the

static analysis of ' and 'R will be used for this purpose. As r goes to in�nity, ' goes to

zero (see Figure 7.17), and 'R goes to c1;�� (see Figure 7.5). Consequently, the second

term in (6.25) goes to in�nity for r !1, whereas the �rst one goes to zero and the third

one asymptotically goes to a constant value. In order to generalize this result for � > 2,

the asymptotic (r ! 1) values of ' and 'R are used. The alternative Q formula (6.25)

has a di�erent form for � 6= 2. However, Q can still be expressed using ' and 'R. The

former one is zero (e.g. see Figure 7.17 for � = 8, or see Equation (6.84)). The latter one

('R) goes to the upper progress rate limit (c1;��) because of the local curvature conditions.

Consequently, one obtains the same limit (limr!1Q = 1). As a conjecture, this result

can be extended to other ridge functions with 1 < � < 2. As a side remark, Q and ' may
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also di�er for the sphere model.

Another observation is also important: The slope of the Q curve increases with �. In

contrast to the limit value of Q for r ! 1, the progress rate ' of ES algorithms on the

parabolic ridge does never go to in�nity for constant �. For the conditions in Figure 7.18,

static ' values of ES algorithms with comma strategy decrease (and not increase) as r

is increased. As a result, one can conclude that the progress measures Q and ' behave

inversely for this static experiment.

The second aim of this experiment is the veri�cation of quality gain formulae. Equation

(5.39) perfectly describes the simulation results. For � = 15, two other formulae are tested

additionally. The formula

Q =MQ � �3

6
SQ +

�
1 +

5

36
�
2
3 �

�4

8

�
c1;�SQ (7.11)

is obtained from (5.39) by neglecting d
(2)

1;� and d

(3)

1;� terms. It yields slight and tolerable

deviations from simulation results for small r. The error made by this approximation

naturally increases with �. For su�ciently large r, the di�erence between (5.39) and (7.11)

is negligible. Similarly, the alternative Q formula (6.25) is also depicted for this case. This

formula gives quite accurate results, too.

One observes a sharp increase in Q values in the neighborhood of R(1) (see Subsec-

tion 7.1 for R(1) values). For r � R
(1), one expects Q � '. If the analytical R(1) formula

is used, the deviation from the theoretical formula from the actual R(1) values can cause

wrong predictions of the stationary Q. Since the R(1) formula (6.166) underestimates the

actual stationary value, the Q formula may even give negative results for the stationary

case. The Q formula gives the correct stationary value only if accurate R(1) values (e.g.

obtained from simulation results) are provided. The stationary ' formulae are immune to

such errors in the R(1) formula.

7.3.2 Progress measures in comparison

The static progress measures of the (1; 10)-ES and (1 + 10)-ES are compared in this sub-

section. The mutation strength � = 2 is used for both algorithms. At this � value, the

stationary values of ' and Q on the (1; 10)-ES and (1 + 10)-ES only di�er slightly from

each other (see Figure 7.8). Parameters other than � are also the same for these algorithms,

i.e. the comparison is made under the same conditions.

This �gure is important because it shows the di�erences in the static behavior of (1 +
; �)-

ES algorithms. Furthermore, it underlines the di�erences in the r-dependence of progress

measures in the search space and �tness space. Additionally, it contains the stationary case,

and explains how both progress measures can give the same value (see Subsection 7.1.5 for

an alternative explanation). It stresses an important di�erence in the way ' and Q values

change with r for the (1; �)-ES on the parabolic ridge (and also for � > 2). As r increases,

' decreases and Q decreases.

First of all, both algorithms attain similar ' values for su�ciently large r and the

progress rate curves go to zero. The Q values attain a quite large slope, and go to in�nity.
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Figure 7.19: The quality gain Q and the progress rate ' of the (1 +; 10)-ES on the parabolic

ridge. The static results are depicted for � = 2 and various r values. The elitist strategy (labeled

with an additional \+") attains larger Q values and smaller ' values. The ' formula (6.86) and

Q formula (5.39) are plotted, as well as the limit ' = 2c1;10 � 3:1.

The result for the stationary case is included in this �gure (at r � R
(1)). For this r value,

the curves for Q and ' of both algorithms intersect each other. The R(1) value and the

stationary value ' � Q are larger for the (1; 10)-ES compared to the (1 + 10)-ES.

For smaller r values, these four curves di�er from each other. One can clearly see that

the ' curve of the (1; 10)-ES increases to an asymptotic value and matches the theoretical

formula (6.86). Its limit value for r ! 0 is smaller than the horizontal line ' = c1;10�, i.e.

the progress rate of the hyperplane. For larger values of �, the simulation results for this

limit are underestimated by this formula. However, they also do not become as large as

the maximum progress rate ' = c1;10� of the (1; 10)-ES (see also Figure 7.16).

The plus strategy attains smaller progress rates, and its static ' values even decrease

to an asymptotic value as r ! 0. As can be seen in Figure 7.16, this limit value can even

be zero.

If the comparison is done using quality gain values (instead of ' values), the performance

order of these ES algorithms is reversed. The quality gain of plus strategy is larger, and

always positive. It decreases down to zero as r! 0 for larger � values. The quality gain Q

of the (1; 10)-ES becomes negative for r! 0. Detailed explanations on Q of the (1; �)-ES

can be found in Subsection 7.3.1. The mean values (of the simulation results for Q and ')

in this subsection were used in [OBS98c] to obtain a similar �gure; however, no theoretical
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results were supplied there.

7.4 The success probability P
s1

The formulae for the general ridge function (6.40) and for the parabolic ridge (6.33) will

be tested under three di�erent experimental setups. The relation between the success

probability and the progress rate will also be investigated and discussed. The �rst two

experiments are on the parabolic ridge. The �rst one is done statically at r = 0 for various

� values, whereas the second one is stationary. The last experiment aims at the Ps1 curves

on three di�erent �tness functions: The sharp ridge, parabolic ridge, and the case for

� = 8. Additionally, the Ps1 values of the plus strategy are compared to the ones of the

(1; �)-ES on the parabolic ridge under the same conditions in Subsection 7.4.2.

7.4.1 On the ridge axis of the parabolic ridge

0 1 2 3 4 5 6

(6.33)
(7.12)
(5.37)
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10�2
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1

Figure 7.20: The success probability Ps1 versus the mutation strength � of the (1; 10)-ES on the

parabolic ridge. The static results for r = 0 (i.e. on the ridge axis) are depicted (noticed by \�").
The simulation results are estimated by (6.33) and then by (7.12). Rechenberg's formula (5.37)

[Rec94, p. 66] gives also useful results.

This subsection aims at the comparison of static success probability formulae with

simulation results. The (1; 10)-ES is statically investigated on the parabolic ridge at r = 0
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(on the ridge axis). The progress rate values for this experiment can be found in Figure 7.16.

In Subsection 6.2.1, the �rst order approximation to the success probability was given

by (6.33). It was mentioned that this Ps1 approximation can be made more accurate

if necessary. The extreme case r = 0 necessitates such a correction, since (6.33) is not

accurate enough. As it was described in that subsection, the second order approximation

is obtained using (6.32), (6.30), and (6.31) as

Ps1 � �(z) +
1p
2�

�3

3!
e�

1
2
z2(z2 � 1) ; (7.12)

where z stands for (see (6.32) and (6.33))

z =
Q�MQ

SQ

����
Q=0

= � (N � 1)d�q
1 + (2dr)

2
+ 2d2(N � 1)�2

: (7.13)

The values ofMQ, SQ, and �3 can be found in Point 6.1.2.2. One has to substitute r = 0 for

this case. As can be seen in Figure 7.20, the second order approximation is more accurate

than the �rst one. The simple formula (5.37) proposed by Rechenberg underestimates

the simulation results although it gives reasonable results for small values of the mutation

strength �. If one compares the complexity of the second order approximation (7.12) with

the one of (5.37), one may prefer the latter because of its simplicity and shortness. As a

side remark, (5.37) emerges as a special case of (6.33) if the denominator is approximated

by 1 for r = 0 and N � N � 1.

The success probability Ps1 becomes zero for � ! 1 at r = 0. One should note that

the maximum static progress rate is obtained on the parabolic ridge at the minimum value

(zero) of the success probability Ps1. This will also be con�rmed for this �tness function

in the following two subsections by experiments.

7.4.2 Stationary values on the parabolic ridge

The success probability values of the (1; �)-ES and the (1 + �)-ES are compared in Fig-

ure 7.21 for � = 10 descendants. The results are obtained for the stationary case on the

parabolic ridge. The simulation results for R(1) and '� obtained using the same experi-

mental setup can be found in Subsection 7.1.1 and Subsection 7.2.1, respectively.

The Ps1 values of the (1 + 10)-ES become de�nitely smaller than the non-elitist case for

larger values of ��. They decrease down to zero although the Ps1 values of the (1; 10)-ES

converge to an asymptotic value. The values of the non-elitist case are correctly ap-

proximated by (6.35). Its asymptotic (�� ! 1) limit is given by (6.36). This limit is

�(�c1;10) � 0:062 for � = 10. It accords to the simulation results. Interestingly, the

maximum stationary progress rate value of the (1; 10)-ES is attained where the success

probability Ps1 is at its minimum. This Ps1 limit decreases further for increasing �, al-

though the corresponding progress rate limit increases (see Equation (6.90)).

It was conjectured that the measured success probability values can be used for obtain-

ing the optimum mutation strength (see Section 2.6.11 and Page 52). The 1=5-th success
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Figure 7.21: The success probability versus �� for the (1 +; 10)-ES on the parabolic ridge. Equa-

tion (6.48) is used for the normalization of the mutation strength. The stationary Ps1 (6.35) of

the (1; �)-ES and its asymptotic value �(�c1;10) for � = 10 are shown.

rule [Rec71] is a result of the analysis on the corridor model and the sphere model for such

a relation. After investigating Figure 7.21, one notes that the Ps1 value at the optimum

mutation strength is much di�erent than the one on the sphere model and on the corridor

model. Figure 7.17 and Figure 7.22 can be used to generalize this result. Therefore, it can

be said that no general rule can be devised using the Ps1 values for predicting �
� at which

the maximum progress rate value is attained. Furthermore, the other success measure Ps�
does not help more than Ps1 in �nding the optimum mutation strength, since it is just a

linearly increasing function of Ps1 (see (4.10)). That is, both Ps1 and Ps1 cannot help for

running the ES algorithm at the optimum progress rate.

7.4.3 Static values of three ridge functions

This subsection investigates the success probability Ps1 for the experimental setup in Sub-

section 7.2.10. The parameters used for each �tness function, the mutation strengths used,

as well as further explanations can be found there. Furthermore, this subsection aims at

the investigation of the relation between Ps1 and '.

Each of these three Ps1 curves in Figure 7.22 has a di�erent characteristic. An increase

in d shifts the curve for the sharp ridge to the right, a decrease to the left. The same change

is observed after varying �. For the parabolic ridge case, an increase in d or � causes a
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Figure 7.22: The success probability Ps1 versus r for the (1; 10)-ES on the sharp ridge (� = 1,

d = 1), parabolic ridge (� = 2), and for the � = 8 case. The mutation strength was � = 2 for

the �rst two cases, and � � 0:034 for the last case. The theoretical formula (6.40) and its special

case (6.33) for the parabolic ridge are displayed.

decrease in the asymptote obtained for r ! 0 down to zero; however, the curve does not

signi�cantly shift to the right or left. An increase in � for the � = 8 case causes the curve

to decrease down to zero, and to hold this value for a longer interval of r. However, the

main characteristics of these three �gures do not change.

The increase of Ps1 values for � = 8 as r! 0 can simply be explained by the shape of

iso�tness lines (see e.g. Figure 3.7 for the � = 10 case). For r ! 0, the local curvature of

the iso�tness lines is so small that this �tness function yields Ps1 values comparable to the

ones of the hyperplane.

For the parabolic ridge and sharp ridge, the maximum ' value is obtained where Ps1 is

at its minimum value. Therefore, one may conclude that maximum static progress rate is

obtained at minimum Ps1 value. However, this conclusion has no predictive power, since

the minimum of Ps1 for � = 8 guides to an r value which is irrelevant for maximizing the

static progress rate. Another aim of this �gure is the veri�cation of theoretical formulae:

It is nice to see that the simple formula (6.40) for the success probability and its special

case (6.33) for the parabolic ridge (� = 2) gives useful results.
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7.5 Conclusions

The theoretical and experimental results have been compared in this chapter. Using simu-

lations, it has been possible to show the correctness of analytical approximations derived in

the previous chapter, as well as to compare (empirical) results for di�erent ES algorithms

or on di�erent �tness functions. Static and stationary analysis have been used to investi-

gate di�erent aspects of convergence measures. Moreover, dynamic analysis has been used

for the distance r to the ridge axis.

The main goal of this chapter has been the experimental veri�cation of the formulae

derived in Chapter 6. Additionally, the progress rate of the elitist strategy has been com-

pared with the non-elitist one using (1 +
; 10)-ES on the parabolic ridge. For the stationary

case, both Q and ' values of the (1 + 10)-ES are smaller. For the static case, its progress

rate is smaller, and its quality gain larger. These experiments have been used to interpret

the hypothesis on the elitist EA in Subsection 5.2.3. This hypothesis states the superiority

of the improvement attained by the elitist (1 + �)-EA over the non-elitist (1; �)-EA.

Some interesting observations will be outlined below.

1. A local model was proposed in Subsection 6.3.1 for the investigation of the progress

rate ' in the stationary case or for large r. It gives also satisfactory results for the

static case (for � � 2).

2. The progress rate of the (1; �)-ES on the ridge axis (i.e. r = 0) of the parabolic ridge

goes to a �nite nonzero limit as the mutation strength � goes to in�nity (lim�!1 6=1
for r = 0 and � = 2). This result can also be extended to other non-elitist ES

algorithms for this �tness function.

3. The static comparison of the (1 +
; �)-ES on the ridge axis is an interesting example of

biasing the simulation results. This condition (r = 0) favors the (1; �)-ES and harms

the (1 + �)-ES.

4. The surrogate mutation model for the (�=�D; �)-ES holds for the ridge functions if

the progress direction v is chosen to be diagonal. The largest deviations from the

formulae obtained using this model have been observed for the aligned v vector.

5. The genetic repair hypothesis holds for ridge functions (� > 1) in an interesting form:

The non-elitist algorithms with recombination satisfy the short term goal better and

attain smaller R(1) values. As a result, they ful�ll the long term goal better, and

attain larger progress rate values.

6. Elitist algorithms ful�ll the short term goal better than their non-elitist counterparts.

However, this achievement alone does not help for a larger progress rate '.

7. The progress rate ' and the quality gain Q behave inversely for the static analysis.

This result has been obtained on the parabolic ridge (� = 2). However, it should

be generalizable to � > 1. Therefore, the quality gain cannot be used in general in

estimating the progress rate.

178



8. For the parabolic ridge and the sharp ridge (i.e. � = 2 and � = 1), the maximal

progress rate for the (1; �)-ES is attained where the success probability Ps1 has its

minimal value. This result has been obtained in both static and stationary cases.

Therefore, the success probability Ps1 (or similarly Ps�) has not been helpful in

estimating the optimum mutation strength for the maximal progress rate.

9. An interesting relation (7.5) on progress coe�cients of the (�=�I; �)-ES has been

obtained. Another relation (7.4) emerges as a special case of it. Such relations help

in the preparations of the progress coe�cient tables.

Two further results will be added to these conclusions. They are not directly related

to any of the sections of this chapter, but they should be mentioned for the sake of com-

pleteness. The �rst one is on the MISR hypothesis (see Subsection 5.2.8). This hypothesis

asserts that the individuals generated by the (�=�D; �)-ES do not di�use arbitrarily in the

search space even if the selection operator is switched o�. The standard deviation of the

parents around the centroid is expected to be about
p
��, if it is averaged over generations.

This value is observed in the experiments on the hyperplane for the selection-invariant vari-

ables in the search space. This is the case even after the rotation of the direction vector v

for su�ciently large N (N ' 1000).

Secondly, the hypothesis that corridor models (see Figure 3.8 in Subsection 3.3.3) may

serve as the limit case (�!1) for ridge functions [Sch97] was tested. In [OBS98a, pp.35-

41], it was shown using stationary experiments that this is not the case for the rectangular

corridor and cylindrical corridor. The static analysis is carried out thereafter, with the

result that the mechanisms yielding the R(1) value are entirely di�erent for ridge functions

and corridor models. As a result, one has di�erent tendencies for 'R, and for R(1) at large

� in the stationary case. Another important point is that the algorithm must be di�erent

for these cases. Two di�erent algorithms generally cannot be compared on two di�erent

functions, i.e. a comparison after changing two basic factors is not reliable. A small

change must be accomplished on the ES algorithm before running it on corridor models.

The descendants generated outside the corridor are rejected, and one has to continue to

generate inde�nite number of o�spring (denoted by �
0

, �
0 � �) until one has � feasible

individuals (see Subsection 2.6.3). This remedy for invalid descendants re
ects itself in the

progress rate calculation: One calculates the progress rate for these � o�spring (which is

basically the progress rate for the hyperplane), and multiplies the quantity obtained by the

factor �=�
0

. This factor is responsible for the performance decrease on corridor models.

However, the decrease in ' on ridge functions with large � for � !1 is explained by an

entirely di�erent mechanism (the simple local model). Because of these principal reasons,

simulation results obtained for the cylindrical corridor are omitted in this work.
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Chapter 8

Summary and Discussion

The convergence behavior of evolution strategies (ES) on ridge functions has been inves-

tigated in this work. The term \convergence behavior" covers the static, stationary and

dynamic analysis of ES algorithms in the space of object variables (the search space). The

analysis is primarily carried out using the measures de�ned in the search space (i.e. ' and

r). The results have been derived for the (1; �)-ES, the (�; �)-ES, the (�=�I; �)-ES, and

the (�=�D; �)-ES. The progress rate ' measures the expected progress in the search space

toward the optimum in one generation. The symbol r stands for the distance to the ridge

axis. Its stationary value R(1) and other formulae necessary for its static and dynamic

analysis have been derived. In this work, maximizing the progress rate ' is also termed as

the long term goal, and the minimization of r as the short term goal, respectively.

The analytical derivations of the formulae of the search space measures can be found in

Chapter 6. These formulae are asymptotically (N !1) exact. Using simulations, it has

been shown that these formulae yield satisfactory results for the �nite number of variables

N .

Additionally, the formulae for the �tness space measures Q, Ps1, and Ps� have been

derived for the (1; �)-ES. The quality gain Q measures the expected progress in the �tness

space. It has been proposed to estimate the progress rate '. The success measure Ps1 gives

the probability of generating a descendant with a �tness value better than the average

�tness value of the previous generation. The success probability Ps� is de�ned analogously

for all � descendants. It has been also investigated if Ps1 and Ps� can be used to estimate

the optimal mutation strength.

8.1 Conclusions

This section summarizes the striking and important results achieved in this work. Some

further conclusions can be found in Point 6.3.1.8, in Subsection 6.3.7, in Section 6.5, and

Section 7.5. A few research directions and some unanswered questions are outlined in

Section 8.2.

1. The experimental results have shown that for ridge functions Q and ' possess entirely
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di�erent characteristics. Therefore, the quality gain Q cannot be used in general to

estimate '.

2. In general, the success measures Ps1 and Ps� cannot be used to estimate the optimal

mutation strength. Therefore, they are also not much helpful in maximizing the

progress rate ', either.

3. The �tness space measures (Q, Ps1, and Ps�) cannot be used (on ridge functions) to

estimate the search space measures (' and the measures related to r).

4. It has been shown that the ES algorithms do not di�use along the gradient path on

the ridge functions (see Page 55). The component of the mutation vector orthogonal

to the direction given by the gradient is much larger than the one in the gradient

direction.

5. In the \evolution window" hypothesis of Rechenberg (see Page 55), it was conjectured

that a positive progress rate ' is only attainable for a �nite interval of the mutation

strength �. The results of this study show that this interval is not �nite for the ridge

functions with � � 2.

6. The universal progress law (see Page 56) states that the progress rate ' should be

negative for � !1. This is not the case for the ridge functions for any �.

7. The maximum progress rate is obtained on the hyperplane (� = 0) for a given ES

algorithm. Therefore, it can be considered as a limiting case of �tness landscapes.

8. The progress rate ' of elitist strategies is not necessarily better than the non-elitist

ones. Furthermore, the stationary quality gain Q of the elitist strategy (e.g. the

(1 + �)-ES) can be worse than the non-elitist counterpart (i.e. the (1; �)-ES) even

on multimodal functions.

9. Measuring the progress in �tness values can be misleading (even in unimodal func-

tions). The local measurements indicating large �tness increase do not necessitate

large progress in the search space toward the optimum. Moreover, the elitist strate-

gies may achieve smaller progress values since they reject o�spring with �tness values

worse than the parents'.

10. The evolutionary progress principle (EPP) and the genetic repair hypothesis (GR)

were developed as a result of the research on the sphere model. They also hold

for ridge functions. They are used to explain an interesting stationary observation:

Since recombination yields a smaller stationary distance R(1) to the ridge axis, the

resulting progress rate is larger.

11. Depending on the value of �, one obtains various characteristics for the conver-

gence behavior (especially for the progress rate ') of ES algorithms. Because of this

property, the ridge functions are expected to model the convergence behavior of ES

algorithms on a variety of �tness landscapes.
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12. Since the optimum of ridge functions is at in�nity (see (3.18)), the number of gen-

erations necessary to reach the optimum cannot be determined. Therefore, an order

estimation is not possible for the optimization algorithms.

8.2 Future research

Several important tasks need to be examined in the near future. Many of them have been

mentioned in respective chapters. One can �nd the pages in which they appear under the

index item \open problems". A few important ones are summarized here. Additionally,

some interesting research directions are also presented.

1. The formulae derived in this work are asymptotically (N ! 1) exact. For �nite

number of variables N , they di�er from the simulation results, although they mostly

give satisfactory results. The error in these predictions is not formally determined

yet. Additionally, the N -dependent versions for these formulae are needed to be

derived.

2. The formulae related to the distance r to the ridge axis (e.g. the stationary R(1)

value, the time constant !, 'R, etc.) have only been derived for the parabolic ridge.

The general case for any ridge function has not been derived yet.

3. The maximal normalized progress rate value was denoted as '̂�. For � > 2, this

value as well as the mutation strength yielding '̂� are unknown. The general R(1)

formula should be derived �rst for this investigation.

4. The formulae for the progress rate and the stationary R
(1) for the (�; �)-ES are

obtained by a conjecture. Although they predict the simulation results correctly, a

proof may be necessary to show why and under which conditions the formulae for

the (�; �)-ES can be obtained from the respective formulae of the (1; �)-ES.

5. The analysis of the (�=�; �)-ES is still pending, which should show whether � < �

can yield larger progress rates under some conditions. This analysis is assumed to

be at least as hard as the analysis of the (�; �)-ES.

6. As a conjecture, one can propose the ridge functions for modeling the �tness land-

scapes distant from the optimum. This hypothesis seems to be plausible as long as

the progress rate is positive. It must be reformulated more precisely: Especially on

multimodal functions, it is not expected to be valid.

7. The application of the local model and induced order statistics on other �tness func-

tions needs further attentions. The convergence behavior of ES algorithms on other

�tness landscapes can also be investigated using these models.
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8. The e�ectiveness of the success probability (Ps1 and Ps�) in estimating the optimum

value of the mutation strength � for the maximum progress rate ' is still unanswered.

The analysis on the ridge functions showed that the success probability values are

not conclusive. Therefore, they should be used with care in searching for the optimal

mutation strength value. The investigation is expected to continue on other �tness

functions.

9. The experimental values of the quality gainQ and the progress rate ' can be obtained

on any function. These values can be used in the experimental analysis, and in the

analysis of the convergence behavior, e.g. on multimodal landscapes.

10. The comparison of the (1; �)-ES and the (1 + �)-ES can also be carried out on mul-

timodal landscapes. Especially the local measurements of the progress measures Q

and ' at a local optimum may give interesting results on the convergence behavior

of these algorithms.

11. The surrogate mutation model for explaining the functioning mechanism of the

(�=�D; �)-ES has an hypothetical character. First, the necessary conditions for its

validity should be investigated. Secondly, alternative explanations are desired at least

for the cases where this model does not hold.

12. The progress e�ciency � (see Page 113) was introduced to measure the progress

attained per descendant generated and to compare the progress rate values of di�erent

algorithms. For � > 2, the optimum value of � is unknown for the (1; �)-ES.

13. The progress coe�cients (see Page 61) are obtained using numerical integrations.

Any method for simplifying these calculations or the relations between the progress

coe�cients are helpful in obtaining these coe�cients. Consequently, they ease the

comparisons between di�erent ES algorithms.

14. The (1 + 1)-ES is the simplest possible evolutionary algorithm. It has not been

analyzed in detail on ridge functions. No analytical results have been derived for this

algorithm in scope of this work. After obtaining these results, one can conjecture if

the (1 + 1)-ES can be the most e�cient algorithm on unimodal �tness functions.

15. The elitist (1 + �)-ES attains smaller stationary values for the progress rate ' and

quality gain Q than its non-elitist counterpart (1; �)-ES on the parabolic ridge (which

is unimodal). An interesting task remained is to show for which other functions this

result holds. It is important to specify under which general conditions elitism is

harmful for the progress in the search space.

16. The quality gain values cannot be used in general to estimate the progress rate values.

Conversely, a formula for �nding the quality gain values using search space measures

' and 'R exists for the parabolic ridge. This formula can easily be extended to other

ridge functions. Further relations between Q and ' are expected to be found in the

future.
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17. The success probabilities Ps1 and Ps� have not been helpful in general for �nding

the optimum mutation strength on the ridge functions. Therefore, one cannot use

the success probability values in maximizing the progress rate '. Therefore, other

mechanisms are necessary for this purpose.

18. Only the isotropic mutations of the normal distribution have been considered in scope

of this work. However, other probability distributions can also be used to generate

mutations. Additionally, the mutation models other than the isotropic one can also

be applied. These two approaches can be combined with the self-adaptation operator.

The self-adaptation operator. The investigation of the ES algorithms with self-adap-

tation on ridge functions is attempted in this work, but is not studied in detail. Some results

have been obtained for the isotropic mutation model and using the multiplicative self-

adaptation rule (2.16). However, they are not included in this work because no conclusive

explanations could be derived from the preliminary investigations.

The analysis of the self-adaptation on ridge functions poses an additional di�culty:

The quantity r must be considered in the analysis. Since stationary simulations did not

yield direct explanations, static experiments are carried out for several � and r values. The

self-adaptation response  (see Page 46) has been measured in the experiments.

Two important observations can be given here: Firstly, the progress rate ' also depends

on r. Therefore, a given mutation strength � attains di�erent progress rates at di�erent r

values. Moreover, the quality gain values di�er from the progress rate values: Therefore,

another � value can yield a larger quality gain, although it has a smaller progress rate value.

The quality gain is measured in the �tness space, and the selection operator uses �tness

values. Therefore, it is possible that the individuals with better �tness values are selected,

although they do not yield a large progress rate. One remedy suggested by Rechenberg

is to introduce subpopulations with di�erent � values and compare their performances in

�nite time intervals (i.e. hierarchical ES, Page 20). However, there are two di�culties:

The isolation time is unknown (and de�nitely dependent on the �tness function) and the

progress rate cannot be obtained in general from �tness measurements. Therefore, there

is no guarantee for an improvement of the progress rate if the hierarchical ES is used.

Secondly, the  values at stationaryR(1) distances obtained without the self-adaptation

operator are important to determine. If  < 0, the � value is expected to decrease in the

next generation; otherwise, it is expected to increase if  > 0. This kind of experiments

at R(1) values for several � values will give the stationary value of � for the self-adaptive

ES. For the parabolic ridge, these experiments may explain why the stationary � value of

the self-adaptive ES does not go to in�nity. The quality gain curves at these R(1) values

will also help in a conclusive explanation. The same steps can be used to conjecture why

the stationary � value on the sharp ridge goes to zero or in�nity, depending on the d

value (see Equation (3.15)). Similarly, the investigations on other �tness functions and on

self-adaptation operators other than (2.16) also remain as a matter of future research.
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Appendix A

The derivation of E

(
N�1P
i=1

hz2
i
i

)

The expression EfPN�1
i=1 hz2i ig occurs in Point 6.4.2.1. Assuming EfPN�1

i=1 hz2i ig ' (N �
1)�2, the relation (6.183) between the expected values Efhr(g+1)2ig (6.180) and Efr(g+1)2g
(6.181) has been established. This expression stands for the square of the expected average

length of the (N �1)-dimensional mutation vectors that generated the best � descendants.

In other words, the components orthogonal to the progress direction v are considered in

these (N � 1)-dimensional vectors. This expected value is derived in the following to show

that the previous assumption is correct.

If one denotes the (N � 1)-dimensional component of the mutation vector z by z
0

, this

value can be investigated further
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The random variable u will be used to represent the squared length kz0
m;�k

2
. Analogous

to (6.184), one obtains

1
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m=1

E
n
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m;�k
2
o
=

1

�

�X
m=1

Z 1

0

upm;�(u) du : (A.3)

The derivation is analogous to the one of Efhr(g+1)2ig in Point 6.4.2.2. However, the

densities p(u) and p(Qju) are di�erent. An overview of the derivation will be given below.

The similarities to this derivation will be stated explicitly in the following steps. Firstly,

the expected value integral (A.3) is determined in more detail. Secondly, the densities

p(u) and p(Qju) are derived. Thirdly, the inner integral I(Q) is solved. Lastly, the outer
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integration is carried out, and the correctness of the assumption EfPN�1
i=1 hz2i ig ' (N�1)�2

is shown.

The expected value integral. Similar to (6.185)-(6.188), Equation (A.3) is determined.

The density pm;�(u)

pm;�(u) =
�!

(m� 1)!(��m)!
p(u)Pam;�(u) (A.4)

and the distribution Pam;�(u)

Pam;�(u) =

Z 1

�1
p(Qjuju) [P1(Qju)]

��m
[1� P1(Qju)]

m�1
dQju (A.5)

can be inserted back in (A.3). The result reads
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After exchanging the integration order, one obtains

E
n
hkz0k2i

o
=
�!

�

�X
m=1

Z 1

�1

[P1(Q)]
��m

[1� P1(Q)]
m�1

(m� 1)!(��m)!

Z 1

0

u p(u) p(Qju) du| {z }
I(Q)

dQ : (A.7)

This will be the starting point of the derivations. The inner integral I(Q) must be derived

�rst. The densities p(u) and p(Qju) are necessary for this purpose.

The density p(u). This density will be approximated using a normal distribution. There-

fore, the expected value and variance of the quantity
P

N�1
i=1 z

2
i
is to be determined. After

noticing that zi � N (0; �2), using the moments of standard normal distribution N (0; 1)

(5.8) and (6.26), one asymptotically N !1 obtains
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Therefore, one gets u � N ((N � 1)�2; 2(N � 1)�4)

p(u) =
1p
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p
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exp

2
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2

 
u� (N � 1)�2p
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!2
3
5

: (A.11)

This density was derived in [Bey96c, p. 105] as an intermediate step in obtaining the

distribution P (u) (6.141), Page 121. The other density p(Qju) is derived next, and the

evaluation of the integral I(Q) in (A.7) follows.

The density p(Qju). The derivation of p(Qju) is a bit lengthy. For this purpose, the

de�nition of P1(Q) (6.77) will be used. The distribution P1(Q) de�nes the distribution

of �tness values in the next generation. It has been derived in Point 6.3.2.1 using the

distribution of mutations in the progress direction v. Alternative to (6.67), P1(Q) can also

be determined using p(u) and p(Qju) (denoted as p(Qjuju))

P1(Q) =

Z
Q

�1

Z 1

0

p(Qjuju) p(u) du dQju : (A.12)

Therefore, P1(Q) gives the probability of getting a descendant with a local quality function

value less than or equal to Q (represented by the outer integral) among all possible muta-

tions (the inner integral). The quantities P1(Q) and p(u) are known. Therefore, p(Qjuju)
can be determined by solving this integral equation. The integration order is changed �rst.

P1(Q) =

Z 1

0
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Z
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The density p(u) (A.11) is inserted after using the substitution
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; dt =

dup
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; u =
p
2(N � 1)�2t + (N � 1)�2 : (A.14)

Please note the change in the lower integration limit u = 0 to t = �1 for N ! 1. The

inner integral of (A.13) is expected to give a result of the form �(a � t + b). This is not

much restrictive since p(Qju) was approximated by a normal distribution. After these two

steps, (A.13) can be solved using (5.11) (see also (6.75) on Page 98)
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Using the density P1(Q) (6.77) and the values of MQ and SQ (6.8), one obtains
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Therefore, the values of a and b can be identi�ed as

a = � 1q
(2dr)

2
+ 2d2(N � 1)�2

; b =
Q+ (N � 1)d�2

�

q
(2dr)

2
+ 2d2(N � 1)�2

: (A.17)

For a unique solution, a second equation on a and b is needed. These values are chosen

to conserve the relationship of p(Qju) to p(Qjzjz) (see (6.73) and (6.73)). To simplify the

notation in the following steps, the variable S

S =

q
(2dr)

2
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is introduced. The distribution �(at + b) can now be di�erentiated with respect to Q to

obtain p(Qjt)
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After substituting u back from (A.14), one obtains the desired density
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This result can be veri�ed by evaluating (A.13).

The integral I(Q). The evaluation of the integral I(Q) is the next step in solving (A.7).

The necessary densities p(u) (A.11) and p(Qju) (A.20) have already been derived. After

inserting them in the I(Q) de�nition, one obtains

I(Q) =

Z 1

0

u p(u) p(Qju) du (A.21)

=
1

2�
p
2(N � 1)�2

1

�S

Z 1

0

u exp

2
4�1

2

 
u� (N � 1)�2p

2(N � 1)�2

!2
3
5

� exp

2
4� 1

2�2S2

 
Q+ (N � 1)d�2 � up

2(N � 1)�
+

r
N � 1

2
�

!2
3
5 du : (A.22)

After applying the substitution (A.14), (A.22) becomes

I(Q) =
1

2��S

Z 1

�1

�p
2(N � 1)�2t+ (N � 1)�2

�
e�

1
2
t
2

e
� 1

2

�
Q+(N�1)d�2��t

�S

�2
dt : (A.23)
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Please note the change in the lower integration boundary. Using the de�nitions of a and b

in (A.17), and the integral expressions (5.9) and (5.10), respectively, the solution of (A.23)

reads

I(Q) =
1p
2��S

�p
2(N � 1)�2

�ab
1 + a

2
+ (N � 1)�2

�
1p

1 + a
2
e
� 1

2
b2

1+a2
: (A.24)

The values of a and b are substituted back by considering the de�nitions of MQ and SQ
(6.8). Please note that

1 + a
2 = 1 +

1

S2
=

1 + S2

S2
=

S
2
Q

�
2S2

; (A.25)

b
2

1 + a
2

=
�
2S2

S
2
Q

(Q + (N � 1)d�2)
2

�
2S2

=

�
Q�MQ

SQ

�2

: (A.26)

Considering (A.17), (A.25), and (A.26), (A.24) becomes

I(Q) =
1p
2�SQ

"p
2(N � 1)�3

Q�MQ

S
2
Q

+ (N � 1)�2

#
e
� 1

2

�
Q�MQ
SQ

�2
: (A.27)

The outer integral and its solution. In the last step, the solution of I(Q) (A.27) is

inserted back into (A.7). Considering (A.16), and the substitution

s =
Q�MQ

SQ

; ds =
dQ

SQ

; (A.28)

(A.7) becomes

E
n
hkz0k2i

o
=

�!p
2��

Z 1

�1

�p
2(N � 1)�3

s

SQ

+ (N � 1)�2
�
e�

1
2
s2

�
�X

m=1

[�(s)]
��m

[1� �(s)]
m�1

(m� 1)!(��m)!
ds : (A.29)

One observes a remarkable similarity between (A.29) and (6.191): Only the contents of

the braces di�er from each other. Therefore, the rest of the derivation is analogous to

(6.192)-(6.196), and will not be repeated here. The result (6.196) on Page 134 can be

adapted to (A.29): If the brace is abstracted as [As+B], the result reads for both cases

Ef:g = A e

1;0
�;�

+B e

0;0
�;�

= Ac�=�;� +B : (A.30)

The correspondence of e
1;0
�;�

to c�=�;� and e
0;0
�;�

to 1 has been explained on Page 134. After

inserting the values of A and B from (A.29), and the value of SQ from (6.8), the �nal result

reads

E

(
N�1X
i=1

hz2
i
i
)
= (N � 1)�2 +

s
2(N � 1)

1 + (2dr)
2
+ 2d2(N � 1)�2

�
2
c�=�;� : (A.31)
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This result was obtained for N ! 1 and after approximating the distributions of the Q

variates by normal distributions. In the derivation, the lower integration limit has been

extended to �1 to obtain (A.23).

The second term of (A.31) can be neglected in the static case as N ! 1. For the

stationary case, the second term becomes O(N�1=2), since r = r
(g) is of O(N) in this

case. Consequently, Efhkz0k2ig = EfPN�1
i=1 hz2i ig is of O(N�2). As a result, one obtains

EfPN�1
i=1 hz2i ig ' (N � 1)�2. This simpler result can be used in the calculation of R(1).

Otherwise, one has to use in (6.198) the expression (A.31) instead of (N � 1)�2 in the last

additive term for a more accurate state equation.
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Index

(:)m:l, see order statistics

(:)m;l, see order statistics

(1 +
; �)-ES, 7

(1 + 1)-ES, 4, 5

(1; �)-ES, 6

(�+ �)-ES, 8

(�; �)-ES, 8

(�=�; �)-ES, 8

(�=�D; �)-ES, 10

(�=�I; �)-ES, 9

1=5-th rule, 5, 19, 52, 176

D (residual distance), 30

D
2f:g (variance), 80

F (:), 4

F (y)-�tness function, see �tness

F

(g)

1;� , 43

F�:
 , 8

G (generations), 4

H(:) (constraint function), 39

MQ, 66

general ridge function, 76

parabolic ridge, 74

rotated hyperplane, 74

N , 4

P1(Q), 69

derivation of, 97

Pa 1;�(z), see cumulative distribution of ac-

ceptance

SQ, 66

general ridge function, 76

parabolic ridge, 74

rotated hyperplane, 74

W (:), 30

c1;�, 61

�F , 43, 45

�x, 45

D
(1), 63, 83, 85, 89, 91, 92, 94, 125, 135{

137, 140, 144{150, 164

El, 7

El, 9

Hek(x), see Hermite polynomials

Q(z), see local quality function

N , 5, 13

', 44

', '�, see progress rate

�(x), 59

P(0), 14

P(g), 7

R
(1), 49

 , see self-adaptation response, 46

Ps�, see success probability

Ps1, see success probability

!, see time constant, 128

Tr[Q], 66

�, 33

� < 0, 34, 47, 57, 58, 90, 100, 101, 116

� = 0, see hyperplane

� = 1, see sharp ridge

� = 2, see parabolic ridge

h:i notation, 10
hF i, 43
IB, 17

IN, 17, 27

IR, 4, 17, 27

IR+
0 , 32

IR+, 39

�, 13, 53

�
+, 13

�
�, 13

hyi, 10
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erf(x), see error function

�, see progress e�ciency


, 21

F̂ , 29

x̂, 29

�, 18

�3, 67

�4, 67

�k, see cumulants

�, 6

�, 7

z, 5

r, 60
Q, see quality gain, 42

�, 8

�, 5

�-SA, see self-adaptation

', 54
� , 13, 53
~P(g), 6

#, see selection ratio

c�;�, see progress coe�cients

c�=�;�, see progress coe�cients

d, 33

d

(k)

1;�, see progress coe�cients

d

(k)

1+�, 61

e

�;�

�;�
, 61

g, 5

p(z), 5

p�, 13

r, see distance to progress axis, 33

s

(g)
m , 12

zm;�, 105

Q, 60

a, 60

e0, 86

eR, 130

ei, 10

er, 86

z1;�, 43

U , 13
', 86

Abramowitz, M., 107

aging, 18

Alander, J. T., 51

algorithms

evolution strategies, 3

handling constraints, 14

related, 22

starting point, 13

termination condition, 14

analysis

dynamic, 49

static, 49

stationary, 49

ANN, see arti�cial neural networks

Arnold, B. C., 29

arti�cial neural networks, 22

average �tness values, 21

B�ack, Th., 13, 15, 21, 23, 51

Balakrishnan, N., 29

Banzhaf, W., 24

best so far, 18

Beyer, H.-G., 13, 16, 18, 42, 46, 53, 54,

57{63, 92, 95, 105, 107, 108, 110,

112, 114{116, 143, 150, 156, 170,

179

BGA, see breeder genetic algorithm

biasing simulation results, 168, 178

binary coding, 23

birth surplus, 23

bisexual, 9

bit-string, 24, 52

breeder genetic algorithm, 24, 54

Bronstein, I. N., 58, 80

candidate pool, 8

center of mass, see centroid

Central Limit Theorem, 56, 60

centroid, 10

Chapman-Kolmogorov equations, 42

CI, see computational intelligence

comma strategy, 6

computational intelligence, 23
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condition

for Q = ', 77, 80

when to recombine, 109

condition N � �, 69, 71, 82, 95, 108, 143

constant, 28

constraints, 30

active, 30

inactive, 30

satis�ed, 30

violated, 30

contradicting goals, 37

convergence measures, 41

subscript, 49

convergence order, 41

convergence reliability, see global conver-

gence

convergence security, see global convergence

correlation matrix, see covariance matrix

correspondence principle, see normaliza-

tion

corridor model, 179

cylindrical, 39

rectangular, 39

relation to ridge functions, 179

rotated cylindrical, 39

covariance matrix, see mutation dist.

cross-over, see recombination, 23

cumulants, 60, 66, 69, 77, 78

cumulative distribution of acceptance, 67

Cvetkovi�c, D., 24

Deb, K., 15

decision variable, see object variable

decoupling subgoals, 37

default cases, 143

derivation

progress rate, 67

conditions, 69

di�usion along the gradient, 55, 126, 141

diploid, 18

distance measure, 28

Euclidean, 28

distance to progress axis, 48

domain, 27

dominant, see recombination

dominant recombination, see recombina-

tion, dominant

dynamic, 49

dynamic analysis, see mean value dyn.

EA, see evolutionary algorithms

EC, see evolutionary computation

e�ciency, see progress e�ciency

Eiben, A. E., 23

elitist selection, see selection

end points, 28

EP, see evolutionary programming

EPP, see Evolutionary Progress Principle

error function, 59

conversion to �(x), 59

ES, see evolution strategies

evolution equation, see mean value dyn.

evolution strategies, 3, 22

alterations, 13

history, 51

hypotheses, 55

literature list, 51

when to use, 54

evolution window, 55, 90, 139, 140

evolutionary algorithms, 22

evolutionary computation, 22

evolutionary programming, 22

Evolutionary Progress Principle, 57, 101,

117, 140, 162

Evolutionsfenster, see evolution window

feasible solution, 30

Feller, W., 59

Finney, R. L., 27

Fisz, M., 42, 58

�tness

m-th best, 29

best, 29

noise-perturbed, 18, 52, 54

scaling, 15, 23

space, 29
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value, 29

worst, 29

�tness e�ciency, see progress e�ciency

�tness function, see function

�tness landscape

limit cases, 52, 57, 90, 117, 139

�tness space measures, 41

�tness value, see �tness, 28

FL, see fuzzy logic

Flannery, B. P., 144

Fogel, D. B., 13, 15, 21, 23, 51

Fogel, L. J., 23

Francone, F. D., 24

function

corridor model, see corridor model, 52

hyperplane, 34
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