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Abstract

A simple language is defined, a probabilistic semantics and a partial correctness logic is pro-
posed in terms of probabilistic relations. It is shown how a derandomized semantics can be
constructed through the Eilenberg-Moore algebras. We investigate the category of Eilenberg-
Moore algebras for the Giry monad associated with stochastic relations over Polish spaces
with continuous maps as morphisms. The algebras are characterized through strongly convex
structures on the base space.
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1 Introduction

Modeling a computation through a monad (as suggested e.g. by E. Moggi [18]), one represents
state transitions or the transformation from inputs a to outputs b through a morphism a → Tb
with T as the functor underlying the monad. Working in a probabilistic setting, a state from
a base space X is in this way associated with a subprobability distribution K(x) on X. Here
K : X → S (X) is a morphism for the probability monad, in which the functor assigns a space
its probabilities. But we now have only a distribution of the outputs, not the outputs proper.
What is needed for this is a map h : S (X) → X that would transform a distribution into a
state proper. This problem arises when studying the semantics of programming languages in
terms of stochastic relations. States are modeled through these relations, and the program is
modeled as a state transformer, thus mapping stochastic relations to stochastic relations again.
We work with deterministic programs, and we would like to see how state transformations
translate into effects on the underlying base space. For this, we introduce derandomization,
mapping subprobabilities on the base space, hereby respecting the probabilistic structure.
This means that point measures are mapped to their respective points, and that positive
convex combinations of measures are mapped to the convex combinations of their images.
But, alas, this requires a positive convex structure on X. We will show that those maps h
that comply with the rest of the monad carry their own positive convex structures with them.
Such pairs 〈X,h〉 are called an Eilenberg-Moore algebra (or simply an algebra) for this monad.
Structurally, these algebras help to construct an adjunction for which the monad is just the
given one [17, Theorem VI.2.1]. In fact, this adjunction and the one constructed through the
Kleisli category form in some sense the extreme points in a category of all adjunctions from
which the given monad can be recovered [17, Theorem VI.5.3]. Thus it is of algebraic interest
to identify these algebras in general, and in particular to the probability functor. It has as
a Kleisli construction stochastic relations and is in this sense quite similar to the powerset
functor. For the latter functor the algebras are completely characterized, but the stochastic
side of the analogy is not explored fully yet. This paper makes an attempt at providing char-
acterizations for these algebras under the assumption of continuity. We work in the category
of Polish spaces (these spaces are explained in Section 3) with continuous maps as morphisms.
In this category the algebras for the Giry monad are identified, and the category of all algebras
is investigated. The natural approach is to think of these algebras in terms of an equivalence
relation which may be thought to identify probability distributions, and to investigate either
these relations or the partitions associated with them. These characterizations lead to the
identification of the algebras as the positive convex structures on their base space. A similar
result has been known for probability measures on compact Hausdorff spaces [11, 27, 20], but
a full characterization of the subprobabilistic case on Polish spaces seems to be new. With
this characterization in mind, we show how the semantics of our example language can be
derandomized consistently.
Thus the paper contributes to the theory of stochastic relations by providing a characterization
of the category of Eilenberg-Moore algebras for the subprobability functor in the category of
Polish spaces with continuous mappings as morphisms. It shows furthermore how stochastic
relations apply to the semantics of programming languages, and it introduces the notion of
derandomization, for which consistency with a partial correctness logic is established.

Organization To illustrate the problem, we have a look first at Ludwig, a simple language
that permits expressing the question consistently. We give a partial correctness logic and a
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corresponding semantics in terms of stochastic relations, and prove consistency and complete-
ness. This happens in Section 2. We define the objects we are dealing with in Section 3, in
particular, the space of all subprobability measures on a Polish space is introduced together
with the weak topology that renders it a Polish space. The Giry monad is also introduced.
Section 5 is devoted to the characterization of the algebras for this monad through partitions,
smooth equivalence relations, and positive convex structures (which are given a defining glance
in Section 4). The category of algebras is shown to be isomorphic to these categories. Some
examples are given there, too, indicating among others that the search for algebras in the
– usually easily dealt with — finite case is somewhat hopeless. Section 6 returns to Ludwig
and established consistency in terms of derandomizations; we show also that morphisms in the
category of algebras permit the transport of derandomized semantics. Section 7 has a brief
look at related work, and Section 8 proposes further investigations along the lines developed
here.

Acknowledgement Georgios Lajios helped improving the clarity of the representation with
critical remarks. Dieter Pumplün’s suggestions to investigate convex structures, and his
general advice on algebras are highly appreciated. The diagrams were typeset with P. Taylor’s
wonderful diagrams package.

2 A Simple Language

Perceiving a program as a state transforming device, we propose stochastic relations over
the Polish base space X as states and give a semantics for a program in terms of state
transformations. Since the programs are not expected to terminate always, we deal with
relations g : X � X that do not add up to 1, so that 1− g(x)(X) is the “probability” for the
program not to terminate. When a program works one wants to know how it operates not
only in terms of probabilities associated with it but also in terms of its deterministic behavior
(its work is deterministic, after all). Thus it is interesting to model the semantics of programs
also in terms of derandomization.

Definition 1 A derandomization h on the base space X assigns each subprobability τ ∈ S (X)
an element h(τ) ∈ X such that

1. h(δx) = x, thus if the probability concentrates on a point, this is the de-randomization
(δx is the Dirac measure on x),

2. whenever τ1, . . . , τn ∈ S (X) and c1, . . . , cn ≥ 0 with c1 + · · · + cn ≤ 1, then

h(c1 · τ1 + · · · + cn · τn) = c1 · h(τ1) + · · · + cn · h(τn).

3. h is continuous.

Condition 1 seems to be fairly obvious, condition 2 implies that derandomization is geomet-
rically smooth: if a probability is the positive convex combination of two other ones, its
derandomization should be, too. Continuity in condition 3 means that if one subprobability
is close to another one, their de-randomization is, too.
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Remark 1 Suppose for the sake of illustration that we model a nondeterministic computation
using set theoretic relations. Given a sup-complete partial order, a decision ∆ (borrowing the
term from [2]) that extracts an element from a set of possible outcomes can be described
through the following conditions:

1. ∆({x}) = x for all x ∈ X,

2. ∆(A) = supA for all A ⊆ X,

3. ∆(
⋃

D) = sup{∆(A) | A ∈ D} for all D ⊆ P (X)

Condition 1 again is fairly obvious, condition 2 proposes selecting the optimal element w.r.t.
the given partial order, and condition 3 indicates that selecting the optimal element from
a collection is tantamount to optimizing choices already made for the components of the
collection.
It will turn out that this notion is also governed by a monad, see Remark 3. —

There is, however, for the probabilistic case one slight —but not unimportant — catch: the
base space X needs not have a positive convex structure at all, so forming positive convex
combinations is not necessarily possible (note that we do not restrict ourselves to strict convex
combinations, i.e., non-negative coefficients adding up to 1, since we work in the realm of
subprobability measures).
Modeling computations through a monad as suggested by E. Moggi [18], we will show that each
derandomization carries its own positive convex structure with it, and vice versa: once a map
h is given, a corresponding positive convex structure can be set up, and from a positive convex
structure a derandomization can be constructed. Condition 2 is replaced by a more amenable
one, viz., h ◦ S (h) = h ◦ µX , where 〈S, µ, η〉 is the monad associated with the subprobability
functor. In this way the operating theater is shifted to subprobability measures on which
a natural positive convex structure exists. Thus a derandomization is an algebra for this
functor, and we will need to characterize these algebras in terms of convex structures.
As a case in point, we will first give a simple language, a partial correctness semantics and
a partial correctness logic for it (partiality creeping in through taking nontermination into
account). Both, semantics and logic, will work on the basis of transforming stochastic rela-
tions. We demonstrate consistency and completeness, so that we are on safe grounds when
dealing with the language’s semantics. Let gα be the initial state of program P and gω with
C[[P ]]gα = gω be its final state, then a derandomization h permits a deterministic interpreta-
tion of initial and final states in terms of the base space: viewed deterministically, the initial
and the final state are represented through h ◦ gα, and h ◦ gω, resp, making use of the convex
structure on X imposed by h.
After defining the language and preparing for defining its semantics, we formulate the partial
correctness semantics and logics, and demonstrate consistency and completeness. The reader
is requested to take the probabilistic notions in this Section for granted; Section 3 will collect
the constructions for the reader’s convenience.

July 29, 2004



Page 4 Derandomizing through Eilenberg-Moore algebras

2.1 The Language: Ludwig

The language Ludwig1 has assignments, conditional statements, loops and composition. Its
syntax is given through:

β ::= skip | a := E | if α then β else β fi | while α do β od | β;β

(we will abbreviate the conditional command by if α then β fi , if the alternative branch
is skip ). The variables a are taken from a set Vars, the expressions E from a set Exprs.
Let X be a Polish space which will be fixed in the sequel. A Boolean α is modeled through a
map α : X → {tt,ff} from X to the truth values {tt,ff}. It is natural to assume measurability
of this map, so that the set

{α = tt} := {x ∈ X | α(x) = tt}

is a Borel set (hence for {α = ff}). Because there are at most countably many of these sets
for Ludwig, we can find a Polish topology on X which is finer than the given one having the
same Borel sets such that these sets are clopen, see [26, Corollary 3.2.5]. We will assume
that X is equipped with this topology. Associate with α the stochastic relations χ�

{α=tt} and

χ�
{α=ff}. The former is defined through

χ�
{α=tt}(x)(A) := χ{α=tt}(x) · δx(A),

where χS is the indicator function of set S, similarly for χ�
{α=ff}. Note that∫

X
f dχ�

{α=tt}(x) = χ{α=tt}(x) · f(x).

Since {α = tt} is a clopen set, χ�
{α=tt} and χ�

{α=ff} are both continuous maps from X to S (X).
We assume that we have a map

E : Vars → (Exprs → (X → S (X)))

at our disposal so that for each variable a and each expression E the stochastic relation
E(a)(E) is continuous. The map E is intended to model the assignment of E to variable
a by evaluating the environment, performing the computation which is associated with the
expression E and assigning the result to a.

2.2 Some Preparations

Modeling the semantics of the while loop requires some preparations. Denote for the stochas-
tic relations K,L : X � X their product K∗L through

(K∗L)(x)(A) :=
∫

X
L(y)(A) K(x)(dy)

1Ludwig Wittgenstein writes in his Philosophische Untersuchungen: “Wer in ein fremdes Land kommt,
wird manchmal die Sprache der Einheimischen durch hinweisende Erklärungen lernen, die sie ihm geben; und
er wird die Deutung dieser Erklärungen oft raten müssen und manchmal richtig, manchmal falsch raten” [28,
Nr. 32, p.29]
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(see Section 3 which relates K∗L to the Kleisli product for stochastic relations K and L).
Fix a stochastic relation β, and define for the Boolean α and for the relation L : X � X
inductively the sequence (τα

k (β,L))k≥0 of relations through

τα
0 (β,L) := χ�

{α=ff}∗L,

τα
k+1(β,L) :=

(
χ�
{α=tt}∗β

)
∗τα

k (β,L),

and put

τα(β,L) :=
∞∑

k=0

τα
k (β,L).

Note that an explicit representation of the inductive step is

τα
k+1(β,L)(x)(A) := χ{α=tt}(x) ·

∫
X

τα
k (β,L)(y)(A) β(x)(dy),

whenever x ∈ X,A ∈ B(X). This implies∫
X

f dτα
k+1(β,L)(x) = χ{α=tt}(x) ·

∫
X

∫
X

f(z) τα
k (β,L)(y)(dz) β(x)(dy),

whenever f : X → R is bounded and measurable. Using this, one can show that τα
k may be

explicitly written as

τα
k (β,L)(x)(A) =

χ�
{α=tt}(x) ·

k integrals︷ ︸︸ ︷∫
X
· · ·
∫

X
L(xk)

(
{α = tt}k−1 × {α = ff} × A

)
β(xk−1)(dxk) · · ·

· · · β(x1)(dx2) β(x)(dx1)

Proposition 1 τα
k (β,L) is for each k ≥ 0 a stochastic relation, so is τα(β,L). If both β and

L are continuous, then τα
k (β,L) and τα(β,L) are, too.

Proof 1. We first show that τα
k (β,L) is a stochastic relation by induction on k. The case k = 0

is trivial, and the inductive step notes first that A 
→ τα
k+1(β,L)(x)(A) is a sub-probability, in

particular it is σ-additive (use e.g. the Monotone Convergence Theorem [3, Theorem 16.2]).
A similar argument implies also that A 
→ τα(β,L)(x)(A) is a sub-probability. Using standard
arguments again, measurability of x 
→ τα

k+1(β,L)(x)(A) as well as x 
→ τα(β,L)(x)(A) for
each A ∈ B(X) is inferred.
2. Now assume that β and L are both continuous. We argue again by induction on k. Because
{α = tt} is clopen, the case k = 0 is established. For the inductive step, note that

ϕk,f : x 
→ χ{α=tt}(x) ·
∫

X
f(z) τα

k (β,L)(x)(dz)

constitutes a continuous map, whenever f is continuous. This is so by the induction hypothesis
and the clopenness of {α = tt}. But because β is continuous, and because∫

X
f dτα

k+1(β,L)(x) =
∫

X
ϕk,f dβ(x)
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holds, continuity is established.
3. Continuity of τα(β,L) is proved through the Portmanteau Theorem (see Section 3) by
showing that

lim inf
n→∞ τα(β,L)(xn)(G) ≥ τα(β,L)(x0)(G)

whenever xn → x0 and G ⊆ X is an open set. In fact, by Fatou’s Lemma [3, Theorem 16.3]
and the continuity of all τα

k (β,L) we see

lim inf
n→∞ τα(β,L)(xn)(G) ≥

∑
k≥0

lim inf
n→∞ τα(β,L)(xn)(G)

≥
∑
k≥0

τα
k (β,L)(x0)(G)

= τα(β,L)(x0)(G),

establishing the desired inequality. �

The properties of τα(β,L) noted below will be most helpful in the sequel:

Proposition 2 The transformation τα(β, ·) has the following properties:

1. τα(β,L) is a fixed point of τα(β, ·),

2. Suppose that L1, L2 : X � X are stochastic relations such that χ�
{α=ff}∗L1 = χ�

{α=ff}∗L2,

then τα(β,L1) = τα(β,L2).

Proof 1. A straightforward computation shows

τα
0 (β, τα(β,L)) (x) = χ{α=ff}(x) · τα(β,L)(x)

= χ{α=ff}(x) · τα
0 (β,L)(x)

= χ{α=ff}(x) · L(x)
= τα

0 (β,L)(x),

and inductively one sees that

τα
k (β, τα(β,L)) (x) = τα

k (β,L)

for each k ≥ 1. This establishes the first part.
2. The second part demonstrates first that τα

0 (β,L1) = τα
0 (β,L2) holds and then proceeds

inductively again. �

The second part of Proposition 2 shows that the behavior of the fixed point is uniquely
determined by the behavior of its argument on the set {α = ff} which is comprised of all
those elements of X on which α is false.

2.3 Partial Correctness Semantics

A state is a continuous stochastic relation, and the semantics will model state transformations.
Thus we perceive a program as a device which produces a stochastic relation from another
one, in this way performing a transformation between states. More formally, We will show
how a semantic function C[[·]] operates on these stochastic relations. We associate with each
program statement β a continuous stochastic relation, again denoted by β, subject to the
rules outlined below.
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1. Clearly, skip works as the identity:

C[[skip]]g := g

2. The sequential execution of statements corresponds to the Kleisli product of single
executions:

C[[β1;β2]] := C[[β1]]∗C[[β2]].

3. The assignment is given through the evaluation function:

C[[a := E]]g := E(a)(E)∗g.

4. The conditional statement permits operating on the true branch separately from the
false branch:

C[[if α then β else γ fi]]g := χ�
{α=tt}∗β∗g + χ�

{α=ff}∗γ∗g

Note that we obtain as a special case C[[if α then β fi]]g = χ�
{α=tt}∗β∗g + χ�

{α=ff}∗g.

5. Finally the transformation of the while- statement is modeled. Suppose that we are in
state g, then the resulting state after executing the statement not at all will be

K0 := χ�
{α=ff}∗g,

executing the loop exactly n + 1 times will result in the state

Kn+1 = χ�
{α=tt}∗ (β∗Kn) + χ�

{α=ff}∗Kn

An easy inductive argument shows that

Kn = τα
n (β, g)

holds for each n ≥ 0: For n = 0 we obtain this identity directly from the definition.
The induction step proceeds in this way:

Kn+1(x)(A) =
(
χ�
{α=tt}∗ (β∗Kn) + χ�

{α=ff}∗Kn

)
(x)(A)

= χ�
{α=tt}(x) ·

∫
X

Kk(y)(A) β(x)(dy) + χ�
{α=ff}(x) · g(x)(A)

= χ�
{α=tt}(x) ·

⎛
⎝ n∑

j=0

∫
X

τα
j (β,L)(y)(A) β(x)(dy)

⎞
⎠ + τ0(β,L)(x)(A)

=
n+1∑
j=1

τα
j (β,L)(x)(A) + τ0(β,L)(x)(A)

Consequently we put
C[[while α do β od]]g := τα(β, g).

An easy induction on the length of a program P yields
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Proposition 3 The semantic function C[[P ]] maps continuous stochastic relations to contin-
uous stochastic relations.

Remark 2 For later use it is noted that C[[P ]]g can be represented as the action βP ∗g of some
stochastic relation βP on g. —

This follows by induction on the length of program P from the definition of the semantic
function.
The following simple example illustrates the concept.

Example 1 Let X := [0, 1]n be the input space to heapsort, H := {x ∈ X | x is a heap}
be the output of Floyd’s algorithm for heap construction. Recall that 〈x1, . . . , xn〉 ∈ X is a
heap iff x�i/2� ≤ xi for 2 ≤ i ≤ n. Denote by λ Lebesgue measure on X, so λ is the uniform
distribution on the input space. It is not difficult to show that H ∈ B(X), and that

λ(H) = Fn :=| {π | π is a permutation of 1, ..., n with the heap property} |−1

holds (see [6]). Now let g0(x) := λ for each x ∈ X, so that g0 is a constant stochastic relation,
and put g1(x)(A) := Fn · λ(A ∩ H), for each x ∈ X, hence g1 is also a constant relation.
Then [6] shows that

C[[P ]]g0 = g1

where P is the formulation of Floyd’s algorithm as a Ludwig program. —

2.4 A Partial Correctness Logic

We will give rules which permit statements of the form f {P} g indicating that if execution
of P started in state f , and if P terminates, then the computation will be in state g. Here
states are continuous stochastic relations.

1. skip does not change much:
f {skip} f

2. Compositionality is preserved:
f {β} g g {γ} h

f {β; γ} h

3. The assignment is modeled through the evaluation E
E(a)(E)∗g {a := E} g

4. The predicate transformation through the conditional statement models the composition
through both branches

f {β} g h {γ} g(
χ�
{α=tt}∗f + χ�

{α=ff}∗h
)

{if α then β else γ fi} g

5. Finally, the while−statement composes the transformations in each step and puts them
together to the fixed point:

τα(β, g){while α do β od} g

As usual, a triplet 〈f, P, g〉 is just f {P} g, and a proof of triplet T� is a sequence of triplets
T0, . . . ,T� where each triplet Ti follows either the previous one by one of the rules above, or
is one of the axioms. Denote by P, f � g that there is a proof for triplet 〈f, P, g〉.
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2.5 Consistency and Completeness

Proposition 4 Given a program P and two continuous stochastic relations f and g, the
following statements are equivalent

1. P, f � g,

2. C[[P ]]g = f.

Proof 1. (Consistency) We show that if P, f � g then C[[P ]]g = f by induction on the
length of program P . For the induction step it is enough to assume that the statement under
consideration is the conditional statement such that the embedded statements are already
shown to satisfy the requirement already.
Now assume that

f {if α then β else γ fi} g,

then
f = χ�

{α=tt}∗h1 + χ�
{α=ff}∗h2

such that both h1 {β} g and h2 {γ} g. Consequently,

C[[if α then β else γ fi]]g = χ�
{α=tt}∗β∗g + χ�

{α=ff}∗γ∗g

= χ�
{α=tt}∗h1 + χ�

{α=ff}∗h2

= f.

2. (Completeness) We show that C[[P ]]f = g implies P, g � f This is also established by an
inductive proof, and again it is enough to focus on the conditional statement. In fact, assume
that C[[if α then β else γ fi]]g = g′ holds, thus g′ = χ�

{α=tt}∗β∗g + χ�
{α=ff}∗γ∗g. The latter

equation may be decomposed to

χ�
{α=tt}∗g

′ = χ�
{α=tt}∗β∗g

χ�
{α=ff}∗g

′ = χ�
{α=ff}∗γ∗g.

We can find stochastic relations h1 and h2 such that

β∗g = χ�
{α=tt}∗g

′ + χ�
{α=ff}∗h1

and
γ∗g = χ�

{α=tt}∗h2 + χ�
{α=ff}∗g

′,

so that the induction hypothesis yields(
χ�
{α=tt}∗g

′ + χ�
{α=ff}∗h1

)
{β} g

and (
χ�
{α=tt}∗h2 + χ�

{α=ff}∗g
′
)

{γ} g.

Applying the induction hypothesis again, we see(
χ�
{α=tt}∗

(
χ�
{α=tt}∗g

′ + χ�
{α=ff}∗h1

)
+ χ�

{α=ff}∗
(
χ�
{α=tt}∗h2 + χ�

{α=ff}∗g
′
))

{if α then β else γ fi}g

which is plainly equivalent to g′ {if α then β else γ fi} g, as claimed. �
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3 The Giry Monad

In this section the constructions underlying the Giry monad are collected. We remind the
reader of Polish spaces, of the topology of weak convergence on the space of all subprobabilities
on a Polish space, and finally of the monad investigated by Giry.
Let X be a Polish space, i.e., a separable metric space for which a complete metric exists,
and denote by S (X) the set of all subprobability measures on the Borel sets B(X) of X.
The weak topology on S (X) is the smallest topology which makes τ 
→

∫
X f dτ continuous,

whenever f ∈ C(X) := {g : X → R | g is bounded and continuous}. It is well known that the
discrete measures are dense, and that S (X) is a Polish space with this topology [22, Section
II.6]. Let d be the metric on X, and put d(x,A) := inf{d(x, y) | y ∈ X} the distance of x ∈ X
to the subset A ⊆ X, then the Prohorov metric dP on S (X) is defined through

dP (τ1, τ2) := inf{ε > 0 | ∀A ∈ B(X) : τ1(A) ≤ τ2(Aε) + ε ∧ τ1(A) ≤ τ2(Aε) + ε}

with Aε := {y ∈ X | d(y,A) < ε} as the set of all elements of X having distance less that ε
from A. This metric topologizes the topology of weak convergence, see [3, Theorem 6.8].
More explicitly, a sequence (τn)n∈N with τn ∈ S (X) converges to τ0 ∈ S (X) in this topology
(indicated by τn ⇀w τ0) iff

∀f ∈ C(X) :
∫

X
f dτn →

∫
X

f dτ0

holds. The famous Portmanteau Theorem [22, II.6.1] states that this is equivalent to the
condition

lim inf
n→∞ τn(G) ≥ τ0(G)

whenever G ⊆ X is an open set. We will assume throughout that S (X) is endowed with the
weak topology.
Denote by Pol the category of Polish spaces with continuous maps as morphisms. S assigns to
each Polish space X the space of subprobability measures on X; if f : X → Y is a morphism
in Pol, its image S (f) : S (X) → S (Y ) is defined through

S (f) (τ)(B) := τ
(
f−1 [B]

)
,

where τ ∈ S (X) and B ∈ B(Y ) is a Borel set. By virtue of the Change of Variable Formula∫
Y

g dS (f) (τ) =
∫

X
g ◦ f dτ

it is easy to see that S (f) is continuous. Thus S : Pol → Pol is functor.
Denote by µX : S (S (X)) → S (X) the map

µX(M)(A) :=
∫
S(X)

τ(A) M(dτ)

which assigns to each measure M on the Borel sets of S (X) a subprobability measure µX(M)
on the Borel sets of X. Thus µX(M)(A) averages over the subprobabilities for A using
measure M . Standard arguments show that∫

X
f dµX(M) =

∫
S(X)

(∫
X

f fτ

)
M(dτ)
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Page 11 Derandomizing through Eilenberg-Moore algebras

for each measurable and bounded map f : X → R.
The map µX is a morphism in Pol, as the following Lemma shows.

Lemma 1 µX : S (S (X)) → S (X) is continuous.

Proof Let (Mn)n∈N be a sequence in S (S (X)) with Mn ⇀w M0, then we get for f ∈ C(X)
through the Change of Variable Formula, and because

τ 
→
∫

X
f dτ

is a member of C(S (X)), the following chain∫
S(X)

f dµX(Mn) =
∫
S(X)

(∫
X

f dτ

)
Mn(dτ)

→
∫
S(X)

(∫
X

f dτ

)
M0(dτ)

=
∫
S(X)

f dµX(M0).

Thus µX(Mn) ⇀w µX(M0) is established, as desired. �

The argumentation in [13] shows that µ : S2 •→ S is a natural transformation. Together with
ηX : X → S (X) , which assigns to each x ∈ X the Dirac measure δx on x, and which is a
natural transformation η : 1l •→ S, the triplet 〈S, η, µ〉 forms a monad [13]. It was originally
proposed and investigated by Giry and will be referred to as the Giry monad. This means that
these diagrams commute in the category of endofunctors of Pol with natural transformations
as morphisms:

S3 Sµ � S2 S
ηS � S2 � Sη

S

S2

µS

�

µ
� S

µ

�
S

µ

��

id
id

�

Definition 2 A stochastic relation K : X � Y between the Polish spaces X and Y is a
Kleisli morphism for the Giry monad.

Equivalently, a stochastic K : X � Y may be represented as a map K : X → S (Y ) with the
following properties:

1. x 
→ K(x) is (weakly) continuous,

2. B 
→ K(x)(B) constitutes a subprobability measure on the Borel sets B(Y ) of Y for
each x ∈ X.

The composition K ◦ L of stochastic relations K : X � Y and L : Y � Z is the Kleisli
product, thus

(L ◦ K)(x)(C) =
∫

Y
L(y)(C) K(x)(dy)
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holds for x ∈ X and C ∈ B(Z). We use in Section 2 for the semantics of Ludwig the notation

K∗L := L ◦ K,

because this is intuitively more appealing for the purposes of the semantics.
If the probability measures P (X) on X are considered, then we get the monad 〈P, η, µ〉 which
is actually the monad that was investigated by Giry. We will concentrate on the subprobability
functor S with occasional sidelong glances to the probability functor. The former one is a bit
more convenient to work with because S (X) is positive convex.

4 Positive Convex Structures

Suppose X can be embedded into a real vector space as a positive convex set. Thus c1 ·
x1 + c2 · x2 ∈ X whenever x1, x2 ∈ X, and c1, c2 are positive convex coefficients. We call
then scalar multiplication and addition a positive convex structure on X. Such a positive
convex structure is continuous iff cn → c0, c

′
n → c′0 and xn → x0, x

′
n → x′

0 together imply
cn ·xn + c′n ·x′

n → c0 ·x0 + c′0 ·x′
0, as n approaches infinity (this is just like a topological vector

space, postulating continuity of addition and scalar multiplication).
Put for the rest of the paper

Ω := {〈α1, . . . , αn〉 | n ∈ N, αi ≥ 0,
n∑

i=1

αi ≤ 1}.

We call the elements of Ω positive convex tuples or simply positive convex.
Formally, we define a positive convex structure following e.g. Pumplün [24].

Definition 3 A positive convex structure P has for each α = 〈α1, . . . , αn〉 ∈ Ω a continuous
map αP : Xn → X which we write as

αP(x1, . . . , xn) :=
P∑

1≤i≤n

αi · xi,

such that

1.
∑P

1≤i≤n δi,k · xi = xk, where δi,j is Kronecker’s δ,

2. the identity

P∑
1≤i≤n

αi ·

⎛
⎝ P∑

1≤k≤m

βi,k · xk

⎞
⎠ =

P∑
1≤k≤m

⎛
⎝ P∑

1≤i≤n

αiβi,k

⎞
⎠ · xk

holds whenever 〈α1, . . . , αn〉, 〈βi,k, . . . , βi,k〉 ∈ Ω, 1 ≤ i ≤ n.

It can be shown that the usual rules for manipulating sums in vector spaces apply, e.g.
1 ·x = x, 0 ·x+ c ·x′ = c ·x′, or associativity. Thus we will use freely the notation from vector
spaces, omitting in particular the explicit reference to the structure whenever possible.
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A morphism θ : X1 → X2 between continuous positive convex structures P1 and P2 on X1

resp. X2 is a continuous and affine map. Thus

θ

⎛
⎝ P1∑

1≤i≤n

αi · xi

⎞
⎠ =

P2∑
1≤i≤n

αi · θ(xi)

holds for x1, . . . , xn ∈ X and 〈α1, . . . , αn〉 ∈ Ω. Positive convex structures with their mor-
phisms form a subcategory StrConv of Pol.

5 Characterizing the Algebras

The Eilenberg-Moore algebras are represented through partitions and through smooth equiv-
alence relations, both on the respective space of subprobability measures. We first deal with
partitions and investigate the partition induced by an algebra. This leads to a necessary and
sufficient condition for a partition to be generated from an algebra which in turn can be used
for characterizing the category of these algebras by introducing a suitable notion of morphisms
for partitions. The second representation capitalizes on the fact that equivalence relations
induced by continuous maps (as special cases of Borel measurable maps) have some rather
convenient properties in terms of measurability. This is used for an alternative description of
the category of all algebras.

5.1 Algebras

An Eilenberg-Moore algebra 〈X,h〉 for the Giry monad is an object X in Pol together with a
morphism h : S (X) → X such that the following diagrams commute

S (S (X))
S (h)� S (X) X

ηX� S (X)

S (X)

µX

�

h
� X

h

�
X

h

�

id
X

�

When talking about algebras, we refer always to Eilenberg-Moore algebras for the Giry monad,
unless otherwise indicated. An algebra morphism f : 〈X,h〉 → 〈X ′, h′〉 between the algebras
〈X,h〉 and 〈X ′, h′〉 is a continuous map f : X → X ′ which makes the diagram

S (X)
h � X

S
(
X ′)

S (f)

�

h′
� X ′

f

�

commute. Algebras together with their morphisms form a category Alg. This construction is
discussed for monads in general in [17, Chapter IV.2].
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Remark 3 Looking aside, we mention briefly a well-known monad in the category Set of
sets with maps as morphisms. The functor P assigns each set A its power set P (A), and if
f : A → B is a map, P (f) : P (A) → P (B) assigns each subset A0 ⊆ A its image f [A0] ,
thus P (f) (A0) = f [A0] . Define the natural transformation µ : P2 •→ P through

µA : P (P (A)) � M 
→
⋃

M ∈ P (A) ,

and η : 1l •→ P through ηX : x 
→ {x}, then the triplet 〈P, η, µ〉 forms a monad (the Manes
monad). It is well known that the algebras for this monad may be identified with the complete
sup-semi lattices [17, Exercise VI.2.1], cp. Remark 1. —

For the rest of this paper each free occurrence of X refers to a Polish space.
We need some elementary properties for later reference. They are collected in the next Lemma.

Lemma 2 1. Let f : A → B be a map between the Polish spaces A and B, and let
τ = α1 · δa1 + α2 · δa2 be the linear combination of Dirac measures for a1, a2 ∈ A with
positive convex α1, α2. Then S (f) (τ) = α1 · δf(a1) + α2 · δf(a2).

2. Let τ1, τ2 be subprobability measures on X, and let M = α1 · δτ1 + α2 · δτ2 be the lin-
ear combination of the corresponding Dirac measures in S (S (X)) with positive convex
coefficients α1, α2. Then µX(M) = α1 · τ1 + α2 · τ2.

Proof The first part follows directly from the observation that δx(f−1 [D]) = δf(x)(D), and
the second one is easily inferred from

µX(δτ )(Q) =
∫
S(X)

ρ(Q) δτ (dρ)

= τ(Q)

for each Borel subset Q ⊆ X, and from the linearity of the integral. �

5.2 Positive Convex Partitions

Assume that the pair 〈X,h〉 is an algebra, and define for each x ∈ X

Gh(x) := {τ ∈ S (X) | h(τ) = x}
(
= h−1 [{x}]

)
.

Then Gh(x) �= ∅ for all x ∈ X due to h being onto. The algebra h will be characterized
through properties of the set-valued map Gh. Define the weak inverse ∃R for a set-valued
map R : X → P (Y ) \ {∅} with non-empty images through

∃R(W ) := {x ∈ X | R(x) ∩ W �= ∅}.

for W ⊆ Y . If Y is a topological space, if R takes closed values, and if ∃R(W ) is compact
in X whenever W ⊆ Y is compact, then R is called k-upper-semicontinuous (abbreviated as
k.u.s.c.). If Y is compact, this is the usual notion of upper-semicontinuity (cf. [26, Section
5.1]).
The importance of being k.u.s.c. becomes clear at once from

Lemma 3 Let f : A → B be a surjective map between the Polish spaces A and B, and put
Gf (b) := f−1 [{b}] for b ∈ B. Then f is continuous iff Gf is k.u.s.c.
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Proof A direct calculation for the weak inverse shows ∃Gf (A0) = f [A0] for each subset
A0 ⊆ A. The assertion now follows from the well-known fact that a map between metric
spaces is continuous iff it maps compact sets to compact sets. �

Applying this observation to the set-valued map Gh, we obtain:

Proposition 5 The set-valued map x 
→ Gh(x) has the following properties:

1. δx ∈ Gh(x) holds for each x ∈ X.

2. Gh := {Gh(x) | x ∈ X} is a partition of S (X) into closed and positive convex sets.

3. x 
→ Gh(x) is k.u.s.c.

4. Let ∼h be the equivalence relation on S (X) induced by the partition Gh. If τ1 ∼h τ ′
1 and

τ2 ∼h τ ′
2, then (α1 · τ1 + α2 · τ2) ∼h (α1 · τ ′

1 + α2 · τ ′
2) for the positive convex coefficients

α1, α2.

Proof Because {x} is closed, and h is continuous, Gh(x) = h−1 [{x}] is a closed subset of
S (X). Because h is onto, every Gh takes non-empty values; it is clear that {Gh(x) | x ∈ X}
forms a partition of S (X). Because h is continuous, Gh is k.u.s.c. by Lemma 3. Positive
convexity will follow immediately from part 4.
Assume that h(τ1) = h(τ ′

1) = x1 and h(τ2) = h(τ ′
2) = x2, and observe that h(δx) = x holds

for all x ∈ X. Using Lemma 2, we get:

h(α1 · τ1 + α2 · τ2) = (h ◦ µX) (α1 · δτ1 + α2 · δτ2)
= (h ◦ S (h)) (α1 · δτ1 + α2 · δτ2)
= h

(
α1 · δh(τ1) + α2 · δh(τ2)

)
= h (α1 · δx1 + α2 · δx2)

In a similar way, h(α1 · τ ′
1 + α2 · τ ′

2) = h (α1 · δx1 + α2 · δx2) is obtained. This implies the
assertion. �

Thus Gh is invariant under taking positive convex combinations. It is a positive convex
partition in the sense of the following definition.

Definition 4 An equivalence relation ρ on S (X) is said to be positive convex iff τ1 ρ τ ′
1

and τ2 ρ τ ′
2 together imply (α1 · τ1 + α2 · τ2) ρ (α1 · τ1 + α2 · τ2) for positive convex coefficients

α1, α2. A partition of S (X) is called positive convex iff its associated equivalence relation is.

Note that the elements of a positive convex partition form positive convex sets. The converse
to Proposition 5 characterizes algebras:

Proposition 6 Assume G = {G(x) | x ∈ X} is a positive convex partition of S (X) into
closed sets indexed by X such that δx ∈ G(x) for each x ∈ X, and such that x 
→ G(x) is
k.u.s.c. Define h : S (X) → X through h(τ) = x iff τ ∈ G(x). Then 〈X,h〉 is an algebra for
the Giry monad.

Proof 1. It is clear that h is well defined and surjective, and that ∃G(F ) = h [F ] holds for
each subset F ⊆ S (X). Thus h [K] is compact whenever K is compact, because G is k.u.s.c.
Thus h is continuous by Lemma 3.
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2. An easy induction establishes that h respects positive convex combinations: if h(τi) = h(τ ′
i)

for i = 1, . . . , n, and if α1, . . . , αn are positive convex coefficients, then

h(
n∑

i=1

αi · τi) = h(
n∑

i=1

αi · τ ′
i).

We claim that (h ◦ µX)(M) = (h ◦ S (h))(M) holds for each discrete M ∈ S (S (X)) . In fact,
let

M =
n∑

i=1

αi · δτi

be such a discrete measure, then Lemma 2 implies that

µX(M) =
n∑

i=1

αi · τi,

thus

(h ◦ µX)(M) = h

(
n∑

i=1

αi · τi

)
= h

(
n∑

i=1

αi · δh(τi)

)
= (h ◦ S (h))(M),

because we know also from Lemma 2 that

S (h) (M) =
n∑

i=1

αi · δh(τi)

holds.
3. Since the discrete measures are dense in the weak topology, we find for M0 ∈ S (S (X)) a
sequence (Mn)n∈N of discrete measures Mn with Mn ⇀w M0. Consequently, we get from the
continuity of both h and µX (Lemma 1) together with the continuity of S (h)

(h ◦ µX)(M0) = lim
n→∞(h ◦ µX)(Mn) = lim

n→∞(h ◦ S (h))(Mn) = (h ◦ S (h))(M0).

This proves the claim. �

We have established

Proposition 7 The algebras 〈X,h〉 for the Giry monad for Polish spaces X are exactly the
positive convex k.u.s.c. partitions {G(x) | x ∈ X} into closed subsets of S (X) such that
δx ∈ G(x) for all x ∈ X holds.

We characterize the category Alg of all algebras for the Giry monad. To this end we package
the properties of partitions representing algebras into the notion of a G-partition. They will
form the objects of category GPart.

Definition 5 G is called a G-partition for X iff

1. G = {G(x) | x ∈ X} is a positive convex partition for S (X) into closed sets indexed by
X,

2. δx ∈ G(x) holds for all x ∈ X,

3. the set-valued map x 
→ G(x) is k.u.s.c.
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Define the objects of category GPart as pairs 〈X,G〉 where X is a Polish space, and G is a
G-partition for X. A morphism f between G and G′ will map elements of G(x) to G′(f(x))
through its associated map S (f). Thus an element τ ∈ G(x) will correspond to an element
S (f) (τ) ∈ G′(f(x)).

Definition 6 A morphism for GPart f : 〈X,G〉 → 〈X ′,G′〉 is a continuous map f : X → X ′

such that G(x) ⊆ S (f)−1 [G′(f(x))] holds for each x ∈ X.

Define the functor F : Alg → GPart by associating each algebra 〈X,h〉 its Giry partition
F (X,h) according to Proposition 7. Assume that f : 〈X,h〉 → 〈X ′, h′〉 is a morphism in Alg,
and let G = {G(x) | x ∈ X} and G′ = {G′(x′) | x′ ∈ X ′} be the corresponding partitions.
Then the properties of an algebra morphism yield

τ ∈ S (f)−1 [G′(f(x))
]

⇔ S (f) (τ) ∈ G′(f(x))
⇔

(
h′ ◦ S (f)

)
(τ) = f(x)

⇔ (f ◦ h)(τ) = f(x).

Thus τ ∈ S (f)−1 [G′(f(x))] , provided τ ∈ G(x). Hence f is a morphism in GPart between
F (X,h) and F (X ′, h′). Conversely, let f : 〈X,G〉 → 〈X ′,G′〉 be a morphism in GPart with
〈X,G〉 = F (X,h) and 〈X ′,G′〉 = F (X,h′). Then

h(τ) = x ⇔ τ ∈ G(x)
⇒ S (f) (τ) ∈ G′(f(x))
⇔ h′(S (f) (τ)) = f(x),

thus h′ ◦ S (f) = f ◦ h is inferred. Hence f constitutes a morphism in category Alg.
Summarizing, we have shown

Proposition 8 The category Alg of algebras for the Giry monad is isomorphic to the category
GPart of G-partitions.

5.3 Smooth Relations

The characterization of algebras so far encoded the crucial properties into a partition of
S (X), thus indirectly into an equivalence relation on that space. We can move directly to
a particular class of these relations when looking at an alternative characterization of the
algebras through smooth equivalence relations.

Definition 7 An equivalence relation ρ on a Polish space A is called smooth iff there exists
a Polish space B and a Borel measurable map f : A → B such that

a1 ρ a2 ⇔ f(a1) = f(a2)

holds, thus ρ is just the kernel of f .

Smooth equivalence relations are a helpful tool in the theory of Borel sets [26]. They have
some interesting properties that have been capitalized upon in the theory of labeled Markov
transition processes [4] and stochastic relations [8, 9].
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Some basic notations and constructions first: Denote for an equivalence relation ρ on A by
A/ρ the factor space, i.e., the set of all equivalence classes [a]ρ, and by

ερ : A → A/ρ

the canonical projection. If A is a Polish space, then let T /ρ be the final topology on A/ρ
with respect to the given topology and ερ, i.e., the largest topology on A/ρ which makes
ερ continuous. Clearly a map g : A/ρ → B for a topological space B is continuous with
respect to T /ρ iff g ◦ ερ : A → B is continuous w.r.t. the given topologies. We will need this
observation in the proof of Proposition 9.
Now let 〈X,h〉 be an algebra for the Giry monad. Obviously

τ1 ρh τ2 ⇔ h(τ1) = h(τ2)

defines a smooth equivalence relation on the Polish space S (X) . Its properties are summarized
in

Proposition 9 The equivalence relation ρh is positive convex, each equivalence class [τ ]ρh
is

closed and positive convex, and the factor space S (X)/ρh is homeomorphic to X when the
former is endowed with the topology T /ρh.

Proof 1. Positive convexity of ρh follows from the properties of h exactly as in the proof
of Proposition 5, from this, also positive convexity of the classes is inferred. Continuity of h
implies that the classes are closed sets.
2. Define χh([τ ]ρh

) := h(τ) for τ ∈ S (X) . Then χh : X/ρh → X is well defined and a
bijection. Let G ⊆ X be an open set, then ε−1

ρh

[
χ−1

h [G]
]

= h−1 [G] . Because T /ρh is the
largest topology on S (X)/ρh that renders ερh

continuous, and because h−1 [G] ⊆ S (X) is
open by assumption, we infer that χ−1

h [G] is T /ρh-open. Thus χh is continuous. On the
other hand, if (xn)n∈N is a sequence in X converging to x0 ∈ X, then δxn ⇀w δx0 in S (X),
thus [δxn ]ρh

→ [δx0]ρh
in T /ρh by construction. Consequently χ−1

h is also continuous. �

Thus each algebra induces a G-triplet in the following sense

Definition 8 A G-triplet 〈X, ρ, χ〉 is a Polish space X with a smooth and positive con-
vex equivalence relation ρ on S (X) such that χ : S (X)/ρ → X is a homeomorphism with
χ([δx]ρ) = x for all x ∈ X. Here S (X)/ρ carries the final topology with respect to the weak
topology on S (X) and ερ.

Now assume that a G-triplet 〈X, ρ, χ〉 is given. Define h(τ) := χ([τ ]ρ) for τ ∈ S (X). Then
〈X,h〉 is an algebra for the Giry monad: h(δx) = x follows from the assumption, and because
h = χ ◦ ερ, holds, the map h is continuous. An argument very similar to that used in the
proof of Proposition 5 shows that h ◦ µX = h ◦ S (h) holds; this is so since ρ is assumed to be
positive convex.

Definition 9 The continuous map f : X → X ′ between the Polish spaces X and X ′ consti-
tutes a G-triplet morphism f : 〈X, ρ, χ〉 → 〈X ′, ρ′, χ′〉 iff these conditions hold:

1. τ ρ τ ′ implies S (f) (τ) ρ′ S (f) τ ′,
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2. the diagram

S (X)/ρ
S (f)ρ,ρ′� S

(
X ′)/ρ′

X

χ

�

f
� X ′

χ′

�

commutes, where
S (f)ρ,ρ′

(
[τ ]ρ
)

:= [S (f) (τ)]ρ′

G-triplets with their morphisms form a category GTrip.

Lemma 4 Each algebra morphism f : 〈X,h〉 → 〈X ′, h′〉 induces a G-triplet morphism f :
〈X, ρh, χh〉 → 〈X ′, ρh′ , χh′〉.

Proof 1. It is an easy calculation to show that τ ρh τ ′ implies S (f) (τ) ρh′ S (f) (τ). This is
so because f is a morphism for the algebras.
2. Since for each τ ∈ S (X) there exists x ∈ X such that [τ ]ρh

= [δx]ρh
(in fact, h(τ) would

do, because h(τ) = h
(
δh(τ)

)
, as shown above), it is enough to demonstrate that

χ′
h′
(
S (f)ρh,ρ′

h′

(
[δx]ρh

))
= f(χh([δx]ρh

))

is true for each x ∈ X. Because S (f) (δx) = δf(x), a little computation shows that both sides
of the above equation boil down to f(x). �

The morphisms between G-triplets are just the morphisms between algebras (when we forget
that these games play in different categories).

Proposition 10 Let f : 〈X, ρ, χ〉 → 〈X ′, ρ′, χ′〉 be a morphism between G-triplets, and let
〈X,h〉 resp. 〈X ′, h′〉 be the associated algebras. Then f : 〈X,h〉 → 〈X ′, h′〉 is an algebra
morphism.

Proof Given τ ∈ S (X) we have to show that (f ◦ h)(τ) equals (h′ ◦ S (f))(τ). Since h(τ) =
χ([τ ]ρ), we obtain

(f ◦ h)(τ) = f
(
χ([τ ]ρ)

)
= χ′

(
S (f)ρ,ρ′ ([τ ]ρ)

)
= χ′

(
[S (f) (τ)]ρ′

)
= (h′ ◦ S (f))(τ)

�

Putting all these constructions with their properties together, we obtain

Proposition 11 The category Alg of algebras for the Giry monad is isomorphic to the cate-
gory GTrip of G-triplets.
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For the probabilistic case we obtain a similar result:

Corollary 1 The category of algebras for the Giry monad for the probability functor is iso-
morphic to the full subcategory of G-triplets 〈X, ρ, χ〉 with a smooth and convex equivalence
relation such that χ : P (X)/ρ → X is a homeomorphism.

We will show now that StrConv is isomorphic to Alg.
Given an algebra 〈X,h〉, define for x1, . . . , xn ∈ X and the positive convex coefficients
〈α1, . . . , αn〉 ∈ Ω

n∑
i=1

αi · xi := h(
n∑

i=1

αi · δxi),

then this defines a positive convex structure on X. Let conversely such a positive convex
structure be given. We show that we can define a G-triplet from it. Let

TX := {
n∑

i=1

αi · δxi | n ∈ N, x1, . . . , xn ∈ X, 〈α1, . . . , αn〉 ∈ Ω},

then TX is dense in S (X) . Put

h0

(
n∑

i=1

αi · δxi

)
:=

n∑
i=1

αi · xi,

then h0 : TX → X is uniformly continuous, because

d

⎛
⎝h0(

n∑
i=1

αi · δxi), h0(
m∑

j=1

dj · δyj )

⎞
⎠ ≤ dP

⎛
⎝ n∑

i=1

αi · xi,

m∑
j=1

dj · yj

⎞
⎠ .

Define ρ0 as the kernel of h0, then ρ0 is a smooth equivalence relation on TX , and it is not

difficult to see that the set of topological closures {
(
[t]ρ0

)cl
| t ∈ TX} forms a partition of

S (X):

1. the closures of different equivalence classes are disjoint,

2. given τ ∈ S (X), one can find a sequence (tn)n∈N in TX with tn ⇀w τ. Since X is Polish,
in particular complete, the sequence (h0(tn))n∈N converges to some t0, and because h0

is uniformly continuous, one concludes that τ ∈
(
[t0]ρ0

)cl
. Thus each member of S (X)

is in some class.

This yields an equivalence relation ρ on S (X). Uniform continuity of h0 gives a unique
continuous extension h of h0 to S (X), thus ρ equals the kernel of h, hence ρ is a smooth
equivalence relation, and it is evidently positive convex. Defining on S (X)/ρ the metric

D([τ1]ρ , [τ2]ρ) := d(h(τ1), h(τ2)),

it is rather immediate that

1. the metric space (S (X)/ρ,D) is homeomorphic to X with metric d,
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2. the topology induced by the metric is just the final topology with respect to the weak
topology on S (X) and ερ.

It is clear that each affine and continuous map between positive convex structures gives rise
to a morphisms between the corresponding G-triplets, and vice versa.
Thus we have established:

Proposition 12 The category of Alg of algebras for the Giry monad is isomorphic to the
category StrConv of positive convex structures with continuous affine maps as morphisms.

For the probability functor we obtain

Corollary 2 The category of algebras for the Giry monad for the probability functor is iso-
morphic to the full subcategory of continuous convex structures.

This characterization has been known for the probability functor in the case that X is a
compact Hausdorff space [11, 2.14] (the attribution to Swirszcz’s work [27] in [11] is slightly
unclear). The methods for the proof are, however, rather different: the compact case makes
essential use of the right adjoint of the probability functor as a functor between the respective
categories of compact Hausdorff spaces and compact convex sets. This adjoint is not yet
characterized fully in the present situation. Thus Corollary 2 generalizes the characterization
to Polish spaces.

5.4 Examples

This Section illustrates the concept and proposes some examples by looking at some well-
known situations, thus most of this Section is not really new, probably apart from the proposed
point of view. We first show that the monad carries for each Polish space an instance of an
algebra with it. Then we prove that in the finite case an algebra exists only in the case of
a singleton set. Finally a geometrically oriented example is discussed by investigating the
barycenter of a probability in a compact and convex subset of Rn. In each case it turns out
the that convex structure associated with the algebra is the natural one.

Example 2 The pair 〈S (X) , µX〉 is always an algebra. We know from Lemma 1 that µX :
S (S (X)) → S (X) is continuous. Because 〈S, η, µ〉 is a monad, the natural transformation
µ : S2 •→ S satisfies

µ ◦ Sµ = µ ◦ µS

in the category of functors with natural transformations as morphisms, see the diagram at
the end of Section 3. Since (S ◦ µ)X = S (µX) and (µ ◦ S)X = µS(X), this translates to

µX ◦ S (µX) = µX ◦ µS(X).

Because the equation µX ◦ ηX = idS(X) is easily established through a simple computation,
the defining diagrams are commutative.
Since

µX(α1 · τ1 + α2 · τ2) = α1 · µX(τ1) + α2 · µX(τ2),

the positive convex structure induced on S (X) by this algebra is the natural one. —
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The finite case can easily be characterized: there are no algebras for {1, . . . , n} unless n = 1.
This will be shown now. As a byproduct we obtain a simple geometric description as a
necessary condition for the existence of algebras.
We need a wee bit elementary topology for this.

Definition 10 A metric space A is called connected iff the decomposition A = A1 ∪A2 with
disjoint open sets A1, A2 implies A1 = ∅ or A2 = ∅.

Thus a connected space cannot be decomposed into two non-trivial open sets. The connected
subspaces of the real line R are just the open, half-open or closed finite or infinite intervals.
The rational numbers Q are not connected. A subset ∅ �= A ⊆ N of the natural numbers
which carries the discrete topology (because we assume that it is a Polish space) is connected
as a subspace iff A = {n} for some n ∈ N.
The following facts about connected spaces are well known, cp. [10, Chapter 6.1] (or any other
standard reference to topology).

Lemma 5 Let A be a metric space.

1. If A is connected, and f : A → B is a continuous and surjective map to another metric
space B, then B is connected.

2. If two arbitrary points in A can be joined through a connected subspace of A, then A is
connected.

This has as a consequence

Corollary 3 If 〈X,h〉 is an algebra for the Giry monad, then X is connected.

Proof If τ1, τ2 ∈ S (X) are arbitrary probability measures on X, then the line segment
{c · τ1 + (1 − c) · τ2 | 0 ≤ c ≤ 1} is a connected subspace which joins τ1 and τ2. This is
so because it is the image of the connected unit interval [0, 1] under the continuous map
c 
→ c · τ1 + (1− c) · τ2. Thus S (X) is connected by Lemma 5. Since h is onto, its image X is
connected. �

Consequently it is hopeless to search for algebras for, say, the natural numbers or a non-trivial
subset of it:

Corollary 4 A subspace A ⊆ N has algebras for the Giry monad iff A is a singleton set.

Proof It is clear that a singleton set has an algebra. Conversely, if A has an algebra, then A
is connected by Lemma 3, and this can only be the case when A is a singleton. �

The next example deals with the unit interval:

Example 3 The map

h : S ([0, 1]) � τ 
→
∫ 1

0
t τ(dt) ∈ [0, 1]

defines an algebra 〈[0, 1] , h〉. In fact, h(τ) ∈ [0, 1] because τ is a subprobability measure. It is
clear that h(δx) = x holds, and — by the very definition of the weak topology — that τ 
→ h(τ)
is continuous. Thus by Proposition 6 it remains to show that the partition induced by h is
positive convex. This is a fairly simple calculation. Consequently, the partition induced by h
is a G-partition, showing that h is indeed the morphism part of an algebra.
It is not difficult to see that the positive convex structure induced on [0, 1] is the natural one.
—
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The final example has a more geometric touch to it and deals only with the probabilistic
case. We work with bounded and closed subsets of some Euclidean space and show that the
construction of a barycenter yields an algebra. Fix X ⊆ Rn as a bounded, closed and convex
subset of the Euclidean space Rn (for example, X could be a closed ball or a cube in Rn).
Denote for two vectors x, x′ ∈ Rn by

x � x′ :=
n∑

i=1

xi · x′
i

their inner product. Then λx.x � x′ constitutes a continuous linear map on Rn for fixed x′.
In fact, each linear functional on Rn can be represented in this way.

Definition 11 The vector x∗ ∈ Rn is called a barycenter of the probability measure τ ∈ P (X)
iff

x � x∗ =
∫

X
x � y τ(dy)

holds for each x ∈ X.

Because X is compact, the integrand is bounded on X, thus the integral is always finite.
We collect some basic facts about barycenters and refer the reader to [12] for details.

Lemma 6 The barycenter of τ ∈ P (X) exists, it is uniquely determined, and it is an element
of X.

Proof Once we know that the barycenter exists, uniqueness follows from the well-known fact
that the linear functionals on Rn separate points. Existence of the barycenter is established
in [12, Theorem 461 E], its membership in X follows from [12, Theorem 461 H]. �

These preparations help in establishing that the barycenter constitutes an algebra:

Proposition 13 Let b(τ) be the barycenter of τ ∈ P (X). Then 〈X, b〉 is an algebra for the
Giry monad.

Proof 1. b : P (X) → X is well defined by Lemma 6. From the uniqueness of the barycenter
it is clear that b(δx) = x holds for each x ∈ X.
2. Assume that (τn)n∈N is a sequence in P (X) with τn ⇀w τ0. Put x∗

n := b(τn) as the
barycenter of τn, then (x∗

n)n∈N is a sequence in the compact set X, thus has a convergent
subsequence (which we take w.l.g. as the sequence itself). Let x∗

0 be its limit. Then we have
for all x ∈ X :

x � x∗
n =

∫
X

x � y τn(dy) →
∫

X
x � y τ0(dy) = x � x∗

0

Hence b is continuous.
3. It remains to show that the partition induced by b is convex. This, however, follows
immediately from the linearity of y 
→ λx.x � y. �

Calculating the convex structure for b, we infer from affinity of the integral as a function of
the measure and from

x � b(τ) =
∫

X
x � y τ(dy)
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that (0 ≤ c ≤ 1, τi ∈ P (X))

b(c · τ1 + (1 − c) · τ2) = c · b(τ1) + (1 − c) · b(τ2)

that the convex structure induced by b is the natural one.
It should be mentioned that this example can be generalized considerably to metrizable topo-
logical vector spaces. The terminological effort is, however, somewhat heavy, and the example
remains essentially the same. Thus we refrain from a more general discussion.
Although the characterization of algebras in terms of positive convex structures yields a
somewhat uniform approach, it becomes clear from these examples that the specific instances
of the algebras provide a rather colorful picture unified only through the common abstract
treatment.

6 Returning to Ludwig

Returning to the language of Section 2, we interpret these results in terms of the algebras
involved. Let Q be a positive convex structure on X, hence Q yields an algebra hQ on X
according to Proposition 12. A stochastic relation g : X � X is interpreted in Q through
gQ := hQ ◦ g.
The derandomized semantics CQ[[P ]] of a program P given a positive convex structure Q on X
is hQ ◦C[[P ]] (with associated algebra hQ according to Proposition 12). Following Section 2.3,
we associate with P ’s work a stochastic relation βP , see Remark 2. If stochastic relation g
represents the initial state, the derandomized final state is given through

CQ[[P ]]g = gQ ◦ βP ,

with the Kleisli product as the composition.
Consistency of logic and semantics translates into consistency for derandomized semantics;
we see also that morphisms for strongly convex structures translate into derandomized inter-
pretations.

Proposition 14 Given a program P , the states f, g : X � X with P, g � f and a positive
convex structure Q on X. Then

1. CQ[[P ]]f = gQ,

2. if R is a positive convex structure on X and θ : Q → R a morphism, then

CR[[P ]] (S (θ) ◦ g) = θ ◦ gQ.

Proof Immediate from consistency of the semantics, Proposition 4, and from the isomorphism
between Alg and StrConv, Proposition 12. �

Establishing the counterpart to completeness is open; given the continuous derandomizations
f1, g1 : X → X with

CQ[[P ]]f1 = g1

it would require finding stochastic relations f, g : X � X with f1 = fQ, g1 = gQ and
C[[P ]]f = g. This looks like a difficult selection problem (remember that f and g should be
continuous), and conditions permitting such a selection would have to be identified.
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7 Related Work

Derandomization is a well known technique in algorithm design to gain a less randomized
algorithm from a randomized one by reducing the number of random bits. This term was
borrowed from this field for describing what happens when one has a probabilistic semantics
and wants to see what is happening on the deterministic level. Consequently, these techniques
are related in spirit.
The monad on which the present investigation is based was originally proposed and inves-
tigated by M. Giry [13] in an approach to provide a categorical foundation of Probability
Theory. The functor on which it is based assigns each measurable space all probabilities
defined on its σ-algebra, it is somewhat similar to the functor assigning each set its power set
on which the monad investigated by Manes is based. While the Kleisli construction for the
latter one leads to relations based on sets, it leads for the former one to stochastic relations
as a similar relational construction. This point of view was emphasized first by P. Panagaden
in [21] when pointing out similarities between set based and probability based relations. It
was extended further in [1]. In [7] this aspect is elaborated in depth by showing how a software
architecture can be modeled using a monad as the basic computational model; the monad is
shown to subsume both the Manes and the Giry monad as special cases. Stochastic relations
turned out to be a fruitful field for investigations [1, 8, 9] in particular in such areas as labeled
Markov transition systems and modeling stochastically algebraic aspects of modal logic. A
development towards the semantics of probabilistic programs in terms of the Eilenberg-Moore
algebras on probabilistic powerdomains is presented in [14]: Jones shows among others how
programs can be understood as state transformers using upper and lower continuous functions
with evaluations (for which an integration theory is developed); the underlying computational
model is Moggi’s λc calculus, as in the present paper. An early proposal for using probabil-
ities for modelling in automata theory can be found as an illustrating example in [2, Nos.
(6), (13)]. The situation discussed is the set of all probabilities with finite support, and it
is mentioned without going into details that algebras, which are called deciders here, are
generalized convex sets.
Using programs as transformers has been used for quite some time when the objects to be
transformed may be cast as predicates in some logic, e.g. for Hoare triplets. The use of
probabilities is not quite as common. Kozen uses in [15] a predicate transformer technique in
his analysis of probabilistic programs; he demonstrated essentially how the randomizing con-
structs give rise to a transform on a Banach space of continuous functions. For deterministic
programs, the present author showed e.g. in [6, 5] how the notion of programs as measure
transforms can be used for the average case analysis of programs (see Example 1). Monniaux’s
work, e.g. [19], uses probabilistic methods for the abstract interpretation of programs. He
proposes among others an adjoint semantics of nondeterministic, probabilistic programs, and
relates this to abstract interpretations of non-probabilistic programs. The methods employed
come specifically from the duality theory of linear operators on integrable functions.
The investigation of Eilenberg-Moore algebras for the probability functor using convexity
arguments has been advocated e.g. in [23, 24, 20], pioneering work having been reported
in [25, 27], see [11]. It is clearly intimately connected with the question of identifying the
adjoints for this functor, which are not yet completely known in the category of Polish spaces
with continuous or with measurable maps as morphisms.
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8 Further Work

We characterize the algebras for the Giry monad which assigns each Polish space its space
of probabilities. The morphisms in this category are continuous maps between Polish spaces.
Continuity is technically crucial for the argumentation. This approach will not work for
general Borel measurable maps serving as morphisms between Polish spaces (although these
maps are fairly interesting from the point of view of applications), thus a more general char-
acterization for these algebras is desirable.
Continuity plays also a crucial role in some of the examples that are discussed. Through the
geometric argument of connectedness we could show that for the discrete case no algebras
exist, except in the very trivial case of a one point space. This argument also does work only
when the morphisms involved are continuous. So it is desirable to find algebras for the general
case of Borel maps over finite domains (probably they do not exist usually there either: one
would also like to know that). The last example hints at a connection between these algebras
and barycenters for compact convex sets in topological vector spaces. It ends here where the
fun begins there, viz., when looking at Choquet’s theory of integral representations. There is
room for further work exploring this avenue. The examples show that the world of algebras
for this monad is quite colorfully polymorphous.
The most interesting question, however, addresses the expansion of the characterization given
here for Borel measurable maps which are based on Polish spaces, or, going one crucial step
further, on analytic ones. This goes hand in hand with the request for identifying adjoints
for the probability functor (or its close cousin, the subprobability functor).
We have shown how derandomization can be carried out for a simple programming language
in the scenario of Polish spaces with continuous maps. It would be interesting to see how
this can be extended to questions pertaining to programming in the large. From a software
architectural point of view, the approach that was shown to work for pipelines [7] should be
widened to other architectures [16].
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