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Abstract

Structuring media objects such as text, graphics etc. by means of XML is a broadly dis-
cussed issue in hypermedia modeling. Thereby, an entire hypermedia document is not only
arranged in such a way different developers may interchange data and have easy access to
the inner structure of media objects by means of powerful tools available in the XML scene.
Moreover, utilizing a given document structure to find new possibilities of linking documents
is a major concern. Formal approaches, however, rarely appear in this context. In this paper,
we contribute to formally structuring media objects and their linkage, thereby aiming at ana-
lyzing hyperlink structures. That is, properties of hyperlinks between media objects underlie
a mathematical verification in advance of encoding the concrete hyperdocument. Algebraic
specifications serve as a formal model allowing to obtain algebras reflecting hyperlink struc-
tures open to analysis.

1 Introduction

In [13], an object-oriented document description language for implementing hyperdocuments,
DoDL for short [7, 8], was given an algebraic semantics. A hypermedia document, or hyperdocu-
ment for short, is understood as a collection of media objects such as texts, graphics, videos, etc.
which are connected to each other in a non-linear fashion, that is, they are hyperlinked.

Media objects were given a tree-like structure which allows us to determine positions serv-
ing as link anchors. This approach is vital for the description of hyperdocuments by using the
object-oriented language DoDL. The approach contrasts very much to the common HTML/XML
implementation of hyperdocuments. Most remarkably, both DoDL and hyperdocuments were
subject to formal investigations concerning the language’s denotational semantics given by alge-
bras, as well as the hyperdocuments structure. Hence, properties of structured media objects and
hyperlinks can be checked and verified on a formal, algebraic level.

Due to their object-oriented description, hyperdocuments specified in DoDL can easily be
comprehended as programs, or more generally, as software. Hyperdocuments hence inherently
possess both document and program qualities. This document/program-dualism (c.f. [12]) can
clearly be observed by the fact that hyperdocuments not only offer non-linearly related media
and hence hyperlinked information. Moreover, navigational aspects, i.e. the hyperlinks of the
document, are entirely encoded within the hyperdocument itself. If we understand any browser
as a runtime environment allowing to navigate, a hyperdocument encompasses control structure.
Hyperdocuments are often treated merely as documents leaving their characteristics as programs
nearly completely aside.

Depending on the specific task a hyperdocument has to satisfy, its media objects may un-
derlie frequent change. For example, hypermedia information systems showing environmental
conditions such as air temperature, water-levels, or radio activity, etc. need to be updated or
supplemented periodically with the latest measuring results. Thereby, the link structure has to
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be adapted to the new data. In the view of programs, the control structure has to be reimple-
mented. If, however, the link structure depends on positions within these media objects that can
be described without referring to specific content (for example, if a certain occurrence of a city
name, regardless of where exactly this name occurs within the media object, is always linked
to a map showing some city details), hyperlinks can be captured abstractly without referring to
concrete media objects. In the view of programs again, the control structure can be specified.
Hence, an adequate abstract description of the documents’ link structure can be reused, if it is
given without reference to concrete data. Analogously, programs are specified without referring
to their concrete input data. Exactly here, the specification of link structures finds its place.

In HTML/XML, hyperlinks and media objects are assembled within one single document.
Using tags directly embedded within media objects makes it impossible to separate the descrip-
tion of hyperlinks from them. Our approach allows in contrast to specify the link structure ab-
stractly and separately from media objects. Thereby, we strictly follow the principle of separation
of concerns, and contribute to maintaining hyperdocuments [10] immediately on the level of main-
taining software. A suitable compiler system allows to generate a specified hyperdocument by
binding concrete media objects to the abstract description of a link structure. Thus, our approach
is open to changing media objects frequently without neither touching the hyperdocument itself
nor its specification. Some advantages become obvious here: By exchanging the values given in
a binding and hence obeying the principle of locality, we are able to generated arbitrary many hy-
perdocuments underlying a certain link structure; further, the code is given in an object-oriented
way and is thus open to inheritance, polymorphism, overloading, etc., and thus to high-level
implementation of hyperdocuments. More details can be found in [23] and [14].

The notion of position is vital to obtain a proper specification of a hyperdocument. Therefore,
we structure media objects in a tree-like manner. By introducing positions only based on this
structure, we do not need to use coordinate systems laid upon media objects, and establish a
uniform mechanism fitting to any kind of media object. Positions, and thereupon hyperlinks as
pairs of positions, can then be elaborated formally. Algebraic specifications serve as formalism.
Their loose semantics, i.e. a class of algebras some carrier-sets of which are not fixed, allows
to analyze a specified link structure: dangling links, circles, undesired connections, etc. can be
detected computationally. This approach develops its full power when the number of hyperlinks
exceeds a level that makes it cumbersome to analyze hyperlinks by walking through the entire
hyperdocument manually. Hence, formally testing link structures saves time, is less error-prone,
helps to ensure certain properties, and, last not least, allows to mathematically prove structural
and hyperlink properties. This is important for example in such environments where operating
a hyperdocument relies on reasoning about its security.

The construction of hyperdocuments is generally not limited to structuring the media objects
involved and their link structure (c.f. [20], chap. 9). Moreover, an overall view on hypermedia sys-
tems has to be taken into account including usability and presentation of hyperdocuments (c.f.
[20], p. 7). For the time being, we are not interested in modeling hypermedia systems. Our ap-
proach is focussed on the specification and, more over, on the analysis of hyperlink structures.
Hence, the visual appearance of media objects, i.e. their layout, is not a concern here, although
we consider it as a very important aspect of a hyperdocument: layout is undoubtedly respon-
sible for usability and acceptance. In addition to layout, the presentation of a hyperdocument
encompasses the (animated) arrangement of its media objects in time and space (c.f. [16], p. 264).
For our approach, capturing elements and their relative positions to each other is more impor-
tant than their visual representation. This allows to talk about the composition of documents,
about the notion of subdocuments, and about positions of subdocuments in the document under
consideration.

This paper, which is an extension of the author’s Ph.D. thesis, reports on our formal approach
to structuring media objects and analyzing their linkage. The pragmatic goal of this work is
to test the link structure of a hyperdocument in advance of its physical incorporation, i.e. on
a conceptual level. The paper is organized as follows: Section 2 discusses related work; the
structuring mechanism under consideration is introduced in Section 3; Section 4 discusses the
formal analysis of link structures; Section 5 gives a conclusion and suggests further work.
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2 Related work

A recursive and thus hierarchical document structure is proposed by Gamma et al. (c.f. [15], Sec.
2.2). They understand documents as a collection of textual and graphical elements, called glyphs.
These elements are arranged in columns and rows, and are themselves refined recursively. The
COMPOSITE design pattern (c.f. [15], p. 163) is based on this concept. Hence, the "formalization"
of document structure is done by fixing a structuring mechanism.

A virtual document hierarchy is proposed by Gloor (c.f. [16], Sec. 1.5). An algorithm is re-
sponsible for computing so called clusters which assemble documents recursively by regarding
their content. The clustered documents need not to form a physical unity, hence they are called
virtual. This mechanism is dedicated to the construction of hierarchical overviews on document
collections.

The language HyTime [22] offers tags to structure media objects in a modular way. As any
language based on SGML/XML, those tags are textually placed within the media objects them-
selves. Separating a link structure from this description is not possible.

Furuta and Stotts formally model document structure by Petri nets [29]. Thereby, they concen-
trate on browsing information. In [30], they use model checking to analyze browsing properties.

Design and implementation of hyperdocuments is proposed by HDM [24] and OOHDM [25,
26]. This model distinguishes between the design of content, link structure, and views, followed
by their implementation. This four-phase process-model captures content and links abstractly
by so called entity and link types. Entities are structured stepwise before they are connected by
concrete links. A hypermedia application is modeled object-orientedly in each phase. Refinement
steps between these phases are allowed and lead to a top-down incremental prototype-based
process. This approach, however, does not use formal methods.

The Dexter Hypertext Reference Model [17] characterizes hypermedia systems by runtime
behavior, link structure and composition of media objects. It proposes the description of link
structure by anchors which themselves have a structure specified by the model. In Section 3, we
will refer to the Dexter Model again to relate our approach more precisely to this model.

The Dexter Model has been formalized by Tochtermann [31] using VDM [19]. This work for-
mally describes structuring media objects and hyperlinks, but analyzing a specified link structure
is not a concern. A similar work was done by Ossenbruggen and Eliëns [32]. They use Object-Z
[28] instead of VDM.

Mattick and Wirth [21] specify a hypertext reference model algebraically. They focus on the
automated support of hyperdocument development processes by presenting a formal description
of the steps taken by such a process. Operations are specified the application of which allows a
stepwise development of both a hyperdocuments’ structure and linkage. They do not aim at
analyzing link structures.

The XML path language, XPath (c.f. [6], chap. 11), is proposed to be used for locating parts
of an XML document. This concept is not provided by XML itself. To use XPath, an XML doc-
ument is seen as a tree in which each part of the document is represented as a node. XPath is a
string-based language providing the user with operations to locate nodes and to operate on them.
XPath-expressions aim at being used by other XML concepts such as document transformation
or conversion. Our approach can be seen as a formalization of the tree structure used in XPath.

The XML linking language, XLink (c.f. [6], chap. 14), offers ways to link documents which
are not provided by HTML. The language again uses tags, and hence the link structure is not
separated from a media object it refers to. Analyzing the link structure can be covered by ap-
propriate XML tools, but it is not expected be done formally. These XML-related technologies
use tree-like structuring mechanisms, and due to their wide-spread use they are, to this extend,
superior to our approach. Nonetheless, they lack the advantage of separating the description of
link structures from concrete media objects. Further, XML-code does not underlie object-oriented
features. This is a drawback when structuring and reusing code in a high-level manner becomes
mandatory for large hyperdocuments.

3



3 Structuring media objects

This section introduces link structure formally. We discuss structured media objects offering a
formal notion of position and, hence, a formal notion of link structure. Hyperdocuments are then
characterized by structured media objects, positions and links. This approach to structuring and
linkage is related to the Dexter model.

3.1 Basic notions

In this section, we introduce the notions vital for our approach.
A media object is characterized as any arbitrary, digitally storable information unit. In the

hypertext context, media objects are referred to as nodes (c.f. [27], chap. 3). In XPath, nodes are
parts of an XML documents. In our approach, a node represents a composite media object (see
Sec. 3.2).

A position is a designated and unambiguously addressable location within a media object.
In the Dexter model, positions are modeled by anchors, in hypertext they are also called buttons
(c.f. [27], chap. 4). To characterize positions physically, we need to respect the media type, such
as doc , rtf , ASCII , etc. for text, or jpg , gif , png , etc. for graphics, or mpg, avi , etc. for video.
In our approach, media types are not necessary to specify positions.

A hyperlink, or link for short, is a pair of positions in not necessarily different media objects.
The first component of such a pair is called source of the link, the second component is called
sink.

A hyperdocument is a collection of media objects which are linked to each other by means
of positions. Here, we only consider the link structure of a hyperdocument as one of its charac-
terizing properties. Layout is not respected, since analyzing a link structure does not depend on
layout.

A link structure is a collection of pairs of positions. Link structures can be viewed as directed,
attributes graphs the nodes of which relate to positions, and the edges of which relate to links (c.f.
[5]).

A document is a media object or a hyperdocument. Our notion of document thus subsumes
information units as well as a linked collection of them.

3.2 Compositional media objects

Media objects are given a tree-like structure. We restrict ourselves to this structure for technical
convenience only. Arbitrary graph structures can equally well be put to use though they get
technically more complicated.

In our approach, atomic media objects form the smallest units by which we compose larger
ones, called compositional media objects.

DEFINITION 1 Compositional media objects are recursively defined as follows:

1. Each atomic media object is a compositional media object.

2. Let mi, i = 1, . . . , n, with n ≥ 2, be compositional media objects, which need
not to be pairwise disjoint. Then, m = compose(m1, . . . ,mn) is a compositional
media object.

In the sequel, we refer to atomic media objects as atoms, and to compositional media objects as
compositionals. The tree representation of a media object, m, is given as follows:

• An atom, a, is a tree consisting of a root node only; the root is labeled with a.

• A compositional, m = compose(m1, . . . ,mn), n ≥ 2, is a tree the root node of which is
labeled with m. The root has exactly n children labeled with mi, such that mi is the i-th son
of the root.
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The set of constituents and the set of components of a media object, m, is defined by the
immediate submedia objects of m, and by all the inner nodes of the tree representation of m,
resp.:

DEFINITION 2 Let m = compose(m1, . . . ,mn) be a media objects. Each mi, i =
1, . . . , n is called a part of m. The set of constituents of m is the set of all its parts.
The set of components of m is recursively defined as follows:

components(m) :=


{m}, if m is atomic
constituents(m) ∪

⋃n
i=1 components(mi),

if m = compose(m1, . . . ,mn), n ≥ 2,

EXAMPLE 1 Figure 1 shows the tree representation of a compositional media object, compose(c1, c2).

FIGURE 1 A compositional media object

The root represents the entire compositional, m, which is composed of two compositionals,
c1 and c2. Those form the constituents of m. c1 is composed of two atoms, this and is. We write
c1 as compose(this, is). Since this and is are smallest units, here words, they cannot be further
decomposed and, hence, we cannot refer to their letters. The level a designer wants to fix atoms
on is a matter of choice.

The compositional c2, written as compose(this, c3), is composed of the atom this and another
compositional c3 the constituents of which are the atoms and, this is and that. Hence, we write
c3 as compose(and, this is, that). Since arbitrary information units can serve as media objects, we
can also use any other media type here. For simplicity of presentation, we prefer text. Finally, the
components of m are given by the set

components(m) := {this, is, this is, that,

compose(this, is), compose(and, this is, that),
compose(this, compose(and, this is, that)),
compose(compose(this, is), compose(and, this is, that))}.

�

The ordering of the atoms a compositional is composed of is important. Different orderings
yield different compositionals. The same ordering, however, can be represented by trees with
different structures. Referring to example 1, we can compose m by using its atoms directly, that
is, m can be written as compose(this, is, this,and, this is, that). Hence, the tree structure of m is
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simply a sequence of leaves. This consideration leads to three different kinds of equality predi-
cates definable on compositionals. They are based on the notion of fringe (we denote tuples by
square brackets, and ◦ is their concatenation):

DEFINITION 3 Let m be a media object. The fringe of m is a tuple recursively
defined as follows:

fringe(m) :=

{
〈m〉, if m is atomic
fringe(m1) ◦ . . . ◦ fringe(mn), if m = compose(m1, . . . ,mn), n ≥ 2

Two media objects, m and m′, are called fringe-equivalent, m ≈ m′ for short, if and
only if they have equal fringes.
Two media objects, m and m′ are called structurally equivalent, m ∼= m′ for short, if
and only if their respective set of components are equal.

Structural equivalence expresses the fact that two media objects are composed of structurally
equivalent components. It is easy to see that fringe-equivalence and structural equivalence are
independent from each other.

DEFINITION 4 Two media objects, m and m′, are called identical, m ≡ m′ for
short, if and only if m ≈ m′ and m ∼= m′ both hold.

The possibility to arrange media objects with equal fringes within different tree structures
leads to the notion of representative sets, Cm for short. Each representative set collects all those
media objects that are fringe-equivalent to a given media object, m, and the elements of Cm have
pairwise disjoint tree structures. These sets allow for locating submedia objects without regard-
ing their respective tree structure. They will be used in the definition of weak paths in section
3.3. Representative sets are hence the basic concept to search components in media objects, i.e. to
find all occurrences of any given subcompositional.

It turns out that Cm is a singleton if m is atomic. Furthermore, Cm corresponds to the equiva-
lence class [m]≈ of m under ≈, since ≈ is an equivalence relation.

The existence of this set for each media object can be shown by construction. In the sequel, let
MO be the universe of all media objects.

DEFINITION 5 For each media object, m, the representative set of m is the small-
est set Cm ( MO with:

1. m is in Cm

2. each media object m′ with both

(a) m′ ≈ m and
(b) m′ 6∼= m

is in Cm.

Construction of Cm: Let {m1, . . . ,mn}, n ≥ 2, be a finite set of arbitrary media objects, and let
m be a compositional media object composed of mi, i = 1, . . . , n. Let the fringe of m be
fringe(m) = 〈m1, . . . ,mn〉. Further, let S be a fringe, #S its length, and π#S,i its i-th
component with 1 ≤ i ≤ #S. To construct all media objects comp ∈ Cm with fringes equal
to m but with different tree structures, do the following:

1. let m := compose(m1, . . . ,mn), and let Cm := ∅
2. repeat to compose a new media object comp:

(a) let S := fringe(m)
(b) repeat
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i. with k and l where 1 ≤ k ≤ l ≤ #S, choose a part of S the elements of which
are to be composed,

ii. let S ′ := 〈π#S,1(S), . . . , π#S,k−1(S)〉 ◦ 〈comp〉 ◦ 〈π#S,l+1(S), . . . , π#S,n(S)〉
where comp := compose(l−k)+1(π#S,k(S), . . . , π#S,l(S)),

iii. let S := S ′

until fringe(comp) = fringe(m)
(c) if there does not exist a m′ in Cm with comp ∼= m′, let Cm := Cm ∪ {comp}

until no media object can be formed over {m1, . . . ,mn} the fringe of which is equal to
fringe(m), and which is not structurally equal to any media object already contained
in Cm.

This construction needs some remarks:

1. The process constructs fresh media objects comp bottom up. Arbitrary elements π#S,i(S), i =
k, . . . , l, of the fringe of m, S, are composed. The fringe is cut down thereby, and serves as a
new basis for the further construction of comp. S contains exactly the atoms m is composed
of. By reducing the fringe it is guaranteed that each atom is used exactly ones within the
construction process. The ordering of the atoms within the fringe is not changed. Hence,
the fringe of comp equals the fringe of m as soon as S has length 1. Then, the inner loop
terminates.

2. Each media object in {m1, . . . ,mn} is either used as a submedia object in comp, or is a
constituent of comp. Hence, finitely many different combinations can be formed, and the
set of trees is finite. This terminates the outer loop.

3. It is guaranteed that a media object m′ is constructed during this process the tree represen-
tation of which is identical to that of m. Then, both m′ ≈ m and m′ ≡ m hold, and m is
inserted into Cm.

3.3 Positions and links

Determining positions in media objects generally requires a suitable measuring system, i.e. a not
necessarily numerical system imposed on a media object. For example, counting words in a text
is suitable to unambiguously determine a specific location within a text; a coordinate system may
help to determine areas within a picture by means of intervals; for videos, or those media objects
that are arranged both in time and space simultaneously, fuzzy notations like "shortly before" or
"while" may even help to fix a location (or at least a certain area) within those media. Hence,
different measuring systems may be used for different media types. Our approach, however, is
conceptual and consequently more abstract. Due to the recursive tree structure given to any kind
of media object, we do not need different measuring systems for different media types, and use
exactly one method for any media type instead. The notion of position we use here is adopted
from the standard enumeration of vertices in trees by means of numerical strings (c.f. [1], p. 36).

The structure of a media object, m, allows to unambiguously address each submedia object,
m′, of m by means of a numerical string. We call such a string a path. The empty path, ε for
short, refers to the root of a tree representation, and thus addresses the entire media object under
discourse. We denote the composition of strings by _.

DEFINITION 6 Let m = compose(m1, . . . ,mn), n ≥ 2, and m′ be two media ob-
jects. A path in m to m′, path(m,m′) for short, is recursively defined as follows:

path(m,m′) :=


ε, if m ≡ m′

i _ path(part(m, i),m′), if m′ ∈ components(part(m, i)), i = 1, . . . , n,
⊥, else

7



To determine a path to m′, the media object m′ must be a component of m. Hence, a path to m′

leads to such a component of m that is identical and thus both fringe-equivalent and structurally
equivalent to m′. In case, only fringe-equivalence is needed, i.e. if the specific structure of both
m and m′ is not a concern, we can define weak paths by means of representative sets:

DEFINITION 7 Let m = compose(m1, . . . ,mn), n ≥ 2, and m′ be two media ob-
jects, and let Cm′ be the representative set ofm′. A weak path inm tom′, path≈(m,m′)
for short, is recursively defined as follows:

path≈(m,m′) :=



ε, if m ≈ m′

i _ path≈(part(m, i),m′), if there exists an m′′ in MO such that both
1. m′′ ∈ components(part(m, i)) and
2. m′′ ∈ Cm′ hold for i = 1, . . . , n

⊥, else

Here, only the existence of a component in m is required which has a fringe equal to that of m′.
Further, it is easy to see that each path is a weak path.

EXAMPLE 2 Figure 2 shows the compositional media object presented in example 1 on page 5.
To determine paths, for each inner node we enumerate its outgoing edges from 1 to its outdegree.
A path to the atom is is given by the string 12 , since the atom occurs as the second part of the

FIGURE 2 Paths in a media object

first part of m. Although the word is is found within the atom this is on path 222 , this submedia
object is not a suitable choice because the atom this is cannot be further decomposed, and thus
it has no parts that could be addressed. A path to this is, however, is given by 222 . Further, the
compositional c1 = compose(this, is) addressed by the path 1 is also a candidate for a weak path
to this is, since the atom this is and c1 have equal fringes.
�

At first glance, the example shows a disadvantage for our construction. In each media object,
m, one can only address atoms or compositionals. It is not possible to address neighboring com-
ponents such as this is this, if they are not explicitly composed to a media object. If the structure
of m is neglected, however, the sequence this is this occurs in m. A path to this media object,
compose(this, is, this), can be computed, however, if not only m is considered but also its repre-
sentative set, Cm. Then, each possible tree structure of m is available as search space. Now we
can find several paths to the compositional compose(this, is, this) in different representations of
m. Annotating paths with information about the representative of m makes addressing unique
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again. The construction we propose here is moreover advantageous: Remember that links are
to be defined as pairs of positions. A designer can obviously fix a certain structure of m as an
underlying search space aiming at explicitly hiding information within atoms not accessible for
linkage.

We can consider paths as a concept to uniquely address any component of a (compositional)
media object:

DEFINITION 8 Let m be a media object. A position pm in m is a weak path in m.
The set of all positions in m is denoted by Pm.

Notice that we use weak paths here, and concentrate on fringe-equivalence only. This allows for
locating components independently of their tree structure. But we still consider the structure of
the media object we are searching in.

We now define an interface to media objects which only respects positions. This allows to
address specific locations within a media object without knowing its specific structure. For the
time being, the interface only contains operations to address the beginning, the end, and any
occurrence of any media object. Additional operations can be added if found useful in certain
applications. Henceforth, let m and m′ be two media objects.

DEFINITION 9 The beginning ofm, α(m) for short, is the path defined as follows:

α(m) :=

{
ε, if m is atomic
1 _ α(part(m, 1)), else

The end of m, ω(m) for short, is the path defined as follows:

ω(m) :=

{
ε, if m is atomic
n _ ω(part(m,n)), if m = compose(m1, . . . ,mn), n ≥ 2

These paths lead to the left-most and the right-most atom of m, respectively.
Since we allow a component to occur more than once in m, we define the set of all its occur-

rences:

DEFINITION 10 The set of occurrences of m′ in m, θ(m,m′) for short, is defined
as follows:

θ(m,m′) := {pm ∈ Pm | pm is a weak path in m to m′}

Each position pm ∈ θ(m,m′) is called occurrence of m′ in m.

Notice that θ(m,m′) is empty if m′ does not occur in m.
It is easy to see that the set of all positions, Pm, given in def. 8 can be defined in analogy to

[1], p. 36, as follows:

DEFINITION 11 The set of all positions, Pm, is defined as follows:

Pm :=

{
{ε}, if m is atomic
{ε} ∪

⋃n
i=1{i _ p | pm ∈ Pmi}, if m = compose(m1, . . . ,mn), n ≥ 2

Further, we can prove that Pm equals the set
⋃

m′∈(components(m)∪{m}) θ(m,m
′) which denotes the

set of all weak paths in m.

OBSERVATION 1 The set Pm of all positions in m equals the set of all weak paths
in m to each component of m and to m itself.
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We prove the observation by induction on the tree structure of m.

Start of the induction: m is atomic. Then, m has the form m = compose(m). By def. 2, the set
of components of m is components(m) = {m}. By def. 7, ε is the only weak path in m to m
itself. By def. 10, we have Pm = θ(m,m) = {ε}.

Induction step: m has the form compose(m1, . . . ,mn), n ≥ 2. Let Kmi
be the sets of components

of mi, i = 1, . . . , n. The set of components of m is

components(m) =
n⋃

i=1

Kmi
∪ {m1, . . . ,mn}

By the inductive assumption it holds for i = 1, . . . , n that

Pmi
=

⋃
m′∈ (Kmi

∪{mi})

θ(mi,m
′).

It remains to show that

Pm =
n⋃

i=1

Pmi
∪ θ(m,m)

holds, since m is the only media object not regarded yet.

By def. 1 and def. 7, we have

θ(m,m) = {path≈(m,m)} = {ε}

as the only path in m to m. Then, with

Pm =
n⋃

i=1

Pmi
∪ θ(m,m)

=
n⋃

i=1

 ⋃
m′∈ (Kmi

∪{mi})

θ(mi,m
′)

 ∪ θ(m,m)

=
n⋃

i=1

 ⋃
m′∈(Kmi

∪{m1,...,mn})

θ(mi,m
′)

 ∪ θ(m,m′)

=
⋃

m′∈components(m)

θ(m,m′) ∪ θ(m,m)

=
⋃

m′∈(components(m)∪{m})

θ(m,m′)

the observation is proved.

Finally, we can define links as pairs of positions:

DEFINITION 12 Let pm and p′m′ be two positions in two not necessarily different
media objects, m and m′. A link is defined as a pair of positions, l = (pm, p

′
m′), where

pm is in Pm, and p′m′ is in Pm′ . The source of l, source(l) for short, is pm, the sink of l,
sink(l) for short, is p′m′ .

10



3.4 Hyperdocuments

Now we are in a position to characterize our hyperdocuments on a conceptual level.

DEFINITION 13 A hyperdocument is a triple H = (M,P,L), where

– M is a non-empty set of media objects,

– P is any arbitrary set of positions in media objects in M,

– L is any arbitrary set of links, (pm, p
′
m′), such that pm, p

′
m′ ∈ P .

We look at an example to explain how we model hyperdocuments by means of the formaliza-
tion given so far. The algebraic definitions will be given in the next section.

EXAMPLE 3 Figure 3 shows a simple hyperdocument. It consists of five media objects: intro.txt ,
pic.gif , back_but.gif , next_but.gif , and conclude.txt . They are connected by three
links. One link leads from the word you found in intro.txt to the picture, the other two links
lead from the buttons back and next to intro.txt and conclude.txt , resp. For simplicity, we
always assume texts to be composed of words. The picture, together with the two buttons, repre-
sents a compositional media object, cntr, and is written as compose(back_but ,pic ,next_but )
(we omit the suffixes for convenience).

FIGURE 3 An explanatory hyperdocument

The set of media objects, M, can thus be given by

M := {intro , "you" ,

pic ,back_but ,next_but ,

conclude ,

compose(back_but ,pic ,next_but )}.

Note that the word "you" is an atomic media object, and the compositional media object cntr is
a member of M as well.

Hence, the beginning of cntr is back_but , the end is next_but . Since we assume texts to be
composed of words, the representative tree of a text with n words consists of a root representing
the entire text and having n sons representing each word, the atoms, as leaves. The i-th word of
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a text is hence the i-th son of the root. The position of the word "you", 8you, is thus given by its
number within the text.

For simplicity again, we assume pictures to be atoms. The link starting in "you" leads to the
picture. The sink of this link is given by the beginning of pic (the end of pic works equally
well), or the second component of cntr. The two buttons are sources of the links leading to the
beginning of the respective texts. They form the beginning (the end, resp.) of the compositional
cntr. Hence, the set of positions is given by

P := {θ(intro , you ), α(pic )
α(cntr), ω(cntr),
α(intro ), α(conclude )}

Written as paths, we have

θ(intro , you ) = {8intro },
α(pic ) = 2cntr = εpic ,

α(cntr) = 1cntr = εback_but ,

ω(cntr) = 3cntr = εnext_but ,

α(intro ) = 1intro ,

α(conclude ) = 1conclude .

The set of links is thus given by the following pairs of positions:

L := {(8intro , εpic ), (1cntr,1intro ), (3cntr,1conclude )}

Depending on the concrete text intro , the set of occurrences of the word "you" may differ: we
may obtain more than one link, if each occurrence is specified to be connected to the picture. The
set may even be empty, if "you" does not occur in intro at all.
�

3.5 Relation to the Dexter model

The Dexter model, as described in [17], aims at establishing a standard on hypermedia systems
in general, that is, it proposes a model each hypermedia system should be an instance of.

The model consists of three layers, the run-time layer, the storage layer, and the within-
component layer. The last layer is purposely left unspecified to allow for different structuring
mechanisms as well as different media types. Our tree-like structures can be seen as a formal-
ization of this layer. The run-time layer is not a concern in our approach, since presentation and
layout are not crucial for analyzing link structures.

The storage layer, however, is of greater interest. The entity used here is a component. It is
divided into an information component and a base component. The former possesses a unique
component identifier, UID for short, and a set of anchors. The latter consists of atomic and com-
positional media objects, as well as links. Anchors serve as sources and sinks for links, and are
pairs of identifiers and values. The value describes a certain position within a component.

A specifier consists of a component specification and an anchor identifier (for the time being,
we do not consider direction and presentation). A link is a sequence of specifiers, such that
arbitrary linkage is feasible.

In our approach, links are modeled as pairs on positions. The link set thus forms a relation.
Hence, we allow for arbitrary link structures, too.

Positions are evaluated within media objects. The variable used to address a media object
can be seen as a UID in the Dexter model, since positions are unambiguously assigned to me-
dia objects. Operations to determine positions, such as getBegin etc., serve as an anchoring
mechanism, the interface between the storage and within-component layer. Our positions di-
rectly correspond to anchors, since an anchor value is given by a path within a media object, and
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the anchor identifier relates to the vertice addressed by the path, or, equally, its unique number
within a tree representation.

Similar to the Dexter model, concrete positions depend on concrete media objects and their
structure, and the measuring system is the media object itself. In [18], the notions of time and
context are added to the Dexter model making it applicable to more complex media. Our ap-
proach is open to extensions by adding further operations and structuring mechanisms yielding
to determining positions in more complex structures than trees.

4 An algebraic model for link structures

In this section, we consider the analysis of hyperlink structures. We use a loose semantics ap-
proach. First, we introduce some preliminaries and fix the notation used here. The reader famil-
iar with algebraic specification may proceed to section 4.3, where the hyperdocument discussed
in example 3 on page 11 is specified.

4.1 Algebraic preliminaries

A signature is a tuple 〈S,Γ〉 where S is a set of sorts and Γ is a set of operation symbols.
An algebraic specification, SP , is a tuple 〈Σ, E〉 consisting of a signature, Σ = sig(SP), and a

set of formulas, E = axms(SP), called axioms, over Σ.
A Σ-algebra, A, is a pair ({As}s∈S , {fA}f∈Γ) consisting of a family {As}s∈S of non-empty

carrier-sets, As, for each s ∈ S, and a set {fA}f∈Γ of operations fA : As1 × . . . × Asn → As for
each f : s1 × . . .× sn → s ∈ Γ.

A Σ-algebra, A, is a model of a specification, 〈Σ, E〉, if A satisfies each formula e ∈ E. The set
of all models of 〈Σ, E〉 is denoted by Alg(Σ, E).

The loose semantics of a specification SP = 〈Σ, E〉, Mod(SP) for short, is defined as the set
Alg(Σ, E).

Let Σ = 〈S,Γ〉 and Σ′ = 〈S′,Γ′〉 be two signatures with Σ ⊆ Σ′, and let A′ be a Σ′-algebra.
The Σ-algebra A′ |Σ is called Σ-reduct of A′, if for each s ∈ S the carrier-set (A′ |Σ)s is defined as
A′

s, and for each f ∈ Γ the operation fA
′|Σ is defined as f A

′
.

Let SP and SP ′ be two specifications, such that all pairwise equal operation symbols have
the same characteristics. The specification-building operation import into : SPEC × SPEC →
SPEC is defined as follows:

sig(import SP into SP ′) := sig(SP) ∪ sig(SP ′)
Mod(import SP into SP ′) := {A ∈ Alg(Σimport SP into SP ′) | A|ΣSP

∈ Mod(SP)}

We write import SP1 , . . . ,SPn into SP as an abbreviation for

import SP1 into (. . . (import SPn into SP) . . .)

4.2 Compositional media objects and hyperdocuments

The composition of media objects as defined in section 3.2 can be specified algebraically as shown
in specification 1 on page 14.

The sort MedObj represents the universe of media objects,MO. The operation symbols follow
the names given in section 3.2, the axioms follow the respective definitions. We write m′ ∂ m to
abbreviate the fact that a media object,m′, is a component of a compositionalm. The specification
uses a specification for sets, which is given in specification 3 on page 16, and a specification for
tuples, which is given in specification 2 on page 15.

We further assume a specification NAT for the data type integer with a sort nat , and a
specification BOOL for data type bool with a sort bool together with the usual constants true and
false to be given in each specification. Similarly, we assume a ternary operation if _ then _ else _ :
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SPECIFICATION 1 Compositional media objects

COMPOSITIONAL =
sorts MedObj
opns

composen : MedObjn → MedObj , n ≥ 2
partn : MedObj × nat→ MedObj , n ≥ 2

constituents : MedObj → set(MedObj ),
components : MedObj → set(MedObj ),

fringe : MedObj → 〈MedObj 〉n, n ∈ N+

_≈MedObj _ : MedObj ×MedObj → bool,

_∂MedObj _ : MedObj ×MedObj → bool

vars d , d1 , . . . , dn : MedObj ; i ,n : nat
axms

partn(composen(d1, . . . , dn), i) = di, i = 1, . . . , n (1)
composen(partn(d, 1), . . . , partn(d, n)) = d, (2)

constituents(d) = {d} (3)
constituents(composen(d1, . . . , dn)) = {d1} ∪ . . . ∪ {dn}, (4)

components(d) = {d}, (5)
components(composen(d1, . . . , dn)) = constituents(composen(d1, . . . , dn))

∪ components(d1) (6)
∪ . . .
∪ components(dn)

fringe(d) = 〈d〉, (7)
fringe(composen(d1, . . . , dn)) = fringe(d1) ◦ . . . ◦ fringe(dn), (8)

(d1 ≈MedObj d2) = (fringe(d1) = fringe(d2)), (9)
(d ∂MedObj compose

n(d1, . . . , dn)) = (d ∈ components(composen(d1, . . . , dn))) (10)
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bool×s×s→ s to be given for each sort s ∈ S, which has the usual semantics if true then x else y =s

x and if false then x else y =s y. A standard definition for BOOL and NAT is for example given
in [33], on page 699 and 700, resp. The µ-operator used is defined as usual for a boolean function
f : nat → bool , such that µi.f(i) denotes the smallest i in N for which f(i) holds.

SPECIFICATION 2 A specification for tuples

TUPLE =
sorts s1 , . . . , sn , 〈s1 , . . . , sn〉
opns

tupn : s1 × . . .× sn → 〈s1, . . . , sn〉, n ∈ N+

πn,i : 〈s1, . . . , sn〉 → si, i = 1, . . . , n
_=〈s1 ,...,sn〉_ : 〈s1, . . . , sn〉 × 〈s1, . . . , sn〉 → bool

_◦n,m_ : 〈s1, . . . , sn〉 × 〈s1, . . . , sm〉 → 〈s1, . . . , sn+m〉, n,m ∈ N+

vars x1 : s1 , . . . , xn : sn , y1 : s1 , . . . , yn : sn , t1 , t2 : 〈s1 , . . . , sn〉
axms

πn,i(tupn(x1, . . . , xn)) =si xi, i = 1, . . . , n (11)

(t1 =〈s1 ,...,sn〉 t2) =bool

n∧
i=1

(πn,i(t1) =s πn,i(t2)), (12)

t =〈s1 ,...,sn〉 tup
n(πn,1(t), . . . , πn,n(t)), (13)

tupn(x1, . . . , xn) ◦ tupm(y1, . . . , ym) =〈s1 ,...,sn+m〉 tup
n+m(x1, . . . , xn, y1, . . . , ym) (14)

With these specifications, we can specify our hyperdocuments under consideration. Specifi-
cation 4 on page 17 imports COMPOSITIONAL and introduces new sorts for positions and links.
The operation symbols again follow those used in sections 3.3 and 3.4. The constant ε represents
the empty path, and errorposition reflects the case a path is undefined. The operation ispath is
used to check whether there exists a path to a component m′ of a compositional media object m.
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SPECIFICATION 3 A specification for sets

SET =
sorts s, set(s)
opns

empty :→ set(s),
insert : set(s)× s→ set(s),
delete : set(s)× s→ set(s),
_∈s_ : s× set(s) → bool,

_⊂s_ : set(s)× set(s) → bool,

_=set(s)_ : set(s)× set(s) → bool

vars a, b, c : set(s); x , y : s
axms

insert(insert(a, y), x) =set(s) insert(insert(a, x), y), (15)
insert(delete(a, x), x)) =set(s) insert(a, x), (16)

delete(empty, x) =set(s) empty, (17)
delete(insert(empty, x), x) =set(s) empty, (18)

(delete(insert(a, x), x) =set(s) a) =bool ¬(x ∈s a), (19)
(a =set(s) b) =bool (a ⊂s b) ∧ (b ⊂s a), (20)

(empty ⊂s a) =bool true, (21)
(insert(a, x) ⊂s b) =bool (a ⊂s b) ∧ (x ∈s b), (22)
(a ⊂s insert(b, x)) =bool (a ⊂s b), (23)

((a ⊂s delete(b, x)) → a ⊂s b) =bool true, (24)
(a ⊂s b ∧ b ⊂s c→ a ⊂s c) =bool true, (25)

(x ∈s insert(a, x)) =bool true, (26)
(x ∈s delete(a, x)) =bool false (27)
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SPECIFICATION 4 An algebraic specification for hyperdocuments

HDOC = import COMPOSITIONAL into
sorts position, link
opns

path≈ : MedObj ×MedObj → position,

ispath : MedObj ×MedObj × nat→ bool,

ε :→ position,

errorposition :→ position,

α : MedObj → position,

ω : MedObj → position,

θ : MedObj ×MedObj → set(position),
ψ : position× position→ link,

ψset(link) : set(position)× position→ set(link),
source : link → position,

end : link → position,

=link : link × link → bool

vars m,m1 , . . . ,mn ,m ′ : MedObj ; p, q : position; pset : set(position); l , l ′ : link ; i : nat
axms

ispath(composen(m1, . . . ,mn),m′, i) = ∃m′′ : MedObj .
m′′ ∂ partn(composen(m1, . . . ,mn), i) (28)
∧m′′ ≈ m′, i = 1, . . . , n

path≈(composen(m1, . . . ,mn),m′) = if composen(m1, . . . ,mn) ≈ m′ then ε

else (29)
if ∃i : nat.ispath(composen(m1, . . . ,mn),m′, i)
then (µi.ispath(composen(m1, . . . ,mn),m′, i))
_ path≈(partn(composen(m1, . . . ,mn), i),m′)

else errorposition, i = 1, . . . , n
α(m) = ε, (30)

α(composen(m1, . . . ,mn)) = 1 _ α(partn(composen(m1, . . . ,mn), 1)), (31)
ω(m) = ε, (32)

ω(composen(m1, . . . ,mn)) = n _ ω(partn(composen(m1, . . . ,mn), n)), (33)
θ(composen(m1, . . . ,mn),m′) = if composen(m1, . . . ,mn) ≈ m′ then {ε}

else (34)
if ∃i : nat.ispath(composen(m1, . . . ,mn),m′, i)
then {i _ p | ispath(composen(m1, . . . ,mn),m′, i),

p ∈ θ(partn(composen(m1, . . . ,mn), i),m′)}
else {}, i = 1, . . . , n

(l ∈ ψset(link)(pset, p)) = (source(l) ∈ pset ∧ sink(l) = p) (35)
source(ψ(p, q)) = p, (36)
sink(ψ(p, q)) = q, (37)

(l =link l
′) = ((source(l) = source(l′)) ∧ (sink(l) = sink(l′))) (38)
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We consider example 3 again and show how specification HDOC is used to formally describe
the hyperdocument (see spec. 1) introduced in the example.

EXAMPLE 4 First, we need a new sort, example , for technical reasons.

SPECIFICATION 1 An explanatory specification

EXAMPLE = import HDOC into
sorts example
opns intro : example→ MedObj ,

conclude : example→ MedObj ,
pic : example→ MedObj ,
back : example→ MedObj ,
next : example→ MedObj ,
word : example→ MedObj ,
cntr : example→ MedObj ,
linkIntro : example×MedObj → set(link),
linkBack : example×MedObj → link,
linkNext : example×MedObj → link

vars e : example
axms cntr(e) = compose(back(e), pic(e), next(e)),

linkIntro(e, intro(e)) = ψset(link)(θ(intro(e), word(e)), α(pic(e))),
linkBack(e, intro(e)) = ψ(α(cntr(e)), α(intro(e))),
linkNext(e, conclude(e)) = ψ(ω(cntr(e)), α(conclude(e)))

The sorts MedObj , position and link are already introduced through HDOC . Each media
object is represented by an unary operation. The operations linkIntro, linkBack , linkNext are used
to specify the desired hyperlinks. The axioms fix their semantics and describe the compositional
media object cntr. linkIntro specifies a set of links starting at each occurrence of a specific word
in the text (represented by intro) and ending in the beginning of the picture (represented by pic).
The operation ψ, defined in HDOC , pairs two positions to a link, whereas the operation ψset(link)

yields a set of links by pairing each element of a set of positions with exactly one other position.
The former are used as different link sources all leading to the same sink. The operation linkBack
and linkNext specify links from the beginning and the end of cntr to the beginning of intro and
conclude, resp.

This specification can be implemented in DoDL as shown in listing 1 on page 19. We use
a class, Example , to collect the media objects involved in the class attributes, called document
variables. They are introduced by the keyword documents and are of type MedObj, represent-
ing media objects. Document variables are assigned concrete values within the binding-section.
Here, we can simply exchange the given values to generate a different hyperdocument while still
using the same specification of its link structure. This link structure is abstractly captured in class
methods, introduced by the keyword construct. The method composeCntr is used to compose
the graphical items. It returns the value cntr . The method compose is predefined in DoDL.
The method createLinks is responsible for constructing the links. The methods getBegin ,
getEnd , getOcc and setLink are also predefined in DoDL. They correspond to α, ω, etc. as
defined in section 3. This implementation can be translated by a compiler and executed on a
machine. Doing so, the hyperdocument is generated using HTML.

The advantages mentioned in the introduction become obvious here: by exchanging the val-
ues given in the binding, we are able to generated arbitrary many hyperdocuments underly-
ing a certain link structure; the rearrangement of the compositional is simply done by changing
composeCntr .
�

In the example, the choice of the texts, conclude and intro , is worth a note. We can gener-
ate different hyperdocuments with different positions and different links simply by exchanging
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LISTING 1 An explanatory DoDL-Listing

class Example is
documents intro, conclude, pic, but1 , but2 : MedObj;
construct

MedObj composeCntr(void){
MedObj cntr;
cntr = compose(but1, pic, but2);
return cntr ;

} ;

void createLinks(void){
getOcc(intro , "you" ).setLink(pic.getBegin()); // a link from "you" to the picture
getBegin(composeCntr()).setLink(intro.getBegin()); // linking the back−button
getEnd(composeCntr()).setLink(conclude.getBegin()); // linking the next−button

} ;
end Example;

binding Example is
intro = intro . txt ;
conclude = conclude.txt;
pic = picture . gif ;
but1 = back_but.gif;
but2 = next_but.gif ;

end;

the texts. Hence, it is not clear from a specification as shown in the specification above which spe-
cific hyperdocument is obtained. Its link structure depends on the choice of media objects given
in a certain algebra, i.e. an interpretation of the respective operations given in the specification,
and is thus worth an analysis to certify desired properties in advance of the hyperdocument’s
incorporation.

4.3 Analyzing hyperlink structures

To analyze a given link structure, we have to look at algebras serving as interpretations of an
algebraic specification and thus, in our case, as interpretations of a specified hyperdocument.
Within such an algebra, carrier-sets have to be fixed and operations need to be interpreted. By
fixing the carrier-set for MedObj , we regard a certain set of media objects on which a concrete link
structure depends. Hence, we can formally "compute" positions and links by interpretation.

We use a loose semantics approach here, and are not interested in initial or terminal models.
The carrier-sets for MedObj , position and link are of most interest, since they completely charac-
terize a hyperdocument. All other sorts can be interpreted arbitrarily. We reconsider example 3
on page 11, but now more formally.

EXAMPLE 5 Let E be a ΣEXAMPLE -algebra, and let the carrier-set for MedObj be as follows:

EMedObj = {intro , you ,

pic ,back_but ,next_but ,

conclude ,

compose(back_but ,pic ,next_but )}

Hence, certain documents are given by interpretation of the sort MedObj .
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With this carrier-set at hand, we can interpret the operation representing media objects:

introE(e) = intro , wordE(e) = you , concludeE(e) = conclude

picE(e) = pic , backE(e) = back_but , nextE(e) = next_but ,

cntrE(e) = composeE(backE(e), picE(e),nextE(e))

Similarly, we interpret the link constructing operations following the axioms given:

linkIntroE(e, introE(e)) = ψEset(link)(θ
E(introE(e),wordE(e)), αE(picE(e))),

linkBackE(e, introE(e)) = ψE(αE(cntrE(e)), αE(introE(e))),

linkNextE(e, concludeE(e)) = ψE(ωE(cntrE(e)), αE(concludeE(e)))

The other operations introduced by HDOC are interpreted in E following the axioms given
in HDOC , or their interpretation is term-generated. That is, for example, compose and α are
interpreted as follows (a specification for tuples is given in spec. 2 on page 15):

composeE(m1, . . . ,mn) = compose(m1, . . . ,mn)
for each mi ∈ EMedObj , i = 2, . . . , n

αE(m) :=

{
εE , if m is atomic
〈1〉 ◦ αE(partEn(m, 1)), else

Hence, it is easy to prove that E is a model for specification EXAMPLE . We can construct spec-
ification HDOC in such a way that its model class corresponds to the class of free term-algebras
(c.f. [9], chap. 10.5) over the set of atomic media objects. We avoid this construction, however, for
technical simplicity.

Following the interpretations, we can restrict the carrier-sets for position and link to exactly
those values needed within the interpretations. That is, we evaluate the interpretations and yield
the following carrier-sets:

Eposition = {8intro ,1intro ,1conclude , εpic ,1cntr,3cntr}
Elink = {(8intro , εpic ), (1cntr,1intro ), (3cntr,1conclude )}

These values correspond to those given in example 3.
�

Since we know that our definition of hyperdocuments given in def. 13 on page 11 and, by
that, our concepts of structured media objects, positions and links can be properly formalized,
we could omit the algebraic part discussed so far. But doing this returns us into the position of not
specifying a hyperdocuments link structure. This specification, however, is crucial to compute a
concrete hyperlink structure and can be reused by simply changing the interpretation of media
objects. For large documents, the possibility to compute positions and links is advantageous. For
small documents, of course, one can use the definitions given in section 3.

In the sequel of this section, we discuss some properties of hyperlink structures and show
how they can be checked on carrier-sets. Note, that a concrete link structure depends on the
media objects chosen. Hence, properties may hold or may not hold due to this choice.

The Dexter model allows for links with multiple targets, i.e. sinks. In HTML, however, this
is not realizable. For this reason, it might be convenient to forbid such a property. If we have to
check that each link has a unique sink, we have to search in Elink for element-pairs of the form
(p, p′) and (p, p′′), where p′ and p′′ are different positions. This can easily be done by pairwise
comparing elements in Elink, or by using hashing if the structure of Elink is not supposed to be a
flat list of pairs.
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Inline-links, i.e. links within one single media object, may not be allowed in some applications.
Hence we have to check, if their exist pairs of the form (pm, p

′
m).

Reachability is often a concern. We can check this property by following sequences of the
form (pm, p1m1), (p2m1 , . . .), . . . , (. . . , p′m′) to see that a media object m′ is reachable from m.

Those and further properties can be formalized and tested mechanically depending on the
structure of Elink. We are currently checking if relational methods (c.f. [4]) can do a good service
here, since the link set is a relation on positions. Formalized in the relation algebraic sense, we
can formulate properties of this relation by relational statements. With a system like RELVIEW
(c.f. [3, 2]), such properties can efficiently and simply be checked.

5 Conclusion and future work

We have discussed structured media objects allowing to consider notions of position and link that
relate to the Dexter anchoring mechanism. The measuring system obtained by paths in struc-
tured media objects is uniformly used for any kind of media object and allows to specify source
and sink of links abstractly, that is separated from concrete media. This allows to exchange media
without touching the underlying hyperlink structure. We formalized this approach using alge-
braic specifications, and thus yield a possibility to analyze a hyperlinks structure in advance of
the physical incorporation of a hyperdocument. This is an advantage for testing hyperlink struc-
tures especially when large hyperdocuments are considered, or when media change frequently.

The algebraic specification is embedded into more complex structured specifications (c.f. [13],
part 2). This allows for high-level specifications which can be implemented easily in the object-
oriented programming paradigm. By specifying a hyperdocument in the way we do, we enhance
testing and maintenance of hyperdocuments. Since the structured algebraic specifications used in
[13] prepare an object-oriented implementation, we think about an entire development process
for hyperdocuments that is based on a "standard" software process. This process is currently
under investigation [11].

In the future, we can generalize the tree-like structures to acyclic graphs. The notion of posi-
tion is still valid then, but has to be reformulated regarding the new structure. Graph-searching
algorithms like depth first search allow to unambiguously address media objects.

The interface of position- and link-creating operations can be expanded depending on appli-
cations. We currently specify and implement a hypermedial car cockpit as a case study (c.f. [13],
chap. 13). Links are given types, and positions need to be equipped with attributes concerning
layout. The implementation concepts need to be adapted to technological aspects such as imple-
mentation with Java and Swing using threads and events to communicate, i.e. sending data from
one media object to another. These and other technical aspects are currently being reconsidered,
and our concept is put to use for complex applications.

Tool support for analyzing hyperlink structures is also mandatory and feasible. The composi-
tion of media objects can be done using drag and drop techniques, and the specification of links
follows a well-defined interface to positions and links. The structure of the resulting algebras
follows certain properties and can thus be established by tool support. The specification can then
be used to compute positions and links from the media objects given. Properties of the link struc-
ture being checked can be formalized as axioms. Hence, the resulting algebras can be checked to
be models by conventional proof methods.
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