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Abstract

The bottleneck of highly integrated software development environments (SDEs) could
still be the use of an underlying central data store. An environment is called highly
integrated, if the included tools support most of the life-cycle phases and especially inform,
analyse and check document interdependencies and even propagate changes on basically
any level of granularity. In that case a central data store for documents and document
interdependencies is the necessary key information base. A number of so-called object
management systems (OMSs) have recently been developed to address the needs of SDEs.
In order to support an environment builder to select the most appropriate one, this paper
presents a new benchmark for such databases. We precisely de�ne that benchmark in an
abstract way in terms of its conceptual schema, possible initial database states and the
benchmark operations. The benchmark was implemented twice to allow for a comparison
of the OMSs GRAS and GemStone. We describe these two implementations as well as the
results we gained when we performed the benchmark.
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1 Introduction

Integrated Software Development Environments (SDEs) include a number of tools which sup-
port most of the life-cycle phases and inform, analyse, and check document interdependencies
and sometimes even propagate changes across document boundaries. The relation between
di�erent documents is either based on a transformational approach, e.g. information from
a requirements speci�cation is automatically extracted and used as a skeleton for the design
document, (c.f. ProMod [Hru87]) or in case of a more sophisticated functionality, an SDE
enables the incremental intertwined, and syntax-directed development and maintenance of all
documents. In the latter case, the environment can easily trace back errors through di�er-
ent documents and propagate necessary changes to correct the errors. Examples for such
environments Gandalf [HN86] and IPSEN [Nag85].

In any case a large number of objects on very di�erent levels of granularity have to be stored
and maintained [Pen87]. Of course, the more �ne-grained objects are being stored, the more
sophisticated functionality in terms of an incremental intertwined development of documents
can be achieved [ELN+92]. The more critical however becomes the performance of an under-
lying data store, which is in any case the central store and a key component of an integrated
SDE.

It then is very obvious that the use of a speci�c data base system could very quickly become the
performance bottleneck of an SDE especially because in most cases the required response time
must be below one second. It has also become clear that the relational data base technology
does not address the requirements of data base systems for SDEs appropriately [Mai89, LS88].
Therefore, a number of development e�orts have been started to build dedicated so-called
non-standard data base systems for software engineering applications or related areas.

A number of non-standard database management systems (OMSs) like object-oriented data-
bases [ABD+90] (e.g. GemStone [BMO+89] or O2 [BDK92]), databases with a graph-like data
model (e.g. GRAS [BL85] or P Graphite [WWFT88]), or databases that have been evolved
by extending the UNIX �le system (e.g. PCTE/OMS [GMT87]) are now available. They still
di�er signi�cantly, particularly with respect to the provided functionality and the data model
which is the basis for de�ning the documents' internal representation within the OMS.

The aim of the evaluation reported here is to answer the question, whether object-oriented
databases are suitable for storing abstract syntax-graphs that are produced in syntax-directed
environments. In particular, we are interested, whether we can use the powerful data modelling
capabilities, the versioning mechanisms, the concurrency control concepts and the functionality
for data administration which they o�er without loosing the performance we could gain from
OMSs such as GRAS that are dedicated to syntax-directed tools.

Following the method we described in [ES92], we de�ned a benchmark that measures the be-
haviour of OMSs when they are used in syntax-directed design and speci�cation environments.
This benchmark is precisely de�ned in section 2. We have implemented this benchmark twice
in order to evaluate GRAS and GemStone. In sections 3 and 4 we sketch the design decisions
that led to the implementations of the benchmark. Section 5 aims at a comparison of the im-
plementations and the results. A detailed description of the results we gained from performing
the benchmark in di�erent con�gurations.
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2 The Merlin OMS Benchmark

For reasons that are beyond the scope of this report and extensively discussed in a companion
paper [ES92], OMS benchmark de�nitions have to be abstract and to consist of the de�nition
of (1) a conceptual OMS schema, (2) a number of benchmark operations and (3) one or more
initial object base states. This section precisely de�nes the Merlin OMS benchmark. The
de�nition was driven by the process model for OMS benchmark de�nitions that is also given
in [ES92]. According to that reference, in a �rst step the scope of the benchmark has to
be clari�ed by a kind of requirements analysis for a virtual software engineering application
that uses an OMS. The results of the analysis are given in the �rst subsection. They are
basically used for determining qualitative aspects of the benchmark de�nition such as the
conceptual schema, or the benchmark operations. For also going on realistic assumptions
concerning quantitative aspects of the benchmark, such as parameters of the operations or
size and quantitative structure of the initial database, we present in the second subsection
the results of a quantitative analysis we performed using existing documents of the previously
identi�ed types. Then the de�nition of the Merlin OMS benchmark components is performed,
i.e. we present the conceptual schema of the benchmark in the third subsection, the de�nition
of benchmark operations in the fourth subsection and the possible initial database states in
the last subsection.

2.1 Requirements Analysis

The Merlin benchmark is intended to answer the question whether object-oriented database
systems perform fast enough to be used within syntax-directed SDEs. To be able to de�ne the
benchmark appropriately, we have �rstly to clarify the requirements we put on a particular
SDE as some of them in
uence also the OMS used in the SDE.
As worked out in [ES92], these requirements are determined by (1) the document types that
will be processed in the SDE and whose instances are stored in the OMS and (2) the consistency
constraints that are applied to the documents and assured by the OMS.

2.1.1 Syntax De�nition of Documents

For the Merlin benchmark we consider two highly integrated, syntax-directed design and spec-
i�cation tools each operating on one document type. The �rst document type allows for a
graphical de�nition of modules and their import-relationships.
The second type is dedicated to the detailed de�nition of export- and import-interfaces of
modules that were de�ned in the �rst document type. In particular, it allows the declaration
of an export-interface by means of types, procedure heads and function heads. Procedures
and functions, subsumed by the term operation in the following, have a name and an optional
parameter list, that may consist of call by value and call by reference parameters. Moreover,
they may be annotated with an optional comment. The import relationship is de�ned by a
number of import lists. Each import list consists of a module name from which the module
imports and a list of type and operation names that are imported. The concrete syntax of the
two document types can be obtained from the grammars shown in �gure 1.
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<arch>         ::= ARCHITECTURE <arch_id> 
                     <mod_list> 
                   END <arch_id>.
<mod_list>     ::= <module> | <module> <mod_list>
<module>       ::= MODULE <mod_id>
                        <opt_comment> 
                        <opt_imp_part> 
                      END <mod_id>;
<opt_comment>  ::=  | <comment>
<opt_imp_part> ::=  | <imp_part>
<imp_part>     ::= IMPORTS FROM: <imp_list>
<imp_list>     ::= <mod_id> | <mod_id>; <imp_list>
<mod_id>       ::= <ident>
<arch_id>      ::= <ident>

<ident>        ::= [A−Za−Z][A−Za−Z0−9_$]*
<comment>      ::= /"*"([^*/]|[^*]"/"|"*"[^/])*"*"/

<module>       ::= MODULE <mod_id>
                      <opt_comment>
                      <export_part>
                      <opt_imp_part>
                   END <mod_id>.
<opt_comment>  ::=   | <comment>
<export_part>  ::= EXPORT PART:
                     EXPORT TYPE: <typ_id>
                     OPERATIONS: <op_def_list>
<op_def_list>  ::= <op> | <op>;<op_def_list>
<op>           ::= <func> | <proc>
<func>         ::= FUNCTION <op_id><opt_par_list>:<typ_id>
                   <opt_comment>
<proc>         ::= PROCEDURE <op_id> <opt_par_list>
                   <opt_comment>
<opt_par_list> ::=   | (<par_list>)
<par_list>     ::= <par> | <part_list>
<par>          ::= <cbv> | <cbr>
<cbv>          ::= <par_id>:<type_id>
<cbr>          ::= VAR <par_id>:<type_id>
<opt_imp_part> ::=   | <import_part>
<import_part>  ::= IMPORT PART: <import_list>
<import_list>  ::= <import> | <import> <import_list>
<import>       ::= FROM <mod_id> IMPORT: <imp_obj_list> ;
<imp_obj_list> ::= <imp_obj> | <imp_obj>, <imp_obj_list>
<imp_obj>      ::= <typ_id> | <op_id>
<typ_id>       ::= <ident>
<mod_id>       ::= <ident>
<op_id>        ::= <ident>

<ident>        ::= [A−Za−z][A−Za−z0−9$_]*
<comment>      ::= /"*"([^*/]|[^*]"/"|"*"[^/])*"*"/

Figure 1: Syntax De�nitions used for Merlin Benchmark

2.1.2 De�nition of Consistency Constraints

The following consistency constraints are applied to documents of the previously de�ned types:

1. Modules that occur in an architecture are speci�ed in detail in the speci�cation language
and vice versa.

2. Each import relationship in the architecture is speci�ed in detail in the speci�cation
language and vice versa.

3. Names of modules, types and operations are unique within an architecture.

4. Modules that participate in import-relationships do exist.

5. Objects that are imported within one import-relationship are exported by the resp.
module.

6. Cyclic import relationships are not allowed.

7. Types used in parameters of operations and result types of functions are declared, i.e.
they are either exported by the module in which they are used, or imported.

The consistency constraints may only be violated as long as user-interactions are ongoing, i.e.
user interactions can be viewed as transactions in the sense that they lead from one consistent
document state to another.

2.2 Quantitative Analysis of existing Documents

To be able to de�ne the parameters of benchmark operations as well as the proportions and
the overall amount of objects representing di�erent increments in the initial object base in
a realistic way, we have to get an idea how documents of the previously de�ned types look
like. We have therefore acquired existing design- and speci�cation documents of an innovative

6



software project for a detailed examination. In a �rst step, we had to transform the documents
in a form that they were correct with respect to our grammars. We could achieve this by
basically translating the keywords from German into English as the abstract syntax was nearly
identical. Then we developed a program size metric that contains those aspects we were
interested in. After that, we used lex and yacc to generate a parser that was capable of
analysing the documents with respect to the metric. The metric as well as the analysis results
can be obtained from table 1. They are based on some 5,000 lines of speci�cation.

Metric component Analysis result
Number of modules / architecture 18
Average number of exported types / module 0.3
Average number of exported procedures /module 11.0
Average number of exported functions / module 6.6
Average number of import lists / module 5.6
Average number of identi�ers / module 148.8
Average number of comments / module 18.6
Average number of identi�er / import list 6.0
Average number of call by value parameters / operation 1.7
Average number of call by reference parameters / operation 0.6
Average size of identi�ers in architecture [Byte] 12
Average size of comments in architecture [Byte] 229

Table 1: Analysis results gained from speci�cations in an innovative project

2.3 Conceptual Schema modelling

In this step we de�ne the internal data structures of the benchmark. We therefore start with
modelling the internal data structures for the document types de�ned in subsection 1 in terms
of an E/R diagram. This E/R diagram represents the conceptual scheme of an abstract syntax
tree. In order to speed up consistency checks, this conceptual scheme is then enhanced with
additional context-sensitive relationships. It then models the internal conceptual scheme of
the class of possible abstract syntax-graphs. Finally, this scheme is simpli�ed as described
in [ES92] in order to reduce further development and implementation costs.

2.3.1 Systematic Derivation of E/R Model from Syntax De�nition

As we only want to store abstract representations and derive the concrete ones using an
unparsing mechanism, we transform in a �rst step the normalised EBNF into a tree gram-
mar [DGKLM84]. This grammar provides the necessary information for deriving an E/R
model that de�nes the document structure. The tree grammar de�ning the abstract syntax of
the documents considered for the Merlin benchmark is depicted in �gure 2.

To get a conceptual E/R model for an integrated syntax-tree, we can think about two ap-
proaches. The �rst is to integrate the tree grammars and to use the integrated grammar for
the derivation of the E/R model. The second approach is to derive two E/R models each from
one E/R diagram and after that to integrate the two E/R models. We choose the �rst ap-
proach, as most of the increments of the architectural language are also covered by increments
in the speci�cation language. We thus are allowed to simply add those operators and phyla
of the tree grammar to the architectural language, that do not occur in the grammar of the
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Fixed arity operators:

arch        −> ARCH_ID MOD_LIST
module      −> MOD_ID  COMMENT  IMP_LIST

Atomic operators:

arch_id     −> IDENT
mod_id      −> IDENT
comment     −> STRING

List operators:

module_list −> MODULE ...
import_list −> IMPORT ...

Phyla:

ARCH_ID     :: arch_id
MOD_LIST    :: module_list
MODULE      :: module
MOD_ID      :: mod_id
IMP_LIST    :: import_list
IMPORT      :: mod_id
COMMENT     :: comment

Fixed arity operators:

module      −> MOD_ID   COMMENT  EXPORT_PART  IMPORT_PART
export      −> TYP_ID   OP_LIST
func        −> OP_ID    PAR_LIST TYP_ID  COMMENT
proc        −> OP_ID    PAR_LIST COMMENT
cbv_par     −> PAR_ID   TYP_ID
cbr_par     −> PAR_ID   TYP_ID
import_part −> IMP_LIST
import      −> MOD_ID   IMP_OBJ_LIST

Atomic operators:

mod_id      −> IDENT
typ_id      −> IDENT
op_id       −> IDENT
par_id      −> IDENT
comment     −> STRING

List operators:

op_list     −> OP     ...
import_list −> IMPORT ...
par_list    −> PAR    ...
imp_obj_list−> IMP_ID ...

Phyla:

MOD_ID      :: mod_id
COMMENT     :: comment
EXPORT_PART :: export
IMPORT_PART :: import_part
OP_ID       :: op_id
TYP_ID      :: typ_id
PAR_ID      :: par_id
OP          :: func proc
PAR         :: cbv_par cbr_par
IMP_LIST    :: import_list
IMPORT      :: import
IMP_OBJ_LIST:: imp_obj_list
IMP_ID      :: typ_id op_id

Figure 2: Abstract Syntax for Merlin Benchmark

module speci�cation language. Then we can apply the following method to the resulting tree
grammar.

First, we de�ne an entity that represents the root of the syntax tree and carries the same
name, as the root operator of the tree grammar. This entity is in our case the entity arch. To
this initial E/R diagram, we apply for each operator and phylum of the grammar exactly one
of the substitutions de�ned in table 2.

For tree grammar component of type Substitute a with

Fixed arity operator
a -> B C .. D

...

b

c

d

a

List operator
a -> B ...

a b

Atomic operator
a::=B

a b

Phyla
a::B C ... D

...

b

c

d

a

Table 2: Transformation of tree grammar into E/R diagrams

According to each �xed arity operator we allow to connect entities and relationships as fathers
and sons in the syntax tree. Atomic operators which represent leaves of the syntax tree are
de�ned as sub-entities that inherit their properties from prede�ned entities. An entity repre-
senting the left-hand-side of a list operator is connected by a one-to-many relationship with an
entity that represents the right hand side of the list operator. Phyla that allow only one oper-
ator are replaced by that operator. Finally, Phyla that allow more than one operator become
super-entities of an inheritance relation in which each sub-entity represents one operator. If
the right hand side of an operator contains a phylum for which an entity has already been
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included, we do not de�ne it redundantly, but divert the relationship to the already existing
entity.
In the sequel, we call the relationship that is drawn with solid lines here aggregation relation-

ship.

module_
 list

par_
id

ident

arch

module

op_id

typ_
id

mod_
id

export_
 part

op_
list

op

func

proc

par_
list

par

cbv_
par

cbr_
par

imp_
obj

import_
 list

import_
 part

comment

import

arch_
id

string

Figure 3: E/R diagram deduced from Grammar

When we applied this method to the grammars de�ned for the Merlin benchmark, we obtained
the E/R diagram shown in �gure 3. The initial E/R diagram contained only an entity type
arch. To this diagram we applied the rule for �xed arity operators according to arch ->

ARCH ID MOD LIST. As the phyla ARCH ID and MOD LIST allow only one operator each (arch id

and mod list), we could include the entity types arch id and mod list that directly represent
those operators and omit any representation of these phyla. Otherwise, e.g. in the case of
the phylum OP that allows the two operators func and proc, we had to apply the rule for
phyla and thus to include an entity type op as a super type of func and proc. The atomic
operators, such as comment are supposed to inherit their properties from the prede�ned entities
that represent the right hand side of the resp. atomic operator. In case of comment this would
be a prede�ned entity string. List operators such as op list are represented by ordered
one-to-many relationships that connect the entity representing the left-hand-side (op list)
and the right-hand-side (op).

2.3.2 Introduction of context sensitive Relationships

So far, we have not considered the existence of the consistency constraints de�ned within
the requirements analysis subtask. This subsection describes how consistency checks may be
accelerated by additional relationships introduced to the conceptual model of the object base,
thus transforming the modelled abstract syntax tree into an abstract syntax graph.

The result of this activity for the Merlin benchmark is the E/R diagram shown in �gure 4.
The �rst relationship type, which we call dictionary, is drawn using dashed lines, whereas the
second relationship type, which we call reference is drawn using dotted lines.
The �rst dictionary contains for each architecture references to all identi�ers that are declared
somewhere in the architecture. The second dictionary contains for each module references to
the identi�ers that are exported by the module, i.e. that may be used as imported objects.
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arch

module_
 list module

ident

op_id

typ_
id

mod_
id

export_
 part

op_
list op

func

proc
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list

par
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par

cbr_
par
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obj

import_
 list

import_
 part

par_
id

comment

import

arch_
id

string

Figure 4: E/R Model enhanced with context sensitive Relationships

The last dictionary contains for each module references to those type identi�ers that may be
used within the module. This allows to answer the question whether an identi�er has already
been declared in the scope of an architecture by a single query to the respective dictionary.
To ensure that inconsistencies are not introduced due to modi�cations of objects, we trans-
formed some of the aggregation relationships into reference relationships. In particular, the
types used in parameters of operations, or result types of functions are no longer viewed as
copies of types de�ned in export interfaces, but as references to them. Furthermore, in import
lists, the copies of identi�ers of imported modules and objects are transformed into references
to the resp. identi�ers. This not only allows omitting of change propagations, but also enables
checks whether an exported type or operation is actually used.

2.3.3 Schema Simpli�cation

Up to now, the model of the conceptual schema of the benchmark and the model of a future
software engineering application are identical. Moreover, at this state of the process the
knowledge needed for permissible simpli�cations of the benchmark is accumulated in the E/R
diagram. Hence, it is down to this activity to distinguish the schema of the application from the
one of the benchmark in the sense that the conceptual schema of the benchmark is signi�cantly
simpli�ed. We identify the possible points for simpli�cation:

1. Relationships that start from or lead to all sub-entities of an inheritance relationship can
be replaced by one relationship that starts from or leads to the super-entity.

2. Entities that do not participate in any relationship except that they are end of an aggre-
gation type relationship and that are not editable (c.f. subsection 2.1) can be transformed
into attributes of the entities, where the aggregation relationship starts.

3. Sub-entities of an inheritance relation, that participate in the same relationships and
carry the same attributes as another entity of that inheritance relation may be removed.
The remaining entity is then viewed as a placeholder for the removed entities. As a
consequence, execution times of benchmark operations that access this entity must rather
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be interpreted as upper bounds than as exact values of operations that would have
accessed objects of the removed entity type.

4. An inheritance relationship with only one sub-entity can be removed together with its
sub-entity. The super-entity takes over all relationships, the sub-entity participated in,
as well as all attributes it carried.

5. An entity that neither participates in a context-sensitive or inheritance relationship nor
carries attributes and is source of only one aggregation relationship can be removed. The
aggregation relationship that started from the entity now starts from each entity that
had an aggregation relationship to the removed entity.

The ordering in which the simpli�cation rules may be applied to the E/R diagram is as
follows: Rules 1{4 may applied repeatedly in mutual exclusion and whereas rule 5 may be
applied repeatedly only if the application of rules 1{4 is �nished.

arch

module

ident

op_id

typ_
id

mod_
id

export_
 part

imp_
obj

import

par

par_
id

op

comment
comment

arch_
id

Figure 5: E/R Model de�ning Merlin benchmark schema

Using these simpli�cations we are able to simplify the E/R diagram shown in �gure 4. The
result of this process is depicted in �gure 5. We applied rule 1, 3, and 4 to cbv par and
cbr par with the e�ect of removing these entities and transferring its objectives to par. Then
we were able to apply rule 2 to par id transforming it into an attribute of entity par. After
that, we applied rule 3 to func and proc with the e�ect of removing the entity proc. That
enabled us to apply rule 4 to func, with the e�ect of replacing entity type func by its super-
entity op. As comment is only the target of aggregation relationships, we could apply rule 2,
thus transforming comment into attributes of module and op. The same rule was applied to
entity value connected to ident transforming this entity into an attribute of ident. Finally
the entities module list, import part, import list, op list, par list have been removed
according to rule 5.

At this stage, the E/R modelling phase of the benchmark de�nition is �nished and �gure 5
de�nes the conceptual schema of the Merlin benchmark. Based on this schema we can now
de�ne the benchmark operations.

2.4 De�nition of initial Object Base States

We now have to de�ne the possible initial object base states of the benchmark. The reason
for not operating on an empty object base is twofold. Firstly, the amount of data stored in an
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OMS has an impact on the performance, since the OMS could keep a small amount of data in
bu�ers and at least speed-up read accesses, which it could not with a large amount. Secondly,
consistency constraints may be easier to assure with a small initial object base than with a
large one. The size of the initial object base should possibly be varied to measure the in
uence
of these two aspects.
To go on realistic assumptions not only for the size, but also for the structure of the data
base, we should use the data produced during the quantitative analysis phase. Unfortunately,
we can not interpret it in an one-to-one manner, as we simpli�ed the data structures of the
benchmark. Thus the metric has to be adjusted to the new situation in the following way:
We combine some entity types that formerly represented di�erent syntactical increments with
their super-entity types. Consequently, each entry of the metric that is no longer represented
by an entity type in the E/R diagram counts for the respective super-entity type.

The structure of the modules used for the creation of the initial object base in the Merlin
benchmark is closely related to the measurement results given in table 1. It is identical for
each module. The contents of a module (e.g. the names of procedures or modules) may vary
but should have exactly the same length as in the other modules. Table 3 shows the metric
values for such a module.
As we have combined the entity types cbv par and cbr par in par, we summed their metric
entries up to obtain the number of parameters per operation. Similarly we added the entries
of functions and procedures to derive the number of exported operations.

Metric component Value

Number of exported types 1
Number of exported operations 17
Number of imported modules 4
Number of identi�ers 132
Number of comments 18
Number of imported objects/import relationship 6
Number of parameters per operation 3
Length of identi�ers [bytes] 12
Length of comments [bytes] 256

Table 3: Metric for a module in the initial object base

The amount of data contained in the initial object base is kept increasable in order to measure
the in
uence of the size of the object base on the performance of OMS operations. This also
allows us to check whether there are any (not documented) OMS speci�c restrictions on the
object base's size.
To vary the size of the initial object base we increase the number of modules by increasing the
number of levels in the architecture as follows: The import-relation between modules leads
to an acyclic graph of modules. We divide the modules into n levels (n � 3). Each level Li

contains 2i modules (i 2 f 0; : : : ; n� 1g). Except the top-most level where a module imports
from both modules at level 1, a module in level Lj imports from four random modules of level
Lj+1 (j 2 f 1; : : : ; n� 2g). Figure 6 shows as an example the architecture in the initial object
base with 4 levels.

2.5 De�nition of Benchmark Operations

We �nally have to de�ne the benchmark operations. Therefore we de�ne the operations of the
Merlin benchmark as if they would implement user-interactions to documents. Measuring the
execution times of these operations will then allow us to forecast the OMS speci�c execution
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Figure 6: Initial Object Base with 4 Levels

times a software engineering application's user-interaction would have when built on top of
the OMS under investigation.
The operations of the Merlin benchmark are de�ned as if they would implement user-operations
that are made persistent immediately and perform necessary change propagations in order to
assure the invariance of the previously de�ned consistency constraints.
The operations preserve the quantitative structure of the initial database, because the opera-
tion parameters are chosen according to table 6.

The operations can be clustered into four groups. Operations of the �rst group create incre-
ments of the two document types like modules, types, operations, parameters, and comments.
The second group is dedicated to measure the impact of changes to these increments. The
third group simulates tool operations that perform analysis. Finally the last group deletes all
previously created objects.

OpenOMS Open the access to the OMS, i.e. perform all necessary operations such as au-
thorisation or reservation of bu�ers to access data in the OMS.

CreModul Create n new modules in the architecture. Set their names to Module No j+2i,
(j 2 f 0; : : : ; n� 1g; i = levels in the initial objectbase). Set the graphical coordinates to
(50 � j; 100).

CrModTyp For each created Module set the export type identi�er to Type No j+2i, ( j2
f0; : : : ; n� 1g; i = levels in the initial objectbase).

CrModCom For each module created byCreModul expand the module comment increment
to an arbitrary string which is 256 bytes long.

CrModImp For each created module create a number of four import relationships to arbi-
trary given modules of the bottom most level of the initial objectbase.

CrImpObj For each created import relationship of each created module increment expand
the list of imported objects to the exported type and the 1st; 3rd; 7th; 11th; and 14th

operation of the respective module.
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CrExpOpe Create a list of 17 operation increments in each created module, update their
name to Modj Func k with j being the number of the module as determined by the
CreModul operation and k 2 f 1; : : : ;17g and expand their type to the type which is
exported by the module.

CrOpePar Expand each operation parameter increment in each created module to a pa-
rameter list with three call by reference parameters. Expand the parameter names to
arbitrary unique identi�ers (12 bytes) and the parameter types to the types which are
imported by the �rst three import lists of the module.

CrOpeCom For each operation expand the operation comment increment to an arbitrary
string of length 256 bytes.

UnparMod Create textual representations of the created modules in a string of the host
programming language.

UnparArc Create a textual representation of the architecture in a string of the host pro-
gramming language.

AnaUsage For each module of the bottom most level of the initial objectbase return the
names of modules to which it exports objects. Return the names as a list of the host
programming language.

ClosTrav Return the names of those modules, which are reachable from the module at level
1. Return the names as a list of the host programming language.

ChModNam Change the module name of each module to another unique name with the
same length and update the name in the import parts of those modules which use the
module.

ChModTyp Change the exported type of each module to another name with the same length
and update the name in the import parts and parameter lists of those modules which
use the module.

ChModCom Change the contents of the module comment of each created module to an
arbitrary other string of the same (256 bytes) length.

ChOpeNam Change the names of the exported operations of each module to another name
with the same length and update the name in each import list which imports the oper-
ation.

ChParNam Change the names of each operation parameter to other values with the same
length.

DlOpeCom Delete every operation comment in all modules that has been created during the
benchmark.

DlOpePar Delete each operation parameter in each module that has been created during the
benchmark.

DlOperat Delete all exported operations in all modules that have been created during the
benchmark.
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DlImpObj Delete all imported objects in all modules that have been created during the
benchmark.

DlImpRel Delete all import relations in all modules that have been created during the bench-
mark.

DlModule Delete all modules that have been created during the benchmark.

CloseOMS Perform all operations that are necessary to start the benchmark again.

The operations must be performed in the order in which they appear in the list given above,
i.e. The benchmark should �rst create n new modules, then expand for each newly created
module the exported type and so on.

3 Using GRAS

The document management system GRAS [LS88] has been developed at University of Os-
nabr�uck as part of the IPSEN project. The overall goal of GRAS is to provide support for
e�cient storage of documents like architectural speci�cations, module speci�cations or source
code in an incremental and highly integrated SEE.

The conceptual data model in GRAS is based on directed, attributed graphs. These graphs
allow to persistently implement abstract syntax graphs of documents.

A database in GRAS is called a graph-pool. It consists of an arbitrary number of graphs.
GRAS does not provide any means for a schema de�nition of graph-pools. The only entity
type is node whereas the only relationship type is edge. For the implementation of graph
access and manipulation operations GRAS provides programming interfaces to Modula-2 and
C. Despite programming an application, there are no other means to inspect or modify a
graph-pool. In particular, browsers and administration tools are not available.

The reason why we consider GRAS for an implementation of the Merlin benchmark is that it
has been explicitly dedicated to e�cient storage of abstract syntax graphs. Thus, it provides
a suitable yardstick for other database systems.

3.1 Storing the documents of the Merlin Benchmark in GRAS

This subsection explains how we stored the documents of the Merlin Benchmark in GRAS.
Therefore, we �rst present the basic ideas of the programming interfaces to GRAS. Then we
discuss some limitations of GRAS that have an impact on GRAS' usage. Finally, we show
how we mapped abstract syntax graphs as de�ned in �gure 5 on attributed graphs stored in
GRAS.

3.1.1 The Programming Interfaces to GRAS

This subsection roughly sketches the basic operations that span up the programming interfaces
to the GRAS system.
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Basically, these operations can be subsumed as follows:

� graph-pool operations,

� graph operations,

� partial match query operations (PMQs).

A graph-pool consists of a set of graphs that are logically related. The programming interfaces
o�er operations to create or delete graph-pools and to create or delete graphs within a graph-
pool. Moreover, they provide operations to open and close a graph identi�ed by a unique user-
de�ned graph name. This is necessary in order to access the contents of a graph and to make
any modi�cations applied to the graph become persistent, respectively. The programming
interfaces therefore o�er means for assigning and removing external names to or from nodes
as well as for searching nodes that are identi�ed by an external name.

A graph consists of a �nite set of labeled nodes that may be attributed. These nodes are
connected by labeled, directed edges. To access and manipulate these graphs, the programming
interfaces provide a number of further operations:

� Creation and deletion of labeled nodes,

� Creation and deletion of labeled edges,

� Assignment and retrieval of attributes to/from nodes.

During creation of a node, GRAS assigns a unique object identi�er to a node which may in
turn be used for e�ciently accessing the node. Besides unique object identi�ers, applications
can de�ne unique external names to nodes. These names enable associative searches for nodes
in a graph.

GRAS provides means to perform partial match queries in order to implement graph traversals.
A partial match query is speci�ed by two components. Having speci�ed a node identi�er and
an edge label, an application can retrieve a single node or a set of nodes that are connected
to or from the node by an edge with the given label.

3.1.2 Limitations of GRAS

There are a number of limitations when using GRAS which heavily in
uence the design of an
SEE in general and that of the Merlin benchmark in particular. In order to better understand
this design, we now discuss the mentioned limitations.

Number of Nodes in Graphs The number of nodes in a graph is limited to 216. The overall
amount of nodes in the syntax graph representation of documents that are being produced in
small project is already beyond that number. Thus, we are forced to distribute the syntax
graph over a number of graphs.
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Open Graphs In order to achieve e�cient caching of nodes and edges, the designers of
GRAS have decided to require explicit opening and closing of graphs from an application.
Only graphs that are opened may be accessed and modi�ed. The number of graphs that may
be open at once, however, is limited to 20. Hence we can not keep all graphs open at any time.

Size of Attributes The upper bound for an attribute's size is 251 Bytes. Hence, if we still
want to store longer attributes in GRAS, we would be forced to split them arti�cially and
distribute the parts over a number of nodes.

Transactions GRAS provides a mechanism to group calls to its programming interface as
transactions. These transactions may be nested. Unfortunately transactions in GRAS apply
to exactly one graph, i.e. operations that perform accesses and changes in more than one
graph can not be performed as transactions.

External Edges GRAS does not provide direct support for edges that span over two dif-
ferent graphs. If we want to implement such edges, we have to store attributes at the source
node containing the object identi�er and the graphname denoting the node they lead to. A
similar approach is required for the reverse edge. As a matter of fact, we therefore have to
open the graph to which the edge leads and close it afterwards. This approach, however, does
not assure that referential integrity is preserved.

3.1.3 Implementing the Merlin Benchmark Schema with attributed Graphs

This subsection de�nes how entities de�ned in the benchmark schema depicted in �gure 5 are
represented in terms of nodes and edges of graphs managed by GRAS. Therefore, we �rst
de�ne how we structured the database in terms of graphs.

On account of the limited number of nodes that may be contained in a graph, we decided to
split the initial database into a number of graphs. These graphs are stored in a graph-pool
called InitialDatabase.
It contains a graph in which entities of types arch, module, ident and import are implemented.
This graph is called system-graph in the following. During a benchmark run, this graph will
always be kept open. Besides the system-graph, we implemented one graph for each module
of the initial database. These graphs are called module-graphs in the rest of this section and
they are only opened on demand.

SystemGraph The system-graph contains all information required to represent the archi-
tecture of the modules in the initial database. It is designed, as if it had to serve as a
data-structure of a graphical editor allowing architectural design. Figure 7 depicts an example
representation of such a module hierarchy.

Boxes in that �gure represent nodes, whereas arrows represent edges. Edges depicted by
solid arrows implement aggregation type relationships whereas those drawn by dashed arrows
implement reference type relationships. Moreover, node labels and edge labels are shown
within the boxes and near the arrows, respectively. Finally, a number depicted in the upper
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Figure 7: System-Graph

right corner of a box depicts the value of a node attribute as indicated by the assignment
statements in the lower left corner of the �gure.

The entity type arch in �gure 5 is implemented by nodes labeled with ARCHITECTURE.
GRAS does not provide any direct means to implement ordered 1:n relationships such as the
relationship in �gure 5 starting from arch and leading to module. These relationship have
to be implemented by additional nodes and edges. To implement the previously mentioned
relationship, for instance, we introduced a new node labeled with MODULELIST as anchor of
the list and new edges labeled with EFIRST, EELEM, ENEXT and ELAST. Arbitrary many
nodes labeled with MODULE can be connected to this anchor by edges labeled with EELEM.
An order of these elements is de�ned by edges of type ENEXT. Edges labeled with EFIRST

and ELAST are devoted to e�ciently �nd the �rst respectively last element of the list. Nodes
labeled with MODULE have attributes that are intended to store the graphical coordinates of
a module in a graphical architecture depiction. The identi�er of a module is not implemented
as a node, but as an external name assigned to the respectively node.

The dictionary type relationship from arch to module must be queried associatively in order
to search for given identi�er values. As the number of identi�ers which participate in this
relationship becomes very large in a big initial database and as the query will be used often,
the query must be implemented very e�ciently. GRAS' external names provide means to im-
plement associative access to nodes very e�ciently based on external hashing. Unfortunately,
the scope for these queries are the external names de�ned in one graph and identi�er nodes
are distributed over all module graphs. Searching for the names in all module-graphs is infea-
sible because the time needed only to open and close a graph was found in [DHK+90] to be
much more than one second. Thus, we have decided to store nodes that represent identi�ers
redundantly: one in the module graph representing the module where the identi�er is declared
and another one in the system-graph. In the latter the identi�er node is annotated with an
external name which is in turn the basis for the above mentioned queries.
To implement this strategy, we added to each node labeled with MODULE a node of type
NAMELIST which carries copies of the identi�er nodes declared in the respective module.

The import relationships between modules are represented in the system-graph by edges la-
beled with EGENERAL. They are re�ned in the module-graph.
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ModulGraph Figure 8 gives an example for the structure of a module-graph following the
same notation used for the system-graph. In spite of its complex structure, only the most
important components are depicted there.
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Figure 8: Modul-Graph

The entity types module, mod id, export part, op, par and import de�ned in the bench-
mark schema are implemented in a straight-forward manner by the nodes with the label
MODULE, MODNAME, EXPORTPART, OPERATION, PAR and GENIMPORT. 1:1 ag-
gregation type relationships in the benchmark schema are implemented by edges, whereas
ordered 1:n aggregation type relationships are implemented by lists (OPLIST, PARLIST and
GENIMPLIST) in the way explained above.

Entities of types module and op in the benchmark schema have an attribute denoted as
comment. As comments of modules and operations are often larger than 251 Bytes (c.f. the
analysis results in table 1), they can not be stored as attributes of nodes. Thus, we decided
to store comments in the Unix File-System and to maintain only placeholder nodes labeled
with COMMENT in the module-graph. The comments of a module are stored in a single Unix
directory. The �le-name of a comment's �le is de�ned by the concatenation of the directory's
name with the node-number of the comment node.

All reference type relationships de�ned in �gure 5 can not be implemented by simple edges,
as the nodes they would have to lead to are stored in other graphs. That would require edges
spanning over di�erent graphs which are not supported by GRAS. To still be able to express
these relationships, we have to introduce redundant nodes for each entity, instances of these
relationships lead to. In particular, we include nodes labeled IMPTYPENAME and IMPOP-

NAME to implement the relationship to entities of type imp obj, nodes labeled IMPMODULE
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to implement the relationship to entities of type mod id and nodes labeled TYPE to implement
the relationship to entities of type type id. Note, that each of these nodes is redundant to at
least one other node. This redundancy has, as we will see in section 5.2, a great impact on
the performance of benchmark operations.

That redundancy also complicates maintenance of consistency constraints, as additional change
propagations are required now. Consider the change of the name of an exported type or op-
eration which is imported elsewhere. In order to meet the consistency constraint, that each
imported type or operation is exported by the imported module, we have to propagate the
changed name also to all places, where it is being used. To accelerate the time required for
searching these places, we maintain a USELIST which contains nodes representing those mod-
ules that use resources from a module. Each export being used in some module, is connected
by an edge labeled with EUSEDBY to a node in the USELIST. During change propagation
we can follow these edges to �nd the related module-graphs in which we have to update the
import interface.

The dictionary type relationships starting from entities of type module are implemented in
di�erent ways: The �rst relationship which leads to entities of type imp obj and is intended to
de�ne those names, that are exported by the module is de�ned by external names. The second
relationship intended to contain all type identi�ers valid in a module can not be implemented
by external names of the module-graph, as these are already being used for the �rst dictionary
type. Thus, we store one node labeled TYPESET in each module-graph which has edges to
each node in the graph representing a valid type identi�er.

3.2 Architecture of the Benchmark

TimeMeasurement BenchModuleOps BenchExportOps

Benchmark

SetupBenchImportOps

SyntaxTree

GRAS

OPUS−GRAS

Figure 9: Architecture of the Merlin Benchmark implemented on top of GRAS
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Figure 9 shows an overview of the architecture we used for implementing the Merlin benchmark
on top of GRAS. In this �gure rectangles represent modules and arrows describe the usage-
relationship.

The GRAS module represents the programming interface to the GRAS system. It provides
the operations to manipulate graph-pools and graphs and to perform the PMQs previously
described in this chapter.

The OPUS-GRAS module is composed of several modules. It contains modules for each
increment which encapsulate operations to expand, change, analyse and delete subincrements.
Besides there is one module to manage the use-list of a module. These modules all use the
operations of the programming interface.

The module SyntaxTree is devoted to manage temporary storage of object identi�ers that
represent the increments of di�erent documents in a syntax tree like structure.
It provides means for insertion and deletion of new identi�ers into the tree and for a variety
of di�erent traversals.

The modules BenchModuleOps, BenchExportOps and BenchImportOps implement the bench-
mark operations as de�ned in subsection 2.5. Therefore they call respective operations of
modules in OPUS-GRAS and use SyntaxTree to temporarily store object identi�ers that are
returned by the programming interface.

The module Benchmark implements the main program. It can be invoked from the Unix
command line. It allows to pass an integer n indicating how many modules shall be created
during the benchmark run. Benchmark uses TimeMeasurement in order to measure the elapsed
real time between start and end of a benchmark operation. TimeMeasurement logs these �gures
into a text �le that may be used for the result analysis. Besides that, it uses the module Setup
which provides means for database login and logout.

3.3 Performance Measurement Conditions

We implemented the benchmark with GRAS Version 4.14 using the C programming interface.
The detailed con�gurations of the machine we used can be obtained from Table 4.

Machine Sun SparcStation IPX
Operating System SunOS 4.2 Release 4.1.1
Main Memory 40 MB
Disk WRENV IV 94181-385h with 320 MB
Disk controller Emulex MD 21

Table 4: Description of the system which performed the benchmark with GRAS

For comparison purposes, we performed the benchmark when the machine was in multiuser
mode. Other databases require remote procedure call facilities of the operating system to be
available which are stopped in single user-mode. Besides the benchmark there was no load on
the machine.

21



4 Using GemStone

GemStone [BMO+89] was the �rst fully object-oriented database system. Its development
started about 10 years ago at Oregon Postgraduate Center, Beaverton, OR [CM84].

A GemStone schema is de�ned by a number of classes. These classes not only de�ne structural
properties of objects, but also objects' behaviour in terms of methods. Methods provide the
only interface for the manipulation of objects of that class. GemStone provides a language
called OPAL dedicated to class de�nition purposes.

GemStone comes with a number of initial classes called kernel classes. These include atomic
classes like boolean, integer, fraction, float and string as well as object constructing
classes like list, set, bag and a variety of di�erent dictionaries. Application speci�c classes
are built by inheriting from one of these initial classes.

GemStone provides two di�erent transaction management strategies: optimistic and pes-

simistic transactions. In optimistic mode, transactions do not lock objects and GemStone
detects con
icts between concurrent transactions at commit time. In pessimistic mode, con-

icts are already detected at the time locks are acquired and transactions are requested to
wait until they get the lock granted or to abort.

GemStone allows for distributed access to its databases by a client/server architecture. There-
fore it runs a database monitor process called stone. This process performs physical access to
the databases, controls user logins and preserves the integrity of databases against hardware
and software failures by maintaining a log. In addition to the stone, the host runs for each
application one other process called gem which performs the execution of methods by calling
the stone using RPC.
An application may use two di�erent versions of the programming interface in order to con-
nect to its corresponding gem process. In linked mode, application and gem process are melt
together and executed as one process on the machine that also runs the stone process. In
remote mode, the application and its gem process are two di�erent processes that may run on
di�erent machines and communicate by RPC.

GemStone o�ers a programming environment with a textual data browser called TOPAZ.
TOPAZ also provides support for the database administrator as it is capable to perform
backup procedures, user administration and basic performance measurement.

4.1 GemStone Classes for Merlin Benchmark

This subsection describes how we have implemented the conceptual schema of the Merlin
benchmark in GemStone. Therefore, we �rst discuss how we mapped the E/R model in
�gure 5 to data structures contained in GemStone classes. Then we describe how we managed
encapsulation of the data structures by methods. These methods are called by the benchmark
to implement benchmark operations.
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4.1.1 Setting up Classes for the Merlin Benchmark

Figure 10 depicts the classes we used for the Merlin Benchmark and shows how they are related
to GemStone's kernel classes.

Architecture
name:Identifier,
archsymtab:SymbolTable,
modules:Dictionary

Operation,
archsymtab:SymbolTable,
expsymtab:SymbolTable,
archsymtab:SymbolTable

OperationList

Import
value:Identifier,
import:Identifier,
mymodsymtab:SymbolTable

Param_List
Form_Param,
modsymtab:SymbolTable

ImportInterface
ImportList,
mymodsymtab:SymbolTable,
mymodule:Identifier

ImportList
Import,
frommod:Identifier,
mymodsymtab:SymbolTable,
expsymtab:SymbolTable,
mymodule:Identifier

Form_Param
paramname:Identifier,
paramtype:Identifier,
modsymtab:SymbolTable

Identifier
name:Symbol,
used_in:Set

Position
x_coordinate:Integer,
y_coordinate:Integer

SymbolTable

Object

Collection

String

ArraySet

SequenceableCollectionNonSequenceableCollection

HashDictionary

SymbolHashDictionary

Comment Symbol

Module
module_name:Identifier,
module_comment:Comment,
export:ExportInterface,
import:ImportInterface,
pos:Position,
modsymtab:SymbolTable,
expsymtab:SymbolTable,
archsymtab:SymbolTable

ExportInterface
exporttype:Identifier,
oplist:OperationList,
archsymtab:SymbolTable,
modsymtab:SymbolTable,
expsymtab:SymbolTable

Operation
name:Identifier,
comment:Comment,
parameterlist:Param_List,
result:Identifier,
archsymtab:SymbolTable,
modsymtab:SymbolTable,
expsymtab:SymbolTable

Figure 10: Classes contained in the Schema of the Merlin Benchmark

Rectangles represent classes whereas arrows denote the subclass-of relationship. Names of
classes are typeset in bold at rectangles' top edges. Classes that belong to GemStone's kernel
classes are represented by dashed rectangles whilst those classes added for the Merlin bench-
mark (called benchmark classes in the following) are depicted as solid rectangles. Instance
variables of benchmark classes not being inherited from kernel classes are given in the lower
part of the rectangles by their names and types.

For each entity type de�ned in �gure 5 there is one benchmark class that implements this
entity type. Attributes of entity types are implemented as instance variables of the respective
classes.
As object-oriented databases do not provide an explicit notion of relationships, relationships
are either implemented as instance variables or additional classes: relationships of cardinality
1:1 are implemented as instance variables whereas relationships of cardinality 1:n are imple-
mented as sets or lists.

Consider as an example the entity type module in �gure 5. It is implemented by class
Module. The 1:1 relationship to entities of type mod id is implemented by the instance variable
module name. The 1:n relationship to entities of type import is implemented by an instance
variable of class ImportInterface. This class inherits the property of having arbitrary many
unnamed instance variables from the kernel class Array. The class of these variables is con-
strained to be of ImportList. Additionally, ImportInterface declares two named instance
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variables that have no counterpart in �gure 5 but are added for e�ciency purposes: Firstly,
mymodule implements a reference to the identi�er of the module in which ImportInterface is
contained. Secondly, mymodsymtab is a reference to a SymbolTable that contains those types
that have been declared in the scope of a module.

The class SymbolTable implements relationships of type Dictionary. SymbolTable is de�ned
as subclass of the kernel class SymbolHashDictionary. It provides e�cient associative access
to identi�ers using their values. Instances of this class are used for several purposes.
Firstly, each instance of class Architecture has got a symboltable archsymtab that contains
those identi�ers declared within the scope of an architecture. If a new identi�er is declared or
the value of an identi�er is changed, we use this symboltable to decide whether the new value
is unique. Consequently, all classes (e.g. Module, ExportInterface, Operation) that declare
new identi�ers maintain a reference to the archsymtab of their architecture.
Secondly, each instance of class Module declares a symboltable expsymtab that de�nes those
identi�ers that are exported by that module. This symboltable provides means to e�ciently
decide whether or not a particular identi�er is exported by the module. Moreover, it allows
to e�ciently locate the identi�er. References to this symboltable are maintained by all classes
that contribute to the export interface of the module (e.g. ExportInterface, OperationList
and Operation) as well as those classes that use an export like e.g. ImportList.
Finally, each instance of class Module de�nes a symboltable modsymtab, that de�nes those
types that are declared within the module. It is used to decide whether a type used as result
type or parameter type in operations has been declared either in the export interface or by
import of a type.

In order to implement the reference relationship of cardinality 1:n in which identi�ers partic-
ipate (c.f. �gure 5) we added the instance variable used in to class Identifier. Here we
take into account that we have to navigate along this relationship in both directions. The
implementation of benchmark operations assures, that the set used in always contains those
instances which refer to the identi�er.

4.1.2 Method De�nitions

The data structures de�ned for the benchmark classes as indicated by �gure 10 are encap-
sulated by methods. These method provide the only means to modify instance variables of
classes. GemStone distinguishes between classmethods and instancemethods. A classmethod
is invoked when sending a message to a class, whereas an instancemethod is executed after
a message has been sent to an instance. Both kinds of methods may be parameterised and
return a result.

We use classmethods in benchmark classes for instance creation and initialisation purposes.
That is, each class has one classmethod that creates on demand new instances of that class
and initialises its instance variables.
Class Module, for example, has a classmethod CreateModule that has parameters of the types
SymbolTable, Point and String. During execution it �rst of all creates a new instance of
class Module. Then it initialises the module's instance variable archsymtab to the symboltable
that was passed as parameter and initialises the instance variables expsymtab and modsymtab

with two new symboltables which it creates. Then it initialises the module's instance variable
pos with the position that was passed as parameter. After that, it creates a new identi�er,
sets its value to the string that was passed as parameter and initialises the instance variable
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module name to this identi�er. Having �nished that, it creates a new instance of class Comment
and uses it for initialisation of module comment. Finally, it creates new instances of classes
ExportInterface and ImportInterface and initialises the instance variables export and
import respectively.

Instancemethods are the baseline for the implementation of the benchmark operations de�ned
in subsection 2.5. They are implemented in such a way that they assure the consistency
constraints required in subsection 2.1.2.
For each class that directly implements an increment, we de�ned instancemethods that allow
for expansion, changes and deletion of subincrements. These methods return boolean values
that indicate whether or not the execution was successful. An execution may fail if it would
violate a consistency constraint.

ExpandOperationName: aString

(ArchSymTab IsInSymbolTable: aString)

ifFalse:[

OperationName := Identifier CreateIdentifier.

OperationName SetIdentifier: aString.

ArchSymTab EnterToSymbolTable: aString

DefinedIn: OperationName.

ExpSymTab EnterToSymbolTable: aString

DefinedIn: OperationName.

^TRUE]

ifTrue:[^FALSE]

Figure 11: Example for Instancemethod in Merlin Benchmark Class

Consider, for example, the method ExpandOperationName de�ned in class Operation shown
in �gure 11 using the syntax of OPAL. It expands the name of an operation to a string passed
as parameter. Therefore it �rst queries the symboltable of the architecture that contains all
known identi�ers, whether the given name is unique. If so, it creates a new identi�er, sets its
value to the given string and includes it into the symboltable of known identi�ers as well as into
the symboltable that contains the identi�ers exported by the module. Then it returns TRUE in
order to indicate a successful execution. In case the given string is found in the architecture
symboltable, it returns FALSE to indicate that the execution is not completed successfully as
a consistency constraint is violated.

4.2 Architecture of the Benchmark

Figure 12 shows an overview of the architecture we used for implementing the Merlin bench-
mark on top of GemStone. In this �gure rectangles represent modules and arrows describe the
usage-relationship.

The GCI module represents GemStone's C Interface. It provides operations for sending mes-
sages to objects. The object a message is inteded for is denoted by an unique object identi�er
which has to be passed as parameter. Besides that, GCI provides operations for transaction
management (e.g. commits or aborts of transactions), session control (e.g. logging into and
logging out of a GemStone session), and conversion routines between elementary C types and
atomic GemStone classes.

The GemStoneInterface must be considered rather as a subsystem of modules than a single
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Figure 12: Architecture of the Merlin Benchmark implemented on top of GemStone

module. It contains modules for each increment which encapsulate operations to expand,
change, analyse and delete subincrements.
Operations in these modules use the GCI to send messages to objects stored in GemStone. The
interpretation of these messages by GemStone then cause execution of the methods sketched
in subsection 4.1.2.
Parameters of these functions are always unique object identi�ers that denote objects stored
persistently in GemStone which shall receive the message. Additionally some functions have
parameters that contain values of identi�ers or comments, or analysis results.

The module SyntaxTree is devoted to manage temporary storage of object identi�ers that
represent the increments of di�erent documents in a syntax tree like structure.
It provides means for insertion and deletion of new identi�ers into the tree and for a variety
of di�erent traversals.

The modules BenchModuleOps, BenchExportOps and BenchImportOps implement the bench-
mark operations as de�ned in subsection 2.5. Therefore they call respective operations of
modules in GemStoneInterface and use SyntaxTree to temporary store object identi�ers that
are returned by the GemStoneInterface.

The module Benchmark implements the main program. It can be invoked from the Unix
command line. It allows to pass an integer n indicating how many modules shall be created
during the benchmark run. Every benchmark operation is executed as one GemStone trans-
action using the optimistic mode. Benchmark uses TimeMeasurement in order to measure
the elapsed real time between start and end of a benchmark operation. TimeMeasurement

logs these �gures into a text �le that may be used for the result analysis. Besides that, it
uses the module Setup which provides means for database login and logout. Moreover, it uses
transaction management routines from the GCI.

Altogether, the implementation contains about 7,000 lines of C code heavily annotated with
comments.
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4.3 Performance Measurement Conditions

We implemented the benchmark with GemStone Version 2.5 using GemStone's C Interface
Version 2.5. We ran the benchmark in two di�erent hardware con�gurations. In the �rst con-
�guration which we call local mode, the complete benchmark was executed on a SPARCstation
IPX that also ran GemStone's stone process. Moreover the benchmark and GemStone's gem-
process were linked into one process.
In the second con�guration called remote mode the benchmark was executed on a SPARC-
station SLC accessing GemStone's gem-process via RPC. The gem-processes as well as the
database server process were executed on the same machine as in the local mode. The de-
tailed con�gurations of the machines can be obtained from table 5.

Local Mode Remote Mode

Machine Sun SPARCstation IPX Sun SPARCstation SLC
Operating System SunOS 4.2 Release 4.1.1 SunOs 4.2 Release 4.1.1
Main Memory 40 MB 16 MB
Disk WRENV IV 94181-385h with 320 MB none
Disk controller Emulex MD 21 none

Table 5: Description of the systems which performed the benchmark with GemStone

GemStone provides means for its con�guration. Therefore, users can adjust a number of system
parameters in order to con�gure GemStone's behaviour with respect to their needs. Table 6
describes those parameters that in
uence the performance and indicates how they have been
adjusted for running the Merlin benchmark.

Parameter Value Description

CONCURRENCY MODE FULL CHECKS Used to control degree of concurrency allowed in terms of con
ict
detection. FULL CHECKS assure, that transactions are performed
in isolation.

DBF PRE GROW FALSE Decides whether physical disk space is allocated for GemStone
databases once at all or on demand. FALSE indicates that space
is allocated on demand.

GEM PAGE CACHE SIZE KB 3000 Sets the size of main memory used for caching objects within
gem processes to about 3 MB.

STN PAGE CACHE SIZE KB 1000 Sets the size of main memory used for caching objects within
the stone process to about 1 MB.

Table 6: Settings of GemStone Con�guration Parameters

We performed the benchmark on the above given machines while they were running in multi-
user mode. The multi-user mode was required by the RPCs needed for the remote mode.
Besides the benchmark, there were no other loads on the machines. Moreover, the machines
were the only machines in the network that had any load.

5 Results obtained with GemStone and GRAS

This section indicates the main results we obtained from performing the Merlin benchmark on
top of GemStone and GRAS. Therefore, we discuss in the �rst subsection databases' e�ciency
with respect to physical disk space used. The main focus of this section however is on discussion
of execution time required by the OMSs in di�erent con�gurations in the second subsection.
In the last subsection we discuss the impact of our results on construction of syntax-directed
tools.
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5.1 Space E�ciency

We performed the benchmark on both systems with several sizes of the initial database. They
vary with respect to the number of levels as de�ned in subsection 2.4. Table 7 indicates how
many modules have been created in order to set up initial databases with di�erent levels.

Levels Number of Modules

3 7
4 15
5 31
6 63
7 127
8 255

Table 7: Number of Modules in di�erent initial Database States

Figure 13 depicts a comparison of the physical disk space used by GemStone and GRAS with
the space that were occupied if the modules would be stored as 
at text �les in the Unix File
System. Bars in that �gure represent the di�erence between the physical space occupied by the
database/�le system with and without an initial database. The �gures have been measured
using the Unix command du on the �les/directories where the resp. �les/databases are stored.
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Figure 13: Disk Space used by GemStone and GRAS in Comparison to File System

In the con�guration (c.f. table 6) in which we performed the benchmark, GemStone physically
allocates disk space on demand in chunks of 1 MByte. In opposite to that 2 KBytes are the
smallest unit to allocate disk space in the Sun OS �le system.

As we can see from �gure 13, GemStone need not allocate any disk space during creation of the
initial database in levels 3{5. Thus, initial databases of that sizes stored in GemStone must
considered to be smaller than a MByte. For the databases containing more than 5 levels, it
used roughly 2.5 times as much disk space as the unparsed modules stored in the �le system.
GRAS used about twice as much disk space than GemStone and even �ve times the space
needed for storing an unparsed module in the �le system.
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The mean value of physical disk space used for a module of the initial database at level 8 in
the �le system would be 11.5 KBytes. This value for GemStone is about 28 KBytes and in
GRAS it is about 62 KBytes.

5.2 Time E�ciency

In this subsection we present an excerpt of the results we gained from executing the benchmark
in a number of di�erent con�gurations.

First we compare the performance of increment operations on top of GemStone and GRAS
accessing a large initial database. In addition to these increment operations which must be
executed very quickly, we compare the performance of analysis operations in GemStone and
GRAS. After that we investigate the dependency of operations' execution times from the size of
the initial database in GemStone and GRAS. Then we discuss the times needed for committing
transactions in GemStone. Finally, we indicate how fast increment operations perform on top
of GemStone in local mode compared to remote mode.

5.2.1 Increment Operations in a large Database

Figure 14 indicates the execution times needed for the increment operations with an initial
database containing eight levels of modules. The number of modules created during a bench-
mark operation in this con�guration was set to 10. The �gures are the mean values from
the results of 15 repeated execution of the benchmark. They show the elapsed real time of
the benchmark operation in milliseconds divided by the number of increments that have been
expanded, changed or deleted.
We compare the behaviour of GRAS with that of GemStone in local mode as GRAS also op-
erates on a local disk. Furthermore, the times needed for commit of a GemStone transaction
is for comparison purposes not included here, as modi�cations in GRAS are only persistent,
after all graphs have been closed. Instead, the commit times needed by GemStone transactions
are subject of subsection 5.2.4.

GRAS needs for a number of these increment operations more than 500 milliseconds which is
untolerably high. All these operations have in common, that they have to access nodes and
edges in other graphs. This is needed for checking whether the operation violates consistency
constraints or in order to propagate changes to other graphs. Therefore, those graphs must
be opened, accessed and closed afterwards. Note, that they can not be kept open all time due
to earlier mentioned limitations of GRAS. In order to implement CrImpObj, for instance, we
have to open the graph from which we intend to import and lookup whether the respective
object is exported there. Then we have to enter the importing module into the graph's uselist
and �nally we must close the graph. Most of the time required by these operations is needed
for opening and closing graphs.

None of the increment operations on top of GemStone performs slower than 75 milliseconds,
which is su�cient for constructing syntax-directed tools. Note, that each operation also per-
forms at least as fast as the equivalent operation on top of GRAS.
The operations which perform slowest are those that access the global dictionary ArchSymTab.
That dictionary contains in this con�guration about 5,000 entries. It is accessed in some bench-
mark operations (CrModul, CrModTyp, CrExpOpe, ChModNam, ChModTyp, ChOpe-
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Figure 14: Increment Operations with an eight-level Database

Nam, DlOperat and DlModule) in order to decide about uniqueness of identi�ers, to enter
new identi�ers, or to delete identi�ers that do no longer exist. In create operations, the dic-
tionary is accessed twice (querying for uniqueness and entering the new identi�er), in change
operations the dictionary is accessed three times (querying for uniqueness, removing the old
identi�er and entering the new one) and in delete operations the dictionary is accessed once
(remove the identi�er of the deleted object).
Execution times of operations on comments and parameters, which do not participate in com-
plicated consistency constraints, are that low that they can be neglected.
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5.2.2 Analysis Operations in a large Database

Figure 15 depicts the performance of analysis operations in an eight-level database. These
operations are presented separately from increment operations, as they will not be used that
often and thus their performance is not that critical. However, they allow us to draw conclusion
about the performance we can expect from navigation-intensive operations.
The results shown here have been obtained from exactly the same con�guration as described
in the previous subsection.
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Figure 15: Analysis Operations with an eight-level Database

The performance of AnaUsage in GemStone and GRAS can be considered as uncritical. Gem-
Stone needs 14 milliseconds to compute the set of those modules which import from a module
of the bottom-most level, whereas GRAS answers this query in 11 milliseconds.

ClosTrav is a kind of recursive query, that computes the transitive closure of the usage rela-
tionship between modules. In spite of the structure, we have chosen for the database, i.e. the
root module transitively importing from nearly any other module, and in view of its size, a
performance of less than 6 seconds seems to be tolerable.
However, it is worthwhile to note that GRAS performs this operation about twice as fast as
GemStone. The implementation of this operation using GRAS bene�ts from the redundant
storage of import information in the system graph. It can retrieve the set of importing mod-
ules (which is the major recursion step) by a single partial match query. In opposite to that,
the GemStone implementation requires a number of navigation operations through a module's
syntax graph in order to retrieve this set.

UnparMod performs with both OMSs in nearly the same time (599 milliseconds in GRAS and
579 milliseconds in GemStone). The execution time of this operation is of particular interest
for building syntax-directed editors on top of OMSs. It visits all nodes of a module's syntax-
graph, and retrieves all attribute values of terminal nodes like identi�ers or comments.
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Thus, it indicates the time required for initialisation of an syntax-directed editor's temporary
data-structures during editor session start-up. These data-structures are needed basically, for
displaying the unparsed representation of a module to the user and for identifying selected
increments in terms of nodes of the syntax-graph.

The impact of the UnparArc operation is the same for an graphical architecture editor as that
of UnparMod for a syntax-directed module interface editor.
UnparArc requires with GRAS more than twice the time as with GemStone (6.8 seconds vs. 3
seconds). The only explanation we have for this, is that GRAS' set operations which are used
extensively for implementation of this operation tend to become slow with large sets being
involved. This was the case in the con�guration we used to retrieve these �gures, as the set
containing the modules in the architecture includes 265 modules.
Not only in GRAS, but also in GemStone the performance of UnparArc must be considered
as too slow. Fortunately it is quite seldom, that we have to manage graphical documents of
this size (265 modules with about 550 import relationships in a graphical document are also
confusing from the user's point of view.). We would rather structure such documents into a
hierarchy of sub-documents, which in turn are easier manageable for both, the user and the
OMS. We come back to UnparArc's performance in con�gurations with fewer modules in the
next subsection.

5.2.3 Dependency of Execution Time from initial Database Size

We have performed the benchmark on both OMSs with initial databases of di�erent sizes. In
particular, we have varied the number of levels in the database between three and eight.
We found that the execution times of benchmark operations varied merely in the range of
measurement faults only. There were, however, two exceptions that we discuss now: Firstly,
OpenOMS and CloseOMS in GRAS and secondly, those analysis operations that access dif-
ferent number of objects depending of the initial database size.

OpenOMS in the GRAS implementation basically consists of opening the system-graph. Sim-
ilarly, CloseOMS only closes the system-graph. The execution time for the former operation
varies between 630 milliseconds in a three-level database and 3,200 milliseconds in an eight-
level database. The performance of closing the system-graph is even worse: it varies between
1,020 milliseconds in a three-level database and 34,270 milliseconds in an eight-level database.
The system-graph needs to be closed whenever a save-operation is performed. From a user's
point of view, it is unacceptable to wait for a save-operation even of a large database for more
than half a minute! One major motivation for the use of an underlying central OMS, is to
overcome these response-times that are usually typical for load- and store-approaches.

Figure 16 depicts the dependency of the execution of UnparArc, ClosTrav and AnaUsage of
the initial database size. It shows that UnparArc and ClosTrav in both OMSs become slower
as the initial database grows. In opposite to that in both OMSs, execution time of AnaUsage
slightly decreases asymptotically to 10 milliseconds.
The reason for the latter observation is, that the mean value of modules using a module of the
bottom-most level decreases, if the number of modules at the bottom-most level increases.

UnparArc and ClosTrav become slower as the number of objects they access increase linear
with the number of modules in the initial database.
The response times of these operations become critical from a user's point of view when
they reach 1,000 milliseconds. GemStone performs both operations in less than a second in
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Figure 16: Impact of Database Size to Performance of Analysis Operations

databases with up to seven levels, i.e with 127 modules. GRAS performs UnparArc in a
second only in databases with up to six levels.

5.2.4 Committing GemStone's optimistic Transactions

The aim of �gure 17 is to depict what would happen to the response time of incremental
user-interactions, if we would execute them as single database transactions.

We performed each benchmark operation accessing only a single increment as an optimistic
transaction in GemStone. The �gures depicted there have been obtained by performing each
operation in this way 15 times with an eight-level database. The black part of a bar represents
the time needed for execution of the operation itself and the grey part represents the time
needed for committing.

In all operations, the sum of both times is dominated by the time needed for committing. The
amount of time needed for a commit is in this con�guration between 600 and 800 milliseconds.
It varies in a three-level database between 480 and 650 milliseconds. It does not increase
linear if more objects are accessed. In a con�guration where we, for instance, expanded 3,200
parameter names and as many parameter types within one transaction a commit took about
3000 milliseconds. However, the results we obtained, seem to be the upper bound of what
would be acceptable for a user-interaction.
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Figure 17: Performance of Commits in GemStone with optimistic Transactions

There is another interesting point in this �gure to which we would like to draw reader's atten-
tion to. In CreModul and ChModNam we obtained a reasonable amount of time needed also
for execution of the operation itself. The reason for that is the state of GemStone's caches.
CreModul is de�ned in section 2.5 to be executed as the very �rst operation after database
login. At that time there are of course no objects in GemStone's caches. Thus, execution of
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CreModule causes a lot of physical disk accesses, some of which access very big objects. These
accesses are expensive with respect to execution time. At the time execution of ChModNam

starts, the cache is not empty but contains the wrong objects. This is due to the previously
executed analysis operations. Especially ClosTrav and UnparArc massively access only ar-
chitectural information like module names, module positions or import relationships which
occupy the cache. Thus it is likely, that accesses to the global symboltable then performed by
ChModNam cause a number of physical disk accesses.

5.2.5 A Comparison of GemStone in local vs. remote Mode

Figure 18 depicts a comparison of execution times of increment operations with GemStone in
local and remote mode.
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Figure 18: Increment Operations with GemStone in Local and Remote Mode

The �gures have been obtained with an eight-level database. We repeated each operation 15
times and created ten new modules during the benchmark.

Generally, GemStone performs faster in local mode than in remote mode. The upper bound,
however, for executing an increment operation in remote mode is 90 milliseconds. Moreover,
we can see from that �gure that execution in remote mode costs an overhead of at least �ve
milliseconds which is about the time required for executing an RPC.

What is not depicted in that �gure but worthwhile to mention are the execution times needed
by OpenOMS and CloseOMS. To log into GemStone, which is the main operation performed
by OpenOMS needs in local mode about 1.5 seconds whereas a login in remote mode costs
about 11 seconds. This is due to the fact, that GemStone has to startup a Gem process
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in remote mode, which it need not in local mode as the benchmark and the Gem process
are linked together. Besides process startup, an additional amount of time is required for
establishing the communication links between the benchmark and the Gem process.
Logging out of GemStone costs in local as well as in remote mode about 750 milliseconds.

5.3 Conclusions

OMSs are in general only comparable with respect to performance, if they provide the same
functionality. Usually, the more functionality a system o�ers, the worse its performance be-
comes. GemStone has schema de�nition facilities, which do not only allow for a de�nition of
the structure of objects, but also of objects' behaviour, it provides optimistic and pessimistic
transaction management strategies and distributed access to objects by o�ering a client/server
model for all of which GRAS has no counterpart. As GemStone o�ers a lot more functionality,
it would be not surprising if GRAS would perform better! In this case, the comparison would
be worthless.

Fortunately, things turned out exactly the other way around! Although GemStone o�ers a
much richer functionality, it performs more e�cient than GRAS. This not only holds for the
disk space needed to store abstract syntax graphs, but also for the execution times of bench-
mark operations, which of course are more important. Except one operation, where GRAS
bene�ted from redundant storage, GemStone could stand the comparison against GRAS.

Moreover, it turned out that GemStone is capable to perform an optimistic transaction ex-
ecuting a single increment operation in less than a second. A second for an user-interaction
must be considered as too slow in general. An upper bound from the author's point of view
would be about 500 milliseconds. However, during the past, hardware platforms got faster
by a factor of two each year. We have seen a similar development with OMSs in general and
GemStone in particular. Moving from GemStone Version 1.5 to 2.0 brought an increase in
performance up to a factor of 5 [DEH+91]. Upgrading from Version 2.0 to 2.5 again brought a
reasonable increase in performance. Thus, we expect in the near future GemStone to perform
fast enough to really execute each user-interaction as a single transaction.

Our �nal conclusion concerns the overhead needed for remote access to a syntax-graph. This
overhead is less than 30 milliseconds in all operations except database login. In the case
of database login which is performed only once during an editing session, we can tolerate a
response time of 10 seconds. In all other cases, the overhead is that small, that it is neglectable.

6 Summary and Future Work

We de�ned a new benchmark dedicated to measure the performance of OMSs when they are
used as repositories for syntax-directed tools. Therefore, we de�ned the conceptual schema of
the benchmark, the operations and initial database states based on an analysis of an existing
syntax-directed environment.

We implemented the benchmark on top of the fully object-oriented database system GemStone
and the graph storage system GRAS. We described those implementations, i.e. the realisation
of the conceptual schema and that of the benchmark operations.
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We described the results we gained from those two implementations with respect to place- and
time-e�ciency. It turned out, that although GemStone provides a lot more functionality, it
does not perform worse than GRAS. With a number of benchmark operations it even shows
better performance.

Currently, we implement the benchmark in a multi-user version in order to see at which user-
load the performance of GemStone becomes unacceptably slow. Next, we intend to implement
the benchmark on the fully object-oriented database system 02 [BDK92] in the single-user
version we presented in this report, as well as in the multi-user version. This will then allow
us to compare the performance of a server-oriented object-oriented database (GemStone) with
that of a client-oriented object-oriented database (O2).

Moreover, we participate in the Esprit-III project GoodStep (General Object-Oriented Data-
bases for SofTware Engineering Processes). This project will enhance the O2 system to meet
speci�c software engineering application requirements. In this project, we intend to develop a
generator for syntax-directed tools that store their documents in O2.
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