
Databases for Software Engineering Environments

|

The Goal has not yet been attained

Wolfgang Emmerich�, Wilhelm Sch�afer� and Jim Welshz

Informatik 10

Universit�at Dortmund

Postfach 500 500

W-4600 Dortmund 50

Germany
emmerich@udo.informatik.uni-dortmund.de

wilhelm@udo.informatik.uni-dortmund.de

Dept. of Computer Science

z University of Queensland

Queensland 4072

Australia

jim@cs.uq.oz.au

Abstract

We argue that, despite a substantial number of proposed and existing new database

systems, a suitable database system for software development environments and especially

process-centred environments does not yet exist. We do so by �rst reviewing and re�ning

the requirements for such systems. We then review a number of available and archetypical

database systems and show that they do not meet these requirements.

1 Introduction

Software development environments (SDEs) include tools which support most of the software
life-cycle phases, i.e. construction and analysis of the corresponding documents and document
interdependencies. Sophisticated integrated environments enable the incremental, intertwined
and syntax-directed development and maintenance of these documents such that errors are
easily traced back through di�erent documents and necessary changes are propagated across
document boundaries to correct the errors (c.f., for example, [HN86, ELN+92, BCD+88]).
Such environments should provide multi-user support1, i.e. they should have
exible and
adaptable mechanisms (often called "design transactions") to control access by a number
of users to shared information. The construction of such environments and corresponding
advanced design transaction mechanisms is an area of active research (c.f., for example, [BK91,
PSW92, TSY+88]). We call this latter kind of environment a process-centred environment
(PSDE), because the provided multi-user support is or rather should be based on a well-de�ned
development process, i.e. the de�nition of the users' responsibilities, their corresponding access
rights, and the schedule of the activities to be carried out by them.

1As the people normally called software developers are the users of an SDE and this paper discusses only
SDEs, we use the term user instead of developer hereafter.

1

For any kind of environment, a large number of objects and corresponding relations on very
di�erent levels of granularity have to be stored and retrieved, and, in case of a process-centred
environment, these objects must be manipulated under the control of an advanced transaction
mechanism. An underlying database management system is thus a key component of a PSDE
and if not chosen carefully, could become a major performance bottleneck when the PSDE is
in use.

As early as 1987, Bernstein has argued that dedicated database systems for software engineer-
ing, specialised with respect to functionality and implementation, are necessary [Ber87]. He,
and others [TSY+88] argued that the functionality and e�ciency of existing systems (in par-
ticular, relational systems) do not adequately support the construction of software engineering
tools and environments. A number of systems, some of which di�er radically from standard
relational technology, have since been described in the literature and some are now available
as commercial products.

In this paper we argue that, despite the substantial number of these new database systems,
a suitable database system for SDEs, and especially PSDEs, does not yet exist. We do so by
reviewing and re�ning, in sections 2 and 3, some of Bernstein's requirements based on our own
experiences in building such environments and tools. Section 4 then brie
y reviews a number
of available database systems, and shows that these requirements are not met by them.

2 Process centred Software Development Environments

Architecturally, a process centred software development environment consists of the following
main components:

� a process engine that coordinates the work of developers involved in a project,

� a set of integrated, syntax-directed tools that allow developers to conveniently manipu-
late and analyse documents and to maintain consistency between related documents of
di�erent types, and

� an underlying database for software engineering (DBSE) which is capable of storing
project information and documents.

2.1 The Process Engine

The process engine executes a formal description of a software process in order to coordinate
the work of the users involved in a project. In more detail this covers the following issues.

Multi-User support The process engine determines for each user participating in a project
a personal agenda that indicates on which documents he or she may perform particular actions.
The contents of the agenda depend on

� the user's responsibilities in the project and

� the current state of the project.

The invocation of tools that enable a user to perform the actions contained in an agenda is
controlled by the process engine via the agenda. In simple terms, the agenda acts as a menu

2

from which the user selects his or her next activities.

In most projects a number of users work in parallel on di�erent parts of the overall project
activity. This means that changes to a user's agenda are not only necessary due to his or her
own actions. They are also necessary when some other user changes the state of a document
on which the �rst user's agenda depends.
As each user usually works at a personal workstation, the agendas must be presented and
updated in a distributed fashion. Likewise, the tools that are called via the agenda have to
access documents in a distributed fashion.
To ensure orderly use of documents in parallel development activities, the process engine must
also be able to create versions of documents, or sets of documents, to retrieve a particular
version and to merge version branches of documents.

E�ciency The state of the project changes, when a new document is introduced or an
existing document is deleted, when a document is declared to depend on some other document,
when a document becomes complete or when it becomes incomplete due to a change in some
other document it depends on. Although this list is incomplete, it already indicates that
changes to project states occur frequently. All of them cause a recomputation of the agenda.
As a user cannot perform any tasks while his or her agenda is being computed, the computation
must be done e�ciently.

Persistence and Integrity The process engine may need to be stopped from time to time.
Therefore it must be able to store the state of the project persistently in order to prepare a
restart. Even if it is stopped accidentally e.g. by a hardware or software failure, it must resume
with a consistent project state. Moreover, such a failure must not result in a signi�cant loss of
project information. Thus we require that the process engine preserves integrity of any project
information, i.e. it ensures that continuation of any operation is possible after any failure.

Change It has been widely recognised that software processes can not completely be de�ned
in advance [Mad92, PS92]. The process being executed needs to be changed \on the
y" from
time to time. For example, new users may participate in the project, responsibilities may be
rede�ned, new types of documents may be introduced or new tools for manipulation of these
documents may need to be integrated.

Reasoning capabilities As it might not always be clear to a user why a particular document
is to undergo a particular action, the process engine should have the capability to explain this
to the user. For instance, the process engine should be able to answer questions from a user like
"What is the state of the speci�cation of module m1?", "Who else is involved in the project?"
or "What happens if I now code module m1?". The latter example indicates that the reasoning
capabilities do not only explain how a particular project state was reached, i.e. the past (as
in classical expert system reasoning) but that they also give insights about possible future
consequences of a particular action.

3

2.2 Highly integrated syntax-directed tools

Syntax-direction The tools contained in a PSDE are used by users to edit, analyse and
transform documents.
To give as much support to users as possible, the tools should be directed towards the syntax
of the languages in which documents are written. In particular, they should reduce the rate
at which errors concerning the context-free syntax are introduced to documents. If the editors
are template-based, such errors can be detected by scanning only the terminal symbols input
by the user. More sophisticated editors that enable textual input must parse the text during
or immediately after each edit operation and indicate the errors if any. Such editors normally
reject syntactic errors within newly inserted material, but may still permit syntactic inconsis-
tencies to result from edit operations. Changing a Pascal if-statement into a while-statement
by two separate word replacements is the classic example of a situation which demands such
tolerance.

Consistency preservation Besides dealing with errors concerning the context-free syntax,
tools should also deal with errors concerning both the internal static semantics of documents
and inter-document consistency constraints. The tools may allow temporary inconsistencies
to be created both during input and as the result of edit operations, since document creation
in a way which avoids such temporary inconsistencies is impractical in many cases.
Once created, of course, these inconsistencies must be brought to the user's attention in an
appropriate manner. Two approaches may be taken: automatic consistency checking, i.e.
whenever an inconsistency is created it is automatically brought to user's attention, and con-
sistency checking on demand, i.e. inconsistencies are checked for only when the user requires
that it be done.
Tools should also support users in removing inconsistencies. In particular, follow-on inconsis-
tencies such as use of a non-existing import, could be removed on demand by change propa-
gation, such as propagating the change that rede�nes the import to all places where it is used.
Finally, tools must allow the user to de�ne additional semantic relationships during the course
of a project. For instance, dependencies between the source-code, the test plans and the tech-
nical documentation on the level of identi�er names (and corresponding section titles in the
technical documentation) may only be de�ned in this way.

Persistence and Integrity Obviously, documents must be stored persistently since they
must survive editing processes. Moreover, users require tools to operate as safely as possible,
i.e. in case of a hardware or software failure they expect that the integrity of documents
(their immediate usability by the same or other tools) will be preserved and that signi�cant
user e�ort will not be lost. Thus, we require the persistence to be achieved as follows: An
interactive session with a tool of the PSDE consists of a sequence of user-actions some of
which may change the software document under manipulation. We require from tools that a
user-action is persistent if and only if it is completed. Moreover, user-actions must be designed
in a way that the integrity of a document is guaranteed whenever a user-action is completed.
In case of a hardware or software failure we require that the tools should recover to the last
completed user-action.

Backtracking When the consequences of user actions are persistent, users must have the
ability to backtrack or \undo" such actions when mistakes are made. Thus, in addition to the

4

document versions used for management purposes in a multi-user project, users may want to
store intermediate revisions of a document so that they can revert to a previous revision if their
subsequent modi�cations turn out to be ill-chosen. In general, tools must support this user
ability to backtrack, either directly (via explicit undo mechanisms) or indirectly (by enabling
users to make their own provision for backtracking, as in the use of revisions outlined above).

E�ciency Very fast typists can type about 300 characters per minute. In this case, the time
between successive keystrokes is about 200 milliseconds. Thus any response time of an editor
below 200 milliseconds is non-critical, as users are never going to recognise them as delays.
Unlike secretaries, users do not type continuously. They frequently pause to think about what
to do next. These thinking periods break the basic sequence of user transactions into a higher-
level sequence of task-oriented transactions. If the non-trivial processing that a tool carries
out is aligned with these natural breaks in user interaction, much higher response times may
be acceptable. Thus editor users frequently pause when they have �nished editing one syntac-
tical construct before they start editing another. If the processing involved in static semantic
checking, say, is somehow aligned with these syntactical constructs, users will rarely recognize
a response time for this processing that is below a second as a noticeable delay.
In other circumstances, users may accept much higher response times, if they occur less fre-
quently and can be justi�ed by the complexity of the task concerned [WBK91]. No user, for
instance, would reject using a compiler just because it needs more than a second to compile a
source. In general, therefore, the response times achieved by tools for various operations must
be consistent with the user's needs and expectations at keystroke, transaction and task levels.

3 Requirements for DBSEs

3.1 Persistent Document Representation

What is a document in the database? The common internal representation for syntax-
directed tools such as syntax-directed editors, analysers, pretty-printers and compilers is a
syntax-tree of some form. In practice, this abstract syntax-tree representation of documents is
frequently generalised to an abstract syntax-graph representation for reasons such as e�cient
execution of documents, consistency preservation by tools, and user-de�ned relations within
documents.

As an example of a small excerpt from an internal Modula-2 program representation c.f.
�gure 1 which will be used to explain further details in the following.

Each PSDE supports execution of documents to some degree. In some PSDEs, the process
model is the only executable document, but most PSDEs o�er also test and execution of soft-
ware documents by interpretation of the document syntax-tree. Such interpretation can be
achieved purely in terms of an attributed syntax-tree itself but is very ine�cient. For exe-
cutable documents, therefore, the abstract syntax-tree representing the document is commonly
enhanced by additional edges that indicate the control
ow in order to enable more e�cient
interpretation (c.f. the " " edges exemplifying the control
ow of a while statement in
�gure 1).
Consistency checking on a document can be done by attribute evaluations along parent/child
paths in the document's attributed abstract syntax tree. The evaluation paths are computed

5

PROCEDURE InitWindowManager(y:<TypeIdentifier>);

VAR x:<TypeIdentifier>;

BEGIN

WHILE <BooleanExpression> DO

x:=Expression;

<Assignment>

END

END InitWindowManager;

Proc
Decl

Decl
List

VarDecl
List VarDecl Ident

Stat
List

While
Stat

Bool
Expr

Stat
List

AssStatProc
Decl Ident

Name=’x’

Name=’x’

AssStat

...

Abstract Syntax Tree

User−defined Relations

Control−flow Relations

Context−sensitive Relations

ToObject

Expr

Name=’InitWindowManager’

Decl
Ident

Param
List

CBV
Param Ident

Ident

Name=’y’
ToName

ToType

ToFirst

ToLast

ToIdent

ToPar
List

ToDecl

ToStat
ToFirst

ToFirst ToFirst

ToCond

ToBody

ToName

ToType

ToLHS

ToRHS

ToFirst

ToLast

T
oN

ex
t

A
llI

ni
tia

lis
eP

ro
cs

Ident

ContIn

C
on

tIn

ContIn

C
on

tIf
F

al
se

ContIf
True

ToLast ToLast

ToLast

Figure 1: Modula-2 external textual and internal graph representation

at generation-time based on attribute dependencies. This approach, however, has proven to
be quite ine�cient even for static semantic checks of a single document, because of the long
path-lengths involved. Techniques based on the introduction of additional, non-syntactic paths
for more direct attribute propagation have been developed [JF82, BC85]. Such non-syntactic
paths are examples of context-sensitive relationships which connect syntactically disjoint parts
of a document, and are used in both consistency checking and change propagation when the
document is changed (c.f. the " " edge which connects declaration and use of an identi�er
in �gure 1).
As noted in section 2.2, the user may also introduce additional user-de�ned relations between
document parts for purposes of documentation, traceability, etc.. All such relationships must
also be seen as edges in the abstract syntax graph that represents the document during ma-
nipulation, as illustrated by the " " edge labelled AllInitialiseProcs which connects all
procedures which implement create/initialise operations.

6

How is it stored? Due to the requirements of persistence and integrity, a persistent rep-
resentation of each document under manipulation must be updated as each user-action is
�nished. Typically a user-action a�ects only a very small portion of the document concerned,
if any. Given that the representation under manipulation is an abstract syntax-graph, how-
ever, the update can easily become ine�cient if, �rstly, a complex-transformation between the
graph and its persistent representation is required and, secondly, the persistent representation
is such that large parts of it have to be rewritten each time, although not being modi�ed. This
would for instance be the case, if we had chosen to store the graph in a sequential operating
system �le which is updated at the end of each user-action.
Such ine�ciency can be avoided completely if the persistent representation takes the form of
an abstract syntax graph itself, with components and update operations that are one-to-one
with those required by the tools concerned. To allow this approach, therefore, the DBSE must
support the de�nition, access and incremental update of a graph structure of nodes and edges
with associated labelling information. To preserve the integrity of the abstract syntax-graph,
the DBSE must support atomic transactions, i.e., a transaction mechanism that allows us to
group a sequence of update-operations such that they are either performed completely or not
performed at all. To ensure that a tool can recover in case of a failure to the state of the last
completed user-action, each completed DBSE transaction must be durable.

Inter-document relationships Context-sensitive relations and user-de�ned relations be-
tween document components, as discussed above, contribute to the need for an abstract syntax-
graph representation of a software document. In practice, however, such relations are not con-
�ned to within individual documents { they frequently exist between components of distinct
documents. As an example c.f. �gure 2.

The �gure illustrates the connection of the previously shown source-code graph (�gure 1)
with the corresponding parts of a design document and the technical documentation resp.
Thus a module de�nition in the design document has inter-document relationships with the
implementation of that module in the corresponding implementation document. Likewise, a
paragraph in the technical documentation may be linked to the corresponding (formal) module
de�nition in the design document, for traceability reasons.

To handle these inter-document relationships in a consistent way, the obvious strategy is
to view the set of documents making up a project as a single project-wide graph. This
approach, however, immediately reinforces our concern that the cost of updating its persistent
representation should be independent of the overall size of the graph concerned, and requires
that the DBSE must avoid imposing limits on the overall size of the graphs it can handle.

We note that this generalisation to a single project-wide graph does not necessarily undermine
the concept of a document as a distinguishable representation component. If we distinguish be-
tween aggregation edges in the graph which express syntactic relationships, and reference edges,
which arise from control, context-sensitive or user-de�ned relationships, then a document of
the project is a subgraph whose node-set is the closure of nodes reachable by aggregation edges
from a document node (i.e., a node not itself reachable in this way), together with all edges
internal to the set2. The edges not included in this way are then necessarily the inter-document
relationships inherhent in the project.

2What we call a subgraph here, is comparable to the notion of a composite entity in PACT VMCS (cf. [Tho89])

7

Decl
Ident

ToIdent

Ident
List

Proc
Decl

ToFirst Decl
Ident

ToIdentToExport

ToImport
...

Name=’WindowManager’

Function
Module

Decl
Ident

ToIdent

Proc
Decl

ToFirst Decl
Ident

ToIdent

Name=’WindowManager’

Name=
’InitWindowManager’

ToProcs

Documentation

Paragraph
List

TitleSection

Paragraph

Section
List

Value=’WindowManager’

ToNext

ToNext

ToSection
List ToFirst ToTitle

ToParagraph
List

...

ToFirst

ToLast

......

Documentation Subgraph

Module Implementation Subgraph

Value=’The Module ...’

Operation
List

Operation
List

Name=
’InitWindowManager’

...

...T
oN

ex
t

ToDecl

Module Design Subgraph

Function
Module

T
oI

m
plT

oI
m

pl

ToDoc

ToFirst

Par
List

Par
List

CBV
Par Ident

Ident

Name=’y’

ToFirst ToName

ToType

ToParList

ToParList CBV
Par Ident

Ident

Name=’y’

ToFirst ToName

ToTypeToStat

Proc
Decl

Decl
Ident

ToIdent

...

...ToDecl

Par
List Ident

Ident

ToFirst ToName

ToType
ToStat

Name=’ComputePosition’

Name=’Pos’

CBR
Par

Name=’Position’T
oN

ex
t

ToParList

T
oI

m
pl

T
oI

m
pl

T
oI

m
pl

T
oI

m
pl

T
oI

m
pl

T
oI

m
pl

ToImport
...

...

Figure 2: Internal representation of Inter- and Intra-document Relations

3.2 Data De�nition Language/Data Manipulation Language (DDL/DML)

The kinds of nodes and edges required to represent a project, and the attribute information
associated with each, cannot be determined by the DBSE itself. It should be de�ned and
controlled, however, by the DBSE in order to have di�erent tools sharing a well-de�ned project-
graph. The overall structure of the project's syntax-graph should therefore be de�ned in terms
of the data de�nition language of the DBSE and be established and controlled by the DBSE's
conceptual schema.
As a minimum, we require that the data de�nition language can express the di�erent node
types that occur within the graph, that it can express which edge-types may start from node
types and to which node types they may lead, and that it can express which attributes are
attached to node types. Such basic requirements are common to any graph storage.
In practice, the data de�nition language should be tailored to the syntax graphs that the
DBSE is used to store. Structures that occur often in syntax-graphs are lists and sets of
nodes that contain nodes of possibly di�erent types. As an example, consider statement lists
in programming language documents that contain statements of di�erent types or data
ow
diagrams that contain sets of terminators, processes and stores. The data de�nition language
should therefore o�er means to express these common aggregations as conveniently as possible.

As argued previously, changes to the internal syntax-graph should become incrementally per-
sistent. Therefore, edit operations performed by tools on documents have to be implemented

8

in terms of operations modifying the internal syntax-graph. These operations should be es-
tablished as part of the DBSE schema for several reasons:

Encapsulation The structure de�nition of the project-graph should be encapsulated with op-
erations which preserve the graph's integrity. They then provide a well-de�ned interface
for accessing and modifying the graph. In order to enforce usage of this interface, the
operations must become part of the DBSE schema. Otherwise tools could circumvent
the interface and directly access and modify the graph using low-level DBSE operations
such as creation or deletion of nodes and edges.

Decoupling of tools As argued previously, relationships between documents should be
maintained. If graph modifying operations were implemented in tools rather than as
part of the DBSE schema, tools would have to know the document structure of docu-
ments manipulated by other tools in order to establish or change these inter-document
relationships. This would unnecessarily lead to dissemination of information about the
project-graph's structure into the implementation of tools.

Performance Executing graph accessing and modifying operations within the DBSE is more
e�cient than executing similar operations within tools as the number of nodes and edges
that need to be transferred from the DBSE to tools via some network communication
facility is reduced signi�cantly.

To establish graph-modifying operations as part of the DBSE schema, the DML must be
powerfull enough to express them. This means in particular, that the DBSE's DML must
be capable of expressing creation and deletion of nodes and edges as well as assignment of
attribute values. Moreover, the DML must be computationally complete, as alternatives and
iterations are needed in graph-modifying operations for navigation purposes.

In addition, we noted in subsection 2.1 that the user may wish to query the project state via
a reasoning component in the process engine. In practice, such queries may also arise from
within the process engine itself, and from the process engineer who maintains the process
governing any project.
The process engine needs to query the project's current syntax graph in order to extract
information about the states of documents on which the engine must base its decisions. An
example for such a query could be: select all program modules from the set of modules for
which programmer p1 is responsible that are incomplete but whose speci�cations are complete.
The process engineer may want to query the internal project graph in order to determine the
project state.
The queries to be answered by the reasoning component are not known in advance, they have
to be formulated in a process-related query language and must be translated by the reasoning
component into a DBSE query. Likewise the queries the process engineer will use are not
known a priori, i.e. at the time the PDSE is being built, so they cannot be precompiled.
Thus, the DBSE must o�er ad-hoc query facilities to be used by the process engine, and
indirectly by the user and the process engineer.

3.3 Schema Updates

In section 2.1 we noted that the process being executed may have to be changed \on the
y".
The DBSE must therefore enable the de�nition of new types of nodes and edges that are to
be included in the internal syntax graph. Existing nodes and edges must not be a�ected by
this kind of schema update.

9

Moreover, it is necessary that new types of edges can be added to existing types of nodes
to allow the integration of nodes of newly de�ned types into an existing syntax graph. This
implies that existing nodes whose types are modi�ed by such a schema update can migrate
from the old type to the modi�ed one.

Consider as an example, the introduction of a new quality assurance procedure to be applied to
all future documents as well as existing ones. The new procedure may require that the person
who reviews a document writes a review report that is attached to the document. Furthermore
his or her name is to be recorded as an attribute of the reviewed document. In this situation,
the schema of the internal syntax graph needs to be modi�ed: A new document type review
report must be included and each reviewable document needs to have an additional node to
record the document's reviewer and an additional edge to express its relationship to the review
report.

3.4 Revisions and Versions

Given the overall representation of a project de�ned in section 3.1, the DBSE must support the
creation and management of versions of those subgraphs that represent versionable document
sets. In particular, it must enable its clients to derive a new version of a given subgraph, to
maintain a version history for a subgraph, to remove a version of a given subgraph, and to
select a current version from the version history. In doing so it must resolve between alternative
duplication strategies, both within versions and for extra-version relations, preferably in a
de�nable way.

Within versioned subgraphs the DBSE must resolve between fully lazy, fully eager and hybrid
duplication strategies for the nodes and aggregation edges of the subgraph concerned. Fully
lazy duplication gives maxium sharing of components, and hence minimum storage utilisation,
but complicates the update process during user edits. Fully eager duplication avoids all such
complications, but implies maximum storage utilisation. To meet the needs of all PSDE
functions, a de�nable hybrid strategy between these two may have to be suported by the
DBSE.

The DBSE must also resolve between alternative strategies for handling both intra- and inter-
document relationships (or reference edges). Within a document, reference edges will normally
be treated (like aggregation edges) as version-duplicated (i.e., a new edge is automatically
created for each version created). In particular circumstances, however, such edges may be
seen as version-speci�c (and hence not duplicated when new versions are created). Relations
between documents within a versioned document set (i.e. within a con�guration) are treated
similarly, i.e., they may be either version-duplicated or version-speci�c. Relations between a
versioned document and a document outside the versioned set are also subject to the same
basic choice, but version-duplication in this leads to a state which we call version-transparent
since the same relation necessarily holds between all versions within the versioned set and the
same (component of the) unversioned document. Again a de�nable hybrid strategy may be
necessary for e�ective PSDE support.

Figure 3 depicts the logical view of the module design graph being under version control.
An additional (version-speci�c) edge ToPredVers is introduced that makes the version history
explicit by leading for each document node to the document node of the predecessor version.
An example of a version-transparent edge is the ToDoc edge connecting a function module
node with the corresponding section title node in the documentation subgraph.

10

Documentation

Paragraph
List

TitleSection

Paragraph

Section
List

Value=’WindowManager’

ToNext

ToNext

ToSection
List ToFirst ToTitle

ToParagraph
List

...

ToFirst

ToLast

......

Documentation Subgraph

Value=’The Module ...’

Module Design Subgraph

ToDoc

Decl
Ident

ToIdent

Ident
List

Proc
Decl

ToFirst Decl
Ident

ToIdentToExport

ToImport
...

Name=’WindowManager’

Operation
List

Name=
’InitWindowManager’

Function
Module

ToFirst
Par
List

CBV
Par Ident

Ident

Name=’y’

ToFirst ToName

ToType

ToParList

Decl
Ident

ToIdent

Ident
List

Proc
Decl

ToFirst Decl
Ident

ToIdentToExport

ToImport
...

Name=’WindowManager’

Operation
List

Name=
’InitWindowManager’

Function
Module

ToFirst
Par
List

ToParList

T
oP

redV
ersion

ToD
oc

Vers 1.1

Vers 1.0

version−duplicated
version−specific
version−transparent

Figure 3: Logical View of a Document under Version Control

3.5 Access Rights and Adjustable Transaction Mechanisms

Requirements on the DBSE functionality which stem from the multi-user support of PSDEs,
are the de�nition of access rights for particular documents and parts thereof and the de�ni-
tion of a variety of transaction mechanisms to control and enable parallel access to shared
information by multiple users.

In more detail, to de�ne access rights, the DBSE must be able to identify users and arbitrary
many (probably nested) user groups. Secondly, the DBSE must allow to de�ne and modify
the ownership of subgraphs (which could even be a single node) at any time. Similarly, a
subgraph may be accessed by several groups. Thus a subgraph needs to maintain its group
memberships. Thirdly, the DBSE must allow to de�ne and modify access rights for a subgraph
individually for its owners and groups at any time. Finally, the DBSE must enforce that the
de�ned access rights are respected by all its users3.

Conventional transaction mechanisms which control parallel updates of the database have been
proven to be too restrictive to be used in PSDEs because they could result in a rollback which
deletes the e�ect of a possibly long-lasting human development e�ort, or they could block the
execution of a certain activity for days or even weeks. Both situations are untolerable.

Consequently, advanced transaction mechanisms have been developed like group transac-
tions [KSUW85], cooperating transactions [NSZ91], or split/join transactions [PKH89]. Their
common characteristics is that they relax one or more properties of conventional transaction
mechanisms which are atomicity, consisistency preservation, isolation and durability. For a
detailed overview and critical evaluation of those mechanisms we refer to [BK91].

3The kind of discretionary access control required here is similar to that provided by modern operating
systems like e.g. UNIX. It di�ers in that a subgraph can have more than one group that may access it. Thus,
we can express access rights in a more
exible way without introducing arti�cial user groups.

11

We argue, however, that none of them is powerfull enough to be incorporated as the transaction
mechanism into the database of a PSDE. As already argued in [PSW92], the process engine
which knows the current state of an ongoing project, can only decide whether and when to
request a lock for a particular subgraph and how to react, if the lock is not granted. It also
de�nes whether a transaction is executed in isolation or in a non-serialisable mode.

The requirements for the transaction mechanisms of a DBSE are that it o�ers the possibility
to de�ne and invoke either a serialisable transaction or a non-serialisable transaction which
only guaratees atomicity and durability.

Atomicity and durability are needed to preserve the integrity of the project graph against
hard/ or software failures as required in subsection 2.1 and 2.2 resp. Serialisability is needed,
for example, when project state information and corresponding user agendas are updated (c.f.
subsection 2.1). This information must not be invalidated by parallel updates as that could
hinder the process engine from continuing its work or let the user perform unnecessary work.
Fortunately, these updates are relatively short and do not involve any human interaction.
Moreover, computation of a users' agenda only incorporates read access to project's state
information such that it may be performed in an optimistic mode.

An example of a situation where transactions are either executed in a serialisable or non-
serialisable mode depending on the project state is the following. During the very �rst de-
velopment of a document, editing the document could and should be done in isolation until
the document has evolved into a certain mature state, maybe a state where the document is
released. During maintenance phase, a released document should be always consistent in itself
as well as w.r.t. other documents. Thus a transaction which does change propagations due
to error corrections should be executed immediately, even if a�ected documents are currently
accessed by other transactions.

3.6 Distribution

As noted in subsection 2.1 multi-user support usually means distribution of the project ac-
tivities over a number of single-user workstations. These users need to share the projects'
internal syntax graph among their workstations. There are basically two ways how this could
be achieved. The �rst is to allow for a distributed access from the users' (client) workstations
to a DBSE server. The second way would be to distribute transparently the syntax graph
itself over various DBSEs that are locally accessible from user's workstations.

With the �rst approach, the whole syntax graph resides on the DBSE server. This server would
surely become a performance bottleneck for the whole PSDE. Hence, this approach seems
feasible only for small projects (say less then 10 users). It is, however, worth consideration,
as many projects are either small projects or can be split into fairly independent sub-projects
that are small enough.

With the second approach, the process engine can arrange that those parts of the internal
syntax graph that represent a particular document are locally accessible from the workstation
of the responsible user4. The tools that operate on the syntax graph, however, should not need
to know anything about the physical distribution of the syntax graph, i.e. the distribution
must be transparent for them. It should rather be the responsibility of the DBSE to manage

4Though the document itself is locally accessible, there may still be inter-document relationships in the
internal syntax graph, that lead to remote nodes.

12

physical distribution. Following this approach would surely reduce the tra�c on the local area
network, as well as the amount of expensive remote accesses to the internal syntax graph.
Thus much larger projects could be handled following this approach.

3.7 DBSE Administration

As the contents of the DBSE might be the most important capital of software houses, issues
of data security are very important. This involves two aspects: access to the database and the
possibility of hardware crash recoveries.

The DBSE must be able to restrict the access to its objects such that non-authorised persons
are excluded from any access. This means that the DBSE must be able to identify its users.
Additionally, the DBSE must enforce authentication e.g. by assigning passwords to DBSE
users such that it can assure that persons correspond to DBSE users.
Besides this, the access control mechanism required in subsection 3.5 needs users to be known
to the DBSE. Thus, for purposes of user management, the DBSE has to o�er means to be
used by a database administrator (DBA) in order to enter new users and groups to the DBSE,
to change user informations like passwords, to remove users from the set of known users and
groups from the set of known groups, and to change membership to groups.

Moreover, data stored in the DBSE must be protected from any hardware failures such as
disk crashes. Therefore the DBSE has to o�er means for dumping the contents of the DBSE
to backup media like e.g. tapes. As the size of a project database may be too large to be
completely backed up daily, the DBSE must allow for incremental backups. The DBA should
not have to shut down the database in order to perform these incremental backups.

3.8 Views

As proposed in subsection 3.1, the project graph may contain a lot of redundant information
{ in �gure 2 the nodes Function, Module, DeclIdent, OperationList and the edges ToIdent

and ToExport are duplicated in the design and implementation subgraphs. Eliminating this
duplication by sharing the aggregation subtrees concerned has the following advantages: (1) the
conceptual schema is simpli�ed (2) storage of the schema and corresponding data requires less
space, and (3) consistency preservation especially across document boundaries becomes much
easier. Such sharing cannot be contemplated, of course, if automatic consistency preservation
between documents is inappropriate.

If subtree sharing is to be used, tools accessing the project graph need a view mechanism like
that o�ered in many relational database systems, to maintain appropriate separation of tool
concerns and so allow separate tool development and maintenance.

Figure 4 sketches how the redundancy which exists in �gure 2 is reduced in a new schema. The
schema will be accessed by the design editor and the implementation editor through two views.
The �gure depicts the conceptual project-graph together with the design and implementation
view of this graph.
The design view of a function module node is declared to hide the ToHiddenOps edge de�ned
in the conceptual schema as these operations shall not be seen at the module interface level.
The design view also renames the ToExportedOps edge of a conceptual function module node
to ToExport. Finally, the design view hides the ToDecl and ToStat edges de�ned for procedure

13

Function
Module

Decl
Ident

ToIdent

Proc
Decl

ToFirst
Decl
Ident

ToIdent

Name=’WindowManager’

Name=
’InitWindowManager’

Operation
List

...

...
ToDecl

Par
List

ToParList CBV
Par Ident

Ident

Name=’y’

ToFirst ToName

ToTypeToStat

Proc
Decl

Decl
Ident

ToIdent

...

...ToDecl

Par
List Ident

Ident

ToFirst ToName

ToType
ToStat

Name=’ComputePosition’

Name=’Pos’

CBR
Par

Name=’Position’

ToParList

ToImport
...

ToExportOps

ToFirstOperation
List

ToHiddenOps

Function
Module

ToIdent

Proc
Decl

ToFirst ToIdent

Name=’WindowManager’

Name=
’InitWindowManager’

Operation
List

ToParList

Name=’y’

ToFirst ToName

ToType

ToImport
...

Decl
Ident

Decl
Ident

Par
List

CBV
Par

Ident

Ident

ToExport

Function
Module

ToIdent

Proc
Decl

ToFirst ToIdent

Name=’WindowManager’

Name=
’InitWindowManager’

ToProcs Operation
List

...

...
ToDecl

ToParList

Name=’y’

ToFirst ToName

ToTypeToStat

ToIdent

...

...ToDecl

ToFirst ToName

ToType
ToStat

Name=’ComputePosition’

Name=’Pos’

Name=’Position’

ToParList

ToImport
...

Decl
Ident

Proc
Decl

Decl
Ident

Par
List

Decl
Ident

Par
List

CBR
Par

CBV
Par

Ident

Ident

Ident

Ident

ToLast

ToNext

Conceptual Graph

Design View

Implementation View

Figure 4: Reducing Redundant Information with Views

declaration nodes in the conceptual schema from each procedure declaration node in the design
view. Consequently, all node types reachable only from these edges in the conceptual schema
are also hidden in the design view.
The implementation view of a function module declares the ToProcs edge to lead to a
node of a virtual node type which is constructed by concatenation of the lists accessed via
the ToExportedOps and ToHiddenOps edges of a function module in the conceptual schema.
This allows us to have exported and hidden operations merged in one operation list of the
implementation graph.

These tool-oriented views must be regarded as virtual structures since they are not actually
stored in the DBSE, but updates on views by tools must propagate automatically to the
underlying project graph.

Introduction of such a view mechanism, however, has non-trivial consequences for the access
control mechanisms required (since users see this access control as applying to document views)
and for the versioning policy which the PDSE designer or the users may adopt. Detailed
resolution of these issues is largely a matter of PSDE design and is thus beyond the scope of
this paper. We note, however, that provision of such a view mechanism is clearly a requirement
for e�ective PDSE design and implementation.

14

4 Existing Database Management Systems

4.1 Relational Database Management Systems

If syntax graphs are shared in a relational database management system (RDBMS), a table
has to be de�ned for each node type. A tuple in such a table then represents a node. Each
table has a column with unique identi�ers (UIDs) used for node identi�cation. Edges are then
implemented by additional columns of tables, which contain UIDs of the nodes to which edges
lead. Additionally, each table may have columns used for storing attribute values of nodes.

The performance of operations which access a document subgraph as a whole (e.g. unparsing
or searching) is however very slow. These operations have to execute a query whenever they
traverse an edge. A document subgraph often consists of 500 up to some 10,000 nodes and
these operations have then to perform as many queries to read the whole document. As a
supporting example, consider the results which are reported in [Lin84]. Unparsing 1,000 lines
of program source code stored as an abstract syntax graph in INGRES and implemented on a
VAX 11/750, took more than 200 minutes.
A second problem is that an RDBMS can not identify those tuples that implement nodes
belonging to a document subgraph, because UIDs do not distinguish between aggregation and
reference. Hence the RDBMS can never manage di�erent versions or revisions of a document
subgraph on its own.

Relational data de�nition languages also do not completely ful�ll the requirements of an ap-
propriate DDL. By declaring a table in a relational DDL, one can declare a node type as well
as the number of edges which start from that node type. It is impossible, however, to de�ne
that an edge must lead to a particular node type.
Moreover, it is impossible to store arbitrary node attributes because �rstly, only prede�ned
attribute types can be used and secondly, attributes are most often restricted in their length5.
Furthermore, polymorphic structures can not be expressed. Finally, encapsulation of edges by
operations as well as inheritance are not at all supported by RDBMSs.

Schema updates can be performed on relational databases without losing any una�ected data.
Updates require most often that all applications which operate on the schema have to be
changed and recompiled.

Access to the project graph can only be controlled on type level. That is, one can de�ne an
owner for a table and the owner can grant read or write access for that table to other users.
However, access rights for complete document graphs rather than for all nodes of a particular
type can not be de�ned.
With respect to concurrent access to the project graph RDBMSs o�er only conventional trans-
actions with locking transparent to the application. Hence, locking is always performed and
the process engine cannot run its own customised transaction schemes.

Distributed access to a relational database as well as database administration must be regarded
as su�cient for our purposes. The former is implemented by client accesses to a central
database in most RDBMSs. Some even allow distribution of data among databases on di�erent
hosts.

RDBMSs o�er view de�nition capabilities. In general, however, these views can not be updated

5Oracle 6.xx, for instance, can not store long�eld attributes which are longer than 64 KBytes.

15

in a way that the update migrates into the underlying conceptual project graph. The problem
is known as view-update problem in literature [GPZ88].

4.2 Structurally object-oriented Database Management Systems

Structurally object-oriented databases [Dit86] have been developed during the last decade,
some of them speci�cally to serve as DBSEs. Typical representatives are PCTE/OMS
[GMT87], CAIS-A [AJPO88], Damokles [DGL86], PGraphite [WWFT88] and GRAS [LS88].
They di�er widely with respect to their data models6, their programming language interface,
their reliability7 and the granularity of objects which signi�cantly in
uences the DBSE design8.
In this subsection, we explain why none of the above mentioned database systems ful�ll all
of our requirements. For a fully elaborated discussion of this topic, we refer to [DEH+91]. A
short version is available as [DEL92].

In PGraphite and in GRAS, e�cient storage, retrieval and manipulation of abstract syntax
graphs that represent one document cause no problems, as they were especially tailored to-
wards this task. In GRAS, however, a project graph must be structured into subgraphs whose
maximum number of nodes is limited. For edges between subgraphs, distinct (low perfor-
mance) manipulation operations have to be used.
In PCTE/OMS, CAIS-A and Damokles, storage of syntax graphs causes no conceptual prob-
lems, as syntax graphs can be considered as kinds of E/R models. From the performance point
of view, however, these databases are unsuitable. They su�er from what we call the granularity
problem. A performance evaluation of PCTE/OMS and Damokles has shown that they have
not been designed to cope with large numbers of small objects, because their implementations
neglect any kind of object caching and clustering mechanisms that are necessary for an e�cient
manipulation of large abstract syntax graphs [DEH+91].

Damokles and PCTE/OMS support versioning. In PCTE's VMCS, composite entities may be
versioned. Composite entities could implement subgraphs of the internal syntax graph. Then
tools could easily create and delete versions of a subgraph and navigate through the version
history graph in order to select a current version. In Damokles versioning is implemented
similarly, though it is not possible to set a current (preferred) version.
PGraphite and GRAS do not support versioning of subgraphs at all. Neither does CAIS-A
support versioning of composite objects.
In none of the systems is it possible to de�ne duplication strategies for nodes or handling
strategies for edges.

PCTE/OMS and CAIS-A provide group-oriented discretionary access control to objects.
PCTE allows to de�ne a
at group structure, whereas groups in CAIS-A may be nested.
In PGraphite, GRAS and Damokles, all objects are accessible by anyone.
PCTE/OMS provides activities (similar to atomic and durable transactions), transactions
(what we call conventional transactions) and nested transactions. Transactions in CAIS-A are
conventional.
PGraphite and GRAS have no means of concurrency control at all, while the concurrency

6PCTE/OMS, CAIS-A and Damokles are based on extended entity-relationship models, whereas PGraphite
and GRAS implement persistent storage of graphs where nodes may be attributed, but edges may not.

7PCTE/OMS has become a product whereas Damokles, PGraphite and GRAS are more or less research
prototypes.

8PCTE/OMS, CAIS-A and Damokles have been designed basically to contain large objects and be upwards
compatible with �le-systems whereas nodes in PGraphite and GRAS can not contain large attributes

16

control mechanisms in Damokles that provide for conventional and design transactions have
never been fully implemented.

Objects and relationships in PCTE/OMS can be transparently distibuted over hosts in a
LAN. Moreover, objects in PCTE/OMS may be replicated, i.e. they are physically located on
several hosts, though logically seen as one object by the applications, In CAIS-A and Damokles,
objects and relationships can be distributed. In CAIS-A the distribution is transparent, but
not in Damokles. Moreover, CAIS-A and Damokles do not provide any facilities for transparent
object replication.
PGraphite and GRAS neither support distribution of nodes and edges nor allow distributed
access to a central database.

Both, PCTE and CAIS-A support views. In PCTE, users or tools can select their working
schema as a union of schema de�nition sets that are known to the OMS. CAIS-A o�ers a similar
mechanism. With these mechanisms, it is possible to hide nodes and edges from particular
tools and to rename node types and edges types. In both view mechanisms, updates made
through these views migrate to the underlying objectbases.
None of GRAS, PGraphite or Damokles support any kind of view mechanism.

4.3 Fully object-oriented Database Management Systems

During the last few years, fully object-oriented database management systems (ooDBMSs)
[ABD+90] such as GemStone [BMO+89], O2 [BDK92], Versant [Gor87], Ontos [AHS91] or
ITASCA (the former ORION [KBC+89]) have evolved from research prototypes into products.
They are intended to be used in standard applications, and in non-standard areas such as CAD,
Hypertext and Hypermedia, or CASE. In this subsection we investigate, how they meet our
requirements.

To store syntax-graphs in ooDBMSs, one implements nodes by objects, edges by instance
variables of objects, node types by classes and types of nodes edges lead to by types/classes
of instance variables. Some ooDBMSs distinguish instance variables with aggregation and
reference semantics in order to build complex objects (e.g. the ITASCA system). In these
ooDBMSs, complex objects can implement document subgraphs.
OoDBMSs enable e�cient edge traversal by dereferencing instance variables. Performance
evaluations show that some ooDBMSs are at least in single-user mode e�cient enough to be
used in the way sketched above [EK92].

In most ooDBMSs, the conceptual schema is de�ned by class de�nitions given in an object-
oriented programming language (e.g. C++ in Versant, Ontos and ObjectStore, and Common-
Lisp in ITASCA). Others o�er special purpose languages (e.g. OPAL in GemStone and O2C

in O2). In all of them, classes, instance variables and their types can be de�ned.
Mandatory type constructors for ooDBMSs are tuples, sets and lists [ABD+90]. Many
ooDBMSs o�er additional constructors such as bags or dictionaries. These constructors may
not only be used for de�ning node types, but also for user-de�ned attribute types.
As classes inherit from other classes, generic node types can be constructed by a PSDE de-
signer. Inheritance furthermore enables polymorphic aggregations.
Instance variables are encapsulated with methods. They can be used to de�ne graph modify-
ing operations and hence to enforce the integrity of the project graph.
Some ooDBMSs o�er a query language and ad-hoc query facilities (e.g. O2Query in O2).

17

Most ooDBMSs do not support schema updates. Some allow modi�cation of the schema, but
do not migrate data to the new schema versions. Instead, they maintain for each object the
version of the schema that was valid at the time the object was created [PS87]. In general, the
problem of schema updates as required for DBSEs must be regarded as unsolved for ooDBMSs.

Most ooDBMSs do not o�er any versioning mechanisms. Some (e.g. Versant) o�er versioning
of objects and means for maintaining version histories for single objects. A few (e.g. ITASCA)
even o�er versioning of complex objects. None of them enables the selection or de�nition of
duplication strategies for objects. Neither does any of the systems o�er handling strategies for
edges between complex versioned objects.

The extent and form of multi-user support varies signi�cantly from system to system. To
discuss all systems w.r.t. multi-user support in an appropriate level of detail is beyond the
scope of this paper. Instead we exemplify this aspect by presenting the approach taken in
GemStone.
GemStone allows access rights to be de�ned for objects by declaring them (at run-time) to be
members of a particular segment which in turn declares the access rights for all its member
objects. A segment has an owner and a number of groups to which the owner may grant read
or write access.
GemStone o�ers an optimistic transaction scheme and enables locks of di�erent modes to be
set explicitly. Moreover, con
ict detection in optimistic transactions may be in
uenced by
the user such that isolation and consistency preservation properties of transactions may be
switched o�.

All ooDBMSs o�er distributed access to a database by a client/server architecture. There
are basically two variations of client/server architecture: client-oriented (e.g. O2) and server-
oriented (e.g. GemStone). In the client-oriented architecture, the client performs computation
of methods while the server is responsible only for transferring the needed objects to the
client. In the server-oriented architecture, methods are executed on the server. We expect
that the client-oriented architecture is more tolerant against higher load because much of the
computation can be performed on clients.
None of these ooDBMSs is capable of managing distributed databases. As long as this is not
the case, ooDBMSs cannot be used in arbitrarily large projects.

To date, there are no ooDBMSs with view de�nition capabilities. However, there are proposals
for views in ooDBMSs [SLT91, AB91] and prototypes are being built. The view de�nition
mechanism de�ned in [AB91] exactly �ts the requirements we presented on views.

5 Conclusions and Further Work

Relational DBMSs are inappropriate for storing project graphs, since (1) the data model can
not express syntax graphs appropriately, (2) RDBMSs do not support versioning of document
subgraphs and (3) RDBMSs can not be used to implement customised transaction schemes.
No structurally object-oriented DBMS meets all of our requirements. Those that are capable
of e�ciently managing project graphs, lack functionality w.r.t. views, versioning, access rights
and adjustable transaction mechanisms, and distribution. Others that o�er these functionali-
ties are unable to manage the large collections of small objects as they occur in project graphs
and are therefore inappropriate. Moreover, none of these systems enables encapsulation of
nodes with operations, which we regard to be crucial.

18

For this reason we focus on ooDBMSs in the future. As general databases, they have not been
designed to manipulate a particular granularity of objects. They provide powerful schema
de�nition languages which particularly enable encapsulation, inheritance and polymorphism.
Some have been proven to perform fast enough even while accessing document subgraphs from
a remote host [EK92].

Currently, we are porting the Merlin PSDE to an ooDBMS and enhancing Merlin with syntax-
directed tools which store their document subgraphs in this ooDBMS. Merlin is a research
project (c.f. [PSW92, PS92]) at the University of Dortmund carried out in cooperation with
STZ, a local software house. One result of Merlin is the prototype of a PSDE based on a rule
based description of the software process
Moreover, we are participating in the ESPRIT-III project GoodStep (General Object-Oriented
Database for SofTware Engineering Processes). A major e�ort in GoodStep is devoted to en-
hancing the O2 ooDBMS to be particularly suitable as a DBSE. The project will improve
version management, add view de�nition capabilities and break up the transaction manage-
ment to enable implementation of customised transaction schemes with the O2 system.

Acknowledgements

We are indebted to the members of the Merlin project, namely G. Junkerman, C. L�ucking,
O. Neumann, B. Peuschel and S. Wolf, for a lot of fruitful discussions about PSDE archi-
tectures. We thank the participants of the GoodStep project for stimulating discussions, in
particular, Prof. C. Ghezzi, Prof. R. Zicari, Dr. S. Abiteboul, Dr. P. Armenise, Dr. A. Coen.
Last, but not least, we enjoyed working with Prof. U. Kelter, Dr. S. Dewal, F. Buddrus,
D. Dong, H. Hormann, M. Kampmann, D. Platz, M. Roschewski and L. Sch�ope on the exper-
imental evaluation of existing database systems.
The joint work described here was done at University of Dortmund while J. Welsh was on
study leave from University of Queensland. The authors are grateful to the German Ministry
of Research and the Australian Department of Industry Trade and Commerce for enabling
this cooperation.

References

[AB91] S. Abiteboul and A. Bonner. Objects and Views. In Proc. of the ACM SIGMOD

Conf. on Management of Data, Denver, Co, pages 238{247. ACM Press, 1991.

[ABD+90] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittrich, D. Maier, and S. Zdonik. The
object-oriented database system manifesto. In Proc. of the 1st Int. Conf. on De-

ductive and Object-Oriented Databases, Kyoto, Japan. Elsevier Science Publishers
B.V (North-Holland), 1990.

[AHS91] T. Andrews, C. Harris, and K. Sinkel. Ontos: A Persistent Database for C++. In
R. Gupta and E. Horowitz, editors, Object-Oriented Databases with Applications

to CASE, Networks, and VLSI CAD, pages 387{406. Prentice-Hall, 1991.

[AJPO88] Ada Joint Program O�ce. Common Ada Programming Support Environment
(APSE) Interface Set (CAIS), Revision A. Technical Report DoD-STD-1838A,
U.S. Department of Defense, 1988.

19

[BC85] G. M. Beshers and R. H. Campbell. Maintained and constructor attributes. ACM
SIGPLAN Notices, 20(7):34{42, 1985.

[BCD+88] P. Borras, D. Cl�ement, T. Despeyroux, J. Incerpi, G. Kahn, B. Lang, and V. Pas-
cual. CENTAUR: the system. ACM SIGSOFT Software Engineering Notes,
13(5):14{24, 1988. Proc. of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, Boston, Mass.

[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis. Building an Object-Oriented

Database System: the Story of O2. Morgan Kaufmann, 1992.

[Ber87] P. A. Bernstein. Database System Support for Software Engineering. In Proc. of

the 9th Int. Conf. on Software Engineering, Monterey, Cal., pages 166{178, 1987.

[BK91] N. S. Barghouti and G. E. Kaiser. Concurrency Control in Advanced Database
Applications. ACM Computing Surveys, 23(3):269{317, 1991.

[BMO+89] R. Bretl, D. Maier, A. Otis, J. Penney, B. Schuchardt, J. Stein, E. H. Williams,
and M. Williams. The GemStone data management system. In W. Kim and F. H.
Lochovsky, editors, Object-Oriented Concepts, Databases and Applications, pages
283{308. Addison-Wesley, 1989.

[DEH+91] S. Di�mann, W. Emmerich, B. Holtkamp, K. Lichtinghagen, and L. Sch�ope. OMSs
Comparative Study. Internal Report D2.4.3-rep-1.0-UDO-EL, ATMOSPHERE,
1991.

[DEL92] S. Dewal, W. Emmerich, and K. Lichtinghagen. A Decision Support Method for
the Selection of OMSs. In Proc. of the 2nd Int. Conf. on Systems Integration,

Morristown, N.J., pages 32{40. IEEE Computer Society Press, 1992.

[DGL86] K. R. Dittrich, W. Gotthard, and P. C. Lockemann. Damokles { a database
system for software engineering environments. In R. Conradi, T. M. Didriksen,
and D. H. Wanvik, editors, Proc. of an Int. Workshop on Advanced Programming

Environments, volume 244 of Lecture Notes in Computer Science, pages 353{371.
Springer, 1986.

[Dit86] K. R. Dittrich. Object-oriented database systems: the notion and the issues. In
K. Dittrich and U. Dayal, editors, Proc. of the 1986 Int. Workshop on Object-

Oriented Database Systems. IEEE Computer Society Press, 1986.

[EK92] W. Emmerich and M. Kampmann. The Merlin OMS Benchmark { De�nition,
Implementations and Results. Technical Report 65, University of Dortmund,
Dept. of Computer Science, Chair for Software Technology, 1992.

[ELN+92] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and A. Sch�urr. Building Inte-
grated Software Development Environments | Part 1: Tool Speci�cation. ACM
Transactions on Software Engineering and Methodology, 1(2):135{167, 1992.

[GMT87] F. Gallo, R. Minot, and I. Thomas. The object management system of PCTE as a
software engineering database management system. ACM SIGPLAN NOTICES,
22(1):12{15, 1987.

[Gor87] K. E. Gorlen. An Object/Oriented Class Library for C++ Programs. Software

| Practice and Experience, 17(12):181{207, 1987.

20

[GPZ88] G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consis-
tent views. ACM Transactions on Database Systems, 13(4):486{521, 1988.

[HN86] A. N. Habermann and D. Notkin. Gandalf: Software Development Environments.
IEEE Transactions on Software Engineering, 12(12):1117{1127, 1986.

[JF82] G. F. Johnson and C. N. Fisher. Non-syntactic attribute
ow in language based
editors. In Proc. of the 9th Annual ACM Symposium on Principles of Program-

ming Languages, pages 185{195. ACM Press, 1982.

[KBC+89] W. Kim, N. Ballou, H.-T. Chou, J. F. Garza, and D. Woelk. Features of the
ORION Object-Oriented Database. In W. Kim and F. H. Lochovsky, editors,
Object-Oriented Concepts, Databases and Applications, pages 251{282. Addison-
Wesley, 1989.

[KSUW85] P. Klahold, G. Schlageter, R. Unland, and W. Wilkes. A transaction model
supporting complex applications in integrated information systems. In Proc. of

the ACM SIGMOD 1985 Int. Conf. on the Management of Data, pages 388{401.
ACM Press, 1985.

[Lin84] M. A. Linton. Implementing Relational Views of Programs. ACM SIGSOFT

Software Engineering Notes, 9(3):132{140, 1984. Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symposium on Practical Software De-
velopment Environments, Pittsburgh, Penn.

[LS88] C. Lewerentz and A. Sch�urr. GRAS, a management system for graph-like doc-
uments. In Proc. of the 3rd Int. Conf. on Data and Knowledge Bases. Morgan
Kaufmann, 1988.

[Mad92] N. H. Madhavji. Environment Evolution: The Prism Model of Changes. IEEE

Transactions on Software Engineering, 18(5):380{392, 1992.

[NSZ91] M. H. Nodine, A. H. Skarra, and S. B. Zdonik. Synchronization and Recovery in
Cooperative Transactions. In Implementing Persistent Object Bases { Principles

and Practice { Proc. of the 4th Int. Workshop on Persistent Object Systems ,
pages 329{342, 1991.

[PKH89] C. Pu, G. Kaiser, and N. Hutchinson. Split transactions for open-ended activites.
In Proc. of the 14th Int. Conf. on Very Large Databases, pages 26{37. Morgan
Kaufman, 1989.

[PS87] D. J. Penney and J. Stein. Class Modi�cation in the GemStone object-oriented
DBMS. ACM Sigplan Notices, 22(12), 1987.

[PS92] B. Peuschel and W. Sch�afer. Concepts and Implementation of a Rule-based Pro-
cess Engine. In Proc. of the 14th Int. Conf. on Software Engineering, Melbourne,

Australia, pages 262{279. IEEE Computer Society Press, 1992.

[PSW92] B. Peuschel, W. Sch�afer, and S. Wolf. A Knowledge-based Software Development
Environment Supporting Cooperative Work. International Journal for Software

Engineering and Knowledge Engineering, 2(1):79{106, 1992.

[SLT91] M. H. Scholl, C. Laasch, and M. Tresch. Updatable Views in Object-Oriented
Databases. In C. Delobel, M. Kifer, and Y. Masunaga, editors, Deductive and

21

Object-Oriented Databases { Proc. of the 2nd Int. Conf., DOOD '91, Munich, Ger-

many, volume 566 of Lecture Notes in Computer Science, pages 189{207. Springer,
1991.

[Tho89] Ian Thomas. Tool Integration in the Pact Environment. In Proc. of the 11th Int.

Conf. on Software Engineering, Pittsburg, Penn., pages 13{22. IEEE Computer
Society Press, 1989.

[TSY+88] R. N. Taylor, R. W. Selby, M. Young, F. C. Belz, L. A. Clarce, J. C. Wileden,
L. Osterweil, and A. L. Wolf. Foundations of the Arcadia Environment Architec-
ture. ACM SIGSOFT Software Engineering Notes, 13(5):1{13, 1988. Proc. of the
4th ACM SIGSOFT Symposium on Software Development Environments, Irvine,
Cal.

[WBK91] J. Welsh, B. Broom, and D. Kiong. A Design Rational for a Language-based
Editor. Software | Practice and Experience, 21(9):923{948, 1991.

[WWFT88] A. L. Wolf, J. C. Wileden, C. D. Fisher, and P. L. Tarr. P Graphite: An Ex-
periment in Persistent Typed Object Management. ACM SIGSOFT Software

Engineering Notes, 13(5):130{142, 1988. Proc. of the ACM SIGSOFT/SIGPLAN
Software Engineering Symposium on Practical Software Development Environ-
ments, Boston, Mass.

22

		2002-04-03T16:44:32+0200
	Universitaetsbibliothek Dortmund - Eldorado

