
Version Management for tightly integrated Software Engineering

Environments

Sabine Sachweh and Wilhelm Sch�afer
Universit�at GH Paderborn

Fachbereich 17 - Mathematik/Informatik
D-33095 Paderborn

Germany
sachweh@uni-paderborn.de

wilhelm@uni-paderborn.de

Abstract

The paper introduces a version management model which exploits knowledge about the contents
of documents. This is in contrast to most existing models which basically consider versioned objects
as
at (attributed) �les. The bene�ts of the approach are illustrated by describing some sample
operations which are not possible with a conventional model. The paper then discusses a feasible
implementation of the model on top of an existing object-oriented data base management system.
Finally, it discusses related work and indicates how a sophisticated con�guration management
system is being built on top of the version management system.

1 Introduction

The enormous increase in the size of software and the reliability required frommodern software intensive
systems has focussed attention on languages and corresponding tools which do not only support pro-
gramming but also speci�cation, design, and documentation of software. In fact, speci�cation or design
documents have become equally important as the �nal code in order to check and verify correctness,
completeness and reliability of a delivered software product. In addition, the industrial-scale produc-
tion of software today requires teams of developers who should be supported by tools which organise
access to a large amount of shared and frequently changing information. This information consists of
the above mentioned documents for the various phases of the software production process. Examples
for such documents are data-
ow diagrams, state-transition diagrams, petri-nets, entity-relationship
diagrams, and modular design descriptions.

Tools support the syntactically and static semantically correct construction of documents which is
denoted as intra-document consistency. A tightly integrated software engineering environment (SEE)
is a collection of tools supporting various phases of the production process. Its main additional feature
compared with a tool which supports the construction of a single document in a single language,
is the possibility to maintain so-called inter-document dependency and consistency. An example for
inter-document consistency is a name of a function which should be the same in the requirements
speci�cation, in the interface de�nition of a module in the design document and in the implementation.

The advantage of an SEE which maintains such �ne-grained dependencies between documents is its
support of an incremental, intertwined production and maintenance process (in contrast to a waterfall-
or phase-oriented approach). Consider as an example the situation that a programmer may have
detected an error in the code which is due to a wrong requirements speci�cation of a particular function.
If then the speci�cation is changed, the environment could inform the user about all other places in
all other documents which are a�ected by this change. It could even propagate a change trough all
documents concerned automatically, if the user(s) require it. In contrast, doing such a small incremental

1

change in a phase-oriented environment is rather tedious, because such an environment is usually based
on a complete transformation of all documents concerned from one phase into the next one. For more
details we refer to [ELN+92].

Furthermore, an SEE should support change control and multiple users. This requires a sophisticated
version and con�guration management system (VM/CM). Although, SEEs which maintain �ne-grained
dependencies as mentioned above, are now existing [Lew88], most available VM/CMmodels still assume
a very coarse-grained object model. Basically, versioned objects correspond to �les whose particular
contents is not considered e.g. [Tic82, Fel88, BE87, ML88]. Such a coarse-grained version model
makes it impossible to preserve inter-document dependencies and to control change propagation on the
�ne-grained level sketched above. Illustrating examples will follow in the next section.

The main new features presented in this paper are:

� the concept of a version model which is tuned to �ne-grained inter-document dependencies and
corresponding change control

� a feasible approach how such a concept is implemented on top of an existing commercially available
fully object-oriented database system.

The reminder of this paper is organised as follows: The next section describes and formalises our
underlying version model whereas section 3 gives an overview on the version operations which are
available to a user. This section tries to clarify what are the bene�ts of our model. Section 4 describes
how such a model is implemented on top of an object-oriented data base management system and thus
provides evidence that the approach is feasible. Section 5 deals with related work and section 6 sketches
ongoing work.

2 The VM Model

The VM Model is de�ned by a system version graph, which is a two level graph structure which consists
of the version level and the increment level. The objects (nodes) on the version level correspond to
document versions, whereas the nodes on the increment level correspond to the syntactic constructs of
a document version, i.e. document versions are represented internally by abstract syntax graphs. The
relations (edges) on the version level are re�ned on the increment level analogously to the nodes. Con-
sequently, the increment level represents the re�nement of the version level. Note, that the granularity
of versioning is a document, consequently the term version is used as synonym for a document version
in the following. Furthermore, the increment level is needed to preserve the consistency of document
versions, whereas the version level is used as base for con�guration management.

2.1 Version Level

The version level contains a document version graph for each document of the system, which represents
the development history of this document. A document version graph consists of nodes which repre-
sent the di�erent versions (and their re�nements as explained in the following section) and a successor
relation which de�nes the development history. A document version graph is single rooted, since the
development of each document starts with an initial version from which all other versions of this docu-
ment are derived, and it is acyclic, because it represents the development steps during the production
of a document.

Inter-document dependencies, as sketched in the previous section, are expressed by further relations
which connect versions in di�erent document version graphs. We call the source version of a relation
depending version and the target version determining version respectively. Basically, a version can be
a depending version and a determining version at the same time. For example, a design version may

2

depend on another design version and it determines an implementation version. Two types of inter-
document dependencies are distinguished, which are the based on relation and the depend on relation,
as is illustrated in �gure 1.

Agenda:

WindowStack .cWindow WindowStack

consistent_with relation

Version1

successor_of relation

Version1

depend_on relation
version

based_on relation version graph/document

Version2

Version3

Version1

Version1.2Version1.1

Version2

Version2

Version2.1Version2.2Version2.3

Figure 1: An example for the version level of a system version graph

A depend on relation describes inter-document dependencies which are de�ned by referencing a version
based on the contents of a version of another document. As an example assume that Window and
WindowStack are excerpts from a system design which is given in terms of modules and use-relationships
between modules which are de�ned by a MIL (Module Interconnection Language). In addition assume
that the two modules have been designed rather independently possibly by two di�erent designer
(groups). WindowStack depends onWindow because it imports resources de�ned in the export interface
of window. Thus a system designer has to indicate explicitly which version of the Window should be
used, as shown in �gure 2. (Note that the export interface of di�erent versions of Window could
actually be di�erent.) Note that �gure 2 does not show an extract of a system version graph, but it

 w:WINDOW);

Window (Version3) WindowStack (Version2.3)

 PROCEDURE Pop(ws:WINDOWSTACK);

 /* Removes element from stack ws. */

 EXPORT INTERFACE

 FUNCTION Create : WINDOWSTACK;

 /* Creates a new window. */ TYPE WINDOWSTACK;

 newy: INTEGER);

 /* Moves window to new (newx,newy)-position.*/

 FUNCTION Create : WINDOW;

 PROCEDURE MoveTo (newx: INTEGER;

 /* Shows window w on screen. */

 PROCEDURE Hide(w:WINDOW);

 /* Creates a new window stack. */

 PROCEDURE Show (w:WINDOW);

 TYPE WINDOW;

 /* Hides window w from screen. */

Version1

Version2

Version3

Module Window
Select Version of

 /* Pushes windpw w on stack ws. */

 EXPORT INTERFACE

 PROCEDURE Push (ws:WINDOWSTACK);

MODULE WindowStack;

 IMPORT INTERFACE

 END IMPORT

 WINDOW, Create;

 INTEGER;

MODULE Window;

 IMPORT INTERFACE

 END IMPORT

 INTEGER;
 FROM Integer IMPORT: FROM Integer IMPORT:

 FROM Window depend_on
relation

Figure 2: An example for explicit referencing under version control

gives an example how depend on relations of a system version graph can be established in a textual
representation, i.e. how the user sees them.

A based on relation describes that a text frame of the depending version was generated or updated
based on the corresponding determining version, like for example the generation of code-frames based
on a design document. Changing the depending version means to �ll in the generated frame, i.e. the
generated frame of the depending version cannot be changed. Consider for example �gure 3 that shows

3

a text frame for a c-program named WindowStack.c (Version1) which was generated from a design
document named WindowStack (Version2). For each import-clause in the design version an include
statement was generated and for each exported operation, the interface of the corresponding c-function
was generated. This means almost all increments ofWindowStack.c (Version1) shown in this �gure are
generated except of those enclosed in brackets (<...>), i.e. only the latter increments can be expanded
in order to �ll in the frame. The consistency between these versions is ensured by propagating changes
from the determining version to the depending version. Again, analogously to �gure 2 �gure 3 does not

 w:WINDOW);

WindowStack (Version2)

WindowStack.c (Version1)

* Descript.:

* Parameter:

* Return: WINDOWSTACK

**/

*

*

* Function: Create

/*-ftn-**

* Parameter:

* Return: WINDOWSTACK

* Descript.:

**/

/*-ftn-**

*

* Function: Create

* Descript.:

* Return: WINDOWSTACK

**

**/

/*-module**

*

*

* Descript.:

* Author: <author>

* Date: <date>

* Changes:

* changed on by comment:

*

**/

* Parameter:

#include "Integer.h" ;

#include "WindowStack.h";

WINDOWSTACK

* Function: Create

* Module : WindowStack (DATATYPE MODULE)

 <declaration_list>

 <statement_list>

} /*-end-ftn-*/

/*-ftn-**

*

* Descript.:

* Function: Push

* Parameter: (o)ws: WINDOWSTACK

* (i)w: WINDOW

 PROCEDURE Push (ws:WINDOWSTACK);

 /* Pushes windpw w on stack ws. */

/*-includes-*/

 /* Creates a new window stack. */

 PROCEDURE Pop(ws:WINDOWSTACK);

 /* Removes element from stack ws. */

 FUNCTION Create : WINDOWSTACK;

 EXPORT INTERFACE

 TYPE WINDOWSTACK;

 FROM Integer IMPORT:

 INTEGER;

 FROM Window IMPORT:

 WINDOW, Create;

 IMPORT INTERFACE

 END IMPORT

MODULE WindowStack;

{

Create()

based_on

relation

<description>

<date> <name> <comm

<description>

 <parameter>

<description>

/*-ftn-**

Figure 3: An example for a generation dependency

show an excerpt of a system version graph, but a user's view on two particular versions.

A �nal relation which is established on the version level is the consistent with relation. It describes
that two versions are consistent with each other. This relation will form the basis for a corresponding
con�guration management model, i.e. con�gurations are usually built based on consistent versions.

Two versions v1 (determining version) and v2 (depending version) are consistent concerning a based on
or depend on relation, if for each increment i2 of v2 that is determined by an increment i1 of v1 the
following equation holds: i2 = i1. (Instead of taking the identity function (as chosen in this paper) any
other function f can be used, i.e. more general the equation to be held is: i2 = f(i1).)

The based on relation and the depend on relation only describe dependencies between versions but do
not de�ne whether or not two versions are consistent. Remember the example shown �gure 2. If the
exported type WINDOW in version 3 of document Window is changed to SCROLLBAR-WINDOW,
version 2.3 of document WindowStack is still depending on this version of Window, because of its
import-clause. But both versions are not consistent any longer, since the type WINDOW has not been
changed in the import part of version WindowStack so far.

4

2.2 Increment Level

We have distinguished di�erent types of inter-document dependencies and corresponding relations on
the version level based on how the source and target versions of those dependencies have been created.
The edges on the version level however do not provide the information on the level of version contents,
e.g. the depend on relation and possibly the consistent with relation betweenWindowStack andWindow
do not describe that this dependency is in particular, due to the import of type WINDOW and function
Create. Therefore, it is not possible to identify only by the information which is provided by the version
level, that a change of procedure Show or Hide respectively (e.g. extending the parameter list) would
not violate the consistency between Window and WindowStack.

In order to provide this missing information, version nodes, depend on relations and based on relations
are re�ned on the increment level. A version is represented by its abstract syntax graph (ASG). This
is expressed by a has contents relation between a node on the version level and the root node of the
abstract syntax graph of its corresponding version. Similarly to nodes the depend on, based on and the
successor of relation are re�ned on the increment level. Those relations start at nodes of the ASG of
the source version and end at corresponding nodes of the ASG of the target version. Corresponding
nodes means the root nodes of the syntactic constructs (in the ASG-representations) which correspond
to the constructs in the versions concerned which have been either identi�ed explicitly by the user in
the case of a depend on relation (e.g. type WINDOW and procedure Create in Fig. 2) or which are
de�ned by the mapping between the language of the determining and the language of the depending
version in the case of a based on relation (e.g. the IMPORT INTERFACE and the include commands
in Fig. 3). Figure 4 shows the underlying graph structure of the example given in �gure 2. Note, that
the successor of relation is re�ned analogously.

The only relation of the version level, that is not re�ned on the increment level is the consistent with
relation. The consistency concerning an existing inter-document dependency is checked automatically
by the environment using the �ne-grained based on or depend on relations, i.e. it is derived from the
information available through the latter two relations and the de�nition of a consistent state between
two versions.

2.3 Formalisation of the Graph Model

So far, we have described informally our version model which basically corresponds to a two-level graph
structure. This graph structure is now formalised which enables to formally de�ne the consistent, i.e.
practically reasonable states of a version graph. Those de�nitions are the basis for the implementation of
the VM-operations which are explained in the next section, i.e. they can be considered as the de�nitions
of the operations' invariants (similarly to the de�nition of invariants in a language like EIFFEL).

A system version graph consists of two disjoint node subsets, namely V ER and INC, which represent
the nodes of the version level and increment level respectively. Analogously, the set of edges consists of
three disjoint sets of edges, namely V ER REL, INC REL and V ER INC REL, whereas V ER REL
denotes a multi-set since the depend on relation as well as the based on relation may be de�ned between
the same nodes as the consistent with relation.

V ER REL in turn consists of sets which represent the depend on, based on, successor of and consis-
tent with relation of the version level and analogously INC REL consists of sets which represent the
abstract syntax, stat semantic, �ne grained depend on, �ne grained based on and �ne grained succes-
sor of relation of the increment level:

V ER REL = DEPEND ON [BASED ON [SUCCESSOR OF[
CONSISTENT WITH.
� V ER� V ER

5

Version1

Version2

Version3

Version1

Version2

Version2.3 Version2.2 Version2.1

Module Name
Mod Window

Stack

Name
Type WINDOW

STACK

Function

Function OpName Create

Using
Type

WINDOW
STACK

Import
Interface

Import
List

Import
List Module

Imp Integer

Type
Import INTEGER

Module
Imp Window

Type
Import WINDOW

Import
Op

Create

Module Name
Mod Window

Name
Type WINDOW

Function

Using
Type WINDOW

OpName Create

Function OpName Show

Using
Type

meter
Para- Using

Typew WINDOW

Function

Function OpName MoveTo

Using

Function OpName Hide

Type

meter
Para- Using

Typew WINDOW

: fine grained depend_on relation

: abstract_syntax and stat_semantic relation: successor_of relation

: has_contents relation

OpName Push

OpName Pop

: depend_on relation

Figure 4: An example for a system version graph

INC REL = ABSTRACT SY NTAX [STAT SEMANTIC [REF DEPEND ON[
REF BASED ON [REF SUCCESSOR OF

. � INC � INC.

The V ER INC REL set contains all edges of the type has contents, which are edges connecting both
levels:

V ER INC REL = HAS CONTENTS � V ER� INC

First order logic is used to formally describe which restrictions hold for the combination of those edges,
i.e. the above mentioned consistent states of a version graph are de�ned. We do not give all restrictions
here but rather sketch a few examples to illustrate the basic idea.

In order to preserve the consistency of a system, the environment should provide consistency preser-
vation on demand. Thus, temporary inconsistencies are allowed, but the user may call a function for
change propagation to make a depending version consistent with a determining version. In order to

6

provide change propagations along depend on and based on relations, a version must not have more
than one outgoing depend on or based on relation to versions of the same document version graph.
This means if Ovs is de�ned as the set of outgoing depend on and based on edges of a version vs,

8vs 2 V ER : Ovs = f(vs; vt)jvt 2 V ER ^ ((vs; vt) 2 DEPEND ON _ (vs; vt) 2 BASED ON)g

the following consistency condition has to be ful�lled by each version graph:

8(vs; vt) 2 Ovs : :9vt0 2 V ER :(vs; vt0) 2 Ovs^
(((vt; vt0) 2 (SUCCESSOR OF)� _ (vt0 ; vt) 2 (SUCCESSOR OF)�)_
(9vp 2 V ER :(vp; vt) 2 (SUCCESSOR OF)�^

(vp; vt0) 2 (SUCCESSOR OF)�)))

Note, that (SUCCESSOR OF)� denotes the transitive closure of SUCCESSOR OF .

The above consistency condition will be illustrated by the following example. Assume that a version

 w:WINDOW);

(Version3.1)

(Version2.3)

(Version3.2)
Window

WindowStack

Window

Agenda:

 IMPORT INTERFACE

 END IMPORT

 /* Creates a new window. */

 PROCEDURE MoveTo (newx: INTEGER;

 newy: INTEGER);

 INTEGER;

 /* Moves window to new (newx,newy)-position.*/

 PROCEDURE Show (w:WINDOW);

 /* Shows window w on screen. */

 PROCEDURE Hide(w:WINDOW);

 /* Hides window w from screen. */

 EXPORT INTERFACE

 FUNCTION Create : WINDOW;

MODULE Window;

 TYPE WINDOW;

 INTEGER;

 IMPORT INTERFACE

 END IMPORT

 /* Creates a new window. */

 FUNCTION Create : WINDOW;

 WINDOW, Create;

 /* Deletes window w. */

 PROCEDURE MoveTo (newx: INTEGER;

 PROCEDURE Show (w:WINDOW);

 /* Shows window w on screen. */

 PROCEDURE Hide(w:WINDOW);

 FROM Integer IMPORT:

MODULE Window;

 EXPORT INTERFACE

 TYPE WINDOW;

 /* Hides window w from screen. */

depend_on relation

fine grained depend_on relation

 FROM Window IMPORT:

 INTEGER;

 FROM Integer IMPORT:

 TYPE WINDOWSTACK;

 EXPORT INTERFACE

 FUNCTION Create : WINDOWSTACK;

 /* Removes element from stack ws. */

 PROCEDURE Pop(ws:WINDOWSTACK);

 /* Creates a new window stack. */

 /* Pushes windpw w on stack ws. */

 FUNCTION Delete (w: WINDOW);

 FROM Integer IMPORT:

MODULE WindowStack;

 END IMPORT

 IMPORT INTERFACE

 PROCEDURE Push (ws:WINDOWSTACK);

Figure 5: Fine-grained inter-document dependencies

of document WindowStack and two versions of document Window are given, whereby the versions (3.1
and 3.2) of the latter document are variants.(Variants are versions which are members of di�erent

7

paths from the root node of a document version graph.) The di�erence between these variants is, that
the second variant exports an additional procedure Delete. Due to its import interface, version 2.3 of
document WindowStack depends on a version of document Window. If this version of WindowStack
would be linked to version 3.1 and 3.2 of documentWindow as shown in �gure 5 by a depend on relation,
this would mean, that version 2.3 of document WindowStack is intended to be consistent with both
variants of Window. If type WINDOW changed to SCROLLBAR-WINDOW in version 3.1 of Module
Window, the environment would not know from which variant of Module Window changes should be
propagated to WindowStack, if the user has called the change propagation function. If there is only
one outgoing depend on or based on relation, it identi�es unambiguously which version of Window has
to be consistent with WindowStack.

If a consistent with relation is de�ned between two versions, the source version must have an outgoing
depend on or based on relation to the document version graph, which contains the target version.

8(vs; vt) 2 CONSISTENT with :
(91v0t 2 V ER : ((((vs; v0t) 2DEPEND ON) _ ((vs; v0t) 2BASED ON))^

(((vt; v0t) 2 (SUCCESSOR OF)�)_
((v0t; vt) 2 (SUCCESSOR OF)�)_
(9v 2 V ER : (((v; vt) 2 (SUCCESSOR OF)�)^

((vt; v0t) 2 (SUCCESSOR OF)�))))))

In order to avoid cyclic dependencies between versions each sub-graph of our model, which is spread
out by depend on and based on relations has to be acyclic:

8v 2 V ER : ((v; v)=2 (DEPEND ON [BASED ON)�)

3 VM-Operations

Based on the conceptual model as de�ned in the previous subsections, the version management system
provides the following operations which are the "traditional" operations on versions like e.g. create,
derive, freeze and the "new" operations edit, update and merge which exploit the knowledge available
by the increment level of the system version graph. We will illustrate the bene�ts of the exploitation
of this knowledge and thus the bene�t of our approach by some examples. In order to present an
overall view on our approach we will brie
y discuss the traditional operations �rst. Note that we will
describe the semantics of these operations based on the graph model as introduced in the previous
subsections. A user of our VM system does not necessarily see this graph but rather operates on the
level of document versions and its corresponding syntactic structure using the appropriate tool support.
This tool support is however outside the scope of this paper which only lays the the foundation for a
sophisticated VM system.

Operation create is used to create the initial version of a document version graph and its corresponding
root node for the ASG representation on the increment level which are connected by the has contents
relation.

Operation create is not used, if a new version is created which is partly generated. In this case the
operation generate is used which creates an initial version of a new document version graph and connects
it to an already existing version by a based on relation. The abstract syntax graph for the depending
version, i.e. that part of the graph which corresponds to the frame, is generated and the �ne grained
based on relations are established.

The operations create and generate are only used to create root versions of document version graphs.
All other versions are created using the derive operation. It creates a new version on the version level
and links the new version to the existing one by a successor of relation. On the increment level the ASG
representation is copied to the successor version. It is linked to the newly created version node by a
has contents relation and �ne grained successor relations are established between the increments of the
new version and the corresponding increments of the predecessor version. Finally, outgoing depend on
and based on relations of the predecessor version are copied to the newly created version, which are
also copied on the increment level, i.e. the �ne-grained depend on and based on relations.

8

Operation freeze is applied to de�ne a version as stable. Operation derive can only be applied to a
version if the version is stable. Note, that the operation freeze cannot be undone.

Operation delete deletes a version on both levels. It can only be applied to versions which are not
connected by an ingoing depend on or based on relation to any other version.

As mentioned, the bene�ts of our approach become clear, if one takes a closer look at the provided
edit, update and merge operations.

Merge supports to derive a common successor of two frozen versions within the same document ver-
sion graph, provided they are members of di�erent paths from the root version. As this operation
knows about the contents of both versions based on the increment level representation, it automatically
transfers all syntactic constructs which are the same in both versions or which have only been changed
in one version, into the new version. If a syntactic construct has been changed in both versions, the
operation transfers the construct which �ts best in order to preserve the internal consistency of the
merged version. Only in those cases, in which a syntactic construct has been changed in both versions
and the criterion of consistency preservation does not help to decide from which version the syntactic
construct should be transferred, the user is automatically asked for advice. A more detailed description
of this algorithm can be found in [Wes91b].

Edit operations, i.e. changes of a version are done based on the ASG representation. This enables
to keep track of any inconsistency existing between two versions with respect to the based on or de-
pend on relations. Those inconsistencies can be removed later on (on demand by the user) such that a
consistent with relation holds again between the versions concerned.

Basically, update supports to adapt a new version of a depending version to a new version of its
determining version. Assume, that the programmer working on version 2 of WindowStack.c has almost
�nished his work, when a new successor of the determining design version WindowStack is created.
The new version of WindowStack has been created, because a new Function Delete has been added.
In this case, the programmer wants to adapt his version to the new version without loosing the work
already done, i.e., he wants the frame of his document to be adapted to the new version, so that the
contents of those parts of the frame, which have not changed, is kept. As the update operation knows
the determining and depending version, the �ne grained depend on or based on relations between those
two and the �ne grained successor of relation between the determining version and its successor, it can
easily perform changes of the depending version, e.g. the generated frames, without a need to touch
other parts of the depending document version.

It is worthwhile to note that our approach does, of course, include one serious restriction. Document
development tools can only apply the approach, if they are based on an abstract syntax graph rep-
resentation of documents or versions respectively. However, as we brie
y sketch in the next section,
modern object oriented database management systems make it easier today to develop such tools. Such
that they should become widely available. In any case their sophisticated functionality compared with
traditional �le-based tools make them highly desirable.

4 Implementation using a Database Management System

As discussed earlier [ESW93], fully object-oriented database management systems (ooDBMS) provide
su�ciently powerful data modelling and performance capabilities to store and manipulate documents
in terms of ASG-representations. What is additionally needed to implement our VM-system is the
possibility to easily create and manipulate versions of those ASGs.
In more detail, we need an ooDBMS which provides versioning of composite objects, i.e. which provide
methods to derive, freeze, delete and merge versions of composite objects and a method to create the
root version of a composite object. Obviously, an ooDBMS which provides a method derive and the
concept of composite objects manages the version level successor relation by itself, i.e. the ooDBMS
takes care of e�ciently managing marginal di�erent versions of usually large ASGs.

9

Furthermore, all versions of an object should have the same object-id. Then the �ne grained grained
successor of relation is derivable from the successor of relation and the fact, that all versions of an
object have the same object-identi�er. In order to be able to easily introduce �ne-grained depend on
and based on relations, each object which is a member of a composite object must carry an explicit
reference.

Operation derives o�ered by an ooDBMS corresponds directly to the operation derive as explained in
section 3, provided that one composite object contains one complete document version graph.

All other operations of our approach have an application speci�c semantics like e.g. generate which
links a preexisting object with a new object or delete which has to check whether ingoing based on or
depend on relations exist. They are implemented as a special layer on top of an existing ooDBMS.

To the best of our knowledge, only three existing ooDBMSs currently provide versioning of composite
objects. Those systems are O2, Ontos, and Itasca/Orion. Ontos is not suited for our approach since it
does not support merging of variants.

We chose O2 as the basis for our implementation because its further development is signi�cantly in
u-
enced by our own work. Among others, we are in fact partners of O2 Technologie (which is the vendor
of O2) in an ESPRIT III project called GOODSTEP (General Object-oriented Data Bases for Software
Engineering Processes). The goal of GOODSTEP is to develop an SEE platform through extensions
of the currently commercially available version of O2. The project is well underway now. It started in
September 92 and will continue until September 95.

O2 provides the concept of a version unit. This version unit contains the document version graph
as is illustrated in �gure 6. The only problem with O2 is that it does not yet support to explicitly
reference object versions contained in a composite object. We therefore implemented our approach by
introducing two attributes for each relation representing inter-document dependencies. One attribute
contains a reference to version of the composite object, which contains a particular object and a second
attribute contains a reference to the particular object in that version. Access to a particular object
then means the evaluation of two attributes as opposed to the ideal situation where only one attribute
has to be evaluated.

5 Related Work

To the best of our knowledge, the VM model in the IPSEN project [Wes91a, Wes89] is the only approach
which also exploits the documents' internal structures to improve the power of version operations. In
fact, our approach was inspired signi�cantly by the IPSEN project.

One main di�erence between the IPSEN approach and our approach is the introduction of the depend on
relation which IPSEN does not have. Thus, IPSEN does not support to version e.g. architecture
de�nitions in a MIL (cf. �gure 2). IPSEN always assumes a master document which cannot be split
into parts which are again versioned. This makes it impossible to support multiple users for developing
this master document, although such a master document is in fact usually that voluminous that its
development requires very much adequate multi-user support.

A second di�erence results from the fact that we distinguish between consistent with relations and
depend on relations. This distinction enables to propagate changes unambigously from one version to
other versions without necessarily creating a new version, because each version has at most one outgoing
depend on relation (and possibly multiple consistent with relations). If only (multiple) consistent with
relations exist, as in IPSEN, a change in one version, which requires a change in another version to
preserve consistency between the two of them, always enforces to create a new version. Thus, in IPSEN,
even a very small incremental change like the change of an identi�er, enforces to create possibly quite
a number of new versions in di�erent document version graphs (, if consistency should be preserved).

10

Module
OID

V1

Module Q:

Using
Type num

Using
Type num

Using
Type num

meter
Para- num2

meter
Para- denum2

OID

V1

OID

V1

OID

V1

OID

V1

OID

V1

OID

V1

Using
Type num

Name
Mod Q

OID

V1

OID

V1

OID

V1
Function

OpName add

Using
Type fraction

meter
Para- num1

meter
Para- denum1

OID

V1

OID

V1

OID

V1

OID

V1

OID

V1
Function

Name
Type fraction

OID

V1

OID

V1

OID

V1

OID

V1

OID

V1

Op
Import

num_add

Module
Imp N

numImport
Type

Op
Import

num_sub

Import
List

OID

V1
Import
Interface

Module N: OpName
add
num_

V1

V2

OID

meter
Para- sum1

meter
Para- sum2

V1

V2

OID

V1

V2

OID

V1

V2

OID

Function

V1

V2

OID

Name
Mod N

V1

V2

OID

Function

V1

V2

OID

V1

V2

OID
Name
Type num

Name
Type int

Module

V1

V2

OID

V1

V2

OID
Using
Type num

Using
Type int

V1

V2

OID

Using
Type num

V1

V2

OID

Using
Type num

V1

V2

OID

Using
Type int

V1

V2

OID
Using
Type num

Using
Type int

Using
Type num

Using
Type int

V1

V2

OID
Using
Type num

V1

V2

OID

V1

V2

OID OpName num_
sub

OpName num_
sub

V1

V2

OID

meter
Para- sub2

V3 V3

V1

V2

OID

OpName num_
mulFunction

V3

V3 V3

V3

V3

V3

V3

V3

V3 V3

V3 V3V3

V3

V3

V3

V3

meter
Para- sub1

Using
Type int

Using
Type int

nil nil

: version unit

to the same object
: set of object versions belonging

: object version

: abstract syntax tree

: (intra document) using relation

: (inter document) using relation

Figure 6: References between versioned objects in O2

6 Current Work

The implementation as sketched in section 4 is currently underway as part of the GOODSTEP project.
This work is related to the development of a tool speci�cation language which includes features to
de�ne speci�c constraints on versions. This language, in general, enables to specify syntax-directed
tools and inter-document dependencies which, after automatic translation into executable code, run on
top of O2 [BBD

+93].

The CM-model corresponding to the presented VM-model is under development. The main advantage
of this model is that it easies very much to build (consistent) con�gurations. In contrast to CM-models
like [Whi91, ML88], a user does not need to de�ne a complete system model upfront, but rather selects
only one particular version. Based on the de�ned based on, depend on and consistent with relations,
the environment automatically proposes (all) con�gurations which are possible based on the selected
version.

Finally, we embed the VM/CM model into a process-centered SEE which is geered towards multi-user
support. This environment which is called Merlin [PS92, JPSW94], supports users in automatically
deriving and displaying so-called user-speci�c working contexts which show all document versions and
all relations between those versions which a user needs to see to perform his/her particular job. A main
interesting feature of Merlin is that it automatically updates all working contexts if one user makes a
change which concerns others.

11

References

[BBD+93] W. Beckmann, J. Brunsmann, D. Dong, W. Emmerich, P. Kroha, W. Reimer, S. Sachweh,
and W. Sch�afer. The Goodstep Tool Speci�cation Language Reference Manual. Deliver-
able ESPRIT Project GOODSTEP 6115-6P, Commission of the European Communities,
November 1993.

[BE87] N. Belkhatir and J. Estublier. Experience with a data base of programs. SIGPLAN Notices,
22(1):84{91, December 1987.

[ELN+92] G. Engels, C. Lewerentz, M. Nagl, W. Sch�afer, and A. Sch�urr. Building Integrated Software
Development Environments | Part 1: Tool Speci�cation. ACM Transactions on Software
Engineering and Methodology, 1(2):135{167, 1992.

[ESW93] W. Emmerich, W. Sch�afer, and J. Welsh. Databases for Software Engineering Environ-
ments | The Goal has not yet been attained. In I. Sommerville and M. Paul, editors,
Software Engineering ESEC '93 | Proc. of the 4th European Software Engineering Confer-
ence, Garmisch-Partenkirchen, Germany, volume 717 of Lecture Notes in Computer Science,
pages 145{162. Springer, 1993.

[Fel88] S.I. Feldman. Evolution of Make. In Proceedings of the 1st International Workshop on
Software Version and Con�guration Control, Grassau, FRG, pages 413{416. Teubner, 1988.

[JPSW94] G. Junkermann, B. Peuschel, W. Sch�afer, and S. Wolf. Merlin: Supporting cooperation in
software development through a knowledge-based environment. In A. Finkelstein, J. Kramer,
and B. Nuseibeh, editors, Software Process Modelling and Technology, chapter 5, pages 103{
129. John Wiley & Sons Inc., 1994.

[KSW94] N. Kiesel, A. Sch�urr, and B. Westfechtel. Gras, a graph-oriented database system: Data
model, functionality and applications. In R. King, editor, Workshop on the Intersection Be-
tween Databases and Software Engineering, Sorrento, Italy. IEEE Computer Society Press,
1994. To appear.

[Lew88] C. Lewerentz. Extended Programming in the Large in a Software Development Environ-
ment. ACM SIGSOFT Software Engineering Notes, 13(5):173{182, 1988. Proc. of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software Development
Environments, Boston, Mass.

[ML88] Axel Mahler and Andreas Lampen. Shape | A Software Con�guration Management Tool.
In Proceedings of the 1st International Workshop on Software Version and Con�guration
Control, Grassau, FRG, pages 228{243. Teubner, 1988.

[PS92] B. Peuschel and W. Sch�afer. Concepts and Implementation of a Rule-based Process Engine.
In Proc. of the 14th Int. Conf. on Software Engineering, Melbourne, Australia, pages 262{
279. IEEE Computer Society Press, 1992.

[Tic82] Walter F. Tichy. Design, Implementation, and Evaluation of a Revision Control System. In
Proceedings of the 6th International Software Process Workshop, pages 58{67. ACM Press,
1982.

[Wes89] B. Westfechtel. Revision Control in an Integrated Software Development Environment.
ACM SIGSOFT Software Engineering Notes, 17(7):96{105, 1989.

[Wes91a] Bernhard Westfechtel. Revisions- und Konsistenzkontrolle in einer integrierten Softwareen-
twicklungsumgebung. Springer, 1991. Informatik Fachberichte, 280.

[Wes91b] Bernhard Westfechtel. Structure-oriented Merging of Revisions of Software Documents.
Proceedings of the 3rd International Workshop on Software Con�guration Management,
Trondheim, Norway, June 1991.

[Whi91] David Whitgift. Methods and Tools for Software Con�guration Management. John Wiley
& Sons, 1991. (Chapter 7: DSEE).

12

		2002-04-03T16:48:21+0200
	Universitaetsbibliothek Dortmund - Eldorado

