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Abstract

Inductive Logic Programming (ILP) is closely related to Logic Programming (LP) by
the name. We extract the basic di�erences of ILP and LP by comparing both and give
de�nitions of the basic assumptions of their paradigms, e.g. closed world assumption, the
open domain assumption and the open world assumption used in ILP.

We then de�ne a three{valued semantic of ILP and point out relations between our
semantic and the framework of Plotkin, [Plotkin, 1971], and of Helft, [Helft, 1989]. Finally,
we show how FOIL, [Quinlan, 1990] �ts in our work and we compare our semantic with
other three-valued logics.
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1 Introduction

The relationship of logic, control and algorithms can be expressed symbolically by the
equation: Algorithm = Logic + Control, [Kowalski, 1979]. Kowalski used this equation
to de�ne that logic programs express the logical component of algorithms and logic pro-
gramming (LP) is the corresponding research area, [Apt and van Emden, 1982]. Further
Kowalski pointed out that LP is closely related to the closed world assumption (CWA) in
contrast to the open world assumption (OWA) in classical logic, [Kowalski, 1989].

Inductive Logic Programming is a new area of research, introduced and described by
S. Muggleton, [Muggleton, 1990], as the intersection of logic programming and machine
learning. We give some understandings of this description, because there is no unique
view. First ILP can be understood as programsynthesis (P. Brazdil), second as an induc-
tive method for programmers (K. Morik1) to develop and verify programs or to represent
knowledge and third our understanding: We emphasize the words logic programming and
understand ILP as the intersection of the research areas of inductive logic and logic pro-
gramming. In the following we will describe ILP from this point of view.

In Inductive Logic Programming there are two main frameworks, and they are pro-
posed by [Plotkin, 1971] and [Helft, 1989]. These frameworks di�er in the underlying
assumptions; what they consider false, and what they consider to be still unknown.
We characterize the �rst one with the OWA. Examples of this framework are CLINT
[DeRaedt and Bruynooghe, 1989], GOLEM [Muggleton and Feng, 1992] and RDT
[Kietz and Wrobel, 1991]. FOIL [Quinlan, 1990] can be used in two modes. First it can
be used regarding the OWA. Second, FOIL can be used regarding the CWA. With respect
to this mode, it is an example of Helft's framework. But neither Helft nor Quinlan give
formal de�nitions of their CWA or OWA.

In the following we argue, that the CWA in ILP cannot the same as the CWA in logic
programming. Therefore, we need a new de�nition of the CWA in ILP (CWAILP ). Also
we de�ne, what we mean by a open domain assumption (ODA) and the OWA. We then
formalize these settings with a modelbased three{valued interpretation of formulas in ILP
taking into consideration the well known �eld of logic programming. Finally we show that
this framework incorporates Plotkin's settings of inductive inference, that it is a logical
description of FOIL and we compare our logic with other three{valued logics.

2 Logic Programming and Inductive Logic Programming

In this section we compare the semantics of logic programming (LP) and Inductive Logic
Programming (ILP) to work out the di�erences between these two paradigms.

Table 1 contains the logic program 1 which should represent 4 elements and stu�. But
what do we mean, if we write such a logic program. K. Apt, [Apt, 1990], argued that we
mean in logic programming that water is an element, : : :and mud is not an element, water
is no stu� : : :This meaning is also listed in Table 1.

Shepherdson, [Shepherdson, 1987], claimed, that we want to deduce from the fact
son(bill,joe,jane) and the parent{relation given by the logic program 2 in table 1 the
negative information :son(bill; harry;maude) and further :parent(harry;maude; bill).

1Personal communication
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Logic Program 1:
element(�re). element(air). element(water). element(earth). stu�(mud).

Meaning:
: element(mud). : stu�(water). : stu�(earth). : stu�(air).stu�(mud).
: stu�(�re). element(�re). element(air). element(water). element(earth).

Logic Program 2:
parents(Father, Mother, Child) :- son(Child, Father, Mother).
parents(Father, Mother, Child) :- daughter(Child, Father, Mother).
son(bill,joe,jane). daughter(sue,harold,maude).

Meaning A:
parents(Father, Mother, Child)  son(Child, Father, Mother).
parents(Father, Mother, Child)  daughter(Child, Father, Mother).

Meaning B:

parents(Father, Mother, Child) $
son(Child, Father, Mother) _ daughter(Child, Father, Mother).
: son(bill,harry,maude).

Table 1: Logic Programming

This means we should interpret the logic program 2 as given by Meaning B. Another
reading is the interpretation of rules as premises, material implication and conclusion,
Meaning A. This reading would not permit to deduce the negative information, because
we can conclude from a false premise everything. So, we mean with logic program 2, that
the parent{relation is de�ned by the son{ and the daughter{predicate or the parent{relation
is equivalent to son{ or daughter{relation.

Kowalski, [Kowalski, 1989], related this interpretations of logic programs to the closed
world assumption in contrast to the open world assumption. Rules of logic programs
should be interpreted as if-then-and-only-if{de�nitions regarding the CWA. The if-then-
and-only-if-reading reects our Meaning B in table 1. He de�ned a static and a dynamic
management of a data base depending upon the form of de�nitions: whether data (facts
or rules) is de�ned by means of complete if-then-and-only-if{de�nitions or by only means
of the if{halves, whether the only{if{half of an if-then-and-only-if{de�nitions is stated
explicitly or is assumed implicitly, and whether the only-if assumption is understood as a
statement of the object language or as a statement of the meta-language.

The meaning of logic programs was formally captured by the closed world assumption
[Reiter, 1978]. Because this solution has some computational problems, Clark proposed
the Negation As Failure - rule, [Clark, 1978], whereas Apt and van Emden described
semantics based on least �xpoints, [Apt and van Emden, 1982]. This corresponds to a
static{meaning which is described by the following form of the CWA. It states that all
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We say:
Background Knowledge p(c), p(a), p(b) incomplete set
and Positive Examples: p(a) ! q(a) of formulas

p(b) ! q(b)
Negative Examples: q(d)

We mean
Hypothesis: p(X)! q(X)

Prediction: q(c)

Table 2: Inductive Logic Programming

is true what is given and all is false, what is not given. Shepherdson summarizes in the
helpful motto: We mean, what we say and nothing more.

De�nition 1 (Closed World Assumption, CWALP ) Let P be a logic program. Then
de�ne

CWALP (X) := P [ f:A: P 6 k� Ag

A less restrictive interpretation is used in ILP in which we mean more, as what we say
regarding Shepherdson, or we have a dynamic representation regarding Kowalski.

Following the framework of [Plotkin, 1971], the inductive learning task in ILP can be
described as using a background theory B, a set of positive examples E+ and a set of
negative examples E�. The desired output is a hypothesis which describes the positive
facts w.r.t. the background knowledge and no negative facts. Plotkin has proven, that
there is no hypothesis which covers exactly the positive examples and no other fact. In
general, we can deduce from a hypothesis, facts which are not known. Let us call this set
of facts prediction.

Or in another sense, in learning we complete an incomplete set of data with the pre-
diction. Table 2 shows such an incomplete set of formulas from which we want to infer
a complete set of formulas. Again we distinguish in what we say and what we mean. In
a semantical view, we want to infer an interpretation in which the prediction is satis�ed.
We do this by adding the hypothesis p(X)! q(X) which describes our intended interpre-
tation and satis�es q(c). So, we see the learning task as to infer a correct interpretation
with respect to an incomplete set of formulas.

Many learning systems make special assumptions in order to infer the correct interpre-
tation. For example FOIL [Quinlan, 1990] uses two assumptions, CWA and ODA. Let us
recall how FOIL can be used:

1. A set of positive examples E+ is presented to the system.

2. The set E� will be generated according to the closed world assumption (CWA) with
respect to the minimal signature of E+.

3. The completed set E will be generalized with the background knowledge B.
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Positive examples: Relation member
e; [eo[x]]
o; [eo[x]]
[x]; [eo[x]]
o; [o[x]]
[x]; [o[x]]
[x]; [[x]]
x; [x]

Background knowledge Relation �null []
Relation *components
[eo[x]]; e; [o[x]]
[o[x]]; o; [[x]]
[[x]]; [x]; []
[x]; x; []

Hypotheses: member(A;B) : � � components(B;C;D);= ( A;C)
member(A;B) : � � components(B;C;D); member(A;D)

Prediction: member(1; [1])

Table 3: FOIL learns member

4. The prediction is not a�ected by the CWA according to the open domain assumption
(ODA).

Table 3 shows positive examples of the predicate member and background knowledge
in the form of the predicates null and components. FOIL learns two hypotheses which
describes the positive examples and does not describe the negative examples. The negative
examples are like null[x] and are generated by the CWA. The prediction is for example
member(1; [1]), which is not a�ected by the CWA, although they are not mentioned as
positive examples.

First, we cannot use the CWA as de�ned by [Lloyd, 1987] in logic programming2.
Lloyd and others relate the CWA to the domain closure assumption DCA, whereas we
need a CWA which is related to the ODA.

Hence CWALP is not equal to CWAILP , but then we have to ask what is the for-
mal de�nition of the CWAILP or why is the prediction not inuenced by the CWAILP .
Obviously, the de�nition of the CWAILP must allow for prediction.

One solution was presented by Helft, [Helft, 1989]. He relates the CWA to the Open
Domain Assumption (ODA). Helft proposes that only a subset of the formulas according
a given signature should be inuenced by the CWAILP . Table 4 shows an example of
Helft's framework with an given logic program. He constructs regarding the logic program
a minimal model and �nds then hypotheses which have to be valid in this minimal model.

2The CWA determines a unique model, because equality axioms, freeness axioms and the domain closure

axioms restricts the domain to ground terms, and the set of formulas and the completion determines the

truth values of all ground literals.
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Logic Program:
deputy(tom). deputy(x) ! corrupt(x).
rich(tom). rich(bill).

Minimal Model

deputy(tom),corrupt(tom),rich(tom),rich(bill)

Hypotheses:
�1: rich(x)  deputy(x)
�2: rich(x)  corrupt(x)
�3: corrupt(x)  rich(x)

ICWA j= �1; �2

Table 4: Example of Helft

In the example are the rules �1 and �2 valid. Finally he applies the hypotheses regarding
to the ODA.

But Helft does not give any formal de�nition of the CWAILP and the ODA. We
give in the next section de�nitions of theses assumptions based on a three-valued seman-
tic. Three{valued semantics are widely used in logic programming, see [Fitting, 1985] or
[Shepherdson, 1987], but we cannot transfer their techniques identically. In logic program-
ming three-valued semantics are motivated by the observation, that each logic program
succeeds, fails or go on forever. So it is natural to use three values in the semantics of
logic programs.

In ILP we have a similar case: each clause is true, false or unknown, because the
prediction is a set of proposition which we not know. They are maybe true or false.

In the words of Kowalski, [Kowalski, 1989], logic programs or data bases have a static
representation whereas in ILP, sets of formulas should be have a dynamic representation.
This seems very natural, because in learning it should be possible to have anything to
learn which is currently unknown and later known.

3 A logical framework

In this section we formalize our logical framework. We de�ne the terms minimal signature
and the three assumptions CWAILP , OWA and ODA. We then give a semantic of
logic programs regarding ILP based on partial Herbrand interpretations and describe the
validity of hypotheses. For logical de�nitions of �rst order language we refer to [Apt, 1990].
We restrict ourselves to the languages of Horn clause logic which are mainly used in ILP.
Any unde�ned expressions can be found in [Lloyd, 1987] or [Apt, 1990].

3.1 Assumptions in ILP

In the following, using � = fPS; FS; V g we denote a signature where PS is a set of
predicate symbols, FS is a set of function symbols, and V is a denumerable set of variables.
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FORM(�) denotes the set of well-formed-formulas according to � which are de�ned as
usual. TERM(�) is de�ned as the set of terms. A signature is the speci�c part of a
language.

Let us de�ne what is meant by the term minimal generating signature.

De�nition 2 (Generating signature) Let � = fPS; FS; V g be a signature, X a set of
formulas. We say that � generates X, i� for every A 2 X, it holds that A 2 FORM(�).

De�nition 3 (Minimal generating signature) Let � = fPS; FS; V g,
�0 = fPS0; FS0; V 0g be two signatures and X a set of formulas. We write � � �0,
i� PS � PS 0, FS � FS 0. We say that � is a minimal signature w.r.t. X, i�

1. � generates X

2. for every generating signature of X, � is minimal under �.

The point is, that the prediction should not be a�ected by the CWA. Thus, the com-
pletion of the given set of formulas is only done w.r.t. the minimal signature �. In table
3 we generalize the positive and negative examples to the hypotheses ( member(A;B) :
� � components(B;C;D); : : :) which is also valid for numbers, e.g. member(1; [1]).

The idea is, that if we have a model M for the given incomplete set of formulas,
then there is a model M 0 for the generalization. Clearly, M is not necessarily a model
of theses generalized formulas because M may not interpret all instantiations of these
formulas. Hence, M is only a partial interpretation. But partial interpretations are closely
connected with a third truth-value, because one can regard the uninterpreted formulas as
formulas which have the truth-value unde�ned. What happens within the generalization
step is that formulas which have the truth-value unknown are assigned the value true. And
the ODA permits that valid formulas remains valid.

Let us put these ideas into a more precise form. According to the way how FOIL can
be used, we relate the ODA to a minimal signature and the CWA to a minimal model
based on the minimal signature of a given set of formulas or a logic program.

De�nition 4 (Open Domain Assumption, ODA) Let � be a signature,
A 2 FORM(�) a formula, V a variable, � : V ! TERM(�) a state (or variable assign-
ment), �G a ground variable assignment. (This means in TERM(�) are no variables.)
The ODA can be stated as: if

M� j= �G(A); for every state �G

then for every �0 � �, every state �0G : V'! TERM(�0) and M� (M�0) is a modelframe
w.r.t. � (�0)

M�0 j= �0G(A)

De�nition 5 (Closed World Assumption, CWAILP ) Let � be a minimal generating
signature according to a set of formulas X, A is a ground atom. Mmin is the least model
of X. k� is the semantical entailment relation. Then de�ne

CWA(X) := fA : Mmink�A and A 2 FORM(�)g

[f:A : Mmin 6 k� A and A2 FORM(�)g
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In logic programming OWA and CWA are used mutually exclusive, [Kowalski, 1989].
Kowalski related the CWA to a static representation and the OWA to a dynamic repre-
sentation. Thus, in ILP are CWAILP and OWA mutually exclusive used. But to express
the OWA we need more formal de�nitions and a closer look to three{valued semantics.

3.2 A partial Herbrand interpretation

Here, we follow the framework of [Wagner, 1991]. For the signature �, the Herbrand
Universe U� consists of all ground terms. We regard non{ground clauses as a dynamic
representation of the corresponding set of ground clauses formed by means of the current
domain of individuals. Therefore, a state or variable assignment � is simply a function
which assigns each variable a ground term. The Herbrand base, B�, is the set of all ground
atoms. We use the same symbol for syntactical and semantical objects.

M = hM+;M�i should characterize a partial Herbrand interpretation in which M+

and M� are disjoint subsets of B�. M+ contains the objects which are true and M�

contains those which are false. Partial Herbrand interpretations give rise to a model as to
a countermodel relation, =j .

De�nition 6 (Satisfaction) Let � be a state, F a formula. We write M j= �(F ) to say
M satis�es F in a state �.

M j= F i� M j= �(F ) for all states �
M j= A i� A 2M+

M j= F1 _ : : :_ Fn i� M j= Fi for some 1 � i leqn

M j= F1 ^ : : :^ Fn i� M j= Fi for all i = 1 ; : : : ; n
M j= A F1 ^ : : :^ Fn i� A 2M+ or Fi 2M

� for all i = 1 ; : : : ; n
M j= :F i� M =j F
M=j A i� A 2M�

M=j : F i� M j= F

M=j F1 ^ : : :^ Fn i� M=j Fi for all i = 1 ; : : : ; n
M=j F1 _ : : :_ Fn i� M=j Fi for some 1 � i leqn

We write M j= X , where X is a set of formulas, if M j= A, for each A 2 X . The symbol
k� denotes the semantical entailment relation. If, for example, X is a set of formulas and
A is a formula, then we write Xk�A, i� every model of X is model of A, or if M j= X then
M j= A.

De�nition 7 (Least Model) Let M = hM+;M�i;M 0 = hM 0+;M 0�i be two models for
a set X of formulas. We say that M is a submodel of M 0 (denoted by M � M 0) i�
M+ �M 0+. We say that M is a least model for X, if for every M 0 j= X, M �M 0 holds.

Note that due to the fact that nothing is said about M� and M 0�, there can be
incomparable models with respect to �. However we have now an ordering on models and
interpretations, respectively.

Let us briey recall some results of logic programming.

Observation 1 Let M;M 0 be two interpretations such that M �M 0, X a set of formulas
and P a logical program. Then the following holds:
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1. if M j= X then M 0 j= X

2. P has a least model

A proper partial Herbrand interpretation determines a three{valued assignment vm on
ground atoms. We use vm to describe OWA and give an equivalent de�nition of CWAILP

regarding the truth assignment vm.

De�nition 8 (Truth Assignment with OWA) LetM = hM+;M�i be the partial Her-
brand interpretation and A a ground atom. The OWA is used i� the following three{valued
truth assignment, vm, yields:

vm(A) =

8><
>:

true if M j= A

false if M=j A
unknown if otherwise

De�nition 9 (Truth Assignment with CWAILP ) Let M = hM+;M�i be the partial
Herbrand interpretation and A a ground atom. � be a minimal generating signature ac-
cording to a set of formulas X. The CWAILP is used i� the three{valued truth assignment,
vm, yields:

vm(A) =

8><
>:

true if M j= A and A 2 FORM(�)
false if notM j= A and A 2 FORM(�)

unknown if otherwise

3.3 A semantic of a program P

We now give two interpretations: ICWA and INeg. The �rst interpretation behaves exactly
like the CWAILP combined with the ODA, in that those formulas which are not explicitly
interpreted as true are (implicitly) false. The second interpretation, INeg which correspond
to the OWA, interprets formulas as false only if they are stated explicitly as false. Hence,
the interpretations are able to handle formulas which are unknown, namely those which
are neither true nor false.

Let B�0 be the Herbrand base of a logical program P � FORM(�0) and B� the
Herbrand base of a minimal generating signature � � �0 of P . To determine the least
model, we introduce according to [Apt, 1990] an immediate consequence operator TP (I).
Then, we iteratively apply TP (I) to construct M+. The result is a least �xpoint of M+

with respect to a minimal generating signature � of P . The set M� is determined by the
Herbrand base of the minimal signature without M+.

De�nition 10 (T operator) The TP (I) operator maps one Herbrand interpretation to
another Herbrand interpretation.

A 2 TP (I) i� for some substitution �

and a clause B  B1; : : : ; Bn of P
we have A � B� and I j= ( B1; : : : ; Bn)�

If TP (If ) = If holds, If is called a pre-�xpoint of T . We know from the results of logic
programming that TP (If ) is a model of P if If is a pre{�xpoint of TP . Another result is
that each monotonic operator T has a least �xpoint which is also its least pre-�xpoint. If
� is a minimal generating signature for P , we can construct M� by BMSwithoutM

+.
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P: deputy(tom),deputy(x)! corrupt(x),rich(tom),rich(bill)

BMS deputy(tom),corrupt(tom),rich(tom),rich(bill)
deputy(bill) corrupt(bill)

M+: deputy(tom),corrupt(tom),rich(tom),rich(bill)

M�: deputy(bill) corrupt(bill)

Table 5: Example of ICWA

De�nition 11 (Interpretation ICWA) Let P be a program generated by a minimal sig-
nature �. The interpretation ICWA is characterized by hM+;M�i, whereas M+ is a
pre{�xpoint of TP (I). M� is determined by B� or formally:

M� = fa : a 2 B� and a 62M+g

Table 5 shows a set of formulas P and the corresponding Herbrand base BMS . M+ is
constructed by the least model of P and M� by the di�erence of BMS and M+.

Observation 2 Let P � FORM(�0) be a program and � � �0 the minimal generating
signature of P . If FORM(�) = FORM(�0), then M+ corresponds exactly to the least
model of P .

It is easy to see that the interpretation ICWA corresponds to the CWAILP and the
ODA. Now, let us formulate an interpretation which handles explicit negation regarding
the OWA. The interpretation INeg of a set of formulas with negative examples is con-
structed from the partial Herbrand models. M+ was constructed from the least �xpoint
of TP (I). The set M� is a least model of the negative examples.

De�nition 12 (Interpretation INeg) The interpretation INeg is characterized by
hM+;M�i, whereas M+ is a pre{�xpoint of TP (I). M� is a Herbrand Interpretation of
the negative examples, or formally:

M� = fa : a 2 E� and a is groundg

Clearly, formulas which are neither in M+ nor in M� are unknown. We do not have
a normative truth-value assignment like the CWA (those things which are unknown are
false).

Table 6 shows an example of INeg, with a set of clauses, P , and the corresponding
Herbrand base BMS . M+ is constructed from the least model of P and M� from the
given negative examples.

3.4 Valid hypotheses

We de�ne a set of hypotheses H which characterizes the intended interpretation of a given
set of formulas in ILP. We add the set H to the given formulas and determine again with
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P: deputy(tom),deputy(x) ! corrupt(x),rich(tom),rich(bill)
: deputy(bill)

BMS deputy(tom),corrupt(tom),rich(tom),rich(bill)
deputy(bill) corrupt(bill)

M+: deputy(tom),corrupt(tom),rich(tom),rich(bill)

M�: deputy(bill)

Table 6: Example of INeg

the TP operator the truth value true or false of the up to now formulas with the truth
value unknown. Formally, the TP operator map the truth value unknown of any formulas
to true or false. But �rst we de�ne the set H and in favor of its size two more restricted
sets. The interpretation M = hM+;M�i is related to ICWA or INeg.

De�nition 13 (Set of Hypotheses H) Let Pre 2 FORM(�), where FORM(�) is the
minimal generating signature of the examples, Q 2 FORM(�). Q may be a conjunction
of atoms.

H = fQ Pre : for all � (�(Q) 62M� or �(Pre ) 62M+)g

Helft's idea, [Helft, 1989], is to restrict this set H by there is a �, such that �(Pre )2
M+. This ensures that of each hypothesis both, the premise and conclusion, have to
be once satis�ed. This gives a better con�rmation, because for example, if we add the
negative example woman(tom), we don't have the hypothesis deputy(tom)  woman(tom)
in contradiction to H .

De�nition 14 (Helft's Set of Hypotheses, HHelft)

HHelft = fQ Pre : 8� (�(Q) 62M� or �(Pre ) 62M+)and9� �(Pre )2M+g

A further restriction is to regard only hypotheses with the same conclusion. This is
called single predicate learning in contrast to multiple predicate learning of the set H ,
[Muggleton, 1993].

De�nition 15 (Single Predicate Learning, HSPL)

HSPL = fQ Pre : 8� (�(Q) 62M� or �(Pre ) 62M+)

and 9� �(Pre )2M+ and 8i; j Qi = Qjg

Table 7 shows a procedural view of our framework. We determine from a given set of
formulas the partial Herbrand interpretation. We construct then a set H and try to map
the truth value unknown to true or false with the TP operator. Hence, we have determined
the truth value of up to now unknown formulas which is the prediction.
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Given set of
WFFs

)
Partial Herbrand
Interpretation

) Set H ) Prediction

Table 7: A procedural view of our framework

Logic Programming Inductive Logic Programming

ICWA Ineg

CWA + DCA CWAILP + ODA OWA

Table 8: Summary of the assumptions

3.5 Summary

We have related the OWA to the interpretation Ineg and the combination of CWAILP

and ODA to the interpretation ICWA, table 8. The set of hypotheses is determined regard-
ing the interpretation and is a set of all possible hypotheses. Several learning algorithm
restricts this set, for example FOIL with single predicate learning uses only a subset with
always the same conclusion in contrast to multiple predicate learning. However, in the
next section we point out several relations which can be discarded using this framework.

4 Relations

4.1 Helft: induction as nonmontonic inference

In the following we restrict the framework of [Helft, 1989] to horn clause logic. It is
easy to see that the minimal models coincide with the least �xpoint under a Herbrand{
Interpretation.

De�nition 16 (Helft's language) Helft uses a language which is restricted by the fol-
lowing items:

1. Groundable: Function symbols are not used and every variable in the head of the
clause has to appear in the body. This ensures that a �nite least model always exists.

2. Injective: There is a substitution or state � , mapping the literals of P onto elements
of A, such that for every pair of variables x; y of P, �(x) 6= �(y). This ensures that
the set of generalizations is �nite and no unnecessary variables are introduced.

Helft constructs a minimal model with respect to a set of formulas. In our terminology,
M+ corresponds to the least model and M� is the Herbrand base without the least model
with respect to the minimal signature �. We use only one set of generalizations because
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P: deputy(tom),deputy(x) ! corrupt(x),rich(tom),rich(bill)

�1: rich(x)  deputy(x)
�2: rich(x)  corrupt(x)
�3: corrupt(x)  rich(x)

BMS deputy(tom),corrupt(tom),rich(tom),rich(bill)
deputy(bill) corrupt(bill)

M+: deputy(tom),corrupt(tom),rich(tom),rich(bill)

M�: deputy(bill),corrupt(bill)

ICWA j= �1; �2

Table 9: Example of Helft

we always have an unique minimal model. Helft has to distinguish between strong and
weak generalizations.

De�nition 17 (�) Let M be an interpretation and � = P  Q a clause. � is a �nite
set of groundable clauses and � is the set of generalizations which are de�ned as:

� M j= � and M j=� Q, whereas ��(Q) is one ground instance and Q is injective over
M.

� � 6 k� �

� For every clause �0 of �(�), if �0k�� then �k�� 0

Theorem 1 ICWA(�) j= �

Proof
Assume that ICWA(�) 6j= P  Q and P  Q 2 �. Without loss of generality assume
that, the rule is ground. Note that Q can be a conjunction of atoms.
We know from the de�nition of satis�ability that P 62 M+ and that Q 62 M�. We also
know, that P and Q are in the minimal signature �. Therefore P 2 M� and Q 2 M+

because all members of BP are by de�nition in M+ or in M�.
In words of [Helft, 1989], M 6j= P  Q. This contradicts the �rst condition of Helft's
de�nition Therefore P  Q is not in � and this concludes our proof. 2

Table 9 shows an example of Helft, in which each proposed generalization is satis�ed
by ICWA(�).

4.2 FOIL in a logical framework

We show, in this section, that FOIL3 is an example for a learning system based on Plotkin's
conditions. In another view, FOIL is an example of Helft's framework. Both �t into our

3To con�rm our results we have used in fact FOIL2.
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Input of FOIL p: bill,tom,hank,joe,pete,carl,go.
rich(p) bill,+ tom,+ .
*corrupt(p) tom,+.
*deputy(p) tom,+ ; bill,- .

Output of FOIL: *** Warning: the following de�nition
*** does not cover 1 tuple in the relation
rich(A) :- *corrupt(A)

M+: deputy(tom),corrupt(tom),rich(tom),rich(bill)

M�: deputy(bill)

Table 10: Example of FOIL

logical framework. We do not want to investigate the information{based selection of a
certain generalization out of the hypothesis set. We do not regard anything like predicate
invention in this framework. We also do not allow rules with negative literals in the body.

FOIL is a learning system which infers from a trainingset of examples a formula which
describes the selected concept. The examples are given by ground atoms and are divided
into positive examples and background knowledge. FOIL selects the best hypothesis with
an information based measure that covers as much as possible of the positive examples
and no negative example. FOIL works in two modes. In one mode, only positive examples
are given, and the CWA is used to construct negative examples. This corresponds to our
interpretation ICWA. The other mode in which positive and negative examples are given
corresponds to our interpretation INeg. Our observation that each hypothesis is a member
of our hypotheses set H is independent of the chosen model.

Table 10 shows FOIL applied to the example of Helft. The rule is valid because the
conditions of Plotkin are ful�lled. The only exception is that rich(bill) cannot be deduced
from the hypothesis and the background knowledge.

Theorem 2 Each FOIL learning result is a member of HSPL.

Proof:

This is an easy proof because HSPL is exactly constructed to ful�ll the conditions of
Plotkin and Helft. First, we show this for the case where we give explicitly positive and
negative examples, and second, where FOIL uses the CWA. P  Q is a FOIL learning
result.

1. Here the conditions of Plotkin are ful�lled. By de�nition of the set HSPL, we know
that P 62 M� or Q 62M+. Then we see that P also has to be in M+, because Q 2
M+, and we want to deduce P from the hypothesis. The consistency is guaranteed
by the disjointness of M+ and M�.

2. In this case, we know that all positive examples are in M+ and if we want to deduce
the positive examples, P also has to be in M+. To deduce the positive examples,
we also need to satisfy the background knowledge. This means that for instance
Q 2M+. This ful�lls the conditions of H . 2
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4.3 Plotkin's inductive task

Following the framework of [Plotkin, 1971], the inductive learning task can be described
using a background theory B, a set of positive examples E+, a set of negative examples
E�, a hypothesis H, and a partial ordering relation �. The conditions are:

1. The background theory should not entail the positive examples,
B 6 k� E+ (Prior necessity),

2. and it should be consistent with the examples, B;E�; E+ 6 k�? (Prior satis�ability).

3. The background theory and the hypothesis have to entail the positive examples,
B;Hk�E + (Posterior su�ciency).

4. The background theory and the hypothesis should not entail the negative examples,
B;H;E� 6 k�? (Posterior Satis�ability).

5. We should use the most speci�c hypothesis that ful�lls the above requirements.
Therefore we have an ordering � on the hypotheses, whereas h1 � h2 means h1 is
more general than h2

Plotkin has proven in general, there is no hypothesis which covers exactly the positive
examples and nothing else. In general, we can deduce from a hypothesis facts which are
not known. We call this set of facts prediction. To see that the set H ful�lls the conditions
of Plotkin, we test each condition:

1. The background theory should not entail the positive examples. This can be guar-
anteed by the restriction that background theory and the examples are disjointed.

2. The backgroundknowledge and the examples should be consistent is satis�ed by the
restriction that M+ and M� are disjointed.

3. The condition B;H j= E+ guarantees that we can conclude the positive examples
from the hypothesis and the background knowledge. This means, if the body of each
hypothesis is in M+, we can deduce the head. Therefore Q 2M+.

4. The consistency is satis�ed by the restriction that M+ and M� are disjoint.

4.4 Comparison with other three{valued logics

Using our framework the underlying logic of ILP can be compared with other three{valued
logics fairly easy. We will compare our three{valued logic with the logics of Kleene and
 Lukasiewicz, [Turner, 1984], whereas we only regard the implication.

First let us look on Kleene's strong three{valued implication. Kleene's concern was
to model mathematical statements which that means his undecidable third truth value
represents neither true nor false, but rather a state of partial ignorance [Turner, 1984].
We guess, that this is common to our approach, where the third truth value also indicates
that we do not know anything. Nevertheless, we have a very optimistic view in learning,
because there is always the danger of assuming that all our hypotheses are true. Kleene
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Logic of ILP:

Pre ! Q t f u

t t f t

f t t t

u t t t

Kleene's logic:

Pre ! Q t f u

t t f u

f t t t

u t u u

 Lukasiewicz's logic:

Pre ! Q t f u

t t f i

f t t t

i t i t

Table 11: Comparison of logics

did not want to conclude from an unknown sentence something known. Specially in the
case where u ! u is undecided.

For a second comparison let us look of  Lukasiewicz three{valued logic. In this logic
the case u ! u is true. Turner points out that the di�erence origin from the di�erent
interpretation of th third truth value. Whereas in context of Kleene this third truth value
is a truth gap,  Lukasiewicz assigned the third truth value an statement, if no assignment
of true or false is possible. However he deals with statements about the future.

Again have we the most optimistic view of the implication. This means if it is possible
that a fact implies another fact, this statement is true. The other semantics are more
cautious, because obviously this can be false.

5 Conclusions and further works

In this work, we have compared the basic assumptions of logic programming and ILP.
Then, we have given a three{valued model{based semantic of ILP and shown that FOIL
�ts in this framework. The semantic reects the two main assumptions which we need in
machine learning. Finally we have related our framework with other works of ILP and
three{valued logics.

Currently we are implementing our framework with ISABELLE, [Paulson, 1989], and
doing experiments. We are also evaluating more restrictions on the set H .

In further works we want to show the need to handle more than three truth{values
in machine learning. For example, we will show that it is useful to handle inconsistencies
in an incremental learning system. We often come up with inconsistencies, and we want
to wait for a less busy time to be able to make revisions because making revisions is an
expensive task.
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