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Chapter 1

Introduction

This thesis resides around the interface of two disciplines in computer science: computer graphics and parallel
computing (Fig.1.1). On the one hand an efficient algorithm (A) for global illumination simulation is examined

computing
parallel

graphics
computer

dynamic

partitioning

illumination
global

scientific
computing

other

area

(T)

(A)

Figure 1.1: Localizing this thesis.

with respect to its capability of being parallelized. On the other hand we develop a general tool (T) for the dynamic
partitioning of spatially mapped tasks, that is furthermore analyzed theoretically and experimentally.

The above simulation algorithm (A) is a special instance of algorithms that can be formulated as a collection
of spatially mapped tasks. As a proof of practicability of our tool (T) we apply the tool to the simulation algorithm
and get useful speedup values. Algorithms of other scientific computing areas apparently can benefit the same way
from our tool, even though studying this is beyond the scope of this thesis.

1.1 Global Illumination

The creation of raster images out of a given description of geometrical and optical characteristics of a 3D scene is
the subject of Rendering. A broad range of applications from engineering to architecture benefit from realistically
looking images. They differ in the extent of the required realism.

In the entertainment industry fast rendering algorithms for visually satisfying outputs are prevailing. Mostly
they include only local illumination – i. e. illumination directly from the light sources – into their calculations (see
Fig.1.2).

An increasing number of applications needs higher degrees of realism. Actually, the light emitted by light
sources is reflected in the scene across several surfaces. Hence, the light at a point indirectly depends on all light
globally transmitted through the scene. Formally this fact is described by a linear operator equation of the form
L = Le+T L with the unknown quantityL. Solving this equation is the subject of global illumination algorithms.

There are two basic approaches for solving the global illumination problem, the Finite Element approach and
the Monte-Carlo approach, also known as the Radiosity approach and the Raytracing or Particle approach. Both
approaches are very time consuming raising the natural question for a parallel computer implementation. There
is no common agreement, which of these two approaches is generally preferable. Both approaches have their

1
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Figure 1.3: Distributed memory.

advantages and disadvantages; both techniques have been improved greatly over the last years. Sophisticated
variance reduction techniques have pushed the Monte-Carlo methods. Finite Element techniques have been made
useable by multiresolution techniques and by extending them to glossy reflection.

1.2 Dynamic Partitioning

When implementing an algorithm on parallel processors one has to partition the algorithm into equally sized blocks
such that all processors are kept busy while interprocessor-communication is kept as low as possible.

The accurate solution of many problems in science and engineering requires the resolution of unpredictable
physical phenomena. Such problems may involve complicated partial differential or integral equations and orig-
inate from materials design, computational fluid dynamics, astrophysics, molecular dynamics, and – last but not
least – global illumination. The most important feature of all these numerical problems is that some regions of the
computational domain require deeper resolution than others, and that these regions are not known from the begin-
ning. Hence, the partitioning of the algorithm should be adapted dynamically while the computation proceeds.

We are mostly interested in distributed memory (DM) environments (see Fig.1.3), since this architecture class
is very well scalable. Another reason is that onwardly improving local area network technology puts more and more
people in a position where they can solve their problems cost- and time-efficiently on a network of workstations
(NOW).

Because there are so many different kinds of parallel and distributed computing environments, there is no
agreement to universal abstract models of a parallel environment and of its communication overhead. Such models
would be advantageous since they allow portable implementation and universal complexity statements. Agreement
has been reached about a specific programming model, the message-passing model, which is now standardized as
themessage passing interface (MPI) [77, 76].

Regardless how far network technology will reduce communication overhead in the future, we will probably
always need to deal economically with remote data communication in parallel programs. The larger the discrep-
ancy between processor speed and network bandwidth — typically in NOWs this tends to be very large — the
more a partitioning should support coarse grained parallel approaches.
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Figure 1.4: A 2D finite element mesh example (“airfoil1”, taken from [85]).

1.3 Motivation And Contributions

Many researchers have devised parallel algorithms for global illumination. Most of these are specifically tailored
to special assumptions about the physical properties of the scene’s objects or to a single solution approach. For
instance much work has been done on parallelizing the “flat” classical radiosity [22], but not on the much more
irregular hierarchical counterpart.

The primary conception for this thesis was to develop a parallel algorithm for the Hierarchical Radiosity al-
gorithm (HRA) [53]. There have been quite successful attempts to implement HRA on a cache-coherent shared-
address-space multicomputer [95], since HRA exhibits high fine grained parallelism. But developing a coarse
grained parallel algorithm meeting the requirements of a distributed memory (DM) environment is difficult. One
contribution1 of this thesis is a detailed examination of the bottlenecks of a DM implementation of HRA. We show
in Chapter6 that HRA is a very dynamic and communication intensive algorithm, and that the communication
paths are quite interweaved and unstructured. We propose metrics and graph partitioning methods for analyz-
ing the “partitionability” in terms of load balancing, communication and congestion. This is a new experimental
technique, which could also be useful and important for the analysis of other scientific computing methods.

An important task to be solved when parallelizing hierarchical finite element algorithms is the dynamic parti-
tioning problem. Above in Sect.1.2 we enumerated a few scientific application domains. There is an important
difference between other applications and the hierarchical finite element algorithms. Those other applications ex-
hibit irregular, but locally structured meshes to represent the changing numerical computation (see for example
Fig.1.4). The locality property is important on parallel processors, since it allows to reduce the communication
cost by exploiting data locality. At first sight global illumination algorithms miss this locality as the name “global”
eloquently suggests. The visibility term in the transport equation (2.1, page6) takes the responsibility. A con-
tribution of this thesis is a clever mapping of hierarchical finite element algorithms to high-dimensional spaces
(Chapter5). This mapping manifests a locality property, which can greatly reduce communication

Recently there are trends to integrate both Finite Element and Monte-Carlo approaches into a single global
illumination framework [96]. We searched for a parallel solution of hierarchical finite element algorithms that is
well adaptable also to particle-based global illumination algorithms. Finite element methods, particle methods,
and many other scientific computing algorithms can be seen as operating on a set of geometric objects. We decided
to deepen the aspect of dynamic partitioning for geometric objects in this thesis. One contribution is the definition
of a dynamicspatial partitioning strategy (Chapter7), which preserves locality during dynamic load balancing
of geometric objects on parallel processors. An important feature of this strategy, which distinguishes it from
previously published partitioners, is that one can show that the worst case amortized time complexity per dynamic
object-update is small. We studied the performance and scalability of the load balancer experimentally on a simple
artificial application (Chapter8).

As a realistic “live test” the final contribution of this thesis is an efficient parallel implementation of hierarchical
radiosity based on dynamic spatial partitioning (Chapter9). The speedup curve for the HRA obtained on a Cray
T3E is almost linear up to 64 processors. This is better than previously published HRA implementations on
massively parallel distributed memory computers.

1 For a detailed list of all original contributions of this thesis see Sect.10.2.
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1.4 Structure Of This Thesis

This thesis starts with the definition of the global illumination problem by formulating the radiance equation. Chap-
ter2 gives a short overview of the two predominating methods — the finite element method and the Monte-Carlo
method. The description focuses on the algorithmic properties that are important in a parallel implementation.
A generic hierarchical finite element algorithm is described in greater detail, since this algorithm is subject of a
deeper analysis later in this thesis.

Chapter3 engages in the problem that we are lacking commonly agreed abstract models of parallel environ-
ments. We introduce several basic models (machine, programming, cost) and state reasons about our particular
choices that are fundamental to the rest of this thesis.

In Chapter4 we review the general graph embedding problem, that needs to be solved, when a sequential
algorithm is parallelized. We discuss the main incentives that should guide the search for a good solution strategy.
Only briefly we skim the wide field of existing heuristic solution approaches.

The following Chapter5 develops partitioning strategies for the two global illumination methods, finite ele-
ments and Monte-Carlo. We aimed at a formulation that makes a joint utilization of both methods in a single
program feasable. We compare our approach with related implementations. Again, the hierarchical finite element
algorithm is discussed in greater detail. We define atask access graph on top of this algorithm which will be
examined experimentally in the following chapter.

Chapter6 presents a quantitative study of the parallelization of the hierarchical radiosity algorithm expressed
as a graph partitioning problem. We present metrics about the quality of partitions generated by different graph
partitioning techniques. The results highlight the bottlenecks of the parallelization of this algorithm and confirm
that the HRA is poorly partitionable. We see that the total communication volume of the HRA cannot be reduced
arbitrarily, even if it were possible to use a very complex graph partitioning software. One main result of this
chapter is that a simple spatial partitioner, which partitions tasks with respect to their geometric position, seems to
be the best compromise when considering the influence of all sources of overhead in a parallel program, namely
the load imbalance, the communication overhead and the congestion.

These findings have led us to search for a good spatial partitioner. Existing methods have been reviewed already
in Chapter4. The orthogonal recursive bisection methods stick out because of their ability to compactly represent
a directory of distributed objects and tasks — a feature that is very useful in parallel radiosity implementations.
In Chapter7 we describe a dynamic adaptation of the orthogonal recursive bisection method to the load balancing
problem. Main merits are a distributed imbalance detection condition and a proof that in the worst case every
single dynamic update involves only a small amortized time overhead. The imbalance detection can be performed
locally on each processor without global communication. Rebalancing operations take place infrequently which
leads to the desirable effect of bundled communication.

In order to show the practicability of our dynamic load balancer, we extensively tested its performance and
robustness on a simple synthetic application that treats a set of objects in multi-dimensional space. Chapter8
shows that for near-practice-circumstances our load balancer achieves good speedups. The small overhead of the
theoretical worst-case of the previous chapter is discovered to get even smaller in practice.

We made a truly real experimental test by implementing and studying the HRA in parallel. Besides the spatial
partitioning technique we have identified three key concepts for an efficient implementation. First, an asynchronous
formulation of the HRA is needed to avoid time consuming barrier synchronizations. Second, elements and links
should be grouped to reduce administration overhead. Third, the order of link refinement is crucial for cache
efficiency. These concepts, the implementation details, and time measuring results are presented in Chapter9.

We end with some closing remarks (Chapter10) and an appendix with a directory of many symbols and abbre-
viations used in this thesis.
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Rendering means simulating real optics in order to finally produce images from a virtual scene model. Clearly,
it is too expensive to simulate real optics exactly. Instead, research has focused on a formulation of light transport
making several simplifying assumptions about the behaviour of light. In this chapter we introduce theradiance
equation and discuss methods that solve this equation approximately.

Our descriptions of the algorithms are focused on exposing those characteristics that are important in a parallel
environment. More detail is given about therepresentation of the radiance function and the transport operator at
the expense of the physical and mathematical background.

2.1 Modeling Physics

2.1.1 The Radiance Equation

Theradiance equation is the central equation of image synthesis. It completely captures the distribution of light in a
scene. Common simplifications concern eliminating polarization, phosphorescence and flourescence and assuming

5
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Figure 2.1: The geometry for the radiance equation.

a vacuum surrounding the surfaces of the scene [46]. A further simplification is to only consider reflection by
assuming that all objects are opaque. The resulting equation is:

L(~x, ~ω) = Le(~x, ~ω)+
∫

M2
G(~x,~x′) fr(~x, ~ω~x→~x′ → ~ω)L(~x′, ~ω~x′→~x)d~x

′, (2.1)

where thegeometric term is defined as

G(~x,~x′) = v(~x,~x′)
cos(~ω~x′→~x,~n~x′)cos(~ω~x→~x′ ,~n~x)

‖~x′−~x‖2
.

Fig.2.1shows the corresponding geometry. The termL(~x, ~ω) measuresradiance at a point~x in a direction~ω and
is the unknown quantity in the equation. The radiance’s unit is watt per steradian-square meter (W

sr m2 ), a quantity
that is directly related to the retina response of the human eye. ByLe(~x, ~ω) we denote theemitted radiance at the
point~x in direction~ω. Those regions, whereLe> 0, are calledlight sources. The rest of the equation is basically
an integral over the radiance of all incoming directions from the hemisphere at~x multiplied by thebidirectional
reflection-distribution function (brdf) and some geometric quantities. The brdffr (unit sr−1) characterizes the
reflectivity of the surface at some surface point for a given incoming (~ω~x→~x′ ) and outgoing (~ω) direction. The
parameterization of incoming directions in (2.1) is by points~x′ that are located on all surfacesM2 in the scene. The
termv(~x,~x′)∈ {0,1} is dimensionless and is zero if and only if the two points are invisible to each other. cos(~ω,~n~x)
denotes the cosine of the angle between the vector~ω and the surface normal at~x. d~x′ is an infinitesimal area at the

point~x′. The term
d~x′ cos(~ω

~x′→~x,~n~x′ )
‖~x′−~x‖2 describes an infinitesimal incidentsolid angle (unit sr). The brdf fr satisfies the

following physical constraints:

• reciprocity:

fr(~x, ~ω → ~ω ′) = fr(~x, ~ω ′→ ~ω).

• conservation of energy:

ρ(~x, ~ω in) =
∫

H2
fr(~x, ~ω in→ ~ωout)cos(~ωout,~n~x)d~ω

out ≤ 1,

whereρ is called thetotal hemispherical reflectivity and H2 denotes the set of directions to the upper
hemisphere.

A thorough derivation of the radiance equation can be found in [46]. This equation is classified as a Fredholm
equation of the second kind [90]. It cannot be solved analytically, except for some trivial cases.

2.1.2 The Radiosity Equation

An often at least approximately valid assumption is that all surfaces in a scene are diffuse surfaces, which reflect
light equally and independent of the incoming and outgoing directions. In this case we can switch to theradiosity
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equation:

B(~x) = Be(~x)+
ρ(~x)

π

∫
M2

G(~x,~x′)B(~x′)d~x′. (2.2)

The difference to the radiance equation is the notation in terms ofradiosity B(~x) = πL(~x), which is independent
from the outgoing direction. Its unit is watt per square meter (W

m2 ). Also reflection does not depend on directions,
hence we use thereflectance factor ρ(~x) = π fr(~x) to express reflectivity at~x. The radiosity equation is much
simpler, since we were able to drop the dependency from directions. Nevertheless it is still difficult to solve.

2.1.3 Formal Solution

Equations (2.1) and (2.2) both can be expressed in a simple form using linear operator notation. In the case of
radiance we write

L = Le+T L, (2.3)

whereL,Le are functions defined on the product space of surface pointsM2 and hemisphere directionsH2. T is
called thetransport operator. For the radiosity equation we write

B = Be+T B, (2.4)

where the domain ofB,Be is M2.
We can solve (2.3) (and analogically (2.4)) formally by inverting the transport operator:

L = (1−T )−1Le.

Given the physical interpretation of the transport operator, we know that the inverse exists. Expansion into a von
Neumann series leads to

L =
∞

∑
i=0

T iLe. (2.5)

An intuitive physical interpretation of equation (2.5) is that the solution of (2.3) is given by the summation of the
directly emitted radiance plus the radiance that is reflected 1, 2, 3,. . . times in the scene.

2.1.4 Notations

Radiance is the most important quantity in physically based rendering, since it directly corresponds to the retina
response of the human eye. But there are many more quantities that are useful in solving the radiance equation.

Radiant intensity is defined as the power emanating from a point~x in a direction~ω per unit solid angle in that
direction:

dI(d~x, ~ω) = L(~x, ~ω)cos(~ω,~n~x)d~x.

Radiant intensity is measured inWsr and is independent of the orientation of a surface. Point light sources may be
modelled by a point emitting varying radiant intensities in different directions. Also clusters of surfaces may be
assumed to emit light as a point source.

Incident radiance is measured like radiance inW
m2sr

. Since radiance is invariant along a ray, the radiance incident
at a point~x′ from direction~ω equals the outgoing radiance at~x in direction~ω, if v(~x,~x′) = 1:

Lin(~x′, ~ω~x′→~x) = v(~x,~x′)L(~x, ~ω~x→~x′).

We parameterize incident quantities with the direction pointing to the upper hemisphere(~x′, ~ω~x′ → ·).
Irradiance is defined as the energy per unit area at a point~x received from direction~ω:

dE(~x,d~ω) = Lin(~x, ~ω)cos(~ω,~n~x)d~ω

and is measured inW
m2 . We can use irradiance to calculate radiance from it (see (2.1)):

L(~x, ~ω) = Le(~x, ~ω)+
∫
~ω in∈H2

fr(~x, ~ω in→ ~ω)dE(~x,d~ω in). (2.6)



8 CHAPTER 2. RENDERING BASICS

ω),L   (
imp

x

ω
x’

x

e

Figure 2.2: The geometry for the importance equation.

Sometimes we need an incident quantity that is not tied to a surface but nevertheless is measured with respect
to a differential solid angle. We defineperpendicular irradiance as irradiance in the case that the direction~ω is
perpendicular to some imaginary surface at~x:

dE⊥(~x,d~ω) = Lin(~x, ~ω)d~ω .

The radiant flux (or power) flowing in the beam from a differential surface elementd~x to another differential
surface elementd~x′ is defined as the product of radiance, the solid angle subtended byd~x′ and the projected area
of d~x:

d2Φ(d~x,d~x′) = L(~x, ~ω~x→~x′)v(~x,~x′)
cos(~ω~x′→~x,~n~x′)d~x

′

‖~x−~x′‖2
cos(~ω~x→~x′ ,~n~x)d~x

d2Φ(d~x,d~ω) = dE(~x,d~ω)d~x.

Flux is measured inW (watts) and is used in particle tracing, where each particle carries a small amount of flux.
For notational convenience we may pack the two parameters ofL into a single variableµ := (~x, ~ω). Radiance

functionsL are square-integrable functions (often denotedL 2-functions) [21]. We define the (standard) inner
product on the space ofL 2-functions by〈 f ,g〉 =

∫
M2×H2 f (µ)g(µ)dµ. Two functions are calledorthogonal, if

their inner product is zero.
Sometimes we split the operatorT into two operators asT = RG , where the operatorR defines outgoing

radiance from an irradiance function as follows:

(RE)(~x, ~ω) =
∫
~ω ′∈H2

fr(~x, ~ω ′→ ~ω)dE(~x,d~ω ′)

andG denotes the propagation including the visibility calculations

(G L)(~x, ~ω~x→~x′) = v(~x,~x′)L(~x′, ~ω~x′→~x)cos(~ω~x→~x′ ,~n~x).

2.1.5 Importance

Often we are interested in generating an image from just a single or a small set of viewpoints. Then a view-
dependent solution of the radiance equation would suffice saving much effort. But, therefore we need to know, in
what regions a detailed solution is important and where not.

We introduce(directional) importance Limp as in [20] as a dimensionless quantity that satisfies an equilibrium
equation like the radiance equation (2.3):

Limp = Limp,e+T Limp. (2.7)

The emitted importanceLimp,e is defined as:

Limp,e(~x, ~ω) =
{

1, if ~x is a point on the image and~ω points from the eye to~x
0, otherwise.

Fig.2.2shows the corresponding geometry.
Intuitively Limp(~x, ~ω~x→~x′) can be seen as the fraction ofG(~x,~x′)L(~x′, ~ω~x′→~x) that reaches the eye (Fig.2.3).
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The directional importance can be used to calculate the power that radianceL contributes to the image:∫ ∫
G(~x′,~x)Limp(~x, ~ω~x→~x′)L(~x′, ~ω~x′→~x)d~x

′d~x. (2.8)

The contribution of radiance to the image can be found by solving a transport problem with the image emitting
importance. Since importance is transported like radiance we can use the same data structures as for radiance and
treat importance as if it were another set of color channels.

Of course we can define analogues to radiant intensity, incident radiance, irradiance and perpendicular irradi-
ance:importance intensity I imp, incident importance Limp,in, projected incident importance Eimp andperpendicular
incident importance E⊥,imp:

dI imp(d~x, ~ω~x→~x′) = Limp(~x, ~ω~x→~x′)cos(~ω~x→~x′ ,~n~x)d~x,

Limp,in(~x, ~ω~x→~x′) = v(~x,~x′)Limp(~x′, ~ω~x′→~x),

dEimp(~x,d~ω~x→~x′) = cos(~ω~x→~x′ ,~n~x)L
imp,in(~x, ~ω~x→~x′)d~ω~x→~x′ ,

dE⊥,imp(~x,d~ω~x→~x′) = Limp,in(~x, ~ω~x→~x′)d~ω~x→~x′ .

The generation of an image out of a given solution for one of the transport equations (radiance or importance)
is beyond the scope of this thesis. The interested reader can find an excellent derivation in [30].

2.1.6 Representing Radiance And Importance

The radiance and importance function must be stored in a suitable form in a computer. Since radiance and impor-
tance are defined as functions on the same domain, they can be stored in the same way. Hence we will focus here
on representing the radiance function.

The problem with storing the radiance function is, that we do not know in advance, where the function is
smooth and where it is discontinuous. Of course we could estimate the shape ofL by considering the reflection
behaviour of the surfaces. Thus,L mostly is smooth on diffusely reflecting surfaces. But if incident light is partly
obstructed, thenL may have large gradients even on a diffuse reflector. Also caustics may introduce large gradients
into the radiance function.

There are two basic principles used in global illumination to store the radiance function: finite elements and
particles. Finite element techniques are especially useful, if the function to be represented is smooth. They can
also be employed for storing an average value of the function over some large support. Representing fine small
details is very costly in finite element techniques but nevertheless possible.

Particles represent function values at sample points. Since usually there is no coherence assumption between
sample points, particles are especially useful for representing large local gradients. Nevertheless, particles also
have been used to represent smooth functions [104].

2.2 Finite Element Approach

The description of the finite element approach presented in this section is somewhat over-detailed for readers
interested in parallel computing. We discuss clustering, the representation of functions over surfaces and that over
clusters. We do this in the present detail because we aim at a new generic formulation of the shooting approach
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(Sect.2.2.5). This formulation abstracts from the specific function (radiosity, radiance, irradiance,. . . ) stored at
the elements. The parallel algorithm described later in this thesis is based on this generic formulation, hence it
does not necessarily need to know about the represented function. Thus, it is easily extendable to all finite element
algorithm variants.

2.2.1 Galerkin Approach

We start with the infinite-dimensional spaceL 2(M2×H2) of square-integrable functions. Let{Nj} j=1,2,3,... denote
a basis of this space. A functionf can be expressed as a linear combination of the basis functions:

f (~x, ~ω) = ∑
j

c jNj(~x, ~ω). (2.9)

In the case of a finite dimensional subspace this representation is called adiscretization of f . The coefficients are
calculated by projection [8].

Here we follow the Galerkin approach, where the coefficients are simply inner products off with the dual basis
functionsÑj :

c j = 〈Ñj , f 〉.

The dual basis is characterized by the relation〈Ni , Ñj〉 = δi j , whereδi j is Kronecker’s delta. Orthonormal bases
areselfdual. In the following we will assume an orthonormal basis.

There is some freedom in choosing a basis. Classically for radiosity constant basis functions were used [47].
Later higher order functions were employed in order to better approximate the real radiosity function [111, 98].
Hierarchical bases [48, 20] are useful for an adaptive solution.

2.2.2 The Multiresolution Approach

In a real computation we must restrict ourselves to a finite subspace ofL 2(M2×H2). The simplest way to do
this is to choose a priori a large, fixed set of basis functions. A simple but common choice is a basis of piecewise
constant functions [19].

Let us first consider univariate functionsf ∈ L 2([0,1]). We may approxmiate such functions by piecewise
constant functions at a given resolution (orscale) s with discontinuities at{0, 1

2s ,
2
2s , . . . ,1}. This subspace of

approximating functions is spanned by the so-calledHaar scaling functions φ
s
t (u), t ∈ {0, . . . ,2s−1}:

φ
s
t (u) =

{ √
2

s
, for u∈ [ t

2s ,
t+1
2s ),

0, otherwise.

s is called thescale andt is called thetranslation of φ
s
t . The basis is selfdual, since〈φ s

t ,φ
s
t ′〉 =

∫ 1
0 φ

s
t (u)φ

s
t ′(u)du =

δtt ′ .
For multivariate functions like the radiance function we construct a basis using tensor products of the above

univariate basis functions. We will follow the approach of [19] and assume a mapping of the domain of radiance
functions such thatM2 = [0,1]2 andH2 = [0,1]2. The following functions form a basis of piecewise constant
approximations ofL 2([0,1]4)-functions:

φφφφ
s
tu,tv,tθ ,tρ

(u,v,θ ,ρ) := φ
s
tu(u)φ

s
tv(v)φ

s
t
θ

(θ)φ
s
t
ρ

(ρ),

wheretu, tv, tθ , tρ ∈ {0, . . . ,2
s−1}.

The representation off by coefficientsci at a fixed resolution scales has the drawback, that computation
time and storage is wasted. Many of theci coefficients are approximately equal, hence they could be represented
sufficiently exact by a single coefficient. A better approach would start with a coarse representation off and then
add more detail where necessary. Hierarchical methods [53, 9, 48, 19, 89] take such an approach.

Again, let us consider the univariate case first. LetV := L 2([0,1]) and letVs denote the subspace ofV that is
spanned by allφ s

t functions (t ∈ {0, . . . ,2s−1}). Subspaces of increasing scale form a hierarchy of subspaces of
V, i. e.V0⊂V1⊂V2⊂ ·· · ⊂V. By Ws we denote the orthogonal complement space ofVs in Vs+1 defined by

Ws = { f ∈Vs+1 : 〈 f ,g〉= 0 for all g∈Vs}.

TheWs are sometimes calledwavelet spaces. A basis ofWs is given by thewavelets ψ
s
t (u), t ∈ {0, . . . ,2s−1}:

ψ
s
t (u) =


√

2
s
, for u∈ [ 2t

2s+1 ,
2t+1
2s+1 ),

−
√

2
s
, for u∈ [2t+1

2s+1 ,
2t+2
2s+1 ),

0, otherwise.
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Figure 2.4: Storing a non-standard constructed basis forL 2([0,1]2) in a tree.

The space of approximate univariate functions at a given scales now can be written as the direct sumVs =
V0⊕W0⊕W1⊕·· ·⊕Ws−1, and a basis ofVs can be constructed similarly as{φ0

0 ,ψ
0
0 ,ψ

0
1 ,ψ

1
1 , . . . ,ψ

s
2s−1−1

}. The

scaling function spanningV0 represents coarse shape, while the wavelets provide detail at increasing resolutions.
A basis of the multivariate functionsL 2([0,1]4) can be constructed in different ways. Thestandard construc-

tion results in the following four-dimensional basis:{
φ

0
0 ,ψ

0
0 ,ψ

0
1 ,ψ

1
1 , . . . ,ψ

s
2s−1−1

}4
.

In the nonstandard construction each tensor product consists of univariate basis functions in the same spaceV j ,
including scaling functions at all levels:

{φ0
0 φ

0
0 φ

0
0 φ

0
0}∪

{
φ

j
tu

φ
j

tv
φ

j
t
θ

ψ
j

t
ρ

,φ j
tu

φ
j

tv
ψ

j
t
θ

φ
j

t
ρ

, . . . ,ψ j
tu

ψ
j

tv
ψ

j
t
θ

ψ
j

t
ρ

:

0≤ j < s,0≤ tu, tv, tθ , tρ < 2 j

}
.

Let us consider the radiosity functionB∈L 2([0,1]2) for a moment. A multiresolution basis using the non-
standard construction can be stored in a tree as it is shown in figure2.4. The right tree visualizes the sign of each
basis function on[0,1]2. In grey regions the respective function equals zero, in white regions it is positive, in black
regions negative.

2.2.3 Clustering

Up to now we assumed that the geometry of a scene was given by a setM2 of surface points, that may easily be
mapped onto[0,1]2. In a real application scenes consist of thousands of different more or less complicated separate
surface geometries. It is difficult to represent all these objects by one setM2 that is easily mapped onto[0,1]2. But
often it is straightforward to map each single object’s surface onto[0,1]2. Hence, from now onM2 will denote the
set of points on a single object’s surface.

The first multiresolution global illumination algorithm [53] was designed as follows. The illumination is rep-
resented separately on each object. At the beginning of the algorithm the illumination on every object is assumed
to be constant independent of position and direction. A single transport coefficient accounts for the transport of
energy from a sending object to a receiving object. The linear equation system consisting of all these transport
coefficients is constructed and solved iteratively. Then some of the objects arerefined, i. e. a multiresolution
representation of the illumination on the surface is constructed.

Let k denote the number of separate objects. Then initially we have to computeΘ(k2) transport coefficients
(see below). This is too expensive, especially if we aim at a progressive algorithm, that is able to compute a fast
coarse solution for preview purposes. Time can be saved by recognizing that the transport coefficients between
surfaces in far distant object clusters do not vary significantly. By clustering objects together and establishing
transport links between pairs of object clusters instead of pairs of individual objects we represent all individual
transports by a single average transport coefficient.

Let B3 ⊂ IR3 denote the axis aligned bounding box of the scene geometry. Clusters are created by dividing
the box into two subboxes. Each scene object is put into one subbox ofB3 and then we recurse for each subbox.
Objects that do not fit completely in a subbox are grouped directly at the parent. Recursion stops, when a leaf
contains only few objects. Fig.2.5shows a cluster with its subboxes and some larger objects grouped at the parent.
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Figure 2.5: Clustering objects.

A hierarchy of clusters can be used to coarsely approximate the radiance function in 3D space. Radiance is
not only defined on surfaces but also between them. As a function in 3D space radiance is not associated any
longer with a single hemisphere of a surface. LetS2 denote the surface of a sphere. In order to store the function
L ∈L 2(B3×S2) we assume that the domainB3×S2 is mapped to[0,1]5.

2.2.4 Hierarchical Representation

We describe a strategy to store a finite element representation of radiance (whether defined as four- or five-variate)
in a tree. Of course, importance can be stored in the same way. To simplify the presentation, we only discuss the
representation of radiance.

The whole support[0,1]4|5 of the function is associated with the root node of the tree and is divided into sub-
supports1. Each node of the tree has its own support which is contained in the support of the parent node. The
support of a node is described exactly by the scales∈ IN ∪{0} and the vectort ∈∏4|5

i=1
{0, . . . ,2s−1}. These are

interpreted as the support:

4|5

∏
i=1

[
ti
2s ,

ti +1
2s

)
.

Each node has associated a set of basis functions that describe the detail of the function over the support of the
node. The corresponding coefficients are stored in the node. The nodes of the tree are calledelements.

2.2.4.1 Surface Elements

We start with a description of the element representation of radiance for surfaces of scene objects. Since these
are associated with surfaces we call them S-elements. First we have to decide, which quantity should be stored.
If we store an outgoing quantity like radiance, we can quickly evaluate radiance – the quantity we are interested
in when generating an image. Incoming quantities like irradiance instead must be reflected before, but has the
advantage that it carries the information from which direction light is impinging on the surface. This is especially
useful in Monte-Carlo importance sampling, where one wants to generate secondary rays pointing to the main light
contributors. In this thesis we assume that irradiance is stored at the surfaces. Outgoing radiance is calculated on
the fly, if needed.

The coarsest possible finite element representation of a function is by a single basis functionφ
0
0 φ

0
0 φ

0
0 φ

0
0

(u,v,θ ,ρ) whose support is the whole domain[0,1]4.
An element of this type is calledconstant on surface (CS) and contains only a single coefficient. Such an

element may have a single child, if more detail is required.
Fig.2.6 shows two surfaces (a sphere and a Bezier patch) and their corresponding representation. The sphere

is assumed to be lit smoothly and therefore a single element suffices to represent illumination properly. The Bezier
patch contains a hierarchy of elements as they are described below.

1 We use the notationXa|b as shorthand for “Xa or Xb”.
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We represent detail of the illumination function by considering the following 15 basis functions:

φψφφ
s
tu,tv,tθ ,tρ

ψφφφ
s
tu,tv,tθ ,tρ

ψψφφ
s
tu,tv,tθ ,tρ

φφφψ
s
tu,tv,tθ ,tρ

φψφψ
s
tu,tv,tθ ,tρ

ψφφψ
s
tu,tv,tθ ,tρ

ψψφψ
s
tu,tv,tθ ,tρ

φφψφ
s
tu,tv,tθ ,tρ

φψψφ
s
tu,tv,tθ ,tρ

ψφψφ
s
tu,tv,tθ ,tρ

ψψψφ
s
tu,tv,tθ ,tρ

φφψψ
s
tu,tv,tθ ,tρ

φψψψ
s
tu,tv,tθ ,tρ

ψφψψ
s
tu,tv,tθ ,tρ

ψψψψ
s
tu,tv,tθ ,tρ

These basis functions are associated with so-calledvariable on surface (VS) elements and add detail in both spatial
and directional variables. Fig.2.7shows a visualization of the function that could be represented by a single VS-
element.

A VS-element may be put immediately below a CS-element as the only child withs= 0. A VS-element may
have 16 children, each being a VS-element with ans-value one larger than the parent’s scale. VS-elements contain
15 coefficients.

When we want to evaluate the illumination at some sample(u,v,θ ,ρ) we would have to evaluate an average
value at the CS-element and then add the detail, which is evaluated at the VS-elements. If the height of the tree
grows, we would have to follow a complete path from the CS-element downto a leaf and add contributions to the
resulting function value at all levels of the tree. We could accelerate this by storing an additional coefficient at a
VS-element that corresponds to the scaling basis function

φφφφ
s
tu,tv,tθ ,tρ

.

Then we know the average value locally at the VS-element and do not need information from the ancestor elements
any longer.2

If a scene model is given that consists of diffuse surfaces only, then the representation of detail in the directional
variablesθ ,ρ is superfluous. In this case VS-elements are associated only with the following four basis functions

φφφφ
s
tu,tv,tθ ,tρ

φψφφ
s
tu,tv,tθ ,tρ

ψφφφ
s
tu,tv,tθ ,tρ

ψψφφ
s
tu,tv,tθ ,tρ

.

Note, that this definition differs from the definition of elements in the original hierarchical radiosity algorithm [53],
where each surface element was associated with only a single basis functionφφφφ

s
tu,tv,tθ ,tρ

. This has the effect, that
a link carries only a single transport coefficient. This is a fairly tiny task compared to the overhead to manage a
link’s datastructure and to assign the link to an idle processor. We believe that in a distributed memory environment
it is reasonable to burden each link by a more complex task in order to reduce the total number of links, which
should result in a smaller management overhead. The resulting approximation of the radiance/importance function
will be not coarser than in the original hierarchical radiosity algorithm.

2.2.4.2 Cluster Elements

Radiance of clusters is a function of three spatial and two directional variables. The problem with clusters is that
they may contain scene objects. Radiance of scene objects is represented as described in Sect.2.2.4.1by a four-
variate function where both the spatial and the directional support are[0,1]2. As a principle the support of a child
element must be contained in the support of its parent element. But what does that mean, when the child element is
a CS-element with spatial supportIchild = [u0,u1]× [v0,v1]⊆ [0,1]2 and the parent is a cluster with spatial support
Iparent = [x0,x1]× [y0,y1]× [z0,z1] ⊆ [0,1]3? We define the supportIchild as being contained inIparent, if the 3D
surface points that correspond to the pieceIchild of the surface are contained inIparent. With this definition the
clustering algorithm of Sect.2.2.3guarantees that the spatial support of surfaces is contained in the spatial support
of clusters.

Containment of directional support is problematic, too, because the directional support[0,1]2 of CS-element
describes a hemisphere centered at a local coordinate system and the directional support of clusters is mapped to
a whole sphere in a canonical coordinate system. Therefore a similar definition is given as above. The directional
support of a surface element is defined as being contained in the directional support of the parent cluster, if it is
contained after transformation to the cluster’s coordinate system. Because of arbitrarily oriented surfaces inside a
cluster, the cluster must have full directional support in order to contain the directional support of the contained
surface elements. This forces clusters to never split their directional support.

If we want a detailed representation of radiance in the directional arguments, then the basis functions of a
cluster must provide detail in the directional variables. Since we also want a detailed representation in the spatial

2 By storing scaling coefficients at each level, of course we overrepresent the function. Especially all detail coefficients at some inner node
at levell could be easily calculated from the scaling coefficients at the next deeper levell + 1. If we would omit the detail coefficients at level
l , then transporting this detail information to other elements had to be done by sixteen links at the deeper levell +1 instead of one link at level
l . Hence, by using detail coefficients at inner nodes, we are essentially saving memory for links.
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Figure 2.8: A function of direction that is constant on each octant.

variables, a cluster would have to store at least 31 coefficients. This is prohibitively large in the solution process
(see below) where a link established between two clusters would contain 312 = 961 propagation coefficients.
Hence, we decided to represent radiance of clusters only detailed in the directional variables. The spatial detail is
accounted for by subdividing clusters spatially.

Radiance of a cluster is represented by a so-calledcluster element (C-element). The following functions are
used as a basis leading to a representation of octantwise constant functions (see Fig.2.8). :
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Note that every cluster has got a scaling functionφφφφφ meaning a slight overrepresentation. This ensures that
we represent detail in space thereby avoiding a large number of coefficients in each cluster.

If a C-element should have children, then its spatial support is split into two spatial subboxes. The directional
support of the children is that of the parent.

We did not mention the quantity that should be stored at clusters yet. Irradiance is problematic, since irradiance
is tied to a single surface. Hence we decided to representperpendicular irradiance E⊥ at clusters.

Above we argued, why storing an incoming quantity is advantageous for Monte-Carlo importance sampling.
In the case of surfaces it is fairly easy to calculate the essential outgoing radiance from irradiance, since this means
only a single reflection. On the cluster level we do not know, how to reflect the perpendicular irradiance. We would
have to descend the tree everytime we wish to evaluate the outgoing radiance for a given outgoing direction. In
order to speed up this calculation we store an outgoing quantity at the clusters, too. Since clusters are represented
as point sources (no detail in space), we use radiant intensityI as a description of light emitted by clusters.

A C-element now contains 16 coefficients:

e⊥0 , . . . ,e
⊥
7 representing perpendicular irradiance,

h0, . . .h7 representing intensity,

Fig.2.6 shows the root cluster and subclusters in the tree representation. Clusters contain subclusters and/or
surfaces (i. e. CS-elements).

2.2.5 Shooting

Radiance and importance are defined by operator equations (2.3, page7) and (2.7, page8), which can be solved
by shooting radiance and importance iteratively through the environment. In finite element methods an explicit
representation of the transport operatorT , a formfactor matrix or a set of links, is used to account for every single
transport between different subsupports of the radiance function.

Consider the formal solution of the radiance equation as in (2.5, page7):

L =
∞

∑
i=0

T iLe.
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From this equation we could derive the following algorithm that solves for the unknown functionL. Since impor-
tanceLimp is handled analogously, here we discuss only the radiance case. First we initialize a data structure to
represent radiance:

divide the support ofL into a finite setM of disjoint subsupports.
for each subsupportm∈M

set up an approximate representation for radiance:Λm := 0.
set up an “unshot” portion of radianceΛunshot

m := Le|m
set up a “next iteration unshot” portionΛnext

m := 0
endfor

HereX|m means the restriction of functionX to supportm.
Note, that the representationsΛ∗m need not store radiance explicitly, but may store something from which

radiance is easily computed (e. g. irradiance). As a placeholder for the subsupports we could use the elements of
the element hierarchy. Then(Λm,Λunshot

m ,Λnext
m ) simply describes a single S- or C-element.

Now, during several iterations unshot portions of radiance are transported viaT to next iteration unshot por-
tions. A single iteration is realized as follows:

for each subsupports∈M
for each subsupportr ∈M

Λnext
r + = T Λunshot

s
endfor

endfor

The notation of transports of unshot radiance in the inner iteration is a bit sloppy, sinceΛunshot
s andΛnext

r do not
necessarily store radiance. But, above we already required the representation inΛunshot

s to easily allow calculation
of approximate outgoing radiance ons. This outgoing radiance is propagated tor maybe attenuated by blocking
objects. Atr the incident radiance is processed and summed up such that it properly fits into the representation
Λnext

r . In appendixA we show how such a transport could be calculated.
In a computer program we create alink between the two elementss andr, wheres is called the sender andr

the receiver.
At the end of an iteration the next iteration is prepared:

Λ+ = Λnext

Λunshot:= Λnext

Λnext := 0

In fact, we do not have a single element tree, but we need — at least theoretically3 — three such trees for the
unshot lightΛunshot, the next iteration’s unshot lightΛnext and the approximate solutionΛ. The lineΛ+ = Λnext

above means that coefficients of one element representation are added to coefficients of another representation.
We stated above, that we are going to assign an incident quantity (perpendicular irradiance) and an exitant

quantity (intensity) to each C-element. The exitant quantity is used only as a data source during the iteration. The
incident quantity is filled up successively with contributions from other elements. Hence for clustersΛnext denotes
the set of coefficients{e⊥0 , . . . ,e⊥7 } of a C-element andΛunshotdenotes the coefficients{h0, . . .h7}.

For S-elements we could do the same by representing unshot light by radiance and next iterations unshot light
by irradiance. Unfortunately the unshot light representation in such setting tends to “smooth out” fine details of
the surface’s brdf. Hence we use irradiance also for the unshot light representation.

2.2.6 Hierarchical Shooting

Just as there are two constructions (standard and nonstandard) for multidimensional bases, so are there two ways
to decompose a linear operator (standard and nonstandard ). We will use anonstandard decomposition of the
transport operator as in [97] where a shooting hierarchical radiosity algorithm is described that avoids storing the
complete set of links.

At the beginning a single self-link is created from the root C-element to the root C-element. Links are refined
if they are likely to approximate the transport operator too coarsely. Refining a link means replacing it by links on
deeper levels. Refined links are positioned between child elements of the originally linked elements.

3 In a real implementation we would merge the three representations into a single tree.
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By doing so, we ignore the transports between the elements at higher levels. We must account for these
highlevel transports at lower levels. Fortunately every element contains a pure scaling function on its support,
which now can be used as “proxy” for scaling functions at higher levels. In order to propagate the low-level
transports through the element hierarchy,pushing andpulling is needed.

We start by initializing the representations of light and unshot light by calling the following procedure for each
node:

initialize(m):
if (m is leaf) then

Λm := 0
Λunshot

m := Le|m
Λnext

m := 0
endif

Pulling means representing light coarsely at inner nodes that is available more detailed at lower levels. We have to
pull once before the first iteration, since we need a representation of unshot light also at the inner nodes. For the
root element of the element hierarchy we call the following recursive procedure:

pull(s):
if (s is inner node) then

Λunshot
s := 0

Λs := 0
for each childc of s

pull(c)
Λunshot

s + = QΛunshot
c

Λs+ = QΛc

endfor
Λnext

s := 0
endif

The meaning ofΛunshot
s + = QΛunshot

c is: incorporate the unshot light represented at the childc into the unshot light
represented ats. Doing this usually some kind of transformation between the two representations is necessary,
which is denoted by the operatorQ. E. g. ifs is a cluster element andc a surface element, then we have to transform
Λunshot

c , which is represented as irradiance, to the outgoing intensity atΛunshot
s by calculating the reflection at surface

c. But also in pulling from surface to surface or from cluster to cluster we have to transform representations from
one basis into another.

The following procedure is now called for the root-link (root,root) and accounts for all transports between any
pair of subsupports.

transport({s, r}):
if oracle({s, r})

let i denote the element to be subdivided,j the other element,i, j ∈ {s, r}
subdivide(i)
for all childreni.c of i

transport({i.c, j});
endfor

else
link(s, r)
link(r,s)

endif

The decision, when to refine a link and when to allow transports (we sayestablish a link), depends on the dis-
cretization error at the receiver and the error arising from formfactor integration. Also the amount of transported
light and visibility issues could be integrated into the oracle. These details are beyond the scope of this thesis. The
interested reader may consult [69, 20].

The subdivide method simply subdivides a given element into subelements. The link method calculates a light
transport between elements:

link( s, r):
Λnext

r + = T Λunshot
s
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This includes the very expensive calculation of visibility between the elements.
Pushing means distributing the light received inΛnext downwards to the leaves by calling the following proce-

dure with the root element as an argument:

push(r):
if ( r is a leaf)

thenΛunshot
r := Λnext

r
Λr+ = Λnext

r
Λnext

r := 0
else for each childc of r

Λnext
c + = PΛnext

r
push(c)

endfor
endif

In the then clause the received unshot light is transferred to the unshot light for the next iteration. Since at the
leaves of the hierarchy we are concerned only with equal representations forΛ, ΛunshotandΛnext (all represented
as irradiance on surfaces in the same basis), this is a pure assignment without transformations. Ifr is not a leaf,
transformations between parent and child elements are necessary (operatorP).

For completeness we describe the whole algorithm:

for each elementm:
initialize(m)

endfor

while not converged
pull(root)
transport({root,root})
push(root)

endwhile

The algorithm terminates, when it reaches an iteration where the root-cluster self-link is not refined [97].

2.2.7 Computational Complexity

The first multiresolution algorithm — hierarchical radiosity [53] — has been shown to reduce the number of links
dramatically compared to the classical full-matrix methods. Hanrahan has argued that

#links= O(#elements),

a statement that clearly heavily depends on the oracle and other parameters of the algorithm. The above equation
means that when the scene complexity is doubled, then the complexity of the solution method at most is doubled.
This is a great improvement compared to #links= Θ((#elements)2) for full-matrix methods.

The author of this thesis has shown that the above equation holds only for a fixed resolution quality:

#links(qualityfix) = O(#elements(qualityfix)).

Surely, when the quality of the solution for a fixed scene is required to increase, then intensified refinement of links
and elements leads to higher numbers of both links and elements. In [37] we have shown for a “flatland” example
scene that the relation between links and elements develops as

#links(quality) = Ω((#elements(quality))2) for quality→ ∞.

2.3 Monte-Carlo Approach

In this section we discuss the basic principles of Monte-Carlo methods. More material about Monte-Carlo methods
in general can be found e. g. in [63]. An overview of solutions to the global illumination problem using Monte-
Carlo methods can be found in Lafortune’s thesis [67].

In this thesis the discussion of finite element approaches on parallel architectures prevails. We describe Monte-
Carlo approaches here relatively detailed, because we think that our general spatial partitioning strategy is useful
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for both finite element and Monte-Carlo approaches, and thus also for hybrid approaches (see Sect.2.4). Readers
that are interested in finite element approaches only, may skip this and the following section and continue reading
at Chapter3.

2.3.1 Monte-Carlo Integration

Consider an univariate functionf ∈L 2([0,1]). We can representf approximately by a number of samples{
(µi , f (µi)) : 1≤ i ≤ n

}
.

To calculate this set we have to generate the sample pointsµi and then evaluatef n times. We can use this
representation, to estimatef at an intermediate pointµ not in the above set of samples, by averaging the function
values of the nearby samples. Of course this approximation is valid only iff is sufficiently smooth.

A particle representation is especially useful, if we want to integrate a function. Consider the irradiance func-
tion E in equation (2.6, page7) which is integrated over the hemisphere. A common integration technique – the
Monte-Carlo integration – is completely based on function sampling.

The basic idea in Monte-Carlo integration is to approximate an integral by taking a large number of samples:

I :=
∫

[0,1]
f (µ)dµ ≈ 1

n ∑
1≤i≤n

f (µi)
p(µi)

=: Î .

Here then samplesµi were drawn according to aprobability density function (pdf) p.
The problem in Monte-Carlo image synthesis is to properly choose samples. Two common approaches are

stratification andimportance sampling. Stratification is used to divide the space[0,1] into distinct regions that are
sampled independent of each other. Importance sampling tries to draw samples at “important” regions of[0,1] by
using a pdf that is similar in shape to the integrandf . The ultimate goal in using these techniques is to reduce
the variance of the estimatorvar(Î), since this value is directly coupled with the expected error of the result. It is
known that the standard deviation of the estimator is porportional to 1/

√
n, i. e. we have to quadruple the number

of samples in order to reduce the standard deviation by a factor of 2.

2.3.2 Solving The Radiance Equation

Consider the radiance equation (2.1, page6) in directional parameterization (cf. Fig.2.1):

L(~x, ~ω) = Le(~x, ~ω)+
∫

H2
v(~x,~x′) fr(~x, ~ω~x→~x′ → ~ω)L(~x′, ~ω~x′→~x)cos(~ω~x→~x′ ,~n~x)d~ω~x→~x′ . (2.10)

If we are interested in the radiance value at some specific point and direction(~x0, ~ω0), we could estimate the
integral by choosing a single random sample. We choose a random directionh1 ∈ H2 according to some pdfp1,
trace a ray from~x0 towards that direction and arrive at a unique surface point~x1. We define~ω1 as the direction
from~x1 to~x0. Sincev(~x0,~x1) = 1 we can drop the visibility factor and get a first estimator:

L(~x0, ~ω0)≈ Le(~x0, ~ω0)+
fr(~x0,−~ω1→ ~ω0)cos(−~ω1,~n~x0

)

p1(h1)
L(~x1, ~ω1).

The radiance at~x1 can be estimated the same way, and we arrive at the following estimator:

L(~x0, ~ω0) ≈ Le(~x0, ~ω0)+
fr(~x0,−~ω1→ ~ω0)cos(−~ω1,~n~x0

)

p1(h1)

·

(
Le(~x1, ~ω1)+

fr(~x1,−~ω2→ ~ω1)cos(−~ω2,~n~x1
)

p2(h2)
L(~x2, ~ω2)

)
...

≈
∞

∑
i=0

[
i

∏
j=1

fr(~x j−1,−~ω j → ~ω j−1)cos(−~ω j ,~n~x j−1
)

p j(h j)

]
Le(~xi , ~ωi).

The radiance at(~x0, ~ω0) is calculated by following an infinitepath ~x0,~x1,~x2, . . . that bounces randomly through the
scene. The inifinite series can be cut off in an unbiased probabilistic way using the technique ofRussian roulette
[7].
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Figure 2.9: Start of the path at the eyepoint.

2.3.3 Tracing-Algorithms

Assume, the above path starts at the eyepoint. Let~x0 denote a point in the scene that can be seen from the eye
through the image window and~ω0 the direction from~x0 to the eye (Fig.2.9). Then we could describe the following
algorithm to generate an image for a given eyepoint: shoot a single ray through each pixel; for each ray determine
the first hitpoint, calculate a new ray starting at the hitpoint; follow the new ray and recurse; associate the resulting
path with the pixel. For each pixel the associated path is evaluated as described in the previous section. We end up
with a radiance value for each pixel — an image. This algorithm is called (backward-) raytracing.

Another possible algorithm would start at the light sources in the scene. From each light source a certain
number of paths is generated. Some paths may luckily hit the eyepoint.4 These paths are used to calculate the
image. Such an approach is called (forward-) raytracing.

In this thesis we use the terms path tracing, particle tracing, and ray tracing as synonyms describing the same
basic principle of tracing along straight lines through a scene either starting at a light source or at the eye.

2.3.4 A Particle Representation Of Radiance

Instead of aiming at the generation of a single image, the path calculation technique can be used to calculate a
representation of the whole radiance function. Jensen [62], Pattanaik [83], Shirley [91] and others have described
such methods.

Here we will describe briefly Jensen’s approach, thephoton map. The photon map represents a distribution of
photons (particles) throughout the scene. It is created by emitting photons from all light sources into the scene.
Each photon is traced through the scene. At the first intersection the photon’s energy is stored with the hitpoint and
the source direction. Ward’s “real pixels” approach [103] can be used to pack a three wavelength representation of
the energy into 4 bytes. By Russian roulette it is decided whether the photon is reflected resulting in a secondary
photon that is traced through the scene again. The photons are stored in space in a 3-d-tree without any structural
correspondence to the surface where the photon hits.

The 3-d-tree can be used in two ways. First, a backward raytracer can use the information about incident
illumination to guide the spawning of secondary rays to those directions, where light is received. Second, the 3-d-
tree can be seen as a representation that allows an easy approximation of the radiance function. Jensen proposes the
following algorithm to calculate radiance from the photons stored in the tree. Locate theN photons with shortest
distance to some point~x. Each photon represents a packet of energy (flux)∆Φ j arriving at~x from direction~ω j .
Then the radiance is approximately calculated as

L(~x, ~ω ′) =
∫

H2
fr(~x, ~ω → ~ω ′)dE(~x,d~ω)≈ ∑

1≤ j≤N

fr(~x, ~ω j → ~ω ′)
∆Φ j

∆A
. (2.11)

As a rough but reportedly accurate enough approximation of the area∆A the disc area of the disc with radiusr is
used, wherer is the maximum distance between~x and theN photons.

Exactly the same way, we store photons that were emitted from the light source in a photon-map, we could
store so-calledimportons that were emitted from the eyepoint [84] inside an importance-map. An importance-map

4Of course this would be enormous luck, if we generate secondary rays at random, since then the probability to hit the infinitely small
eyepoint is zero. Hence, in practice the paths are steered in a deterministic way towards the eyepoint.
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Figure 2.10: Scene with a caustic.

can be used to focus the generation of a photon-map to those regions that are most frequently evaluated during a
subsequent (backward-) raytracer run.

2.4 Combined Approaches

Above we mentioned advantages and disadvantages of the two major approaches to global illumination. Finite
element methods are useful, where the radiance function is smooth. Particles represent fine details more efficiently.
Hence, specular reflection is best handled by particles, and diffuse reflection is the finite element’s profession.

Combinations of these basic approaches have been developed, leading to hybrid or multi-pass techniques [93,
18, 96]. Hybrid methods exploit the advantages of both basic approaches. E. g. aLighting Network [96] provides
an infrastructure for flexibly combining specialized algorithms and adapting them to different environments. The
global illumination computation is split into separate steps. In each step, one algorithm performs a part of the
whole simulation process and makes the results available to other algorithms.

In this section we will discuss two examples, where a combined approach using particles and elements could be
useful. The whole algorithm is sketched only blurry, since hybrid methods are not yet established and are subject of
ongoing research. The purpose of this section is to convince the reader, that hybrid methods are eligible candidates
for global illumination. Having seen this, it is clear that a parallelization should regard both particle and element
methods equally.

Consider a scene with both highly specular and diffuse surfaces (Fig.2.10). In finite element methods, the
integral of a transport coefficient (cf. appendixA):

Trs
i j =

∫ ∫
support(r)

Ñr
i (·)cos(·)v(·)

∫
H2

fr(·)Ns
j (·)d~ω ′d~xd~ω~x→~x′

between two far distant diffuse surfaces can be approximated confidently by only few samples. If insteadfr has
large gradients, because it describes a specular surface (e. g. mirror A in Fig.2.10), then we would refine the link
between A and B recursively into thousands of sublinks. When we had a particle representation of radiance at
the mirror A, then maybe we would simply shoot the particles towards surface B, saving lots of memory. In the
proposed algorithm particles and elements should be kept simultaneously in memory, each describing distinct parts
of the radiance function. They should be organized such that they can be converted into each other, depending on
which representation is useful for a particular transport.

Another example, where a combined particle and element respresentation is useful, is the simultaneous gener-
ation of an image while the global illumination calculation proceeds. Importance is emitted as particles (a handful
for each pixel) from the eye. Each particle carries the index of the corresponding pixel. The particles are con-
verted to elements after their first reflection at diffuse surfaces. Inside the elements a list of corresponding pixel
indices is stored. The importance information is exploited during the global illumination computation, which goes
on simultaneously, to restrict the refinement of links to important regions. At the end, when the computation has
converged, all scattered importance elements and particles are collected and their contribution is added directly to
their corresponding image pixels.

One unclear point in this algorithm is, how imprecise importance information can be used in early iterations of
a shooting algorithm to guide the illumination computations to important regions, but this is beyond the scope of
this thesis.
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We are going to describe algorithms for parallel processors. First, we will look at the various machines available
for parallel computing. In order to be not restricted to a specific machine, we will abstract from the specific features
by describing themachine model, which we are operating on.

For the description of a parallel algorithm we need a model with concepts for communication between proces-
sors. We will describe variousprogramming models below.

In order to analyze the performance of our algorithms we need acost model. This model specifies the archi-
tecture of a parallel system by some parameters.

3.1 Machine Model

This section gives an overview of machine models for parallel computers. The terminology is taken from [34].

Multicomputer. A von Neumann computer consists of a central processing unit (CPU) and a storage unit (mem-
ory).

A multicomputer comprises a number of von Neumann computers linked by an interconnection network (see
Fig.3.1). Each computer (ornode) executes its own program and accesses local memory. Messages are used
to communicate with other computers. In the idealized network, the cost of sending a message between two
nodes is independent of both node location and other network traffic, but does depend on message length.

The difference between the above multicomputer and thedistributed-memory MIMD computer (multiple
instruction multiple data) is that in the latter, the cost of sending a message between two nodes may not be
independent of node location and other network traffic. Examples of distributed-memory MIMD computers
are IBM SP, Intel Paragon, Thinking Machines CM5, Cray T3E, Meiko CS-2, NEC Cenju 3, and nCUBE.
Also a cluster of workstations connected by a local area network may be regarded as a DM-MIMD computer.

Multiprocessor A multiprocessor (or shared-memory MIMD computer) consists of a number of processors that
access a common memory.

An idealized model for theoretical considerations is thePRAM model (parallel random access machine),
where each processor can access any memory element equally efficient (see Fig.3.2). Concurrent memory
accesses may be allowed depending on the actual model used (for details cf. [61]).

In reality caches or hierarchies of caches introduce different costs to different memory accesses. Then
locality of memory accesses is an important issue. Examples of a multiprocessor are the Silicon Graphics
Origin and the Sun Enterprise.

A hybrid model, the distributed shared memory (DSM) computer, provides a common memory address space
but distributed memory modules. The compiler and the runtime system are responsible for parallelising an
application. Hence the system software is relatively complex.
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SIMD computer In a SIMD computer (single instruction multiple data) all processors execute the same instruc-
tion stream on a different piece of data. Examples are the MasPar MP, and Thinking Machines CM2.

The multicomputer is a model of a well scalable architecture. Also low-price parallel computing on workstation
clusters is covered by this model. Therefore we decide to use the multicomputer model.

3.2 Programming Model

Parallel programs are implemented in a programming language such as C or Fortran. Parallel constructs are either
incorporated directly into the language or may be linked to the code as a library. Theprogramming model describes
the style of parallel programming. We distinguish thedata parallel, shared memory andmessage passing models.
There are other programming models (functional parallelism, etc.) possible [34].

Data parallel programming Thedata parallel model originates from programming synchronous SIMD parallel
computers. The programmer implements one program that is executed separately on each processor. Each
processor has its own local memory. The programmer defines, how data is to be partitioned into local parts.
Applications that massively employ conditional execution are hard to implement efficiently on a SIMD
computer.

Shared Memory Programming Theshared memory model is a simple model, because the programmer can write
a parallel program just like a sequential one. A program is executed independently on several processors.
Synchronization is not needed. A processor may execute statements independently of the state of other
processors.

All running programs access the same global memory. Care must be taken, if a processor wants to access
data exclusively without interference of other processors. A program must mark such critical sections with
special statements.

Message PassingHere we will use themessage passing model in combination with theSPMD implementation
technique (single program multiple data). A single program is executed independently on several processors.
There is no need for synchronization (MIMD system). Every program instance accesses a local memory.
Remote memory accesses are possible by sending messages. There are different kinds of communication:

point-to-point communication: a processor sends a data package to another processor, using asend -
operation. The destination processor must call areceive-operation in order to get the data. We assume
that a processor can communicate with only one other processor at the same time. The communication
may be asynchronous, i. e. the receiving processor may callreceive at any time after the send-operation.

collective communication: collective communications involve a group of processors.



3.3. COST MODEL 25

cast: a single processor sends copies of the same data package to a group of processors.
combine: each processor of a group contributes a data item. A singleroot-processor receives the result

– a single data item calculated out of the contributed data items (e. g. the sum or the maximum of
real numbers).

Collective communications onm processors can be simulated by many point-to-point communications in
O(log(m)) parallel time in a tree-like manner, if we assume that the communication channels between each
pair of processors are independent.

Language Constructs There are efforts in extending sequential languages for parallel computing. E. g. HPC++
[58] or HPF [59] try to implement various programming models into the languages C++ or Fortran. One pos-
sibility to integrate parallelism into a language is by providing a library with routines for parallel processes
and communication. The more challenging and more problematic possibility is to extend the language by
some new language elements and keywords.

The process of designing such parallel extensions is in a preliminary state. Employing such standards when
established presumably is wise. But even then we are not freed from the need to decide on a programming
model, since many different models will be incorporated in such standards. In the light of these facts it will
not be a restriction to use message passing as a programming model. Future developments in the area of
parallel language extensions probably will not cause us to revise this decision.

All programs presented in this thesis are written in the message-passing model. There has been much ef-
fort to define a standard in message-passing over the last years – theMessage-Passing-Interface (MPI) [77, 76].
There are efficient MPI implementations for many current supercomputers. Also there is a freely available, high-
performance, portable implementation of MPI calledMPICH that runs on workstation clusters, too [79, 49]. Thus,
our MPI-based implementation is easily portable to many parallel environments.

3.3 Cost Model

After describing a parallel algorithm in the message passing model we want to analyze the computational com-
plexity of the algorithm. Unfortunately, the large number of different supercomputers makes it nearly impossible
to predict the behaviour of the algorithm exactly. Therefore we have to specify a cost model as a basis of our anal-
ysis. Clearly the model should simulate current architectures as close as possible. There have been efforts to define
universal models that allow exact prediction of complexity of a parallel algorithm, regardless of the programming
model or hardware used. For an overview see [72].

Our machine model is the multicomputer. This model consists ofp independent processors, each accessing
its own local memory. The processors work asynchronously and communicate through a network that connects
each pair of processors by a bidirectional channel of communication. Communication happens in apoint-to-point-
fashion, i. e. a processor sends a data package to another processor, using asend -operation. The destination
processor calls areceive-operation in order to get the data. There is a vast number of possibilities to measure the
costs of a point-to-point communication. In the following few of them are introduced.

Real supercomputers with many processors cannot offer a dedicated communication channel for each single
pair of processors. Instead, processors share channels. Message congestions will occur, when two processor pairs
try to communicate at the same time over the same channel. The approaches of cost measurement below do not
consider this problem, since it depends on the specific topology of the network. But we will discuss some general
rules for avoiding congestion in Sect.4.1.3.

There have been considerations to incorporate another class of communication as atomic operations into dis-
tributed memory models, the so-calledcollective communications that involve groups of processors. Clearly such
communications can be simulated by many point-to-point communications. We will only use these point-to-point
communication, since we do not want to specialize in hardware which permits more efficient collective communi-
cations.

The postal model Thepostal model [10] is motivated by the communication between people where it is assumed
that the only way for people to contact each other is by sending and receiving letters. The letters are picked
up regularly by the postal service and are delivered to their destinations after some delay. This letter-model
has two inherent features: first, it connects people completely and second, it creates communication channels
of roughly the same delay.

The postal model incorporates alatency-parameterλ ≥ 1 that measures the inverse of the ratio between the
time it takes an originator of a message to send it and the time that passes until the recipient of the message
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receives it. More specifically, let us assume that an originatori of an atomic messageM spends 1 unit of
time preparing and sendingM to its destination. After thati is free to perform other functions including
sending other messages. LaterM arrives at its destinationj and the recipient spends 1 unit of time receiving
and handling it. The communication latencyλ is the total amount of time that passes from the time the
originatori started preparingM until the time the recipientj finished handlingM.

The postal model is a model of communication with no concepts for modeling computation. The following
model introducestime steps to measure computation time against communication time.

The BSP model A bulk-synchronous parallel (BSP) computer [99] consists of the following:

• a set of identical sequential processors with local memory

• a communication system that delivers messages in a point-to-point manner

• a mechanism for globally synchronising the processors.

The model assumes that any parallel computation can be divided into sequences of steps, calledsupersteps.
During each superstep, each processor has to carry out computation steps on values held locally and commu-
nication steps, i. e. send and receive operations. Each superstep is followed by a barrier synchronisation after
that all communications are guaranteed to be completed. There are no specialised combining or broadcasting
facilities.

We define atime step to be the time required for a single local operation. A BSP cost model takes the
following system parameters:

p: number of processors

l : synchronisation periodicity, i. e. minimal number of time steps between successive synchronisation
operations

g: the ratio of (total number of local operations performed in one second) / (total number of words deliv-
ered by the communications network in one second)

The parameterg corresponds to the frequency with which non-local memory accesses can be made. A
machine with higher value ofg should make remote-accesses less frequently. The parameterl is also called
latency.

The complexity of a superstep in a BSP algorithm is determined as follows. Let the workw be the maximum
number of local computation steps executed by any processor during the superstep. Leth be the maximum
number of messages sent or received by any processor during the superstep. In the original BSP model, the
cost of the superstep is max{w+ g ·h, l} time steps. An analytically more tractable upper bound of this is
w+g·h+ l , which often is used in predicting the costs of a BSP algorithm.

One disadvantage of the BSP model is that processors synchronize only between supersteps. A message sent
at the beginning of a superstep can only be used in the next superstep, even if the length of the superstep is
longer than the latency. Another drawback is that the model does not charge overhead for a message to be
injected into the network. These deficiencies are recovered by the following model.

The LogP model In theLogP model [25] the processors work asynchronously, and a processor can use a message
as soon as it arrives. Processors communicate by point-to-point messages. The model specifies the perfor-
mance characteristics of the interconnection network, but does not describe the structure of the network. The
main parameters of the model are:

p: number of processors. Unit time is assumed for a local operation (acycle).

L: an upper bound on thelatency, or delay, incurred in communicating a message containing a single
word from its source to its target.

o: theoverhead of transmission or reception of a message; during this time the processor cannot perform
other operations

g: the gap, defined as the minimum time interval between consecutive message transmissions or recep-
tions at a processor. The reciprocal ofg corresponds to the available per-processor communication
bandwidth.



3.3. COST MODEL 27

The parametersL, g ando are measured as multiples of the processor cycle.L is an upper bound on the
latency, i. e. particular messages may travel faster. The basic model assumes that all messages are of small
size.

Sending a small message between two processors takeso+ L + o cycles:o cycles on the sending processor,
L cycles for the communication latency, and finally anothero cycles on the receiving processor. Sending ak
word message is realized by sendingk single word messages, which would takeo+(k−1) ·max{g,o}+L+o
cycles.

The LogGP model An extension of the LogP model – theLogGP model – concerns realistic modelling of sending
long messages [4]. A new parameter characterizes thegap for long messages:

G: theGap per word for long messages, defined as the time per word for a long message. The reciprocal
of G characterizes the available per processor communication bandwidth for long messages.

g: the gap for messages, defined as the minimum time interval between consecutive message transmis-
sions or receptions at a processor. The reciprocal ofg corresponds to the available per-processor
communication bandwidth for short messages.

Under the new LogGP model sending ak word message takeso+ (k−1) ·G+ L + o cycles. The sending
and receiving processors are busy only during theo cycles of overhead. The rest of the time they can overlap
computation with communication. If a processor wants to send two long messages in a row it has to wait
g cycles after the first message goes out before it can push the first byte of the second message into the
network.

Our model The LogP model is a widely accepted model. Merely the sending of long messages is not modeled
appropriately. The LogGP model is a little bit complicated, because it introduces two gap parameters. We
are aiming at estimating the overhead of a dynamic load balancing algorithm in a more qualitative than
quantitative way. For instance we will state an overhead result in Chapter7 partly using big-oh notation. For
such results the distinction between short and long messages is by far too pedantic. To simplify things we
will assume that the gap for long and small messages is identical (g = G). Now sending ak word message
takeso+(k−1)g+L +o cycles.

In contrast to the LogGP model we assume that the sending and receiving processors both are busy during
ov(k) = o+(k−1)g cycles. This is reasonable, since setting up a long message takes longer than setting up
a small message. The LogGP model does not include the time for message setup, since it aims at measuring
only the cost of communication. Later in this thesis we will analyze the total overhead of a parallel algorithm,
which surely is larger when longer messages are communicated.

The computer programs written in the context of this thesis all are designed as asynchronously communi-
cating SPMD-style programs. There are only a few global synchronisation points. Between these points all
processors are kept busy by dynamic load balancing procedures. In such programs latency is almost totally
hidden by computation. Hence we will ignore the latency in our theoretical complexity consideration in
Section7.2and only consider the overheadov(k) = o+(k−1)g.
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In this chapter we discuss the general graph embedding problem that needs to be solved, when a sequential
algorithm is parallelized. A simpler but nevertheless complicated problem is the graph partitioning problem. A
solution to this problem can be characterized by some formal measures like load balance and cutsize, which are
defined in this chapter.

Since the graph partitioning problem does not exactly describe all sources of overhead in a parallel implementa-
tion, we need to discuss the influence of the remaining sources on a more informal level. This is done in Sect.4.1.3
below, where we present the main incentives that must be followed when aiming at a well scalable parallelization.

In Sect.4.2 we briefly review some strategies that have been proposed in the literature to solve the graph
partitioning problem in a universal fashion. We distinguish the embarassingly parallel problem type, the general
type, and the spatially mapped graph type. Especially the latter type is interesting in our context, since global
illumination algorithms can be formulated conformably to spatially mapped graphs.

4.1 The Problem

4.1.1 The Graph Embedding Problem

If we want to execute an algorithm on parallel processors, we have to solve thegraph-embedding problem [78].
Let H denote the host graph, which describes processing nodes and communication channels. A guest graphG
expresses the communication requirements between subprocesses of an application. An embedding of the appli-
cation (G) into the architecture (H) leads to a parallel algorithm. Every processing node executes a certain set of
application subprocesses. This approach sometimes is called the “owner computes”-rule.

In order to perform best, we must embedG into H thereby minimizing costs such as load, dilation, and con-
gestion.

Load. Obtaining an equal load on all processors is the most important goal. The total runtime of an application
depends on the runtime of the processor with maximum load.

Dilation describes the period of time (or better the length of the path) needed for any message travelling over edges
of H that is communicated between two directly connected nodes ofG. New interconnection architectures
result in weaker demands on a good dilation.
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Congestion measures the maximum number of edges fromG routed via an arbitrary edge inH. Congestion
is important from a practical point of view. But only few work has been done on mapping techniques
considering congestion.

4.1.2 The Graph Partitioning Problem

Graph partitioning is a possible way for an approximate solution of the graph-embedding problem. Partitioning
is the task of calculating an evenly balanced clustering of an application graph intop clusters while minimizing
the cut-size, i. e. the number of edges crossing the cluster boundaries. Mapping of clusters to processors is not
considered. Hence, the cost of dilation is considered only rudimentary. Congestion is fully ignored.

Bokhari has reduced a version of the partitioning problem (which he calls themapping problem [14]), where the
number of nodes ofG is not greater than that ofH, to the graph isomorphism problem – a problem, for which exact,
polynomial time algorithms are not known although numerous researchers have attacked this problem. Heuristics
are used in practice to compute a fairly balanced partition with a cut size as low as possible.

Matters get worse, if we assume thatG is dynamically manipulated. Then we have to dynamically adapt an
initial partitioning.

Formally the graph partitioning problem is stated as follows. LetG = (V,E) denote a graph with verticesV =
{v0, . . . ,vn−1} and undirected edgesE = {e0, . . . ,em−1}. Each vertexv getsh∈ IN vertex weights(Wi(v))0≤i≤h−1∈
IR+h. Every edgeehas a unique edge weightW(e)∈ IR+. The weightWi(M) of a setM of vertices/edges is defined
as the sum of the weights of the contained vertices/edges.

A partition of a graphG amongp partsV0,V1, . . . ,Vp−1 is defined by

π : V→{0,1, . . . , p−1} .

The major characteristics of a partition are its balance and its cut size.
Theload balance of the partitionπ is anh-tuple:

lb(π) =

(
p max

0≤ j≤p−1

{
Wi(Vj)

Wi(V)

})
0≤i≤h−1

.

The partition isload balanced , if lb(π) = (1, . . . ,1).
Thecut size of the partition is the weight of all edges running across partition boundaries, i. e.:

cs(π) = ∑
{v,w}∈E,π(v)6=π(w)

W({v,w}) .

The task of the partitioning problem is, to find a balanced partition that minimizes the cut size. Sometimes a
perfectly balanced partition does not exist, then we seek for a partition that is as balanced as possible.

4.1.3 Communication And Congestion

Once an application has been partitioned, the cost models of Sect.3.3 may guide us to invent an efficient way to
communicate between processors. The particular incentives are:

(a) prefer local memory references,

(b) overlap communication with computation (latency hiding),

(c) use few large messages instead of many small messages.

The above cost models and also the graph partitioning approach treat the problem of avoiding traffic congestion
to a limited extent only. The bandwidth parameters have only local impact in a way that a processor should send
messages rarely since local bandwidth is limited. If a processor had a global view over the network traffic it might
decide not to send a message when global network traffic is high. Since the processors do not know about global
traffic, one could employ a strategy where messages are sent asynchronously and independently since then with
high probability no congestion will occur. However, a synchronous communication strategy in phases could make
use of efficient collective communications such as broadcasts or combinings. Which strategy is best depends on
the amount of traffic for a specific problem as well as on potentiality to use collective communications.
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Figure 4.1: Spatial clustering of tasks.

Even if asynchronous message passing is employed there will occur congestion if the communication need is
high. Congestion occurs because of the invalid assumption of totally connected processors. Clearly, in a com-
munication network that connects each pair of processors directly, any two messagesM1 andM2 may travel inde-
pendently of each other without interference. However, in a sparse network there is a real chance of interference.
Since we want to describe portable algorithms, we do not assume a specific network topology. Instead we aspire
at an algorithm that uses only a small number of links of the assumed complete network simultaneously. Thus, we
add the following incentive:

(d) use only few network links at the same time.

For a general application it is difficult to meet this requirement in a universal fashion. Fortunately many applica-
tions do not show totally unstructured communications. E. g. domain decomposed calculations such as compu-
tational fluid dynamics or finite elements define local dependencies between tasks that are located in space. Also
Radiosity and Raytracing can be formulated in a way that only local communication is necessary (see sections
5.1.3and5.2.1for details).

4.2 General Solution Approaches

Before inventing a new partitioning strategy we should briefly discuss some existing general solution approaches
to the partitioning problem that can be found in the literature.

4.2.1 Embarassingly Parallel

The most simple application type is theembarassingly parallel type of applications, where little or no interdepen-
dency between subproblems is present [2, 71, 1]. In that case overloaded processors are instructed to move some of
their tasks to randomly chosen or neighbouring underloaded processors. The choice of the destination processors
is not affected by any considerations about the interdependency of the tasks.

Physically based rendering is by no means an embarassingly parallel application. There are many dependencies
between subproblems.

4.2.2 Multi-purpose Graph Partitioning

There is a vast literature on solutions for the graph partitioning problem reaching from the pioneering work in
[66, 33] up to software packages including fast multi-level methods [56, 55, 102, 65, 64, 86]. These methods
are ideally suited to the static load balancing problem, where the workload is static, hence the tasks have to be
distributed only once across the processors before the computation starts. If the workload varies over time usually
first an initial partitioning is computed that then is rebalanced adaptively if the balance gets bad [107, 100, 27].
During the adaptive partitioning one has to take care that the amount of data to be moved is small.

In the past, we tried already to tackle the hierarchical radiosity algorithm using a general graph partitioning
approach [36, 45, 13]. The results have been quite frustrating1. One possible reason for this is, that the formulation
of the graph partitioning problem does not account for the cost of possible congestion. Spatial clustering methods
are capable of reducing the chance of congestion.

4.2.3 Spatially Mapped Graphs

Many scientific applications define application graphs whose vertices can be mapped naturally into a multidimen-
sional space. Applications are called to communicatelocally if only a small subset of all objects, e. g. the marginal
objects of an object-cluster, have to communicate with other clusters. In such a situation, building spatial clusters

1 . . . which drove us to rethink the problem from scratch.
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Figure 4.2: “Locally” communicating tasks in 2D.

is a good strategy (Fig.4.1). In order to minimize communication one would use a cluster shape that minimizes the
ratio of surface to volume. The ideal shape would be a hypersphere, but unfortunately it is not possible to overlay
a bounded space completely by non-overlapping hyperspheres.

If the application needs to perform long distance remote data accesses, then a compact representation of a
directory telling which processor hosts which tasks is needed, that can be replicated on each local memory. Long
distance remote data accesses do not contradict the classification of an application as communicating locally. For
example an application with tasks mapped to 2D space and each task communicating with the tasks sharing a
common coordinate (see Fig.4.2 top) is communicating locally, since any task depends only on a small subset of
all tasks. The bottom of Fig.4.2shows a regular partitioning of the tasks, where the index of the processor hosting
a specific task can be simply calculated. In an irregular partitioning, a directory, which tells the processor index of
a given task, is useful. Unfortunately, generally we can reach a good load balance only by an irregular partitioning.

Diffusion methods [54, 108] remap tasks while keeping adjacent tasks on neighbouring processors. Neighbour-
ing processors exchange load depending on local load differences. Because of this locality, the surface of clusters
gets jaggy making a compact cluster representation nearly impossible.

Orthogonal recursive bisection methods [12, 17] have a compact tree representation. Rebalancing can be
performed asynchronously and independently in subtrees (e. g. [70]). To minimize the ratio of surface to volume,
a multidimensional bisection strategy is superior to a onedimensional clustering, which would produce thin long
“slices”.

Rectangular grid clusterings as in Fig.4.2 (bottom/left) are often used for matrix-vector-multiplication [57].
Here an exact load balance cannot be achieved by simply moving cutting hyperplanes. Instead the tasks must be
permuted randomly in order to achieve balance with high probability [80].

Mapping multidimensional spaces onto a space-filling curve and then partitioning the resulting “pearl necklet”
by a onedimensional procedure seems to be a straightforward method to overcome the problem of long, thin clus-
ters. One problem with this are jaggy cluster boundaries, which make statements on the worst case communication
complexity of the underlying application difficult.
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In the previous chapter we reviewed very general partitioning strategies for any imaginable algorithm. In this
chapter we are going to present partitioning strategies of the two major global illumination approaches, finite el-
ements and Monte-Carlo. The description primarily focuses on the finite element approach. Besides reviewing
existing strategies the main issue is the explanation of a spatial partitioning technique for each of these two al-
gorithms. These techniques fit in the context of each other, making a joint utilization for upcoming combined
particle-element-algorithms potentially possible.

5.1 Partitioning The Finite Element Approach

In order to examine the structure of the Finite Element approach, we split the algorithm into different tasks and
describe the dependencies between these tasks. The result is atask access graph, amenable to further analysis by
graph partitioners. Vertices of the graph are links and elements, while edges exist between links and elements and
between elements.

This graph can be mapped to parallel processors by assigning spatial locations to its vertices. We show, why
choosing a spatial partitioning approach seems to be a reasonable choice for radiosity algorithms.

There exist a few implementations of the hierarchical radiosity algorithm [53] — a special form of a finite
element method — on distributed memory (DM) architectures. We will first dicuss these implementations in the
following section.

5.1.1 Related Implementations

Excellent survey papers about parallel rendering can be found in [24, 87]. Here we will focus on hierarchical
radiosity algorithms on DM architectures and on parallel solutions that employ a spatial partitioning technique.

33
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5.1.1.1 Hierarchical Methods

Only a few implementations of the hierarchical radiosity algorithm (HRA) on distributed memory environments
have been reported to date:

• The probably first DM-implementation of the HRA was undertaken by Carter [16] on an nCube 2.

• Singh et al. [95] report briefly on “exercises in frustration” when implementing a message passing HRA on
an Intel iPSC/860, whose implementation is described in [94] in greater detail.

• Bohn and Garmann [13] described an implementation on a CM5.

• Zareski [110] had bad experiences with a PVM implementation on an IBM SP-1.

• Funkhouser [35] and

• Fellner et al. [31] described implementations for a network of workstations (NOW).

• Feng et al. [32] acieve good speedups for moderately complex scenes on a small NOW with a fine granular
adaption of [35]

• Benavides et al.[11] implemented a simple mapping strategy on a Cray T3D

• Meneveaux and Bouatouch [74] describe a wavelet-radiosity implementation on a NOW for large scenes
very similar to [35].

The implementations [110, 35, 31, 32] follow a master-slave approach, [16, 94, 13, 11, 74] are in SPMD style
(single program multi data) with no dedicated master process, which could potentially limit scalability.

In a DM implementation of the HRA there are basically three problems to be solved. First, tasks need to be
distributed such that each processor gets an equal amount of work (functional parallelism). Second, data needs to
be partitioned such that local memories are utilized in a balanced way (data parallelism). And third, communi-
cation should be low, both by clever data/function parallelism and by reuse of communicated data using caching
techniques and temporal locality. We now discuss solutions to these aspects found in the above implementations.

Functional Parallelism. In radiosity algorithms the overwhelming part (about 90%) of the calculation are
formfactor calculations. In [110, 31] only these formfactor/visibility calculations are distributed among a couple
of slaves while performing the solution part of the HRA serially on a master. The speedup of such approaches
never will exceed 10.1 The other implementations also distribute tasks of the solution part among processors.
Funkhouser’s (and Meneveaux’s) approach is something in the middle, since his group iterative solver performs
several solution steps on the slaves; only a few solution tasks are performed serially on the master by merging slave
solutions together.

In order to achieve functional balance in the master-slave approaches a scheduling problem has to be solved,
while in the SPMD style implementations load balancing must be performed. Funkhouser [35] achieves functional
balance by combining the techniques of a first-fit-scheduler and of a scheduler aiming at small changes in the
working set of a slave. Meneveaux et al. [74] use a graph partitioner that groups elements based on their distance
to a center-of-gravity, combined with a task stealing strategy. A very similar strategy – a combination of a static
ordering and dynamic task stealing – is described in [32]. Fellner et al. [31] use a simple FCFS-scheduler. Singh
[94] used a demand driven load balancing approach (task stealing), but did not get satisfying results for a DM
environment. The implementations [13, 16] assume that large data items are associated with complex tasks and
that functional balance is good if data balance is. In [11] the area of surface elements is taken as a criterion of
complexity for a demand-driven mapping in the first iteration.

Data Parallelism. The large data structures in the HRA are the element hierarchy, a tree containing geometry
data for visibility calculations (which may or may not be distinct from the element hierarchy), and the set of links.

In all above implementations the visibility-tree is distinct from the element hierarchy. We may replicate all
geometry on each local memory [16, 94, 13, 31, 11], since this data is much smaller than the remaining data struc-
tures. Zareski [110] tried to partition the visibility data structure, which led to so large communication overhead
that no speedup resulted at all. In [35, 32, 74] so-calledworking sets are loaded to each slave, which contain all
geometry that is potentially visible from a given target group of elements. In scenes with dense visibility graphs
this strategy will reduce to the “replicate-all-geometry” approach. The use of working sets is “especially useful
for building interiors with many rooms and corridors but not for a simple room with objects of highly detailed
geometry” (cited from [74]).

1 Speedup =
T1
Tp
≤ T1

0.1T1+0.9
T1
p

<
T1

0.1T1+0 = 10, whereTi = runtime oni processors.
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The element and link data structures are mapped permanently to processors only in the SPMD style implemen-
tations [16, 94, 13, 11, 74]. The master-slave programs assign elements and links temporarily to processors during
scheduling. In [16] data balance was achieved by randomly shuffling links between processors periodically. In [13]
all data/tasks were represented by a undirected graph. On this graph the graph partitioning problem was solved by
simulated annealing, thereby reducing communication and maintaining data balance. In [11] data balance is not
explicitly accounted for. An initial data balance is provided in [74] by graph partitioning, which is dynamically
adapted by task stealing.

Reducing Communication By Clever Partitioning. One important point is to reduce and to balance the com-
municated data per processor. But structuring communication to few communication channels (see Sects.4.1.3,
6.6) should also be done in order to reduce the chance of congestion. In Carter’s approach [16] element hierarchies
were decomposed such that subtrees below some fixed level were mapped entirely to the same processor, which
leads to low communication during the push and pull phases. Links were mapped irregularly and independently of
elements. Link refinement showed scalable behaviour, but during shooting the communication time exceeded by
far computation time. This was mainly due to the high volume random-all-to-all communication structure, which
originates from the irregular partitioning of links.

Bohn et al. [13] used the general graph partitioning principle, which can reduce the communication overhead
while maintaining functional and/or data balance. Both the overhead of the graph partitioner and the unstructured
communication pattern reduced the efficiency of this approach significantly. Singh [94] used unidirectional links
that are indivisibly coupled with their source element. The elements themselves are distributed randomly. Hence, as
all the other implementations, also this approach ignores the aspects of structured communication and congestion.

Reducing Communication By Reuse.Singh [94] discusses two caching approaches. “Local quadtrees” cre-
ates huge caches for all elements needed during a single iteration and exchanges element data only between itera-
tions. In this approach cached data is likely to be outdated, when used late inside an iteration. “Global quadtrees”
manages smaller and more up-to-date caches. A disadvantage of this approach is that messages are communicated
at a much finer granularity. Even worse, in [16, 13] every link task that needs remote element data sends individual
request messages. Hence, remote element data is cached only during the calculations regarding a single link. The
data is not reused. Funkhouser [35] (and also Meneveaux [74] and Feng [32]) reduces communication by carefully
scheduling element groups to slaves, such that working sets change only slightly. As a result data downloaded
once may be used for several target groups.

We may conclude from the above discussion that up to now there are no clearly perferable techniques that
make up a good and largely scalable DM implementation of HRA. Caching techniques and high quality functional
load balancing seem to be important. Also a well devised partitioning strategy that prevents many communications
alone by its structure is required. Because of missing consensus about these questions, in Chapter6 we analyze
HRA on a more abstract level.

5.1.1.2 “Flat” Methods

The parallelization of the “flat” (orclassic or full-matrix) radiosity algorithm was subject of many papers in the
past. We focus on a few that used spatial partioning techniques.

Virtual walls have been used to subdivide the scene into several sub-scenes. The virtual walls act as translucent
boundaries and are considered as additional surfaces of the scene database that exchange light between the sub-
scenes. Arnaldi et. al. [6] and van Liere [101] made first experiments with this technique. A problem is that the
virtual walls introduce error in the radiosity computation, which can be reduced by subdividing the walls into small
patches.

Menzel [75] proposed virtual walls as a general tool. The user or programmer defines cells and exchange
mechanisms between the cells. Dynamic load balancing was performed by heuristics such as rotation or cell
splitting. Experimental but no theoretical results on the computational overhead have been reported.

5.1.2 The Algorithm’s Graph

We define a graph, whose vertices and egdes describe tasks and task dependencies. This graph is intended for
being analyzed with respect to the communicative behaviour of the Hierarchical Shooting algorithm of Sect.2.2.6.

We identify the following distinct tasks performed during a run of the Hierarchical Shooting algorithm:

Oracle: Use data of two associated elements to estimate the error across an interaction.

Subdivide: Subdivide an element.
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Link: Calculate a high quality approximation of a transport between two elements. Sum up a contribution from
one element to another element. This task writes data to an element in contrast to “Oracle”, that reads only
element data.

PushPull: Propagate light through the element hierarchy from a parent to its children and back.

An additional task may be identified, that is hidden in the tasks Oracle and/or Link, but should be considered
separately because of its large communication demands (see below):

Visibility: Estimate and/or calculate the visibility between two elements.

In the algorithm we basically manipulate two data structures:elements andlinks. Links need not be stored explic-
itly, but usually exist as temporary containers of visibility and other useful information regarding two connected
elements.

We can naturally map the above tasks to these data structures in a manner that maximizes locality, i. e. we map a
task to the data structure where most of the data needed by the task is located. The tasks Oracle, Link, and Visibility
are mapped to the corresponding link. The tasks PushPull and Subdivide are mapped to the corresponding parent
element.

Of course this mapping does not eliminate the need for communication between the tasks. Oracle for instance
needs to access the data of the associated elements. PushPull communicates with the PushPull task of the children
and with that of the parent. Even worse, Visibility may need to access a large part of the geometry, resulting in
communication with many element tasks, if the geometry is not replicated separately on each processor.

We will subsume the tasks Oracle, Link, and Visibility in a super-task calledLink -Task. The tasks PushPull
and Subdivide are pooled in anElement-Task.

Each vertex of thetask graph to be defined consists of a data structure and its associated task. The data structure
represents either a single element or a single link. The vertices of the graph are classified into element and link
vertices. The vertices each get two weights. Element vertices get the weight tuple (0,1), and links the weight (1,0).
This allows load balancing of both elements and links simultaneously, as is discussed in greater detail below.

Edges between vertices exist in case of dependencies between tasks, i. e. either between links and elements
or between elements. Everytime when one of the following actions occurs in the algorithm of Sect.2.2.6, then a
corresponding edge weight is increased by 1:

• pull(c) [called within pull(s)]: increase weight of edge between element s and child element c.

• oracle({i,j}), link({i,j}): increase two edge weights between the link vertex (i,j) and the element vertices i
and j. Additionally increase the edge weights between the link vertex (i,j) and all elements, that are visited
during visibility calculations. When using the cluster hierarchy for visibility calculations, usually not all
primitives need to be checked, if they block the transport between i and j.

• subdivide(i): increase the edge weights between i and its child elements.

• push(c) [called within pull(r)]: increase edge weight between element r and child element c.

Now, the graph is defined completely. We will use this graph later in Chap.6, where we analyze the partition-
ability of hierarchical radiosity using graph partititioning techniques.

5.1.3 Partitioning Strategy

In this section we describe a new spatial partitioning strategy of the hierarchical shooting algorithm. We will use
this strategy later in Chapter9 in an efficient implementation of hierarchical radiosity.

Why do we actually define a new partitioning strategy, instead of applying a general purpose graph partitioner
to the graph just defined in Sect.5.1.2? There are two reasons for this. First, a graph partitioner would need unavail-
able a priori knowledge about the graph that evolves during the run of the finite element algorithm. And second,
general purpose graph partitioning does not necessarily produce good graph embeddings for any algorithm.2

As mentioned above, we are interested in a DM-implementation of the hierarchical shooting algorithm. Dis-
tributed memory machines – especially when programmed in the message passing paradigm – show large differ-
ences between latencies of local and remote memory accesses. Hence, only coarse grained parallel computations
are expected to scale well when the number of processors is increased.

2 Bruce Hendrickson — one of the authors of the famousChaco graph partitioning software — mentioned in his talk at IRREGULAR 1998
that graph partitioning works, because it is applied mainly to simple partial differential equation solvers. If the application is more difficult and
unstructured (as global illumination is), then the inherent simplification of the graph partitioning problem could make it impossible to generate
a good embedding.
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The hierarchical shooting algorithm exhibits high fine grained parallelism both on the link and on the element
level. E. g. each Oracle task inside one iteration loop can be performed independent of each other, if the data of
the associated elements is available. Also the order of task execution inside an interation loop is almost arbitrary,
except that at the beginning of a loop a few high level links need to be processed sequentially until there are enough
links on a deeper level of the hierarchy, that can be processed in parallel.

Unfortunately, due to its very dynamic nature, it is not easy to partition the computation into large, equally
complex blocks, which would be necessary to achieve a balanced, coarse grained parallel algorithm.

In the hierarchical shooting algorithm we are concerned basically with three kinds of data items: elements,
links, and boundary data. Boundary data consists of the scene geometry and illumination specific properties such
as material and emission data. Material and emission data is needed everytime, when an associated element is
involved in a link refinement and during local reflection operations. Hence these data is best stored together with
the element. Also the geometry data is needed for these operations and should be stored there.

Unfortunately geometry is needed not only for local reflection operations but also for visibility calculations.
In order to make visibility calculations fast, in our program each processor holds a separate copy of the whole
scene geometry. Since geometry data is far less voluminous than the illumination representation (the elements),
this should be a viable way even for very large scenes. Simulations in Chapter6 show that the other approach of
distributing the visibility calculations across processors would result in very poor performance.

For the mapping of links and elements we choose a spatial clustering method much like an orthogonal recursive
bisection strategy.

• Elements are associated with either scene surfaces or with surface clusters. Hence, with each element we
may associate a 3D range[~xmin,~xmax] of the scene. The ranges of different elements may overlap, e. g. the
range of a cluster element contains all ranges of the contained surface elements.

Given a number of processorsp≥ 1 we partition the 3-d-space intop regions using a 3-d-tree. Elements are
mapped to a region based on the center of gravity~x∈ IR3 of the associated range. Here we solely use boxes
as bounding ranges, but also other geometries could be reasonable.

Every processor holds a copy of the 3-d-tree. The 3-d-tree has storage sizeO(p) and is used as a directory for
the elements. If we want to access a remote element, whose geometric location is known, then we determine
the owning processor of the element using the directory and then directly send a query to that processor.

With each surface primitive usually not a single element but a more or less complex hierarchy of elements is
associated. We pool all surface elements that belong to the same surface primitive and map these elements
together with the surface’s boundary data to the same processor.

• Links are basically pairs of elements. Hence it is natural to associate a 6-d-range with links resulting from
the cartesian product of the 3-d-ranges of the two elements. Mapping of links to processors again is done
based on the center of gravity(~x,~y) ∈ IR6 inside a 6-d-tree withp leaves. We store a copy of this tree for
directory lookup purposes on each processor.

Computational load balance is achieved in our partitioning by moving the cutting hyperplanes of thek-d-trees
geometrically and moving the elements and links between processors. In Chapter7 it is described, how such a load
balancer may be implemented with small worst case overhead.

So, why is this partitioning strategy a good strategy?

First, the hierarchical shooting algorithm is known to be very communication intensive. In Chapter6 we discuss
a few partitioners and show by experimental measurements that a spatial partitioning does reduce the amount of
communication fairly well.

Second, the chance of congestion in an interconnection network gets high if there is high traffic in it. Incentive
(d) in Sect.4.1.3says that we should aim at reducing the total number of communicating processor pairs. The
spatial partitioning approach does exactly this, which is discussed in the following.

We considerp = 16 processors. Both the 3D space of elements and the 6D space of links is partitioned as
shown in Fig.5.1. We consider an element whose range is centered at a fixed~x∈ IR3. This element is involved in
the computations of those links whose ranges are centered at some point from the following set:

{(~x,~y) :~y∈ IR3}∪{(~y,~x) :~y∈ IR3}.

The set of processors owning all these links is shown in light gray in Fig.5.1. The number of these processors is
2
√

p if we assumep = 26m,m∈ IN, and it isO(
√

p) otherwise.
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Figure 5.1: The 6-dimensional space of link locations(~x,~y), is mapped to 16 processors. For clarity reasons only
a schematic 2-dimensional mapping is shown. The 3-dimensional space of elements is shown schematically as a
1-dimensional line. An element, whose range is centered at~x gets mapped to a processor indexi(~x). The link
centered at(~x,~y) is mapped to processori(~x,~y).

Let us assume an even distribution of elements and links in 3-d/6-d space. Then all elements located on a given
processori are involved in the processing of links, that are located onO(

√
p) different processors. The constant

factor in the big-oh depends on how even elements and links are distributed. The total number of communicating
processor pairs under these assumptions isO(p·√p) = O(p1.5) which is much less than all possible pairs (Θ(p2)).

5.2 Partitioning The Monte-Carlo Approach

Spatial partitioning is an obvious approach to map particle based algorithms to parallel processors. Many re-
searchers have followed this general principle already in the past. We can expect good speedups only if dynamic
load balancing is performed. We first describe a simple, widely used, spatial partitioning strategy for the particle
basedphoton map algorithm (cf. Sect.2.3.4). Then we discuss briefly only a few interesting approaches found in
literature that perform dynamic load balancing for a spatial partitioning of raytracing.

5.2.1 Partitioning Strategy

A particle tracer works on a scene model, which consists of many objects. From an algorithmic point of view
decomposing the scene model is useless, since there are no tasks associated naturally with the objects. But in a
parallel environment with local memories we will have to distribute the objects across many processors, because
the whole scene may not fit into a single processor’s memory.

The other data items in the algorithm are the particles that are spawned recursively. The task associated natu-
rally with a particle is to firstly calculate a closest intersection, and then to spawn new particles at the intersection
point. At an instant of time during the application’s run every particle can be traced independently, since con-
current read access to the scene objects is possible. As time elapses the particles depend on their successors and
predecessors. A particle cannot start its associated task before the parent particle has completed its task. Hence,
the set of runnable tasks dynamically evolves.

Assume the 3D space of the scene is partitioned by a 3-d-treeTscene(see Fig.5.2 for a 2D-example). Each
leaf cell contains a subset of the scene’s objects and a subset of all particles. Objects that do not fit into a single
cell are duplicated in each intersected cell.3 For large real world scene models this usually consumes only little
additional memory. The universe of all leaf cells defines the set of tasks — one task for every single leaf cell. A
task consists of calculating intersections between all particle-paths and all objects contained in the cell. For those
particles hitting an object, new reflected or transmitted rays are calculated. Particles that miss all objects of the cell
are propagated to a neighbouring cell.

3 The extent of objects contained in a leaf cell may be larger than the cell’s extent. The object’s extentis stored inside the cell besides
the cell’s extent . Particles are always contained in the -box. When searching for particles near a given query point, which is needed in
the calculation of equation (2.11, page20), we can restrict ourselves to the non-overlapping-boxes, which potentially reduces the number
of processors to be visited during the search.
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Figure 5.2: A 2D-example of a treeTscenehosting the scene’s objects.
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Figure 5.3: A 2D-example of a tree-partitioningTpartition for 4 processors. On the right only the local objects on
processor 1 are displayed.

As in the finite element partitioning we can use a 3-d-tree withp leaves to describe a partitioning forp pro-
cessors (see tree labeledTpartition in the 2D example of Fig.5.3). Here we can simply reuse the upper levels of
Tsceneto define the partitioning.Tpartition can be queried directory-like about which processor holds which regions
of the space. Computational load balance in this partitioning can be achieved by moving cutting hyperplanes of
Tpartition (see Chapter7). The complexity of a task may be estimated by taking the number of contained objects and
particles and the surface complexity of the objects into account (see e. g. [88] on cost prediction in ray tracing). A
cell of Tscenecould be dynamically split, if its complexity is high. Neighbouring low complexity cells ofTscenemay
be merged together.

The communication in this partitioning is restricted to neighbouring cells ofTpartition. If the distribution of
the scene’s objects is not too unbalanced, then every processor communicates only with a small constant number
of neighbouring processors. Hence, following incentive (d) in Sect.4.1.3, the total number of communicating
processor pairs under these assumptions isO(p) which is much less than all possible pairs (Θ(p2)).

5.2.2 Related Work

In an early paper [28] Dippe and Swensen proposed an adaptive subdivision of the 3d space into subregions. As in
Sect.5.2.1scene objects are distributed among the subregions according to their position, and each subregion pro-
cesses rays independently. Rays are tested for intersection only with those objects within the particular subregion.
Rays leaving the subregion are communicated to neighbouring subregions. The shape of subregions is adapted
dynamically based on local, bilaterally available load information. They analyzed this approach only theoretically
and demonstrated promising speedups.

Caspary and Scherson [17] describe a partitioning approach based on a hierarchical data structure of bounding
volumes. Similarly to Sect.5.2.1 they divide the hierarchy into two parts at some level of the tree. The upper
part is duplicated on each processor. The lower subtrees are distributed evenly to unique home processors. Each
processor hosts instances of two processes: one relocatable process that computes intersections between rays
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and bounding volumes of the upper part of the hierarchy, and one non-relocatable process that is responsible
for ray-object intersections. Load balance is achieved by performing the first process less frequently on those
processors that have a heavy workload with the second process. Results have been published only as simulations
on a uniprocessor machine.

In the parallel raytracing work of [60] a subdivision of 3d-space by orthogonal hyperplanes is maintained
dynamically using a variant of the Fiduccia and Mattheyses graph partitioning heuristic [33].

Zara et al. [109] describe aprocess-farming approach on a cell-partitioning. With each cell a light-weighted
process is associated that maintains all rays “living” currently inside the cell. Further heavy-weightedRT-Core
processes are assigned dynamically to cells and essentially perform the intersection calculations. Dynamic load
balance is achieved by assigning a varying number of RT-Cores to different cells, where overloaded cells get more
RT-Cores than underloaded cells.

5.3 Issues For Combined Approaches

As there is currently no common agreement on the best hybrid global illumination algorithm, surely there isn’t any
on a good parallelization of it. In this section we discuss briefly the basic data access patterns occurring in hybrid
algorithms and how these could be implemented in parallel based on the above spatial partitioning strategies.

In hybrid global illumination algorithms it is an essential operation to convert a finite element representation
and a particle representation into each other. Since both, particles and elements, are mapped to the processors
based on their position in 3D space, the conversion mostly can be performed locally on a single processor. For
the calculation of a particle representation out of some surface element approximation we simply generate some
particles and store them locally in the particle tree. For calculating an element approximation on some surface
from a given particle representation, we search locally for nearest particles close to the surface and then evaluate
equation (2.11, page20).

Unfortunately sometimes communication could be necessary. First, when converting a large surface’s element
representation to particles, the generated particles could fall into several differentTscene-cells. If these cells are
on different processors, communication is needed. Second, when searching particles close to a given surface, the
closest particles may lie in differentTscene-cells, especially when the given surface is large and/or is located near a
Tscene-cell boundary. Again, communication could be necessary.

Both effects can be mitigated by preprocessing large surfaces into smaller ones and by trading an increased size
of Tscene-cells against the need for a manageable computational complexity of these cells. Finding a good tradeoff
and implementing these conversion methods is an interesting area of future research.
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The Hierarchical Radiosity Algorithm (HRA) [53] is a famous representative of the family of finite element
methods for lighting simulations.

Parallelization, however, causes troubles because the HRA is a dynamic, hierarchical, irregularly structured
algorithm, in contrast to full matrix radiosity methods [23] which are regularly structured and therefore better
suited to parallel computations (see survey in [82]). There have been quite successful attempts to implement the
HRA on a cache-coherent shared-address-space multicomputer [95], since the HRA exhibits high fine grained
parallelism. But developing a coarse grained parallel algorithm meeting the requirements of a distributed memory
(DM) environment is difficult.

In this chapter we present a detailed experimental analysis of the HRA and its partitionability as it was pub-
lished first in [41, 42]. We give quantitative results underpinning “common knowlegde”, that HRA is difficult
to parallelize. Measurements regarding three important issues of a parallel implementation are presented: load
balance, communication, and congestion. The results are rated quantitatively and indicate that there exist several
bottlenecks. Different graph partitioners are examined with respect to their ability to cope with these bottlenecks.
One main finding is that a spatial partitioning method overcomes most of the problems well.

We do not perform the measurements on a real parallel implementation. Instead we abstract from several
possible techniques of dynamic load balancing and communication reduction by analyzing each radiosity iteration
in a static manner. However, as is explained below, this approach does not assume a static partitioning strategy.
Instead, it allows conclusions regarding the performance characteristics of any possible real dynamic partitioning
method.

Section6.1defines the graphs to be analyzed and argues, why these are a reasonable choice for getting an idea
about the behaviour of the best imaginable parallel mapping strategy applied to the HRA.

Section6.2introduces three partitioners: a naive partitioner, a spatial partitioner and an “optimum” partitioner.
The optimum partitioner cannot be used in a real implementation, since it needs a priori knowledge of the graph,
which itself evolves during computations. We consider the optimum partitioner as a generator of a reference
solution.

In Sect.6.3 it turns out, that the graph defined so far is very poorly partitionable. Even the best partitioner
achieves a cut size of only 85 percent of all edges running across processor boundaries, when partitioning into
16 parts. The reason of this poor behaviour is the overwhelming amount of communication due to visibility

41
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computations. Therefore, in Sect.6.5, we remove the visibility access edges from the definition of the graph. The
resulting task access graphs are better partitionable and allow greater insight in the structure of the HRA.

Sections6.4-6.6 treat the following sources of overhead in a potential parallel implementation of the HRA:
load imbalance, communication, and congestion.

In Sect.6.4we see, that the HRA is a very dynamic algorithm. The amount of work changes dramatically from
iteration to iteration. We also see that load balancing is strictly necessary, since balance of load is poor, when not
accounting for load balance at all. But, the changes in the balance of load are relatively small. Hence, one could
guess that load balancing in early iterations pays off in later iterations. An important result of Sect.6.4 is that load
balancing amortizes, which is confirmed byload continuity matrices. These relate overloaded processor sets of
different iterations to each other.

Section6.5presents measured data on the cut size, the connectivity balance, and the load balance for different
partitioners. A result is that all partitioners do not achieve admirable partitions. Metis produces fairly well load
balanced partitions with the best cut sizes among all partitioners, but with a poor communication balance. The
spatial partitioner achieves excellent load balance, good communication balance and bad cut size. The spatial
partitioner is much faster than Metis, and therefore might be the better choice.

This is confirmed in the following Sect.6.6, where we examine the important aspect of congestion. The number
of channels between processor pairs that is used in the HRA is much larger than the number of available channels
in scalable supercomputers, which may lead to congestion. Moreover the channel usage is unevenly distributed
across the available channels. We discuss this issue based on a new measure, thechannel usage.

A short Sect.6.7 takes a look at graphs from other domains and shows that these graphs are much better
partitionable than the HRA graphs.

6.1 The Graphs

We define a single graph for each iteration of the algorithm as described in Sect.5.1.2. The reader is kindly asked
to read Sect.5.1.2now, if she skipped it previously. Below we will describe, how to statically partition each of
these graphs separately using a graph partitioner.

A real parallel implementation of the algorithm of course lacks a priori knowledge of these graphs and therefore
would have to employ other more dynamic partitioning strategies. Nevertheless considering the static partitions
is useful. Any potential parallel implementation, which performs one of the standard iteration methods, such as
Jacobi or Gauss Seidel, must synchronize all processors between two iterations. Hence, any sophisticated dynamic
load balancing and communication reduction strategy of any potential parallel program cannot schedule tasks or
communication from iterationk to another iterationl 6= k1. By analyzing the graph of a single iteration, we get
something like a “lower bound” on the load imbalance and on the communication, which must be treated by any
parallel program.

6.2 Graph Partitioners

We consider the partitioning problem as defined in Sect.4.1.2. This problem applied to the task graph described
in Sect.5.1.2allows us to assign tasks to processors, while minimizing the communication between the proces-
sors. Unfortunately, the partitioning problem does not consider all sources of overhead in a parallel computation.
For instance, a balanced partition does equally distribute the computational load across the processors, but does
not at all guarantee an evenly balanced distribution of communication load. In order to measure the balance of
communication load we define theconnectivity of one partVj ⊆V of a partition:

conn(Vj) = ∑
{v,w}∈E,π(v)6=π(w), j∈{π(v),π(w)}

W({v,w}) .

Theconnectivity balance of a partition is:

cb(π) = p max
0≤ j≤p−1

{
conn(Vj)

2cs(π)

}
.

A perfectly connectivity-balanced partition satisfiescb(π) = 1.

1 All statements remain valid for group-iterative methods (even though weakened), since in such methods scheduling is possible within a
fixed range of iterations{k, . . . ,k+c} but not beyond.
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Figure 6.1: A simple scene.

Another source of overhead in a parallel implementation iscongestion. Congestion may arise on low band-
width, incomplete communication networks, when the communication load is not distributed equally across the
available communication channels. We discuss congestion in more detail in Sect.6.6below.

In this work we will concentrate on three partitioning methods:

Metis Partitioner: The program Metis [64] is a publically available graph partitioner, which employs sophisti-
cated multilevel algorithms producing high-quality partitions for a large variety of graphs. As mentioned
above this partitioner cannot be used in a real implementation, since it requires a priori knowledge of the
whole graph.

Naive Partitioner (NP): This partitioner randomly assigns vertices to partitions, without considering load balance
and the reduction in cut size. The algorithm is simple: for each vertex, assign the vertex to a random partition
i ∈ {0, . . . , p− 1}. For large graphs this results in a not too poor load balance. The expected cut size is
p−1

p W(E), if we assume a graph with uniformly distributed edges.

Spatial Partitioner (SP): This algorithm is also known ascoordinate sorting. All vertices are assigned a location
in IRk.

The location of an element vertex is a point inside the 3D-scene to be rendered. It is defined as the center of
the 3D bounding box of the geometric extent of the associated element.

The location of a link vertex is the 6D tuple composed of the two 3D locations of the associated elements.

The partitioner bisects the graph recursively with respect to alternating axis-orthogonal hyperplanes. Link
and element vertices are partitioned independent of each other. A dynamic SP can be implemented with a
worst case upper bound on the runtime (see Chap.7).

NP is used as a “lower benchmark”. Metis is considered to produce partitions near the optimum – or near the
best solution achievable in reasonable computation time – i. e. this solution is used as an “upper benchmark”. We
will show that the difference between the lower and upper benchmarks is small, indicating that the HRA is poorly
partitionable.

In a parallel DM-implementation of the HRA the book-keeping of remote objects is an important issue. A
partitioning of the “spatial” type is completely described by a short directory representation that can be replicated
on every processor. This fact was utilized before in parallel raytracing algorithms (e. g. [17]). A Metis partition
may be very unorganized, such that there does not exist a short directory-like description of the partition.Ghost
objects need to be held on many processors leading to increased book-keeping time and memory consumption.
Hence, we would clearly prefer a simple SP, if its quality is nearly as high as Metis.

6.3 A First Experiment

In this section we want you to get a first feeling how the graphs of the HRA look like and how well they are
partitionable. Let us consider a simple 3D scene depicted in Fig.6.1, which consists of a room with four open
doors and with a table and four chairs inside. The scene is lit by a single light source on the ceiling. All 410
primitives are rectangles.
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number weight
min avg max sum

links 13,546 (1|0) (1|0) (1|0) (13,546|0)
elem’s 561 (0|1) (0|1) (0|1) (0|561)
vertices 14,107
edges 604,541 1 1.01 26 612,913
vd(link) 2 45.1 443
vd(elem) 10 1,097 3,827
vd 2 86.9 3,827

Table 6.2: Characteristic data ofGroom
1 .

We applied the HRA and counted all task to task accesses during runtime. We get different task access graphs
Groom

k from iteration to iteration, wherek denotes the iteration. First we have a closer look at the graphGroom
1

during the first iteration (see Table6.2).
The graph has got 14,107 vertices, where the portion of link vertices is an overwhelming 96 percent. The

number of edges is 604,541. A complete graph would have about 99.5 million edges. Hence the adjacency matrix
of our graph has only 0.6 percent nonzeroes, i. e. our graph is sparse.

Almost all edges have an edge weight of 1, but there are some edges with relatively large weights. The
maximum edge weight is 26.

We defined thevertex degree of a vertexv∈V as the weight-sum of those edges that are adjacent tov:

vd(v) = ∑
{v,w}∈E

W({v,w}) .

The vertex degree in the graphGroom
1 varies in a broad range from 2 to 3,827. The vertex with the largest degree of

3,827 is the root cluster. The next smaller vertex degree found in the graph is only 1,578 (not listed in the table).
The average degree is 86.9. The relatively large degree of the root cluster element vertex means a communication
hot spot in a potential parallel implementation.

The maximum degree of links is 443. This means, that there are link tasks, that need to access a large portion
(443

561=79%) of the elements. Most of these accesses are for visibility computations. Of course this is mainly due to
the “one-room-character” of the scene, where a surface sees almost all other surfaces.

In [41] we give data for the graph of the third iteration. This iteration is one of the computationally most
complex iterations in terms of the number of processed links. In the graph we basically rediscover the same
features as in the graph of the first iteration. The main difference is its increased size (27K vertices – 4M edges).

Now, we examine the partitionability of the graph. A run of Metis 4.0, that partitioned the graphGroom
1 into

16 partitions, needed 41 seconds on an Intel Pentium II, 333 MHz, running Linux. The resulting partition (see
Table6.3) is well load balanced, and also the connectivity balance is not too bad2.

The cutsize is expressed as therelative cut size in the table, that relates the cut size to the total edge weight:

rcs(π) =
cs(π)
W(E)

∈ [0,1] .

The relative cut size of the Metis partition is large (85%), especially when compared to the relative cut size that
can be achieved by NP (93.8%).

NP behaves as expected. Since vertices are assigned randomly to processors, the probability3 that an edge
runs across processor boundaries isp−1

p . The measured relative cut size in Table6.3 meets this formula:p−1
p =

15
16 = 93.8%. The load balance of the naive partition is worse than that of the Metis partition. The large second
component (1.43) is due to the small number of element vertices compared to the number of processors, and due
to the fact that NP does not care about load balance at all. Both SP and NP achieve better connectivity balance
results than Metis, paid by a not too large a difference to the optimum cut size.

Things get worse, when looking at the 128-way-partitions (Table6.3bottom). The difference between the naive
solution and Metis at the cut size is marginal.

2Metis 4.0 includes heuristics for achieving a good connectivity balance.
3 Consider a task (vertex)v. Each neighbouring vertexu of v is assigned randomly to any processor by the naive partitioner. Hence, the

probability, thatu is mapped to the same processor asv, is 1
p . We conclude that the edge betweenu andv runs between different processors

with probability 1− 1
p = p−1

p .
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method runtime lb(π) cb(π) rcs(π)
Metis 41 sec. (1.05, 1.03) 2.19 85.0%
NP < 1 sec. (1.07, 1.43) 1.20 93.8%
SP < 1 sec. (1.00, 1.03) 1.42 93.1%
Metis 74 sec. (1.13, 1.14) 2.90 97.3%
NP < 1 sec. (1.24, 2.51) 1.76 99.2%
SP < 1 sec. (1.00, 1.14) 2.83 99.1%

Table 6.3: Partition ofGroom
1 into 16 (top) and 128 (bottom) parts.

Figure 6.4: Runtime on a single processor per iteration in the refinement and transport stage for the nine room
scene.

We may learn a first lesson from the above data. Using sophisticated graph partitioners for the HRA is overkill,
since the task access graph is poorly partitionable. The difference between a naive solution and the one obtained
by Metis is small. Metis consumes multiple more runtime than the simpler naive or spatial approaches. Hence,
using one of the simpler strategies may be indicated.

6.4 Measuring Load Balance

In this section we will examine the load balance of the HRA. We do not really load balance the application.
Instead we measure the maximum load imbalance that occurs, when we do not care about load balance at all. All
measurements were done on an Intel Pentium II (333 Mhz) running Linux.

Since the one room scene is small with relatively little occlusion, we did experiments with a larger scene, which
consists of 3×3 replicates of the one room scene. One can look from one room into another through open doors.
Most of the results in this thesis are for the nine room scene. More data on the 1-room-scene is available in [41].

First, let us look at the total time consumption of the algorithm executed on a single processor from iteration
to iteration. Figure6.4 shows the time per iteration needed during link refinement and transports. The time for
the push and pull stages is neglected, because it is less than one percent of the total time in every iteration. The
runtime rapidly increases in the first two iterations and then decreases gradually until it gets nearly zero in the
22nd iteration. We may safely state, that the HRA is a very dynamic algorithm. But, fortunately, it is not really
unpredictable, as is shown in the following.

We are going to analyze a run of the HRA on a hypothetical multi-processor system by simulation on a one-
processor system. Each executed task contributes to the runtime of the processor that owns the task. We assume
an initial, not necessarily balanced, partitioning of the vertices of the task access graph top processors. In each
iterationk we measure the total timetk

i , spent by tasks that are owned by processori.
Each processori performs its own tasks one after another. Sometimes the processing of a task (vertex)v may

involve the generation of a new tasku, for instance when a link or an element is subdivided. The new tasku may be
seen as an increase of complexity of taskv. The load of the processor, owningv is increased by the complexity of
u. Hence, we should assign the new vertexu to this processor, in order not to bias the measurementstk

i of processor
i.

As the initial partitioning of the vertices we use a not necessarily balanced distribution of vertices, since we
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Figure 6.5: Load balancelbk during transport calculations in the nine room scene for 16 (left) and 128 (right)
partitions.
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for an example with 9 processors.Pl
σ

= {0,1,6} contains the processors with
maximum runtimest l

i in thel -th iteration.Pk
σ

= {2,6,7} contains processors that are most busy in thek-th, but less
busy in thel -th iteration.Mkl

σ
is the quotient of accumulated runtimes in iterationl .

do not know the whole graph in advance. For instance at the beginning there exists only one self link at the root
cluster element. All other link tasks are recursively generated from this single link. Also, elements are generated
on the fly by subdivision. Of course, we could start from a balanced partitioning of those vertices, that are known
from the beginning. But this would maybe falsify the load balance measurements during runtime.

We decided to assign the tasks to the processors once at the beginning based on their associated locations as
they were defined for SP in Sect.6.2. Each processor owns an equally sized region of all tasks. For the sake of
measuring runtime without employing a load balancer – which is the aim of this section – these regions remain
fixed for the whole run of the HRA. A newly generated tasku (a sublink or subelement) has a predefined location,
which is close to that of the generating taskv. Hence it is likely, that the processor owningv also gets the additional
load of tasku.

The load balance of the algorithm during runtime is measured independently in each single iteration. This is
necessary because in a parallel implementation after each iteration usually a synchronization between all processors
takes place. We define the load balancelbk in iterationk analogously to the load balance of a graph:

lbk = p
max0≤i≤p−1 tk

i

∑0≤i≤p−1 tk
i

.

Figure6.5shows the load balance forp = 16 and forp = 128 processors in the 9-room-scene. Load imbalance is
high all the time (remember the ideal value oflb = 1). In this scene we absolutely need a load balancer. But, the
balance changes are not dramatic (Remember, absolute load changes are dramatic at least in early iterations, see
Fig.6.4.)

A question arises whether the overloaded processors of the early iterations are overloaded in later iterations,
too. In such a situation load mostly stays where it was put at the beginning. We characterize this fact by measuring
the load continuity. When load continuity is high, then rebalancing the load in early iterations will amortize in
later iterations. This is especially important, since rebalancing in early iterations is expensive, because work load
is high and therefore large loads have to be moved.
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In order to analyze load continuity we consider an upperσ -portion (σ ∈ [0,1]) of all processors, i. e.Pk
σ
⊆

{0, . . . , p−1}, |Pk
σ
|= σ p, which contains the indices of the maximum loaded processors (thehot spot processors)

in thek-th iteration (see Fig.6.6for an example). We want to examine, whether these processors are also overloaded
in later iterationsl > k. One possible measure for load continuity would be the size of the intersection setPk

σ
∩Pl

σ
.

If this intersection set contains many processor indices, then there was only little change among the hot spot
processors. There are cases however, where this measure is not exact enough. If for example the processors
Pk

σ
− (Pk

σ
∩Pl

σ
), which are not contained in the intersection set, are totally idle in iterationl , then we have a much

worse load continuity than in the case, that these processors are relatively busy in iterationl (e. g. if they are
contained inPl

2σ
). Hence, the measure should also include the loadt l

i for processorsi ∈ Pk
σ

.
To overcome these troubles we define the followingload continuity matrix, which includes loads in iterationl :

Mkl
σ

=
∑i∈Pk

σ

t l
i

∑i∈Pl
σ

t l
i

≤ 1 .

The quotientMkl
σ

is large if the hot spot processors of iterationk are also overloaded in iterationl . For experimental
analysis, we setσ = 0.1, i. e. we are interested in the mostly overloaded 10 percent of all processors. Two resulting
matrices are listed in Fig.6.7.

On 16 processors the load situation can be divided into two phases. In the first iteration, those processors are
overloaded, that are concerned with transporting light from the light sources to other surfaces. These processors
are less busy in the second phase (starting at iteration 2). In the second phase there seems to be a relatively fixed
set of processors, that are overloaded in each of the following iterations. The whole load continuity matrix looks
uniform, which means that load balancing is likely to pay off in later iterations.

This basic prinicple can be found also in the matrix for 128 processors even though less clear especially in the
last six iterations. For the one-room-scene the situation is similar as in Fig.6.7[41].

In [11] a parallel implementation of HRA is presented, that performs a simple demand-driven load mapping
approach in the first iteration only. In all the remaining iterations the assignment of data to the processors is kept
unchanged. This simple strategy is reported to work well, and the findings about load continuity here seem to
justify that simple strategy subsequently.

6.5 Measuring Communication

In Sect.6.3 we experimented with different partitioners on the task access graph of a single room scene. The
large number of accesses to the root cluster element vertex is one important reason that all partitioners generated
solutions with large cut size. Visibility tasks are responsible for most of the communication.

When calculating visibility on a distributed scene geometry naively by sending individual messages for each
link, we cannot hope a parallel implementation of the HRA to show up scalable behaviour. Caching replicates of
geometries in local memories for instance could be employed to reduce the communication requirements. Here we
consider the extreme case, where all geometry data is cached in all local memories once, and these data will never
be destroyed. This completely eliminates the need for communication for the visibility tasks. The replicated data
is only a small fraction of the total data, since it only includes geometry of the top level surface elements. In the
rest of this chapter we consider the task access graph without visibility accesses. We denote such graphs by the
letterH. These graphs will allow a greater insight into the structure of the HRA beyond visibility computations.

In Table6.8the characteristic data of the task access graphHroom
1 is shown. The graph has got the same number

of vertices asGroom
1 (see Table6.2). The number of edges instead is greatly reduced from 604,541 to 27,507. Also

the hot spot problem is alleviated, since the maximum vertex degree now only is 578.
When partitioning the graphHroom

1 we get much better results than for the graphGroom
1 with Metis and SP (see

Table6.9). Nevertheless, the cut size is high for both partitioners, especially when compared to cut sizes that could
be achieved on graphs from other domains (see Sect.6.7). The runtime of Metis is moderate forHroom

1 , but it gets
large for the nine room scene [41] (up to 358 seconds).

Because of the large amount of measured data, we present diagrams for the load balance, the communication
balance and the cut size. We start with the relative cut size for the nine room scene in the first and in the third
iteration for varying processor numbers. Data for the one room scene can be found in [41]. Figure6.10shows the
results. Metis generates significantly better partitions than SP. Whenp is increased, all cutsizes increase. SP’s cut
sizes approach that of NP for large processor numbers.

The load balance of the link vertices4 is good for small processor sets (Fig.6.11). We did not include the
load balance of element vertices, because the influence of element task processing on the total runtime is only

4 In contrast to Sect.6.4now dynamic load balancingis performed
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Figure 6.7: Load continuityMkl
0.1 in the nine room scene for a 16-way-partition (top) and a 128-way-partition

(bottom). Large entries are displayed in a lighter grey.

number weight
min avg max sum

links 13,546 (1|0) (1|0) (1|0) (13,546|0)
elem’s 561 (0|1) (0|1) (0|1) (0|561)
vert’s 14,107
edges 27,507 1 1.30 26 35,879
vd(link) 2 2.46 4
vd(elem) 5 68.47 578
vd 2 5.09 578

Table 6.8: Characteristic data ofHroom
1 .
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method runtime lb(π) cb(π) rcs(π)
Metis 5.1 sec. (1.00, 1.03) 2.16 43.6%
NP < 1 sec. (1.07, 1.43) 1.28 93.9%
SP < 1 sec. (1.00, 1.03) 1.52 84.5%
Metis 9.3 sec. (1.13, 1.14) 3.78 53.0%
NP < 1 sec. (1.24, 2.51) 2.49 99.2%
SP < 1 sec. (1.00, 1.14) 3.27 97.5%

Table 6.9: Partition ofHroom
1 into 16 (top) and 128 (bottom) parts.

Figure 6.10: Relative cut size for nine room scene in the first (left) and third (right) iteration.

Figure 6.11: Load balance of link vertices for the nine room scene in the first (left) and third (right) iteration.
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Figure 6.12: Connectivity balance for the nine room scene in the first (left) and third (right) iteration.

marginal. For largep the number of vertices per processor gets too small to achieve a good load balance with
Metis. Nevertheless, the spatial partitions are very well load balanced even for largep.

The connectivity balance of the above scenes and iterations is compiled in Fig.6.12. The connectivity balance
in the first iteration is worse than in the third. Metis produces the worst balance, while SP achieves better balances.
NP distributes partition connectivity evenly, too.

In summary, Metis produces fairly well load balanced partitions, whose communication balance is bad and
whose cut size is best. SP produces excellent load balance and good communication balance, while the cut size is
bad for largep.

We examine the combined effect of communication balanceand cut size by considering themaximum per
vertex remote connectivity, which is defined as

mvc(π) = max
0≤ j≤p−1

{conn(Vj)}
p

W(V)
,

whereW(V) = ∑0≤i≤h−1Wi(V) denotes the accumulated components of the weight tuples. The functionmvc
relates the maximum communication overhead on any processor to the average weight of vertices per processor.
Hence,mvc is the number of remote data accesses per task during a given iteration. This of course is only an
approximation of real communication overhead per task, because congestion may slow down data transport (see
the following section).

Figure6.13shows the functionmvc for various partitions. We see, that Metis achieves slightly better values
than SP for midrangep. But for small and largep the difference gets small or the spatial solution even outperforms
the Metis solution. All curves are close together indicating that the communication volume is high regardless of the
partitioning method. Important to note, that the curves increase, whenp increases. For largep the HRA imposes
more communication on each single task.

The absolute value ofmvc is large. On the average there is no task, that needs not communicate with other
processors. In fact, many tasks communicate several times across processor boundaries.

Other applications, such as finite element methods defined on a planar graph, are often partitioned using a
geometrically orienteddomain decomposition method. Then only the “boundary vertices” need to communicate
to remote processors, leading tomvcvalues that are significantly smaller than 1. Viewed this way, the HRA is
worse partitionable than other applications. Of course, this is mainly due to the fact that the lines of sight between
every pair of surfaces are potentially unblocked.

6.6 Measuring Congestion

Congestion occurs in a parallel environment, if the bandwidth of the networkN connectingp processors is too low
to process injected data just in time. In the previous section we demonstrated that the total communication volume
of the HRA is large. Hence, we need a networkN with high bandwidth.

Scalable supercomputers dispose of incomplete networks. Each processor can directly communicate with every
other processor, but if all processors communicate at once, congestion will occur, because communication links
are shared between processors.
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Figure 6.13: Maximum per vertex remote connectivity for nine room scene in the first (left) and third (right)
iteration.

The chance of congestion depends on the specific network topology in use. For instance a network consisting of
a single shared bus connecting all processors is highly prone to congestion. Conversely more expensive networks,
such as a butterfly network, reduce the probability of congestion. Since we do not want to concentrate on a specific
network topology, we simply characterize a networkN by its maximum number of (hyper-)edges, denoted bye(N).

A bus topology has only one single edge, i. e. only one pair of processors can communicate at a time without
interfering any other communicating processors. Ad-dimensional hypercube withp = 2d processors has12 plogp
edges. In a wrap-around-connected mesh each processor has four neighbouring processors; the total number of
edges therefore is 2p. A wrapped butterfly network hasp = d2d nodes and 2p = d2d+1 edges [68]. Also other
multistage networks, such as cube-connected-cycles, shuffle-exchange, and de-Brujin, have an edge number that
is linear in the number of nodes.

Usually a processor executes tasks that communicate with tasks on different remote processors. In the worst
case, a processor must communicate withall other p−1 processors. We will use the termchannel to describe a
pair of indices of potentially communicating processors{i, j}. A multicomputer ofp processors has12 p(p−1)
channels. Some of these channels may be unused.

An application that communicates over all1
2 p(p−1) channels is highly prone to congestion, since the inter-

connection networkN provides significantly less independent channels. In alocally communicating application,
every processor communicates to only a small subset of all processors. In such applications the number of used
channels is only a small fraction of all channels.

We will count the number of different channels, that are used by a given partitionπ of a task access graph. The
channel cut size of a given channel{i, j}, i, j ∈ {0, . . . , p−1}, i 6= j, is defined as as:

ccsi j (π) = ∑
{v,w}∈E,π(v)=i,π(w)= j

W({v,w}) .

The channel cut size is the weight of all edges running between two given parts of a partition. If the channel cut
size is zero, then the channel is not used by the task access graph at all. We define thechannel usage of a partition
as the number of channels with nonzero channel cut size:

cu(π) =
∣∣∣{{i, j} : ccsi j (π) 6= 0

}∣∣∣ .
The number of channelscu(π) is desired not significantly larger than the number of available edgese(N) of a
network. Otherwise, there is a high probability of congestion in the networkN. Since we want to abstract from a
particular network topology, we assume a networkN, where the number of edges is linear inp, i. e. e(N) = γ p.
This is a resonable assumption for a scalable networkN.

Figure6.14plots the ratiocu(π)
p against different numbers of processors, as measured in the graphsH9−room

1/3 .
The curves for Metis and NP increase rapidly. This means that the probability of congestion is very high for large
processor numbers.

SP produces partitions that exploit locality in the graph. Hence, the number of channels used per processor does
not grow that dramatic as for the other partitioners. Nevertheless, the curves increase, which means an increased
chance of congestion. When comparing the absolute values, we see that in the third iteration the channels are a bit
more overused than in the first iteration.
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Figure 6.14: Channel usagecu(π)
p for nine room scene in the first (left) and third (right) iteration.

graph p runtime lb(π) rcs(π)
AIRFOIL1 16 < 1 sec. 1.03 4.5%

128 < 1 sec. 1.02 19.0%
BCSSTK30 16 1.5 sec. 1.03 8.1%

128 2.8 sec. 1.04 28.0%

Table 6.15: Partition of graphs into 16 and 128 parts using Metis.

Finally we are going to analyze the bandwidth requirements of the HRA. We therefore relate the maximum
per vertex remote connectivity to the average runtime spent on each task. Letp = 512 – the highest number
of processors in the diagrams. We examine the Metis partition for the nine room scene in the third iteration
in more detail. The maximum per vertex remote connectivity for this iteration ismvc= 16.6 (Fig.6.13 right),
i. e. every task handles 16.6 messages on the average in the third iteration. The total runtime is approx. 6,900
seconds (Fig.6.4) in the third iteration. The total vertex weight isW(V) = 428,317 [41]. Hence, we have a
runtime of 6,900seconds

428,317 = 16.1 milliseconds per unit vertex weight. Ratingmvcby this runtime we get a number of
16.6messages

16.1milliseconds, i. e. 1,031 messages per second.
Individually sending these 1,031 messages per second would result in large startup overhead. Consider for

example the CM-5 machine with a startup time of 90µs [25]. Then about 93 milliseconds are spent on startup
overheads per second of useful computations. This assumes zero latency and no congestion in the network. But,
very probably there will be congestion.

Hence, message bundling is strictly necessary. A single processor communicates with 213 other processors
on the average during the third iteration (Fig.6.14 right). Every individual processor (p = 512) spends at least
6,900
512 = 13.5 seconds in the third iteration. Bundling all communicated data into 213 messages results in only
213
13.5 = 15.8 startup overheads (1.42 milliseconds on the CM-5) per second.

6.7 Graphs From Other Domains

In previous sections we discovered, that Metis generates partitions with relatively large cut sizes. In order to relate
these cut sizes to those that could be achieved on other graphs, we consider here two graphs from other domains.

AIRFOIL1 : A 2D unstructured finite element mesh. 4,253 vertices – 12,289 edges [52] (see also Fig.1.4 on
page3).

BCSSTK30 : Stiffness matrix from a statics model of an off-shore generator platform. 28,924 vertices – 1,007,284
edges [29].

Table6.15 shows the partitioning results obtained with Metis forp ∈ {16,128}. The runtime is very fast. The
relative cut sizes are much better than for the HRA graphs in Table6.9. Hence, we may conclude, that the HRA is
worse partitionable than other “standard” problems.



6.8. CONCLUSIONS 53

6.8 Conclusions

The material in this chapter confirms in a quantitative approach that the HRA is poorly partitionable. We showed
that a simple spatial partitioning method achieves results comparable to those of a costly graph partitioner like
Metis.

The situation is very bad when incorporating visibility accesses from links to elements into the graph. Most
results in this chapter hence concern the case, where visibility tasks are assumed to be performed locally without
communication.

The HRA is a very dynamic algorithm. But, as shown by the load continuity matrices, it is worth spending
time on load balancing, since it is likely, that this effort pays off in later iterations.

The total communication volume (cut size) of the HRA cannot be reduced arbitrarily, even if it were possible to
use a costly graph partitioner such as Metis. A partitioner must take into account load balance and communication
balance while reducing the cut size. The load balance is best for SP. The maximum per vertex remote connectivity
plots (Fig.6.13) summarize the communication overhead and show, that the Metis partitions are not much better
than the spatial partitions. But calculation of Metis partitions would be much more time consuming. Also an
important practical advantage of SP is that it avoids usage ofghost objects for book-keeping purposes (end of
Sect.6.2). The congestion plots ultimately suggest the use of SP because of a much smaller chance of congestion.
In the following chapter we will describe a SP with provably small overhead.
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Chapter 7

Locality Preserving Dynamic Load
Balancing With Provably Small Overhead
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In this chapter we describe a kind of an orthogonal recursive bisection clustering as it was published first in
[38, 39, 40]. We show that the dynamic adaption of the clustering to changing load situations involves only small
overhead. As a spatial clustering it is well suited to applications with local communication. Equally, hierarchical
shooting was shown in Sect.5.1.3to benefit from such a clustering strategy.

We will describe a procedure that rebalances a database of geometric objects “on the fly” concurrently with
an ongoing application. We describe procedures for imbalance detection and for locality preserving rebalancing.
We analyze these procedures with respect to their computational time complexity. The estimated amortized com-
putational time complexity of these procedures is shown to be small for every single dynamic task update. Such
a theoretical result is useful, since it proves that the orthogonal recursive bisection strategy — which is used fre-
quently in practice — also has a theoretically perfect background. The study in [71] with a very similar goal for
dynamic load balancing without task interdependencies has given the initial impulse for our work.

A description of the load balancing algorithm and its concurrent execution with a user-defined application is
treated in Sect.7.1. In Sect.7.2a mathematical proof of the amortized complexity of each single dynamic update
is given. Chapter8 comprises the definition of a concrete simple application and experimental results.

7.1 Algorithms

We assume an application that can be described by a set of equally complex tasks. We gain load balance by
clustering the tasks with respect to their associated geometric location. Dynamic updates are monitored by an
imbalance detector. If an imbalance occurs, then a simple rebalancing takes place that relocates cluster boundaries
thereby preserving locality.

The above technique is similar topartial rebuilding [81], which is used in keeping classical dynamic multidi-
mensional databases balanced, and is itself derived from the general concept of dynamizing static data structures
[73].

55
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PQ = part of all initial tasks;
while (not finished)

while (pending())
receive(task);
PQ <- task;

endwhile
perform first task of PQ locally;
if (unbalanced()) then init-rebalance();

endwhile

Figure 7.1: Scheduling loop.
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Figure 7.2: Tree clustering forp = 16 processors.

7.1.1 Embedding Of Load Balancing In An Application

On every processor a priority queuePQstores all tasks that are to be executed on the processor. A scheduling loop
that is executed asynchronously on every processor looks for incoming messages and executes the tasks (Fig.7.1).
Execution of a task may involve dynamical creation or deletion of tasks. This may cause imbalance of workload
and maybe a rebalancing operation is initiated. The detection of imbalance (predicateunbalanced ) is described
in Sect.7.1.4. The call toinit-rebalance starts the rebalancing operation. It involves sending of messages to
other processors and then returns immediately. The messages are processed by the destination processors within
their regular scheduling loop. So, rebalancing does not synchronize any processors. It is performed besides the
normal computations. This leads to the desirable effect that latency times are overlapped by computations.

7.1.2 The Clustering Method

The set of points inIRk representing tasks or objects1 is stored in a binary search tree of limited depth. We will
assume that there exists some integerl such that the number of processors isp = 2kl . The real implementation is
free of this restriction, but here it simplifies the presentation of the concepts.

We split the objects into 2l subsets based on the value of the first coordinate (Fig.7.2). These subsets are
stored in the leaves of a binary tree of heightl . At the nextl levels we split the subsets with respect to the second
coordinate. The lastl levels of the tree are formed using thek-th coordinate. We arrive at a binary tree of height
h := kl.

In theory it is often assumed that the points arein general position, because then there exists a perfectly
balanced clustering. If this is not true in practice, but the maximum number of points with equal value in some
coordinate is much smaller thanN, then only small imbalances will occur. Hence, we will neglect the problem and
assume that the points are in general position.

It is not a trivial task to construct an initial static multidimensional tree of points in a parallel manner. Possible
solutions to this can be found e. g. in [3] and are not in the scope of this thesis.

1 In realistic applications usually tasks are associated with some data stored in an “object”. This is why we use the terms task and object
synonymically.
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Figure 7.3: A database as a tree of scales. Each leaf node contains the objects of a processor. Inner nodes measure
imbalance between children. The numbers are example values for the number of objectsE(·) associated with the
nodes.

diff (v,a,b) :=
⌊ 1

2

(
(E(vr )+b)−

(
E(vl )+a

))⌋
shift (v,a,b):

if ( v is leaf )
then execshift (v,a,b)
else M :=diff (v,a,b)

shift (vl ,a,+M)
shift (vr ,−M,b)

endif

Figure 7.4: Strict shifting with respect to external shifts.

7.1.3 Rebalancing

Let us interpret the database of objects as a tree of scales (Fig.7.3), where each inner node measures the imbalance
between the two children and each leaf node contains the objects out of a subinterval ofIRk.

Definition 1 Let E(v) denote the number of objects that are associated with a node v. For inner nodes E(v) is the
sum of the E(·) values of the two children vl and vr . We call an inner node v perfectly balanced, if |E(vl )−E(vr)| ≤
1.

The balance of an inner node v is defined as B(v) := min(E(vl ),E(vr ))
max(E(vl ),E(vr ))

. We call an inner node v balanced, if

B(v)≥ 1−β for some constant0< β ≤ 1.

If we could guarantee that at any time every inner node of the tree is balanced, then all processors get roughly
the same amount of objects. Assume, that an inner nodev of the tree has got out of balance. We can bringv back
to perfect balance by shiftingM := 1

2

∣∣E(vr)−E(vl )
∣∣ objects from the overloaded child to the underloaded child.

Since inner nodes are virtual nodes not containing real objects, the shift has to take place at the bottom level of the
tree. The question, which leaf should deliver the objects to be shifted, is answered by the ordering inherent in our
tree clustering, where the objects belowvl are smaller in some fixed coordinate than those belowvr . We treat the
one-dimensional case first.

7.1.3.1 The One-Dimensional Case.

Let v denote an unbalanced inner node. E. g. letβ = 0.6, then the node for whichE(v) = 47 in Fig.7.3 is
unbalanced.v can be balanced perfectly by shiftingM := 1

2 |17−30| ≈ 6 objects from the left to the right subtree.
The source of objects is the rightmost leaf belowvl , the target is the leftmost leaf belowvr . The resulting situation
is: E(v) = 47,E(vl ) = 30−M = 24,E(vr) = 17+M = 23,E(vll ) = 17,E(vlr ) = 13−M = 7,E(vrl ) = 10+M = 16,
E(vrr ) = 7. Unfortunately, now the nodesvl andvr both are unbalanced. Rebalancing these two nodes can be done
in parallel independently of each other in the next step.

We describe a procedureshift (v,a,b) that is applied recursively to all inner nodesv and is responsible
for rebalancingv and all its descendants (Fig.7.4). The argumentsa and b represent two shifts that act from
the outside to the leftmost or rightmost leaf belowv, respectively. The rebalancing ofv takes place under the
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Figure 7.5: Higher dimensional rebalancing is reduced tok one-dimensional phases.

environment conditions that the leftmost leaf belowv has received or will receivea objects from its left neighbour
and the rightmost leaf belowv getsb objects from its right neighbour. Negative valuesa,b mean, that the leftmost
or rightmost leaves are delivering|a| or |b| objects to their neighbours.

If v is a leaf, the shiftsa andb are executed directly (execshift (v,a,b)) by sending up to two messages
containing objects to the neighbours. Of course for negativea or b no message is sent, but the leaf will receive
objects from its neighbours in the near future. The leaf does not wait for message arrival, but will receive the
message in its regular scheduling loop.

If v is an inner node, we calculate the number of objectsM that need to be shifted internally betweenvl andvr

and then passM to the children ofv in appropriate order. The initial call isshift( r,0,0) , wherer denotes the
root of the tree.

There are two open questions in how to realizeshift . The first is, who executes the code ofshift for the
inner nodesv. This can be answered easily by mapping theshift calls for an inner nodev to the leftmost leaf
belowv. Then every processor is responsible for not more thanh inner nodes. The second question is, what has to
be done, if at any leafw the procedureexecshift (w,a,b) cannot be performed immediately, becausew has to
deliver more objects than are available locally, e. g.a< 0 andE(w)< |a|? Thenw has to postpone itsexecshift
call until it gets objects from its immediate right neighbour. A detailed code ofexecshift is discussed in [38].

7.1.3.2 Thek-Dimensional Case.

In k> 1 dimensions every inner node contains a hyperplane that is orthogonal to one of thek axes. The associated
set of objects is divided into two subsets – one with locations above the hyperplane and one with locations below
it.

As in the one-dimensional case we have to move objects between processors if any inner nodev has got out
of balance. The number of objects to be moved is the same as in the one-dimensional case but not the source of
the objects. Consider a tree of height 2 storing points inIR2 as sketched in Fig.7.5. Assume that the rootr is
unbalanced. We can bringr to perfect balance by shiftingM = 3 objects fromA∪B to C∪D. The objects to be
shifted are those with largest value in the first coordinate. The problem with this is that it is not known which of
the source processors contain theM largest objects with respect to the first coordinate. In order to determine theM
largest objects processorsA andB will have to communicate.

The clustering as described above is a tree of heightkl with k groups ofl levels each dividing the space into
slabs with respect to a fixed coordinate. We will isolate the first group ofl levels (Fig.7.5) and regard the processor
sets beneath consisting of subtrees of height(k−1)l as ”fat” leaves. The algorithm of Fig.7.4 is applied to this
tree of heightl . The only difference to the one-dimensional case is the implementation ofexecshift (v,a,b).
Here each fat leaf has to determine itsM largest or smallest objects in a communication operation before shifting
the objects to a neighbouring fat leaf.

After the shifts with respect to the first coordinate have completed, then recursively the subtrees in the fat leaves
are balanced independently in the same manner. We needk phases to balance the whole tree. In thek-th phase we
will use the ordinary one-dimensional version ofshift .

7.1.4 Detecting Imbalance

If once a balanced binary tree is given, how can we detect that any node of the tree gets out of balance? The
problem with this is that imbalances result from unpredictable updates that are made independently by the leaves
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diff (v,a,b) :=

if

1− β

2d(v)+1
≤

E(vl )+a

E(vr )+b
≤ 1

1− β

2d(v)+1


then return 0
else return

⌊ 1
2

(
(E(vr )+b)−

(
E(vl )+a

))⌋
endif

Figure 7.6: Relaxed shifting.d(v) denotes the length of the path fromv to the leaves.

of the tree. The following lemma states a necessary condition for the situation that some inner node gets out of
balance.

Lemma 2 Assume that each node of the binary tree was balanced at time t0. Let E0(v) denote the load at an inner
node v at time t0. Let r denote the root of the tree.
If v is unbalanced at any time t after t0 then there exists some leaf w below v for which

E(w) 6∈
[

E0(r)
p

2
1−β

2−β

,
E0(r)

p
2

1
2−β

]
.

Proof Assume, that the object number in all leaves belowv is covered by the above interval at timet. For u∈
{vl ,vr} letd(u) denote the length of the path fromu to the leaves. ThenE(u) is covered by 2d(u) [minE(w),maxE(w)],
where the minimum and maximum covers all leavesw belowv. Using definition1 we can conclude that

B(v) =
min(E(vl ),E(vr))
max(E(vl ),E(vr))

≥ 2d(u) minw E(w)
2d(u) maxwE(w)

≥
2d(u) E0(r)

p 21−β

2−β

2d(u) E0(r)
p 2 1

2−β

= 1−β ,

i. e. v is balanced.
2

The obvious strategy derived from this lemma to maintain balance in the whole tree is the following. Every
leaf tracks whether its numberE(·) is covered by the above narrowing interval. The tracking does not require any
communication. We say a leafleaves the narrowing interval, if its numberE(·) is not covered by the interval. If
any leaf leaves the interval, we apply the functionshift (r,0,0) to the rootr in order to rebalance all nodes of the
tree. Then we define a new narrowing interval by settingE0(r) := E(r).

7.1.5 Improving Average Efficiency

There are update patterns for which the above strategy is best. E. g. consider an update pattern that starts in perfect

balance (load isE
0(r)
p everywhere) and proceeds such that all leaves below the left son of the root create objects

at the same rate and all leaves below the right son of the root remove objects at this rate. All leaves will leave the
narrowing interval at the same time and then the root will be unbalanced. Now, rebalancing the tree perfectly is
justified.

But, consider another update pattern where all leaves create objects at the same rate. All leaves will leave the
narrowing interval at the same time, but there is no need for any shifts, since all inner nodes are balanced. We
will slightly modify the shift procedure by replacing thediff function as shown in Fig.7.6. Now, a small
imbalance at nodev is ignored. This prevents slightly unbalanced nodes being rebalanced perfectly which would
involve expensive, but useless small messages. Below we will see that using this relaxed version does not worsen
the worst case behaviour significantly. But we expect the average behaviour of the relaxed version to perform much
better in realistic applications than the strict version. Therefore we used the relaxed version in our experiments in
Chap.8.

7.2 Complexity Analysis

We will examine the complexity of the above mechanisms for detecting and rebalancing an imbalanced distribution
of objects. In Sect.7.2.1we calculate the cost of a complete rebalancing operation. Fortunately, we will see that,
after rebalancing is complete, several updates are possible without any rebalancing being necessary. We quantify
this number separately for the strict case (Sect.7.2.3, Lemma7) and the relaxed case (Sect.7.2.4, Lemma10).
We will charge the communication cost of a rebalancing operation to the updates. In Sect.7.2.2we show that
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every single update has a smallamortized time complexity. Theorem8 in Sect.7.2.3and Theorem11in Sect.7.2.4
specialize the result separately for the strict and the relaxed case.

7.2.1 Absolute Cost Of Rebalancing

First, we define the cost of different message types in our cost model (see Sect.3.3).

Definition 3 The above algorithm uses two types of messages: administrativemessages containing small amounts
of data and objectmessages containing objects. For the subsequent estimations we will assume a cost of Cadm =
o+ (A− 1)g for an administrative message where A denotes the maximum memory size of any administrative
message. The cost of an object message is assumed to be Cobj(M) = o+ (MS−1)g where S denotes the memory
size of an object and M is the number of objects contained in the message.

These formulas assume that the cost of a message consists of a fixed overheadportion and a length-dependent
bandwidthportion. We dropped the latency term, since we assume throughout our complexity considerations that
latency can be hidden by computation (see discussion at the end of Sect.3.3).

Lemma 4 Let M denote the maximum number of objects contained in any shift between any two nodes during a
complete rebalancing operation. Then the total cost of rebalancing the tree perfectly is not larger than

(2k+(k−1)h)Cobj(M)+(k+2)hCadm .

Proof The first action in order to rebalance the tree perfectly is an administrative message that is cast to all
processors, which informs them that the rebalancing starts. This takeshCadm cycles per processor if collective
communications on 2h processors are simulated byh point-to-point communications.

Then a combine operation calculates the array of current numbersE(·) (costhCadm). After that recursive calls
of shift pass the argumentsa andb to all nodes of the tree. The cost of all recursive calls is less thanhCadm.

The costCshift(d) of a single shift between two fat leavesvsrc andvdestdepends on the heightd of the involved
fat leaves.

A shift consists of four phases:

i. extracting objects from the source leaves upwards tovsrc,

ii. moving objects tovdest,

iii. inserting belowvdestand finally

iv. removing belowvsrc.

Extraction (i.) and insertion (iii.) are performed independently on different processors and can be implemented
as a filtering combine or a cast operation indCobj(M) time. Moving (ii.) takes time for one messageCobj(M).
Removing (iv.) at the leaves belowvsrc involvesdCadm for casting a small message containing the actual split
coordinate. The leaves are then able to remove the correct objects.2

The total per-processor-cost of the shift is

Cshift(d) = max{dCobj(M)+Cobj(M)+dCadm,Cobj(M)+dCobj(M)}
= (d+1)Cobj(M)+dCadm.

We sum over the heights of all fat leaves involved with shifts. The height of fat leaves varies from(k−1)l in
the first phase to 0 in thek-th phase. Every fat leaf is involved in up to two shifts (one to the left, one to the right).
The sum of heights is:

2 ∑
0≤ j≤k−1

Cshift( jl ) = 2Cobj(M) ∑
0≤ j≤k−1

( jl +1)+2Cadm ∑
0≤ j≤k−1

( jl )

= (2k+(k−1)h)Cobj(M)+(k−1)hCadm .

2 The focus of this analysis is communication overhead. Hence we will not count the overhead of removing the objects locally on a
processor.
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Now, the proof is completed by summing up all above costs:

3hCadm+(2k+(k−1)h)Cobj(M)+(k−1)hCadm

= (2k+(k−1)h)Cobj(M)+(k+2)hCadm .

2

7.2.2 Amortized Cost Of Rebalancing

Lemma 5 Let t0 denote a time, when the whole tree was perfectly balanced. Assume for some t> t0 that a
rebalancing operation is started and that U updates have happened in the leaves since t0. Then the maximum
number M of objects that have to be shifted between any two nodes during the rebalancing is bounded by M≤U.

This result is easily seen by considering the border between any two neighbouring leaves. If not more thanU
updates happened to the left and to the right of the border, then not more thanU objects have to move across the
border to re-establish perfect balance.

Now we divide the cost of rebalancing (Lemma4) by the number of updatesU between two consecutive
rebalancing operations.

Corollary 6 The amortized time complexity of a single update is not larger than

(2k+(k−1)h)Sg+
((2k+1)(h+1)−1)Cadm

U
.

Proof The amortized update time is the cost of a rebalancing operation (Lemma4) divided by the number of
updatesU :

(2k+(k−1)h)Cobj(M)+(k+2)hCadm

U

<
(2k+(k−1)h)(o+MSg)+(k+2)hCadm

U

≤
(2k+(k−1)h)(o+USg)+(k+2)hCadm

U

= (2k+(k−1)h)Sg+
(2k+(k−1)h)o+(k+2)hCadm

U

< (2k+(k−1)h)Sg+
((2k+1)(h+1)−1)Cadm

U

Here we used Definition3, Lemma5 and the fact thato<Cadm (Def.3).
2

7.2.3 The Strict Case

Lemma 7 Let t0 denote a time, when the whole tree was perfectly balanced. When a leaf leaves the narrowing

interval (Lemma2) at time t> t0, then at least U≥Ubound
strict := E0(r)

p
β

2−β
updates have happened in the whole tree

since t0.

Proof The minimum number of updates until a leaf may leave the narrowing interval is bounded by the difference

of the borders of the narrowing interval (Lemma2) and the initial numberE
0(r)
p :

U ≥min

{
E0(r)

p
2

1
2−β

− E0(r)
p

,
E0(r)

p
− E0(r)

p
2

1−β

2−β

}
=

E0(r)
p

β

2−β

.

2

Theorem 8 Consider p= 2h processors containing a total number of E objects that are rebalanced by the function
shift (Fig. 7.4). Then the amortized update time of a single update is not larger than

(2k+(k−1)h)Sg+O

(
kph
βE

)
Cadm.
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Proof We assume, that the tree is perfectly balanced at the beginning, i. e.E(w) = E p−1 for all leavesw.
Combining Corollary6 and Lemma7 we get an amortized update time of

(2k+(k−1)h)Sg+
((2k+1)(h+1)−1)Cadm

U

≤ (2k+(k−1)h)Sg+((2k+1)(h+1)−1)
2−β

β

p
E

Cadm

= (2k+(k−1)h)Sg+O

(
kph
βE

)
Cadm .

2

We interpret the Theorem. Ifk = 1, every update involves sending and receiving the updated object (cost 2Sg)
plus some overhead. If the dimension is increased by 1, additional 2+ h send or receive operations are necessary
in the worst case, because the object space has no canonical ordering. The overhead of sending and receiving
messages is small ifkph

βE is small. We can reduce the overhead either by increasingβ – which clearly increases
load imbalances – or by storing many objects on few processors (p<< E), which opposes to the demand of fast
computation. Hence, we have a classical trade-off situation.

In Sect.8.8 below we present experimental results of the above load balancer for a simple application. There
we will see, that the bound of theorem8 is relatively sharp fork = 1, but it gets more and more pessimistic, ifk is
increased. Hence, in a real application we fortunately will have much less overhead than predicted above.

7.2.4 The Relaxed Case

In order to improve the average behaviour of the balancing scheme we will use the relaxed version in Fig.7.6. We
will show, that then the number of updates between two successive rebalancing operations is still large.

Lemma 9 Assume that all inner nodes v of the tree satisfydiff (v,0,0) = 0. Then the number of objects in every
particular leaf is covered by the following interval:[

E(r)
p

4−3β

2(2−β )
,
E(r)

p
4−β

2(2−β )

]
,

where(h,β ) ∈ {1, . . . ,20}×
{

j
106 : 0≤ j ≤ 106

}
.

Proof The conditiondiff (v,0,0) = 0 says that

1− β

2d(v)+1
≤

E(vl )
E(vr)

≤ 1

1− β

2d(v)+1

.

By substitutingE(vr) = E(v)−E(vl ) we get:

E(v)
1− β

2d(v)+1

2− β

2d(v)+1

≤ E(vl )≤ E(v)
1

2− β

2d(v)+1

.

Of course we get the same bounds forE(vr) by substitutingE(vl ) = E(v)−E(vr).
Consider a fixed leafw. The number of objects atw is bounded by

E(r) ∏
2≤i≤h+1

1− β

2i

2− β

2i

≤ E(w)≤ E(r) ∏
2≤i≤h+1

1

2− β

2i

,

wherer denotes the root of the tree.
We have simulated the product formulas for the following set of parameters:

(h,β ) ∈ {1, . . . ,20}×
{

j
106 : 0≤ j ≤ 106

}
.
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It turned out that for all these parameters

∏
2≤i≤h+1

1− β

2i

2− β

2i

≥ 1
2h+1

4−3β

2−β

,

∏
2≤i≤h+1

1

2− β

2i

≤ 1
2h+1

4−β

2−β

This proves the lemma.
2

This is now used for a bound on the number of updates for the relaxed case.

Lemma 10 Let t0 denote a time where the assumption of Lemma9 is valid. When a leaf leaves the narrowing

interval (Lemma2) at time t> t0, then at least U≥Ubound
relaxed:= 1

2
E0(r)

p
β

2−β
updates happened in the whole tree since

t0.

Proof The minimum number of updates until a leaf may leaves the narrowing interval is bounded by the dif-
ference of the borders of the narrowing interval (Lemma2) and the borders of the interval that was proved in
Lemma9.

U ≥ min


E0(r)

p 2 1
2−β
− E0(r)

p
4−β

2(2−β ) ,
E0(r)

p
4−3β

2(2−β ) −
E0(r)

p 21−β

2−β


=

1
2

E0(r)
p

β

2−β

.

2

Theorem 11 If the relaxed version ofshift (Fig. 7.6) is used, then the worst case amortized update time is at
most twice as large as the bound, which was stated in Theorem8.

Proof Let Cbound
strict denote the bound on the cost of the whole rebalancing in the strict case (Lemma4). Evidently,

the relaxed version involves not more communication in the worst case thanCbound
strict , since the relaxed version

simply omits some of the object shifts that are performed in the strict version.
The minimum number of updates in the relaxed case isU ≥Ubound

relaxed= 1
2Ubound

strict (see Lemma7 and10). The
amortized update time is the costC of a whole rebalancing operation divided by the numberU of updates between
two detected imbalance situations:

C
U
≤

Cbound
strict

Ubound
relaxed

= 2
Cbound

strict

Ubound
strict

.

2

7.3 Conclusions

In this chapter we have described a very simple dynamic orthogonal recursive bisection rebalancing algorithm.
The rebalancing can be performed asynchronously by point to point messages. Imbalance detection is done in a
completely distributed manner, hence no global knowledge about the current load situation has to be distributed
periodically.

Theorems8 and11 express the main theoretical results of this chapter. They say: every dynamic update is
debited only by a small overhead. The overhead can be reduced by increasing the problem sizeE, by increasing
the balancing parameterβ , and by decreasing the number of processorsp.

Fig.7.7 shows the regions of overhead and parallel efficiency. In the lower left we have relatively large over-
head, but a good parallel efficiency. In the upper right region the overhead is small, but the parallel efficiency is
bad. Hence, at least from a theoretical point of view we have to chooseβ such that the overall speedup is best. As
we will see from the experiments in the following chapter, manyβ -values lead to good speedups.
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In this chapter we present experiments on a parallel computer, that have been published previously in [38, 39].
We have tested the relaxed version (Sect.7.1.5) of the load balancing algorithm of the previous chapter for a
simple application that treats a set of objects ink-dimensional space. We parameterized the application by realistic
parameters, such as the load pattern, the number of objects, and the workload per task. In this chapter we show
that for near-practice-parameterizations our load balancer achieves good speedups. Moreover in Chapter9 we will
present results on a real application — the hierarchical radiosity algorithm.

First in Sect.8.1 we define the simple application. We will identify four different load patterns as repre-
sentatives for real application’s patterns1: “constant”, “growing”, “moderate”, and “heavy”. These classes are
characterized by the minimum, maximum, average and median object density in different regions ofk-dimensional
space.

In the following Sections8.3–8.8we study the behaviour of the load balancer of Chapter7 when various param-
eters are changed. Particularly as parameters we study the imbalance parameterβ , the workload per object/task,
the total number of objects/tasks, the load pattern, and the dimension. As a function of these parameters we mainly
concentrate on the speedup, but also present results for the total runtime, the load balance, and the message traffic.
We will see that the overhead, that was proved to be small in the worst case in the previous chapter, is even smaller
in practice.

Finally in Sect.8.9we present the difference in speedup with and without rebalancing for the four above load
patterns. We will see that our rebalancer improves poorly balanced applications a great deal, and it does not
deteriorate the performance of an application, that is well balanced by itself.

8.1 A Simple Application

Our simple application treats a set of points (objects) in[0,1]k. It comprises a few loops. Within each loop every
object is treated once. The action for each objecto consists of creating new objects close too and/or deleting

1 Later in Sect.9.2we will catch on to these patterns and classify the hierarchical radiosity algorithm.

65
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“constant” “growing”

“moderate” “heavy”

Figure 8.1: Minimum and maximum object density for different load patterns.

o. This simple application defines local dependencies between objects, because new objects are createdclose
to the original object. Therefore clustering the objects on the processors leads to communication only between
neighbouring clusters.

Several parameters affect the behaviour of the application. First, the number of objects affects the efficiency of
the load balancing algorithm. Second, real applications impose tasks on objects that are much more complex than
the task of creating a few objects near the original object. We will therefore provide a parameter that controls the
amount of work to be done while treating a single object. Clearly, the speedup is expected to get better if more
work is associated with each object.

Another important parameter is the load pattern generated by the application. We have examined various load
patterns by assigning differentproductivity values to different regions of[0,1]k. A productivity of 1 means, that
after treating an object the expected number of objects is the same as before treating it. A productivityprod> 1
means that treating an object involves creatingprod−1 new objects on the average. Ifprod< 1 this means that
the object under treatment is deleted with probability 1− prod.

The effect of assigning productivity values to regions is a differently growing object density in different regions.
We will characterize a load pattern by the minimum and maximum object density. Virtually we measured the
number of objects contained in sixteen equally sized sub-hypercubes of[0,1]k. Fig.8.1 shows the minimum and
maximum density vs. time. The first pattern labeled “constant” is characterized by a constant density in all regions.
This was achieved by assigning an equal productivity of 1 to all objects. Thus, the number of objects is constant
over time.

The second pattern labeled “growing” is characterized by an evenly growing density in all regions. This was
achieved by assigning an equal productivity of 3 to all objects.

Both patterns do not really require any load balancing. For this reason we think of these patterns aswell natured
for parallel computing. But the following two patterns labeled “moderate” and “heavy” do require load balancing.
These patterns show a great difference between the minimum and maximum object density. We generated the
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“moderate” “heavy”

Figure 8.2: Median and average density.

Processor Type VR4400SC
Clock Rate 75 MHz

Memory 64 MB
Instructions (peak) 150 MIPS

Floating Point (peak) 50 MFLOPS
Transfer rate to network 40 MB/s

Network topology Multi-Stage-Interconnection, 4x4 switches

Table 8.3: Data sheet of a node of NEC Cenju 3.

patterns by defining a productivity function of the following form:

prod(loc(o)) := prodmax
decay(1−

1
k‖loc(o)‖1)−1

decay−1
,

whereprodmax≥ 0, decay≥ 0, k denotes the dimension,loc(o) ∈ [0,1]k denotes the location of objecto and‖x‖1
denotes the sum of elements of a vectorx. For the “moderate” pattern we usedprodmax= 2.0 anddecay= 0.1074
and for the “heavy” pattern we usedprodmax = 5.6 anddecay= 357.05. It is not these formulas and parameters,
but the shape of the minimum and maximum density curve in Fig.8.1, that give the reader a clear idea of the
underlying load pattern.

Since the lower two diagrams of Fig.8.1 seem to be qualitatively similar, we introduce anothercharacteristic
of a load pattern: the average and median object density (shown in Fig.8.2). For the “moderate” pattern the two
curves are similar. For the “heavy” pattern the average density is much greater than the median density. We
conclude that the “moderate” pattern is somehow smoother than the “heavy” pattern. Hence, we expect worse
speedups for the latter.

Please note that the total number of objects is different for the four patterns. Hence, we cannot compare the
absolute time and density values, but only the overall impression of the curves. All figures refer to two-dimensional
databases (k = 2).

8.2 Environment

We implemented the application and the load balancing procedure in C++ in SPMD style using MPI on a NEC
Cenju 3, a massively parallel system. The maximum number of processors available for this work was 64. A
data sheet of the nodes of NEC Cenju 3 is shown in Table8.3. The nodes are connected by a Multi-Stage-
Interconnection Network that utilizes 4x4 switches. The transfer time between all nodes is constant.

8.3 Impact Of β On Runtime

We made experiments with varying values ofβ on 16 processors ink = 2 dimensions. The left part of Fig.8.4
shows the impact ofβ on the runtime for an application of the “moderate” type. LetT(β ) denote the runtime
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Figure 8.4: Runtime for differentβ ’s. (left: “moderate”, right: “heavy”).

as a function ofβ . The application started at 50,000 objects and finished at 173,000 objects meanwhile having
performed 361,000 updates (deletions and insertions). Each object was loaded with a task that took 20 ms on a
single processor.

For β = 1 we had no rebalancing at all and neededT(1) = 650 seconds. The best runtime wasT(0.85) = 466
seconds. Hence, the runtime was reduced by 28 percent.

Assuming a perfect dynamic rebalancing procedure at no extra cost the best runtime achievable on 16 proces-
sors is361,000×20ms

16 = 451 seconds. Hence, our rebalancer balanced the application such, that it took only466−451
451 =

3 percent longer than the optimum.
We also made experiments with an application of the “heavy” type (20,000 objects at the beginning, 48,000

objects at the end, 94,000 updates). The workload per task was 20 ms. The runtime for variousβ is shown
in Fig.8.4 on the right. Without load balancing we neededT(1) = 510 seconds. Our load balancer achieved
T(0.75) = 127 seconds or a reduction by 75 percent.

Assuming a perfect dynamic rebalancing procedure at no extra cost the best runtime achievable on 16 proces-
sors is94,000×20ms

16 = 118 seconds. Hence, our rebalancer balanced the application such, that it took only127−118
118 =

8 percent longer than the optimum.
From Fig.8.4we see that the impact ofβ on the runtime is not very critical. There is a broad range ofβ values

leading to good runtimes.

8.4 Impact Of β On Load Balance

For the two applications specified in Sect.8.3 we studied in detail on 16 processors, how the load balancer dis-
tributes the objects across the processors. The task load was 20 ms, the parameterβ ∈ {0.25,0.75}. We measured
the current number of objects on all 16 processors. Fig.8.5shows the results.

Evidently, our load balancer becomes active only, when the load balance gets bad (the peaks in the graphs).
Then some or all nodes of the tree are rebalanced resulting in a convergence of the sixteen curves. We can see that
a smaller value ofβ results in a better load balance. This is paid by a larger message traffic. To be specific, we
counted the number of positive imbalance detection results and the number of shift messages and shifted objects
during the application. Table8.6shows that a largerβ as well as a smoother load pattern tend to reduce the traffic.
The last column contains the average number of objects per shift. We can think of this number as an indicator
of the efficiency of the load balancer. The less objects are transferred by a shift the larger is the communication
overhead during load balancing.

8.5 Impact Of Task Load On Speedup

For a “moderate” application we measured the speedup for different loads per task. The free parameterβ was fixed
as a function of the number of processorsβ (p) = (log2 p)−1.
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“moderate” “heavy”

Figure 8.5: Influence of the load balancer (top:β = 0.25, bottom:β = 0.75) on the current load.

type β # positive im-
balance detec-
tion results

# shifts # shifted ob-
jects

avg. # obj. per
shift

”mod.” 0.25 19 996 386687 388
”mod.” 0.75 5 242 308559 1275
“heavy” 0.25 58 3136 351255 112
“heavy” 0.75 14 734 293818 400

Table 8.6: Message traffic due to rebalancing.
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Figure 8.7: Speedup for different task loads (bottom up: 0, 5, 20, 50 ms) compared to ideal speedup.

Fig.8.7shows the speedup2 for 50,000 initial objects, 361,000 updates and 173,000 final objects. We attached
a load of 0, 5, 20 and 50 milliseconds (ms) to each task3. All nonzero loads performed well. The zero load was
included because it gives an impression of the overhead of our load balancer. Even with zero loads we achieved a
speedup of 9 on 15 processors.

8.6 Impact Of Object Number On Speedup

Again for a “moderate” application now we fixed the task load to 20 ms and setβ = β (p) as in Sect.8.5. Fig.8.8
shows the speedup for different numbers of objects. Comparable good linear speedups have been obtained for
many objects (72,000, 361,000 and 1,081,000 updates).

We made two tests with few objects in order to study the behaviour of our load balancer on very lightweight
applications. Concretely, the first one started with 100 objects, did 667 updates and finished at 289 objects. Fig.8.8
shows the speedup for this application (the lower curve). On 64 processors the speedup is worse than on 45
processors. This could have been expected, since on 45 processors every processor only had to do 14.8 updates on
the average and the runtime was low already (0.8 seconds). Clearly, such lightweight applications cannot benefit
much from parallelization. At least, on 15 processors we achieved a speedup of 9.6.

The second lightweight application started with 1000 objects and arrived at 3400 objects after 7300 updates.
Fig.8.8shows the speedup for this application (the slightly ”humpbacked” curve). Here the situation is better. The
runtime varied from 138.7 to 3.2 seconds (1 to 64 processors). That is a speedup of 43.0 on 64 processors.

To get precise absolute data about the overhead of the load balancer, we started one application with no objects
and no updates (not contained in Fig.8.8). On 1 processor the runtime was 0.002 seconds, on 28 processors we
needed 0.05 seconds and on 64 processors 0.15 seconds.

8.7 Impact Of Load Pattern On Speedup

We made a series of experiments for the four different load patterns described above. To get comparable results
we parameterized the applications such that they performed an equal number of updates (about 360,000). The task
load andβ were set as in Sect.8.6. Fig.8.9shows the speedups. As expected the speedup gets better for smoother
load patterns. This is a reasonable and desireable feature of a load balancer.

2 The speedup is defined as the ratio of
T1
Tp

, whereT1 denotes the runtime needed on a single processor andTp denotes the runtime needed

on p processors. Ideally this ratio equalsp.
3 E. g. calculating 370 square roots and storing them in dynamic memory consumes 1 ms.
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Figure 8.8: Speedup for different numbers of updates (667. . . 1,081,000) compared to ideal speedup.

Figure 8.9: Speedup for different load patterns (bottom up: “heavy”, “moderate”, “growing”, “constant”, ideal).
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k
1 2 3

1 0.0 0.0 0.0
6 0.75 0.18 0.11
15 0.90 0.35 0.11p
28 0.95 0.24 0.15
45 0.97 0.31 0.13
64 0.98 0.26 0.13

Table 8.10: Ratio of real message traffic compared to the bound.

8.8 Impact Of Dimension On Message Traffic

There is a problem in designing an experiment that measures the efficiency decrease of the load balancer for an
increasing dimension parameterk. We cannot simply compare the runtimes or speedups of applications, since we
do not know how to extend a load pattern in one dimension to a ”similar” load pattern in higher dimensions. Also
the amount of communication of the application itself surely varies for varyingk. Hence, we do not know how to
define applications in different dimensions that are equally complex to treat by a load balancer.

In fact, we already analyzed the impact of the dimension on the efficiency of the load balancer. Sect.7.2gives
an upper bound on the amortized message traffic for a single update (Theorem8). The bound increases linearly
with increasingk. In this section we will measure the impact ofk on the message traffic in a real application.

Consider the following simple application. At the beginning all processors are empty; then only the first
processor performsU = 150,000 local insertions; after that a rebalancing happens. This load pattern can be
regarded as a worst case, since the load imbalance is maximum for a given number of updates. We measured the
message traffic on every processor during the rebalancing and compared it to the bound of Theorem8. Here we
restrict ourselves to thegap-term tra f f icbound := (2k+ (k−1)h)S. Let tra f f icreal denote the maximum number
of bytes divided byU , that have been communicated (sent or received) by any processor during the rebalancing
operation. Table8.10 shows the ratiotra f f icreal/tra f f icbound for different numbers of processors and different
dimensions. We see that the bound is relatively sharp fork = 1. For increasingk the bound gets more and more
pessimistic. Hence, in realistic applications, the efficiency of our load balancer depends much less than in a linear
way on the dimension parameter.

8.9 When Is Load Balancing Reasonable?

A natural question is, when generally using a load balancer is reasonable. We don’t want that an application that
actually is balanced by itself is retarded by a load balancer. We experimented with all four load patterns and
compared the speedup of the application with and without load balancing. The parameterβ and the task load were
set as in Sect.8.6. The object number was set as follows:

pattern initial number final number updates
“constant” 20,000 20,000 24,000
“growing” 5,000 135,000 156,300
“moderate” 50,000 173,400 361,000
“heavy” 20,000 47,800 94,000

Figs.8.11to 8.14show the results. For the “constant” load pattern, the speedup with and without load balancing
are approximately equal. The “growing” pattern can gain a little from load balancing. On 64 processors the speedup
is 51.3 without load balancing and 57.0 with load balancing. For the “moderate” pattern the situation is similar.
On 64 processors the speedup gain is 45.4 compared to 41.5. The “heavy” pattern performs very bad without load
balancing (speedup of 6.8 on 64 processors). With load balancing we achieve satisfying speedups (33.3 on 64
processors).

We conclude that by using our load balancer much better performance is achievable. Applications that are
balanced already are not worsened seriously by the load balancer. Hence, performance does not require that the
load balancer is suspended for specific applications.
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Figure 8.11: Speedup for “constant” pattern with (symbol◦) and without (symbol+) load balancing.

Figure 8.12: Speedup for “growing” pattern with (symbol◦) and without (symbol+) load balancing.
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Figure 8.13: Speedup for “moderate” pattern with (symbol◦) and without (symbol+) load balancing.

Figure 8.14: Speedup for “heavy” pattern with (symbol◦) and without (symbol+) load balancing.
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8.10 Conclusions

We have shown by experiments on a parallel computer that the spatial load balancer introduced in the previous
chapter performs well and reasonable on a simple synthetic application.

Choosing a value for the balancing parameterβ is not a difficult task, since a broad range ofβ -values leads
to good results. The overhead of our load balancer compared to an ideal load balancer is only 3 to 8 percent.
Speedups are good for a number of objects and a workload per task that usually appear in practical problems. The
small overhead of the theoretical worst-case, which was proved in the previous chapter, has been shown here to get
even smaller in practice, when the dimension is larger than 1.
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Let us look back a while and summarize the knowledge we have gathered so far in the previous chapters.
We analyzed the Hierarchical Radiosity Algorithm using a graph partitioning technique and realized that spatial
partitioning is a technique promising well scalability. We then defined a dynamic spatial partitioner and showed
that it works well theoretically in the worst case and experimentally for a simple application. These results may be
valuable not only for the HRA, but also for other scientific applications.

In this chapter we apply the spatial partitioner to the HRA problem. This material was published first in
[43, 44]. Our basis is the mapping of elements to 3D space and links to 6D space as described in Section5.1.3. We
will see, that there are still problems to be solved, namely

77



78 CHAPTER 9. REFERENCE IMPLEMENTATION: HIERARCHICAL RADIOSITY

Asynchronous Processing.An asynchronous formulation of the HRA is important to avoid unnecessarily expen-
sive barrier synchronizations (Sect.9.3.1).

Grouping. It is absolutely necessary to group elements and links tocontainers in order to reduce administration
overhead (Sect.9.3.2).

Data Reference Locality. Elements that once have been transferred to remote caches should be reused there as
often and soon as possible. This can be achieved by choosing the right links for refinement (Sect.9.3.3).

Before starting to describe these concepts in detail, we investigate thecharacteristic of the HRA much like we
did for the simple application in Sect.8.1. We classify the link and element production behaviour of the HRA by
observing the minimum and maximum or the median and average load over time, respectively. The main result of
Sect.9.2 is that the element distribution is well natured, while the link distribution is severely “heavy”.

Sections9.4and9.5present programming concepts that have proved very useful during the implementation of
the spatial partitioner and the asynchronous HRA. Little has been published on the implementation of HRA on DM
architectures despite the fact that people regard this a difficult task (e. g. [94]). These sections contain the stuff that
an interested reader will find most helpful during implementation. We think theseresults are of equal importance
as the runtime measurements in Sect.9.6. The result can be seen as a framework for dynamic spatial partitioning
for scientific computing.

The performance of our program is documented in Sect.9.6. We show plots that illustrate how the two key
problemsbalance andoverhead are defeated by our program. Speedup plots give an impression of scalability.
On a Cray T3E the speedup curve is almost linear up to 64 processors. This is better than previously published
attempts on massively parallel distributed memory computers. The program was also measured on a network of 8
Linux PCs with satisfying results.

9.1 Example Scenes

We made hierarchical radiosity experiments with ahall -scene as depicted in Fig.9.1. The hall is illuminated by
16 pendants, 16 candles and 4 ceiling lamps. There are four complex plant geometries in the corners of the hall,
which should be well clusterizable. The scene consists of 13,664 primitives (5,376 triangles, 6,744 rectangles, 856
spheres, 400 cylinders, 128 cones and 160 rings). The number of cluster elements on top of these primitives is
3,398. The total number of elements (clusters and primitives) is 17,062. During the first three iterations1 we had
about 14,000,000 link processings. The final number of leaf elements after three iterations is about 90,000. The
scene model was processed using the MGF library [105].

A simpler scene consists of the same hall as above, but the pendants, the candles, the plants, and a bit detail on
the tables are missing. A single ceil lamp illuminates this scene, which contains 4,873 primitives (4,053 rectangles,
296 spheres, 332 cylinders, 96 cones, 96 rings), and 1,220 clusters. After three iterations we had about 1,400,000
link processings and about 20,000 final leaf elements.

Of coarse there are many more types of scene geometries that could have been tested, e. g. an architectural scene
with many large occluding walls, or an open air scene with a single dominating light source (the sun). The principle
structure of the parallel algorithm of this chapter does not greatly depend on the geometry. Different geometries
affect the number of links and the regions where links are dynamically generated. The effect of different numbers
of links is well studied by our two test scenes (one more complex than the other). The effect of links concentrating
in particular regions is covered by our large hall scene, where links aggregate greatly inside the complex plant
geometries. Hence, we think of the hall scene as a difficult test case for a parallel HRA implementation. For these
reasons, and for the desire to save time, we limit ourselves to the above two example scenes.

9.2 Characterizing Hierarchical Radiosity

In Sect.8.1the load production behaviour of a simple application was characterized by observing the minimum and
maximum or the median and average load over time, respectively. We will follow this approach and characterize
the HRA the same way.

We partition the 3D and 6D space into 64 equally sized fixed grid cells and observe over runtime, how many
elements and links live in each separate cell. The cell sizes remain constant during the whole run, but not the
contents.

1 We limit ourselves to three iterations, since the resulting images after four, five, six iterations were visually undistinguishable from the
image after three iterations. A hurried practitioner would proceed equally.
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Figure 9.1: Top and bird view ofhall -scene.

9.2.1 Element Distribution

The left part of Fig.9.2 shows two curves that express the minimum and maximum number of elements per cell.
We see that at least one of the 64 cells is empty everytime and one cell contains about 4000 elements, which is
about 10 percent of all elements. In an evenly balanced situation every cell would get about 1.5 percent. The
curves have been obtained by the first two iterations of an HRA run on the simple hall scene.

The right part of Fig.9.2 shows the average and the median number of elements per cell. The median curve
is much lower than the average curve. This means that at least half of the cells are relatively empty all the time.
Regarding the classifications “constant”, “growing”, “moderate”, and “heavy” in Sect.8.1the element distribution
of the HRA is “growing” during the first about 300 seconds and then something like “constant”. The initial element
balance is poor. In a first phase many elements are dynamically subdivided resulting in a quickly growing element
load. After that, in a second phase the number of all elements does not change dramatically. A few rebalancing
operations in the second phase should suffice to reach an enduring balance. We will see that this is true in the
experiments in Sect.9.6.2.

As a general rule of thumb we think of the element distribution aswell natured, since load balancing is only
rarely necessary in practice.

9.2.2 Link Distribution

The hierarchical shooting algorithm of Sect.2.2.6is a very dynamic application. Links are created and removed
one after another rapidly. This manifests itself in Fig.9.3. On the left we see the minimum and maximum number
of links per cell over time. At every time there is at least one empty cell. Some cells get a highly fluctuating set
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Figure 9.2: Characterizing the distribution of elements in the simple hall scene.

Figure 9.3: Characterizing the distribution of links in the simple hall scene.

of links. On the right the median curve is zero, which means that at least half of the cells are empty all the time.
The average curve is similar in shape to the maximum curve. Regarding the classifications in Sect.8.1 the link
distribution of the HRA is absolutely “heavy”.

It seems, that we have experienced two contradicting facts about the links in the hierarchical shooting algo-
rithm. Section6.4states that the load continuity among the set of links is high, which suggests a classification of
the distribution of links as something like “moderate”. In this section we just saw that the link distribution in fact
is “heavy”. Actually, these findings do not contradict.

The original hierarchical radiosity algorithm [53] stores all links in memory and reuses them in later iterations.
This strategy consumes lots of memory, but it leads to a smoother link distribution than experienced here — at least
at first sight. At second sight we see that the highly dynamic distribution resulting from our shooting algorithm is
only dynamic within each iteration, but not between iterations.

In Sect.6.4 we studied the total load from iteration to iteration. Here we studied the load from millisecond
to millisecond. Despite the highly dynamic appearance of the curves in Fig.9.3 there exists some long term
continuity. A good parallel distribution of links should exploit this continuity, simultaneously coping with the
problem of highly varying load. A first step towards that goal is described in Sect.9.3.2below, where a good initial
distribution and grouping of elements is described, that probably will reduce the need for rebalancing operations
at the beginning.
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Figure 9.4: Overview of the parallel algorithm for hierarchical shooting.

9.3 Parallel Algorithm

In this section we first give an overview of the parallel hierarchical shooting algorithm. Our basis is the mapping
of elements to 3D space and links to 6D space as described in Section5.1.3. We will deepen the aspects of
asynchronous processing, initial grouping, and element-reference-locality through link-ordering.

Every processor manages two databases, an element and a link database (cf. Fig.9.4). The union of all
databases comprises the whole set of links and elements that would be treated by a sequential algorithm. At
the beginning there exists only a single root cluster self link. Hence, at the beginning only one processor has a
non-empty local link database The union of all element databases is the set of initial elements at the beginning.

When the algorithm starts, aScheduler process is called, which searches for a link in the local link database.
If found one, the link is passed to aRefiner process. This process starts by searching the two associated elements
in the element database. To be more specific, the search is performed autonomously by the database itself. If
the queried elements are not stored locally, a query message is sent to another processor. Immediately after that
the Refiner gets active again. If at least one element was not found locally, the current link is passed back to the
Scheduler. There the link is put to a pool of suspended links.

If the Refiner was lucky and both elements were found locally, then the actual transport computation for the link
is performed. For visibility calculations a separate geometry structure is used that is replicated on all processors.
Afterwards the link is discarded and results for both elements (updates of radiance or new children) are passed to
the element database.

When elements were not local, at some time element copies will arrive from remote processors. The copies
are stored in a cache internally in the element database. The corresponding suspended link(s)2 are awakened
automatically. The results of a Refiner process, which operates on element copies, are communicated back to the
element’s home processor autonomously by the element database. Once there, the results are stored in the receiver
element.

The Refiner may create sublinks from a given link. These are passed to the scheduler which stores them in
the link database. The link database uses a directory to decide, whether the link is to be stored locally or not, and
possibly sends the link to another processor.

The databases itself perform load balancing. Data items and administrative messages are exchanged automati-
cally between the corresponding database instances. The databases get control at regular time intervals to process
incoming data or rebalancing requests.

9.3.1 Asynchronous Processing

Usually, in parallel hierarchical radiosity algorithms a global barrier synchronisation happens immediately before
the first root cluster self link is treated and immediately before the first push calculation at the root cluster is per-
formed. Our asynchronous program design eliminates explicit time consuming synchronisations. The computation
of an HRA iteration is allowed to be in a different state in different regions of the element hierarchy. For example
some elements may have pushed downwards already, while others are involved in link refinements, yet.

2 There may be several links waiting for the same element. The element database itself retains references to all requesters (links).
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Figure 9.5: A situation where some element containers have pushed downwards and some have pulled upwards
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Figure 9.6: States and transitions of elements (meaning of symbols as in Fig.9.5).

Fig.9.5shows a complete element hierarchy together with all links that are distributed across the local databases.
We see that there are no links anymore in the upper region of the hierarchy (these have been refined and discarded),
and that there are no links anymore internally in the right subtree (these have been finally established and dis-
carded). If an element is not referenced by any link and will not be referenced by any link in the current iteration,
then the element is allowed to immediately push downwards. It is not necessary to defer the push calculation until
all links are done. The triangular elements in Fig.9.5have pushed downwards. The white boxed elements pushed
downwards, too, but also pulled upwards already. An element may pull upwards, if all child elements have pulled
upwards. The circular elements received a push from their parent element but are not allowed to push downwards,
because they are referenced by existing links (remaining links> 0). The grey boxed elements also are not allowed
to push downwards, because they did not receive a push from their parent and potentially will be referenced by
links, that result from link refining. The last thing that happened with these elements is that they pulled upwards
to their parent in the previous HRA iteration.

We consider things that happen to elements (cf. Fig.9.6). At the beginning all elements are in the box-state,
i. e. they did not participate in any calucation of the current HRA iteration. Each element will receive a push from
its parent, which turns its state to a circle. Links may be created that refer to an element, which does not change
the state of the referenced elements. Links may be processed and discarded. At some time the last3 link that refers
to a given element is discarded. Then the element pushes downwards and mutates to a triangle. Later the element
will get pull data from the children. When all children have pulled upwards, then the element itself pulls upwards
and changes its state to a box.

In the parallel algorithm we always want to drive an element’s state as far as possible. Therefore each link
processing is followed by trials to push from the two associated elements downwards. For both elements aPushPull
process tries to push and pull through the hierarchy as long as the conditions of Fig.9.6are satisfied. This process is
called by the database on the element’s home processor. The PushPull process may propagate results in cooperation
with the database automatically across processor boundaries to further descendants/ancestors.

9.3.2 The Initial Element Grouping Strategy

The initial distribution of links and elements should be such that all processors get busy as quick as possible. Once
a processor has got a link to process, we should try to keep this processor busy as long as possible in order to
prevent load balancing operations at the beginning, when only few links are present at all.

An ideal initial mapping would assign a small bunch of links to each processor, which results in exactly the
same runtime on each processor when the links are refined recursively to the bottom. A fundamental problem is
that we cannot confidently estimate the computational complexity of a given link in advance. Even less we know
about the complexity of all the sublinks resulting from a given link’s recursive refinement. We start with a single
root cluster self link, which can be processed by a single processor only, meanwhile all other processors sitting

3 In Fig.9.6 “last” link processing and “last” pull call are meant as a local per element condition. When the condition gets true, of course
there might exist unprocessed links / non-pulled children in other regions of the hierarchy.
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Figure 9.8: Element hierarchy of the hall scene. Both pictures depict the same tree with a different distribution of
the leaves along the horizontal axis. The levels are marked in the middle.

idle. The root link must be refined into several sublinks before these can be distributed to other processors.
Fig.9.7 shows an imaginary situation on the left, where the root cluster self linkω = {o,o} is refined. Some

of the sublinks are shown in the figure. E. g. the sublinkβ runs between two elementsb,d, both being leaves in
the element hierarchy. Hence, the linkβ is likely not to be refined into sublinks, which means that the recursive
computational complexity of this link is supposably small. The sublinkγ = {a,g} runs between inner nodes. We
classify this link as a presumably more complex link, since we expect that it is refined into lots of sublinks.

On the right of Fig.9.7we see a balanced element hierarchy. Here we may assume that processing every link
α ,β ,γ including all recursive refinements is equally complex. Of course, this is not true, but it is a good guess
until we know the real complexity. From this we may conclude, that it would be advantageous to have a balanced
element hierarchy.

Unfortunately, the initial element hierarchy may represent a totally unbalanced tree. We consider the initial
element hierarchy of the hall scene, which has 17 levels. On the left of Fig.9.8we show a picture of the element
hierarchy, where each leaf — regardless on which level the leaf is situated — has got an equal space on the
horizontal axis (about 0.003 millimeter per leaf). On the right we drew the same tree, but now on each level every
subtree got an equal horizontal space. We see that the root cluster element has got two clusters and seventeen
surfaces as children. On the following levels the situation is qualitatively similar. The many primitives stored at
high levels lead to a very unbalanced tree.

The imbalance of the element hierarchy is mainly due to the fact that in our implementation cluster siblings are
disallowed to overlap each other. If we allowed overlaps, we could put each of the seventeen surfaces at the second
level into one of the two clusters at this level, leading to a node degree of two at all inner nodes of the hierarchy.

Our strategy now is as follows. We group nodes of the element hierarchy into super nodes, calledelement
containers. The same way that elements form a tree, also the element containers are organized in a tree. The
container tree will be better balanced than the original element tree. Also using element containers instead of
single elements, the administration overhead for remote element accesses will be reduced.

Fig.9.9 shows an element hierarchy with clusters and surfaces as nodes. The nodes are grouped into element
containers, shown as shaded regions. Every container has its ownminiroot. For example the miniroot of container
F is the white cluster in Fig.9.9. The resulting hierarchy of containers is shown in Fig.9.10.
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Figure 9.10: A tree of element containers.

In order to automatically groupn elements into containers, we pursue the following simple strategy. We start
with n element containers, each container containing a single element. Iteratively we select a container leaf and
merge it to its parent container. This reduces the number of containers by one. We terminate when the number of
containers is as small as desired. At the beginning we preferably select leaf containers with a single element in it.
Later we select leaf containers which contain the fewest elements. This results in a tree of containers, where the
degree of inner nodes is reduced, since primitives on high levels are merged to their parent. As a second effect the
number of elements per container tends to be larger at lower levels of the container tree. The upper level containers
contain only few elements. This feature is important for a quick distribution of link tasks at the beginning of an
iteration, as is described in more detail in Sect.9.3.3.

As an example thehall -scene has been processed into 346 element containers. This is an average of 46.315
initial elements per container. The above simple strategy formed the container tree shown in Fig.9.11. This tree
has 11 levels and was drawn the same way as the tree on the right of Fig.9.8. It is much better balanced than the
original element hierarchy.

The number of initial elements per container ranges from 1 to 140. Leaves of the container tree contained
between 71 and 140 elements. Hence, the leaves tend to be fatter than the inner nodes.

We can also see the balance of the container tree by looking at the number of containers per level, which is
shown in Fig.9.12. In the level-range[0,7] the curve looks exactly like an exponential function (2level). Below a
certain level the curve falls off.

The number of initial elements that are contained in containers on a given level of the container tree is shown
in Fig.9.13. We show this plot since it documents, that elements are rare on high levels, which leads to link tasks
of low complexity on higher levels.

9.3.3 The Processing Of Links

We define a non-interruptablelink task as to compute all links between the elements contained in two element
containers. The larger the number of elements in the two containers, the higher the complexity of this task.

Fig.9.14shows two element containers A and B. Children of elements of A or B that are not contained in A or
B are shown in grey. A first link (link no. 1) running between the two miniroots of A and B represents a single link
task T. The link is processed and found to need refinement. Four sublinks are created (no. 2,. . . , 5). One of them
(no. 4) runs between container B and another container, that is a child container of container A. Hence, link no. 4
is not part of this task but instead comprises a new task. All the other links (no. 2, 3, 5) are part of T. Link 2 and
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Figure 9.11: The element container tree for the hall scene.
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5 are found to be allowed to interact (established), link 3 is refined. All sublinks of no. 3 (no. 6, 7, 8) fall into T’s
responsibility. 6 is established, 7 and 8 are refined again. At the end of task T we have processed all links except
4, 10, 11. The latter each define a new link task.

Thanks to the above initial element grouping method, we are facing a more or less balanced element container
tree that is sparsely settled at the upper levels. Since the upper level containers are relatively light, the first link-
computation tasks have a low computational complexity. As mentioned at the beginning of Sect.9.3.2 this is
desirable in order to distribute work at the beginning of the algorithm as quick as possible.

We use the termlink container for the link task just described. A link container contains references to the two
miniroots of the element containers. The name linkcontainer suggests that several individual links are processed
when a single link container is treated.

In a parallel program the processing of a link task T involves requests for the two associated element containers.
Copies of the element containers are stored on arrival in a local cache. It is important for a good cache coherence
that the sub tasks that result during the processing of T (i. e. link tasks 4, 10, 11 in the above example) are processed
soon after the processing of T finished.

In an asynchronous parallel program it is not possible to use the standard program stack mechanisms to ensure
that e. g. task 4 is processed soon after T. This is because task 4 may involve remote requests that prevent an
immediate execution. Therefore we provide our own self made6D range stack (cf. Fig.9.15). The stack contains
6D ranges. When a link container is treated, its 6D range is pushed on top of the stack. When searching for a next
link container to execute, we first look for link containers whose range is contained in the range that lies on the top
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of the stack. If not found, we pop the uppermost range from the stack and recurse.
Another important effect of using the range stack is a saving of memory. The total number of link containers

to be stored at one time is much smaller than when we simply took a random link container for the next execution.

9.4 General Implementation Concepts

In this section we describe the basic implementation concepts that are more or less independent of the hierarchical
radiosity application. Later in Sect.9.5we discuss concepts specific to the HRA.

Since our implementation comprises more than 200 classes and about 100K code lines, we focus here on
concepts, not on individual classes. In order to explain the basic principles, at certain passages for clarity reasons
we will “lie” a bit, since an authentic presentation of our code would be too confusing.

As an example for such a “lie” consider a collection of instances of classB, which is storedk-d-tree-like inside
a classC. We denote this simply as “C aggregates multiple instances ofB”. Classes that are needed only for the
k-d-tree are omitted from the diagrams.

The diagrams are in UML (unified modelling language) notation [15]. Fig.9.16 shows an overview of all
classes discussed in this and the following section.

9.4.1 Identifiers

In a distributed memory environment it is essential not to refer to data items by pointers, since pointers are valid
only inside a single local memory module. We use system wide unique identifiers (classID , see Fig.9.17). An
identifier is represented by an integer (attributeID::id ). The constructorID::ID creates a new identifier based
on the last identifier, which is stored in the static attributeID::lastid . In order to get system-wide unique
identifiers, a processor with rankr creates only identifiers that sufficer = id modulop.

Every object that needs to be identified across processor boundaries is specialized from the classIdenti-
fiable . The corresponding identifier is contained in this class and can be queried usingIdentifiable:-
:getID . On construction of a newIdentifiable -instance a new uniqueID is constructed. A global hash map
IDMap, which maps identifiers to objects, is maintained duringIdentifiable -constructors and -destructor.
Every new object is inserted into the hash map. Every deletion of an object involves removing the object from the
hash map. From the outside, a simple query (IDMap::operator[] ) retrieves the corresponding object for a
given identifier. Even simpler, this query can be delegated toID::getObject , hence the user code for retrieving
an object from a given identifier is

ID i= 0815;
MyClass* obj= dynamic_cast<MyClass*>(i.getObject());

where the calling code should know, of which type the referenced object is. In this example,MyClass is assumed
to be a subclass ofIdentifiable .

9.4.2 Points And Ranges

As probably every object-oriented program that treats geometric data structures, also our program has a class
PointD<dim> , which represents points and vectors, and a classRangeD<dim> , which represents an axis-
aligned box (see Fig.9.18). A template parameter expresses the dimension. All classes in our program that are
dimension dependent are template classes.Axis is a type definition for a small integer type.

9.4.3 Addressing

In a distributed environment it is important to address remote objects efficiently such that they can be found quickly
on demand. It would be waste of time if we would have to scan all processors when searching for a specific object
with a given identifier.

In Chapter7 a spatial mapping was described, which can act as a directory of objects. This directory can be
used to efficiently search for remote objects. For this we need to address a remote object not only by its identifier
but also by its location in space. In our program we useRangeD<dim> to describe a set of locations which
contains the desired object’s location. The classReferenceD<dim> is used to bundle the identifier and the
range of an object (cf. Fig.9.25).
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Figure 9.16: Some of the basic implementation concepts.
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9.4.4 Messaging

On every processor there are different messaging contexts (see Figs.9.19, 9.20). Each context is identified by a
unique identifier. A message sent from processori to processork is handled at the destination inside the same
context in that it was sent at the source. In order to achieve this, the methodcreateOutMsg simply writes
the context identifier into the message. At the receiving processor a scheduler (classPollWorkLoop ) reads
the identifier and passes the message to the corresponding context. This concept makes message transfers very
comfortable.

The classContext provides a pure virtual methodhandleInMsg , which must be implemented by user
contexts. The scheduler calls this method, when it receives a messages. Outgoing messages are bundled to larger
bunches byPollWorkLoop in order to save startup time-overhead for small messages.

Fig.9.20shows anotherWorker class. An user application derives a class from this class and implements the
methoddoLocalWork . Inside this method the user application does a small portion of local work and perhaps
sends a few messages. It usually returns before all work has been done in order to give the scheduler the chance to
handle incoming messages. After thatdoLocalWork is called again.

In our HRA implementation for instance there exists a classIterationWorker (see Fig.9.16), which
is derived from bothContext andWorker . The methodIterationWorker::doLocalWork defines a
portion of local work as the execution of one link container (cf. Sect.9.3.3).

Fig.9.21 shows, how the line of control switches fromPollWorkLoop to Worker::doLocalWork ,
when local work is performed, toContext::createOutMsg , when a message is sent, and toContext:-
:handleInMsg , when a message is received. WhendoLocalWork returnsfalse , this signals the scheduler
to terminate the computation. For distributed termination detection we use a ring-like token send technique as
described in [50].

9.4.5 Containers

A ContainerD<dim> represents a collection of objects (see Fig.9.22). We use a container to coarsen the
granularity of remote data accesses. E. g. when we need to access a remote element during the refinement of a link
in the HRA, then we request not only a single element but a container of elements (anElementContainer , see
Fig.9.26) and then try to use all contained elements on the requesting processor before we report the results back
to the source.

A ContainerD<dim> has got a range in space, which can be queried using the methodgetRange , and a
weight, which is available bygetWeight and which represents something like the number or the size of objects
contained in the container. The identifiers of objects contained in the container is available bygetContained-
IDs .

A container is either anoriginal or a copy. Copies may be created from an original using the methodcre-
ateCopy . A copy is a container that has been requested from remote (e. g. theElementContainer in the
above example). After a copy has been used on a remote processor, changes inside the copy are reported back to its
home processor, where the original container lives. For this purpose we have provided the methodsbackReport ,
which is called on the copy and writes data to a message buffer, andreceiveBackReport , which is called on
the original when the message is received.

A Container keeps in mind, how many copies are whirring around (attributecount , see Fig.9.23). This is
important, since an algorithm’s progress may depend on the fact that all possibly existing copies have reported
back to their original.
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9.4.6 Database Of Containers

Containers are distributed across processors, and copies of containers may be created and propagated on de-
mand. The classDistrDatabaseD<dim> (see Fig.9.24) comprises all intelligence that is needed to find
remote containers and to rebalance the containers dynamically according to the rebalancer of Chapter7. Par-
titionD<dim> contains the current assignment of regions to processors and acts as a directory, which tells the
processor index for a given location in space.

The containers are stored in ak-d-tree in classContainerPoolD<dim> . We have two instances of this class,
one containing the original containers and one containing the copies, which are also labeledcached containers.

A user application requests remote data by calling the methodDistrDatabaseD<dim>::layIn . The
arguments of this method specify the object’s identifier and the range, where the object is located (cf. Sect.9.4.3).
The range may be any range including the objects extent. Supplying a range as small as possible leads to the
desirable effect that less processors are involved in the request. A call toDistrDatabaseD<dim>::layIn
returns immediately after sending a message to a remote processor. Later, when an answer message is processed by
DistrDatabaseD<dim>::handleInMsg , then the requesting part of the user program needs to be notified,
that the object is available. For this purpose, now a user-suppliedNotifiable is informed.

A cached container can be triggered by a user program to immediately report back to its original counterpart
by calling DistrDatabaseD<dim>::layOut . The methodDistrDatabaseD<dim>::clearCache
results in an explicit back-report of all cached containers. A third way of triggering back-reports is when the total
weight of all cached containers exceeds a predefined limit. Then some cached containers are layed out automat-
ically without user-intervention. We employ aleast recently used (LRU) strategy, which preferably keeps those
containers in the cache, which have recently been used. TheContainerD<dim> class’s attributetimeStamp
(see Fig.9.22) keeps the last date, when a container was used.

We already mentioned that all dynamic rebalancing is performed inside the classDistrDatabaseD<dim> .
A rebalancing operation can be initiated from the user program by callingtreatImbalanceIfAny . This
method detects a potential imbalance like in Sect.7.1.4, sends out messages, if necessary, and returns immediately.
From now on the rebalancing progresses without user intervention. All actions are handled automatically inside
handleInMsg , until the rebalancing is complete.

Interesting to note is the fact, that during rebalancing two “equal” containers could meet on the same processor
(see also [26]). For instance consider a situation where an original has lived before on processori and is now moved
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during rebalancing to processork. On processork we might already have a copy of that container. Now atk we
need to merge the copy and the original and store the resulting original. Let’s consider another example. Processor
i queries processork for a copy of an original container living on processork. Processork packs an answer message
to i containing the queried data. After that let us assume that (before the answer arrives) a rebalancing operation
moves exactly the requested container original fromk to i. A few milliseconds later the requested copy arrives,
which now has to be merged to the original.

One more problem arises when copies meet copies, which may happen when a user application queries the
same container twice. The two copies are merged, but the original cannot recognize this merger in its attribute
ContainerD<dim>::count . Hence, for copies we use thecount attribute to count the number of mergers.
When the copy finally reports back to the original, this number is evaluated in order to filter out the real number of
remaining copies.

Of course there exist methods inDistrDatabaseD<dim> to insert and remove containers (not shown in
Fig.9.24). Insertions and removals are performed using theAction-concept, which is described in the following
section.

9.4.7 Actions

An action is a small package of work that is executed on atarget. The target’s address (cf. Section9.4.3) is given as
the target object’s identifier and it’s range (classReferenceD<dim> , Fig.9.25). The package of work is given
in the methodActionD<dim>::doItLocally , which must be implemented by subclasses.

Actions are designed to be executed only on originals, not on copies. An action is issued on any processor
by calling the methodDistrDatabaseD<dim>::executeAction . Then the action hops from processor
to processor until the original was found. This hopping of course is efficiently guided by the information of the
target’s range. In a static environment usually a single hop should suffice. In a dynamic setting, the action may have
to run after objects, which are moved by an ongoing rebalancing operation. Action-hopping is performed inside
DistrDatabaseD<dim> automatically. When the target is reached, then the action’sdoItLocally -method
is called. We can think ofActionD<dim> together withPartitionD<dim> as implementing a redundant
nameserver as it was described in [106].

The action concept is a very powerful and useful concept in asynchronously communicating SPMD programs.
We have found during implementation that this general principle can help avoiding serious errors, which show up
non-deterministically and are hard to debug. It would have been a great relief in our previous projects [36, 26], if
we had invented this concept before.

9.5 Specific Concepts For Asynchronous Parallel Hierarchical Shooting

In this section we discuss concepts of our implementation that have shown to be useful in an asynchronous SPMD
program for hierarchical radiosity.

9.5.1 Elements

Fig.9.16 shows on the left the classElement and its two descendantsCluster andPrimObject . These
classes contain the coefficients needed to represent a part of the radiance and importance functions on a limited
support. ACluster additionally contains information about the cluster’s extent, the visibility of the cluster with
respect to its siblings, and the addresses (classReferenceD<dim> ) of the parent cluster and of the children. A
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Figure 9.26: The element container class.

PrimObject additionally contains the address of the parent cluster and the boundary data, i. e. the geometry in
SurfaceGeometry , the reflection properties inMaterial and the emissive behaviour inEmission .

Element is derived fromIdentifiable , thus it knows about its identifier and its range. The particular
element-ranges are used to construct the whole range of a container of elements, anElementContainer .

9.5.2 ElementContainer

An ElementContainer is a collection of instances of clusters or primitives, that are aggregated asEl-
ement s (see Fig.9.26). As a subclass ofContainerD<3> an element container implements the abstract
methods ofContainerD<3> . We store allElementContainer -instances in an instance of classDistr-
DatabaseD<3> . There may be local and cached element containers, as described elsewhere (Sect.9.4.6).

During the pull operation (see Sect.2.2.6), we need to note in an element container, how many children have
pulled upwards to a container. If the attributeremainingChildren gets zero, then the container received
all pulls and now itself may pull to the parent container.remainingChildren is initialized during the push
operation tonumChildren , which stores the number of child containers below an element container.

The attributeremainingLinks is used to count the number of unfinished existing link containers. As long
as this number is greater than zero, no push operation downwards to the children is allowed (cf. Sect.9.3.1). We
need to store this number in an element container, because the existing link containers may be unknown locally,
since they are distributed among remote processors.

Consider a link container L between two element containers A and B (Fig.9.27). After processing of L the
attributeremainingLinks is decreased by 1 in both A and B. For every new link container (here M), that re-
sulted from the processing of L, theremainingLinks -attribute of the corresponding element containers (here
B and C) should be increased by 1. The problem in a distributed environment is, that the processor that processes
L has access only to L, and to (maybe cached versions of) A and B, but not to container C. We work around that
problem by storing a proxy value in container A, that will be propagated to C “as soon as necessary”. We need a
proxy for each child container (one for D and one for C). The attributeremainingLinksForChildren con-
tains these proxies, while the aggregationchildrenWithRemainingLinks contains the identifiers of those
children with a non-zero proxy-value. The phrase “as soon as necessary” can be resolved as “when pushing from
A to C”. During the push operation the parent’s proxy value is added to the child’sremainingLinks -attribute.
After all let us assume that A is cached locally. We have to induce a back-report of A to its home processor, where
the modifiedremainingLinks -attribute is merged to the original element container. The original of A is not al-
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Figure 9.27: Explanation of the attributesElementContainer::remainingLinks andElementCon-
tainer::remainingLinksForChildren .

lowed to push downwards, until all existing copies of A (counted inContainerD<3>::count , see Sect.9.4.5)
have reported back. So, when anElementContainer receives a back-report, then it always tries to issue a push
operation on itself, since this back-report could have been the last missing back-report to this container.

9.5.3 LinkContainer

The classLinkContainer (Fig.9.28) is a very simple class, which is derived fromContainerD<6> . As a
subclass a link container implements the abstract methods ofContainerD<6> . We store allLinkContainer -
instances in an instance of classDistrDatabaseD<6> . There may be only local, but no cached link containers.

A link container aggregates twoReferenceD<3> instances as “pointers” to the two miniroots of the two
associated element containers. Processing a link container involves the refinement of several links between two
element containers as described above in Sect.9.3.3. The decision, which link container is processed next is aided
by a 6D range stack as explained in Sect.9.3.3.

9.5.4 Push- And PullElemActions

Fig.9.29shows two classes derived fromActionD<3> . These actions are used to perform the push and pull op-
erations of the hierarchical radiosity algorithm. Both, a push and a pull operation have atarget , which specifies
a ReferenceD<3> of an element. For aPushElemAction the attributetarget describes the miniroot of a
child container. For aPullElemAction this attribute describes any element of the parent container.

Since a push or pull operation may take place across processor boundaries, both actions carry the data of the
source of the operation. For a push the action knows about the parent’s data in the attributePushElemAction:-
:parentData , for a pull the attributePullElemAction::childData contains the child container’s data.
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A push action additionally containsremainingLinksChange , a value that acts as a proxy for a corresponding
child value, as it was described in Sect.9.5.2.

Push actions are issued during the HRA run everytime when a link container was processed. A push action’s
doItLocally -method is executed on the original element container and checks, whether it is allowed to push
downwards (allowed, ifremainingLinks of the target equals zero, and if there are no existing copies of the
target).

Pull actions are issued, when a push action reaches a leaf element container. At inner nodes of the container
hierarchy pulling upwards is allowed, if the attributeElementContainer::remainingChildren gets zero
(cf. Sect.9.5.2). If a pull action reaches the root element container, then a new root link container is created and
processed.

9.6 Runtime Results

In this section we present some time measuring results of our program. The test platforms were a Cray T3E and
a network of workstations. The application and the load balancing procedure are implemented in C++ in SPMD
style using MPI.

The load balancer implemented inDistrDatabaseD<dim> needs to know the weight of each individual
object. The weight should be chosen such that both memory usage and computation time is distributed evenly.
Estimating the computation time of the task associated with a given link is difficult. Also the complexity of push
and pull operations that are associated with the elements may vary from element to element. As a simple heuristic
we assume that the memory size of an object is proportional to the complexity of the associated computations.
This simple assumption leads to satisfying results, as is shown below.

In this section we will present plots that were generated over time during the run of our program. These plots
are meant to show, how the rebalancing affects the behaviour of the program. They give hints on the key problems
(namelyBalance andOverhead ) that have to be solved by anyone who re-implements our methods. The runtimes
were measured using the MPI-library’s wall clock timer functions.
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ActionD

<Axis dim>

-target:ReferenceD

+doItLocally():void

Inherits from ActionD<3>

PushElemAction

-parentData:MessageIn

-remainingLinksChange:int

+doItLocally():void

PullElemAction

-childData:MessageIn

+doItLocally():void

Figure 9.29: The classes for push and pull.

Processor Type DEC Alpha EV5-21164
Clock Rate 450 MHz

Memory 128 MB
Instructions (peak) 1800 MIPS

Floating Point (peak) 900 MFLOPS
Transfer rate to network 6× 500 MB/s

Network topology 3D torus

Table 9.30: Data sheet of a node of Cray T3E.

9.6.1 Environment

The Cray T3E is a massively parallel supercomputer (see factsheet in Table9.30). The nodes are connected by a 3D
torus. Basically every node consists of a memory module, a CPU, and a network router. The latter are responsible
for message routing, hence, despite of the incomplete network topology the CPUs are not involved in any routing.
The maximum number of processors available for this work was 128.

As an example we consider the calculation of three iterations for the hall scene.

9.6.2 Balance

Fig.9.31shows the size of the element database on a 32 processor run. As can be seen, the elements are distributed
unevenly at the beginning4. Shortly after start the 32 curves approach each other meaning a fairly balanced element
distribution. The curves do not match exactly because we performed the rebalancing not on the actual elements
but on an approximate load representation.

After an initial growth phase, the element database does not change notably (which has been seen already in
Sect.9.2.1). Hence there is only low need to improve the distribution of elements. The element database sizes
remain nearly constant until the end of the program.

In Fig.9.32we see a plot that expresses, when rebalancing operations have been performed during the run. The
plot’s function value is 1 during rebalancing and zero otherwise. Only six short rebalancing operations were needed
to keep the element database balanced. The effect of rebalancing can be seen at the small “steps” in Fig.9.31, when
elements were moved between processors.

A similar plot is shown in Fig.9.33for the link database. Here the situation is very different. We had a total
of 349 rebalancing operations, and almost always a new rebalancing operation was started immediately after a
previous operation finished. The “holes” around 410 seconds and 1805 seconds mark the end of an iteration,
where no links are present. Instead during these time intervals pushpull calculations have been performed, which
are executed independent of any links.

We know from Sect.9.2 that the number of links in the shooting HRA is changing very dynamically. Our load
balancer did the best efforts to distribute the link containers evenly. Fig.9.34shows the number of link containers
on 32 processors. The number is changing rapidly and the rebalancer does not reach a really balanced situation
during the first iteration (25–410 seconds). In the second (410–1805 seconds) and third (1805–3265 second)
iteration the situation is better, but not perfectly balanced.

4 The first 25 seconds in the plots have been consumed during I/O and some preprocessing for time measurements. We have focused in this
thesis on the execution of the HRA-iteration’s calculations and did not try optimizations on the preprocessing. Hence this time prefix is ignored
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Figure 9.31: Element database size over runtime of the program on 32 processors.
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Figure 9.32: Rebalancing operations of the element database.
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Figure 9.33: Rebalancing operations of the link database.
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Figure 9.34: Link container number over runtime of the program.

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000 3500

nu
m

be
r 

of
 p

ro
ce

ss
ab

le
 li

nk
 c

on
ta

in
er

s

�

wallclock time

Figure 9.35: Number of processable link containers over runtime of the program.
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Figure 9.36: Cumulative busy time over runtime of the program.

The imbalance of the link database is not a severe problem. During the parallel computation it is important that
at any time every processor has at least one link container locally stored that isprocessable. A processable link con-
tainer is a link container whose two associated element containers are accessible locally or in the cache. Fig.9.35
shows the number of processable link containers per processor. Except in the first iteration almost everytime the
32 curves are greater than zero, meaning that all processors are busy.

We measured explicitly the busy time of our program on each processor. Fig.9.36shows the cumulative busy
time on each processor. The uppermost curve is the ideal busy time (slope 1). The 32 busy-time curves below are
very close to the ideal curve. Hence, our rebalancer seems to be able to keep all processor relatively busy. The
curves have narrow regions with a flat slope at the end of each HRA iteration. This is nearly unavoidable, since
at these points a kind of global synchronisation5 happens, where all processors wait for the root cluster link to be
processed. The average busy time per processor is 3119 seconds of a possible 3265 seconds, i. e. the processors
are busy during 96 percent of wallclock time.

9.6.3 Overhead

Of course, keeping all processors busy is only half of the goal. The processors should be doing useful computations
most of the time. Fig.9.37 shows the time per processor spent on useful computations. Again the uppermost
curve is the ideal time (slope 1). The difference between the 32 curves of Fig.9.37and the busy-time curves of
Fig.9.36expresses the overhead due to communication and parallel book-keeping. At the end an average of 2720
seconds have been spent on useful computations, i. e. about 87 percent of the busy time has been spent on “useful”
communication.

We analyzed the behaviour of the element cache. The cache size limit was set to 4MB. At the end of each
iteration the cache was flushed in order to propagate element data back to the home processors. Fig.9.38shows
the element cache size for each processor. The cache limit was reached by many processors.

The final averageelement cache hit ratio was 88 percent, i. e. 88 percent of all elements searched in the local
database or in cache have been found immediately. The hit ratio of 88 percent shows that either many accessed
elements are locally stored or that the elements in the cache are reused frequently. Since there are no arrangements
in our parallel algorithm that ensures that the elements needed during a link processing are local, we may assume
that the latter is true. Fig.9.39shows, that the total cumulative hit ratio increases rapidly at the beginning of the
run and remains high until finish. Around 410 and 1805 seconds, i. e. at the beginning of a new iteration when
the caches just have been flushed, there are only shallow dales in the curves of Fig.9.39, meaning that the cache is
filled quickly again with the most used elements.

in the analysis of runtimes.
5 The processors are not explicitly synchronized as explained in Sect.9.3.
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Figure 9.37: Cumulative “useful” time over runtime of the program.
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Figure 9.38: Element cache size over runtime of the program.
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Figure 9.39: Cumulative element cache hit ratio over runtime of the program.

There is another interesting hit ratio to be considered. A link container can be processed immediately, when
both associated element containers are accessible. The final portion of link containers that were processable im-
mediately was 79 percent.

9.6.4 Speedup

Finally, we evaluated the runtime of the three HRA iterations on different processor numbers. Fig.9.40shows the
speedup obtained on the Cray T3E. Because of job runtime limitations on the parallel computer we could not run
the program on a single processor. Instead — as often seen in literature — we estimated the runtime on a single
processor based on a three processor run, assuming that the speedup is 3 on three processors. As a result on 64
processors we were 53 times faster than on a single processor. The curve is fairly linear for up to 64 processors.
For larger processor numbers the curve increases only slowly. For 128 processors the speedup is 61.

In Sect.5.1.1.1we discussed existing implementations of the HRA on distributed memory architectures. For
some of these implementations ([16, 94, 13, 11]) speedups have been reported for tests on some massively parallel
super computer. We are going to compare those results with Fig.9.40.

Actually, one cannot immediately compare the speedups of the above implementations. The reasons are quite
evident. First the size of test scenes differs and also the character of the scenes. Second, some approaches employed
clustering, some not. Some do shooting, some gathering. Some used flat polygons, some allowed curved surfaces.
Also the computer’s computation and network performance is very different. We should remember these caveats
when looking at Fig.9.41, where we have plotted all speedup curves in a single diagram. We see that our approach
seems at least competitive.

Let us consider as a second example the simple hall scene. The reduced scene complexity leads to smaller
total runtimes (7.5 minutes on 32 processor for the simple hall scene, 55 minutes for the hall scene). The ratio of
computation time to communication overhead worsens for smaller scenes. This can be seen in the speedup diagram
9.42. The shape of the curve is similar to Fig.9.40, but not the scale. This is a well known and nearly unavoidable
effect for communication intensive applications.

Besides the Cray T3E we have tested our program on eight identical Linux PCs (Intel Celeron 400 MHz, 128
MB, 100MBit ethernet). Since we use MPI for communication the same program could be used without severe
portability problems.

The simple hall scene was observed during the first three iterations. Fig.9.43shows the almost perfectly linear
speedup. The overhead due to communication in the PC network is larger than on the supercomputer. Hence, the
speedup is only 6.3 on eight processors.

As above we are going to compare the speedup with previously published speedups on a network of work-
stations ([74, 35, 31]). Please remember the warnings above when considering Fig.9.44, showing the scalability
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Figure 9.40: Speedup on a Cray T3E for the hall scene compared to ideal (dotted) speedup.

of all these approaches in a single diagram. The super linear speedup of Meneveaux/Bouatouch [74] is due to
insufficient memory on a single processor, which leads to more frequent disk accesses, which in turn leads to a
high number of disk cache misses. Fellner et. al. [31] and Funkhouser [35] follow a master-slave approach. Their
publications document a speedup based on the number of slaves. In order to make those results comparable to our
SPMD approach, on 2 processors (master plus slave) we defined the speedup as 1.

In academic research the speedup of a parallel program mostly is measured as we have done it here:

Speedup=
T1

Tp
.

The timesTi are measured for a fixed problem size on different numbers of processorsi. In virtually every scientific
computing algorithm there is a real positive fraction of serial, non-parallelizable works∈ [0,1]. Amdahl’s Law of
1967 [5] says that then the speedup obtainable from even an infinite parallel processors is only1

s. It seems, that for
the hall scene the speedup is limited to about 60, meaning that for this applications supposably is abouts≈ 1

60.
Amdahl’s argument is a main reason for early skepticism about the usefulness of massive parallelism.

The above way of measuring speedup is not very useful for practitioners. Gustafson [51] states in 1988,
that Amdahl’s arguments contain the implicit assumption that 1− s (i. e. the parallelizable fraction of work) is
independent of the number of processors, which isvirtually never the case. One does not take a fixed-sized
problem and run it on various numbers of processors; in practice,the problem size scales with the number of
processors. As a first approximation, Gustafson found, that usually it is theparallel or vector part of a program
that scales with the problem size.

Regarding this, the objectionable fact that the speedup curve gets flat forp> 64, appears less awkward than
at first sight. In practice, for a relatively simple task as the simple hall scene, usually we would use only few
processors. Complex tasks instead may get access to larger systems, and these tasks benefit most from parallelism.
Consider the hall scene, which shows a good speedup of 53 on 64 processors. If we would have another, equally
complex scene, that must be calculated simultaneously, we could assign another 64-processor-partition to this
scene. The resulting overall speedup for the calculation of both scenes on 128 processors will be 2×53 = 106.
The second scene could for example come naturally from anincremental radiosity problem, where two successive
frames of a changing scene geometry are to be calculated.
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Figure 9.41: Speedup of different HRA-MPP implementations. See caveats in the text.
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Figure 9.42: Speedup on a Cray T3E for the simple hall scene compared to ideal (dotted) speedup.
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Figure 9.43: Speedup on a Linux PC network for the simple hall scene compared to ideal (dotted) speedup.
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Figure 9.44: Speedup of different HRA-NOW implementations. See caveats in the text.
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Chapter 10

Conclusions

This dissertation has focused on two topics: spatial partitioning and parallel global illumination. In this chapter
we summarize the results and point out our original contributions. Finally we discuss a few directions of future
research.

10.1 Summary

Currently known global illumination algorithms can be classified into two major classes: particle-based and
element-based. Both approaches are very time and space consuming. Hence, parallel strategies have been de-
vised by several researchers in the past. Little work has been done on parallelizing the sequentially most efficient
hierarchical finite element algorithms. Little to none has happened on parallelizing hybrid approaches.

The hierarchical finite element algorithms have been experimentally shown in this thesis to be very dynamic
in nature, very communication demanding, and very prone to congestion. Dynamic load balancing using a spa-
tial partitioner is the best compromise among three representative load balancers, when comparing the combined
effect of load imbalance, communication imbalance, and congestion. A reference implementation of hierarchical
radiosity using spatial partitioning on a Cray T3E proves the usefulness and scalability of this strategy.

Spatial partitioning has been used earlier by researchers in many domains. It is a well established, robust, and
simple strategy of load balancing. Mostly spatial partitioning is used for static load balancing only once at the
beginning of a parallel program’s run. Nevertheless it can be used to dynamically adapt a partition over runtime.
Based on the widely accepted LogP cost model now it has been shown, that dynamic spatial partitioning can be
implemented with a worst case overhead that is related to the number of dynamic load updates. The overhead
is small in theory and also in practice, as has been shown on a simple synthetic application managing objects in
space.

10.2 Original Contributions

The research done in the context of this thesis has led to the following original results:

• A thorough experimental analysis of the dynamics of load and the structure of communication of the hi-
erarchical radiosity algorithm (Chapter6). Using graph partitioning for this analysis is a new, originally
contributed examination technique. New and useful measures have been defined for the continuity of load
and the congestion.

• The finding that remote accesses for visibility calculations in hierarchical radiosity potentially could foil any
success in parallel hierarchical element implementations (Sect.6.3, 6.5).

• The observation that load changes very dynamically during a single iteration of shooting hierarchical radios-
ity (Sect.9.2.2), but shows relatively high continuity from iteration to iteration (Sect.6.4).

• The discovery that high quality, expensive graph partitioners do not reduce the communication of hierar-
chical radiosity essentially better than simple spatial partitioning (Sect.6.5, 6.6). Spatial partitioning even
seems preferable, because it is fast, and it largely reduces congestion.
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• A short experimental comparison of the partitionability of standard finite element problems and hierarchical
radiosity, showing that the former are much easier to partition than the latter (Sect.6.7).

• The definition of a dynamic spatial load balancer (Sect.7.1.3, 7.1.5) with a distributed imbalance detector
(Sect.7.1.4).

• A proof that this spatial load balancer has a small worst case amortized time complexity (Sect.7.2) in the
LogP cost model.

• A new classification scheme of the load dynamics of spatially mappable applications as “constant”, “grow-
ing”, “moderate”, and “heavy” based on the minimum/maximum and median/average load density curves
over time (Sect.8.1).

• A thorough experimental analysis of the key influencing parameters (task load, max. allowed imbalance,
object number, load pattern, dimension) on thereal world behaviour of the dynamic spatial load balancer on
a simple, spatially mapped application (Sect.8.3–8.8). The results show good scalability for near-practice
parameters, making this load balancer usable for other scientific computing domains.

• The characterization of the link creation procedure of the hierarchical shooting algorithm as “heavy” (Sect.
9.2.2) and that of the elements as something between “constant” and “growing” (Sect.9.2.1).

• A formulation of hierarchical shooting algorithms for global illumination that abstracts from the representa-
tion of light at the elements (Sect.2.2.5, 2.2.6). This formulation could be useful for a generic description of
hybrid algorithms, where light may be represented at the source and at the receiver of an interaction either
by particles or by elements.

• A mapping of hierarchical finite element methods to 3D and 6D space (Sect.5.1.3) putting out a new locality
property that greatly reduces the chance of congestion in a parallel implementation. Also this mapping
is jointly applicable with a particle based algorithm, making a parallelization of hybrid methods possible
(Sect.5.3).

• Showing, how global barrier synchronizations in a parallel implementation of hierarchical radiosity can
be avoided, by allowing the computation to proceed differently in different areas of the element hierarchy
(Sect.9.3.1).

• Introducing grouping of elements and links to achieve a coarser task granularity (Sect.9.3.2, 9.3.3).

• A parallel implementation of hierarchical shooting radiosity with dynamic spatial partitioning that proves
well scalable on a workstation network and on a massively parallel supercomputer (Sect.9.6).

• An explanation of the object-oriented design of that implementation, showing key concepts that make spa-
tial partitioning in general and spatially partitioned hierarchical shooting specifically manageable for the
programmer (Sect.9.4, 9.5).

10.3 Directions For Future Research

Requirements on the quality of computer generated images are growing since their invention. Modelling surfaces
as diffusely reflecting is sufficient for many architectural and outdoor scenes. Nevertheless there are a lot of
applications that need higher degrees of realism. Using directional reflection in a finite element algorithm has been
shown to be manageable [20, 89]. It is an interesting question, how these directional approaches affect the parallel
efficiency of spatial mapping strategies. Supposeably there will be no dramatic influence, because of our specific
mapping of links to 6-dimensional space. This mapping can be used also for directional reflection. Thus, locality
issues do not seem to be affected.

Higher order bases instead of the Haar basis may be used in finite element algorithms. Commonly used bases
have bounded support and can be used immediately in our framework. Actually the parallel performance is likely
to increase when using such bases, because the complexity per link task increases due to the higher order of basis
functions. Communication is not affected, hence the ratio of computation to communication gets better.

As mentioned in the text, parallelizing hybrid particle / finite element approaches is an interesting and promis-
ing direction of future research.

Throughout this thesis we assumed a non participating medium between the surfaces. It is possible to model
a scattering, absorpting, and emitting medium as small volumes that can be integrated in a unified hierarchical



10.3. DIRECTIONS FOR FUTURE RESEARCH 109

algorithm [92]. Since the overall structure of the unified algorithm is the same as for the basic hierarchical radiosity
algorithm, it should be a simple but interesting task to study the efficiency of spatial partitioning for that algorithm.

In this thesis our main focus was a massively parallel supercomputer with a homogeneous network of identical
processors. Considering heterogeneous networks could be interesting, when using a network of different work-
stations. Our dynamic spatial partitioning approach is capable of modeling different processor speeds. For each
node of the tree of Fig.7.3, page57, we could store a performance value that expresses the speed of all leaves
below the node. During rebalancing these values may be used to distribute load unevenly across the processors. If
a processor’s speed may vary over time, then we would have to broadcast current speeds during every rebalancing
operation — at only low extra cost. Since one of our basic principles was to abstract from the specific network
topology, it will be difficult to include modeling of different and/or varying bandwidth on the channels between
different processor pairs in our approach.
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Appendix A

Calculating Transports

In this chapter we show as an example, how a transport between two surfaces can be calculated. Other transports
(cluster to surface, surface to cluster or cluster to cluster) and the push and pull calculations are slightly different
but can be derived much the same way.

At the sending surface we have the following element representation of unshot irradiance in some basis{Ns
j} j :

Eunshot,s(~x′, ~ω ′) = ∑
j

eunshot,s
j Ns

j (~x
′, ~ω ′).

The coefficients are transported to the receiver, whose next iteration unshot irradiance is represented in the basis
{Nr

j } j by

Enext,r(~x, ~ω) = ∑
j

enext,r
j Nr

j (~x, ~ω).

The transport of irradiance is performed (see Sect.2.2.5) by the statementΛnext
r + = T Λunshot

s , which means the
following in our situation:

Enext,r(~x, ~ω~x→~x′)+ = cos(~ω~x→~x′ ,~n~x)v(~x,~x′)
∫

H2
fr(~x′, ~ω ′→ ~ω~x′→~x)dEunshot,s(~x′,d~ω ′).

We substitute the above element representations and get:

∑
j

enext,r
j Nr

j (~x, ~ω~x→~x′)

+ = cos(~ω~x→~x′ ,~n~x)v(~x,~x′)
∫

H2
fr(~x′, ~ω ′→ ~ω~x′→~x)∑

j
eunshot,s

j Ns
j (~x
′, ~ω ′)d~ω ′.

In order to incorporate the transported light into the representation at the receiver we project the whole equation
into the dual basis{Ñr

i }:〈
Ñr

i ,∑
j

enext,r
j Nr

j (~x, ~ω~x→~x′)

〉

+ =

〈
Ñr

i ,cos(~ω~x→~x′ ,~n~x)v(~x,~x′)
∫

H2
fr(~x′, ~ω ′→ ~ω~x′→~x)∑

j
eunshot,s

j Ns
j (~x
′, ~ω ′)d~ω ′

〉
.

Using linearity and duality, we arrive at the following update prescription:

enext,r
i + = ∑

j
eunshot,s

j Trs
i j

where

Trs
i j =

∫ ∫
support(r)

Ñr
i (~x, ~ω~x→~x′)cos(~ω~x→~x′ ,~n~x)v(~x,~x′)

∫
H2

fr(~x′, ~ω ′→ ~ω~x′→~x)N
s
j (~x
′, ~ω ′)d~ω ′

d~xd~ω~x→~x′
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denotes thetransport coefficient – a coupling coefficient between the basis functionsNr
i andNs

j . If the integration
is done numerically by sampling and if the samples for~ω~x→~x′ are generated naively over the complete hemisphere,
most of the samples will contribute zero, because the samples do not match the spatial support of the sender.
Instead a spatial parameterization over the sending surface would be advantageous:

Trs
i j =

∫
spatial−support(r)

∫
spatial−support(s)

Ñr
i (~x, ~ω~x→~x′)G(~x,~x′)

∫
H2

fr(~x′, ~ω ′→ ~ω~x′→~x)

Ns
j (~x
′, ~ω ′)d~ω ′d~xd~x′.



Appendix B

Notations And Abbreviations

B.1 General Abbreviations

HRA Hierarchical Radiosity Algorithm

SP Spatial Partitioner

NP Naive Partitioner

DM Distributed Memory

ORB Orthogonal Recursive Bisection

MPP massively parallel processing/processors

NOW network of workstations

SPMD single program multiple data

B.2 Mathematics And Rendering

M2 The set of 2D locations on a (set of) surface(s)

B3 The set of 3D locations inside a cluster box

~x a location on a surface

H2 the set of directions to the upper hemisphere

S2 the set of directions from the center to the surface of a sphere

~ω a direction vector. Depending on the context~ω is either 3D (as a vector in 3D space) or 2D (as a function
parameter defining a point on the sphere or hemi-sphere).

~ω~x→~x′ a direction from point~x to point~x′

µ a tuple of location and directionµ = (~x, ~ω).

hi a direction inH2 and a function argument for a pdf (see Sect.2.3.2)

p(h) a probability density function (pdf), also:p = number of processors

~n~x surface normal vector at a surface location~x

v(~x,~x′) visibility term (0 or 1, see Sect.2.1.1)

‖~x−~x′‖ euclidean distance between two spatial locations

G(~x,~x′) geometric term (see Sect.2.1.1)
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L(~x, ~ω) radiance as a function of point and direction

Le(~x, ~ω) emitted radiance

fr(~x, ~ωin→ ~ωout) bidirectional reflectance distribution function (brdf). Describes, how light is reflected off a sur-
face given a point on the surface and an incoming and outgoing direction.

B(~x) radiosity as a function of location

Be(~x) emitted radiosity

ρ(~x) diffuse reflectance. Describes, how light is reflected off a diffuse surface.

T linear transport operator (see Sect.2.1.3)

G propagation operator (see Sect.2.1.4)

R reflection operator (see Sect.2.1.4)

I radiant intensity (see Sect.2.1.4), also: an interval in multdimensional space (see Sect.2.2.4.2)

Lin incident radiance (see Sect.2.1.4)

E irradiance (see Sect.2.1.4), also: the number of objects in a subtree (see Sect.7.1.3), and: the set of edges of a
graph (see Sect.4.1.2)

E⊥ perpendicular irradiance (see Sect.2.1.4)

Φ radiant flux (see Sect.2.1.4)

∆Φ radiant flux of a particle (see Sect.2.3.4)

L 2(V) space of square integrable functions onV

〈 f ,g〉 inner product on a function space

Ni ,Nj basis function of a function space (see Sect.2.2.1)

Ñi , Ñj dual of a basis function (see Sect.2.2.1)

δi j Kronecker’s delta,δi j ∈ {0,1} andδi j = 1 if and only if i = j.

φ
s
t (u) Haar scaling function (see Sect.2.2.2)

ψ
s
t (u) Haar detail function, wavelet (see Sect.2.2.2)

Limp(~x, ~ω) importance as a function of point and direction (see Sect.2.1.5)

Limp,e(~x, ~ω) emitted importance

I imp importance intensity (see Sect.2.1.5)

Limp,in incident importance (see Sect.2.1.5)

Eimp projected incident importance (see Sect.2.1.5)

E⊥,imp perpendicular incident importance (see Sect.2.1.5)

Λm representation of radiance on a given supportm (see Sect.2.2.5)

Λunshot
m representation of the unshot radiance on a given supportm (see Sect.2.2.5)

Λnext
m representation of the next iteration’s unshot radiance on a given supportm (see Sect.2.2.5)

s sending element (see Sect.2.2.5)

r receiving element (see Sect.2.2.5), also: root of tree clustering (see Sect.7.1.4)

c child element (see Sect.2.2.6)
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p number of processors, also:p(·) = probability density function

λ latency (see Sect.3.3)

L latency (see Sect.3.3), also: radiance function (see Sect.2.1.1)

o overhead for injecting a message into the network (see Sect.3.3)

g gap between consecutive messages measured in processor cycles (see Sect.3.3)

G a guest graph (see Sect.4.1.1). Also gap for long messages (see Sect.3.3)

G∗k graph of the *-scene in thek-th iteration (see Sect.6.3)

H∗k graph of the *-scene in thek-th iteration without visibility accesses (see Sect.6.5)

H a host graph (see Sect.4.1.1)

V set of vertices of a graph (see Sect.4.1.2)

Vi set of vertices of a portion of a graph (see Sect.4.1.2)

E set of edges of a graph (see Sect.4.1.2), also: irradiance (see Sect.2.1.4), and: the number of objects in a subtree
(see Sect.7.1.3)

v j a vertex of a graph (see Sect.4.1.2)

ej an undirected edge of a graph (see Sect.4.1.2)

Wi(v) the i-th weight of vertexv (see Sect.4.1.2)

W(e) the weight of edgee (see Sect.4.1.2)

π a partitioning of a graph (see Sect.4.1.2)

lb(π) load balance of a partitioning (see Sect.4.1.2)

cs(π) cut size of a partitioning (see Sect.4.1.2)

rcs(π) relative cut size of a partitioning (see Sect.6.3)

mvc(π) maximum per vertex remote connectivity of a partitioning (see Sect.6.5)

cu(π) channel usage of a partitioning (see Sect.6.6)

conn(Vj) connectivity of a subset of vertices (see Sect.6.2)

cb(π) connectivity balance of a partitioning (see Sect.6.2)

vd(v) vertex degree of vertexv (see Sect.6.3)

Mkl
σ

load continuity matrix (see Sect.6.4)

B.4 Locality Preserving Load Balancing

k dimension of ak-dimensional space (see Sect.7.1.2)

h the height of the clustering tree abovep processors, i. e.h = log2(p) (see Sect.7.1.2)

l = h
k (see Sect.7.1.2)

v a node in the tree clustering of Sect.7.1.3

vl left son ofv (see Sect.7.1.3)

vr right son ofv (see Sect.7.1.3)
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w a leaf in the tree clustering (see Sects.7.1.3,7.1.4)

r the root of the tree clustering (see Sect.7.1.4), also: receiving element (see Sect.2.2.5)

E,E(v) number of objects/tasks belowv (see Sect.7.1.3), also: set of edges of a graph (see Sect.4.1.2), and:
irradiance (see Sect.2.1.4)

E0(r) number of objects/tasks belowr at some timet0 when the tree clustering was balanced (see Sect.7.1.4)

d(v) length of the path fromv to the leaves in the tree clustering of Sect.7.1.3

B(v) balance value at nodev (see Sect.7.1.3)

β a user-specified bound onB(v) (0< β ≤ 1, see Sect.7.1.3)

M number of objects/tasks to be shifted betweenvl andvr (see Sect.7.1.3)

S memory size of an object/task in bytes (see Sect.7.2.1)

Cadm cost of an administrative message (see Sect.7.2.1)

Cobj(M) cost of a message containingM objects/tasks (see Sect.7.2.1)

U number of updates between two rebalancing operations (see Sect.7.2.2)

B.5 Implementation

Identifiable an object having anID (see Sect.9.4.1)

ID identifies anIdentifiable (see Sect.9.4.1)

PointD<dim> a point/vector in space (see Sect.9.4.2)

RangeD<dim> a axis aligned box in space (see Sect.9.4.2)

ReferenceD<dim> the address of a remote object (see Sect.9.4.3)

Context context of messages (see Sect.9.4.4)

Worker provides packages of work (see Sect.9.4.4)

ContainerD<dim> (see Sect.9.4.5)

DistrDatabaseD<dim> a collection of containers (see Sect.9.4.6)

ActionD<dim> is performed on local containers (see Sect.9.4.7)

Element represents light by contant basis functions (see Sect.9.5.1)

Cluster containsPrimObject s (see Sect.9.5.1)

PrimObject a primitive surface object (see Sect.9.5.1)

Material reflection characteristics of a primitive (see Sect.9.5.1)

Emission emission characteristics of a primitive (see Sect.9.5.1)

ElementContainer a collection of elements (see Sect.9.5.2)

LinkContainer a coupling of two element containers (see Sect.9.5.3)

PushElemAction (see Sect.9.5.4)

PullElemAction (see Sect.9.5.4)
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