
Using Root Cause Analysis
to Handle

Intrusion Detection Alarms

Dissertation

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

der Universiẗat Dortmund
am Fachbereich Informatik

von

Klaus Julisch

Dortmund

2003

Tag der m̈undlichen Pr̈ufung: 15. Juli 2003
Dekan: Prof. Dr. Bernhard Steffen
Gutachter: Prof. Dr. Joachim Biskup

Prof. Dr. Heiko Krumm

Abstract

Using Root Cause Analysis to Handle Intrusion Detection Alarms

Klaus Julisch
IBM Zurich Research Laboratory
Säumerstrasse 4
8803 R̈uschlikon, Switzerland
e-mail: kju@zurich.ibm.com

In response to attacks against enterprise networks, administrators are increas-
ingly deploying intrusion detection systems. These systems monitor hosts, net-
works, and other resources for signs of security violations. Unfortunately, the use
of intrusion detection has given rise to another difficult problem, namely the han-
dling of a generally large number of mostly false alarms. This dissertation presents
a novel paradigm for handling intrusion detection alarms more efficiently.

Central to this paradigm is the notion that each alarm occurs for a reason,
which is referred to as the alarm’sroot causes. This dissertation observes that
a few dozens of root causes generally account for over 90% of the alarms in an
alarm log. Moreover, these root causes are generally persistent, i.e. they keep
triggering alarms until someone removes them. Based on these observations, we
propose a new two-step paradigm for alarm handling: Step one identifies root
causes that account for large numbers of alarms, and step two removes these root
causes and thereby reduces the future alarm load. Alternatively, alarms originating
from benign root causes can be filtered out. To support the discovery of root
causes, we propose a novel data mining technique, calledalarm clustering.

To lay the foundation for alarm clustering, we show that many root causes
manifest themselves in alarm groups that have certain structural properties. We
formalize these structural properties and propose alarm clustering as a method for
extracting alarm groups that have these properties. Such alarm groups are gener-
ally indicative of root causes. We therefore present them to a human expert who
is responsible for identifying the underlying root causes. Once identified, the root
causes can be removed (or false positives can be filtered out) so as to reduce the

i

ii

future alarm load. We experimentally validate the proposed two-step alarm han-
dling paradigm with alarms from a variety of different operational environments.
These experiments show that alarm clustering makes the identification of root
causes very efficient. Moreover, the experiments demonstrate that by judiciously
responding to root causes one can reduce the future alarm load by 70%, on the
average.

Acknowledgments

This thesis work began under the guidance of Prof. Marc Dacier, who at the time,
was my manager at the IBM Zurich Research Laboratory. Prof. Dacier always
gave me the feeling that my research was important and exciting, and he pushed
me hard to get results early on. Moreover, I benefited greatly from his long expe-
rience in the field. For all that, I thank you, Marc.

As companies do not award academic titles, I had to register as a PhD student
at a university. When I presented my fledgling research project to Prof. Joachim
Biskup, he saw value in it, and agreed to supervise me. Prof. Biskup has a natural
talent for asking all the difficult questions, and while he pushed me hard to make
progress with these questions, he also showed considerable understanding for my
somewhat special situation as an external PhD student. He was always prompt in
answering my questions, and generously allocated time for discussions with me.
Thanks to that, I could finish my thesis work before my contract at IBM expired.
Thank you, Joachim, is the least I can say.

I also thank my colleagues at the IBM Zurich Research Laboratory, all of
whom have contributed to this thesis in one way or another. In particular, I thank
Andreas Wespi, my current manager, for giving me a lot a freedom to work on my
thesis. Dominique Alessandri and James Riordan have been wonderful friends and
a great help in administering the Linux server, on which I ran my experiments.
I am very grateful to Birgit Baum-Waidner for her excellent comments on an
earlier draft of this document. Finally, I thank Larry Oliver and Alex Wood of
IBM Managed Security Services Delivery (formerly Emergency Response Team).
They supported me with their expertise, and shared real-world data with me, so
that I could validate my thesis work.

Last but not least, I acknowledge the support from the European IST Project
MAFTIA (IST-1999-11583), which is partially funded by the European Commis-
sion and the Swiss Department for Education and Science.

iii

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Statement and Contributions 2

1.3 Overview . 3

1.4 Datasets Used in the Expriments 6

2 Related Work 11

2.1 On the Difficulty of Intrusion Detection 11

2.2 Root Cause Analysis . 14

2.3 Data Mining . 17

2.4 Alarm Correlation . 24

3 Using Data Mining for Root Cause Analysis 31

3.1 Root Causes and Root Cause Analysis 31

3.2 Conceptual Problem Description 34

3.3 Approximation of Alarm Groups 38

3.4 Testing the Alarm Cluster Hypothesis 44

3.5 Experience with Episode Rules 50

4 Alarm Clustering 53

4.1 Introduction to Cluster Analysis 53

4.2 A Framework for Alarm Clustering 64

4.3 Algorithm for Alarm Clustering 72

4.4 Discourse on Background Knowledge 81

v

vi CONTENTS

5 Cluster Validation 85

5.1 The Validation Dilemma . 85

5.2 Cluster Validation Background 86

5.3 Validation of Alarm Clusters . 93

6 Validation of Thesis Statement 99

6.1 An Illustrative Example . 99

6.2 Experience with Alarm Clustering 103

6.3 Alarm Load Reduction . 109

6.4 On the Risks of Filtering . 114

7 Summary and Outlook 117

7.1 Summary and Conclusions . 117

7.2 Future Work . 118

Bibliography 119

List of Figures

2.1 Fault propagation and alarm generation in networks. 16

2.2 A rough classification of data mining techniques. 19

2.3 Data mining process of building misuse detection systems. 23

2.4 Algorithm for deriving training data from historical alarms. 29

3.1 The genesis of root causes, or how root causes enter a system. . . 34

3.2 Entity relationship diagram of key concepts. 35

3.3 An attack tool being run against three targets. 52

4.1 TheK-means algorithm. 57

4.2 A sample dendrogram and a partition it encodes. 58

4.3 Network, alarm log, and hierarchies of the running example. . . . 67

4.4 Sample generalization hierarchies for time attributes. 71

4.5 Example of reducing CLIQUE to alarm clustering. 73

4.6 Pseudo-code for the classic AOI algorithm. 75

4.7 Pseudo-code for the modified AOI algorithm. 78

5.1 Example of valid clusters that have no intuitive interpretation. . . 87

5.2 A sample dataset, two cluster structures, and their sub-clusters. . . 96

6.1 Histogram showing the frequencies of different run-times. 106

6.2 Average run-times by alarm log size. 106

6.3 Average number of generalized alarms per IDS. 108

6.4 Histogram showing the frequency of different degrees of coverage. 109

6.5 Alarm load reduction for IDS 3. 111

vii

viii LIST OF FIGURES

6.6 Alarm load reduction for IDS 6. 111

6.7 Alarm load reduction for IDS 10. 112

6.8 Alarm load reduction for IDS 14. 112

6.9 Average alarm load reduction per IDS. 115

List of Tables

1.1 Illustration of alarms and generalized alarms. 5

1.2 Overview of IDSs used in experiments. 7

3.1 The alarm patterns induced by ten sample root causes. 41

3.2 Alarm logs that support the alarm cluster hypothesis (p=0.85). . . 48

4.1 Main characteristics of clustering methods. 62

4.1 Main characteristics of clustering methods(continued). 63

6.1 Generalized alarms of the thirteen largest alarm clusters. 101

ix

Chapter 1

Introduction

1.1 Motivation

Over the past 10 years, the number and severity of network-based computer at-
tacks have significantly increased [6]. As a consequence, classic computer se-
curity technologies such as authentication and cryptography have gained in im-
portance. Simultaneously, intrusion detection has emerged as a new and potent
approach to protect computer systems [14, 47]. In this approach, so-calledIn-
trusion Detection Systems (IDSs)are used to monitor computer systems for signs
of security violations. Having detected such signs, IDSs trigger alarms to report
them. These alarms are presented to a human operator who evaluates them and
initiates an adequate response. Examples of possible responses include law suits,
firewall reconfigurations, and the fixing of discovered vulnerabilities.

Evaluating intrusion detection alarms and conceiving an appropriate response
was found to be a challenging task. In fact, practitioners [29, 141] as well as re-
searchers [13, 22, 37, 111] have observed that IDSs can easily trigger thousands
of alarms per day, up to 99% of which arefalse positives(i.e. alarms that were
mistakenly triggered by benign events). This flood of mostly false alarms makes
it very difficult to identify the hiddentrue positives(i.e. those alarms that correctly
flag attacks). For example, the manual investigation of alarms has been found to
be labor-intensive and error-prone [29, 44, 141]. Tools to automate alarm inves-
tigation are being developed [44, 48, 199], but there is currently no silver-bullet
solution to this problem.

This thesis presents a new semi-automatic approach for handling intrusion de-
tection alarms more efficiently. Central to this approach is the notion of alarm
root causes. Intuitively, theroot causeof an alarm is the reason for which it oc-
curred. For example, consider a machine whose broken TCP/IP stack generates

1

2 CHAPTER 1. INTRODUCTION

fragmented IP traffic. This traffic will trigger “Fragmented IP” alarms on many
IDSs. Here, the broken TCP/IP stack is the root cause of the respective alarms.
This thesis observes that for any given IDS, the majority of alarms can be at-
tributed to one out of a small number of root causes. Moreover, many of these
root causes are persistent and do not disappear unless someone removes them.
It is therefore argued that intrusion detection alarms should be handled by iden-
tifying and removing the most predominant and persistent root causes. In that
way, the future alarm load is reduced, and the human operator is freed to focus on
the remaining alarms. Applied to the above example, this means to identify and
fix the broken TCP/IP stack, which also eliminates the associated “Fragmented
IP” alarms. To make this new alarm handling paradigm practical, we introduce
a new data mining technique that — when applied to alarm logs — supports the
discovery of root causes.

1.2 Thesis Statement and Contributions

This dissertation describes the work done to validate the following three-part the-
sis statement:

(1) A small number of root causes is generally responsible for the
bulk of alarms triggered by an IDS.(2) Root causes can be discovered
efficiently by performing data mining on alarm logs.(3) Knowing
the root causes of alarms, one can — in most cases — safely and
significantly reduce the future alarm load by removing them or by
filtering out the alarms that originate from benign root causes.

Part one of this thesis statement is a general observation about the nature of
intrusion detection alarms, namely that only a few root causes account for the bulk
of alarms. Part two states that root causes can be discoveredefficiently, and part
three says that knowledge of root causes is relevant because it enables countermea-
sures that areeffectivein reducing the future alarm load. For example, a possible
countermeasure is to fix root causes such as broken protocol stacks, compromised
machines, or configuration faults (which some IDSs confuse with attacks). Alter-
natively, one can filter out alarms that are known to result from benign (i.e. not
security relevant) root causes. Finally, reducing the future alarm load based on
one’s understanding of alarm root causes is claimed to besafe, meaning that it
incurs a small risk of discarding true positives.

Note that the thesis statement implies a new paradigm for alarm handling. Ac-
cording to this paradigm, data mining should be used to discover root causes that
account for large numbers of alarms. Subsequently, removing these root causes

1.3. OVERVIEW 3

or judiciously filtering out their associated alarms will safely and significantly re-
duce the number of alarms that are triggered in the future. The thesis statement
guarantees that this approach is efficient, effective, and safe.

The proof of the thesis statement is constructive and experimental. A substan-
tial fraction of this dissertation is concerned with deriving a data mining technique
that supports the discovery of root causes. Subsequently, this data mining tech-
nique is used in experiments with real-world intrusion detection alarms to validate
the thesis statement. As Section 1.4 will point out, we are not in possession of
representative data collections from all kinds of IDSs. Therefore the scope of our
experimental validation is restricted by the available data.

The main ideas underlying this dissertation have been published in several ar-
ticles [110, 111, 112, 113, 114] and two patents [42, 43]. The novel contributions
can be summarized as follows:

The rule that a few root causes generally account for the majority of alarms
is established.

We formalize the link between data mining and root cause discovery, in-
vestigate the suitability of existing data mining techniques for root cause
discovery, and develop a new, particularly suitable data mining technique.

We use the aforementioned data mining technique to show that root causes
can be discovered in an efficient manner by analyzing alarm logs.

In extensive experiments with real-world intrusion detection alarms, it is
shown that intrusion detection alarms can be handled safely and efficiently
by identifying and responding to their root causes.

This dissertation offers the first high-level characterization of intrusion de-
tection alarms and shows how it applies to the detection of attacks (cf.
Proposition 3.1 and Section 3.5.2).

To the field of data mining, we contribute a detailed case study for the suc-
cessful application of its techniques (including episode rules, tests of cluster
tendency, cluster analysis, and cluster validation).

1.3 Overview

Intrusion detection systems trigger alarms to report attacks. This dissertation mod-
els alarms as tuples over the Cartesian product dom(A1) x . . . x dom(An), where
{A1, . . . , An} is the set of alarm attributes and dom(Ai) is the domain (i.e. the
range of possible values) of attributeAi. Thealarm attributes(attributesfor short)
capture intrinsic alarm properties, such as the source IP address of an alarm, its

4 CHAPTER 1. INTRODUCTION

destination IP address, its alarm type (which encodes the observed attack), and its
time-stamp. Finally,a[Ai] denotes the value that attributeAi assumes in alarm
a. For example, Table 1.1(a) shows a sample alarm that reports a “Fragmented
IP” attack being launched on Nov. 1st at 11:33:17 from the source 10.173.2.3 : 80
against the target 10.7.121.9 : 12318. Moreover, ifa denotes the alarm of Table
1.1(a), thena[Time-stamp] = Nov. 1st, 11:33:17 holds.

At the core of this dissertation is a data mining technique calledalarm clus-
tering. The motivation for alarm clustering stems from the observation that the
alarms of a given root cause are generally “similar” in a sense defined below.
Alarm clustering reverses this implication and groups similar alarms together, as-
suming that these alarms also share the same root cause. For each alarm cluster
(i.e. for each group of similar alarms), a single generalized alarm is derived. In-
tuitively, a generalized alarm is a succinct and human-understandable pattern that
an alarm must match in order to belong to the respective cluster. In practice,
knowledge of generalized alarms vastly simplifies the discovery of root causes.
We therefore use alarm clustering to identify the root causes in real-world alarm
logs. In doing so, we empirically validate the thesis statement. The following
example is instrumental for a better understanding of alarm clustering.

Example 1 Let us reconsider the root cause of the broken TCP/IP stack, which
was first introduced in Section 1.1. This time, we assume that the broken stack
belongs to a popular Web server that is primarily used on workdays. Obviously,
the resulting “Fragmented IP” alarms have the same source IP address (namely
the IP address of the Web server, which we assume to be 10.173.2.3) and the same
source port (namely 80). The target of the alarms are non-privileged ports of
various Web clients. Furthermore, given that the Web server is mostly used on
workdays, one will observe that the bulk of alarms occurs on workdays. Finally,
note that “Fragmented IP” alarms are triggered each time that the Web server
responds to a client request. Given our assumption that the Web server is popular
and therefore heavily used, it follows that we are flooded by a large number of
“Fragmented IP” alarms.

The alarm clustering method developed in this dissertation groups the “Frag-
mented IP” alarms together and reports them by saying that there are many
alarms that are subsumed by the generalized alarm of “source 10.173.2.3 : 80
launching ’Fragmented IP’ attacks on workdays against non-privileged ports of
Web clients”. Clearly, a generalized alarm like this facilitates the identification of
root causes, even though complete automation is not achieved. �

More formally, generalized alarms — just like ordinary ones — are tuples that
indicate for each attribute the corresponding attribute value. Thus, the generalized
alarm of the above example actually looks as shown in Table 1.1(b). Note that

1.3. OVERVIEW 5

Table 1.1: Illustration of alarms and generalized alarms.
a) A sample alarm. b) A sample generalized alarm.

Attribute Value Attribute Value

Source IP 10.173.2.3 Source IP 10.173.2.3

Source port 80 Source port 80

Destination IP 10.7.121.9 Destination IP Web clients

Destination port 12318 Destination port Non-privileged

Alarm type Fragmented IP Alarm type Fragmented IP

Time-stamp Nov. 1st, 11:33:17 Time-stamp Workdays

different from ordinary alarms, generalized alarms can have generalized attribute
values. Ageneralized attribute valueis an identifier that represents a set of ele-
mentary values. For example, the generalized attribute value “Workdays” of Table
1.1(b) represents the set of elementary time-stamps that fall on workdays. Sim-
ilarly, the generalized attribute value “Non-privileged” represents the set{1025,
. . . , 65535} of non-privileged ports. Generalized attribute values like these are
not allowed in ordinary alarms.

There are two important observations to be made about the above example:
First, the broken TCP/IP stack causes alarms that aresimilar in the sense that
they are subsumed by the same generalized alarm. Second, the broken TCP/IP
stack causesmanyalarms to be triggered. In other words, the broken TCP/IP
stack is a root cause that manifests itself in alarge group of similar alarms. This
observation is central to the Chapters 3 and 4. More precisely, the remainder of
this dissertation (excluding the related work in Chapter 2, and the conclusion in
Chapter 7) is organized as follows:

Chapter 3 explains that data mining should ideally form alarm clusters whose
constituent alarms are guaranteed to have the same root cause. Unfortu-
nately, this goal is unattainable. Towards a weaker but feasible goal, we
generalize the example of the broken TCP/IP stack and show that there is
an important family of root causes that manifest themselves inlarge groups
of similar alarms. Hence, we postulate that a data mining technique that
identifies such large groups of similar alarms is likely to actually group
alarms that have the same root cause. Therefore, cluster analysis, which
per definition groups similar object, emerges as a promising data mining
technique for root cause analysis.

Chapter 4 surveys the field of cluster analysis and shows that none of the popular
clustering methods is really suitable for root cause analysis. This raises the
need for a new clustering method, which is subsequently derived by modify-

6 CHAPTER 1. INTRODUCTION

ing the method of attribute-oriented induction. In a nutshell, the new clus-
tering method seeks to identify alarm clusters that maximize intra-cluster
similarity, while having a user-defined minimum size. Similarity is mea-
sured via generalization hierarchies, which, for example, might state that
the IP address 10.173.2.3 is a “Web server”, is a “Server”, is a “Machine”,
etc. . Then, the alarms of an alarm cluster are all the more similar the closer
their attributes are related by way of these generalization hierarchies.

Chapter 5 attempts to objectively measure the quality of alarm clusters. Objec-
tive measures of cluster quality are desirable because they reduce the risk
of a human user misinterpreting and consenting to meaningless alarm clus-
ters. Cluster quality is studied in the field ofcluster validation. Chapter
5 reviews this field, discusses its rather substantial limitations, and shows
how the methods of cluster validation can nonetheless be used to increase
our confidence in the results of the alarm clustering method.

Chapter 6 uses the alarm clustering method of Chapter 4 in experiments with
real-world intrusion detection alarms. In doing so, we empirically validate
the thesis statement given in the previous section.

1.4 Datasets Used in the Expriments

A preliminary remark on intrusion detection terminology is in order: IDSs are
commonly classified into misuse detection systems and anomaly detection sys-
tems [14]. Misuse detection systems(a.k.a. signature-based systems) such as
STAT [102] use knowledge accumulated about attacks to detect instances of these
attacks.Anomaly detection systems(e.g. IDES [109]) use a reference model of
normal behavior and flag deviations from this model as anomalous and poten-
tially intrusive. Another dichotomy splits IDSs according to their audit sources.
Specifically,host-based IDSsanalyze host-bound audit sources such as operating
system audit trails, system logs, or application logs, whereasnetwork-based IDSs
analyze network packets that are captured from a network.

The experiments in this dissertation use alarms from network-based, commer-
cial misuse detection systems that were deployed in operational (i.e. “real-world”)
environments. We consider it a strength of our validation that it uses alarms from
real-world environments rather than from simulated or laboratory environments,
which can have significant limitations [144]. We are not in possession of data col-
lections from host-based or anomaly detection systems and therefore cannot offer
experiments with these IDS types.

Table 1.2 introduces the sixteen IDSs that we use in the experiments of this
dissertation. Our selection criteria was to offer a representative mix of IDSs from

1.4. DATASETS USED IN THE EXPRIMENTS 7

Table 1.2: Overview of IDSs used in experiments.

IDS Type Location Min Max Avg

1 A Intranet 7643 67593 39396

2 A Intranet 28585 1946200 270907

3 A DMZ 11545 777713 310672

4 A DMZ 21445 1302832 358735

5 A DMZ 2647 115585 22144

6 A Extranet 82328 719677 196079

7 A Internet 4006 43773 20178

8 A Internet 10762 266845 62289

9 A Internet 91861 257138 152904

10 B Intranet 18494 228619 90829

11 B Intranet 28768 977040 292294

12 B DMZ 2301 289040 61041

13 B DMZ 3078 201056 91260

14 B Internet 14781 1453892 174734

15 B Internet 248145 1279507 668154

16 B Internet 7563 634662 168299

different vendors in different operational environments. The sixteen IDSs are de-
ployed at eleven different Fortune 500 companies, and no two IDSs are deployed
at the same geographic site. All IDSs are configured and operated by profes-
sional IDS analysts. The “IDS” column contains a numerical identifier that we
use throughout this thesis to reference the IDSs. The “Type” column indicates the
IDS type, namely “A” or “B”, both of which are leading commercial IDSs. To
avoid unintended commercial implications, we do not reveal the product names or
vendors of “A” and “B”. For each IDS, we employ all alarms that were triggered
during the year 2001. The minimum, maximum, and average number of alarms
per month are listed for each IDS in the “Min”, “Max”, and “Avg” columns, re-
spectively. Finally, the “Location” column indicates where the IDSs are deployed:

Intranet: Denotes an IDS on an internal corporate network without Internet ac-
cess.

DMZ: Denotes an IDS on a perimeter network that is protected by a firewall, but
offers services to the Internet.

Extranet: Denotes an IDS on a network that is shared between multiple cooper-
ating companies, but is not accessible from the Internet.

Internet: Denotes an IDS that is deployed before the external firewall on a direct
link to the Internet.

8 CHAPTER 1. INTRODUCTION

Despite continuing standardization efforts [60], there is no widely used format
for intrusion detection alarms. In particular, the alarms of different IDSs do not
necessarily have the same alarm attributes. However, the alarms of virtually all
network-based IDSs contain the following key attributes, which are the only ones
that will be used in the experiments:

1. Thesource IP address(source IPfor short) which identifies the machine
that launced the attack.

2. Thesource portfrom which the attack originated.

3. Thedestination IP address(destination IPfor short) of the target machine.

4. Thedestination portat which the attack was targeted.

5. Thetime-stampindicating the date and time of the attack.

6. Thealarm type, which describes the nature of the attack. The alarm type
can be a mnemonic name such as “Fragmented IP” or a number that maps
to a name like this, or to a more verbose description of the attack.

7. Thediagnostic context(contextfor short), which stores the supposedly ma-
licious network packet. For example, the context frequently contains sup-
posedly malicious URLs, or command sequences that seem to constitute
FTP or Telnet exploits.

Attributes are commonly classified according to their type. Thetypeof an at-
tribute characterizes the structure of its domain. For example,numericalattributes
have the real numbersR as their domain. Attribute types play an important role
in data mining because they influence the applicability of data mining techniques.
Intrusion detection alarms contain attributes of many different types:

Categorical attributes: The domain of categorical attributes is discrete and un-
ordered. Examples of categorical attributes include IP addresses and port
numbers.

Numerical attributes: Examples of numerical attributes include counters (e.g.
for the number of SYN packets in a SYN flooding alarm), and size attributes
(e.g. for the packet size in “Large ICMP Traffic” alarms [30]).

Time attributes: All alarms are time-stamped. Note that time should not be
treated as a numerical attribute because this would mean to ignore its unique
semantics (including notions such as periodicity, workdays versus week-
ends, etc.).

Free-text attributes: Free-text attributes assume arbitrary and unforeseeable text
values. The context, for example, is a free-text attribute.

1.4. DATASETS USED IN THE EXPRIMENTS 9

Alarms are stored inalarm logs. The experiments in this dissertation are such
that they take an alarm log as input and return an analysis of this alarm log as
output. In other words, the alarm log is our basic unit of analysis. It is therefore
necessary to split the alarms of Table 1.2 into alarm logs. This can be done in
many different ways. We have chosen to split the alarms along IDS and month
boundaries, so that we obtain a total of(16 IDSs)× (12 months) = 192 different
alarm logs. A corollary from this splitting is that alarms from different IDSs or
from different months are never analyzed together because they do not fall into
the same alarm log. Two factors were decisive for this splitting: First, analyzing
alarm logs that span a prolonged time period such as a month allows us to discover
long-term alarm patterns, such as weekly alarm patterns. Second, analyzing alarm
logs that mix alarms from different IDSs seems pointless because the IDSs of
Table 1.2 are deployed in completely independent environments. Therefore, any
correlations between the alarms of these IDSs are mostly coincidental.

The notation and conventions used in this dissertation can be summarized as
follows:

We model alarms as tuples over then-dimensional attribute space
dom(A1) x . . . x dom(An), where dom(Ai) is the domain of attributeAi.
The value that attributeAi assumes in alarma is denoted bya[Ai].

The alarms in our experiments have the following attributes: The source IP
address, the source port, the destination IP address, the destination port, the
time-stamp, the alarm type, and the diagnostic context.

Our experiments are such that they take the alarms triggered by one IDS
during one month as input and return an analysis of these alarms as output.

This text uses the following typeface conventions: Italic small letters (e.g.
x1, y2, z3, . . .) denote atomic values such as numbers or IP addresses. Bold
small letters (e.g. a, â,b, . . .) denote tuples. Italic capital letters (e.g.
A1, Src−IP , L, C, . . .) stand for attribute names, sets, and partitions (i.e.
sets of sets).

In anticipation of Chapter 3, we remark that alarm logs will be modeled as
multi-sets (a.k.a. bags or collections). We use pointed brackets for multi-
sets (e.g.L1 = <a, a,b>, L2 = <b, c>) and re-define the set operators
so that they take multiple occurrences of the same element into account.
Hence, for example,|L1| = 3, |L2| = 2, L1 ∪ L2 =<a, a,b,b, c>, L1 *

L2,<a, a>⊆ L1, etc. .

10 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

This dissertation was motivated by the fact that today’s IDSs tend to trigger an
abundance of mostly false alarms. It is therefore natural to ask for the reasons of
this alarm flood. Section 2.1 addresses this question, and surveys research towards
“better” IDSs, which trigger less false positives. Section 2.2 introduces root cause
analysis and shows how it has been used in network management. Section 2.3 sur-
veys applications of data mining to intrusion detection. In particular, it describes
earlier work that used data mining to render alarm investigation more efficient.
Section 2.4 concludes this chapter with a discussion of alarm correlation.

2.1 On the Difficulty of Intrusion Detection

This section puts the thesis work into context. Specifically, Section 2.1.1 explains
why IDSs trigger so many mostly false alarms, and Section 2.1.2 summarizes
work into “better” IDSs, which trigger less false positives.

2.1.1 Origins of the Alarm Flood

This section only considers the false alarm problem for misuse detection systems.
For these systems, the abundance of alarms in general, and of false positives in
particular, can be attributed to three main factors:

Underspecified signatures:Underspecified signatures check conditions that are
necessary, but not sufficient for attacks. As a consequence, they also trig-
ger on benign events, which causes false positives. For example, instead of
complex regular expressions that can reliably detect many attacks, it is not

11

12 CHAPTER 2. RELATED WORK

uncommon to use simple string-matching signatures. There are four reasons
for this practice: First, harsh real-time requirements generally preclude the
use of precise signatures, which are more time-consuming to match against
the audit data [103, 176]. Second, because of their higher generality, it
is attractive to use underspecified signatures that also covervariationsof
attacks [37, 48]. Third, audit sources frequently lack information useful
for misuse detection [175, 176]. That can make underspecified signatures
inevitable. Fourth, writing intrusion detection signatures is inherently diffi-
cult [122, 129, 157, 163], which favors the creation of buggy and possibly
underspecified signatures.

Intent-guessing signatures:Intent-guessing signatures trigger on events that
might or might not be attacks. For example, signatures that trigger on failed
user logins, DNS zone transfers, overlapping IP fragments, or set URGENT
bits are intent-guessing because they assume that these activities are mali-
cious. It has been shown that this assumption is frequently false [19, 168].
Note that intent-guessing signatures arenot underspecified as they reliably
detect the events they claim to detect. However, these events are not neces-
sarily attacks.

Lack of abstraction: Today’s IDSs tend to trigger multiple low-level alarms to
report a single conceptual-level phenomenon. For example, a single run
of the nmap scanning tool [72] triggers hundreds of alarms, namely one
alarm for each probe. Similarly, a network with a small maximum transfer
unit (MTU) [196] systematically fragments IP packets. Nevertheless, most
IDSs trigger a separate alarm for each fragmented packet. Clearly, this lack
of abstraction aggravates the alarm flood.

Axelsson has observed that the use of underspecified or intent-guessing sig-
natures easily leads to an over-proportionally high number of false positives [13].
Just observe that these signatures are prone to trigger on non-intrusive events. Un-
fortunately, non-intrusive events are so much more frequent than intrusive events
that even their occasional misclassification can easily lead to an unacceptably high
false alarm rate. This can be shown by using Bayes’ Theorem to rewrite the con-
ditional probabilityP (¬I|A) that an alarmA reports a non-intrusive event¬I (i.e.
thatA is a false positive):

P (¬I|A) =
P (¬I) · P (A|¬I)

P (¬I) · P (A|¬I) + P (I) · P (A|I)
(2.1)

Assuming that the prior probabilityP (¬I) of non-intrusive events is much
higher than the prior probabilityP (I) of intrusive events (say,P (¬I) = 100 ·

2.1. ON THE DIFFICULTY OF INTRUSION DETECTION 13

P (I)), we obtainP (¬I|A) ≥ P (A|¬I)/(P (A|¬I)+0.01). Thus, a signature that
is inclined to trigger on non-intrusive events (say,P (A|¬I) = 0.1) will result in an
unacceptably high rate of false positives (namelyP (¬I|A) ≥ 0.1/0.11 > 0.9, for
the above numerical values). Axelsson argues that a 90% probability of an alarm
being a false one is completely unacceptable as it schools the human operator to
ignore the alarms altogether [13].

2.1.2 Towards Better IDSs

The intuitively most appealing way of dealing with false positives probably is to
build “better” IDSs. This is no easy endeavor because many of the issues men-
tioned in the previous section are intrinsically difficult to address. Nevertheless,
there is a small number of research projects that have pursued this avenue. Inter-
estingly, most of the resulting IDSs share two properties: First, they have public
signatures that can be tuned to a given environment, and second they are special-
purpose.Special-purpose IDSsare tailored towards detecting one class of attacks
(e.g. Web server attacks) and they monitor audit sources that are particularly suit-
able for this task. By way of illustration, here are three examples of IDSs that are
less prone to false positives:

Embedded detectors:Zamboni [204] defines embedded detectors as host-based
IDSs that are integrated into the source code of an application or the operat-
ing system. Thus, embedded detectors are a form of source code instrumen-
tation. One of their main advantage is their ability to accessanyinformation
that they need to do their job. Moreover, embedded detectors are executed
on demand, which is economical, and frees resources to be used otherwise,
e.g. for more accurate signatures. Both advantages are expected to translate
into fewer false positives [8, 204], but a rigorous proof is still amiss.

Web IDS: Almgren et al. describe a signature-based IDS for detecting Web
server attacks in real-time [7]. The IDS is host-based and uses Web server
logs as audit source. The attack signatures are a variant of regular expres-
sions, and can easily be tuned to a particular environment. This customiz-
ability was found to be helpful for reducing the number of false positives.

Special-purpose NIDS: Sekar et al. present a network-based IDS that exclu-
sively focuses on low-level network attacks, such as reconnaissance scans
and denial-of-service attacks [183]. The presented system differs from most
other network-based IDSs in that it refrains from any attempt to detect
application-level attacks such as attacks against Web servers. Owing to its
clear focus, the IDS is reported to have a very low false alarm rate.

14 CHAPTER 2. RELATED WORK

Note that special-purpose IDSs such as the ones above have to be comple-
mented by additional IDSs to achieve comprehensive attack coverage. This cre-
ates the need to deploy and manage a heterogeneous collection of complementary
IDSs. Even though this is mainly an operational problem, one should not under-
estimate its practical difficulty and relevance. Moreover, none of the above IDSs
addresses the difficulty of writing correct attack signatures. This is particularly
evident for embedded detectors, which are integrated into the source code of the
monitored program. Therefore, embedded detectors are more difficult to imple-
ment, maintain, and port [204].

2.2 Root Cause Analysis

This section briefly surveys the field of root cause analysis. Specifically, Subsec-
tion 2.2.1 introduces root cause analysis basics, and Subsection 2.2.2 shows how
root cause analysis has been used in network management to identify faulty net-
work equipment. The application of root cause analysis to network management
is particularly relevant to this thesis because network management also faces the
problem of an overwhelmingly large number of alarms.

2.2.1 Introduction to Root Cause Analysis

Root Cause Analysis (RCA)has historically been used to identify the most basic
factors that contributed to an incident [128, 138, 167]. For example, after a reactor
accident, the Department of Energy would commonly use root cause analysis to
pinpoint why the accident had happened, so that similar accidents could be pre-
vented in the future. Because prevention of similar accidents is central to root
cause analysis, it has been required that root causes must be factors that one has
control over. Hence, the following definition by Paradies and Busch [167]:

Definition 2.1 A root causeis the mostbasiccause that canreasonablybe iden-
tified and that management has control tofix. Root cause analysisis the task of
identifying root causes. �

The three key words in the definition of root causes arebasic, reasonably,
andfix: Root causes must be sobasic(or specific) that one canfix them. On the
other hand side, given that fixing them is the whole point, it is notreasonableto
further split root causes into more basic causes. Consequently, these more basic
causes arenot root causes, and root causes lie at the “highest” level where fixing
is possible. Finally, note that a single incident can have multiple root causes.

2.2. ROOT CAUSE ANALYSIS 15

Several methodologies and supporting tools have been suggested for root
cause analysis [128, 138]. Common to these methodologies is the notion that
events propagate by causing other events. For example, a “poor-manufacturing-
procedure event”causesa “buggy-fuel-gauge event”, whichcausesprecipitous
“fuel-low-warning events”, whichcausean “emergency-airplane-landing event”.
The majority of root cause analysis methodologies provide systematic and struc-
tured frameworks for “walking back” such causality graphs to their roots. In
addition, there are several computer tools to support these methodologies. See
[128, 138] for details and examples.

2.2.2 Root Cause Analysis in Network Management

In network management [24, 98, 106, 107, 134, 164, 165, 202], alarms indicate
problems in a network’s operation, such as hardware or software failures, per-
formance degradations, or misconfigurations. As network components are highly
inter-dependent, a problem in one component propagates to all transitively depen-
dent components. As a consequence, a problem affecting any single component
can impair many other components, most of which report their impairment by
means of alarms. The goal of network management is to evaluate these alarms
and to pinpoint the original problem. This problem is called the root cause, and
fixing it clearly eliminates the associated impairments and alarms. Finally, the
task of identifying root causes is called root cause analysis [107, 202]. These
definitions are consistent with the ones of the previous section.

The example of Figure 2.1 illustrates the challenges of root cause analysis.
Figure 2.1(a) shows a network consisting of three routers (namelyR1, R2, R3),
three LANs (namelyA, B, C), and a database serverDB. The database clients
are assumed to be distributed across all three LANs. Figure 2.1(b) shows how
a problem in the memory module of routerR1 propagates through the network.
Specifically, suppose that in routerR1, the memory cell storing the cost of link
R1 →R3 fails, and erroneously indicates an extremely high value. No alarm is
issued for this event, but the routing protocol reacts by routing all futureA−−C
traffic over routerR2. As a consequence, routerR2 becomes congested, which
results in alarms. Moreover, the connectivity of LANC degrades and database
transactions by remote database clients last longer. This increases the number
of transaction aborts that are issued to release database locks that were held for
too long. The increased number of transaction aborts is reported by additional
alarms. Note that all alarms in this example report symptoms of the root cause
(the failed memory cell) rather than the root cause itself. Moreover, routerR2 and
the database clients are likely to raise multiple alarms to report their impairment,
which can unleash an alarm flood. This tendency to generate too many alarms

16 CHAPTER 2. RELATED WORK

DB

R3

C
DB Clients

R2

B
DB Clients

R1A

DB Clients

Memory failure in R1.

over R2.
Reroute of A−C traffic

Poor connectivity of C.

a) Sample network.

Congestion in R2.

Transaction aborts.

E a : Event E triggers alarm a.

E F : Event E causes event F.

Alarm

Alarm

b) Fault propagation.

Figure 2.1: Fault propagation and alarm generation in networks.

that are only remotely related to the actual root cause makes root cause analysis a
challenging task.

In summary, root cause analysis in network management aspires to identify
the starting point(s) of the fault propagation chain (cf. Figure 2.1(b)). This is
an instance of the general problem of abductive inference [160, 165, 169, 170].
Abductive inferenceis the process of reasoning from effects to causes. Many net-
work management systems do abductive inference in two steps: First, they model
the cause-effect propagation in networks, and then, they heuristically search this
model for plausible root causes that explain the observed alarms [24, 98]. Other
systems require the user to encode his or her knowledge about root cause analysis
in expert system rules [106, 107, 164]. Thereby, the problem of abductive infer-
ence is off-loaded upon the user. Yet other systems implement root cause analysis
by means of case-based reasoning [134] or codebooks [202].

Even though much research has investigated root cause analysis in network
management, this research is not directly applicable to intrusion detection. Specif-
ically, network management systems diagnose root causes by “walking back” the
fault propagation chain. In intrusion detection, this paradigm is difficult to apply
because the notions of causality and propagation are unclear. Moreover, network

2.3. DATA MINING 17

management systems can only diagnoseknownroot causes. However, this dis-
sertation has introduced the root cause concept to intrusion detection, and at the
outset, there were no known root causes. Therefore, we decided to develop a tool
that supported the discovery of new and unexpected root causes, rather than a tool
that recognized known root causes.

2.3 Data Mining

Advances in computers and data storage technology have made it possible to col-
lect huge datasets, containing gigabytes or even terabytes of data. This wealth of
data contains potentially valuable information. The trick is to extract this (hidden)
valuable information, so that the data owners can capitalize on it. Data mining is a
relatively new discipline that seeks to do just that. More precisely, and accepting
that slightly different definitions have been proposed (e.g. [63, 90]), we adopt the
following working definition [91]:

Definition 2.2 Data mining is the analysis of (often large) observational datasets
to find unsuspected relationships and to summarize the data in novel ways that are
both understandable and useful to the data owner. �

The relationships and summaries derived through a data mining exercise are
often referred to asmodelsor patterns. Examples include linear equations, clus-
ters, tree structures, if-then rules, and periodic patterns.

The above definition refers to “observational data”, as opposed to “experi-
mental data”. Data mining typically deals with data that has been collected for
some purpose other than data mining. Thus, the objective of the data mining
task could not influence the data collection strategy. This contrasts with statistics,
where it is quite common to design experiments so that they yield the data needed
to answer a specific question. Finally note that data mining aims at discovering
“understandable” relationships and summaries that can be interpreted as “novel”,
“unsuspected”, and “useful” knowledge. In other words, the goal of data mining
is to offer new insights that are valuable to the data owner.

The algorithms that take data as input and produce models or patterns as output
are calleddata mining techniques. To make this thesis self-contained, we summa-
rize several particularly popular data mining techniques in Section 2.3.1. Section
2.3.2 shows how other researchers used data mining to make alarm investigation
more efficient. The Sections 2.3.3 and 2.3.4 summarize other, less closely related
applications of data mining to intrusion detection.

18 CHAPTER 2. RELATED WORK

2.3.1 Classification of Data Mining Techniques

Data mining techniques are algorithms that extract patterns or build models from
available datasets. There is no unique and universally accepted classification of
data mining techniques. However, the classification shown in Figure 2.2 is con-
sistent with most data mining texts (e.g. [90, 91]). Note that the figure is not
exhaustive, and that many more leave nodes could have been added [90, 91].

A preliminary remark on input data representations is in order: Without loss
of generality, we assume that the input data is stored in a single relational database
table [59]. The columns of this table are calledattributesand the rows are called
tuples. Sets of transactions [3] and multidimensional data cubes [2] are other
common input data representations in data mining. However, to simplify the pre-
sentation, we do not consider these input data representations, here.

At the highest level, data mining techniques are split into predictive and de-
scriptive techniques.Predictive techniquesuse examples, calledtraining data, to
learn a model that predicts the unknown value of one attribute (e.g. a person’s
salary) based on the known values of other attributes (e.g. the person’s education,
age, and employer). In other words, predictive techniques model the relation-
ship between one designated attribute and all the other attributes.Descriptive
techniques, by contrast, find patterns and summaries that describe a dataset in a
human-understandable manner. No training data is needed, and all attributes are
treated symmetrically (as opposed to singling out one particular attribute).

Predictive techniques are further sub-classified into regression and classifica-
tion. In regression[53, 118], the attribute being predicted is real-valued, whereas
in classification[38, 177] it is categorical, i.e. discrete and unordered. The values
predicted by classification are referred to asclass labelsto emphasize that they
have no numerical meaning. For example, a set of intrusion detection alarms that
have been classified into true positives and false positives, can serve as training
data to learn a classifier that predicts the class labels (“true positive” versus “false
positive”) of future, previously unseen alarms. This classifier can be represented
by means of if-then rules, decision trees, or some other structure [91, 155].

We next consider the sub-categories of descriptive techniques.Visual tech-
niquesuse colors, shapes, and animations to visually represent data in an easy-
to-understand manner [36, 171].Association rules[3, 4, 190] capture implica-
tions between attribute values. More formally, association rules have the form
(∧mi=1[Ai = vi]) =⇒ (∧ni=m+1[Ai = vi]) [s, c], where theAi (i = 1, . . . , n) are
pairwise distinct attributes, thevi are attribute values, and the numberss, c ∈ R+

(calledsupportandconfidence) are descriptive statistics. This rule is interpreted
as: “Database tuples that satisfy the rule’s left-hand side have ac% probability to
also satisfy the right-hand side. Moreover,s% of tuples satisfy both sides.”

2.3. DATA MINING 19

Predictive
techniques

ClassificationRegression

Descriptive
techniques

rules
Assoc.Visual

techniques
Episode

rules
Cluster
analysis

techniques
Data mining

Figure 2.2: A rough classification of data mining techniques.

Note that association rules capture relationships between the attributes of a
single database tuple.Episode rules[142, 143], by contrast, capture relation-
ships betweensuccessivetuples. This clearly presupposes that tuples are ordered,
e.g. by virtue of a time attribute. Assuming that an order exists, episode rules
have been defined as implication rules that predict the occurrence of certain tu-
ples based on the occurrence of other tuples. For example, assuming that tuples
represent intrusion detection alarms, an episode rule might state that in 50 percent
of all cases, an “Authentication failure” alarm is followed within 30 seconds by a
“Guest login” alarm. We will formally define episode rules in Section 3.5.

Cluster analysis(a.k.a.clustering) [81, 104, 105] seeks to group tuples so that
the tuples within a given group/cluster are similar, whereas the tuples of different
groups/clusters are dissimilar. Obviously, the notion of similarity is key to this
definition. In Euclidean spaces, similarity is relatively easy to define [105]. For
example, the inverse of the Euclidean distance is a possible similarity measure.
Moreover, this measure captures our intuition that a cluster is an isolated and
compact “cloud” in space. In non-Euclidean spaces, categorical attributes such as
IP addresses or port numbers significantly complicate the definition of similarity
[74, 84]. Chapter 4 has much more to say about cluster analysis. Finally, there
are several good textbooks that can be consulted for a broader and more detailed
treatment of data mining concepts and techniques [20, 90, 91].

2.3.2 Using Data Mining for Alarm Handling

This section surveys research projects that used data mining to support the inves-
tigation of alarms. First, however, recall the distinction between alarms and alarm
types: Alarms are the messages that an IDS triggers to report security violations.
The alarm type, by contrast, is the attribute that specifies the actual security vi-
olation (e.g. SYN flooding, host scanning, buffer overflow, etc.) reported by an
alarm. Also recall thatt[Ai] denotes the value that attributeAi assumes in tuplet.

20 CHAPTER 2. RELATED WORK

Manganaris et al. mine association rules to build a “second-level” anomaly de-
tection system that discards “normal” alarms and thereby reduces the work-load of
the operator [141]. Implicitly, this work assumes that “normal” alarms are always
false positives. The reference model of normal alarm behavior is learned in two
steps. First, a time-ordered stream of historical alarms is partitioned into bursts,
and second, association rules are mined from these bursts (more on this later).
The resulting association rules constitute the reference model of normal alarm be-
havior. At runtime, alarms are compared against this reference model, and alarms
that are consistent with it are considered normal/benign and get discarded.

More precisely, Manganaris et al. model alarms as tuples(t, A), wheret is a
time-stamp andA is an alarm type. All other alarm attributes such as source IP
address, destination IP address, or port numbers are not considered in their model.
Alarm burstsare sets of alarms that are separated by prolonged alarm-free periods.
Internally, alarm bursts are represented as tuples that have one attributeAi for
each possible alarm typeAi. Specifically, letB be an alarm burst, and letb be its
internal representation. Then,b[Ai] = 1 holds if and only ifB contains an alarm
of typeAi, andb[Ai] = 0, otherwise. Note that this representation suppresses all
temporal information about alarms. The tuples representing the alarm bursts are
mined for association rules of the form(∧i∈I [Ai = 1]) =⇒ (∧j∈J [Aj = 1]), with
disjunct index setsI andJ (i.e. I ∩ J = ∅). Association rules aboutnon-existing
alarm types (e.g.[A1 = 1] =⇒ [A2 = 0]) are explicitly not searched for.

The set of discovered association rules is used without any inspection or mod-
ification as the reference model of normal alarm behavior. At run-time, deviations
from this model are detected as follows: The incoming alarm stream is partitioned
into alarm bursts, and each alarm burst is considered by itself. Various tests are
used to decide whether an alarm burstB is anomalous. For example, suppose the
reference model contains the association rule(∧i∈I [Ai = 1]) =⇒ (∧j∈J [Aj = 1]).
Moreover, let us assume that alarm burstB contains all the alarm typesAi (i.e.
∀i ∈ I : Ai ∈ B), but lacks some of theAj (i.e.∃j ∈ J : Aj 6∈ B). Then, alarm
burstB is deemed anomalous as it does not contain allAjs, which would have
been expected based on the rule(∧i∈I [Ai = 1]) =⇒ (∧j∈J [Aj = 1]). Only ano-
malous alarm bursts are reported to the operator, while normal ones are discarded.

Note that this approach incurs a potentially high risk of discarding true posi-
tives. In fact, the set of discovered association rules isblindly used as reference
model. As a consequence, association rules that correspond to attacks can creep
into the reference model and thereby prevent future detection of these attacks. On
the other hand side, given that reference models can contain thousands of associa-
tion rules [141], it does not seem practical to manually inspect them before usage.
The alternative approach of using attack free alarm logs to learn the association
rules seems equally difficult to implement [112].

2.3. DATA MINING 21

Clifton and Gengo use data mining to find alarm patterns that a human ex-
pert can understand and act upon [37]. More precisely, they mine episode rules
from historical alarm logs, and use these episode rules to guide the construction
of custom-made filtering rules, which automatically discard well-understood false
positives. Clifton and Gengo offer hardly any experiments to validate their ap-
proach. We therefore replicate their experiments in Section 3.5 and come to the
conclusion that episode rules are not particularly suitable in this context. This
motivates our work on clustering, which is the main focus of this thesis. Nev-
ertheless, their and our work are obviously related because both mine historical
alarm logs in quest for human-understandable patterns.

In the world of telecommunication networks, Klemettinen uses association
rules and episode rules to support the development of alarm correlation systems
[119]. Hellerstein and Ma pursue the same goal by means of visualization, pe-
riodicity analysis, and m-patterns (a variant of association rules requiring mutual
implication) [94]. Garofalakis and Rastogi investigate bounded-error lossy com-
pression of network management events [75]. These research projects as well
as our own experiments [110, 114] have convinced us that visualization, episode
rules, and association rules are too demanding (in terms of time and human ex-
pertize) to be used on a larger scale. This has further motivated our work on
clustering. To the author’s knowledge, the idea of applying clustering to intrusion
detection or network management alarms was new at its time of introduction.

2.3.3 The MADAM Approach for Building IDSs

The MADAM ID project at Columbia University [129, 131, 132] is one of the
first and best-known data mining projects in intrusion detection. Therefore we
briefly survey this project, here. The contents of this section is optional and is not
required for an understanding of later chapters.

The MADAM ID project has shown how data mining techniques can be used
to construct IDSs in a more systematic and automated manner than by manual
knowledge engineering. Specifically, the approach pursued by MADAM ID is
to learn classifiers that distinguish between intrusions and normal activities. Un-
fortunately, classifiers can perform really poorly when they have to rely on at-
tributes that are not predictive of the target concept [130]. Therefore, MADAM
ID proposes association rules and episode rules as a means to construct additional,
more predictive attributes. In the terminology of MADAM ID, these additional at-
tributes are calledfeatures.

22 CHAPTER 2. RELATED WORK

MADAM ID has been most extensively documented for the case of building
network-based misuse detection systems. Therefore, this section also describes
MADAM ID in the context of network-based misuse detection. Note, however,
that there have been experiments in applying MADAM ID to anomaly detection
as well as to host-based misuse detection [129]. Because of space limitations,
these experiments are not described here.

Let us now consider how MADAM ID is used to construct network-based
misuse detection systems. The base version of MADAM ID that we discuss here
doesnotconsider the packet payload of network traffic. Indeed, all network traffic
is abstracted to so-calledconnection records. The attributes of connection records
store intrinsic connection characteristics such as the source IP, the destination IP,
the source and destination ports, the start time, the duration, the header flags, etc. .
In the case of TCP/IP networks, connection records summarize TCP sessions.

The most notable characteristic of MADAM ID is that itlearnsa misuse de-
tection model from examples, calledtraining connection records. Training con-
nection records are connection records that have been classified intonormal con-
nection recordsand intrusion connection records. Given a set of training con-
nection records, MADAM ID proceeds in two steps: Thefeature-construction
stepaugments the connection records by additional attributes that are deemed
to be relevant for distinguishing intrusions from normal activities. For example,
this step might add a new attribute that counts the number of connections that
have been initiated during the preceding two seconds to the destination IP address
of the current connection record. The feature-construction step is followed by
theclassifier-learning step, which learns a classifier from the augmented training
connection records (i.e. the original training connection records extended by the
newly constructed attributes). Figure 2.3 illustrates the process in more detail:

(1) The user of MADAM ID procures training connection records and partitions
them into normal connection records and the intrusion connection records.
MADAM ID offers no support for this step.

(2) Association rules and episode rules are mined separately from the normal
connection records and from the intrusion connection records. The resulting
patterns are compared, and all patterns that are exclusively contained in
the intrusion connection records are collected to form theintrusion-only
patterns.

(3) The intrusion-only patterns are used in a mostly automatic procedure to
derive additional attributes, which are expected to be indicative of intrusive
behavior. These additional attributes are counts, averages, and percentages
over connection records that share some attribute values with the current
connection record.

2.3. DATA MINING 23

Baseline
normal
patterns

Baseline
intrusion
patterns

Normal
connection

records

Compare

Intrusion−
only

patterns

Feature
construction

Intrusion
connection

records
(4)

Augmented

connection

normal &
intrusion

records

Classifier
Learning

Misuse
IDS

Association +
episode mining

Association +
episode mining

b) Classifier−learning step.

a) Feature−construction step.

(1)

(2)

(3)

(5)

Figure 2.3: Data mining process of building misuse detection systems.

(4) The original training connection records are augmented by the newly con-
structed attributes.

(5) A classifier is learned that distinguishes normal connection records from
intrusion connection records. This classifier — themisuse IDS— is the end
product of MADAM ID.

It is worth pointing out that the MADAM ID process of Figure 2.3 heavily
relies on intrusion detection expert knowledge. For example, expert knowledge
is used to prune the number of patterns produced during association and episode
rule mining. Also, feature construction is restricted to adding attributes that an in-
trusion detection expert would consider promising. Moreover, separate classifiers
are constructed for different attack classes, and these classifiers are subsequently
combined. Finally, domain knowledge is used to manually define suitable features
that summarize the packet payload. These more advanced aspects of MADAM ID
are described elsewhere [129, 131, 132].

24 CHAPTER 2. RELATED WORK

2.3.4 Further Reading

In this section, we briefly survey other related work that applied data mining to
intrusion detection. A more detailed overview of the field can be found in a recent
book edited by Barbará and Jajodia [17].

The vast majority of researchers have used data mining to build non-
parametric models for anomaly detection. This is very similar to early work in
intrusion detection, except that normal behavior is represented by models based
on data mining rather than statistics [109, 188]. For example, Wisdom & Sense
is an anomaly detection system that mines association rules from historical audit
data to represent normal behavior [198]. Similarly, Teng et al. use a form of au-
tomatically learned episode rules to represent normal user behavior [197]. The
idea of Lankewicz and Benard is to cluster audit log records and to represent each
cluster by a single “typical” audit log record. These typical audit log records form
the model of normal behavior against which future audit log records are com-
pared [126]. A similar idea has been pursued by Lane and Brodley, who cluster
attack-free shell command sequences and define the “cluster centers” to represent
normal behavior. Subsequently, anomalous command sequences can be detected
based on their distance to the cluster centers [125]. Portnoy et al. cluster histori-
cal connection records and label large clusters as “normal” and small clusters as
“abnormal” [173]. At run-time, new connection records are classified according
to their distance to the closest labeled cluster. Barbará et al. use incremental asso-
ciation rule mining to detect anomalous network traffic patterns in real-time [18].
Finally, there is a long list of research projects that have tried to model system
call sequences by a variety of different models, including neural networks, hid-
den Markov models, as well as fixed and variable length patterns. The work by
Warrender et al. [201] and Debar et al. [46] is representative of this research.

Mukkamala et al. present work that does not fall in the category “data-mining-
based anomaly detection”. Their idea is to use data mining techniques to reduce
the amount of audit data that needs to be maintained and analyzed for intrusion
detection [158]. Lam et al. report similar work in audit data reduction [123].

2.4 Alarm Correlation

Alarm Correlation Systems (ACSs)[40, 41, 44, 48, 191, 199] post-process intru-
sion detection alarms in real-time and automate part of the alarm investigation
process. More precisely, ACSs attempt to group alarms so that the alarms of the
same group pertain to the same phenomenon (e.g. the same attack). Then, only
the alarm groups are forwarded to the human operator. In that way, ACSs offer

2.4. ALARM CORRELATION 25

a more condensed view on the security issues raised by an IDS. In addition, they
make it easier to distinguish real security threats from false positives.

ACSs are clearly related to this thesis work because they address the same
problem. Moreover, they pursue a very similar approach, which could be called
“real-time clustering” (after all, ACSs group/cluster alarms in real-time). Never-
theless, the following considerations show the need for the new off-line clustering
method presented in this dissertation:

Depth of analysis: Due to harsh real-time requirements, ACSs can only perform
a limited amount of analysis. For example, consider a phenomenon that
only occurs on Saturdays (e.g. false positives due to weekly system back-
ups). Our off-line clustering method is able to correctly group and report
the resulting alarms, whereas ACSs do not have this capability because it is
difficult to implement in real-time. Moreover, to reliably identify a weekly
alarm pattern, one must observe at least several weeks of alarms. Clearly,
delaying correlation results for weeks defeats the very purpose of real-time
alarm correlation. Similarly, processing free-text alarm attributes (e.g. the
context, which stores raw audit records, cf. Section 1.4) is costly and is con-
sequently not done by real-time ACSs. By contrast, our off-line clustering
method analyzes free-text attributes and thereby improves its results.

Bias: ACSs are generally optimized to find alarm groups that result fromattacks.
This attack-centric bias has far-reaching consequences. For example, some
ACSs reassess the severity of alarm groups and discard alarm groups that
are deemed benign [48, 191]. Other ACSs use complex techniques to deal
with spoofed source IP addresses, multi-stage attack scenarios, or stealthy
attacks [41, 44, 199]. Moreover, the publications on ACSs use exclusively
attacks to validate their systems. This attack-centric bias contrasts with our
goal of findingany large group of systematically generated alarms, so that
we can identify and remove its root cause. Many of these alarm groups are
not the result of attacks, and today’s ACSs are not particularly suitable for
finding them. Our off-line clustering method, by contrast, is biased in a way
that favors the discovery of such alarm groups.

Ease of use:Today’s ACSs are difficult to configure. For example, some ACSs
have dozens of configuration parameters, which take experience to set
[48, 199]. Other ACSs face a knowledge engineering bottleneck because
they require the user to specify correlation rules [40, 41]. The ACS in [44]
learns correlation rules from the user. To this end, the user has to manually
correlate alarms, so that the system can learn his or her ability. Clearly, man-
ual alarm correlation is difficult and error-prone. As will become apparent
throughout this thesis, our clustering method has none of these drawbacks,
and is easy and intuitive to use.

26 CHAPTER 2. RELATED WORK

The remainder of this section surveys three recent alarm correlation systems.
The presentation of these systems uses the alarm model of Section 1.3, i.e. alarms
are modeled as tuples consisting of alarm attributes and their corresponding val-
ues. Moreover,a[Ai] denotes the value that attributeAi assumes in alarma.

2.4.1 Tivoli Aggregation and Correlation Component

The Tivoli Aggregation and Correlation Component (TACC) [48] cascades three
processing steps, through which each alarm is pipelined in strict order. The first
step unifies different data representations, e.g. by mapping between host names
and IP addresses or between port numbers and service names. The second step
uses expert system rules to merge duplicate alarms and to pinpoint faulty IDSs.
For example, suppose a particular attack isalwaysreported by two independent
IDSs. Then, an expert system rule can be written to merge the resulting duplicates.
Moreover, a second expert system rule can be used to issue a warning message
when onlyoneof the two IDSs reports said attack. Clearly, this indicates that
the other IDS is probably broken. The third step of the TACC groups alarms that
agree in one or more alarm attributes. Moreover, it counts the number of alarms
per group and time window, and raises a meta-alarm if this count exceeds a user-
defined threshold value.

Let us consider the third step in more detail. To begin with, the TACC defines
three so-calledaggregation axes, namely the source IP address, the destination
IP address, and the alarm class, which generalizes the alarm type into broader
categories. Each combination of aggregation axes defines one out of seven ways
of grouping alarms. For example, the combination{Src−IP ,Dst−IP} specifies
to group alarms that originate from the same source IP address and go to the same
destination IP address. Similarly, the combination{Alarm−class} specifies to
group alarms that share the same alarm class. Note that all alarms within a given
alarm group have identical values along the group’s aggregation axes.

Now let us consider how a newly triggered alarm is processed. This alarm is
simultaneously added to all seven groups, i.e.(1) to the group of alarms that have
the same source IP address as the new alarm,(2) to the group of alarms that have
the same destination IP address as the new alarm, . . . ,(7) to the group of alarms
that have the same source IP address, destination IP address, and alarm class as
the new alarm. For each of these seven groups, a separate sliding time window is
maintained and the number of alarms within this time window is counted. If (and
only if) this count exceeds a user-defined threshold value, then a meta-alarm is
raised. Note that an alarm group whose count does not exceed the threshold value
is not reported to the user!

2.4. ALARM CORRELATION 27

The TACC approximates sliding time windows by means of a weighted sum
scheme, which is particularly resource-sparing. More precisely, each time a new
alarm is added to a group, the new count value is calculated according to the
formula countnew = 1 + countold × 2 τ × (told−tnew). Here,tnew andtold are the
time-stamps of the new and the preceding alarm, respectively. The parameter
τ ∈ R+ is a user-defined fading factor, also referred to as half-life. For example,
if τ is chosen to be1/100, then the weight of the old count value fades to half its
nominal value if 100 seconds elapse before the next alarm occurs.

2.4.2 Probabilistic Alert Correlation

The Probabilistic Alert Correlation (PAC) system [199] represents alarm groups
by means of so-calledmeta-alarms. To understand meta-alarms, first note
that PAC supports set-valued attributes. Using this feature, a group of alarms
can be represented by a single meta-alarm that is obtained by taking at-
tribute by attribute the union of attribute values. For example, the alarm
group {(1, A, α), (2, B, α), (3, A, α)} would be represented by the meta-alarm
({1, 2, 3}, {A,B}, {α}). Clearly, the mapping of alarm groups to meta-alarms
is not injective.

The PAC system maintains a continuously updated collection of meta-alarms.
Whenever the PAC system receives a new alarm, it compares the alarm to all
existing meta-alarms and calculates the similarities between the new alarm and
the various meta-alarms. The new alarm is then merged with the most similar
meta-alarm, provided the similarity exceeds a user-defined minimum similarity
threshold. By contrast, an alarm that lacks minimum similarity to all existing
meta-alarms starts a new meta-alarm of its own.

Very roughly, the similarity between an alarm and a meta-alarm is defined as
the weighted sum of attribute-wise similarities. Towards a more precise definition,
let us assume that alarms haven attributesA1, . . . , An. Let t1, . . . , tn ∈ [0, 1]
be attribute-wise minimum similarity thresholds, letw1, . . . , wn ∈ [0, 1] be
attribute-wise weights (so-called expected similarities), and lets1(·, ·), . . . , sn(·, ·)
be attribute-wise similarity functions that return a value between 0 (denoting com-
plete dissimilarity) and 1 (denoting identity). The parametersti, wi, andsi(·, ·)
will be discussed in a moment. First, however, we define the similaritysim(a,m)
between an alarma and a meta-alarmm:

sim(a,m) :=

{
0, if si(a[Ai],m[Ai]) < ti for anyi∑n

i=1 wi·si(a[Ai],m[Ai])∑n
i=1 wi

, otherwise.
(2.2)

28 CHAPTER 2. RELATED WORK

The PAC system provides little guidance for setting the parametersti andwi,
i = 1, . . . , n. Moreover, some of these parameters are situation-specific, which
further complicates the task of finding reasonable values. For example, the min-
imum similarity thresholdtSrc−IP of the source IP address is situation-specific.
Specifically,tSrc−IP should be close to 0 for alarms that are prone to source ad-
dress spoofing (e.g. SYN flooding alarms). On the other hand side,tSrc−IP should
be much higher when source address spoofing is unlikely.

The PAC system suggests intuitively appealing but ultimately ad hoc similarity
functionss1(·, ·), . . . , sn(·, ·). For example, two destination port lists are deemed
more or less similar based on their degree of overlap. For alarm types, PAC uses a
similarity matrix with values of unity along the diagonal and off-diagonal values
that heuristically express similarity between the corresponding alarm types. Time
similarity is a step function that drops after one hour from 1 to 0.5, and the simi-
larity between IP addresses considers if the two IP addresses come from the same
subnet.

The PAC system is monolithic and cannot easily be distributed. However,
distributed processing is still possible by recursively applying PAC to its own
results. Specifically, the authors of PAC use PAC to correlate individual alarms
into threads, threads intosecurity incidents, and security incidents intoattack
reports. The very same PAC system is used on all three levels of the correlation
hierarchy. However, the respective parameter values differ depending on the level
(see [199] for details). Note that the three-layered correlation hierarchy comes at
the cost of tripling the number of parameters that need to be set!

2.4.3 Alert Stream Fusion

The Alert Stream Fusion (ASF) system [44] maintains a continuously updated
collection of alarm groups, calledscenarios. Whenever the ASF system receives
a new alarm from an IDS, it compares the alarm to all existing scenarios and cal-
culates the probabilities that the new alarm belongs to the respective scenarios.
The new alarm is then assigned to the scenario that produces the highest probabil-
ity score. If all probability scores are below a user-defined threshold then the new
alarm is not added to any scenario, but rather starts a new scenario of its own. The
assignment of an alarm to a scenario is final and irreversible.

The probability that a new alarma belongs to a scenarioS is a function of
only the new alarma and the most recent alarm inS. All the other alarms inS
are not considered. The function that calculates the probability scores is learned
by means of predictive data mining techniques from labeled training data. The

2.4. ALARM CORRELATION 29

original article by Dain and Cunningham [44] compares different predictive data
mining techniques with respect to their ability to learn “good” probability func-
tions. We here focus on decision trees, which produced the best results.

The training data needed by the decision tree algorithm is obtained by man-
ually correlating historical alarms. To this end, one has to manually execute the
program of Figure 2.4. This yields positive training examples, which have the
class labelmerge (cf. line 5 of Figure 2.4), as well as negative training exam-
ples, which have the class label¬merge (cf. line 6 of Figure 2.4). Using these
training examples, it is possible to learn a decision tree. This decision tree is sub-
sequently used to predict themerge and¬merge decisions for new, previously
unseen alarms. It has been noted that the manual correlation of historical alarms
is labor-intensive and site-dependent [44].

It is instructive to compare the ASF system to the PAC system of Section 2.4.2:
First, meta-alarms in PAC clearly correspond to scenarios in ASF, and similarities
correspond to probabilities. Second, the calculation of similarities in PAC relies
on heuristics and human expertise, while ASF uses predictive data mining tech-
niques to learn a suitable probability measure. Third, meta-alarms summarizeall
alarms in an alarm group. As a consequence, the similarity between a new alarm
and a meta-alarm implicitly takesall alarms in the respective alarm group into
account. ASF, by contrast, compares a new alarm only to the most recent alarm
of a scenario, while all the other alarms in the scenario are ignored.

Input: A chronologically ordered sequencea1, . . . ,an of alarms;
Output: Training data for decision tree learning;
Algorithm:

1: for i := 1 to n do{ // Loop over all alarmsa1, . . . ,an.
2: for eachscenarioS in memorydo{
3: Let l be the last alarm that was added toS;
4: if, based on human judgment,ai belongs toS
5: thenaddai to S and output the triple(ai, l, class label = merge);
6: elseoutput the triple(ai, l, class label = ¬merge);
7: }
8: if ai belongs to none of the existing scenariosS
9: thencreate a new scenarioS′ and addai to S′;
10: }

Figure 2.4: Algorithm for manually deriving training data from historical alarms.

30 CHAPTER 2. RELATED WORK

Chapter 3

Using Data Mining for
Root Cause Analysis

As explained in the introduction, this thesis uses data mining to extract alarm pat-
terns that a skilled user can interpret in terms of root causes. The present chapter
offers a more formal treatment of this idea. Specifically, Section 3.1 revises the
definition of root causes and makes it more precise. Section 3.2 explains how data
mining can be used to support the discovery of root causes. Moreover, the limi-
tations of data mining in this context are discussed. Section 3.3 characterizes the
kind of alarm patterns that root causes typically generate, and explains that a data
mining technique should ideally discover these alarm patterns. The discussion in
this section is purely theoretical, and we therefore experimentally validate it in
Section 3.4. Section 3.5, finally, summarizes our experience with episode rules, a
data mining technique that has significant intuitive appeal for root cause analysis.

3.1 Root Causes and Root Cause Analysis

This section revises our earlier definitions of root cause and root cause analysis.
In addition, the genesis of root causes is studied.

3.1.1 Revised Definitions

Section 2.2.1 has offered a generic definition of root causes. Nonetheless, it is
desirable to find a more specific definition, which is tailored to intrusion detection
and which provides stronger guidance to the people performing the root cause
analysis. Earlier work in the dependability field [127], lays the foundation for
such a revised definition.

31

32 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

Without embarking on a general discussion of dependability concepts, we
briefly show how these concepts apply to computer security [174]. To begin with,
the dependability community defines aninformation systemas a collection of in-
teractingcomponentssuch as hosts, printers, routers, LANs, etc. . Asecurity
failure occurs when the users of the information system notice a loss of confiden-
tiality, integrity, or availability. A corrupted or compromised component that may
lead to a subsequent security failure is called anerror. The adjudged or hypothe-
sized cause of an error is afault. Note that error and security failure are distinct
concepts. Specifically, a security failure occurs when an error “passes through”
the system-user interface and affects the service as perceived by the user. Finally,
IDSs performerror detection, and false positives are alarms that incorrectly rate a
component as erroneous.

For example, consider an information system that the user perceives as a sin-
gle black box. Moreover, assume that one component of the information system
is compromised by an attacker. This compromised component is an error, and
a successful attack in combination with the exploited vulnerability are the faults
that caused this error. The error remains invisible to the user as long as the at-
tacker keeps still. On the other hand side, system failure occurs when the attacker
degrades the system’s confidentiality, integrity, or availability to the point where it
becomes apparent to the user. Intrusion detection systems detect erroneous com-
ponents when they start to behave abnormally, or when they attack other compo-
nents. Therefore, intrusion detection is a form of error detection.

The above dependability definitions are too tight for our purposes. Specifi-
cally, an error was defined as a corrupted or compromised component, and a fault
was defined as the cause of an error. This thesis, however, is particularly inter-
ested in the causes of perceived errors. Aperceived erroris a component that
triggers alarms, no matter whether these alarms are true or false positives. Thus,
an actually compromised component as well as a healthy component that only the
IDS believes to be compromised are both perceived errors. To avoid clashes with
dependability terminology, we use the termroot causerather thanfault to refer to
the cause of a perceived error. More precisely:

Definition 3.1 A root cause is a problem that affects one or more components
and causes them to trigger alarms.Root cause analysisis the task of identifying
root causes as well as the components affected by them. �

Note that root causes are detached from the components they affect. Thus,
a root cause (e.g. a worm) affects one or more components (e.g. the hosts in a
subnet), which in turn causes these components to trigger alarms (when the worm

3.1. ROOT CAUSES AND ROOT CAUSE ANALYSIS 33

spreads by attacking other machines). Similarly, a non-standard protocol can af-
fect a server and cause it to trigger “Suspicious protocol” alarms. Root cause
analysis is concerned with identifying the type and locations of root causes.

The above definitions might not be as rigorous as one had hoped. However,
by linking the definition of root causes to the dependability concept of faults,
one can justifiably argue that there probably is no better definition. In fact, the
dependability community has used the notion of faults for over a decade without
suggesting a formal definition. Therefore, it is unlikely that there is a formal
definition for the intrusion detection equivalent of faults.

3.1.2 Genesis of Root Causes

Thegenesisof a root cause describes how it came into existence. In other words,
the genesis of a root cause describes the forces that introduced it. Studying the
genesis of root causes is important because it promotes a better understanding
of what root causes are and how/why they come into existence. It must be em-
phasized that this section doesnot attempt to classify root causes. Classifying
root causes is an extremely difficult task. In fact, attacks are only one type of
root causes, but even the problem of attack classification is highly controversial
[99, 121, 124]. Therefore, no attempt to classify root causes is made.

Figure 3.1 shows that root causes can be introduced intentionally or inadver-
tently. A root cause isintentional if a human being introduces it consciously
and on purpose. By contrast, a root cause isinadvertentif it is the unconscious
byproduct of some action. The distinction between intentional and inadvertent
root causes is subtle. For example, a malicious system administrator might inten-
tionally install a Trojan horse, or a thoughtless user might inadvertently install it
along with other software that she downloaded from the Internet. In both cases,
the end effect is the same, but the genesis of the Trojan horse (which is the root
cause in this example) is different.

Intentional root causes can be introduced withmaliciousintent or withnon-
maliciousintent. Malicious intent means that somebody brought the root cause
into existence, intentionally so that it would compromise system security. Ex-
amples of malicious root causes are worms and the execution of attack scripts.
Non-malicious root causes, on the other hand side, were introduced for the desir-
able functionality they provide. Desirable functionality can consist in newproto-
cols & servicesthat a system administrator installs to satisfy the user community.
However, some IDSs trigger alarms when they observe unknown protocols or ex-
ploitable services. Similarly, changes in thetopology & architecturecan cause
suspicious traffic patterns, which trigger alarms on many network-based IDSs.

34 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

Protocols &
services

System
management

Topology &
architecture

Malicious
malicious

Non− Failures &
misconfigurations

Trickery

InadvertentIntentional

Genesis

Figure 3.1: The genesis of root causes, or how root causes enter a system.

Finally, system managementcomprises certain highly desirable tasks such as vul-
nerability scanning, network mapping, are-you-alive messages, and the querying
of potentially sensitive MIB variables. All of these tasks can and frequently do
trigger intrusion detection alarms.

Root causes that were introduced inadvertently can result fromfailures & mis-
configurationsor from trickery. An example of a failure is the broken TCP/IP
stack of Chapter 1. A thoughtless user that launches an e-mail attachment and
thereby infects his machine with a virus is an example of a root cause that was
inadvertently introduced by trickery. Section 3.3.1 offers more examples of root
causes. Section 3.3.2 uses the results of this section to gain some general insights
into the alarm patterns that root causes induce.

3.2 Conceptual Problem Description

The present section lays the methodological foundation of this thesis. Specifically,
Section 3.2.1 explains how data mining can be used to support root cause anal-
ysis, and Section 3.2.2 specifies the algorithmic requirements that a data mining
technique should satisfy to be of maximal value for root cause analysis.

3.2.1 The Role of Data Mining in Root Cause Analysis

In this work, the role of data mining is to group alarms that have the same
root cause so that a human expert can interpret the resulting alarm groups in
terms of root causes. The entity relationship diagram of Figure 3.2 describes

3.2. CONCEPTUAL PROBLEM DESCRIPTION 35

Root cause 1 1manifests

is union of

1

N

Alarm group

N Mstored inAlarm

N

1

has

Alarm log1 NtriggersIDS
D

ata m
ining (autom

ated)

Interpretation
(manual)

Computer
world

Model
world

N

1

modeled by

Alarm
pattern

Figure 3.2: Entity relationship diagram of key concepts.

the relationship between alarms, root causes, and data mining in a more formal
manner. The dashed line in the figure separates computer world concepts (which
have an actual existence in the form of hardware components or memory state)
from model world concepts (which only exist in the world of our thinking). The
entities and relationships are as follows:

An IDS triggers zero or more alarmsai, i = 1, 2, 3,

Each alarmai has a unique root causerc(ai), which is the reason of its
existence. Alarms are stored in alarm logs. (Note that each alarm must
have a root cause because otherwise it would not exist. Moreover, accord-
ing to Definition 3.1, each alarm is caused by asingleproblem — its root
cause. Even though this problem might be the conjunction of multiple sub-
problems, we conceptually treat it as the single root cause.)

An alarm log is a multi-set (a.k.a. bag or collection) of alarms. Modeling
alarm logs as multi-sets is correct because alarms are implicitly ordered by
virtue of the time-stamp attribute. We use pointed brackets for multi-sets
(e.g.L1 = <a, a,b>, L2 = <b, c>) and re-define the set operators so
that they take multiple occurrences of the same element into account (e.g.
|L1| = 3, |L2| = 2, L1 ∪L2 =<a, a,b,b, c>, L1 * L2,<a, a>⊆ L1, etc.).

An alarm groupis a multi-set of alarms that share the same root cause. The
root causeRCmanifests itself in the alarm group<ai | rc(ai) = RC>.

The alarm log is the union of all alarm groups. Another way to look at this
is that the alarm groups are the result of partitioning the alarm log along the
boundaries of root causes.

36 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

An alarm group is modeled by analarm pattern. An alarm pattern is an
expression in some formal language that characterizes or summarizes the
alarms of an alarm group. Note that an alarm pattern is an abstraction of
the alarm group it models. Therefore, it can include alarms that are not in
the alarm group, and, conversely, it can exclude some alarms that the alarm
group actually contains. The principal requirement is that an alarm pattern
must model the main characteristics of an alarm group.

The gray arrows of Figure 3.2 specify anormative modelfor how root cause
analysisshouldbe done (see below for the practical infeasibility of this model).
According to this model, data mining partitions the alarm log into alarm groups,
and derives alarm patterns for the alarm groups. The alarm groups and patterns
are subsequently presented to a human expert who is tasked to interpret them in
terms of root causes. This interpretation task is vastly simplified by the availability
of alarm patterns. In fact, Section 3.3 will show that alarm groups can be large
and difficult to comprehend. Therefore, listing their constituent alarms can easily
overwhelm the human expert with a vast amount of information that is hard to
make sense of. Alarm patterns mitigate this problem by succinctly summarizing
alarm groups.

The practical infeasibility of the data mining step of Figure 3.2 results from the
requirement that all alarms of an alarm group must share the same root cause. The
data mining step cannot enforce this constraint because root causes are a model
world construct that data mining is not aware of. To illustrate this, let us consider a
machine whose broken TCP/IP stack fragments most IP traffic. Suppose that this
machine is behind a router that itself fragments a substantial fraction of the traffic
passing through it. Now, let an IDS in front of the router trigger a “Fragmented
IP” alarm for a packet from said machine. Unless substantial knowledge about
the state of the system is available, there is no way of deciding if the alarm’s
root cause is the broken TCP/IP stack or the fragmenting router. More complex
scenarios are conceivable. In summary, if only an alarm log is given, then it is not
possible to decide whether two or more alarms have the same root cause.

Given the infeasibility of constructing alarm groups, we do not scrap the root
cause analysis framework of Figure 3.2, but instead accept that data mining can
merely approximate alarm groups and their corresponding alarm patterns. Clearly,
a data mining technique is all the more useful, the closer it comes to being correct
and complete in the following sense:

Definition 3.2 In the context of this thesis, we call a data mining techniquecor-
rect if it is guaranteed to return nothing but alarm groups, i.e. multi-sets whose
constituent alarms share the same root cause. A data mining technique is called
completeif alarms of the same root cause are never assigned to separate multi-
sets. �

3.2. CONCEPTUAL PROBLEM DESCRIPTION 37

Intuitively, correctness means that a data mining technique reduces redun-
dancy by grouping alarms that share the same root cause. Incorrect data mining
techniques are undesirable because they can mix alarms of different root causes.
That makes it harder and possibly even misleading to interpret the data mining
results. Completeness without correctness enforces that alarms of the same root
cause are always bundled together (but possibly with further alarms of different
root causes). Completeness in combination with correctness guarantees that max-
imal alarm groups are found, i.e. alarm groups that cannot be grown any further
without violating the correctness property. Maximal alarm groups are desirable
because they eliminate as much redundancy as possible.

A correct and complete data mining technique partitions the alarm log along
root cause boundaries. As previously explained, such a data mining technique
does not exist. A correct but totally incomplete data mining technique performs
no grouping at all, and returns a separate alarm group for each alarm. Conversely,
a complete but totally incorrect data mining technique returns a single multi-set,
namely the alarm log itself. Both alternatives are useless. In general, the more
aggressively a data mining technique groups alarms, the better its chances to be
complete, and the higher its risk to become incorrect. Finding a data mining tech-
nique that balances correctness versus completeness is the topic of Section 3.3.

3.2.2 Algorithmic Data Mining Requirements

A priori, the root cause analysis approach of the last section does not stipulate
any particular technique for the data mining step. Clearly, a prospective data
mining technique should rate high with respect to correctness and completeness.
In addition, this section identifies five requirements that a data mining technique
should satisfy to be of maximal value to root cause analysis:

Scalability: IDSs can trigger well over a million alarms per month (cf. the col-
umn “Max” of Table 1.2, which indicates for the year 2001 the maximum
number of alarms per month). Therefore, scalability in the size of the alarm
log is an important requirement.

Noise tolerance: Alarm logs can be very noisy in the sense that they contain
bizarre, spurious, and almost unexplainable alarms [19, 168]. A prospective
data mining technique must tolerate this kind of noise.

Ease of use:It has been observed that many data mining techniques require years
of experience to be used correctly and effectively [82, 189]. Moreover,
improper use was associated to meaningless or even misleading results [9,

38 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

90, 105]. It is therefore desirable for a data mining technique to be easy and
intuitive to use. This is particularly true as the people performing root cause
analysis are most likely to be security rather than data mining experts.

Multiple attribute types: As explained in Section 1.4, intrusion detection alarms
can contain numerical attributes (e.g. counts and size attributes), categorical
attributes (e.g. port numbers and IP addresses), time attributes, and free-text
attributes (e.g. raw audit records). Ideally, a data mining technique should
support and use all of these attribute types.

Interpretability & relevance of results: The data mining step should only gen-
erate highly interpretable, relevant, and non-redundant results. This is
important because the alarm patterns are interpreted by a human expert.
Hence, to minimize the risk of misinterpretations and to limit the human
cost of working with the alarm patterns, it is essential for them to be of high
quality.

The scalability, ease of use, and multiple attribute type requirements rank
among the classic research challenges in data mining [82, 189]. Furthermore,
it has been observed that many existing data mining techniques tend to generate
large numbers of obvious or irrelevant patterns [28, 120, 137, 187]. This shows
how demanding the above requirements are, and how challenging it is to find a
data mining technique that is suitable for root cause analysis.

3.3 Approximation of Alarm Groups

The last section has shown that it is not possible to implement a correct and com-
plete data mining technique for root cause analysis. Therefore, the present section
investigates the next best alternative, namely the approximation of alarm groups.
For the time being, our goal is to specify a “good” approximation technique, with-
out regard to the algorithmic requirements of Section 3.2.2. The algorithmic re-
quirements and the issue of implementation will be considered in Chapter 4.

To find a data mining technique that is good at approximating alarm groups, it
is necessary to understand how data mining techniques work. Data mining tech-
niques assume that the dataset at hand contains certain patterns, and they search
for instances of these patterns. The patterns assumed are specific to each individ-
ual technique. For example, episode rule mining [142, 143] assumes sequential
patterns, periodicity mining [94] assumes periodic patterns, and linear regression
[53, 118] assumes that the dataset follows a linear pattern. Accordingly, these
data mining techniques search for sequential, periodic, and linear patterns, re-
spectively. Because patterns have a characteristic structure, it is relatively easy for
a data mining technique to spot their occurrences.

3.3. APPROXIMATION OF ALARM GROUPS 39

In other words, data mining techniques perform pattern extraction. Applied
to Figure 3.2, this means that data mining techniques discover alarm patterns,not
alarm groups. The alarm groups must be approximated after the fact by deter-
mining for each alarm pattern the multi-set of alarms that match it. As a con-
sequence, the question of which data mining technique is best at approximating
alarm groups is ill-posed, because data mining techniques are unaware of alarm
groups. Towards a better question, let us define that a root causeinducesan alarm
pattern if, in fact, the root cause manifests itself in an alarm group that can be
modeled by said alarm pattern (cf. Figure 3.2). Then, the right question is: What
are the alarm patterns that root causes typically induce, and which data mining
technique is best at finding them? The present section addresses this question.

By way of illustration, suppose that root causes induced periodic alarm pat-
terns. For the purpose of root cause analysis, we would then use a data mining
technique that extracts periodic patterns. Our implicit assumption is that such
a technique is likely to group alarms that actually share the same root cause.
Even though this assumption is not always correct, it is typical of the kind of
assumptions made in signature-based intrusion detection and, more generally, in
abductive inference (cf. Section 2.2.2). For example, attack signatures are gen-
erally derived by arguing that if an attack has the manifestationM , then detec-
tion of M implies the attack. Analogously, we argue that if root causes typi-
cally induce alarm patterns of classC, then detection of an alarm pattern from
classC is indicative of a root cause.

Section 3.3.1 studies ten representative root causes to understand the alarm
patterns that they induce, and Section 3.3.2 generalizes the results obtained. The
goal of both sections is to understand the alarm patterns thattypical root causes
induce. No attempt is made to characterize the alarm patterns that any arbitrary
root cause could possibly induce. In fact, such an attempt would be futile. How-
ever, as will become apparent in later sections, there is significant practical value
in understanding the alarm patterns that typical root causes induce.

3.3.1 Some Representative Examples

This section uses examples to illustrate root causes and the alarm patterns they
induce. The sample root causes considered are:

1. A HTTP server with a broken TCP/IP stack that fragments outgoing traffic.
Clearly, “Fragmented IP” alarms ensue when the server responds to clients
requests.

2. A misconfigured secondary DNS server, which does half-hourly DNS zone
transfers from its primary DNS server. The resulting “DNS Zone Transfer”
alarms are no surprise.

40 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

3. A Real Audio server whose traffic remotely resembles TCP hijacking at-
tacks. This caused our commercial IDS to trigger countless “TCP Hijack-
ing” alarms.

4. A firewall that has Network Address Translation (NAT) enabled funnels the
traffic of many users and thereby occasionally seems to perform host scans.
In detail, a NAT-enabled firewall acts as proxy for its users. When these
userssimultaneouslyrequest external services, then the firewall proxies
these requests and the resulting SYN packets resemble SYN host sweeps.

5. A load balancing reverse proxy such as Cisco LocalDirector that dispatches
Web client requests to the least busy server. The resulting traffic patterns
resemble host scans that trigger alarms on most IDSs.

6. A network management tool querying sensitive MIB variables triggers
alarms on most IDSs. (Other network management tasks such as vulner-
ability scanning or network mapping offer further examples of root causes.)

7. Macintosh FTP clients, which issue the SYST command on every FTP con-
nection, trigger an abundance of “FTP SYST command” alarms. The FTP
SYST command is reported by some IDSs because it provides reconnais-
sance information about the FTP server.

8. An attacker running a brute-force password guessing attack against our Tel-
net server.

9. A distributed denial-of-service (DDoS) attack [51] being launched from
an external network against a Web hosting site triggered “SYN Flooding“
alarms.

10. External Code Red infected machines [33] scanning the internal network
for vulnerable servers.

Note that the alarms of the first root cause originate from source port 80 of
the HTTP server. Moreover, all of these alarms are targeted at HTTP clients on
non-privileged ports. In addition, these alarms always have “Fragmented IP” as
alarm type. Therefore, the alarm pattern induced by the first root cause can be
represented as shown in the first row of Table 3.1. (For the sake of brevity, we
do not include time-stamps and the context attribute in Table 3.1.) Similarly, the
second row of the table shows that the second root cause induces the alarm pattern
“’DNS zone transfer’ alarms being triggered from a non-privileged port of the
secondary DNS server against port 53 of the primary DNS server“. Analogously,
the remaining rows of Table 3.1 show the alarm patterns that the other root causes
induce. The “RC” (root cause) column of the table refers to the item numbers
in the above enumeration of root causes; the entry “Non-priv.” denotes the set
{1025, . . . , 65535} of non-privileged ports, and the entry “Privileged” stands for
the set of privileged ports below 1025.

3.3. APPROXIMATION OF ALARM GROUPS 41

Table 3.1: The alarm patterns induced by ten sample root causes.

RC Source IP Src-Port Destination IP Dst-Port Alarm Type

1 HTTP server 80 HTTP clients Non-priv. Fragmented IP

2 Sec. DNS server Non-priv. Prim. DNS server 53 DNS zone transfer

3 Real Audit server 7070 Real Audio clients Non-priv. TCP hijacking

4 Firewall Non-priv. External network Privileged Host scan

5 Reverse proxy Non-priv. HTTP servers 80 Host scan

6 Mgmt. console Non-priv. SNMP clients 161 Suspicious GET

7 Mac FTP clients Non-priv. FTP server 21 FTP SYST

8 Attacker Non-priv. Telnet server 23 Password guessing

9 External network Non-priv. HTTP servers 80 SYN flood

10 External network Non-priv. Internal network 80 Code Red

The rows of Table 3.1 are calledgeneralized alarms. Generalized alarms are
similar to ordinary alarms, with the exception that attribute values may be general-
ized. Ageneralized attribute value, such as “Non-priv.” or “Internal network”, is
a concept name that represents a set of elementary attribute values. For example,
“Non-priv.” represents the set{1025, . . . , 65535} of non-privileged ports. Based
on the above examples, we postulate that many root causes manifest themselves in
alarm groups that are adequately modeled by generalized alarms. Byadequately,
we mean that generalized alarms are capable of capturing and representing the
main features of alarm groups. In other words, little information is lost when
modeling alarm groups by generalized alarms.

Another important observation is that most root causes of Table 3.1 are ex-
tremely persistent in the sense that they keep generating alarms until someone
removes them. As a consequence, these root causes are likely to manifest them-
selves inlarge alarm groups. For example, the first root cause triggers a “Frag-
mented IP” alarm whenever the HTTP server responds to a client request. Typi-
cally, HTTP servers are heavily used, and consequently, “Fragmented IP” alarms
abound. Similarly, the misconfigured secondary DNS server triggers one “DNS
zone transfer” alarm every thirty minutes. This makes 1440 alarms a month. Us-
ing analogous arguments, it becomes clear that all of the above root causes can be
expected to trigger large amounts of alarms. To summarize:

Proposition 3.1 (Alarm cluster hypothesis)Root causes frequently manifest
themselves inlarge alarm groups that areadequatelymodeled bygeneralized
alarms. �

As explained in Section 2.3.1, a cluster is a group ofsimilar objects. There-
fore, an alarm group that is adequately modeled by a generalized alarm is acluster.

42 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

This follows because the alarms of such an alarm group are mutually similar in
the sense that they are subsumed by the same (adequate) generalized alarm. This
explains the origin of the name “alarm cluster hypothesis”.

At the beginning of this section, we have explained that data mining techniques
perform pattern extraction. Therefore, they are only capable of discovering alarm
patterns, rather than alarm groups. This rose the need to determine the alarm pat-
terns that root causes typically induce, so that one could subsequently devise a
data mining technique to extract them. The outcome of this effort is the alarm
cluster hypothesis, which can be rephrased as: “For the most part, root causes in-
duce generalized alarms that adequately model large alarm groups”. Even though
the meaning of “large” and “adequate” is still vague, it follows from our discus-
sion that a data mining technique capable of extracting this kind of generalized
alarms is suitable for root cause analysis. Chapter 4 will give the terms “large”
and “adequate” a definite meaning. Moreover, it will propose a data mining tech-
nique for extracting the resulting kind of generalized alarms. The remainder of
this chapter is dedicated to further validating the alarm cluster hypothesis.

3.3.2 Generalization and Discussion

Given that the alarm cluster hypothesis was derived by means of examples, we
now examine its generality. To this end, two separate issues need to be discussed:
First, the claim that most root causes manifest themselves in large alarm groups,
and second, the claim that these alarm groups can be adequately modeled by gen-
eralized alarms.

To get some insight into the size of alarm groups, we turn to the genesis dia-
gram of Figure 3.1. According to the third level of this diagram, root causes can
have four different origins:

Intentional & malicious: Many root causes of this origin manifest themselves in
large alarm groups. This is particularly true for worms [192] and denial of
service attacks [51]. However, reconnaissance scans can also trigger many
alarms. Moreover, any attack that needs some tweaking to work properly
(e.g. password guessing or buffer-overflow attacks) can trigger a potentially
large number of alarms. (Clearly, stealthy attacks trigger only a few alarms.
That’s why they are stealthy.)

Intentional & non-malicious: Root causes of this origin are introduced to sat-
isfy some need. As a consequence, they are not likely to remain inactive,
but, quite to the contrary, can be expected to cause many alarms. For ex-
ample, new protocols, topologies, and system management tools are root

3.3. APPROXIMATION OF ALARM GROUPS 43

causes that were introduced because of the value they add to the system
users or administrators. Therefore, we expect these root causes to be used
actively, and to manifest themselves in large alarm groups.

Inadvertent failures and misconfigurations: From network management, it is
known that failures and misconfigurations tend to cause large amounts of
alarms [75, 98, 116] (see also Section 2.2.2).

Inadvertent trickery: Root causes of this origin are mostly viruses, which are
only marginally detected by IDSs. Therefore, at the time of this writing,
root causes of this origin play a minor role for intrusion detection.

From this discussion, it becomes clear that many root causes manifest them-
selves in relatively large alarm groups. The precise meaning of “large” depends on
the time-frame over which a root cause has been active. For example, the longer
a worm is active, the more alarms it obviously triggers. Finding a threshold to
define “largeness” is an important problem that the next chapter will address. For
the time being, “large” can be taken to mean thousands of alarms per month.

We now consider the second claim of the alarm cluster hypothesis, namely
that alarm groups can be adequately modeled by generalized alarms. To defend
this claim, let us consider an arbitrary root cause and letG be the alarm group, in
which this root cause manifests itself. Using the following two-step procedure, it
is possible to modelG by means of a generalized alarmg:

1. RepresentG by a singlemeta-alarmm, which is obtained by forming the
attribute-wise union of the alarms inG, i.e. setm[Ai] := ∪a∈Ga[Ai] for all
alarm attributesAi, where “∪” denotes the union of multi-sets. For example,
if G = < (1, A, β), (2, B, α), (3, B, α)> is given, thenm = (<1, 2, 3>,
<A,B,B>, <α, α, β>) follows. (Recall that we use pointed brackets, i.e.
“<” and “>”, for multi-sets.)

2. For each attributeAi, interpret the multi-setm[Ai] in terms of real-world
concepts, and find a descriptive concept namegi for it. This yields the gener-
alized alarmg = (g1, . . . , gn). In the above example, we might chooseg1 =
small−integer , g2 = B, g3 = α, and hence,g = (small−integer , B, α).

Obviously, generalized alarms are capable of modeling arbitrary alarm groups.
Note, however, that in the above example, the generalized alarmg does not exactly
and unambiguously represent the original alarm groupG. For example,g does
not match the alarm(1, A, β), even though it is contained in the alarm group
G. Conversely,g does match the alarm(1, B, α), despite the fact that it is not
contained inG. This raises the issue of how adequately generalized alarms model
alarm groups.

44 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

Intuitively, a generalized alarm adequately models an alarm group if it cor-
rectly captures the key information contained in the alarm group. Unfortunately,
not all information can be captured by generalized alarms. In particular, the first of
the above two steps destroys information about the association between attribute
values. For example, given the above meta-alarmm it is not clear whether or
not G contains an alarm in which the attribute values1 andB co-occur in the
same alarm. Our experience has shown that losing all information about the co-
occurrence of attribute values can, indeed, negatively influence model adequacy.

The amount of information lost in the second step depends on whether or not
there are good concept names to describe the multi-setsm[Ai]. Clearly, the more
descriptive the concept names, the smaller the loss of information. Fortunately,
we found the information loss due to inadequate concept names to be minor. In
general, once root causes had been understood, the concept names for the multi-
setsm[Ai] followed naturally. Nonetheless, step two does destroy information
about the frequency of attribute values. For example, the above generalized alarm
g = (small−integer , B, α) does not show whether the alarm groupG contains
one, ten, or a hundred alarms with a value of1 for the first attribute. To compensate
for this loss of information, we will later complement generalized alarms with
descriptive statistics that show the frequencies of attribute values.

In summary, this section has explained why root causes tend to manifest them-
selves in large alarm groups, and why in most cases, generalized alarms are an ad-
equate model for these alarm groups. In other words, the alarm cluster hypothesis
was shown to be plausible and rationally justifiable.

3.4 Testing the Alarm Cluster Hypothesis

According to the alarm cluster hypothesis, most root causes manifest themselves
in large alarm groups that are adequately modeled by generalized alarms. How-
ever, the reasoning that lead to this hypothesis was purely theoretical. Therefore,
it is advisable to experimentally check if the alarm cluster hypothesis is supported
by real-world intrusion detection alarms. The present section describes such an
experimental verification of the alarm cluster hypothesis.

At first glance, the experiments of Chapter 6 seem to offer sufficient experi-
mental evidence for the correctness of the alarm cluster hypothesis. However, the
experiments of Chapter 6 are not strictly objective because they involve the exper-
imenter’s judgment. One could have eliminated this subjectivity by documenting
in great detail the setup of the experiments, their results, and the evaluation of
these results. This, however, would have added an estimated 100 pages to this

3.4. TESTING THE ALARM CLUSTER HYPOTHESIS 45

thesis, which did not seem practical. The experiments presented next are objec-
tive in a formal sense, and they are simple enough to be presented in full detail.

The methodology used in the experiments is analogous to the one used in
tests of cluster tendency[23, 56, 80, 104]. Such tests decide if a given dataset
D can reasonably be assumed to contain clusters, even though the clusters them-
selves are not identified. In a nutshell, tests of cluster tendency use atest statistic
that measures in a single number the degree to which a dataset contains clusters.
Moreover, they determine the probability that a random dataset scores the same
or a better value in the test statistic. If this probability is negligible (say, smaller
than 0.001) then the datasetD is assumed to contain clusters. This, however, is
no proof for the existence of clusters. In fact, there are limits to how well a single
number can measure the existence of clusters. Moreover, even when the datasetD
scores a value in the test statistic that is highly unlikely for random datasets, this
does not exclude the possibility thatD is actually random and rid of any clusters.
Thus, tests of cluster tendency are plausibility checks that offer corroborating evi-
dence for the existence of clusters. Analogously, the test presented in this section
strengthens our confidence in the alarm cluster hypothesis, but cannot prove it.

In Section 3.4.1, we describe the experiment that we designed to test the alarm
cluster hypothesis. Moreover, the results obtained are presented. Section 3.4.2
explains in more detail the mathematics that are used in the experiment.

3.4.1 Experimental Setup and Results

The goal of this section is to experimentally validate the alarm cluster hypothesis.
To this end, we first derive a test statisticφp(·) that maps alarm logs to integers.
Specifically, for a given alarm logL, the test statisticφp(L) measures how wellL
supports the alarm cluster hypothesis. The proposed test statistic will return small
values to indicate strong support. Unfortunately, there is no obvious threshold
below whichφp(L) is “small enough” to confirm the alarm cluster hypothesis.
Therefore, we proceed in analogy to tests of cluster tendency, and define that
φp(L) is “small enough” if a random alarm log has a negligible probability of
scoring aφp-value that is equal to or smaller thanφp(L).

We desire the test statisticφp(L) to measure whether the alarm logL con-
tains — as predicted by the alarm cluster hypothesis — large alarm groups that
are adequately modeled by generalized alarms. However, as explained in Section
3.2.1, the test statisticφp(L) cannot decide if a multi-set of alarms is an alarm
group. Therefore, the best that the test statisticφp(L) can possibly measure is
the existence of “largemulti-sets of alarmsthat are adequately modeled by gen-
eralized alarms”. The problem with this formulation is that the terms “large” and
“adequately” are too vague to be tested in a formal way.

46 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

We begin by making the meaning of “adequate” more precise. Recall that
a generalized alarm adequately models a multi-set of alarms if it correctly cap-
tures the key features of the multi-set. Therefore, alarms themselves are the “most
adequate” generalized alarms because they are maximally specific and do not sac-
rifice any information to the generalization of attribute values. However, alarms
can only model multi-sets of identical alarms. By contrast, the alarms that arise in
the real world are generally mutually distinct. Therefore, alarms are too inflexible
to model anything but the most trivial multi-sets. More flexibility is needed.

The following observation points the way to a more flexible but still “ade-
quate” class of generalized alarms: For most alarms, moderate modifications of
the source port value, the time-stamp value, or the context value do not fundamen-
tally change the alarm’s semantic. In fact, the source port value is mostly set at
random. Time is specified in units of seconds, even though a granularity of hours
or less is generally sufficient. Finally, the context attribute stores raw network
packets, which contain a lot of noise in addition to the actual attack. On the other
hand side, the source IP address, the destination IP address, the destination port,
and the alarm type cannot be modified without substantially changing the meaning
of an alarm. This motivates the following working definition:

Definition 3.3 A generalized alarm is anadequate modelof a multi-set of alarms
if it contains an exact (i.e. ungeneralized) value for the source IP address, the
destination IP address, the destination port, and the alarm type, while permitting
arbitrary values for all other attributes. �

This definition of adequacy is not the only one possible, but it certainly is a
reasonable one. For example, letG be a multi-set of alarms that can be modeled
by the generalized alarmg ≡ ([Src−IP = 10.3.2.1] ∧ [Dst−IP = 10.3.2.2] ∧
[Dst−port = 80] ∧ [Alarm−type = 10]). (Attributes thatg does not specify can
assume arbitrary values.) Ifg is given, then we know with absolute precision the
most important attribute values for the alarms inG. For example, we know that all
alarms inG have the source IP address 10.3.2.1 rather than, say, 10.3.2.0, which
can make a big difference. It is this specificity with respect to the values of key
attributes that makesg an adequate model forG. For brevity, we call a generalized
alarmadequateif it is an adequate model for a multi-set of alarms.

To define the test statisticφp(·), let L be an alarm log of sizen, i.e.n = |L|.
LetM be the set of adequate generalized alarms that is obtained by projectingL
on the four attributes source IP, destination IP, destination port, and alarm type,
which characterize an adequate generalized alarm. Note that each alarma ∈ L
matches ag ∈ M , and conversely, eachg ∈ M is matched by at least onea ∈ L.
Let m := |M | denote the size ofM , let ϕ(g), g ∈ M , be the number of alarms
in L that matchg, and let the indicesi1, . . . , im be such thatϕ(gi1) ≥ ϕ(gi2) ≥

3.4. TESTING THE ALARM CLUSTER HYPOTHESIS 47

. . . ≥ ϕ(gim). For any fractionp ∈]0, 1], the test statisticφp(L) is defined as the
smallest integerk for which

∑k
z=1 ϕ(giz) ≥ dp × ne holds. Intuitively, the test

statistic tells you that theφp(L) most frequently matched generalized alarms in
M match at least100× p percent of the alarms inL.

Suppose thatp is large (say,p = 0.85) andφp(L) is small in comparison tom.
Then, the majority of alarms (namely, at leastdp×ne) match one out of a small set
of φp(L) generalized alarms. It follows that on the average, each of these gener-
alized alarms must be matched bydp× ne/φp(L) alarms. Given our assumptions
thatp is large andφp(L) is small, we conclude that the quotientdp × ne/φp(L)
is large. As a consequence, each of theφp(L) generalized alarms models alarge
multi-set ofdp × ne/φp(L) alarms on the average. For the alarm logL, this im-
plies that it consists of “large multi-sets of alarms that are adequately modeled by
generalized alarms”. Hence, the alarm logL supports the alarm cluster hypothe-
sis.

This raises the need to decide in a quantitative manner whenφp(L) is “small
enough” to support the alarm cluster hypothesis. In analogy to tests of clus-
ter tendency, we decide thatφp(L) is “small enough” if a random alarm logL′

has a probability of at most 0.00001 to score a valueφp(L
′) that is equal to

or smaller thanφp(L). In other words,φp(L) is “small enough” if the condi-
tion P [φp(L

′) ≤ φp(L) |L′ is random] ≤ 0.00001 holds. The threshold probabil-
ity 0.00001 is arbitrary, and any other small probability could have been chosen.
Random alarm logs must satisfy|L′| = |L| = n, and each alarma ∈ L′ must
have ag ∈ M , such thata matchesg. These requirements guarantee that the
alarm logsL′ andL are comparable [23, 104]. Conceptually, random alarm logs
are obtained by repeating the following experimentn times: With all generalized
alarms inM having the same probability, randomly choose one of them, generate
an alarm that matches it, and add this alarm toL′.

By way of illustration, the first IDS of Table 1.2 triggersn = 42018 alarms
in January 2001, and the setM consists ofm = 7788 generalized alarms. For
p := 0.85, we obtainφp(L) = 2238. In other words, using2238 out of the7788
generalized alarms inM , it is possible to model85% of the 42018 alarms inL.
Moreover, a random alarm logL′ satisfiesφp(L′) ≤ φp(L) with a probability of
less than 0.00001 (see Section 3.4.2 for a proof). Therefore, the alarm cluster
hypothesis is supported by the alarm log that IDS-1 generates in January 2001.
This is indicated by a tick in row 1 and column “Jan” of Table 3.2. The other
entries of the table can be interpreted in the same way: Each IDS and month
defines a separate alarm log, and a tick in the corresponding field indicates that
the alarm log supports the alarm cluster hypothesis. A dash, by contrast, stands
for no support. In all experiments,p is set to 0.85, and the “IDS” column of Table
3.2 refers back to Table 1.2 on page 7.

48 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

Table 3.2: Alarm logs that support the alarm cluster hypothesis (p=0.85).

IDS Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1
√ √ √ √ √ √ √ √ √ √ √ √

2
√ √ √ √ √ √ √ √ √ √ √ √

3
√

— — — — — — — — — — —

4
√ √ √ √ √ √ √ √ √ √ √ √

5
√ √ √ √ √ √ √ √ √ √ √ √

6
√ √ √

— —-
√ √ √ √ √ √ √

7
√ √ √ √ √ √ √ √ √ √ √

—

8
√ √ √ √ √

— — —
√ √ √ √

9
√ √ √ √

—
√ √ √ √ √

— —

10
√ √ √ √ √ √ √ √ √ √ √ √

11
√ √ √ √ √ √ √ √ √ √ √ √

12
√ √ √ √ √ √ √ √ √ √ √ √

13
√ √ √ √ √ √ √ √ √ √ √ √

14 — — —
√ √

—
√

—
√

—
√

—

15
√ √ √ √ √ √ √ √ √ √ √ √

16
√ √ √ √ √ √ √ √ √ √ √ √

It follows from Table 3.2 that 165 out of 192 alarm logs confirm the alarm
cluster hypothesis. That offers strong evidence in favor of the alarm cluster hy-
pothesis. In experiments not documented here, we have shown that this result is
robust with respect to variations in the definition of adequacy. Moreover, varia-
tions in the value ofp do not fundamentally change the result, either. However,
we have not experimented with other test statistics or other formalizations of the
random log concept. Both could affect the results.

3.4.2 Derivation of Probabilities

The last section considered an alarm logL to support the alarm cluster hypoth-
esis if the probabilityP [φp(L

′) ≤ φp(L) |L′ is random] is smaller than 0.00001.
Here, we address the problem of calculating this probability. However, experience
with similar problems [23, 104] suggests that it is very difficult to determine the
exact value of the probabilityP [φp(L

′) ≤ φp(L) |L′ is random]. We will there-
fore overestimate this probability. Note that an overestimate makes us err at the
expense of the alarm cluster hypothesis. In other words, the number of ticks in
Table 3.2 could only have increased if the exact probabilities had been used.

Let L, M , n = |L|, m = |M |, p ∈]0, 1], andφp(·) be as in Section 3.4.1, and
setk := φp(L). Recall that a random alarm log is defined as the result of iterating

3.4. TESTING THE ALARM CLUSTER HYPOTHESIS 49

the following experimentn times: Randomly choose a generalized alarm from
M , generate an alarm that matches this generalized alarm, and add this alarm to
the random alarm log under construction. Note that all generalized alarms inM
are equally likely to be chosen. These introductory remarks set the stage for the
following proposition:

Proposition 3.2 Let n, m, p, φp(·), andk be as above. For a random alarm log
L′, and forλ := dp× ne, the following inequality holds:

P [φp(L
′) ≤ k] ≤ 1

mn
·
(
m

k

)
·
n−λ∑
i=0

(
n

i

)
kn−i(m− k)i (3.1)

Proof : Attach an imaginary dart board to each generalized alarm inM and
imagine throwingn darts at them dart boards. Suppose that you hit each dart
board with the same probability, namely1/m. Then,P [φp(L

′) ≤ k] (which is the
left-hand side of inequality (3.1)) equals the probability that after throwing alln
darts, there arek dart boards that in total haveλ or more darts sticking. We will
use this more intuitive formulation of the problem, to prove inequality (3.1).

To generate all constellations wherek dart boards have at leastλ darts sticking,
we can proceed as follows: Choosek dart boards andj darts, withj = λ, . . . , n.
There are

(
m
k

)
×
(
n
j

)
ways to do this. Moreover, there arekj× (m−k)n−j ways to

throw the darts so that the selectedj darts hit one out of the selected dart boards,
whereas the remainingn− j darts hit some non-selected dart board. By summing
over allj, we see that this process generates

n∑
j=λ

(
m

k

)(
n

j

)
kj(m− k)n−j (3.2)

constellations. Note, however, that some constellations are generated multiple
times. Formula (3.2) counts each constellation as many times as it is generated,
and therefore overestimates the actual number of distinct constellations. It is easy
to transform formula (3.2) into

(
m
k

)
·
∑n−λ

i=0

(
n
i

)
kn−i(m−k)i (just move

(
m
k

)
before

the summation, substitutej := n − i, and observe that
(
n
n−i

)
=
(
n
i

)
). Finally,

formula (3.1) is obtained by dividing this quantity bymn, wheremn is the total
number of ways to thrown darts atm dart boards. �

Two notes are in order. First, we researched ways to improve the bound given
by Proposition 3.2, but the resulting formulae were complex and did not make a
big difference in practice. Second, while calculating Table 3.2, there were nine
instances where we found the estimate of formula (3.1) to be too coarse. In these
instances, we used a Monte Carlo simulation to obtain a better estimate of the
probability.

50 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

3.5 Experience with Episode Rules

If one is willing to accept the alarm cluster hypothesis, then clustering stands out
as the most adequate data mining technique for root cause analysis. Therefore,
the Chapters 4 through 6 focus on clustering as a tool for root cause analysis.
However, in network management, researchers have successfully used episode
rules in a framework similar to ours [119]. Therefore, it seems natural to mine
intrusion detection alarm logs for episode rules. Moreover, given that episode
rules and clustering search for very different alarm patterns, a success in the use
of episode rules would cast doubts on the appropriateness of clustering. Therefore,
we next define episode rules (cf. Section 3.5.1), and then report our experience in
using them for root cause analysis (cf. Section 3.5.2).

3.5.1 Definitions

To formally define episode rules, we need the following terminology [142, 143]:
An alarm predicateis a boolean expression that tests certain alarm attributes such
as the alarm type or the source IP address. Aserial (parallel) episodeis a se-
quence (multi-set)α =<Pi>1≤i≤n of alarm predicates. Note that the predicates
of a serial episode are ordered, whereas they have no order in parallel episodes.
Given a parallel episodeα and an alarm sequenceS, a time interval[ts, te] is an
occurrenceof α if it contains adistinctalarma for eachPi such thatPi(a) holds.
For occurrences of serial episodes, the alarm order must additionally match the
predicate order (i.e. the alarma satisfyingPi must occur before the alarma′ satis-
fying Pi+1). The interval[ts, te] is aminimal occurrenceof α if there is no proper
subinterval of[ts, te] that would also be an occurrence ofα. Finally,episode rules
are implication rules of the form

<P1, . . . , Pk> =⇒ <P1, . . . , Pk, . . . , Pn> [s, c,W] , (3.3)

where<Pi>1≤i≤k is a sub-episode of<Pi>1≤i≤n, and the two episodes are either
both serial or parallel. The parameterss, c, andW are calledsupport, confidence,
andwindow widthand their interpretation is the following: Episode<Pi>1≤i≤n
hass minimal occurrences in sequenceS. Moreover, ifte− ts ≤ W and[ts, te] is
a minimal occurrence of episode<Pi>1≤i≤k, then there is ac percent probability
for the super-episode<Pi>1≤i≤n to occur in[ts, ts + W]. Variations of these
definitions are described in [142, 143].

3.5.2 Experience

We have used episode rules to support root cause analysis. In our experiments,
we have mined the alarms from our experimental IDSs (cf. Table 1.2) for serial

3.5. EXPERIENCE WITH EPISODE RULES 51

and parallel episodes and episode rules. The set of admissible alarm predicates
was restricted to predicates of the formP (a) ≡ (∧ia[Ai] = ci), wherea is an
alarm, theAi are attributes, and theci are constants. The episodes and episode
rules discovered contained interesting patterns, including the following ones:

We discovered episodes that were characteristic of attack tools. For exam-
ple, we repeatedly found episodes that resulted from attack scenarios like
the one in Figure 3.3, where a source host triggers the same sequence of
alarm types against different target hosts. In general, the root cause of a
scenario like this is an attacker who tries out his or her attack tool against
different targets.

We discovered alarms that — for some IDS-specific reason — almost al-
ways entail other alarms. For example, on IDSs from one vendor, “TCP
FIN Host Sweep” alarms imply “Orphaned FIN Packet” alarms with a con-
fidence of 100% (but not vice versa).

We discovered episodes that resulted from legitimate system operations
such as remote file-system mounts or certain network management tasks.

In general, however, we found that episode rule mining tended to produce a
large number of irrelevant or redundant patterns. This is a well-known weakness
of episode rules [119]. Moreover, many of the discovered episodes and episode
rules were difficult to interpret in terms of root causes. Thus, given a large number
of not always easy to interpret episodes and episodes rules, locating the truly
interesting ones became a difficult and time-consuming activity. Finally, despite
our efforts, we could only identify the root causes of one to five percent of all
alarms. Given this low success rate in combination with the high effort required,
we concluded that episode rule mining is not particularly suitable for supporting
the root cause analysis of intrusion detection alarms.

Digression on attack detection: Our experience with episode rules has shown
that intrusion detection alarms are extremely monotonous and repetitive. Specifi-
cally, we noticed that almost all high-support episode rules consisted of multiple
instances of the same predicate, i.e.Pi = Pj generally held for alli andj in equa-
tion (3.3). The monotony of intrusion detection alarms is illustrated more clearly
by the following simple experiment: Let us randomly choose an IDS and a source
IP address that has triggered alarms at this IDS. This source IP address might have
triggered many alarms throughout the year 2001, but with a probability of 96%
they were all of the same alarm type! Moreover, the probability for all alarms to

52 CHAPTER 3. USING DATA MINING FOR ROOT CAUSE ANALYSIS

Figure 3.3: An attack tool being run against three targets.

hit the same destination port (destination IP address) is 95% (69%). These prob-
abilities were calculated using the 16 IDSs in Table 1.2, but we have confirmed
them (give or take a few percentage points) using over 90 million alarms from
more than 50 different IDSs.

The above observation inspires a simple paradigm for detecting attackers:
Source IP addresses that display diverse behavior, e.g. by triggering alarms of
many different types, are likely to perform an attack. In fact, hackers generally
have little a priori knowledge about their targets and therefore resort to trying dif-
ferent reconnaissance and attack techniques until they are successful or exhausted.
In doing so, hackers tend to trigger diverse alarm streams that involve many differ-
ent alarm types and targets. Given that this kind of diverse behavior is generally
rare, it is a rewarding heuristic to investigate it more closely when it occurs. Note,
however, that perfectly monotonous behavior (e.g. password guessing) can still
constitute an attack. Therefore, zooming in on diverse behavior helps in finding
real attacks, but not all attacks are diverse.

Chapter 4

Alarm Clustering

The present chapter describes the alarm clustering method that we have developed
for root cause analysis. To explain the need for a new clustering method, we
begin in Section 4.1 with a brief review of the field of cluster analysis. Section
4.2 uses the alarm cluster hypothesis (cf. Proposition 3.1) as a starting point to
derive an algorithmic framework for alarm clustering. The implementation of this
framework is described in Section 4.3. Possible extensions of the framework are
discussed in Section 4.4.

4.1 Introduction to Cluster Analysis

The purpose of this section is to survey the field of cluster analysis, and to explain
why we found it necessary to derive the new clustering method described in the
Sections 4.2 and 4.3. The reader not interested in this background material can
skip to Section 4.2 without loss of continuity.

Clustering seeks to group objects into categories (calledclusters) so that the
objects within a given category are alike, while they are different from objects
in other categories [9, 12, 81, 104]. The degree of alikeness between a pair of
objects is measured by a proximity index. We summarize the most widely used
proximity indices in Section 4.1.1. Section 4.1.2 gives an overview of several
popular clustering methods. This overview is necessarily incomplete because the
number of known clustering methods ranges in the hundreds [11]. Unfortunately,
virtually all of these methods are largely unexplored with respect to their strengths
and limitations. This makes it a challenging task to choose a suitable clustering
method for a given applied analysis. Section 4.1.3 discusses this problem and
explains the need for the new clustering method that is presented in the remaining
sections of this chapter.

53

54 CHAPTER 4. ALARM CLUSTERING

Our notation is as follows: LetD denote the dataset to be clustered, and letn
be its size (i.e.n = |D|). The elements inD are referred to asobjects. In cluster
analysis, it is common to represent the objectsxi ∈ D asp-dimensional tuples,
i.e. xi = (xi1, . . . , xip), i = 1, . . . , n. The tuple dimensions are calledattributes,
and thexiks are known asattribute valuesor measurements. The datasetD is
callednumerical, binary, or categorical, if all attributes are numerical, binary, or
categorical, respectively. The datasetD is mixedif it contains attributes of at least
two different types (e.g. numerical and binary).

4.1.1 Proximity Indices

Proximity indicesmeasure the degree of alikeness between a pair of objects. There
are two types of proximity indices, namely similarity indices and distance indices.
Similarity indices, such as correlation, return a large value to indicate a high de-
gree of alikeness, whereasdistance indices(e.g. Euclidean distance) return a small
value for this case. This subsection describes the most commonly used proximity
indices. A broader and more detailed treatment of proximity indices can be found
in [9, 81, 90, 104].

For numerical datasets, the most widely used distance index is the Minkowski
metric. Specifically, for a fixedr ≥ 1, the Minkowski distancedr(xi,xj) between
the objectsxi = (xi1, . . . , xip) andxj = (xj1, . . . , xjp) is defined as:

dr(xi,xj) :=

(
p∑

k=1

|xik − xjk|r
)(1/r)

(4.1)

The two most commonly used Minkowski metrics are the Euclidean distance
and the Manhattan distance, which are obtained forr = 2, andr = 1, respectively.
The squared Mahalanobis distance [5, 104] and Pearson’s correlation coefficient
[5, 81] are two further proximity indices for numerical datasets.

For binary datasets, the similarity between two objectsxi = (xi1, . . . , xip) and
xj = (xj1, . . . , xjp), xik, xjk ∈ {0, 1}, is most conveniently expressed in terms
of four countsa00, a01, a10, anda11, whereauv equals the number of indices
k ∈ {1, . . . , p}, for which xik = u andxjk = v holds. Note that the fourauv
values sum up top, the total number of attributes. Several similarity indices can be
defined from the four numbersa00, a01, a10, anda11. Anderberg reviews most of
them and puts them into context [9]. Two particularly common similarity indices
are the simple matching coefficientsM(xi,xj) := (a00+a11)/(a00+a01+a10+a11)
and the Jaccard coefficientsJ(xi,xj) := a11/(a01+a10+a11). Note that the simple
matching coefficient weights matches of 0’s the same as matches of 1’s, whereas
the Jaccard coefficient ignores matches of 0’s.

4.1. INTRODUCTION TO CLUSTER ANALYSIS 55

Categorical datasets generalize binary ones, in that categorical attributes can
assume more than two values. Accordingly, many proximity indices for the
categorical case are straightforward generalizations of their binary counterparts
[9, 90, 100]. For example, given two objectsxi andxj, the simple matching co-
efficient has been redefined assM(xi,xj) := m/p, wherem is the number of
attributes on which the two objects agree, i.e.m := |{k |xik = xjk}|. Similarly,
it has been suggested to encode categorical datasets by binary ones, so one can
directly apply the proximity indices from the binary case [9, 90].

So far, it has been assumed that all attributes of the datasetD have the same
type, where potential types are either numerical, binary, or categorical. In practice,
mixed datasets having attributes of at least two different types are very common.
Then, the distanced(xi,xj) between two objectsxi = (xi1, . . . , xip) andxj =
(xj1, . . . , xjp) is generally calculated as the sum of normalized attribute-distances
[9, 117]. Hence,d(xi,xj) :=

∑p
k=1 δ(xik, xjk), whereδ(xik, xjk) ∈ [0, 1] is the

normalized distance between the measurementsxik andxjk. Alternatively, a prox-
imity index can be defined by explicitly enumerating the proximitiespij between
all pairs(xi,xj) of objects. In this case, the proximity index is given by then× n
proximity matrix(pij)1≤i,j≤n, whose rows and columns correspond to the objects
in D, and whose entriespij specify the proximities between the objectsxi andxj.

4.1.2 Overview of Clustering Methods

Clustering methods organize a given dataset into an “adequate” number of clus-
ters. Clustering methods have been classified according to the kind of processing
they perform [90, 185, 203]. This gives rise to five classes, namelypartitioning
methods, hierarchical methods, density-based methods, grid-based methods, and
model-based methods. This classification is neither mutually exclusive nor ex-
haustive [62, 104], but given its popularity in data mining, we will still use it to
organize the following discussion.

Partitioning methods take two inputs: First, a datasetD = {x1, . . . ,xn} of
n objects, and second, an integerK, indicating the desired number of clusters.
Then, a partitioning method splits the given dataset intoK non-overlapping clus-
ters{C1, . . . , CK}, so that a criterion of cluster quality is optimized. Acriterion of
cluster qualityis a mathematical formula that captures one’s intuition that “good”
clusters should be compact and isolated. Assuming that the objectsxi ∈ D are
drawn from an Euclidean space, thesquared-errorE2

K is by far the most com-
monly used criterion of cluster quality:

E2
K(C1, . . . , CK) :=

K∑
k=1

∑
x∈Ck

[d2(x,mk)]2, (4.2)

56 CHAPTER 4. ALARM CLUSTERING

whered2(·, ·) denotes Euclidean distance, andmk := (1/|Ck|)×
∑

x∈Ck x is the
mean of clusterCk. Aside from squared-error, many other criteria of cluster qual-
ity have been suggested [81, 91]. However, squared-error makes good intuitive
sense and is efficient to compute.

The problem of partitioning a given set ofn objects intoK clusters so as
to optimize a stated quality criterion is, in general, NP-complete [45]. This fact
precludes an exhaustive search and has encouraged the development of simple
heuristic algorithms [9, 104]. The most popular of these is theK-meansmethod,
which locally minimizes the squared-error criterionE2

K . TheK-means method
(cf. Figure 4.1) starts with a randomly chosen set of cluster means (step 1) and
then repeatedly relocates objects so as to decrease the squared-errorE2

K (steps
2 to 7). Object relocation continues until the clusters no longer change between
consecutive iterations. TheK-means method has been proven to terminate [184],
but the resulting partition is frequently a local rather than a global optimum [5,
184]. Moreover, the cluster means initially selected in step 1 of Figure 4.1 are
known to significantly impact the quality of the results [5, 25, 148, 150, 151].

Variations of theK-means methods have mainly focused on three aspects:
First, the strategy used to select the initial cluster means [9, 25], second, the or-
der in which objects are relocated and means are recomputed [9, 140], and third,
heuristic ways of automatically adjusting the numberK of clusters [9, 15]. More-
over, genetic algorithms, simulated annealing, and other search methods have
been used to solve the optimization problem posed by partitional clustering [105].
Note that theK-means method is limited to numerical datasets since it requires
the ability to compute means. Huang extends theK-means paradigm to categor-
ical datasets [100]. PAM [117], CLARA [117], and CLARENS [162] are three
variants of theK-means method that operate on mixed datasets, provided an ap-
propriate proximity index (e.g. in the form of a proximity matrix) is specified.
Moreover, these methods are more robust thanK-means in the presence of noise
and outliers.

Hierarchical methods transform a dataset into a hierarchically structured se-
quence of partitions. The root of this hierarchy is the set of all objects, the leaves
are the individual objects, and intermediate layers represent partitions of varying
granularities.

The most widely used class of hierarchical methods starts with the trivial par-
tition, in which each object is placed into a separate cluster. Each subsequent
step takes two clusters of the preceding step and merges them into a single one.
This yields a new partition with one cluster less. The merging continues until
all objects have been amalgamated into one big cluster. Clearly, the algorithm
terminates aftern steps, wheren is the number of objects in the dataset. The

4.1. INTRODUCTION TO CLUSTER ANALYSIS 57

Input: A datasetD = {x1, . . . ,xn}, and an integerK;
Output: A partition of the datasetD intoK clustersC1, . . . , CK ;
Algorithm:

1: for k := 1 toK do Initialize mk to be a randomly chosen point fromD;
2: while the clustersCk changedo{
3: for k := 1 toK do // Relocate objects:
4: Ck := {x ∈ D | d2(x,mk) ≤ d2(x,mj), ∀j 6= k};
5: for k := 1 toK do // Compute the new cluster means:
6: mk := (1/|Ck|)×

∑
x∈Ck x;

7: }

Figure 4.1: TheK-means algorithm.

resulting sequence ofn hierarchically nested partitions can be represented by a
dendrogram, such as the one in Figure 4.2(a). Adendrogramis a binary tree
whose nodes have an associated height. Specifically, the node at heighti shows
the two clusters that were merged by stepi. Moreover, cutting the dendrogram
just above heighti yields1 + n− i subtrees, each of which represents one cluster
in the partition created by stepi. For example, step 5 of Figure 4.2(a) creates the
partition{ {1, 2, 3}, {4, 5}, {6, 7} }, which is shown in Figure 4.2(b).

Let us consider the merge step in more detail. In general, the merge step se-
lects two clustersCr andCs whose distance∆(Cr, Cs) is minimum among any
two clusters, i.e.Cr andCs must satisfy∆(Cr, Cs) = mini,j{∆(Ci, Cj) }. De-
pending on the distance measure∆(·, ·), one obtains different hierarchical meth-
ods. Specifically, letn be the number of objects in the dataset, and letd(x,y)
denote the distance between the objectsx andy. Three widely used measures of
inter-clusters distance are:

∆min(Cr, Cs) := min{ d(x,y) |x ∈ Cr,y ∈ Cs } (4.3)

∆max (Cr, Cs) := max{ d(x,y) |x ∈ Cr,y ∈ Cs } (4.4)

∆avg(Cr, Cs) :=
1

|Cr||Cs|
×
∑
x∈Cr

∑
y∈Cs

d(x,y) (4.5)

Note that the distance∆(·, ·) between two clusters is a function of the distances
d(·, ·) between individual objects. Equation (4.3) defines the well-knownsingle-
link method, which continuously merges the two clusters containing the closest
pair of objects, one from each cluster. Equation (4.4) defines thecomplete-link
method, and (4.5) defines thegroup average method. Many other definitions for
∆(·, ·) have been suggested [78].

The above class of hierarchical methods is known asSAHN(Sequential, Ag-
glomerative, Hierarchical, Non-overlapping) methods. The general time com-

58 CHAPTER 4. ALARM CLUSTERING

b) The partition created by step 5.

3 4 5 6 71 2

height

cut

a) A sample dendrogram.

2

3

4

5

6

7

1 3 4 5 6 71 2

Figure 4.2: A sample dendrogram and a partition it encodes.

plexity of SAHN methods isO(n2), even though algorithms with a smaller time
complexity exist for special cases [45]. BIRCH [205] and CURE [83] are two
methods that achieve linear run-times in the number of objects, and moreover
have better noise-tolerance than SAHN methods. However, both methods rely
on vector operations, which restricts their applicability to numerical datasets.
CHAMELEON [115] is another hierarchical method with good noise tolerance.
ROCK [84], finally, is a hierarchical method that was particularly designed for
categorical datasets.

Density-based methods define clusters as dense regions (i.e. regions containing
“many” objects per data volume) that are separated by low-density regions. We
describe DBSCAN [61] as a representative of the class of density-based meth-
ods. For a datasetD and an associated distance indexd(·, ·), the basic ideas of
DBSCAN can be summarized as follows:

1. Given the user-defined parametersε andMinObjs, an objectx ∈ D is called
acore objectif there are at leastMinObjsobjects in itsε-neighborhood, i.e.
|{y ∈ D | d(x,y) ≤ ε}| ≥ MinObjs must hold.

2. An objecty ∈ D is density reachablefrom an objectx if and only if
there is a chain of objectsz1, . . . , zk with z1 = x andzk = y, such that
z1, . . . , zk−1 are core objects andd(zi, zi+1) ≤ ε for i = 1, . . . , k − 1.

3. A clusterC is a non-empty subset ofD that ismaximal(i.e.∀x ∈ C : if y ∈
D is density reachable fromx, theny ∈ C) andconnected(i.e.∀x,y ∈ C :
there is anz ∈ C such thatx andy are density reachable fromz).

4.1. INTRODUCTION TO CLUSTER ANALYSIS 59

Using the above definition of clusters, DBSCAN finds all clusters in a dataset.
DENCLUE [95] generalizes DBSCAN and improves its run-time performance
by a factor of up to 45. CACTUS [74] is a density-based method specifically
designed for categorical datasets.

Grid-based methods quantize the data space into a finite number of cells that
form a grid structure. For example, quantization may break the 3-dimensional
cube[0, 3]× [0, 3]× [0, 3] ⊂ R3 into, say, 27 cells, namely[i, i+ 1]× [j, j + 1]×
[k, k + 1], with i, j, k ∈ {0, 1, 2}. Each cell of the resulting grid structure is used
to store various statistics about the data objects it contains. The actual clustering
operations are performed on the grid structure (rather than on the original objects),
which generally results in very fast processing times. WaveCluster [185] and
CLIQUE [1] are representative grid-based methods.

Model-based methods can be further subdivided into conceptual clustering
methods and mixture models.Conceptual clustering methodswere motivated by
the fact that most conventional clustering methods do not adequately address the
problem of representing clusters in an intelligible manner that supports under-
standing and decision making [81, 105, 146]. Conceptual clustering, by contrast,
puts cluster representation in the foreground and searches for clusters that have
“good” representations in a given description language [67, 146, 172]. Examples
of description languages include variants of predicate logic [21, 88, 146] as well
as probabilistic languages that lists the probabilities of attribute values [67, 195].
In addition, conceptual clustering methods are particularly strong at handling cat-
egorical datasets. CLUSTER/2 [146], COBWEB [67], and Attribute-Oriented
Induction (AOI) [88] are three well-known conceptual clustering methods.

Mixture models, the second type of model-based methods, assume that the
datasetD was generated byK multivariate distributionsM1, . . . ,MK . Cluster-
ing in this context means to group the objects according to the distributions that
generated them. More formally, we want to determine the membership function
γ : D → {1, . . . , K} that assigns each objectx ∈ D to the index of the clus-
ter/distributionMγ(x) that generated it. To this end, letfk(x|θk), k = 1, . . . , K, be
the density function of thek-th distributionMk, with θk being unknown model pa-
rameters. Given these definitions, and assuming that the datasetD is independent
and identically distributed, mixture models aspire to find theγ(·) andθ1, . . . , θK
that maximize the probability

L(D) =
∏
x∈D

fγ(x)(x|θγ(x)) (4.6)

of observing the datasetD. This optimization problem is typically solved by
means of the Expectation-Maximization (EM) algorithm [49]. Mixture models

60 CHAPTER 4. ALARM CLUSTERING

using Gaussian density functions are described in [16]. Mixture-models with a
Bayesian twist have been used by the AUTOCLASS system [34, 93]. Finally,
note that mixture models must not be used unless the parametric density functions
fk(x|θk) can be shown to adequately model the data generation process [91].

Other clustering methods that do not fit well in the above classification include
overlapping methods [10, 50, 108, 186], fuzzy methods [97, 182], and neural net-
works [159]. We do not consider these methods any further because their limited
scalability or restriction to numerical datasets [81, 105] conflict with our require-
ments of Section 3.2.2.

4.1.3 Choosing a Clustering Methods

In this section, we consider the problem of choosing a clustering method that
is suitable for analyzing a given datasetD. This is a challenging task because
there are hundreds of methods to choose from [11], their theoretical properties are
largely unexplored [5, 104, 148], and experimental studies have shown that the
performance of most clustering methods is strongly affected by the characteristics
of the datasets at hand [5, 148, 150].

A pragmatic approach to selecting a clustering method is to choose the method
that most closely satisfies the requirements of the application domain [69, 81]. For
example, if the datasetD is suspected to be large and noisy, then a scalable and
noise-tolerant clustering method is advisable. Similarly, if the application domain
requires deterministic results, then one should avoid clustering methods that use
sampling. Motivated by these examples, we have identified six features that affect
the suitability of clustering methods for a particular datasetD:

Supported data types: The ability of a clustering method to handle numerical,
categorical, or mixed datasets strongly influences its applicability to a given
dataset. For example, methods such asK-means that require numerical
datasets are useless for mixed or categorical datasets.

Time complexity: The time complexity of a method determines its scalability.
Clearly, methods with poor scalability are unsuitable for large datasets.

Noise tolerance: Noise (a.k.a. outliers) are objects that do not cluster naturally
with any other object [61]. Noisy datasets should only be analyzed by noise-
tolerant methods.

4.1. INTRODUCTION TO CLUSTER ANALYSIS 61

Number of input parameters: Many clustering methods are sensitive to their
input parameter settings, so that slightly different parameter settings can
produce markedly different clustering results [9, 90, 105, 203]. Moreover,
there are few guidelines for choosing “good” parameter values. As a conse-
quence, the usability of a clustering method decreases with the number of
input parameters [90, 203].

Input order dependence: Some clustering methods yield different results, de-
pending on the ordering of the objects in the input datasetD. In general,
input order dependence is undesirable [90].

Random sampling: Some clustering methods use random sampling to improve
their scalability [90, 117]. These methods are no longer deterministic, and
their random decisions can strongly influence their results [5, 90, 206].

Table 4.1 on the pages 62 and 63 uses these features to characterize the clus-
tering methods of Section 4.1.2. Even though this table is not exhaustive, it is
highly representative of the field as described by the widely read monographs
[9, 12, 81, 90, 104, 117]. Clearly, a survey table like this is necessarily a simpli-
fication. For example, the table does not show that DBSCAN can actually handle
mixed datasets, provided quadratic (i.e.O(n2)) run-times are accepted [90]. Sim-
ilarly, the trichotomy low / medium / high for noise tolerance is clearly simplistic.
Furthermore, some values of the table were difficult to determine. For example,
the authors of ROCK argue in favor of its noise tolerance [84]. However, Zaiane et
al. show that ROCK performs poorly in the presence of noise [203]. We found the
arguments by Zaiane et al. more convincing and gave ROCK a ranking of “low”.
This decision is certainly debatable. Finally, for clustering methods with optional
parameters, the table only indicates the minimum number of parameters that must
be set. For example, a user of BIRCHmustset at least four parameters, butmight
choose to tweak any of a number of additional parameters.

Table 4.1 can now be used to choose a suitable clustering method. As ex-
plained in Section 3.2.2, our application domain demands a scalable, noise-
tolerant, easy-to-use clustering method that supports mixed datasets. Additionally,
we require that the method has to be “robust”, i.e. deterministic and insensitive to
the input order. When applied to Table 4.1, these requirements attach a negative
mark to a method if(1) it scales quadratically or worse in the number of objects,
(2) if it has low noise tolerance,(3) if it burdens the user with four or more input
parameters,(4) if it cannot handle mixed datasets,(5) if it uses random sampling,
or (6) if it is input order dependent. For example, the K-means method receives
two negative marks, one because it cannot handle mixed datasets, and one be-
cause it is sensitive to noise. K-modes also receives two negative marks, one for

62 CHAPTER 4. ALARM CLUSTERING

Table
4.1:

M
ain

characteristics
ofclustering

m
ethods.

N
am

e
S

upported
data

types
T

im
e

com
-

plexity*
N

oise
toler-

ance
N

o.
ofinput

param
eters

Input
order

dependence
R

andom
sam

pling
N

otes

P
artitioning

m
ethods

K
-m

eans
[140]

num
erical

O
(k
n)

low
1

no
none

N
eeds

the
no.k

ofclusters
as

inputparam
eter;initially

chosen
m

eans
strongly

affectthe
results

[25];only
suitable

w
hen

allclusters
have

sim
ilar

sizes
[90];

K
-m

odes
[100]

categorical
O

(k
n)

m
edium

1
yes

none

P
A

M
[117]

m
ixed

O
(k(n−

k)
2)

m
edium

1
no

none

C
LA

R
A

[117]
m

ixed
O

(k
3

+
k
n)

m
edium

2
no

yes

C
LA

R
A

N
S

[162]
m

ixed
O

(k(n−
k)

2)
m

edium
3

no
yes

H
ierarchicalm

ethods

S
A

H
N

[81,104]
m

ixed
O

(n
2)

m
edium

0
no

none

B
IR

C
H

[205]
num

erical
O

(n)
high

≥
4

yes
none

C
U

R
E

[83]
num

erical
O

(S
2

+
n)

high
5

no
yes

R
O

C
K

[84]
categorical

O
(S

2
log

S
)

low
[203]

2
no

yes

C
H

A
M

E
LE

O
N

[115]
m

ixed
O

(n
2)

high
≥

3
no

none

*
W

ere
n

is
the

num
ber

ofobjects
in

the
inputdataset,

k
is

the
num

ber
ofreturned

clusters,and
S

is
the

sam
ple

size.

4.1. INTRODUCTION TO CLUSTER ANALYSIS 63
Ta

bl
e

4.
1:

M
ai

n
ch

ar
ac

te
ris

tic
s

of
cl

us
te

rin
g

m
et

ho
ds

(c
o

n
tin

u
e

d
).

N
am

e
S

up
po

rt
ed

da
ta

ty
pe

s
T

im
e

co
m

-
pl

ex
ity

*
N

oi
se

to
le

r-
an

ce
N

o.
of

in
pu

t
pa

ra
m

et
er

s
In

pu
t

or
de

r
de

pe
nd

en
ce

R
an

do
m

sa
m

pl
in

g
N

ot
es

D
en

si
ty

-b
as

ed
m

et
ho

ds

D
B

S
C

A
N

[6
1]

nu
m

er
ic

al
O

(n
lo

g
n

)
hi

gh
2

no
no

ne

D
E

N
C

LU
E

[9
5]

nu
m

er
ic

al
O

(n
lo

g
n

)
hi

gh
2

no
no

ne
In

pr
ac

tic
e,

up
to

45
tim

es
fa

st
er

th
an

D
B

S
C

A
N

[9
5]

;

C
A

C
T

U
S

[7
4]

ca
te

go
ric

al
O

(n
)

m
ed

iu
m

2
no

no
ne

Te
nd

s
to

pr
od

uc
e

a
la

rg
e

nu
m

be
r

of
cl

us
te

rs
[7

3]
;

G
rid

-b
as

ed
m

et
ho

ds

W
av

eC
lu

st
er

[1
85

]
nu

m
er

ic
al

O
(n

)
hi

gh
≥

2
no

no
ne

O
nl

y
su

ita
bl

e
fo

r
lo

w
-

di
m

en
si

on
al

da
ta

[1
85

];

C
LI

Q
U

E
[1

]
m

ix
ed

O
(n

)
m

ed
iu

m
2

no
no

ne
G

en
er

at
es

re
ad

ab
le

cl
us

te
r

de
sc

rip
tio

ns
[1

];

M
od

el
-b

as
ed

m
et

ho
ds

C
O

B
W

E
B

[6
7]

ca
te

go
ric

al
O

(n
lo

g
k
)

lo
w

[6
8]

0
ye

s
no

ne
T

im
e

&
m

em
or

y
de

m
an

ds
te

nd
to

be
hi

gh
[9

0]
;

A
O

I[
86

,8
7,

88
]

m
ix

ed
O

(n
lo

g
k
)

m
ed

iu
m

≥
2

no
no

ne
G

en
er

at
es

re
ad

ab
le

cl
us

te
r

de
sc

rip
tio

ns
;

M
ix

tu
re

m
od

el
s

[1
6,

34
,7

1]

m
ix

e
d,

if
at

-
tr

ib
ut

es
ar

e
st

at
is

tic
al

ly
in

de
pe

nd
en

t

O
(k
n

)
m

ed
iu

m
≥

2
no

no
ne

Lo
ca

l
m

ax
im

a
[9

1]
,

hi
gh

ru
n-

tim
es

[2
6,

70
,

71
],

an
d

m
od

el
-s

el
ec

tio
n

[9
1]

po
se

pr
ob

le
m

s
in

pr
ac

tic
e;

*
W

er
e
n

is
th

e
nu

m
be

r
of

ob
je

ct
s

in
th

e
in

pu
td

at
as

et
,

k
is

th
e

nu
m

be
r

of
re

tu
rn

ed
cl

us
te

rs
,a

ndS
is

th
e

sa
m

pl
e

si
ze

.

64 CHAPTER 4. ALARM CLUSTERING

not supporting mixed datasets, and one for being sensitive to the input order. In
fact, CLIQUE, AOI, and mixture models are the only three methods in Table 4.1
that receive no negative marks. Therefore, they are clear candidates for the alarm
clustering task.

A closer investigation of CLIQUE reveals that its support for mixed datasets
is rather limited [1]. Moreover, Section 4.3.3 will show that AOI is still too noise
sensitive for intrusion detection alarms. Finally, the notes column of Table 4.1
indicates some drawbacks of mixture models (see also page 59): First, mixture
models can only find local optima. Second, even though their theoretical time
complexity is attractive, they do not scale well in practice. Third, it is rather
difficult to find parametric density functions that adequately model the alarm gen-
eration process. Thus, neither CLIQUE, nor AOI, or mixture models are by them-
selves fully satisfactory. This justifies the new clustering method of the Sections
4.2 and 4.3. It is interesting to note that this method is a clone between CLIQUE
and AOI, with stronger resemblance to AOI.

4.2 A Framework for Alarm Clustering

Chapter 3 has explored the problem of finding a data mining technique that is
suitable for root cause analysis. To summarize, analarm groupwas defined as
a multi-set of alarms that share the same root cause. We explained that ideally,
a data mining technique should recover alarm groups, but this was shown to be
impossible. Therefore, the problem of approximating alarm groups was raised.
This lead us to analyze the kind of alarm patterns that root causes typically in-
duce. The idea was that if we understood the manifestations of root causes (i.e.
their alarm patterns), then we could discover root causes by spotting their man-
ifestations. This kind of reasoning, called abduction (cf. Section 2.2.2), is not
mathematically correct, but very common in practice. Our investigation of root
causes and their alarm patterns culminated in the alarm cluster hypothesis (cf.
Proposition 3.1) according to which most root causes trigger many alarms, and
the multi-sets of these alarms can be adequately modeled by generalized alarms.
Therefore, the data mining problem to be solved is one of finding generalized
alarms that adequately model large multi-sets of alarms.

From a clustering point of view, this problem becomes one of defining a suit-
able proximity index. This proximity index must take two alarms as input and
return a numerical measure of how adequately these alarms can be modeled by a
single generalized alarm. In other words, the proximity index must quantify our
intuitive notion of “adequacy”. Section 4.2.1 proposes such an index, which re-
turns small values when an adequate model exists. Hence, the index is a distance

4.2. A FRAMEWORK FOR ALARM CLUSTERING 65

index. Section 4.2.2 extends this distance index from pairs of alarms to multi-sets
of alarms. Moreover, it defines the alarm clustering problem according to which
we want to find multi-sets of alarms that minimize the value of the distance index
while having a user-defined minimum size. This minimum size parameter for-
malizes our hitherto intuitive concept of “largeness”. Section 4.2.3 discusses the
generality of our alarm clustering framework.

Note that this section proposes a framework for alarm clustering, rather than a
single way of clustering alarms. In particular, instead of defining a single distance
index, we introduce a principled way of defining such indices. Different instanti-
ations of this framework are possible. For example, the sense of adequacy used in
Section 3.4 is one possible instantiation of the framework.

4.2.1 A Distance Index that Measures Adequacy

Section 4.1.1 has shown that few proximity indices exist for categorical attributes.
Intrusion detection alarms contain time, numerical, and free-text attributes in ad-
dition to categorical attributes (cf. Section 1.4), which further complicates mat-
ters. The distance index presented here has its origin in the field of information
retrieval, where it has been proposed to use generalization hierarchies to define
distance [135, 178, 179, 180]. Very briefly, a generalization hierarchy (a.k.a.is-a
hierarchy) is a single-rooted directed acyclic graph that shows how concepts are
organized into more general concepts. For example, a generalization hierarchy
might state that hostmickeyis a Web server, and that hostdonaldis a Web server,
as well. In this case, we definemickeyanddonald to have distance two because
the shortest path connecting them via a common ancestor has length two.

Towards a formal treatment of distance, recall that we model alarms as tuples
over then-dimensional attribute space dom(A1) x . . . x dom(An), where dom(Ai)
is the domain (i.e. range of possible values) of attributeAi. A generalized at-
tribute valueis a concept name that represents a subset of the values in dom(Ai),
i ∈ {1, . . . , n}. For example, the generalized attribute valueWeb-servermight
represent the set{mickey , donald} of two individual hosts. Theextended do-
main Dom(Ai) of attributeAi is the union of the domain dom(Ai) and the
set of generalized attribute values that have been defined forAi. (The prob-
lem of defining meaningful generalized attribute values is considered in Sec-
tion 4.2.3.) Finally, given these definitions, ageneralized alarmis a tuple in
[Dom(A1) x . . . x Dom(An)]r [dom(A1) x . . . x dom(An)].

For each attributeAi, let Gi be a single-rooted directed acyclic graph (DAG)
on the elements of the extended domain Dom(Ai). The graphGi is called agen-
eralization hierarchy. For two elementsx, x̂ ∈ Dom(Ai), we call x̂ a parentof

66 CHAPTER 4. ALARM CLUSTERING

x if the generalization hierarchyGi contains an edge from̂x to x. The element̂x
is anancestorof x if x̂ 6= x holds, and there is a directed path from̂x to x (in
symbols:xC x̂). Forx = x̂ or xC x̂, we writex E x̂, and callx̂ aweak ancestor
of x. The distanced(x1, x2) between any two elementsx1, x2 ∈ Dom(Ai) is the
length of the shortest path that connectsx1 andx2 via a common weak ancestor
x̂, i.e. d(x1, x2) := min{ δ(x1, x̂) + δ(x2, x̂) | x̂ ∈ Dom(Ai), x1 E x̂, x2 E x̂ },
whereδ(·, ·) measures the length of the shortest path between two nodes1.

Next, we extend these definitions from attributes to alarms. To this end, let
a, â ∈ X1≤i≤nDom(Ai) denote two (possibly generalized) alarms. The alarms
a and â satisfy a E â if and only if a[Ai] E â[Ai] holds for all attributes
Ai. If, additionally, a[Aj] C â[Aj] holds for at least one attributeAj, then we
write a C â, and say thata is morespecificthan â, while the alarm̂a is called
moreabstractor generalthana. The distanced(a1, a2) between any two alarms
a1, a2 ∈ X1≤i≤nDom(Ai) is defined as the weighted sum of attribute distances,
i.e.d(a1, a2) :=

∑n
i=1 wi × d(a1[Ai], a2[Ai]), with weightswi ∈ R+.

By way of illustration, Figure 4.3 shows a network topology, a sample alarm
log, and the generalization hierarchies that one might want to use for IP addresses
and port numbers in this environment. (For the time being, please ignore the
“Count” column in Figure 4.3(b).) Let us verify that the following holds:

The extended domain Dom(IP) of IP addresses is the union of elementary
IP addresses (i.e. the set dom(IP) = {p.q.r.s | p, q, r, s ∈ {0, . . . , 255} })
and generalized IP addresses (i.e. the set{HTTP/FTP, Firewall, Net-A, . . . ,
Net-Z, DMZ, Internet, Any-IP}). Similarly, the extended domain of port
numbers is{1, . . . , 65535,Privileged,Non-privileged,Any-port}.
According to Figure 4.3(c), the IP addressip1 is a HTTP and FTP server,
which is a DMZ machine, which, more generally, is any IP address. More
succinctly, this relationship can be expressed asip1 C HTTP/FTP C
DMZ C Any-IP. Moreover,ip1 E ip1 andd(ip1 ,Any-IP) = 3 hold.

Assuming that all weights equal one, i.e.w1 = w2 = 1, we find that
d((ip1 , ip4), (ip1 , ipA1)) = d(ip1 , ip1) + d(ip4 , ipA1) = 0 + 6 = 6.

Why doesd(a1, a2) measure how adequately the alarmsa1 and a2 can
be modeled by a generalized alarmg? To answer this question, assume that
all weights equal one, i.e.wi = 1 for i = 1, . . . , n. Moreover, letg ∈
X1≤i≤nDom(Ai) be any generalized alarm to which both alarms can be gener-
alized, i.e.a1, a2 E g. Note thatdi := d(g, ai), i = 1, 2, is the number of times

1Rada et al. useδ(·, ·) as their distance index [178, 179]. Our preference ford(·, ·) overδ(·, ·)
is purely methodological. In fact, we consider the indexd(·, ·) more intuitive, and more consistent
with other work that uses generalization hierarchies to define distance [135, 180]. However, the
alarm clustering problem as defined in Section 4.2.2 is not affected by whether we choosed(·, ·)
or δ(·, ·) as our distance index.

4.2. A FRAMEWORK FOR ALARM CLUSTERING 67

ipA1
ipB1

...

ipZ1

ip4

...

ipA1
ipB1

 1
 1

...

ipZ1 1

...

ip4
ip4

ip4

... ...

b) Sample alarm log.

Dst−IPSrc−IP

I N T E R N E T
ip1
ip1

 1
 1

...

ip1 1

Count
ip1 1000

Net−A

ipA1 ...

Net−Z

ipZ1 ...

Internet

Firewall

ip4 ip5ip1 ip2

HTTP/FTP

DMZ

ip3

Any−IP

a) Network.

DMZ

Intranet

ipA1

Net−A

ip3

IDS
ip4 Firewall

ipZ1

ip1

ip2

ip5

Net−Z

HTTP/FTP

Privileged

1 ... 80 ... 1024

Any−port

1025 ... 65535

Non−privileged

c) Generalization hierarchies for IP addresses and port numbers.

Figure 4.3: Network, alarm log, and generalization hierarchies of the running
example.

that an attribute in alarmai must be generalized to transformai into g. Therefore,
the smaller the sumd1 + d2 is, the smaller the number of generalization steps that
separateg from a1 anda2, and the more adequate the modelg is for the alarms
a1 anda2. Conversely, if the sumd1 + d2 is large, theng is an inadequate model
because it is too abstract, and insufficiently captures the detailed information of
the alarmsa1 and a2. We can therefore use the sumd1 + d2 to measure the
adequacy ofg. Given that the distanced(a1, a2) equals the minimum value that
the sumd1 + d2 can possibly assume for anyg, we see thatd(a1, a2) measures
the adequacy of the most adequate generalized alarm. Therefore, a small distance
valued(a1, a2) implies that an adequate model exists for the alarmsa1 anda2.

4.2.2 The Alarm Clustering Problem

In generalization of the distanced(·, ·), we now define theheterogeneityH(C) of a
multi-setC of alarms. Heterogeneity is a function that returns a small value when

68 CHAPTER 4. ALARM CLUSTERING

the multi-setC can be adequately modeled by a generalized alarm. To formally
define heterogeneity, letg be a generalized alarm to which all alarms inC can
be generalized, i.e.∀a ∈ C : a E g must hold. The average distanced̄(g, C)
betweeng andC, and the heterogeneityH(C) are defined as follows:

d̄(g, C) := (1/|C|)×
∑
a∈C

d(g, a) (4.7)

H(C) := min{ d̄(g, C) |g ∈ Xn
i=1Dom(Ai), ∀a ∈ C : a E g } (4.8)

Intuitively, average distance measures how adequately the generalized alarm
g models the multi-setC on the average. Moreover, a small heterogeneity value
implies that there exists a generalized alarm that modelsC adequately. A general-
ized alarmg with ∀a ∈ C : a E g andd̄(g, C) = H(C) is called acoverof C. A
cover ofC is a maximally adequate model forC. If all generalization hierarchies
are trees, rather than DAGs, then there exists exactly one cover for each multi-set
C of alarms. Finally, forC = {a1, a2}, we haveH(C) = 1/2 × d(a1, a2). The
data mining problem to be solved now becomes:

Definition 4.1 Let L be an alarm log,min size ∈ N an integer, andGi, i =
1, . . . , n, a generalization hierarchy for each attributeAi. Thealarm clustering
problem (L,min size,G1, . . . ,Gn) is to find a multi-setC ⊆ L that minimizes
the heterogeneityH(C), subject to the constraint that|C| ≥ min size holds. We
call C analarm cluster or cluster for short. �

In other words, among all multi-setsC ⊆ L that satisfy|C| ≥ min size, a
multi-set with minimum heterogeneity has to be found. If there are several such
multi-sets, then any one of them can be picked. Note that themin size parameter
formalizes our hitherto intuitive notion of “largeness”, which was first introduced
in Proposition 3.1. Finally, once the clusterC has been found, the remaining
alarms inL r C can be searched for additional clusters. In particular, one might
decide to use a differentmin size value forL r C, an option that is useful in
practice.

In the terms of Chapter 3, alarm clusters approximate alarm groups. While the
alarms of an alarm group share (per definition) the same root cause, we have no
guarantee that the same holds for the alarms of an alarm cluster. Nonetheless, for
a reasonably chosenmin size value, it is justified to believe that most alarms of an
alarm cluster do share the same root cause. In fact, the alarm cluster hypothesis
(Proposition 3.1) states that root causes generally manifest themselves in alarm
clusters. Thus, having found an alarm cluster, it is plausible to postulate that a root
cause was at its origin. Chapter 5 continues this discussion and examines ways of
verifying whether the alarms of an alarm cluster share the same root cause.

4.2. A FRAMEWORK FOR ALARM CLUSTERING 69

It is interesting to note that from a purely practical point of view, it is prob-
ably sufficient when the majority of alarms in an alarm cluster share the same
root cause. To see why, just observe that alarm clusters are generally so large that
analysts rely on covers (rather than alarm clusters) for root cause analysis. This,
however, diminishes the influence that any individual alarm can have on the out-
come of the root cause analysis. In particular, if adding or removing an alarm to
or from an alarm cluster does not change the cover of the alarm cluster, then this
alarm cannot impact a root cause analysis that relies exclusively on the cover.

4.2.3 Definition of Generalization Hierarchies

Our alarm clustering framework assumes that meaningful generalization hierar-
chies have been defined for all alarm attributes. Figure 4.3(c) shows that such
generalization hierarchies exist for IP addresses and port numbers. This section
suggests further generalization hierarchies for numerical, time, and free-text at-
tributes. The generalization hierarchies of this section should be seen as examples
that demonstrate the usefulness and versatility of the framework. Other general-
ization hierarchies are possible and might prove useful in practice.

Numerical attributes are dealt with by discretizing them into hierarchically
nested intervals. In the simplest case, a human expert manually discretizes each
numerical attribute. In doing so, the expert might be bound by regulations, which,
for example, might stipulate that “children”, “adolescents”, “adults”, and “senior
citizens” are (per definition) people in the age ranges[1, 10[, [10, 20[, [20, 65[,
and[65,∞], respectively. In other cases, the human expert is free to exercise her
judgment. For example, suppose that the severity of an alarm is measured by a real
number in the range from 1 to 97. Assuming that all severity values in this range
are equally likely, the expert might decide that a tree of height four and fan-out
four constitutes a useful generalization hierarchy. The leaves of this tree are the
values in[1, 97[, the next higher level consists of the intervals[1+6× i, 7+6× i[,
i = 0, . . . , 15, followed by the intervals[1 + 24 × i, 25 + 24 × i[, i = 0, . . . , 3.
The interval[1, 97[constitutes the root of the generalization hierarchy.

A drawback of user-defined generalization hierarchies is that they are static.
In fact, their inability to adjust to the actual distribution of data values can make
them a rather unnatural choice. For example, consider a case where 90% of sever-
ity values fall into the range[1, 20]. The aforementioned balanced generalization
hierarchy is not particularly suitable for this case, because it is too coarse-grained
in the range[1, 20], while being too detailed in the range]20, 97[. Dynamic gen-
eralization hierarchies, which are constructed at run-time to fit the actual data
distribution, are a pragmatic way to mitigate this shortcoming [52, 89, 139].

70 CHAPTER 4. ALARM CLUSTERING

In the simplest case, algorithms for the construction of dynamic generaliza-
tion hierarchies construct hierarchies such that all intervals at a given level of the
hierarchy contain the same number of data values [89]. This type of algorithm has
the drawback that it assigns close values (e.g. 4 and 5) to distinct intervals, while
putting distant values (e.g. 22 and 87) into the same interval, if this is necessary
to equalize the number of data values per interval. The resulting generalization
hierarchies can be rather counter-intuitive. To mitigate this problem, clustering
has been used to find intervals that reflect the natural grouping of the data values
[139, 147]. Other algorithms for the construction of dynamic generalization hier-
archies are surveyed by Dougherty et al. [52]. This is not the place to explore these
algorithms further, nor is it our intention to advocate any one of them. Instead,
we conclude that the construction of generalization hierarchies for numerical at-
tributes is a well-understood problem that has many practical solutions.

For time attributes, one typically wishes to capture temporal information such
as the distinction between weekends and workdays, between business hours and
off hours, or between the beginning of the month and the end of the month. To
make the clustering method aware of concepts like these, one can use general-
ization hierarchies such as the ones in Figure 4.4. For example, the left-hand
generalization hierarchy shows that the time-stampts1 can be generalized to the
conceptsSat, Weekend, and ultimately,Any-day-of-week. The right-hand gener-
alization hierarchy shows how time-stamps can be generalized according to when
during a month they were generated.

It can be desirable to use the two generalization hierarchies of Figure 4.4 si-
multaneously. To this end, one could combine the two hierarchies into a single
one, in which each time-stamp has two parents — one that corresponds to its day
of the week and one that corresponds to its day of the month. A drawback of this
approach is that it makes the generation of covers more cumbersome. (Recall that
covers are the generalized alarms that model alarm clusters, see page 68.) To see
why, let C be an alarm cluster whose constituent alarms occur on Monday the
second of the month. Unfortunately, the concept “Mon 2nd” is not contained in
the combined generalization hierarchy. Therefore, it is not possible to find a cover
that has its time attribute set to “Mon 2nd”. Several solutions are conceivable:

1. One could accept the loss of information and decide that a cover indicating
either “Mon” or “2nd” is good enough.

2. One could generate multiple covers forC, but these covers are mostly re-
dundant and only differ in the values of their time-stamp attributes.

3. One could construct the “full cross-product” of the two generalization hi-
erarchies. The resulting generalization hierarchy contains all concept pairs,

4.2. A FRAMEWORK FOR ALARM CLUSTERING 71

...
...

...
ts

Sat Sun Mon Fri

ts ts 3

Weekend Workday

21

Any−day−of−week Any−day−of−month

28 29 30 311 2 3 4 15... 16...
... The actual time−stamps

...

1 2 3ts’ ts’ ts’

Beginning Ending

Figure 4.4: Sample generalization hierarchies for time attributes.

including “Mon 2nd”. Unfortunately, the generalization hierarchy resulting
from a full cross-product is generally very complex.

4. One could replicate the time-stamp attribute and assign each generalization
hierarchy to a separate replica. That way, one replica plays the role “day
of the week”, whereas the other plays the role “day of the month”. Further,
each replica is generalized according to its own generalization hierarchy.

In practice, alarm clusters are generally huge and cumbersome to work with.
Therefore, root cause analysis mostly relies on covers (which model the alarm
clusters) rather than on the clusters themselves. Against this background, we con-
sider the first two solutions as undesirable because information-deprived or redun-
dant covers are of reduced practical value. The solutions 3 and 4 are equivalent,
but solution 4 is easier to use because it frees the user from the potentially error-
prone task of calculating the cross-product of two generalization hierarchies. In
fact, solution 4 implicitly calculates the cross-product for the user. In our practical
work, we therefore choose solution number 4.

Free-text attributes, such as the context attribute in Section 1.4, assume arbi-
trary strings as their values. Therefore, the challenge lies in tapping the semantic
information of these strings. One way to solve this problem is to use a feature
extraction step that precedes the actual alarm clustering.Featuresare crisp bits
of semantic information that, once extracted, replace the original strings. Thus,
each string is replaced by the set of its features. Note that subset-inclusion de-
fines a natural generalization hierarchy on feature sets. For example, the feature
set{f1, f2, f3} can be generalized to the sets{f1, f2}, {f1, f3}, or {f2, f3}, which
in turn can be generalized to{f1}, {f2}, or {f3}. The next level is the empty
set, which corresponds to “Any-feature”. Note that the feature extraction process
constructs a generalization hierarchy at run-time. Hence, free-text attributes are
another instance where dynamic generalization hierarchies are useful.

72 CHAPTER 4. ALARM CLUSTERING

Ultimately, we consider it the intrusion detection analyst’s responsibility to
select features that capture as much semantic information as possible. In our
own work, we found frequent substrings to be useful features. More precisely,
let L be an alarm log, letA be a free-text attribute, and letV :=< a[A] | a ∈
L> be the multi-set of values that attributeA assumes in the alarm logL. We
run the Teiresias algorithm [181] onV in order to find all substrings that have
a user-defined minimum length and minimum frequency. These substrings are
the features and each original strings is replaced by the (single) most frequent
feature that is also a substring ofs. Thus, all feature sets have size one. Finally,
each feature set can only be generalized to the “Any-feature” level. The resulting
generalization hierarchy is simple, but frequent substrings have the advantage of
being rather understandable features. Therefore, they contribute to the overall
understandability of covers.

4.3 Algorithm for Alarm Clustering

This section describes an algorithmic solution to the alarm clustering problem.
We begin in Section 4.3.1 by proving that the alarm clustering problem is NP-
complete. Given the need for a scalable solution, this constitutes an important
result. Moreover, it motivates the remainder of this sections, which describes a
heuristic method for alarm clustering. Specifically, Section 4.3.2 describes the
classic attribute-oriented induction method, which is the basis of our approach.
Section 4.3.3 explains why and how we modified the classic method to make
it more suitable for alarm clustering. Section 4.3.4, finally, discusses advanced
aspects of the modified attribute-oriented induction method.

4.3.1 NP Completeness of Alarm Clustering

This section proves that the alarm clustering problem is NP-complete. To this end,
let L be an alarm log,min size a minimum cluster size, andGi a generalization
hierarchy for each attributeAi in L, i = 1, . . . , n. We show the NP completeness
of (L,min size,G1, . . . ,Gn) by reducing the CLIQUE problem [166] to the alarm
clustering problem. In the CLIQUE problem, which is known to be NP-complete,
we are given a graphG and an integerk. The goal is to decide whetherG contains
a k-clique, i.e. a fully connected subgraph of sizek. We assume thatG contains
at least

(
k
2

)
edges because otherwise, there is trivially nok-clique inG. Now, the

following steps reduce the CLIQUE problem to the alarm clustering problem (cf.
Figure 4.5):

4.3. ALGORITHM FOR ALARM CLUSTERING 73

i

5

i: G

3
2

k
2

3

1 2 3 4

(2,4)

(1,5)

0

1

(1,4)

(1,2)

3

L

(1,

(1,

(1,

(0,

(0,

(0,

A A A A A

1,

0,

0,

1,

1,

0,

0,

0,

0,

1,

0,

1,

0,

1,

0,

0,

1,

0,

0)

0)

1)

0)

0)

1)

2 3

5

4

G

1

min_size = = =

(2,3)

(3,5)

k =

Figure 4.5: Example of reducing CLIQUE to alarm clustering.

1. Assign a separate attributeAi to each node inG. Let {A1, . . . , An} be the
resulting set of attributes. Define Dom(Ai) := {0, 1} andGi := 1 −→ 0 for
i = 1, . . . , n.

2. For each edgee inG, add one alarma toL. LetAi andAj (Ai 6= Aj) denote
the attributes that correspond to the endpoints ofe. Then, the attributesAi
andAj of alarma are set to 1, whereas all the other attributes are set to 0.

3. In the definitiond(a1, a2) :=
∑n

i=1 wi × d(a1[Ai], a2[Ai]) of the distance
between two alarmsa1 anda2, set all weights equal to one, i.ewi = 1,∀i.

4. Setmin size :=
(
k
2

)
, which corresponds to the number of edges in a k-

clique.

5. Finally, solve the alarm clustering problem that has just been defined. Let
C ⊆ L be an optimal alarm cluster, i.e. an alarm cluster that minimizes
H(C) while satisfying|C| ≥ min size. Furthermore, letc = (c1, . . . , cn)
be the cover ofC. Then,G contains a k-clique if and only if

∑n
i=1 ci = k.

To understand step 5, note that the coverc = (c1, . . . , cn) satisfiesci =
max{a[Ai] | a ∈ C} for all i. Moreover, d(c, a) =

∑n
i=1(ci − a[Ai]) =∑n

i=1 ci −
∑n

i=1 a[Ai] =
∑n

i=1 ci − 2 holds for all alarmsa ∈ C, because
step 2 guarantees that each alarm has exactly two attributes set to 1. By plug-
ging d(c, a) =

∑n
i=1 ci − 2 into the equations (4.7) and (4.8), we finally obtain

H(C) =
∑n

i=1 ci − 2.

74 CHAPTER 4. ALARM CLUSTERING

Going back to step 5, suppose that
∑n

i=1 ci = k holds. Then,{Ai|ci = 1} de-
fines ak-clique, and the alarms inC correspond to its edges. Conversely, suppose∑n

i=1 ci > k, and henceH(C) > k − 2 (
∑n

i=1 ci < k is impossible). Then, there
exists nok-clique inG. Indeed, let us assume thatG did contain ak-clique, and
let C ′ be the cluster of alarms that corresponds to the edges of this hypothetical
k-clique. Furthermore, letc′ = (c′1, . . . , c

′
n) be the cover ofC ′. Now, the equa-

tions
∑n

i=1 c
′
i = k and ultimatelyH(C ′) = k − 2 follow. This contradicts the

assumption thatH(C) is minimal, while, in fact,H(C) > H(C ′) holds.

4.3.2 Classic Attribute-Oriented Induction

Given the NP completeness result of the last section, we now describe a heuris-
tic method for solving the alarm clustering problem. For a given problem
(L,min size,G1, . . . ,Gn), the heuristic method finds an alarm clusterC ⊆ L
that satisfies|C| ≥ min size, but does not necessarily minimize the heterogene-
ity H(C). Obviously, the further a heuristic method pushesH(C) to its minimum,
the better it is. The heuristic method developed in this dissertation is a variant of
Attribute-Oriented Induction (AOI) [87, 88], a well-known conceptual clustering
method, which is described next.

Attribute-oriented induction operates on relational database tables and repeat-
edly replaces attribute values by more abstract values. These more abstract values
are taken from user-defined generalization hierarchies, such as the ones in the
Figures 4.3 and 4.4. Thanks to the generalization of attribute values, previously
distinct alarms become identical and can be merged. In this way, huge relational
tables can be condensed into short and highly comprehensible summary tables.

For a more formal treatment, we extend all alarms by a new integer-
valued pseudo-attribute, the so-calledcount (see last column in Figure 4.3(b)).
Thus, we henceforth model alarms as tuples over the Cartesian product
Dom(A1) x . . . x Dom(An) xN. The count attribute is used by the AOI algorithm
for book-keeping, only. The alarm attributesAi are as before. The inputs of the
AOI algorithm are a relational tableT over the attributes{A1, . . . , An, count},
generalization hierarchiesGi, and generalization thresholdsdi ∈ N for all at-
tributesAi (i = 1, . . . , n). In our case, the tableT initially stores the alarms of
the alarm logL. For the sake of simplicity, we will assume that all generalization
hierarchies are trees.

Figure 4.6 shows the pseudo-code of the classic AOI algorithm. The first step
assigns a value of 1 to the count attribute of all alarms. Subsequently, the main
loop (steps 2–8) is iterated: Step 3 selects an attributeAi and the steps 4 and 5
replace theAi values of all alarms by their parent values inGi. By doing so, pre-
viously distinct alarms can become identical. Two alarmsa anda′ are identical

4.3. ALGORITHM FOR ALARM CLUSTERING 75

Input: A tableT , tree-structured generalization hierarchiesGi,
and generalization thresholdsdi;

Output: A generalized table storing generalized alarms;
Algorithm:
1: for all alarmsa in T doa[count] := 1; // Initialize counts.
2: while tableT is not abstract enoughdo{
3: Select an alarm attributeAi;
4: for all alarmsa in T do // Generalize attributeAi.
5: a[Ai] := parent ofa[Ai] in Gi;
6: while identical alarmsa,a′ existdo // Merge identical alarms.
7: Seta[count] := a[count] + a′[count] and deletea′ from T ;
8: }

Figure 4.6: Pseudo-code for the classic AOI algorithm.

if a[Ai] = a′[Ai] holds for all attributesAi, while a[count] anda′[count] are al-
lowed to differ. The steps 6 and 7 merge identical alarms into a single generalized
alarm whose count value equals the sum of individual counts. In this way, the
count attribute always reflects the number of original alarms that are summarized
by a given generalized alarm. Note that each generalized alarma represents an
alarm cluster of sizea[count]. Moreover, the elements of an alarm clustera are
the original (ungeneralized) alarms that were merged intoa.

One key aspect of the classic AOI algorithm has been left open, namely, how
the attributesAi are selected in step 3. The selection criterion is that any attribute
Ai that assumes more thandi distinct values in tableT can be selected. (Recall
thatdi, the generalization threshold, is an input parameter to the algorithm.) The
main loop terminates in step 2 if no such attribute exists. In other words, step 2
considers the tableT “abstract enough” when each attributeAi assumes at most
di distinct values.

4.3.3 Modified Attribute-Oriented Induction

To summarize, classic AOI generalizes an attributeAi until it assumes at most
di distinct values (i = 1, . . . , n). This strategy of bounding the number of dis-
tinct attribute values guarantees that the final generalized table contains at most
Πi=1,...,ndi generalized alarms. However, this strategy can lead to excessive gen-
eralization, in which too much detail is lost (so-calledover-generalization). This
section illustrates the problem of over-generalization and shows how we modified
the classic AOI algorithm to mitigate it. For the sake of simplicity, we will as-
sume that all generalization hierarchies are trees, and that all attribute weights in
the distance definitiond(a1, a2) :=

∑n
i=1 wi × d(a1[Ai], a2[Ai]) equal one, i.e.

wi = 1,∀i. Section 4.3.4 relieves these constraints.

76 CHAPTER 4. ALARM CLUSTERING

Figure 4.3(b) on page 67 shows a sample table having the alarm attributes Src-
IP (the source IP) and Dst-IP (the destination IP). Note that the first tuple in the
table represents 1000 occurrences of the alarm(ip1 , ip4). We use the left-hand
generalization hierarchy of Figure 4.3(c) for both alarm attributes, and we assume
that both generalization thresholds have been set to 10 (i.e.d1 = d2 = 10). Given
that both alarm attributes assume 27 distinct values, they are both generalized
once by the classic AOI algorithm. This yields a new table whose alarm attributes
still have 27 distinct values. Therefore, both attributes are generalized again.
The resulting table, which contains the generalized alarms(DMZ ,DMZ , 1000),
(DMZ , Internet , 26), and(Internet ,DMZ , 26), is the final result of classic AOI.
Note that this result is (over-)generalized to a point where important details have
been lost. In fact, instead of the above result we had rather obtained the alarms
(ip1 , ip4 , 1000), (ip1 , Internet , 26), and (Internet , ip4 , 26), which are more
specific and informative.

A major source of over-generalization is “noise”. Indeed, noise forces
up the number of distinct attribute values and thereby controls the generaliza-
tion process. In the above example, there was one main signal (namely the
tuple (ip1 , ip4 , 1000)) and five percent of “noise” (the remaining 52 tuples).
However, the noise dominated the generalization process and caused the alarm
(ip1 , ip4 , 1000) to be generalized four times, so it became(DMZ ,DMZ , 1000).
Noise-induced over-generalization is a serious problem in intrusion detection, and
it motivates our first modification of the classic AOI algorithm.

Modification 1 We abandon the generalization thresholdsdi as well as the as-
sociated strategy of bounding the number of distinct attribute values. Our new
strategy is to find generalized alarms that subsume “many” of the original (un-
generalized) alarms. Formally, we search alarmsa ∈ T that have a count of
min size or larger (i.e.a[count] ≥ min size), wheremin size ∈ N is the user-
defined minimum cluster size. Whenever such an alarm is found, it is removed
from the tableT and reported as a solution to the user. Processing continues with
the tableT ′ := T r {a}. �

Recall that each alarma represents an alarm cluster of sizea[count]. The
above modification has two effects: First, by imposing a minimum cluster size of
min size, it forces the AOI algorithm to find “large” clusters. Second, by prevent-
ing further generalization of an alarma that satisfiesa[count] ≥ min size, it tries
to avoid over-generalization. The combined effect is to bias the algorithm towards
large clusters that nonetheless have adequate (i.e. specific) models in the form of
generalized alarms. Finally, Modification 1 also raises the need for a new attribute
selection criteria for step 3 of Figure 4.6. To counteract over-generalization, we
use the following heuristic criteria, which tries to minimize the total number of
attribute generalizations:

4.3. ALGORITHM FOR ALARM CLUSTERING 77

Modification 2 For each alarm attributeAi, letFi := max{fi(v)| v ∈ Dom(Ai)}
be the maximum of the function

fi(v) := SELECTsum(count) FROMT WHEREAi = v,

which sums the counts of all alarmsa ∈ T with a[Ai] = v. Step 3 of Figure 4.6
selects an attributeAi whoseFi value is minimal, i.e.∀j : Fi ≤ Fj must hold.�

The justification of this heuristic is that an alarma with a[count] ≥ min size
cannot exist unlessFi ≥ min size holds for all attributesAi. Therefore, we use
it as a heuristic to increase the smallestFi value by generalizing its correspond-
ing attributeAi. This heuristic attempts to minimize the number of generalization
steps needed to find an alarma that satisfiesa[count] ≥ min size. Other heuris-
tics are clearly possible, but our experience supports the one above.

To see what we have achieved so far, let us reconsider the example of Fig-
ure 4.3 and letmin size equal 20. The alarm(ip1 , ip4 , 1000) has a count larger
than 20, and is immediately removed from the table and presented to the user.
All remaining alarms have counts of one, so that generalization starts. Because of
F1 = F2 = 26, either of the two attributes Src-IP or Dst-IP can be selected for gen-
eralization. Without loss of generality, we assume that the attribute Src-IP is cho-
sen and generalized. The resulting alarms still have counts of one, which is why
a second generalization step is initiated. Again, we assume that the Src-IP is se-
lected and generalized. The resulting table contains the alarm(Internet , ip4 , 26),
which is removed and reported to the user. Finally, the Dst-IP attribute is general-
ized twice, the alarm(DMZ , Internet , 26) is reported, and processing ends.

A problem becomes apparent. Although generalizing the attribute Src-IP
has allowed us to find the alarm(Internet , ip4 , 26), it has irrevocably over-
generalized the source IP of the 26 alarms that remain after(Internet , ip4 , 26)
was removed. As a consequence, the last alarm reported is(DMZ , Internet , 26),
rather than the more specific(ip1 , Internet , 26). The problem is that a gener-
alization step can be opportune in the short run while having undesirable late
effects. In other words, generalization steps can accumulate to the point where
over-generalization occurs. This motivates the next modification.

Modification 3 After reporting an alarma ∈ T with a[count] ≥ min size, we
used to continue processing with tableT ′ := T r {a}. Henceforth, wefirst
undo all generalization steps inT ′. This involves replacing all generalized alarms
by their constituent ungeneralized alarms. Then, processing resumes with the
resulting table, in which all counts equal one. �

Now, let us reconsider the above example: Processing is unchanged up to
the point where the alarm(Internet , ip4 , 26) is removed from the table. Then,

78 CHAPTER 4. ALARM CLUSTERING

Input: A tableT and tree-structured generalization hierarchiesGi;
Output: Generalized alarms of user-defined minimum sizes;
Algorithm:
1: for all alarmsa in T doa[count] := 1; // Initialize counts.
2: Prompt the user for amin size value;
3: while

∑
a∈T a[count] ≥ min size do{

4: while identical alarmsa,a′ existdo // Merge identical alarms.
5: Seta[count] := a[count] + a′[count] and deletea′ from T ;
6: if ∃a ∈ T : a[count] ≥ min size then{ // If we found a solution.
7: Output the alarma and setT := T r {a};
8: Replace alla′ ∈ T by their constituent ungeneralized alarms;
9: Prompt the user for a newmin size value;

10: } else{
11: Select an attributeAi as specified by Modification 2;
12: for all alarmsa in T do // Generalize attributeAi.
13: a[Ai] := parent ofa[Ai] in Gi;
14: }
15: }

Figure 4.7: Pseudo-code for the modified AOI algorithm.

Modification 3 kicks in and resets the Src-IP attribute of the remaining 26 alarms
to its original value, which isip1 . Finally, the Dst-IP attribute is generalized
twice, the alarm(ip1 , Internet , 26) is reported, and processing ends. Figure 4.7
summarizes the discussion and shows the modified AOI algorithm. Note that
the steps 2 and 9 offer tight control over themin size values that are used in
successive iterations of the main loop.

In Section 3.2.2, we have defined five algorithmic requirements that a data
mining technique should satisfy to be suitable for root cause analysis. We can
now examine how well the modified AOI algorithm meets these requirements:

Scalability: The excellent scalability of classic AOI [64] is mostly preserved by
our modifications. Chapter 6 will present concrete run-time measurements
to substantiate this claim.

Noise tolerance: By design, the modified AOI algorithm tolerates the noise typ-
ically found in alarm logs (see the discussion before Modification 1).

Ease of use:Themin size parameter has a very intuitive interpretation and is the
only one to be set. Some expertise in the application domain is needed to
define meaningful generalization hierarchies. However, once defined, these
hierarchies are generally static.

Multiple attribute types: As illustrated in Section 4.2.3, AOI can take advantage
of a wide variety of attribute types, including numerical, categorical, time,
and free-text attributes.

4.3. ALGORITHM FOR ALARM CLUSTERING 79

Interpretability & relevance of results: As Chapter 6 points out, we found the
results of the modified AOI algorithm to be relevant and easy to interpret.

4.3.4 Advanced Aspects

This section extends the modified AOI algorithm to support DAG-structured gen-
eralization hierarchies. In addition, it shows how attribute weightswi different
from one can be handled, i.e. the cased(a1, a2) :=

∑n
i=1 wi × d(a1[Ai], a2[Ai])

with wi 6= 1 is considered. Finally, we discuss the problem of setting the parame-
ter min size.

To begin with, when generalization hierarchies are DAGs rather than trees,
then any node can potentially have multiple parents. Consequently, there is no
longer a unique parent that an attribute value can be generalized to. There are two
basic strategies for resolving this issue:

Choose-one:This strategy employs user-defined rules to resolve ambiguities.
For example, consider an IP addressip1 that simultaneously runs an HTTP
server and an FTP server. Accordingly,HTTP-serveror FTP-serverare two
possible generalizations ofip1 . The following rule assumes thatip1 is the
destination IP of alarma, and generalizesip1 according to the value of the
destination port:

if (a[Dst−port] = 80) thengeneralizeip1 to HTTP-server
elsegeneralizeip1 to FTP-server;

A similar rule is conceivable for the case thatip1 is the source IP address
of an alarm.

Explore-all: This strategy pursues all possible generalizations in parallel and re-
tains the one that first leads to a generalized alarm of sizemin size or larger.

Both of these strategies have been studied in the context of classic AOI [35,
86], and we can directly reuse the solutions proposed there. In the choose-one
strategy, the problem ofinduction anomalyneeds to be solved [35]. Induction
anomalies arise when a user-defined rule tries to access attribute values that have
been “abstracted away” in a previous generalization step. For example, the above
rule for the HTTP/FTP server is only applicable when the destination port number
has not previously been generalized. A solution to the induction anomaly problem
is described in [35], and we have adopted this solution in our implementation of
the modified AOI method. We have not implemented the explore-all strategy,
because the proposed exhaustive search seems incompatible with our scalability

80 CHAPTER 4. ALARM CLUSTERING

requirement. However, the explore-all strategy is conceptually easy to implement
[86]: First, line 13 of Figure 4.7 is replaced by:

13.1: T := Tr {a};
13.2: for all parentsp thata[Ai] has inGi do{
13.3: a′ := a; a′[Ai] := p; T := T ∪ {a′};
13.4: }

In other words, the attributeAi of alarma is generalized in all possible ways
and the resulting alarmsa′ are added toT . Now, however, the clusters modeled
by the generalized alarms inT are no longer disjunct. It is therefore incorrect to
merge generalized alarms by adding their counts as is done in line 5 of Figure
4.7. The easiest way to determine the correct count values of generalized alarms
is to rescan the original alarm log and to determine the number of original alarms
that match them. More efficient implementations are possible. Finally, because
the clusters inT might overlap, it is also necessary to implement step 8 more
carefully.

Another generalization over the previous section is to add support for attribute
weightswi 6= 1. As explained in Section 4.2, a large attribute weightwi penal-
izes the generalization of the corresponding attributeAi, i = 1, . . . , n. The best
place to incorporate this bias into the approximation algorithm is in step no. 11 of
Figure 4.7, where an attribute is selected for generalization. Different heuristics
are possible to make this step aware of weights. We have implemented a simple
extension of the heuristic described in Modification 2. Specifically, if all attributes
Ai satisfyFi ≥ min size, then we multiply theFi by the weightswi, i.e. we set
Fi := Fi×wi, i = 1, . . . , n. Otherwise, we leave theFi unchanged. Next, among
all attributes that have not yet been generalized to the root of their hierarchies, we
select anAi with a minimalFi value, i.e.∀j : Fi ≤ Fj must hold. As intended,
this heuristic is biased towards selecting attributes with small associated weights.

Our last extension over the previous section concerns themin size parameter.
Currently, the user is the only authority over this parameter. If the user chooses an
excessively largemin size value, then the quest for a cluster of at least this size
can force the clustering algorithm to merge alarms with different root causes. This
is undesirable because the resulting alarm clusters can be hard or even misleading
to interpret. On the other hand side, ifmin size is set to an overly small value,
then clustering can end prematurely and alarms that have the same root cause can
end up in different clusters. This can inflate the number of clusters and the time
needed to interpret them. To mitigate these problems, it seems desirable to give
the user some assistance in setting themin size parameter.

Before investigating ways of setting the parametermin size, it is important
to note that other clustering methods have very similar parameters (see Section

4.4. DISCOURSE ON BACKGROUND KNOWLEDGE 81

4.1.2). For example, partitioning methods require the user to specify thenum-
ber of clustersthat the dataset is supposed to contain. Similarly, density-based
methods expect the user to define theminimum number of data objectsthat a data
volume must contain to count as “dense”. In general, most clustering methods
have parameters like these, which allow the user to control the desirable amount
of clustering. Intuitively, these parameters select an “operating point” between
the two extremes of no clustering (i.e. all objects form clusters by themselves)
and maximum clustering (i.e. all objects are grouped into a single cluster). Aside
from a few ad hoc rules [9, 104], there exist no guidelines for choosing the oper-
ating point.

We now describe the revised scheme for setting themin size parameter. As
before, the user is prompted in the lines 2 and 9 of Figure 4.7 to provide amin size
value for the next cluster. However, this value is no longer used as is, but rather
serves as the seed value of an iterative process that converges towards a robust
min size value. This robust value is finally used for clustering. Intuitively, a
min size value isrobustif slightly smaller or slightly larger values still yield the
same clustering result. Robustness is an important property because it limits the
effects that spurious or arbitrary decisions can have on the clustering results.

Formally, letε be a small fraction of 1, e.g.ε = 0.07. A givenmin size value
ms is ε-robust if it yields the same alarm cluster as the values(1 − ε) × ms and
(1 + ε) × ms. We can test forε-robustness by simulating the alarm clustering
method for the valuesms, (1 − ε) × ms, and(1 + ε) × ms. The valuems is ε-
robust if all three simulations yield the same alarm cluster. Note thatε-robustness
is always relative to a particular alarm log. Thus, a givenmin size value can beε-
robust with respect to one alarm log, while being in-robust for another alarm log.

Let ms0 be themin size value that the user originally keyed in. This value
is used for clustering if and only if it isε-robust (with respect to the alarm log at
hand). Otherwise, it is depreciated according to the formulams i+1 := (1 − ε) ×
ms i. This test-and-depreciate cycle is iterated until anε-robustmin size value has
been found. In the worst case, termination occurs afterO(log(ms0)) iterations.
Our decision to progressively decrease rather than increase themin size value
stems from our desire not to mix alarms of different root causes in the same alarm
cluster. Section 3.2 and Chapter 5 discuss this point in great detail.

4.4 Discourse on Background Knowledge

The classic and the modified AOI methods use background knowledge in the form
of generalization hierarchies to decide which clusters to form. This section ex-
plores the integration of other kinds of background knowledge into the clustering

82 CHAPTER 4. ALARM CLUSTERING

process. The expected benefit of adding more background knowledge is to obtain
potentially better clustering results. In particular, one might hope to get closer
to the ideal (but unattainable) situation where the alarms of an alarm cluster are
guaranteed to share the same root cause.

The remainder of this section describes three different types of background
knowledge, and discusses how each applies to alarm clustering. Without excep-
tion, we found that a substantial research or development effort would have been
necessary to reap the benefits from these types of background knowledge. We
have therefore not implemented and experimented with any of them. Doing so
could be the subject of future research.

4.4.1 Contextual Background Knowledge

Remember that the alarms of an alarm cluster should ideally share the same root
cause. A necessary prerequisite for obtaining such clusters is that alarms contain
enough information, so that in theory, one can decide if alarms have the same root
cause. As will be shown next, the alarms of network-based IDSs do not meet this
prerequisite.

For example, consider two alarms that have the same source IP address. Be-
cause of DHCP (Dynamic Host Configuration Protocol) and NAT (Network Ad-
dress Translation) firewalls, these two alarms might be triggered by completely
different machines that have nothing in common. Similarly, the dial-in routers of
ISPs (Internet Service Providers) assign IP addresses dynamically, so that an IP
address allows no conclusion to be drawn about the machine attached to it. Finally,
even when two alarms are known to originate from the same source machine, they
might still have been caused by completely independent users or processes. To
summarize, alarms do not unambiguously identify the actors (i.e. machines, users,
and processes) involved in their generation. As a consequence, it is not possible
to reliably decide if different alarms have the same root cause.

An obvious remedy is to collectcontextual background knowledge, such as
DHCP logs, NAT logs, and other log files. Using this background knowledge it is
possible to unify alarms before they are processed by the alarm clustering method.
For example, unification can replace all IP addresses by unique tokens, which
unambiguously identify the respective machines. This would solve some of the
problems associated with naming ambiguity. Unfortunately, collecting, maintain-
ing, and processing the necessary contextual background knowledge constitutes a
major development endeavor, which exceeds the scope of this dissertation.

4.4. DISCOURSE ON BACKGROUND KNOWLEDGE 83

4.4.2 Feature Construction

Feature constructionis the process of extending a given dataset by adding new
attributes that are deemed to be relevant for improving the data mining results.
The new attributes can be set according to prior knowledge, an analysis of the
already existing attributes, or a combination of both. For example, the MADAM
ID of Section 2.3.3 extends connection records by new attributes that store statis-
tical summaries over chronologically close connection records. Analogously, one
can attempt to construct new attributes that differentiate alarms with supposedly
different root causes. Possible candidates are:

A new attribute that indicates if the current alarm is part of a periodic pat-
tern, in which a given source IP address triggers an alarm every so-and-so
many seconds.

A new attribute that indicates if the current alarm is part of a host scan,
in which a given source IP address probes many different destination IP
addresses.

A new attribute that indicates if the destination IP address of the current
alarm is an uncommon and supposedly suspicious target.

To understand the rationale behind the first of the above three candidate at-
tributes, letaperiod be an alarm that belongs to a periodic pattern, and letanone be
an alarm that does not. In general, one would assume that the alarmsaperiod and
anone have different root causes and should therefore not be clustered. Adding a
new attribute, which is set to “1” inaperiod and to “0” in anone enforces this intu-
ition. In fact, the two alarms might still be merged into a single cluster, but only
at the expense of an additional generalization step. Depending on the weight that
is assigned to this generalization step, its cost can be so high that the algorithm
chooses not to perform it, thus leaving the two alarms in separate clusters. Similar
arguments can be made to justify the other two candidate attributes.

Feature construction is no panacea. Specifically, in addition to the above three
candidate attributes, there are many other attributes that are equally plausible.
Simply using all of them is problematic, because the quality of clustering results
has been shown to decrease when irrelevant attributes (callednoise-dimensions)
are added [148, 154]. Therefore, the problem offeature selection, i.e. of selecting
the “best” attributes, arises. However, most research has focused on selecting
features for classification problems, rather than clustering problems [58, 193].
Therefore, selecting features that are beneficial to alarm clustering is difficult, and
research into feature selection is beyond the scope of this dissertation.

84 CHAPTER 4. ALARM CLUSTERING

4.4.3 Constraint-Based Clustering

Assume we knew that certain alarms have (or have not) the same root cause.
It would be desirable to make the clustering method aware of these constraints
so that it can enforce them, and only return clusters that are consistent with
them. Constraint-based clustering methodshave the ability to do exactly that
[65, 81, 194, 200]. Usually, the constraints supported by constraint-based cluster-
ing methods are relatively simple:

Wagstaff and Cardie supportmust-linkandcannot-linkconstraints [200]. A
must-link constraint specifies that two data objects must end up in the same
cluster, while a cannot-link constraint enforces their separation.

Talavera and B́ejar allow the user to specify predicates, and enforce that all
data objects satisfying the same predicate end up in the same cluster [194].

A contiguity constraintis a connected graphG over the dataset under inves-
tigation. A contiguity constraintG enforces that only clusters are returned
whose constituent data objects induce a connected subgraph overG. For
example, when clustering geographic regions based on similarities in their
animal populations, one can use contiguity constraints to enforce that clus-
ters consist of geographically adjacent regions [65, 81].

We anticipate three problems when applying the constraint-based idea to alarm
clustering: First, constraints that are useful for alarm clustering need to be iden-
tified. For example, defining must-link and cannot-link constraints for pairs of
individual alarms does not seem practical given the size of alarm logs (cf. Table
1.2). Second, once a class of constraints has been identified, we are doubtful if
the background knowledge needed to instantiate it was available. Third, if the
background knowledge was available, then we hypothesize that it would be better
used by an expert system that groups alarms as it is told. This, however, carries
us away from the focus of this dissertation, which is the discovery of new and un-
expected root causes. Expert systems, by contrast, search for old and well-known
root causes.

Chapter 5

Cluster Validation

Ideally, we would like to prove our alarm clustering method to be correct and
complete in the sense of Definition 3.2. However, over the past 50 years, there has
been no precedence of a similar proof.Cluster validityis the commonly accepted
weaker alternative to proofs of correctness or completeness. Section 5.1 defines
cluster validation and further explains why it is needed. Section 5.2 surveys the
field of cluster validation. Section 5.3 explains the practical limitations of clus-
ter validation, and describes the validation approach that we have pursued in our
alarm clustering framework.

5.1 The Validation Dilemma

Clustering has traditionally been used to explore new datasets whose properties
were poorly understood. Therefore, the principal goal of clustering was to uncover
the hidden structures in a dataset, and to stimulate theories that explain them.
Accordingly, there were claims that the main criterion for assessing a clustering
result was its interpretability and usefulness. However, clustering methods have
important limitations that make such an ad hoc approach to cluster validation a
dangerous endeavor:

The random data phenomenon:Clustering methodsalways find clusters, no
matter whether they exist or not. In fact, even when applied to random
data, they mechanically group it into clusters. Clearly, such clusters are
meaningless at best, and misleading at worst.

Imposed structures: Clustering methods are not “neutral”, but have a tendency
to imposea structure on the dataset [5, 9, 81, 83]. For example, theK-
means method is known to favor spherical (a.k.a. globular) clusters of ap-
proximately equal sizes [81, 83, 90]. When a dataset contains clusters of

85

86 CHAPTER 5. CLUSTER VALIDATION

a different kind (e.g. clusters that form parallel lines in the plane), then the
K-means method is nonetheless inclined to impose “synthetic” clusters of
globular shapes and similar sizes. Clearly, these clusters are an artifact of
theK-means method, and do not reflect the true structure of the dataset.

Method-dependent results: A corollary to the last point is that markedly differ-
ent results can be obtained when a given dataset is analyzed by different
clustering methods [5, 9, 56, 81].

Given these drawbacks, and given that the human mind is quite capable of pro-
viding post hoc justification for clusters of dubious quality, there are clear dangers
in a purely manual approach to cluster validation. Specifically, the risk of inad-
vertently justifying and approving meaningless clusters can be high [56, 81, 104].
Note that a priori, these reservations also apply to the clusters found by our alarm
clustering method. We would therefore like to prove the correctness and com-
pleteness (as defined in Definition 3.2) of our clustering method, but such proofs
do not exist [9, 104, 148, 153]. Cluster validation offers a weaker alternative ac-
cording to which a cluster structure isvalid if it cannot reasonably be explained
by chance or by the idiosyncrasies of a clustering method. In practice, a cluster
structure is declared valid, if there is evidence that it correctly captures the natural
groups of the underlying dataset. Thecluster structuresunder consideration are
hierarchies, partitions, and individual clusters (cf. Section 4.1.2).

As will become evident in the next section, cluster validation is a completely
formal endeavor, that is rid of any notions of semantics. This can lead to the situa-
tion where a cluster structure is declared “valid” even though it has no meaningful
interpretation. For example, Figure 5.1 plots for lawyers, engineers, and students
their respective wine consumptions at various wine prices. Clearly, the two ellip-
soidal clusters capture the structure of the dataset rather well. Therefore, these
clusters are valid by most validity measures, even though they have no obvious
interpretations (at least not in terms of peoples’ professions). This illustrates that
cluster validation can at best increase our confidence in a cluster structure, but it
cannot proof the structure to be correct or meaningful [5, 57, 80, 85].

5.2 Cluster Validation Background

Cluster validation can be used to validate hierarchies, partitions, or individual
clusters [54, 80, 81, 104]. To keep the presentation simple, this section only con-
siders the validation of partitions (i.e. sets of non-overlapping clusters). The deci-
sion to focus on partitions rather than hierarchies or individual clusters was taken
because our alarm clustering method produces partitions. Moreover, hierarchies
and individual clusters are validated in basically the same manner.

5.2. CLUSTER VALIDATION BACKGROUND 87

Students

10 20 30 40 50 60 Price [$]

W
in

e
co

ns
um

pt
io

n Lawyers

Engineers

Figure 5.1: Example of valid clusters that have no intuitive interpretation.

Very briefly, the validation techniques of this section can be characterized as
follows: The techniques of Section 5.2.1 declare a partition valid if it is “unusually
good” under the circumstances of the study. Section 5.2.2 argues that a partition
is valid if essentially the same partition is obtained by clustering an independently
drawn dataset that follows the same distribution. The Sections 5.2.3 and 5.2.4
evaluate clustering methods rather than their results. Here, the goal is to demon-
strate certain favorable properties that make a clustering method more likely to
produce valid clusters. Section 5.2.5 describes more ad hoc validation techniques
that were born out of practice. Note that this section is about cluster validation in
general. Validation of alarm clusters is addressed in Section 5.3.

5.2.1 Cluster Validation Based on Statistics

In a statistical sense, a partition is valid if it is “so good” that it is unlikely to be
the result of chance [54, 56, 80, 104]. Two different criteria have been formulated
to measure the “goodness” of a partition:

External criteria measure goodness with respect to some externally provided
ground truth. Typically, the user defines ground truth to be the partition
that she considers to be correct or desirable. Then, goodness is the degree
of match between this ideal partition and the actual one.

Internal criteria consider a partition to be good, if it fits the dataset it was de-
rived from. For example, a partition that organizes a dataset into compact
and isolated clusters fits the dataset well, and is commonly judged to be
good.

88 CHAPTER 5. CLUSTER VALIDATION

An indexis a formula that measures goodness in a quantitative manner. Exter-
nal criteria use indices that measure the degree of match between two partitions
(namely the ideal partition and the partition under evaluation). Internal criteria,
on the other hand side, use indices that measure the fit between a partition and the
dataset that the partition was derived from.

It is relatively easy to define indices, but it is very hard to interpret their return
values. Specifically, what does a return value of, say, 0.7 mean? Is that evidence
enough to declare a partition valid? Statistics offers a principled framework to
answer these questions. The basic idea is to take an index and to study its return
values when applied to random partitions. Then, a new partition is valid if the
index returns a value that was never (or seldom) observed for random partitions.
That is, a partition is valid, if the assigned index value is unlikely for random
partitions. For a more detailed discussion, we next consider external and internal
criteria separately.

External criteria: Let C andO be two partitions of the datasetD, and letn
be the size ofD (i.e. n = |D|). We assume that the partitionC is the result
of a clustering method, while the partitionO comes from an oracle that knows
the “right” way to partition the datasetD. External criteria declare the partition
C valid if C andO match unusually well. The practical question of where the
partitionO comes from is not considered by external criteria.

Formally, the validity ofC with respect toO is tested in several steps. The
first step is to choose an index that measures the degree of match between the two
partitions. Many indices have been suggested for this purpose [104]. For example,
the Rand index measures the fraction of object pairs that are classified consistently
by both partitions [101]:

R(C,O) := |{ (x,y) ∈ D×D |x 6= y ∧ IC(x,y) = IO(x,y) }| /
(
n

2

)
(5.1)

whereIC(x,y) is the indicator function for partitionC (i.e.IC(x,y) := 1 if x and
y belong to the same cluster ofC, andIC(x,y) := 0, otherwise), andIO(x,y) is
defined analogously. Details are given elsewhere [101, 104].

Once an index has been selected, it is used to compare the partitionsC andO.
The index returns a numeric measure of match. We will assume without loss of
generality that large index values indicate good matches. As previously explained,
external criteria declare the partitionC valid if it matchesO “unusually well”, i.e.
if the index value forC andO is “unusually large”. To be “unusually large”, the
index value must at least be significantly larger than the index values achieved by
random partitions of the same dataset.

5.2. CLUSTER VALIDATION BACKGROUND 89

The notion of “random partition” is formally defined by means of arandom-
nessor null hypothesis. Different randomness hypothesis are possible [104]. For
example, therandom label hypothesis[104] states that random partitionsR are
obtained by randomly relabeling the objects ofO. For example, ifO equals
{ {1, 2, 3}, {4, 5}, {6} } andπ(·) is a permutation of the numbers 1 to 6, then
R := { {π(1), π(2), π(3)}, {π(4), π(5)}, {π(6)} } is a valid random partition un-
der the random label hypothesis. Note that there aren! possible random partitions.

Having selected an indexI(·, ·) and a randomness hypothesisH0, we deter-
mine the distribution ofI(C, ·) underH0 (known asbaseline distribution). This
distribution shows for allx in the range ofI(·, ·) the probability thatI(C,R)
equalsx, whenR is a random partition as defined byH0. In general, it is not pos-
sible to determine the distribution ofI(C, ·) underH0 analytically. Therefore, one
might have to approximate it by evaluatingI(C,R) for a large number of random
partitionsR. Given the distribution ofI(C, ·) underH0, we are ready to decide
whether the valueI(C,O) is “unusually large” (or, equivalently, whether the par-
tition C is valid): Letα be a small number, such as 0.01. The valueI(C,O) is
“unusually large” ifI(C, ·) underH0 has a probability ofα or less to be larger
thanI(C,O). In this case, the partitionC is called valid at significance levelα.

Internal criteria: Internal criteria measure if a partition is intrinsically appro-
priate for the dataset it was derived from. No external comparative measure such
as the above partitionO is used. Formally, internal criteria use indices that mea-
sure the degree of fit between a partition and the dataset itself. If this fit is “unusu-
ally good”, then the partition is declared valid. As above, the notion of “unusually
good” is defined in a statistical sense: The fit is “unusually good”, if it is signifi-
cantly better than the fit between random data and its best partitioning.

Many indices have been suggested to measure the goodness of fit between a
partition and its underlying dataset [149]. For example, letD be a dataset,d(·, ·) a
distance index on the objects ofD, andC a partition ofD. The Goodman-Kruskal
γ statistic [77, 149] is defined asγ := (S+ − S−)/(S+ + S−), whereS+ (S−)
counts the number of quadruples(x,y,u,v) ∈ D 4 for which x andy belong to
the same cluster ofC, u andv belong to different clusters, andd(x,y) < d(u,v)
(d(x,y)>d(u,v), respectively). Note thatγ ∈ [−1, 1], with γ = 1 for perfect fit.

For the further discussion we assume an indexI(·, ·) that returns large values
for good fit. Then, a partitionC of the datasetD is valid if the valueI(C,D) is
“unusually large”, i.e. if it is significantly larger than the index values typically
obtained for partitions of random data. As before, “random data” is defined by
specifying a randomness hypothesis. For example, random data can be the result
of garbling the datasetD. Alternatively, objects that were randomly placed in a

90 CHAPTER 5. CLUSTER VALIDATION

region ofp-dimensional space can serve as random data. Many other randomness
hypotheses are possible, and choosing an adequate one is a difficult and poorly
understood problem [79, 80].

The valueI(C,D) is “unusually large” (and the partitionC is valid) if the
following holds for a small user-defined numberα ∈ [0, 1]: LetDR be a random
dataset that conforms to the adopted randomness hypothesis, and letCR be the
result of partitioning this dataset with the same clustering method that produced
C. The partitionC is valid, if the probability ofI(CR, DR) being larger than
I(C,D) is smaller thanα. As before, few theoretical results exist, and simulation
studies are necessary to estimate the probabilityP (I(CR, DR) > I(C,D)).

5.2.2 Replication Analysis

Replication analysis [27, 145, 156] is based on the logic of cross-validation [96]
as used in regression studies. Specifically, a cluster structure is declared valid if it
is consistently discovered across different samples that are independently drawn
from the same general population. Replication analyses comprise five major steps:

1. Two samples are required to conduct a replication analysis. Perhaps the
most direct way to accomplish this is to randomly divide one larger dataset
into two samples.

2. A clustering method is chosen, and the first sample is partitioned using this
method.

3. The second sample is partitioned using the same clustering method as in
step 2.

4. The second sample is re-partitioned by assigning each of its data objects to
the most similar (according to some measure) cluster in the partition of the
first sample. This yields another partition of the second sample.

5. The Rand index (cf. equation (5.1)) or some other measure of partition
agreement is used to compare the two partitions of the second sample. The
greater the level of agreement between the two partitions, the more confi-
dence one may have in their validity.

Replication analysis assesses the stability of a clustering result with respect
to sampling-related changes in the dataset. Stability is an important property,
because it gives us some confidence that a cluster structure is robust and not
an artifact of chance or an idiosyncrasies in the experimental setup. Other ap-
proaches for testing stability exist. For example, Gnanadesikan et al. assess the
stability of a clustering structure when noise is added and when data objects are
removed [76].

5.2. CLUSTER VALIDATION BACKGROUND 91

5.2.3 Simulation Studies

While the last two sections have shown how to validate the results of a clustering
method, we now try to validate clustering methods themselves. The basic idea is
to determine the intrinsic properties of clustering methods. Then, given a specific
clustering problem, the hope is that one can choose an intrinsically suitable clus-
tering method, i.e. a method that yields valid results by construction. Obviously,
this approach hinges on our ability to determine the intrinsic properties of a clus-
tering method. Simulation studies are one way of ascertaining these properties.

Simulation studies (a.k.a. Monte Carlo studies) [148, 150, 151, 154] as-
sess clustering methods by their ability to correctly cluster artificially generated
datasets. More precisely, a simulation study comprises three major steps. First,
artificial datasets with known cluster structures are generated. Second, these
datasets are analyzed by the clustering methods of interest to the study. Third,
the level of agreement between the known cluster structures and the structures re-
covered by the various methods is determined by means of one or more recovery
indices, such as the Rand index of equation (5.1). Clustering methods that recover
the “correct” cluster structures (i.e. the cluster structures that were intentionally
embedded in the artificial datasets) are deemed valid for the kind of datasets used
in the study.

As simulation studies generate their own datasets, there is no doubt as to the
true cluster structure, or the extent to which any given clustering method has re-
covered this structure. Because of the use of computers to generate the datasets,
the results of simulation studies can be based on hundreds or even thousands of
analyses. One of the most important results of simulation studies is that the perfor-
mance of most clustering methods is strongly dependent on the characteristics of
the datasets they are applied to [5, 148, 150, 154]. In fact, the number of clusters
in the dataset, their absolute and relative sizes, the degree of cluster overlap, as
well as various noise conditions are only a few factors that are known to influence
the comparative performance of clustering methods. This clearly shows that there
is no single “uniformly best” clustering method.

The main disadvantage of simulation studies is their limited generalizability
[151, 154]. That is, the clustering method that ranked best in a simulation study is
only optimal for the very specific kind of datasets used in the study. In particular,
said clustering method might not be optimal for a dataset that contains a different
type of noise or a different number of clusters. As a consequence, if one intends
to choose a clustering method based on its ranking in a simulation study, then
one needs to know the precise characteristics of the dataset to be analyzed. In
practice, these characteristics are hardly ever known, which limits the practical
value of simulation studies.

92 CHAPTER 5. CLUSTER VALIDATION

5.2.4 Analytic Cluster Validation

Aside from using simulation studies, researchers have also tried to analytically
explore the characteristics of various clustering methods. As in Section 5.2.3,
the motivation for this work was to better understand clustering methods, and to
offer well-founded guidelines for the choice of a method that performs well (i.e.
is “valid”) in a given applied cluster analysis.

Fisher and Van Ness [69, 161] evaluate clustering methods with respect to a
list of intuitively appealing properties, calledadmissibility criteria. The idea is
that admissibility criteria should be such that any “reasonable” clustering method
satisfies them. Examples of admissibility criteria are given below:

A clustering method isconvex admissibleif it is guaranteed to find clusters
that have non-intersecting convex hulls.

A K-group clusteringconsists ofK clusters such that all within-cluster
distances are smaller than all between-cluster distances. A method isK-
group admissibleif it finds K-group clusterings whenever they exist.

A clustering methodM is cluster omission admissibleif the following is
guaranteed for all datasetsD: The partitionM(D) obtained by clustering
the datasetD with methodM satisfiesM(D) =M(DrC)∪{C} for any
clusterC ∈ M(D), i.e. the objects inD r C are clustered in exactly the
same way, whether the objects inC are present or not.

A method ispoint proportion admissibleif the x-fold duplication of any
object of the input dataset does not affect the clustering result (x∈N).

Fisher and Van Ness present tables that evaluate nine clustering methods with re-
spect to eleven admissibility criteria. To see how such tables are used, consider a
dataset that resulted from a flawed sampling process, in which objects are inadver-
tently replicated. In this case, a point proportion admissible method is advisable
because it is unaffected by potential duplicates. Note that admissibility criteria can
only eliminate unsuitable methods, but they cannot indicate a single best method.

Other theoretical work comes from Jardine and Sibson [108] who propose an
elegant axiomatic framework for defining an acceptable clustering method. For
example, they require that permutation of the objects or multiplication with a con-
stant scale factor should not change the clustering in an essential way. Taken
together, their axioms are only satisfied by the single-link method (see p. 57).
The major criticism of this work has centered on the axiom that requires classifi-
cations to be (in a mathematical sense) continuous functions of the dataset [39].
References on further work in analytic cluster validation are given in [57, 153].

5.3. VALIDATION OF ALARM CLUSTERS 93

5.2.5 Other Validation Approaches

This section briefly surveys several somewhat ad hoc approaches to cluster val-
idation. Most of these approaches were born out of practice and have not been
systematically studied in the academic literature.

Dubes and Jain point out that rather than searching for a rigorously objective
measure of cluster validity, it is more practical to validate a cluster structure by
applying several different clustering methods and checking if the results agree
[56, 57]. Anderberg [9] and Gordon [81] also recommend to analyze a given
dataset using more that one clustering method. Moreover, Gordon shows how the
results obtained from different methods can be synthesized into a single consensus
result. Relative criteria[81, 104], by contrast, keep the clustering method fixed,
but vary the values of its parameters. Then, heuristic arguments [152] are used to
determine the parameter values that produced the comparatively best result.

A variant of external criteria as presented in Section 5.2.1 leaves some at-
tributes out during clustering and uses them subsequently for validation [5, 66,
151]. According to this approach, clusters are valid if they differ significantly
on the attributes that were not used during the cluster analysis. One reason this
approach is not used frequently is that most researchers find it difficult to omit
potentially relevant attributes from the cluster analysis.

Probably the most common validation strategy has been to verify clustering
methods on artificial datasets, usually two-dimensional, for which the goodness
of the method can be judged visually. Typical examples of such analyses are found
in [61, 83, 115, 203].

5.3 Validation of Alarm Clusters

Section 5.1 explained that human beings can be careless and subjective when in-
terpreting alarm clusters, or any other kind of clusters for that matter. Conse-
quently, the importance of objective measures of cluster quality was emphasized.
Such measures are studied in the field of cluster validation, which was the topic
of Section 5.2. The present section investigates how cluster validation can be ap-
plied to the alarm clustering method of Chapter 4. In a first step, Section 5.3.1
highlights the limitations of cluster validation techniques. Section 5.3.2 presents
the validation techniques that we adopted, and Section 5.3.3 contains some con-
cluding remarks.

94 CHAPTER 5. CLUSTER VALIDATION

5.3.1 Limitations of Cluster Validation

After Section 5.2, it should be no surprise that cluster validation is no panacea. In
fact, cluster validation has hardly been used in practice [5, 80] and over the past
20 years, researchers have continuously emphasized the need for more research
in cluster validation [5, 56, 57, 80, 104]. The specific limitations of the various
approaches to cluster validation can be summarized as follows:

External criteria: (i) In general, computer simulations are needed to approxi-
mate the distribution of the index under the randomness hypothesis. Such
simulations havehigh computational costs[104]. (ii) External criteria es-
tablish validity by measuring the fit between the clustering found by a clus-
tering method and the “correct” clustering as provided by an oracle. In prac-
tice, there are no oracles, andthe correct clustering is hard to obtain. (iii)
External criteria only check if one specific dataset was clustered correctly.
This offers no insight into how well other datasets are clustered. Thus, the
results obtained by an external criterion are oflittle generality.

Internal criteria: (i) Internal criteria necessitate computer simulations, as well.
Therefore, they also havehigh computational costs[104]. (ii) The index and
randomness hypothesis chosen are known to significantly influence valida-
tion results [23, 79, 149]. However, few guidelines exist, so that thesekey
parameters are generally selected in an ad hoc manner.This is deeply un-
satisfying given the importance of these parameters.(iii) Internal criteria
offer weak evidence for the validity for a cluster structure. For example,
a cluster structure that imposes four clusters on a dataset having six true
clusters, is likely to be rated as valid by internal criteria [104].

Replication analysis: Replication analysis is certainly one of themost poorly re-
searched validation methods.In fact, the meaningfulness of a replication
analysis depends on characteristics of the dataset at hand, as well as on de-
sign decisions made during the replication analysis [5, 27, 145]. However,
none of these factors has been studied in a systematic fashion.

Simulation studies: Most simulation studies confirm that the characteristics of
the dataset at hand have a strong influence on the relative performance of
the various clustering methods. Therefore, one has to know the character-
istics of the dataset at hand in order to choose a clustering method that is
suitable for it. However, the data characteristics are generally unknown, so
thatsimulation studies offer little guidance in choosing a clustering method
[148, 150, 151]. Moreover, it has been observed that simulated datasets
are somehow well-behaved, whereas real-world datasets are generally not

5.3. VALIDATION OF ALARM CLUSTERS 95

[55, 144]. This raises the questionwhether simulation studies can possi-
bly offer any insight into how clustering methods perform on real-world
datasets.

Analytic cluster validation: (i) Some theoretical results were observed tocon-
tradict empirical evidence.For example, the admissibility and the axiomatic
approaches of Section 5.2.4 both rate the single-link method first. However,
virtually all simulation studies show that the single-link method performs
rather poorly even on error-free datasets [148, 150, 151].(ii) Kaufman and
Rousseeuw point out that it isrelatively easy to conceive a formal frame-
work that makes any arbitrary clustering method look best [117].(iii) An-
alytic validation approachessystematically ignore the effect of all kinds of
heuristics,which are so fundamental to most clustering methods [55].

Other validation approaches, such as those described in Section 5.2.5, are
mostly limited by their heuristic and ad hoc nature, which makes their ob-
jectivity questionable.

Aside from the above very concrete criticism, there is the more philosophical
concern that cluster validity is an ill-defined concept. In fact, there is not even a
generally accepted definition of what a cluster is. For example, partitioning meth-
ods (cf. Section 4.1.2) define a cluster as a group of objects that optimize a quality
criterion. Density-based methods, by contrast, define a cluster as a dense region
in data space. Hierarchical methods have yet another definition. So, relative to
which definition should validity be measured?

Figure 5.2 illustrates this dilemma. Clearly, the cluster structures A and B are
both meaningful, but fundamentally different. In fact, they reflect different aspects
of the same dataset. Thus, the notion of a single “right” or “valid” cluster structure
seems unnecessarily narrow [9]. Moreover, none of the two cluster structures A
or B identifies the embedded sub-clusters shown in Figure 5.2(d). Does this mean
that the structures A and B are invalid? The answer lies in the eye of the beholder.

5.3.2 Towards the Validation of Alarm Clusters

Based on the discussion of the previous section, we decided to use none of the
classic validation techniques. In fact, external criteria are the only methods that
establish a strong and truly objective sense of validity. All the other methods can
only increase our comfort with a cluster structure, which is not fundamentally dif-
ferent from what manual validation can do. However, the problem with external
criteria is that they need the “correct” cluster structure, which is hard to obtain
in practice. One might try to obtain the correct cluster structure by manually

96 CHAPTER 5. CLUSTER VALIDATION

d) Sub−clusters.b) Clustering A. c) Clustering B.a) Sample dataset.

Figure 5.2: A sample dataset, two cluster structures, and their sub-clusters.

clustering alarm logs. However, manual clustering is error-prone, which makes
it questionable whether the correct cluster structure can be identified in this way.
Moreover, manual clustering does not scale, which is problematic because there
is little value in showing that our alarm clustering method is correct for one, two,
or five alarm logs. Alternatively, one could try to set up a controlled laboratory
experiment, where all the root causes and their corresponding alarm clusters are
known. However, the value of such an experiment is very limited unless the lab-
oratory environment is representative of real environments, a requirement that is
very hard to meet [144]. Moreover, it is unclear how many laboratory experiments
are needed to validate the alarm clustering method.

To summarize, external criteria are very difficult to apply, but they are the
only way to establish validity in a truly objective way. Given this situation, we
approached the validation problem in two ways: First, we incorporated the idea
of replication analysis into the alarm clustering method and thereby improved
its robustness. Second, we developed two techniques that support the manual
investigation of alarm clusters. Using these techniques, it becomes easier for the
human analyst to identify and reject clusters of questionable quality.

Improving robustness: We like the idea of replication analysis according to
which a cluster structure is more trustworthy if it is not affected by spurious or
arbitrary decisions that were involved in its generation (cf. Section 5.2.2). How-
ever, summarizing the results of a replication analysis in a single number seems
overly formal given that this number is interpreted in a qualitative way, where
“larger is better”. Moreover, the fourth step in a replication analysis partitions the
second sample according to its resemblance to the clusters in the first sample. The
details of this step are open to interpretation, and few guidelines exist. However,
the choices made here are known to influence the final results [27]. Therefore,
we modified the replication analysis of Section 5.2.2 in a way that addresses these
concerns.

LetL be an alarm log and letL0 ⊆ L be a randomly chosen sub-log ofL. We
randomly partition the alarm logLr L0 into two equal-sized sub-logsL1 andL2

5.3. VALIDATION OF ALARM CLUSTERS 97

(i.e. |L1| = |L2| andL1] L2 = L r L0). Then, we apply the alarm clustering
method separately to the logsL0∪L1 andL0∪L2 and compare the resulting gener-
alized alarms. One could mark generalized alarms that are not discovered in both
alarm logs as questionable, so that they are investigated more carefully. However,
generalized alarms that do not replicate are very rare so that we decided to discard
them without mention. The advantage of this approach is that it improves the ro-
bustness of the alarm clustering method while being completely transparent to the
user. The user only sees “robust” alarm clusters.

Determining the size of the alarm logL0 is an important decision. The larger
L0 is, the more alarms the two alarm logsL0 ∪ L1 andL0 ∪ L2 share, and the
weaker the form of robustness that we enforce by means of replication. In the
experiments of Chapter 6, we choseL0 to contain 60% of the alarms inL. This
value is based on informal experiments with different sizes ofL0.

Supporting the manual investigation of alarm clusters: After alarm clusters
have been extracted, we rely on a human expert to investigate them and to decide
whether they are valid or not. To support this manual validation process, we have
implemented descriptive statistics and the technique of drill-down.Descriptive
statisticsmake generalized alarms more informative by associating histograms
with their attribute values. For example, consider a generalized alarm that models
an alarm cluster of 5000 alarms, and assume that the source IP of this generalized
alarm has the value “Web server”. The histogram associated with the value “Web
server” shows on the x-axis all Web servers that are subsumed by the concept
“Web server”. The y-axis of the histogram shows for each individual Web server
how many out of the 5000 alarms it has triggered. In that way, it is possible to
expose the elementary attribute values that are subsumed by a generalized one. In
practice, we found that descriptive statistics significantly facilitate the understand-
ing of generalized alarms.

Finally, drill-down is a well-known technique in data mining [90]. Drill-down
allows the user of the alarm clustering method to reversely traverse the merge
steps that lead to an alarm cluster. Hence, if an alarm cluster looks questionable,
then the user can look at the alarm clusters that were merged to obtain it. If
needed, drill-down can recursively continue down to the level of individual alarms.
We found that drill-down offers a very practical method for investigating alarm
clusters, and for establishing or refuting their validity.

5.3.3 Concluding Remarks

It is worth pointing out that our alarm clustering method has a control flow that
is favorable for the creation of valid alarm clusters. In fact, beginning with the

98 CHAPTER 5. CLUSTER VALIDATION

most apparent cluster, it repeatedly finds and removes clusters from the dataset. In
doing so, the most clear-cut clusters are found and removed first, and the search for
additional clusters continues with the left-over alarms. Anderberg recommends
this strategy as one that is likely to find meaningful clusters [9]. Moreover, up
to min size alarms that did not fit well into any cluster might be left over at the
end of clustering. This, it has been argued [92], is more natural than assigning all
alarms (noise and outliers included) to clusters.

Chapter 6

Validation of Thesis Statement

This chapter is dedicated to the experimental validation of the thesis statement,
which was given in Section 1.2. Section 6.1 presents a detailed example of how
alarm clustering and root cause analysis work in practice. The remaining sections
address the individual claims of the thesis statement. Specifically, Section 6.2
contains summary statistics from a large number of experiments to show that a
few root causes account for the majority of alarms, and that these root causes can
be discovered efficiently by means of alarm clustering. Section 6.3 shows that the
future alarm load decreases quite significantly if root causes are removed or their
associated alarms are filtered out. Section 6.4, finally, shows that filtering can be
made safe so that there is a small risk of discarding true positives.

6.1 An Illustrative Example

This section illustrates how alarm clustering and root cause analysis work in prac-
tice. To this end, we consider the alarm log consisting of the 156380 alarms that
IDS 7 of Table 1.2 triggered in April 2001. IDS 7 is deployed at a large com-
mercial site whose network topology is sketched in Figure 4.3(a). To obtain a
more accurate picture of the network topology, please replace the subnetsNet-A,
. . . , Net-Zof Figure 4.3(a) by the224 subnets 0.0.0.*, 0.0.1.*, . . . , 255.255.255.*,
which are defined by the top three bytes of an IP address.

We configured the alarm clustering method with the following generalization
hierarchies: For IP addresses and port numbers, we used the generalization hier-
archies of Figure 4.3(c). As before, we ask you to mentally replace the subnets
Net-A, . . . , Net-Z by the subnets 0.0.0.*, . . . , 255.255.255.*. For time-stamps,
we employed the generalization hierarchies of Figure 4.4, with the time-stamp

99

100 CHAPTER 6. VALIDATION OF THESIS STATEMENT

attribute being replicated as described in Section 4.2.3. For the context attribute,
we chose to use generalization hierarchies based on frequent substrings, which is
also described in Section 4.2.3. No generalization hierarchy was defined for the
alarm type. Hence, the alarm type cannot be generalized and alarm clusters can
never mix alarms of different alarm types. We found this to be a useful heuristic
to obtain more understandable alarm clusters.

We consider the above generalization hierarchies to be simple and intuitive.
Moreover, the experiments in Section 6.2 confirm that generalization hierarchies
like these work generally well in practice. Finally, an important reason for choos-
ing the aforementioned generalization hierarchy for IP addresses is that we were
in possession of the necessary background knowledge to build it. For example,
even if we had wanted to, we could not have used generalization hierarchies that
structure IP addresses by their administrative domains; we simply did not have the
necessary background knowledge. Thus, the availability of background knowl-
edge affects the kind of generalization hierarchies that one can use in practice.

Table 6.1 shows the generalized alarms of the thirteen largest alarm clusters
that we found. Each line of the table represents one alarm cluster and the “Size”
column indicates the cluster’s size. Throughout the table, “any” is generically
written for attributes that have been generalized to the root of their generalization
hierarchies. The value “undefined” in the “Context” column indicates that the IDS
did not store any value for the context attribute. Similarly, the port attributes are
occasionally undefined. For example, the ICMP protocol has no notion of ports
[196]. As a consequence, the port attributes of “Fragmented ICMP Traffic” alarms
are undefined. Finally, recall that the namesip1 , ip2 , . . . refer to the machines in
Figure 4.3.

Note that the generalized alarms of Table 6.1 summarize 95% of all alarms.
We have therefore found a very crisp summary of almost the entire alarm log.
Moreover, using this summary for root cause analysis is a huge simplification over
using the original alarm log. Nevertheless, generalized alarms can only suggest
root causes. Additional work is needed to validate them. This validation generally
requires access to the alarm log, good security skills, and an understanding of the
computing environment. Below we present the validated root causes that we found
for the generalized alarms of Table 6.1. The discussion proceeds by alarm type:

WWW IIS View Source Attack: The first two generalized alarms of Table 6.1
contain the following (sanitized) substring in their context attributes:

GET /searchcgi/cgi?action=View&VdkVgwKey=
http%3A%2F%2Fwww%2Exyz%2Ecom

This request is completely legal and, based on Table 6.1, it has been issued
more than 100000 times. Our analysis has shown that “WWW IIS View

6.1. AN ILLUSTRATIVE EXAMPLE 101

Ta
bl

e
6.

1:
G

en
er

al
iz

ed
al

ar
m

s
of

th
e

th
irt

ee
n

la
rg

es
ta

la
rm

cl
us

te
rs

.

A
la

rm
Ty

pe
S

rc
-P

or
t

S
rc

-I
P

D
st

-P
or

t
D

st
-I

P
T

im
e-

S
ta

m
p

C
on

te
xt

S
iz

e

W
W

W
IIS

V
ie

w
S

ou
rc

e
A

tta
ck

N
on

-p
riv

.
In

te
rn

et
80

ip
1

an
y

se
e

te
xt

54
31

0
W

W
W

IIS
V

ie
w

S
ou

rc
e

A
tta

ck
N

on
-p

riv
.

In
te

rn
et

80
ip

2
an

y
se

e
te

xt
54

01
3

W
W

W
IIS

V
ie

w
S

ou
rc

e
A

tta
ck

N
on

-p
riv

.
F

ire
w

al
l

80
In

te
rn

et
an

y
an

y
17

83
0

F
T

P
S

Y
S

T
C

om
m

an
d

A
tte

m
pt

N
on

-p
riv

.
F

ire
w

al
l

21
In

te
rn

et
an

y
an

y
64

39
F

T
P

S
Y

S
T

C
om

m
an

d
A

tte
m

pt
N

on
-p

riv
.

In
te

rn
et

21
H

T
T

P
/F

T
P

an
y

an
y

41
81

IP
F

ra
gm

en
tA

tta
ck

un
de

fin
ed

ip
A

1
un

de
fin

ed
ip

4
W

or
kd

ay
un

de
fin

ed
45

81
IP

F
ra

gm
en

tA
tta

ck
un

de
fin

ed
ip

A
1

un
de

fin
ed

ip
5

W
or

kd
ay

un
de

fin
ed

37
08

T
C

P
S

Y
N

H
os

tS
w

ee
p

N
on

-p
riv

.
ip

4
80

In
te

rn
et

an
y

un
de

fin
ed

74
1

T
C

P
S

Y
N

H
os

tS
w

ee
p

N
on

-p
riv

.
ip

5
80

In
te

rn
et

an
y

un
de

fin
ed

65
1

T
C

P
S

Y
N

H
os

tS
w

ee
p

N
on

-p
riv

.
F

ire
w

al
l

25
In

te
rn

et
an

y
un

de
fin

ed
25

0
F

ra
gm

en
te

d
IC

M
P

T
ra

ffi
c

un
de

fin
ed

In
te

rn
et

un
de

fin
ed

ip
1

an
y

un
de

fin
ed

82
3

F
ra

gm
en

te
d

IC
M

P
T

ra
ffi

c
un

de
fin

ed
In

te
rn

et
un

de
fin

ed
ip

2
an

y
un

de
fin

ed
71

1

U
nk

no
w

n
P

ro
to

co
l

F
ie

ld
in

IP
P

ac
ke

t
un

de
fin

ed
ip

Z
1

un
de

fin
ed

F
ire

w
al

l
E

nd
-o

f-
m

on
th

,
T

ue
sd

ay
un

de
fin

ed
86

1

102 CHAPTER 6. VALIDATION OF THESIS STATEMENT

Source Attack” alarms occur when a URL contains “%2E”, as is the case for
the above URL. The root cause lies in the search engine that the Web servers
ip1 and ip2 offer. In fact, all the URLs that the search engine returns in
response to client requests have their dots replaced by “%2E”, which is the
hex-encoding for a dot. When a client clicks on one of the returned search
results, then the above alarm is triggered. Finally, the third generalized
alarm in Table 6.1 turned out to be the reverse problem: Internal clients
requesting external Web pages, the URL of which contains “%2E”. Note
that the internal clients are proxied by the firewall.

FTP SYST Command Attempt: These generalized alarms simply highlight the
fact that many FTP clients issue the SYST command — a legal command
that returns information about the FTP server. The root cause is the config-
uration of the FTP clients that tells them to issue the SYST command at the
beginning of each FTP session.

IP Fragment Attack: Either ipA1 is maliciously sending fragmented packets to
the firewalls or there is a router that fragments the packets betweenipA1
and the firewalls. Our investigation has convinced us that the fragmenting
router is the actual root cause.

TCP SYN Host Sweep:Here, the IDS thinks that the firewalls are running host
sweeps. In reality, however, the firewalls proxy the HTTP (port 80) and
SMTP (port 25) requests of their clients. While exercising this function, the
firewalls occasionally contact many external machines at virtually the same
time. The resulting traffic resembles host sweeps.

Fragmented ICMP Traffic: After investigating the source IPs, we realized that
they all belong to various Internet Service Providers (ISPs). Therefore, we
conjectured that there is some link between fragmented ICMP traffic and
modem access to the Internet, i.e. the root cause is some particularity of
certain modems.

Unknown Protocol Field in IP Packet: At the end of the month, a machine on
the Internet starts using an unknown transport layer protocol to communi-
cate with the firewall. As many security tools ignore protocols that they do
not understand, attackers occasionally use unknown protocols to establish
covert channels. A closer investigation of this generalized alarm seems to
indicate that, indeed,ipZ1 is using a covert channel.

Note that for the last two alarm types, we had some difficulty in pinpointing
the actual root causes. This, however, is no limitation of our alarm clustering
method. In fact, even when we looked at the raw intrusion detection alarms, we
could not ascertain the root causes. Too much information was missing. For
example, what modems do the ISP clients use, and what hardware do the ISPs

6.2. EXPERIENCE WITH ALARM CLUSTERING 103

deploy? Who isipZ1, and what is the “unknown protocol” that has been observed?
These questions are hard to answer, partially because the IDS provides too little
information about the “unknown protocol”, partially because certain components
such as the modems or the machine attached toipZ1are out of our control. Hence,
with or without alarm clustering, there are cases where we do not have enough
information to identify root causes with certainty.

Recall that we are experimenting with historical (N.B. real-world) alarm logs.
Therefore, we cannot simply remove the previously identified root causes. As an
alternative, we used filtering to estimate the alarm load reduction that we could
expect. Specifically, we wrote filtering rules that discarded all alarms matching
one of the generalized alarms in Table 6.1. We then applied these filters to the
alarms of the following month. The result was that 82 percent of all alarms in May
were automatically discarded by the filtering rules. Thus, if the root causes had
been resolved, then 82 percent less work would have been the estimated payoff in
May 2001. Section 6.4 discusses the risk that filtering discards true positives.

6.2 Experience with Alarm Clustering

The first and second claim of the thesis statement say that a few root causes gen-
erally account for the majority of alarms, and that these root causes can be dis-
covered efficiently by means of alarm clustering (cf. Section 1.2). This section
contains summary statistics from a large number of experiments to substantiate
these claims. Section 6.2.1 describes the experimental setup, and Section 6.2.2
presents the results obtained.

6.2.1 Experimental Setup

The experimental setup is very similar to the one of the last section. Specifically,
for each IDS of Table 1.2 and each month of the year 2001, we take all alarms
of this IDS and month, and store them into a separate alarm log. This yields
(16 IDSs) × (12 months) = 192 pairwise disjunct alarm logs. We run the alarm
clustering method individually on each of these alarm logs and record the results.

As above, we use the generalization hierarchies of Figure 4.3(c), Figure 4.4,
and Section 4.2.3 for port numbers, the time-stamp, and the context attribute,
respectively. No generalization hierarchy is defined for the alarm type. For IP
addresses we adapt the generalization hierarchy of Figure 4.3(c) to the specific
environments of the different IDSs. This is done as follows: The root concept
of the adapted hierarchy is calledAny-IPand represents the set of all possible IP
addresses. The concept “Any-IP” is split into the categoriesProtected IPsand

104 CHAPTER 6. VALIDATION OF THESIS STATEMENT

External IPs. The protected IPs, which correspond to the DMZ of Figure 4.3(c),
are those IPs that the IDS-operator is responsible for. External IPs are all the
other IPs that belong to someone else. We further sub-classify the protected IPs
according to the services (e.g. HTTP, FTP, Telnet, etc.) they offer. External IPs
are further classified by subnet.

The alarm clustering method is configured to enforceε-robustness (cf. Section
4.3.4) withε = 0.05. Moreover, as described in Section 5.3.2, the alarm cluster-
ing method performs replication analysis, and only returns alarm clusters that are
robust in the sense that they are independently discovered in two different sample
logs that overlap in 60% of their alarms. Instead of manually setting themin size
values as required in the lines 2 and 9 of Figure 4.7, we mechanically setmin size
to one tenths of the number of alarms in tableT (i.e.min size := |T |/10). We run
the alarm clustering method for all 192 alarm logs during the night, and manually
review the results. The purpose of this review is not to actually identify the root
causes, but rather to convince ourselves that the clustering results are informative
and interpretable. When we find generalized alarms that are overly general or
hard to interpret, then we repeat the alarm clustering process, but this time with
manually setmin size values. The alarm clusters that we find this way are substi-
tuted for the mechanically generated ones. This yields the final set of generalized
alarms, to which the results of the next section refer.

Two remarks are in order. First, we found that the default value formin size
works well in most cases, but occasionally, it is important to manually tweak the
min size value to the alarm log at hand. However, manually reviewing and revis-
ing the mechanically generated clustering results is very time consuming, which
is why we had not done it in our earlier work [114]. In hindsight, we observed
that this extra effort has improved the quality of the results reported here. The
second remark concerns the replicability of the experiments reported here. The
alarms used in our experiments originate from Fortune 500 companies, and — for
confidentiality reasons — cannot be made public. However, the thesis statement
of this dissertation concern intrusion detection alarms in general, not the specific
alarms of our experiments. Therefore, anybody in possession of intrusion detec-
tion alarms should be able to verify the results reported here. Moreover, because
of the limitations of simulated or laboratory environments [144], we consider it
essential to use real-world alarms for the evaluation.

6.2.2 Alarm Clustering Results

The purpose of this section is to validate the first two claims of the thesis state-
ment. This is done by means of summary statistics that we derived from an analy-
sis of the previously mentioned 192 alarm logs. We first address the second claim

6.2. EXPERIENCE WITH ALARM CLUSTERING 105

of the thesis statement, according to which alarm clustering is a practical method
for identifying root causes. One aspect of practicability is the run-time of the
clustering method. The histogram of Figure 6.1 is based on time measurements
taken on a 700 MHz Pentium III CPU with 1 GB RAM. All run-times include
the time for reading and processing an alarm log. For example, Figure 6.1 shows
that 24 out of the 192 alarm logs were analyzed in less than one minute. For 60
alarm logs, the analysis took between one and two minutes. Run-times of more
than nine minutes were observed for only 22 alarm logs. Figure 6.2 shows that
the average run-time is approximately linear in the log size. The peak for logs be-
tween 280000 and 320000 alarms is caused by an exceptionally large number of
iterations in process that implementsε-robustness (cf. Section 4.3.4). In general,
however, run-times are relatively low.

Another aspect of practicability is the number and interpretability of general-
ized alarms. In fact, if the alarm clustering method generated an excessive number
of generalized alarms, or if generalized alarms were hard to interpret, then alarm
clustering would be of minor help for root cause analysis (contrary to the second
claim of the thesis statement). Figure 6.3 shows the average number of general-
ized alarms per IDS, with the averages being taken over all months of the year
2001. It becomes apparent that on the average over all 192 alarm logs, there are
18 generalized alarms per alarm log. It is clearly practicable to perform a manual
root cause analysis for an average of 18 generalized alarms per alarm log. As a
matter of fact, for 48 of the 192 alarm logs we have used the respective general-
ized alarms to perform the root cause analysis (see Section 6.3 for the selection of
alarm logs.) For the sake of objectivity, we asked colleagues to perform indepen-
dently from us the root cause analysis for 10 of the 48 alarm logs. Their and our
results were consistent. Moreover, we and our colleagues agreed that generalized
alarms were intuitive and easy to interpret. Finally, interpreting the generalized
alarms took us between one and two hours per alarm log. Taken together, these
findings support the second claim of the thesis statement.

By way of illustration, we next list some of the more interesting root causes
that have not yet been reported in this dissertation:

In one Windows network, we observed a large number of “Anonymous ses-
sion” alarms. In the present case, this was part of the normal system opera-
tion. IDSs report anonymous sessions, because an attacker can use them to
enumerate users, shares, and under Windows NT even registry information.

Between April and September 2001, the number of DNS-related scans and
attacks increased one-hundred-fold on most IDSs that monitored Internet
traffic. We conjecture that this spike is related to a January 2001 CERT
advisory that warned of multiple vulnerabilities in BIND, which is a widely
used implementation of the DNS service [32].

106 CHAPTER 6. VALIDATION OF THESIS STATEMENT

0

10

20

30

40

50

60

70

]0,1]]1,2]]2,3]]3,4]]4,5]]5,6]]6,7]]7,8]]8,9] >9

Run-time per alarm log (in minutes)

Fr
eq

ue
nc

y

Figure 6.1: Histogram showing the frequencies of different run-times.

0

200

400

600

800

1000

1200

1400

1600

[1
,4

]

]4
,8

]

]8
,1

2]

]1
2,

16
]

]1
6,

20
]

]2
0,

24
]

]2
4,

28
]

]2
8,

32
]

]3
2,

36
]

]3
6,

40
]

>4
0

Alarm log size (in 10000s of alarms)

A
ve

ra
ge

 ru
n-

tim
e

(in
 s

ec
on

ds
)

Figure 6.2: Average run-times by alarm log size.

6.2. EXPERIENCE WITH ALARM CLUSTERING 107

A broken router triggered an abundance of “TCP overlap” alarms. IDSs
report overlapping TCP traffic because it has been used to evade attack de-
tection [176].

Some IP addresses systematically scanned the default ports of well-known
Trojan horses.

Consider a DNS client that sends a batch of DNS requests to a DNS server.
When the DNS server returns its replies, it returns a series of UDP packets
to various ports of the DNS client. This traffic pattern looks as if the DNS
server was UDP port-scanning the DNS client, which triggers alarms on
most IDSs.

Some IDSs trigger on URLs containing “/exec/” because this substring is
associated to a vulnerability in the Cisco Catalyst 3500 XL switch (cf. CVE-
2000-0945). The users at one site were eager on shopping at amazon.com.
However, virtually all URLs at amazon.com contain the substring “/exec/”,
which resulted in a correspondingly large number of false positives.

Some sites had large amounts of Napster traffic, which some IDSs report
because companies generally prohibit the use of Napster, and similar file-
swapping applications.

Socksified FTP clients always trigger an abundance of “FTP bounce”
alarms. In detail, FTP clients can instruct FTP servers to send their data
to any IP address and port of the client’s choice. This ability can be abused
for the FTP bounce attack [31], in which the FTP client specifies an IP ad-
dress different from its own. However, socksified FTP clients are proxied
by a SOCKS server [133], and have to specify the IP address of the SOCKS
server, rather than their own. This triggers “FTP bounce” alarms.

We now turn to the first claim of the thesis statement, according to which
a few root causes generally account for the majority of alarms. This claim is
confirmed by our experience that a few predominant and persistent root causes
systematically trigger large amounts of mostly false alarms. Chapter 3 has made
this point in great detail, and it is further supported by the above sample root
causes. To defend this claim in a quantitative manner, we have to identify a small
number of root causes, and show that these root causes triggered the majority of
alarms. Using the alarm clustering method, it is relatively easy to identify root
causes, but it is very difficult to count the number of alarms that these root causes
have triggered. In fact, Section 3.2 has shown that it is generally not possible to
decide with certainty whether a given root cause has triggered a particular alarm.
Hence, it is equally impossible (at least in the general case) to count the number of
alarms that a root cause has triggered. For these reasons, we opted to approximate
the number of alarms per root cause.

108 CHAPTER 6. VALIDATION OF THESIS STATEMENT

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IDS

A
ve

ra
ge

 n
um

be
r o

f g
en

er
al

iz
ed

 a
la

rm
s

Figure 6.3: Average number of generalized alarms per IDS.

For the purpose of this approximation, we assume that our alarm clustering
method is correct in the sense of Definition 3.2. In other words, letL be an alarm
log, and letC1, . . . , Cn be the alarm clusters that the alarm clustering method has
found forL. Then, we assume that all alarms in clusterCi share the same root
cause,i = 1, . . . , n. Two conclusions are immediate:

1. Because each alarm cluster corresponds to a root cause, we have established
the existence ofk ≤ n root causes, withk = n if the alarm clusters have
pairwise distinct root causes. Note that themin size parameter controls the
numbern of alarm clusters, and hence, the numberk of root causes. Clearly,
this control is weakened by the effect thatε-robustness (cf. Section 4.3.4)
has on the clustering results. Nonetheless, it might seem that the above
correctness assumption (from which we concluded the existence ofk ≤ n
root causes) is a strong one.

2. Thesek root causes account for(100/|L|)×
∑n

i=1 |Ci| percent of the alarms
in L. This percentage is called thecoverage.

To show that a few root causes account for the majority of alarms, we next
show thatk is generally small in our experiments, while the coverage is large.
In fact, Figure 6.3 shows that the numbern of alarm clusters per alarm log is
relatively small, namely 18 on the average. Consequently, the numberk of root
causes is small, as well. The histogram of Figure 6.4 shows the number of times
the different degrees of coverage are obtained in our experiments. For example,
between 95% and 100% of coverage is obtained for 59 of the 192 alarm logs.
For 51 alarm logs, the coverage is between 90% and 95%, and on the average,

6.3. ALARM LOAD REDUCTION 109

0

10

20

30

40

50

60

70

[0,60]]65,70]]75,80]]85,90]]95,100]

Coverage [%]

N
um

be
r o

f a
la

rm
 lo

gs

Figure 6.4: Histogram showing the frequency of different degrees of coverage.

an alarm log has 90% coverage. Hence, an average of less than 18 root causes
typically accounts for 90% of the alarms in an alarm log. This confirms the first
claim of the thesis statement.

6.3 Alarm Load Reduction

According to the third claim of the thesis statement, one can significantly reduce
the future alarm load by removing root causes, or by filtering out the alarms that
originate from benign root causes. To verify this claim, one has to measure the
effect of root cause removal and alarm filtering. However, given that we are exper-
imenting with historical (N.B. real-world) alarm logs, it is not possible to actually
remove root causes. Therefore, we use only filtering in our experiments. Note that
the use of filtering is born of necessity, and does not endorse filtering over root
cause removal. In a nutshell, we choose a monthm in the year 2001 and an IDS
I from Table 1.2. Then, we perform a root cause analysis for the alarm log corre-
sponding to IDSI and monthm. Based on the results obtained, we derive filtering
rules and apply them to the alarms that IDSI triggers in monthm+1. In doing so,
we calculate the percentage of alarms that are discarded by the rules. The higher
this percentage, the stronger the evidence in favor of the thesis statement.

To perform a root cause analysis for a given IDS, one needs a detailed under-
standing of the site at which the IDS is deployed. Gaining such an understanding
is time-consuming and requires the close cooperation of the IDS owner. For lack
of time and resources we were not able to gain a sufficiently deep understanding

110 CHAPTER 6. VALIDATION OF THESIS STATEMENT

for all IDSs. Therefore, we decided to focus on the IDSs 3, 6, 10, and 14, which
are representative in the following ways: First, the IDSs 3 and 6 are of type A,
while the IDSs 10 and 14 are of type B, where A and B are pseudonyms for the
IDS vendors (cf. Section 1.4). Second, IDS 3 is located in a DMZ, IDS 6 is on an
extranet, IDS 10 is on an intranet, and IDS 14 is on a link to the Internet. Third,
according to Table 3.2 on page 48, IDS 3 seems to contradict the alarm cluster
hypothesis, IDS 14 offers some evidence in favor of the alarm cluster hypothesis,
and the IDSs 6 and 10 offer strong evidence in favor of the alarm cluster hypoth-
esis. Finally, for each of the IDSs 3, 6, 10, and 14 we consider all months of the
year 2001, i.e.m = Jan, . . . ,Dec. This results in the4 IDSs× 12 months= 48
alarm logs mentioned in the previous section.

After completing the root cause analysis for IDSI, I ∈ {3, 6, 10, 14}, and
monthm, m ∈ {Jan, . . . ,Dec}, we wrote filtering rules that discarded all alarms
belonging to the identified root causes. In most cases, the filtering rules were iden-
tical to the generalized alarms. Occasionally, we adapted the generalized alarms
according to our understanding of the root causes to obtain more adequate filtering
rules. Because root cause removal was no option, we wrote filtering rules for be-
nign and malicious root causes alike. In the real world, one might choose to filter
out true positives if their targets are not vulnerable [136], but other responses such
as firewall reconfigurations are more typical. Either way, the end effect is that in
the future, one no longer has to manually handle the alarms of well-understood
root causes. In our experiments, we imitate this automation by means of filter-
ing rules. We applied the derived filtering rules to the alarms that the same IDS
triggered in the following month. We measured thealarm load reduction, i.e. the
percentage of alarms that were discarded by the filtering rules, and plotted it in
the Figures 6.5 through 6.8.

For example, Figure 6.5 shows that the filtering rules that we derived from
the January alarms of IDS 3 discard 93% of the alarms that IDS 3 triggers in
February 2001. In other words, the number of alarms that the IDS operator had
to investigate in February could have been reduced by 93% if root cause analysis
in combination with filtering had been done at the end of January. Note that the
alarm load reduction for January 2001 is not available, because we do not use
the alarms from December 2000 in our experiments. Further, the rules derived
from the February alarms of IDS 3 discard 92% of the March alarms, and so on.
It becomes evident from the Figures 6.5 and 6.7 that the IDSs 3 and 10 have a
relatively high alarm load reduction of approximately 95% on the average. On
the other hand side, the alarm load reduction of the IDSs 6 and 14 is much more
modest. This variability can be explained as follows:

IDS 3 is deployed in a Web hosting environment. In this environment, the bulk
of alarms are TCP SYN host-sweeps, which result from external hosts

6.3. ALARM LOAD REDUCTION 111

0
10
20
30
40
50
60
70
80
90

100

Ja
n

'0
1

Fe
b

'0
1

M
ar

 '0
1

A
pr

 '0
1

M
ay

 '0
1

Ju
n

'0
1

Ju
l '

01

A
ug

 '0
1

Se
p

'0
1

O
ct

 '0
1

N
ov

 '0
1

D
ec

 '0
1

Ja
n

'0
2

Month

A
la

rm
 lo

ad
 re

du
ct

io
n

by
 ru

le
s

of

pr
ev

io
us

 m
on

th
 [%

]

Figure 6.5: Alarm load reduction for IDS 3.

0
10
20
30
40
50
60
70
80
90

100

Ja
n

'0
1

Fe
b

'0
1

M
ar

 '0
1

A
pr

 '0
1

M
ay

 '0
1

Ju
n

'0
1

Ju
l '

01

A
ug

 '0
1

Se
p

'0
1

O
ct

 '0
1

N
ov

 '0
1

D
ec

 '0
1

Ja
n

'0
2

Month

A
la

rm
 lo

ad
 re

du
ct

io
n

by
 ru

le
s

of

pr
ev

io
us

 m
on

th
 [%

]

Figure 6.6: Alarm load reduction for IDS 6.

112 CHAPTER 6. VALIDATION OF THESIS STATEMENT

0
10
20
30
40
50
60
70
80
90

100

Ja
n

'0
1

Fe
b

'0
1

M
ar

 '0
1

A
pr

 '0
1

M
ay

 '0
1

Ju
n

'0
1

Ju
l '

01

A
ug

 '0
1

Se
p

'0
1

O
ct

 '0
1

N
ov

 '0
1

D
ec

 '0
1

Ja
n

'0
2

Month

A
la

rm
 lo

ad
 re

du
ct

io
n

by
 ru

le
s

of

pr
ev

io
us

 m
on

th
 [%

]

Figure 6.7: Alarm load reduction for IDS 10.

0
10
20
30
40
50
60
70
80
90

100

Ja
n

'0
1

Fe
b

'0
1

M
ar

 '0
1

A
pr

 '0
1

M
ay

 '0
1

Ju
n

'0
1

Ju
l '

01

A
ug

 '0
1

Se
p

'0
1

O
ct

 '0
1

N
ov

 '0
1

D
ec

 '0
1

Ja
n

'0
2

Month

A
la

rm
 lo

ad
 re

du
ct

io
n

by
 ru

le
s

of

pr
ev

io
us

 m
on

th
 [%

]

Figure 6.8: Alarm load reduction for IDS 14.

6.3. ALARM LOAD REDUCTION 113

contacting in short succession a series of distinct Web servers. The result-
ing scan-like traffic patterns are extremely repetitive and predictable. This
makes filtering very effective and results in an average alarm load reduction
of approximately 95%.

IDS 6 features an over-proportionally low alarm load reduction in February,
April, September, and October. Based on our investigation, a temporary
networking problem on the 5th and 6th of February has triggered 563205
”Fragmented IP” alarms. Clearly, the filtering rules derived from the Jan-
uary alarms cannot anticipate this temporary networking problem. As a
consequence, they are ineffective, and the alarm load reduction in Febru-
ary drops to 18%. In April, the already mentioned spike in the number of
DNS scans and attacks renders the filtering rules from March ineffective.
The advent of NIMDA in mid-September, as well as other unpredictable
attacks explain the alarm load reduction of only 48% in September. By
mid-October, NIMDA has spread to the point where the filtering rules from
September are too specific to be effective. Hence the alarm load reduction
of 43% in October.

IDS 10 is deployed on an internal network. Our investigation has shown that the
vast majority of alarms result from a network management system. More-
over, these alarms are extremely repetitive, so that root cause analysis fol-
lowed by filtering achieves the very high alarm load reductions shown in
Figure 6.7.

IDS 14 is deployed before the firewall of a large company. Based on our anal-
ysis, the majority of alarms triggered by IDS 14 report real attacks. How-
ever, most real attacks are ephemeral, and do not progress for months in
a row. This explains why the filtering rules derived in one month yield a
generally low alarm load reduction in the following month. The 90% alarm
load reduction in December is an exception, which is due to a significant
amount of port scanning during the months of November and December.
The alarm load reductions of nearly 0% in April and May are due to a
temporary networking problem that triggers 1415167 ”TCP Overlap Data”
alarms in April. Clearly, the filtering rules from March cannot anticipate
this networking problem, and are consequently ineffective in April. On the
other hand side, the filtering rules from April deal mostly with ”TCP Over-
lap Data” alarms, which do no longer occur in May. Hence the poor alarm
load reduction in May.

The average alarm load reduction over the 48 months of the Figures 6.5
through 6.8 is 70%. Even though this percentage is relatively high, we believe
that it actually underestimates the attainable alarm load reduction. In fact, the

114 CHAPTER 6. VALIDATION OF THESIS STATEMENT

above examples show that the sudden advent of a new root cause (e.g. a network-
ing problem or a worm) can trigger a sharp drop in the alarm load reduction.
After all, the filtering rules were derived from alarms that contained no trace of
these new root causes. Consequently, the rules are ineffective at handling the new
alarms, and the alarm load reduction drops. This situation is unaltered when root
cause removal is used instead of filtering, because one cannot remove root causes
that do not yet exist. However, one can attempt to detect and respond as fast as
possible to new root causes. To this end, one can monitor the average number of
alarms per time unit. When this number rises sharply, it is a strong indication that
new root causes have set in. Then, one can immediately re-do the root cause anal-
ysis and respond to the root causes discovered. This approach is clearly superior
to our high-latency approach, where root cause analysis is done once a month.
Moreover, the new approach is likely to result in an average alarm load reduction
that is even higher than the 70% reported above.

While running the above experiments, we observed that the alarm clustering
method tended to produce generalized alarms that — according to our root cause
analysis — could be used as filtering rules. We therefore hypothesize that gen-
eralized alarms are generally good filtering rules. If one is willing to accept this
hypothesis, then it is not necessary to actually perform a root cause analysis to
derive filtering rules. Rather, one can simply use the generalized alarms asdefault
filtering rules. Using this idea, we have calculated the average alarm load reduc-
tions for all 16 IDSs of Table 1.2. Figure 6.9 shows the resulting averages. For
example, in the year 2001, the default filtering rules for IDS 1 achieve an average
alarm load reduction of 90% per month. The average alarm load reduction for
IDS 2 is 82%. Not surprisingly, the averages for the IDSs 3, 6, 10, and 14 are
very close to the average alarm load reductions of the manually derived filtering
rules. These latter averages can be calculated from the Figures 6.5 through 6.8.
The average alarm load reduction in Figure 6.9 is 70% per IDS and month. This
is consistent with the claimed effectiveness of filtering.

6.4 On the Risks of Filtering

The thesis statement of Section 1.2 claims that it is safe to filter out alarms that
have benign root causes, wheresafemeans that the risk of discarding true positives
is small. This section defends this claim. Doing so is no easy endeavor because
there are many factors that influence how safe the use of filtering rules actually is.
Three particularly noteworthy factors are:

6.4. ON THE RISKS OF FILTERING 115

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

IDS

A
ve

ra
ge

 a
la

rm
 lo

ad
 re

du
ct

io
n

by

ru
le

s
of

 p
re

vi
ou

s
m

on
th

 [%
]

Figure 6.9: Average alarm load reduction per IDS.

The author: Recall that filtering rules are written based on one’s understanding
of alarm root causes. Hence, whether a filtering rule is safe or not depends
to a good part on the author who wrote it.

The attacker: The safety of filtering rules is also contingent on how knowledge-
able attackers are. In fact, knowledge of filtering rules makes it easier for
an attacker to design an attack so that the resulting alarms match a filtering
rule and get discarded.

The environment: In a very dynamic environment there is a higher risk that a
formerly safe filtering rule becomes obsolete and starts discarding true pos-
itives. Conversely, the more static and the more tightly controlled an envi-
ronment is, the safer it is to use filtering.

In summary, if the author is skilled, the environment does not change in ways
that the author could not anticipate, and the attacker does not know the filtering
rules, then filtering is safe. Clearly, to quantify safety in an objective manner,
one first has to quantify these three factors. However, it is not clear how to quan-
titatively measure the author’s skills, the stability of the environment, and the
attacker’s knowledge. This suggests that there probably is no simple solution to
the problem of quantifying safety.

Moreover, we believe that a quantitative statement such as “any given true
positive has a probability of10−3 to be filtered out” is meaningless because safety
must be seen in comparison to alternative ways of handling alarms. For example,

116 CHAPTER 6. VALIDATION OF THESIS STATEMENT

if a part-time employee had a probability of10−6 to miss a true positive, then fil-
tering would be rather unsafe, given the above (hypothetical) probability of10−3.
But what if it took 10 security specialists using correlation systems such as those
of Section 2.4 to miss as few as one out of106 true positives? At first sight, this
seems to imply that filtering is comparatively unsafe. However, 10 well-equipped
security experts are much more expensive than root cause analysis and filtering.
It is therefore unfair to compare said security experts to our filtering technology.
This raises another problem, namely the problem of deciding what to compare
filtering to. At this point, it should have become evident that quantifying safety
is a difficult research problem, which exceeds the scope of this dissertation. As
an alternative to a quantitative analysis, the next section proposes four pragmatic
ways to make filtering safer.

6.4.1 Guidelines for Safe Filtering

Users concerned about the safety of filtering are advised to abide by the following
guidelines:

Write specific rules: The more specific a filtering rule is, the less likely it is to
discard true positives. Ideally, filtering rules should always inspect the con-
text attribute, which — as explained in Section 1.4 — stores the raw audit
data that the IDS believes to contain an attack. In that way, filtering rules
can double-check the analysis of the IDS and thereby guarantee that only
false positives are discarded. Unfortunately, not all IDSs set the context
attribute in all alarms.

Keep rules secret: Keeping filtering rules secret makes it more difficult for an
attacker to “hijack” them.

Remove outdated rules:Computing environments are dynamic. Hosts, net-
works, and services come and go, and IDS software gets updated or even
replaced. As a consequence, alarms that were predominant in the past may
vanish, which renders their associated filtering rules obsolete. Obsolete fil-
tering rules should be removed because they do not noticeably reduce the
alarm load, while still bearing the danger to discard true positives.

Filter when not vulnerable: This recommendation does not make filtering safer,
but it limits the harm done when a true positive is actually discarded. The
idea is to filter alarms only when they report attacks that the target is not
vulnerable to. In fact, some authors recommend to systematically filter out
all alarms that affect non-vulnerable targets [136].

Chapter 7

Summary and Outlook

This chapter summarizes the work presented in this dissertation and reviews the
main contributions made. Possible directions for future research are suggested.

7.1 Summary and Conclusions

This thesis proposes a new solution to the problem that intrusion detection systems
overload their human operators by triggering thousands of mostly false alarms per
day. Central to our solution is the notion of a root cause, which is the reason for
which an alarm was triggered. The foundation of our solution is laid by three key
contributions:

1. It is shown that, in general, a small number of root causes is responsible for
the majority of alarms that an IDS triggers.

2. A new data mining technique is developed, and it is shown that applying
this data mining technique to alarm logs constitutes an efficient approach
for identifying root causes.

3. It is shown that once root causes have been identified, one can safely and
significantly reduce the future alarm load by fixing them or by filtering out
alarms that are associated to benign root causes.

Based on these contributions, we have introduced the following new alarm
handling paradigm: Firstly, the proposed new data mining technique is used to
identify root causes that account for large numbers of alarms, and secondly, these
root causes are fixed or their associated alarms are judiciously filtered out (pro-
vided they are false positives). We have validated this alarm handling paradigm in
extensive experiments with real-world intrusion detection alarms. On the average,

117

118 CHAPTER 7. SUMMARY AND OUTLOOK

we found that a few hours of time spent on the identification and removal of root
causes would pay off by reducing the future alarm load by 70%.

Further contributions of this dissertation include a description of the link be-
tween data mining and root cause analysis (cf. Section 3.2), a high-level charac-
terization of intrusion detection alarms (cf. Proposition 3.1), the development of
heuristic rules for attack detection (cf. Section 3.5.2), and a case study for the ap-
plication of data mining techniques to a real-world problem. Three conclusions
can be drawn when comparing this work to previous work in alarm handling:

Console versus source:Most previous work has focused on building monitoring
consoles that handle alarms as effectively as possible. This dissertation has
shown that many alarms originate from persistent root causes. Further, it
has been demonstrated that these alarms are best handled at their source
(i.e. by eliminating their root causes) rather than at the console.

Online versus off-line: Most previous work has focused on online systems that
analyze alarms in real-time. This dissertation has shown that there is sub-
stantial value in the off-line analysis of historical alarms.

True positives versus false positives:While most previous work has attempted
to single out and escalate true positives, our work has shown the feasibility
and usefulness of eliminating false positives. (Note that our alarm han-
dling paradigm mainly eliminates false positives because most attacks are
too ephemeral to be properly addressed by a high-latency approach like
ours, which involves off-line data mining followed by some response.)

7.2 Future Work

This thesis work can be further pursued in one or more of the following directions:

At present, interpreting alarm clusters in terms of root causes is still man-
ual. However, one could envision to build an expert-system that automates
the interpretation of alarm clusters. In this way, root cause analysis would
become fully automatic.

As discussed in Section 4.4, future work could investigate the integration of
further forms of background knowledge into the alarm clustering method.

Future work could continue the work of Section 6.4 and develop methods
to quantitatively assess the risk of filtering.

One could build an IDS that supports root cause analysis. At a minimum,
such an IDS should have public (rather than proprietary) signatures and a
verbose-mode, in which the traffic matching certain signatures is logged.

Bibliography

[1] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopulos, and Prabhakar
Raghavan. Automatic Subspace Clustering of High Dimensional Data for
Data Mining Applications. InProceedings of the ACM SIGMOD Interna-
tional Conference on Management of Data, pages 94–105, 1998.

[2] Rakesh Agrawal, Ashish Gupta, and Sunita Sarawagi. Modeling Multidi-
mensional Databases. Technical report, IBM Almaden Research Center,
1995.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining Associa-
tions between Sets of Items in Massive Databases. InProceedings of the
ACM-SIGMOD 1993 International Conference on Management of Data,
pages 207–216, 1993.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast Algorithms for Mining
Association Rules. InProceedings of the 20th International Conference on
Very Large Databases, pages 487–499, September 1994.

[5] Mark S. Aldenderfer and Roger K. Blashfield.Cluster Analysis. Quantita-
tive Applications in the Social Sciences. Sage Publications, 1984.

[6] Julia Allen, Alan Christie, William Fithen, John McHugh, Jed Pickel,
and Ed Stoner. State of the Practice of Intrusion Detection Technolo-
gies. Technical report, Carnegie Mellon University, January 2000.http:
//www.cert.org/archive/pdf/99tr028.pdf .

[7] Magnus Almgren, Herv́e Debar, and Marc Dacier. A Lightweight Tool for
Detecting Web Server Attacks. InProceedings of the Network and Dis-
tributed System Security Symposium (NDSS 2000), pages 157–170, Febru-
ary 2000.

[8] Magnus Almgren and Ulf Lindqvist. Application-Integrated Data Collec-
tion for Security Monitoring. InProceedings of the 4th Workshop on Recent

119

120 BIBLIOGRAPHY

Advances in Intrusion Detection (RAID), LNCS, pages 22–36. Springer
Verlag, 2001.

[9] Michael R. Anderberg.Cluster Analysis for Applications. Academic Press,
1973.

[10] Phipps Arabie and J. Douglas Carroll. MAPCLUS: A Mathematical Pro-
gramming Approach to Fitting the ADCLUS Model.Psychometrika,
45:211–235, 1980.

[11] Phipps Arabie and Lawrence J. Hubert. An Overview of Combinatorial
Data Analysis. In Arabie et al. [12], pages 5–63.

[12] Phipps Arabie, Lawrence J. Hubert, and Geert De Soete, editors.Clustering
and Classification. World Scientific Publishing, 1996.

[13] Stefan Axelsson. The Base-Rate Fallacy and the Difficulty of Intrusion De-
tection. ACM Transactions on Information and System Security (TISSEC),
3(3):186–205, 2000.

[14] Rebecca Bace. Intrusion Detection. Macmillan Technical Publishing,
2000.

[15] G.H. Ball and D.J. Hall. ISODATA, a Novel Method of Data Analysis and
Pattern Classification. Technical report, Stanford Research Institute, Menlo
Park, CA, 1965.

[16] Jeffrey D. Banfield and Adrian E. Raftery. Model-Based Gaussian and
Non-Gaussian Clustering.Biometrics, 49:803–821, 1993.

[17] Daniel Barbaŕa and Sushil Jajodia, editors.Applications of Data Mining in
Computer Security. Kluwer Academic Publisher, Boston, 2002.

[18] Daniel Barbaŕa, Ningning Wu, and Sushil Jajodia. Detecting Novel Net-
work Intrusions Using Bayes Estimators. InProceedings of the 1st SIAM
International Conference on Data Mining (SDM’01), 2001.

[19] Steven M. Bellovin. Packets Found on an Internet.Computer Communica-
tions Review, 23(3):26–31, 1993.

[20] Michael J. A. Berry and Gordon Linoff.Data Mining Techniques. John
Wiley and Sons, Inc., 1997.

[21] Gilles Bisson. Conceptual Clustering in a First Order Logic Representation.
In Proceedings of the 10th European Conference on Artificial Intelligence,
pages 458–462, 1992.

BIBLIOGRAPHY 121

[22] Eric Bloedorn, Bill Hill, Alan Christiansen, Clem Skorupka, Lisa Tal-
boot, and Jonathan Tivel. Data Mining for Improving Intrusion Detec-
tion, 2000. http://www.mitre.org/support/papers/tech_
papers99_00/ .

[23] Hans-Hermann Bock. Probability Models and Hypotheses Testing in Par-
titioning Cluster Analysis. In Arabie et al. [12], pages 377–453.

[24] Anastasios T. Bouloutas, Seraphin B. Calo, and Allan J. Finkel. Alarm
Correlation and Fault Identification in Communication Networks.IEEE
Transactions on Communications, 42(2/3/4):523–533, 1994.

[25] Paul S. Bradley and Usama M. Fayyad. Refining Initial Points for K-Means
Clustering. InProceedings of the 15th International Conference on Ma-
chine Learning, pages 91–99, 1998.

[26] Paul S. Bradley, Usama M. Fayyad, and Cory A. Reina. Scaling EM
(Expectation-Maximization) Clustering to Large Databases. Technical Re-
port MSR-TR-98-35, Microsoft Research, 1998.

[27] James N. Breckenridge. Replication Cluster Analysis: Method, Consis-
tency, and Validity. Multivariate Behavioral Research, 24(2):147–161,
1989.

[28] Sergey Brin, Rajeev Motwani, Jeffrey D. Ullman, and Shalom Tsur. Dy-
namic Itemset Counting and Implication Rules for Market Basket Data. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 255–264, 1997.

[29] John Broderick – Editor. IBM Outsourced Solution, 1998.
http://www.infoworld.com/cgi-bin/displayTC.pl?
/980504sb3-ibm.htm .

[30] CERT. Advisory CA-1996-26: Denial-of-Service Attack via ping, 1996.
http://www.cert.org/advisories/CA-1996-26.html .

[31] CERT. Advisory CA-1997-27: FTP Bounce, 1997.http://www.
cert.org/advisories/CA1997-27.html .

[32] CERT. Advisory CA-2001-02: Multiple Vulnerabilities in BIND, 2001.
http://www.cert.org/advisories/CA-2001-02.html .

[33] CERT. Advisory CA-2001-19: ”Code Red” Worm Exploiting Buffer Over-
flow in IIS Indexing Service DLL, 2001.http://www.cert.org/
advisories/CA-2001-19.html .

122 BIBLIOGRAPHY

[34] Peter Cheeseman and John Stutz. Bayesian Classification (AutoClass):
Theory and Results. In Fayyad et al. [64].

[35] David W. Cheung, H.Y. Hwang, Ada W. Fu, and Jiawei Han. Efficient Rule-
Based Attribute-Oriented Induction for Data Mining.Journal of Intelligent
Information Systems, 15(2):175–200, 2000.

[36] William S. Cleveland.Visualizing Data. Hobart Press, 1993.

[37] Chris Clifton and Gary Gengo. Developing Custom Intrusion Detection
Filters Using Data Mining. InMilitary Communications International Sym-
posium (MILCOM2000), October 2000.

[38] William W. Cohen. Fast Effective Rule Induction. InProceedings 12th
International Conference on Machine Learning, pages 115–123, 1995.

[39] R.M. Cormack. A Review of Classification (with Discussion).Journal of
the Royal Statistical Society A, 134:321–367, 1971.

[40] Fréd́eric Cuppens. Managing Alerts in a Multi-Intrusion Detection Envi-
ronment. InProceedings of the 17th Annual Computer Security Applica-
tions Conference (ACSAC), pages 22–31, 2001.

[41] Fréd́eric Cuppens and Alexandre Miège. Alert Correlation in a Cooperative
Intrusion Detection Framework. InProceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, 2002.

[42] Marc Dacier and Klaus Julisch. Method, Computer Program Element, and
System for Processing Alarms Triggered by a Monitoring System, 2002.
Patent, filed as Dockets CH920010041US1 and CH920010041EP1.

[43] Marc Dacier and Klaus Julisch. Method, Computer Program Element, and
System for Processing Alarms Triggered by a Monitoring System, 2002.
Patent, filed as Dockets CH920010042US1 and CH920010042EP1.

[44] Oliver Dain and Robert K. Cunningham. Fusing Heterogeneous Alert
Streams into Scenarios. In Barbará and Jajodia [17].

[45] William H.E. Day. Complexity Theory: An Introduction for Practitioners
of Classification. In Arabie et al. [12], pages 199–233.

[46] Hervé Debar, Marc Dacier, Medhi Nassehi, and Andreas Wespi. Fixed ver-
sus. Variable-Length Patterns for Detecting Suspicious Process Behavior.
In Proceedings of the 5th European Symposium on Research in Computer
Security (ESORICS), pages 1–15, 1998.

BIBLIOGRAPHY 123

[47] Hervé Debar, Marc Dacier, and Andreas Wespi. A Revised Taxonomy
for Intrusion Detection Systems.Annales des T́elécommunications, 55(7–
8):361–378, 2000.

[48] Hervé Debar and Andreas Wespi. Aggregation and Correlation of
Intrusion-Detection Alerts. InProceedings of the 4th Workshop on Recent
Advances in Intrusion Detection (RAID), LNCS, pages 85–103. Springer
Verlag, 2001.

[49] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum Likelihood From
Incomplete Data Via the EM Algorithm.Journal of the Royal Statistical
Society, 39(1):1–38, 1977.

[50] Edwin Diday. Orders and Overlapping Clusters by Pyramids. In J. De
Leeuw, W. Heiser, J. Meulman, and F. Critchley, editors,Multidimensional
Data Analysis, pages 201–234. DSWO Press, Leiden, The Netherlands,
1986.

[51] Dave Dittrich. Distributed Denial of Service (DDoS) Attacks/Tools, 2002.
http://staff.washington.edu/dittrich/misc/ddos/ .

[52] James Dougherty, Ron Kohavi, and Mehran Sahami. Supervised and Unsu-
pervised Discretization of Continuous Features. InProceedings of the 12th
International Conference on Machine Learning, pages 194–202, 1995.

[53] Norman R. Draper and Harry Smith.Applied Regression Analysis. Wiley-
Interscience, 3rd edition, 1998.

[54] Richard C. Dubes. Cluster Analysis and Related Issues. In C.H. Chen, L.F.
Pau, and P.S.P Wang, editors,Handbook of Pattern Recognition and Com-
puter Vision, pages 3–32. World Scientific Publisher, 2nd edition, 1998.

[55] Richard C. Dubes and Anil K. Jain. Clustering Techniques: The User’s
Dilemma.Pattern Recognition, 8:247–260, 1976.

[56] Richard C. Dubes and Anil K. Jain. Validity Studies in Clustering Method-
ologies.Pattern Recognition, 11:235–254, 1979.

[57] Richard C Dubes and Anil K. Jain. Clustering Methodologies in Ex-
ploratory Data Analysis. In Marshall C. Yovits, editor,Advances in Com-
puters, volume 19, pages 113–228. Academic Press, New York, 1980.

[58] Jennifer G. Dy and Carla E. Brodley. Feature Subset Selection and Or-
der Identification for Unsupervised Learning. InProceedings of the 17th
International Conference on Machine Learning, pages 247–254, 2000.

124 BIBLIOGRAPHY

[59] Ramez Elmasri and Shamkant B. Navathe.Fundamentals of Database Sys-
tems. Addison-Wesley, 1994.

[60] Michael Erlinger and Stuart Staniford-Chen. Intrusion Detection Ex-
change Format (idwg).http://www.ietf.org/html.charters/
idwg-charter.html .

[61] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spatial Databases with
Noise. InProceedings of the 2nd ACM International Conference on Knowl-
edge Discovery and Data Mining, pages 226–231, 1996.

[62] Vladimir Estivill-Castro. Why so Many Clustering Algorithms – A Position
Paper.SIGKDD Explorations, 4(1):65–75, 2002.

[63] Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. From
Data Mining to Knowledge Discovery: An Overview. In Fayyad et al. [64].

[64] Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ra-
masamy Uthurusamy, editors.Advances in Knowledge Discovery and Data
Mining. AAAI Press/MIT Press, 1996.

[65] Anuska Ferligoj and Vladimir Batagelj. Some Types of Clustering with
Relational Constraints.Psychometrika, 48(4):541–552, 1983.

[66] E. Filsinger, J. Faulkner, and R. Warland. Empirical Taxonomy of Reli-
gious Individuals: An Investigation Among College Students.Sociological
Analysis, 40:136–146, 1979.

[67] Douglas H. Fisher. Knowledge Acquisition Via Incremental Conceptual
Clustering.Machine Learning, 2:139–172, 1987.

[68] Douglas H. Fisher. Noise-Tolerant Conceptual Clustering. InProceedings
of the 11th International Joint Conference on Artificial Intelligence, pages
825–830, 1989.

[69] Lloyd Fisher and John W. Van Ness. Admissible Clustering Procedures.
Biometrika, 58:91–104, 1971.

[70] D. Foti, D. Lipari, Clara Pizzuti, and Domenico Talia. Scalable Parallel
Clustering for Data Mining on Multicomputers. InProceedings of the 15th
International Parallel and Distributed Processing Workshop, LNCS, pages
390–398, 2000.

BIBLIOGRAPHY 125

[71] Chris Fraley and Adrian E. Raftery. How Many Clusters? Which Cluster-
ing Method? Answers Via Model-Based Cluster Analysis.The Computer
Journal, 41(8):578–588, 1998.

[72] Fyodor.http://www.insecure.org/nmap .

[73] Venkatesh Ganti. CACTUS – Clustering Categorical Data Using Sum-
maries, 1999. http://www.cs.wisc.edu/˜vganti/cactus/
cactus-dba.ppt .

[74] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. CACTUS
– Clustering Categorical Data Using Summaries. InProceedings of the
5th ACM SIGKDD International Conference on Knowledge Discovery in
Databases (SIGKDD), pages 73–83, 1999.

[75] Minos Garofalakis and Rajeev Rastogi. Data Mining Meets Network Man-
agement: The Nemesis Project. InProceedings of the ACM SIGMOD In-
ternational Workshop on Research Issues in Data Mining and Knowledge
Discovery, May 2001.

[76] Ram Gnanadesikan, Jon R. Kettenring, and James M. Landwehr. Interpret-
ing and Assessing the Results of Cluster Analyses.Bulletin of the Interna-
tional Statistical Institute, 47(2):451–463, 1977.

[77] L.A. Goodman and W.H. Kruskal. Measures of Association for Cross-
Classifications.Journal of the American Statistical Association, 49:732–
764, 1954.

[78] Allan D. Gordon. Hierarchical Classification. In Arabie et al. [12], pages
65–121.

[79] Allan D. Gordon. Null Models in Cluster Validation. In W. Gaul and
D. Pfeifer, editors,From Data to Knowledge: Theoretical and Practical As-
pects of Classification, Data Analysis, and Knowledge Organization, pages
32–44. Springer-Verlag, Berlin, 1996.

[80] Allan D. Gordon. Cluster Validation. In C. Hayashi, N. Ohsumi, K. Yajima,
Y. Tanaka, H.H. Bock, and Y. Baba, editors,Data Science, Classification,
and Related Methods, pages 22–39. Springer-Verlag, 1998.

[81] Allan D. Gordon.Classification. Chapman and Hall, 1999.

[82] Robert Grossman, Simon Kasif, Reagan Moore, David Rocke, and Jeff
Ullman. Data Mining Research: Opportunities and Challenges. Technical

126 BIBLIOGRAPHY

report, Workshop on Managing and Mining Massive and Distributed Data
(M3D2), 1998.

[83] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. CURE: An Efficient
Clustering Algorithm for Large Databases. InProceedings of the ACM
SIGMOD International Conference on Management of Data, pages 73–84,
1998.

[84] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A Robust
Clustering Algorithm for Categorical Attributes.Information Systems,
25(5):345–366, 2000.

[85] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On Clustering
Validation Techniques.Journal of Intelligent Information Systems (JIIS),
17(2-3):107–145, 2001.

[86] Jiawei Han, Yandong Cai, and Nick Cercone. Knowledge Discovery in
Databases: An Attribute-Oriented Approach. InProceedings of the 18th
International Conference on Very Large Databases, pages 547–559, 1992.

[87] Jiawei Han, Yandong Cai, and Nick Cercone. Data-Driven Discovery of
Quantitative Rules in Relational Databases.IEEE Transactions on Knowl-
edge and Data Engineering, 5(1):29–40, 1993.

[88] Jiawei Han and Yongjan Fu. Exploration of the Power of Attribute-Oriented
Induction in Data Mining. In Fayyad et al. [64].

[89] Jiawei Han and Yongjian Fu. Dynamic Generation and Refinement of Con-
cept Hierarchies for Knowledge Discovery in Databases. InProceedings
of the AAAI Workshop on Knowledge Discovery in Databases, pages 157–
168, 1994.

[90] Jiawei Han and Micheline Kamber.Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publisher, 2000.

[91] David J. Hand, Heikki Mannila, and Padhraic Smyth.Principles of Data
Mining. MIT Press, 2001.

[92] Pierre Hansen, Brigitte Jaumard, and Nenad Mladenovic. How to Choose
K Entries AmongN . DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, 19:105–116, 1995.

[93] Robin Hanson, John Stutz, and Peter Cheeseman. Bayesian Classification
Theory. Technical Report FIA-90-12-7-01, NASA Ames Research Center,
1991.

BIBLIOGRAPHY 127

[94] Joseph L. Hellerstein and Sheng Ma. Mining Event Data for Actionable
Patterns. InThe Computer Measurement Group, 2000.

[95] Alexander Hinneburg and Daniel A. Keim. An Efficient Approach to Clus-
tering in Large Multimedia Databases with Noise. InProceedings of the 4th
ACM International Conference on Knowledge Discovery and Data Mining,
pages 58–65, 1998.

[96] J.S. Urban Hjorth. Computer Intensive Statistical Methods: Validation,
Model Selection and Bootstrap. CRC Press, 1993.

[97] Frank Hoeppner, Rudolf Kruse, Frank Klawonn, and Thomas Runkler.
Fuzzy Cluster Analysis: Methods for Classification, Data Analysis, and
Image Recognition. John Wiley & Sons, 1999.

[98] K. Houck, Seraphin B. Calo, and Allan J. Finkel. Towards a Practical Alarm
Correlation System. In Adarshpal S. Sethi, Yves Raynaud, and Fabienne
Faure-Vincent, editors,Proceedings of the 4th International Symposium on
Integrated Network Management, pages 226–237. Chapman & Hall, 1995.

[99] John D. Howard.An Analysis of Security Incidents on the Internet. PhD
thesis, Carnegie Mellon University, 1997.

[100] Zhexue Huang. A Fast Clustering Algorithm to Cluster Very Large Cat-
egorical Data Sets in Data Mining. InProceedings of the ACM SIGMOD
International Workshop on Research Issues in Data Mining and Knowledge
Discovery, 1997.

[101] Lawrence J. Hubert and Phipps Arabie. Comparing Partitions.Journal of
Classification, 2:193–218, 1985.

[102] Koral Ilgun, Richard A. Kemmerer, and Phillip A. Porras. State Transition
Analysis: A Rule-Based Intrusion Detection System.IEEE Transactions
on Software Engineering, 21(3):181–199, 1995.

[103] Koral Ilung. USTAT: A Real-Time Intrusion Detection System for UNIX.
In Proceedings of the IEEE Symposium on Security and Privacy, Oakland,
CA, pages 16–28, 1993.

[104] Anil K. Jain and Richard C. Dubes.Algorithms for Clustering Data.
Prentice-Hall, 1988.

[105] Anil K. Jain, Musti N. Murty, and Patrick J. Flynn. Data Clustering: A
Review.ACM Computing Surveys, 31(3):264–323, 1999.

128 BIBLIOGRAPHY

[106] Gabriel Jakobson and Mark D. Weissman. Alarm Correlation.IEEE Net-
work, 7(6):52–59, 1993.

[107] Gabriel Jakobson and Mark D. Weissman. Real-Time Telecommunica-
tion Network Management: Extending Event Correlation With Temporal
Constraints. In Adarshpal S. Sethi, Yves Raynaud, and Fabienne Faure-
Vincent, editors,Proceedings of the 4th International Symposium on Inte-
grated Network Management, pages 290–301. Chapman & Hall, 1995.

[108] Nicholas Jardine and Robin Sibson.Mathematical Taxonomy. John Wiley
& Sons, 1971.

[109] Harold S. Javitz and Alfonso Valdes. The SRI IDES Statistical Anomaly
Detector. InProceedings of the IEEE Symposium on Security and Privacy,
Oakland, CA, pages 316–326. SRI International, 1991.

[110] Klaus Julisch. Dealing with False Positives in Intrusion Detection. In
Extended Abstract at the 3nd Workshop on Recent Advances in Intru-
sion Detection (RAID), 2000.http://www.raid-symposium.org/
raid2000/program.html .

[111] Klaus Julisch. Mining Alarm Clusters to Improve Alarm Handling Effi-
ciency. InProceedings of the 17th Annual Computer Security Applications
Conference (ACSAC), pages 12–21, December 2001.

[112] Klaus Julisch. Data Mining for Intrusion Detection: A Critical Review. In
Barbaŕa and Jajodia [17].

[113] Klaus Julisch. Clustering Intrusion Detection Alarms to Support Root
Cause Analysis.ACM Transactions on Information and System Security
(TISSEC), 6(4):443–471, 2003.

[114] Klaus Julisch and Marc Dacier. Mining Intrusion Detection Alarms for
Actionable Knowledge. InProceedings of the 8th ACM International Con-
ference on Knowledge Discovery and Data Mining, pages 366–375, July
2002.

[115] George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar. CHAMELEON:
A Hierarchical Clustering Algorithm Using Dynamic Modeling.IEEE
Computer, 32(8):68–75, 1999.

[116] Stefan K̈atker and Martin Paterok. Fault Isolation and Event Correlation
for Integrated Fault Management. In Aurel Lazar, Roberto Saracco, and
Rolf Sadler, editors,Proceedings of the 5th International Symposium on
Integrated Network Management, pages 625–637. Chapman & Hall, 1997.

BIBLIOGRAPHY 129

[117] Leonard Kaufman and Peter J. Rousseeuw.Finding Groups in Data: An
Introduction to Cluster Analysis. John Wiley & Sons, 1990.

[118] David G. Kleinbaum, Lawrence L. Kupper, Keith E. Muller, and
Azhar Nizati. Applied Regression Analysis and Multivariable Methods.
Brooks/Cole Pub Co, 3rd edition, 1997.

[119] Mika Klemettinen.A Knowledge Discovery Methodology for Telecommu-
nication Network Alarm Data. PhD thesis, University of Helsinki (Fin-
land), 1999.

[120] Mika Klemettinen, Heikki Mannila, P. Ronkainen, Hannu Toivonen, and
A.I. Verkamo. Finding Interesting Rules from Large Sets of Discovered
Association Rules. InProceedings of the 3rd International Conference on
Information and Knowledge Management, pages 401–407, 1994.

[121] Ivan V. Krsul.Software Vulnerability Analysis. PhD thesis, Purdue Univer-
sity, 1998.

[122] Sandeep Kumar.Classification and Detection of Computer Intrusions. PhD
thesis, Purdue University, 1995.

[123] Kwok-Yan Lam, Lucas Hui, and Siu-Leung Chung. A Data Reduction
Method for Intrusion Detection.Journal of Systems and Software, 33:101–
108, 1996.

[124] Carl E. Landwehr, Alan R. Bull, John P. McDermott, and William S. Choi.
A Taxonomy of Computer Program Security Flaws.ACM Computing Sur-
veys, 26(3):211–254, 1994.

[125] Terran Lane and Carla E. Brodley. Temporal Sequence Learning and Data
Reduction for Anomaly Detection Lane.ACM Transactions on Information
and System Security, 2(3):295–331, 1999.

[126] Linda Lankewicz and Mark Benard. Real-Time Anomaly Detection Using
a Non-Parametric Pattern Recognition Approach. InProceedings of the 7th
Annual Computer Security Applications Conference, December 1991.

[127] Jean-Claude Laprie, editor.Dependability: Basic Concepts and Termi-
nology, volume 5 ofDependable Computing and Fault-Tolerant Systems.
Springer-Verlag, Vienna, 1992.

[128] Robert J. Latino and Kenneth Latino.Root Cause Analysis: Improving
Performance for Bottom Line Results. CRC Press, LLC, 2002.

130 BIBLIOGRAPHY

[129] Wenke Lee and Salvatore J. Stolfo. A Framework for Constructing Fea-
tures and Models for Intrusion Detection Systems.ACM Transactions on
Information and System Security (TISSEC), 3(4):227–261, 2000.

[130] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. Data Mining Approaches
for Intrusion Detection. InProceedings of the 7th USENIX Security Sym-
posium (SECURITY ’98), pages 120–132, 1997.

[131] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. A Data Mining Frame-
work for Building Intrusion Detection Models. InProceedings of the IEEE
Symposium on Security and Privacy, pages 120–132, 1999.

[132] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok. Mining in a Data-flow
Environment: Experience in Network Intrusion Detection. InProceedings
of the 5th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD’99), pages 114–124, 1999.

[133] Marcus Leech, Matt Ganis, Ying-Da Lee, Ron Kuris, David Koblas, and
LaMont Jones. SOCKS Protocol Version 5. Request for Comments (RFC)
1928, 1996.

[134] Lundy M. Lewis. A Case-Based Reasoning Approach to the Resolution
of Faults in Communication Networks. In H.-G. Hegering and Y. Yem-
ini, editors,Proceedings of the 3th International Symposium on Integrated
Network Management, pages 671–682. North Holland, 1993.

[135] Dekang Lin. An Information-Theoretic Definition of Similarity. InPro-
ceedings of the 15th International Conference on Machine Learning, pages
296–304, 1998.

[136] Richard Lippmann, Seth Webster, and Douglas Stetson. The Effect of Iden-
tifying Vulnerabilities and Patching Software on the Utility of Network In-
trusion Detection. InProceedings of the 5th Workshop on Recent Advances
in Intrusion Detection (RAID), LNCS 2516, pages 307–326. Springer Ver-
lag, 2002.

[137] Bing Liu and Wynne Hsu. Post-Analysis of Learned Rules. InProceedings
of the 13th National Conference on Artificial Intelligence, pages 828–834,
1996.

[138] A.D. Livingston, G. Jackson, and K. Priestley.Root Causes Analysis:
Literature Review. HSE Books, 2001. Available athttp://www.
hsebooks.co.uk/ .

BIBLIOGRAPHY 131

[139] Yijun Lu. Concept Hierarchy in Data Mining: Specification, Generation,
and Implementation. Master’s thesis, Simon Fraser University, Canada,
1997.

[140] J. MacQueen. Some Methods for Classification and Analysis of Multivari-
ate Observations. In L.M. Le Cam and J. Neyman, editors,5th Berkeley
Symposium on Mathematical Statistics and Probability, pages 281–297.
University of California Press, 1967.

[141] Stefanos Manganaris, Marvin Christensen, Dan Zerkle, and Keith Hermiz.
A Data Mining Analysis of RTID Alarms. Computer Networks, 34(4),
October 2000.

[142] Heikki Mannila and Hannu Toivonen. Discovering Generalized Episodes
Using Minimal Occurrences. InProceedings of the 2nd International Con-
ference on Knowledge Discovery and Data Mining, pages 146–151, 1996.

[143] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo. Discovery of
Frequent Episodes in Event Sequences.Data Mining and Knowledge Dis-
covery, 1:259–289, 1997.

[144] John McHugh. Testing Intrusion Detection Systems: A Critique of the 1998
and 1999 DARPA Intrusion Detection System Evaluations as Performed by
Lincoln Laboratory.ACM Transactions on Information and System Secu-
rity (TISSEC), 3(4):262–294, 2000.

[145] Robert M. McIntyre and Roger K. Blashfield. A Nearest-Centroid Tech-
nique for Evaluating the Minimum-Variance Clustering Procedure.Multi-
variate Behavioral Research, 15:225–238, 1980.

[146] Ryszard S. Michalski and Robert E. Stepp. Automated Construction of
Classifications: Conceptual Clustering Versus Numerical Taxonomy.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 5(4):396–410,
1983.

[147] Reńee J. Miller and Yuping Yang. Association Rules over Interval Data. In
Proceedings of the ACM SIGMOD International Conference on Manage-
ment of Data, pages 452–461, 1997.

[148] Glenn W. Milligan. An Examination of the Effect of Six Types of Error
Perturbation on Fifteen Clustering Algorithms.Psychometrika, 45(3):325–
342, 1980.

132 BIBLIOGRAPHY

[149] Glenn W. Milligan. A Monte Carlo Study of Thirty Internal Criterion Mea-
sures for Cluster Analysis.Psychometrika, 46(2):187–199, 1981.

[150] Glenn W. Milligan. A Review of Monte Carlo Tests of Cluster Analysis.
Multivariate Behavioral Research, 16:379–407, 1981.

[151] Glenn W. Milligan. Clustering Validation: Results and Implications for
Applied Analyses. In Arabie et al. [12], pages 341–375.

[152] Glenn W. Milligan and Martha C. Cooper. An Examination of Procedures
for Determining the Number of Clusters in a Data Set.Psychometrika,
50(2):159–179, 1985.

[153] Glenn W. Milligan and Martha C. Cooper. Methodology Review: Cluster-
ing Methods.Applied Psychological Measurements, 11:329–354, 1987.

[154] Glenn W. Milligan, S.C. Soon, and Lisa M. Sokol. The Effect of Cluster
Size, Dimensionality, and the Number of Clusters on Recovery of True
Cluster Structure.IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5(1):40–47, 1983.

[155] Thomas M. Mitchell.Machine Learning. McGraw-Hill, 1997.

[156] Leslie C. Morey, Roger K. Blashfield, and Harvey A. Skinner. A Compari-
son of Cluster Analysis Techniques Within a Sequential Validation Frame-
work. Multivariate Behavioral Research, 18:309–329, 1983.

[157] Abdelaziz Mounji.Languages and Tools for Rule-Based Distributed Intru-
sion Detection. PhD thesis, Facultés Universitaires Notre-Dame de la Paix
Namur (Belgium), 1997.

[158] Ravi Mukkamala, Jason Gagnon, and Sushil Jajodia. Integrating Data Min-
ing Techniques with Intrusion Detection Methods. InProceedings of the
13th IFIP WG11.3 Working Conference on Database Security, pages 33–
46, July 1999.

[159] Fionn Murtagh. Neural Networks for Clustering. In Arabie et al. [12],
pages 235–269.

[160] Richard E. Neapolitan.Probabilistic Reasoning in Expert Systems: Theory
and Algorithms. John Wiley & Sons, 1990.

[161] John W. Van Ness. Admissible Clustering Procedures.Biometrika, 60:422–
424, 1973.

BIBLIOGRAPHY 133

[162] Raymond T. Ng and Jiawei Han. Efficient and Effective Clustering Meth-
ods for Spatial Data Mining. InProceedings of the 20th International Con-
ference on Very Large Databases (VLDB), pages 144–155, 1994.

[163] Peng Ning, Sushil Jajodia, and Xiaoyang Wang. Abstraction-Based Intru-
sion Detection in Distributed Environments.ACM Transactions on Infor-
mation and System Security (TISSEC), 4(4):407–452, 2001.

[164] Yossi A. Nygate. Event Correlation Using Rule and Object Based Tech-
niques. In Adarshpal S. Sethi, Yves Raynaud, and Fabienne Faure-Vincent,
editors,Proceedings of the 4th International Symposium on Integrated Net-
work Management, pages 278–289. Chapman & Hall, 1995.

[165] David A. Ohsie.Modeled Abductive Inference for Event Management and
Correlation. PhD thesis, Columbia University, 1998.

[166] Christos H. Papadimitriou.Computational Complexity. Addison-Wesley,
1994.

[167] Mark Paradies and David Busch. Root Cause Analysis at Savannah River
Plant. In Proceedings of the IEEE Conference on Human Factors and
Power Plants, pages 479–483, 1988.

[168] Vern Paxson. Bro: A System for Detecting Network Intruders in Real-
Time. Computer Networks, 31(23-24):2435–2463, 1999.

[169] Yun Peng and James A. Reggia. A Probabilistic Causal Model for Diag-
nostic Problem Solving — Part I: Diagnostic Strategy.IEEE Transactions
on Systems, Man, and Cybernetics, 17(3):395–404, 1987.

[170] Yun Peng and James A. Reggia. A Probabilistic Causal Model for Diagnos-
tic Problem Solving — Part I: Integrating Symbolic Causal Inference with
Numeric Probabilistic Inference.IEEE Transactions on Systems, Man, and
Cybernetics, 17(2):146–162, 1987.

[171] Gregory Piatetsky-Shapiro. Software for Visualization.http://www.
kdnuggets.com/software/visualization.html .

[172] Leonard Pitt and Robert E. Reinke. Criteria for Polynomial Time (Concep-
tual) Clustering.Machine Learning, 2(4):371–396, 1987.

[173] Leonid Portnoy, Eleazar Eskin, and Salvatore J. Stolfo. Intrusion Detection
with Unlabeled Data Using Clustering. In Barbará and Jajodia [17].

134 BIBLIOGRAPHY

[174] David Powell and Robert Stroud. Architecture and Revised Model of MAF-
TIA. Technical Report CS-TR-749, University of Newcastle upon Tyne,
2001.

[175] Katherine E. Price. Host-Based Misuse Detection and Conventional Oper-
ating Systems’ Audit Data Collection. Master’s thesis, Purdue University,
1997.

[176] Thomas H. Ptacek and Timothy N. Newsham. Insertion, Evasion, and De-
nial of Service: Eluding Network Intrusion Detection. Technical report,
Secure Networks, Inc., January 1998.

[177] John R. Quinlan. Induction of Decision Trees.Machine Learning, 1(1):81–
106, 1986.

[178] Roy Rada and Ellen Bicknell. Ranking Documents with a Thesaurus.Jour-
nal of the American Society for Information Science, 40(5):304–310, 1989.

[179] Roy Rada, Hafedh Mill, Ellen Bicknell, and Maria Blettner. Development
and Application of a Metric on Semantic Nets.IEEE Transactions on Sys-
tems, Man, and Cybernetics, 19(1):17–30, 1989.

[180] Philip Resnik. Semantic Similarity in a Taxonomy: An Information-Based
Measure and Its Application to Problems of Ambiguity in Natural Lan-
guage.Journal of Artificial Intelligence Research, 11:95–130, 1999.

[181] Isidore Rigoutsos and Aris Floratos. Combinatorial Pattern Discovery
in Biological Sequences: The TEIRESIAS Algorithm.Bioinformatics,
14(1):55–67, 1998.

[182] Enrique R. Ruspini. A New Approach to Clustering.Information and
Control, 15(1):22–32, 1969.

[183] R. Sekar, Y. Guang, S. Verma, and T. Shanbhag. A High-Performance Net-
work Intrusion Detection System. InProceedings of the 6th ACM Confer-
ence on Computer and Communications Security, pages 8–17, November
1999.

[184] Shokri Z. Selmi and M.A. Ismail. K-Means Type Algorithms: A General-
ized Convergence Theorem and Characterization of Local Optima.IEEE
Transactions on Pattern Analysis and Machine Intelligence, 6(1):81–87,
1984.

BIBLIOGRAPHY 135

[185] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.
WaveCluster: A Wavelet-Based Clustering Approach for Spatial Data in
Very Large Databases.International Journal on Very Large Databases,
8(4):289–304, 2000.

[186] Roger N. Shepard and Phipps Arabie. Additive Clustering: Representa-
tion of Similarities as Combinations of Discrete Overlapping Properties.
Psychological Review, 86:87–123, 1979.

[187] Abraham Silberschatz and Alexander Tuzhilin. On Subjective Measures
of Interestingness in Knowledge Discovery. InProceedings of the First
International Conference on Knowledge Discovery and Data Mining, pages
275–281, 1995.

[188] Stephen E. Smaha. Haystack: An Intrusion Detection System. InProceed-
ings of the 4th IEEE Aerospace Computer Security Applications Confer-
ence, Orlando, FL, pages 37–44, December 1988.

[189] Padhraic Smyth. Breaking out of the Black-Box: Research Challenges in
Data Mining. InProceedings of the ACM SIGMOD International Workshop
on Research Issues in Data Mining and Knowledge Discovery (DMKD’01),
2001.

[190] Ramakrishnan Srikant and Rakesh Agrawal. Mining Quantitative Asso-
ciation Rules in Large Relational Tables. InProceedings of the ACM-
SIGMOD Conference on Management of Data, pages 1–12, June 1996.

[191] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical
Automated Detection of Stealthy Portscans. InProceedings of the ACM
Computer and Communications Security IDS Workshop, pages 1–7, 2000.

[192] Stuart Staniford, Vern Paxson, and Nicholas Weaver. How to 0wn the In-
ternet in Your Spare Time. InProceedings of the 11th USENIX Security
Symposium, pages 149–167, 2002.

[193] Luis Talavera. Dependency-Based Feature Selection for Clustering Sym-
bolic Data.Intelligent Data Analysis, 4(1):19–28, 2000.

[194] Luis Talavera and Javier Béjar. Integrating Declarative Knowledge in Hi-
erarchical Clustering Tasks. InProceedings of th 3rd International Sympo-
sium on Intelligent Data Analysis, pages 211–222, 1999.

[195] Luis Talavera and Javier Béjar. Generality-Based Conceptual Clustering
with Probabilistic Concepts.IEEE Transactions on Pattern Analysis and
Machine Intelligence, 23(2):196–206, 2001.

136 BIBLIOGRAPHY

[196] Andrew S. Tanenbaum.Computer Networks. Prentice-Hall International,
Inc., 1996.

[197] Henry S. Teng, Kaihu Chen, and Stephen C.Y. Lu. Adaptive Real-Time
Anomaly Detection Using Inductively Generated Sequential Patterns. In
Proceedings of the IEEE Symposium on Research in Security and Privacy,
Oakland, CA, pages 278–284, May 1990.

[198] H. S. Vaccaro and Gunar E. Liepins. Detection of Anomalous Computer
Session Activity. InProceedings of the IEEE Symposium on Research in
Security and Privacy, Oakland, CA, pages 280–289, May 1989.

[199] Alfonso Valdes and Keith Skinner. Probabilistic Alert Correlation. InPro-
ceedings of the 4th Workshop on Recent Advances in Intrusion Detection
(RAID), LNCS, pages 54–68. Springer Verlag, 2001.

[200] Kiri Wagstaff and Claire Cardie. Clustering with Instance-Level Con-
straints. InProceedings of the 17th International Conference on Machine
Learning, pages 1103–1110, 2000.

[201] Christina Warrender, Stephanie Forrest, and Barak Pearlmutter. Detecting
Intrusions Using System Calls: Alternative Data Models. InProceedings
of the IEEE Symposium on Research in Security and Privacy, Oakland, CA,
pages 133–145, May 1999.

[202] Shaula Yemini, Shmuel Kliger, Eyal Mozes, Yechiam Yemini, and
David A. Ohsie. High Speed & Robust Event Correlation.IEEE Com-
munications Magazine, 34(5):82–90, 1996.

[203] Osmar R. Zaiane, Andrew Foss, Chi-Hoon Lee, and Weinan Wang. On
Data Clustering Analysis: Scalability, Constraints, and Validation. InPro-
ceedings of the 6th Pacific-Asian Conference on Advances in Knowledge
Discovery and Data Mining, pages 28–39, 2002.

[204] Diego Zamboni.Using Internal Sensors for Computer Intrusion Detection.
PhD thesis, Purdue University, 2001.

[205] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: An Efficient
Data Clustering Method for Very Large Databases. InProceedings of the
ACM SIGMOD Conference on Management of Data, pages 103–114, 1996.

[206] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. BIRCH: A New Data
Clustering Algorithm and Its Applications.Data Mining and Knowledge
Discovery, 1(2):141–182, 1997.

		2003-11-19T15:01:57+0100
	Universitaetsbibliothek Dortmund - Eldorado

