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School of Chemistry and Biochemistry
Georgia Institute of Technology

Dr. Thomas Orlando
School of Chemistry and Biochemistry
Georgia Institute of Technology

Dr. C. David Sherrill
School of Chemistry and Biochemistry
Georgia Institute of Technology

Dr. Peter J. Ludovice
School of Chemical and Biomolecular
Engineering
Georgia Institute of Technology

Date Approved: 21 March 2007



ACKNOWLEDGEMENTS

This work would not have been completed had it not been for several figures who served as

a constant source of support and encouragement. First and foremost, I would like to thank

my advisor, Professor Rig Hernandez, who has been my most steadfast supporter and has

exceeded all of my expectations. His guidance has been instrumental to my success and I

will be forever grateful. Additionally, I would like to thank my coworkers and officemates in

the Sherrill and Hernandez groups with whom I have enjoyed many discussions throughout

the years over beers, coffee and Little Debbies R©: Shi Zhong, Berhane Temelso, John Sears,

Yanping Qin, Ashley Ringer, Ashley Tucker, Steve Arnstein, Gungor Ozer, Jay Foley. I

would also like to thank Dr. Alex Popov who has of late provided much support and in-

struction with little real benefit to himself. Furthermore, I would like to acknowledge all

of my collaborators particularly, Professor Turgay Uzer and Dr. Thomas Bartsch who have

generously and patiently shared their pearls of wisdom even though they rarely received

any in return. I would also like to thank Professors Ed Valeev and Micah Abrams who

took me under their wing during my first years as a graduate student and provided of an

enormous amount of guidance and inspiration. And finally none of this would have been

possible without the constant support of my family and friends. Their encouragement over

the years has been invaluable. Thank you all.

iii



TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Classical Surface Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Molecular Dynamics Simulations and Projective Models . . . . . . . . . . 8

1.2.1 Atomistic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 Projective Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

II REDUCED DIMENSIONAL MODELS DERIVED FROM MOLECULAR DY-
NAMICS SIMULATIONS OF TRANSPORT ON METAL SURFACES . . . . 16

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Molecular Dynamics Simulations . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Diffusion Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Reduced-Dimensional Systems . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III A PHENOMENOLOGICAL MODEL FOR SURFACE DIFFUSION: DIFFUSIVE
DYNAMICS ACROSS STOCHASTIC POTENTIALS . . . . . . . . . . . . . 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Model and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

IV DISSIPATING THE LANGEVIN EQUATION IN THE PRESENCE OF AN EX-
TERNAL STOCHASTIC POTENTIAL . . . . . . . . . . . . . . . . . . . . . 40

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Langevin Model with Stochastic Potentials . . . . . . . . . . . . . . . . . 42

4.2.1 Stochastic Potential Representation . . . . . . . . . . . . . . . . . 42

4.2.2 Uniform Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

iv



4.2.3 Space-Dependent Dissipation . . . . . . . . . . . . . . . . . . . . . 44

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

V IDENTIFYING REACTIVE TRAJECTORIES USING A MOVING TRANSI-
TION STATE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 The Two-Dimensional Dissipative Model . . . . . . . . . . . . . . 58

5.2.2 The Transition State Trajectory . . . . . . . . . . . . . . . . . . . 60

5.2.3 The Relative Dynamics . . . . . . . . . . . . . . . . . . . . . . . . 61

5.3 The Barrier Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 Analytic Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4.1 Reaction Probabilities . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.2 Reaction Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 Harmonic Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.2 Nonlinear Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

VI DIHEDRAL-ANGLE INFORMATION ENTROPY AS A GAUGE OF SECONDARY
STRUCTURE PROPENSITY . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.2.1 φi-ψi and ψi-φi+1 Distributions . . . . . . . . . . . . . . . . . . . 86

6.2.2 Data-mining the ψi-φi+1 Distributions . . . . . . . . . . . . . . . . 87

6.2.3 The Dihedral-angle Information Entropy . . . . . . . . . . . . . . 89

6.2.4 A Checking Function for Secondary Structure Propensity . . . . . 91

6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.3.1 Dihedral Angle Distributions . . . . . . . . . . . . . . . . . . . . . 93

6.3.2 On the Choice of the Sequence Database . . . . . . . . . . . . . . 93

6.3.3 D1 and D2 Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.3.4 The Role of D2 in Checking Theoretical Structures . . . . . . . . 99

v



6.3.5 D2 and Other Checking Functions . . . . . . . . . . . . . . . . . . 102

6.4 D2Check Web Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

VII CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

APPENDIX A PROPERTIES OF THE STOCHASTIC BARRIERS . . . . . . . 112

APPENDIX B SPACE-DEPENDENT FRICTION FOR MERGED HARMONIC
OSCILLATOR POTENTIALS . . . . . . . . . . . . . . . . . . . . . . . . . . 114

APPENDIX C BACKWARD TIME STOCHASTIC INTEGRATOR . . . . . . . 117

APPENDIX D CONSTRUCTION OF THE DIHEDRAL-ANGLE DISTRIBUTIONS
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

vi



LIST OF TABLES

1 Corrections to the thermal friction constant . . . . . . . . . . . . . . . . . . 48

2 Friction corrections for sinusoidal potentials . . . . . . . . . . . . . . . . . . 49

3 Protein structures contained in each library . . . . . . . . . . . . . . . . . . 88

4 Atypical theoretical and experimental structures in PDB . . . . . . . . . . . 100

5 D2 values for several template and model protein structures . . . . . . . . . 101

6 D2 and other checking function scores for several proteins . . . . . . . . . . 102

7 Relative abundance of all possible residue pairs . . . . . . . . . . . . . . . . 123

vii



LIST OF FIGURES

1 Prototypical adsorbed molecular systems on metal surfaces . . . . . . . . . 2

2 Temperature dependence of diffusion coefficients . . . . . . . . . . . . . . . 20

3 Dimensionless diffusion profiles as a function of temperature . . . . . . . . . 21

4 Potential of mean force for the Ag (1 0 0) unit cell . . . . . . . . . . . . . . . 22

5 Potential of mean force along the diffusion coordinate . . . . . . . . . . . . 22

6 Force autocorrelations evaluated at the well and barrier . . . . . . . . . . . 23

7 Mean first passage times at high friction . . . . . . . . . . . . . . . . . . . . 31

8 Mean first passage times at low friction . . . . . . . . . . . . . . . . . . . . 33

9 Mean first passage times at large variance . . . . . . . . . . . . . . . . . . . 34

10 Normalized mean first passage times . . . . . . . . . . . . . . . . . . . . . . 35

11 Rate enhancements for one-dimensional stochastic potentials . . . . . . . . 37

12 Rate enhancements for coherent two-dimensional stochastic potentials . . . 37

13 Rate enhancements for incoherent two-dimensional stochastic potentials . . 38

14 Space-dependent friction for merged harmonic oscillator potentials . . . . . 46

15 Space-dependent friction for sinusoidal potentials . . . . . . . . . . . . . . . 47

16 Mean first passage times with uniform and space-dependent dissipation on
incoherent potentials at small variance . . . . . . . . . . . . . . . . . . . . . 51

17 Mean first passage times with uniform and space-dependent dissipation on
incoherent potentials at large variance . . . . . . . . . . . . . . . . . . . . . 51

18 Mean first passage times with uniform and space-dependent dissipation on
coherent potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

19 Qualitative dynamics of the barrier ensemble in relative coordinates . . . . 63

20 Reaction time distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

21 Illustrative realization the transition state trajectory and barrier ensemble . 71

22 Reaction probabilities with various dividing surfaces . . . . . . . . . . . . . 71

23 Average recrossings of the transition state in nonlinear systems . . . . . . . 72

24 Numerical reaction probabilities for a given instance of the noise . . . . . . 73

25 Average reaction probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . 75

26 Reaction probability distributions . . . . . . . . . . . . . . . . . . . . . . . . 75

27 Reaction probabilities in nonlinear systems . . . . . . . . . . . . . . . . . . 77

viii



28 Average recrossings of the dividing surfaces . . . . . . . . . . . . . . . . . . 78

29 Fraction of correctly identified trajectories . . . . . . . . . . . . . . . . . . . 80

30 Average reaction probabilities in nonlinear systems . . . . . . . . . . . . . . 81

31 Illustrative tripeptide dihedral angles . . . . . . . . . . . . . . . . . . . . . . 87

32 Distributions of the ψ and φ dihedral angles . . . . . . . . . . . . . . . . . . 89

33 Structure entropy distributions . . . . . . . . . . . . . . . . . . . . . . . . . 94

34 Distributions of ∆S evaluated for various libraries . . . . . . . . . . . . . . 95

35 D1 distribution evaluated for various libraries . . . . . . . . . . . . . . . . . 97

36 D2 distribution evaluated for various libraries . . . . . . . . . . . . . . . . . 97

37 D2Check server output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

38 ψi-φi+1 probability distributions . . . . . . . . . . . . . . . . . . . . . . . . 122

39 Correlation between ψi and φi+1 . . . . . . . . . . . . . . . . . . . . . . . . 124

ix



SUMMARY

Despite numerous advances in experimental methodologies capable of addressing the

various phenomenon occurring on metal surfaces, atomic scale resolution of the microscopic

dynamics remains elusive for most systems. Computational models of the processes may

serve as an alternative tool to fill this void. To this end, parallel molecular dynamics sim-

ulations of self-diffusion on metal surfaces have been developed and employed to address

microscopic details of the system. However these simulations are not without their lim-

itations and prove to be computationally impractical for a variety of chemically relevant

systems, particularly for diffusive events occurring in the low temperature regime. To cir-

cumvent this difficulty, a corresponding coarse-grained representation of the surface is also

developed resulting in a reduction of the required computational effort by several orders

of magnitude, and this description becomes all the more advantageous with increasing sys-

tem size and complexity. This representation provides a convenient framework to address

fundamental aspects of diffusion in nonequilibrium environments and an interesting mecha-

nism for directing diffusive motion along the surface is explored. In the ensuing discussion,

additional topics including transition state theory in noisy systems and the construction of

a checking function for protein structure validation are outlined. For decades the former

has served as a cornerstone for estimates of chemical reaction rates. However, in complex

environments transition state theory most always provides only an upper bound for the

true rate. An alternative approach is described that may alleviate some of the difficulties

associated with this problem. Finally, one of the grand challenges facing the computational

sciences is to develop methods capable of reconstructing protein structure based solely on

readily-available sequence information. Herein a checking function is developed that may

prove useful for addressing whether a particular proposed structure is a viable possibility.

x



CHAPTER I

INTRODUCTION

The motion of adsorbates on metal surfaces remains an area of active research as a result of

its technological implications for a diverse set of processes such a catalysis, epitaxial growth,

and self-assembly, among many others. Aside from the relevance to practical applications,

fundamental scientific interest remains strong because of the rich physics governing these

processes and the challenges facing both the experimental and theoretical communities to

develop accurate techniques that are capable of investigating and describing the various

phenomenon. Nevertheless, these communities have made great advances over the past two

decades. The curious reader is directed to several excellent reviews of recent contributions in

experimental, theoretical and computational methodologies, and their interpretation from

experimental [1, 2, 3, 4, 5, 6] or theoretical [7, 8, 9, 10, 11, 12] perspectives, although obvi-

ously neither can be completely devoid of the other. For a review discussing the challenges

and recent successes in modeling surface dynamics across very large length and time scales

while retaining atomic level details as needed, see reference [13]. Alternatively, algorithmic

developments attempting to accelerate molecular dynamics simulations of surface diffusion

are reviewed in reference [14].

One of the primary goals of the work described here is to demonstrate that classical

simulations of adsorbate dynamics on surfaces can be described by reduced-dimensional

models and that these models can provide insight into their qualitative —and sometimes

quantitative— behavior. In principle, one would prefer not to resort to coarse-grained

models in favor of the inclusion of all degrees of freedom explicitly. However, such models

remain computationally infeasible for many interesting chemical systems given the current

state of computing capabilities and will remain so for some time in the near future given

the foreseeable performance increases. Aside from their affordability, reduced-dimensional
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Figure 1: Much of the method development discussed here is focused on the equations
of motion for a single particle on a surface as illustrated in the top graphic. However, the
projective methods become all the more useful as one begins to consider many adsorbates (as
in the middle graphic) or polymers (as in the bottom graphic). If the atomistic dynamics of
the underlying surface can be subsumed through a single effective stochastic representation,
then the dissipative MD can become tractable even for very large surface structures.

models also provide a lens on which modes of a system are important to the detailed dy-

namics as well as those that can be successfully ignored and are evidently not important.

For example, in the cases illustrated in Figure 1, the all-atom simulations require the in-

tegration of the dynamics not just for the atoms, molecules, or polymers adsorbed on the

surface, but of the much larger underlying surface. As the number and complexity of the

adsorbates grows, it becomes increasingly useful to be able to ignore the detailed dynamics

of the underlying surface, and this necessarily requires a projection. The latter is not a

rigorous coarse-graining because the length scale of the remaining adsorbates has not been

changed. However, these length scales may also need to be coarse-grained in order to assess

macroscopic properties of the surface [13].
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There is, of course, one very important additional level of complexity in these systems

that arises when the length and energy scales are such that classical mechanics no longer

offers the correct equations of motion. (The electronic dynamics are necessarily such a

case.) Consequently, the correct inclusion of quantum mechanical degrees of freedom into

the description of surface events and molecular simulations in general remains a topic at

the forefront of current theoretical efforts. Unfortunately, such simulations are prohibitively

expensive for processes occurring on all but the shortest of length and time scales. For

reviews on the subject within the context of surface science one is referred to references [15,

16, 17, 10, 18]. While the methodology employed here will not focus on such approaches,

it is perhaps worthwhile to point out that one potential advantage of the identification

of reduced-dimensional models lies in the possibility that the subsystem can be quantized

independently of the projected classical models [13, 19].

Presently simulations represent a compromise between the level of detail one would like

to include and that which is capable of reasonably being included. This is particularly

relevant when long-time correlations exist between the adsorbate and the surface. In this

context, long-time scale implies long on the molecular scale but it should be noted this is

usually very short on the experimental scale. The use of simulation in this instance has been

instrumental in interpreting the complicated experimental results that typically represent

an ensemble average over many adsorbates completing multiple hops between observations.

One could certainly include ipso facto the long-time correlations through the use of an all-

atom model that is sufficiently large as to include all of the requisite local modes, surface

phonons, and bulk phonons while maintaining this classical-like prescription. However, the

key aim here is the use of reduced-dimensional models that allow for the inclusion of the

long-time correlations without recourse to such detailed models. Meanwhile such reduced-

dimensional models, while projecting the bulk modes into dissipative terms can also project

the electronic modes into the so-called electronic friction [20, 21, 10, 22]. Thus, in limits

where the former has been seen to be effective, then the models described here with the

appropriate friction terms can also account for quantum electronic effects. An essential

3



requirement of any reduced-dimensional approach is that some transferability of the coarse-

grained description will exist over the relevant parameter range of interest. Fortunately,

this requirement is often satisfied. Obviously, one should not project out degrees of freedom

of the system that will be important to the process of interest. However, once one has an

acceptable model for surface diffusion including the appropriate long-time correlations then

it can presumably be used to study various questions concerned with surface transport.

It is perhaps also helpful to briefly note a few experimental techniques in surface science

and their relationship to the corresponding microscopic dynamics as elucidated through an

appropriate reduced-dimensional or atomistic model. This duality can be exploited to assist

and validate experimental or computational interpretations of complicated systems, and

several reviews have discussed this topic in detail [1, 23, 3, 4, 5, 6, 11, 12]. For slow diffusion

and low coverage, scanning tunneling microscopy (STM) and field ion microscopy (FIM)

are able to directly follow diffusive events and thus provide a description of the microscopic

time-dependent probability distribution [24, 25, 2, 26]. However, in more general cases,

these methods lack the temporal resolution needed to observe faster hopping rates and

it also becomes difficult to unambiguously identify the unique diffusion events as coverage

increases. In such cases, quasi-elastic helium atom scattering (QHAS) becomes the preferred

method although it provides only an indirect measure of adsorbate diffusion [23, 27, 28, 29].

The measured structure factor from these experiments is related to the microscopic hopping

rates as determined for example, from a microscopic master equation.

1.1 Classical Surface Diffusion

Surface diffusion consists of a series of jumps between minima on the energy landscape.

Each of these jumps is inherently a rare event (on the molecular scale) due to the large

barriers impeding the hopping process which are typically on the order of a few tenths of

an eV and generally an order of magnitude larger than the thermal energy [30, 31]. At

relevant temperatures, such activated processes occur on time scales that lend themselves

only to computationally-taxing classical molecular dynamics simulations or more feasible

coarse-grained Langevin simulations. Taking into account that this is an activated process,
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the diffusion rate can usually be well represented by an Arrhenius-like form

D(T ) = D0(T ) exp (−βEA) . (1)

where EA is the classical activation energy, β = 1/kBT , and D0(T ) is the pre-exponential

factor whose temperature dependence is often weak [32]. This formalism provides one with

the ability to extract the activation energy and prefactor from a series of simulations per-

formed over different temperatures. However the simple interpretation is not quite adequate.

At normal temperatures, an adsorbate would never have enough energy to surmount a bar-

rier since typically EA ≫ kBT . This elementary analysis makes it clear that the surface

is a vital component of the diffusion process serving as an effective bath that is constantly

exchanging energy with the adsorbates. The particle surmounts a barrier when it has accu-

mulated a sufficient amount of energy from the surface and continues to diffuse across the

barriers until the energy has been transferred back. This type of argument readily gives

rise to a Langevin description of surface diffusion and has been invoked frequently in the

past [33, 34, 35, 36, 37, 38]. The possibility of correlated hops to sites farther than the

nearest wells during an excursion depends on the rate of energy relaxation. Because the

probability of such events is usually low, correlated hops have often been ignored or included

implicitly. However when the temperature is large or the adsorbate is weakly bound, then

correlated hops have been seen to play an important role [37, 39, 40].

While the diffusion constant is dominated by the equilibrium barrier height EA, all of the

dynamical contributions are contained in the prefactor. Unfortunately, brute force atomistic

simulations have only been computationally feasible for relatively high temperatures. (Of

course, this constraint is constantly relaxing.) Molecular dynamics simulations are now

possible for long runs of hundreds of nanoseconds or alternatively many short runs of several

hundred picoseconds. However, in the case that the ratio of the barrier height to the thermal

energy is large, acquiring sufficient hopping statistics through either approach becomes

impractical at an exponential rate. As a result, one often takes advantage of the Arrhenius

behavior and studies simulations at higher temperatures and then relies on an extrapolation

to lower temperature regimes. In light of this difficulty alternative methods such as Monte
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Carlo simulations are often preferred [8, 30, 41, 42, 43]. In this situation one relies on the

assumption that hops are rare and uncorrelated events, and hence the entire trajectory can

be taken as a series of independent (Markovian) processes. The diffusion coefficient may

thus be cast as the product of a rate constant based on (canonical) transition state theory

(TST) and the length of the hop (lattice constant), l. That is,

D =
1

2α
kTST l

2 , (2)

provided all transition paths are identical where α represents the dimensionality of the sys-

tem. Within this approximation, the elegant techniques developed from transition state

theory may be employed thereby allowing one to extract very accurate rates with substan-

tial computational savings [44, 45, 46, 47, 48]. However, the Markovian approximation of

independent hops has recently been tested in the self-diffusion of Cu on Cu(1 1 1) and it was

found that correlations exist between hops even at low temperatures when the assumption

is expected to be valid [49]. This raises serious questions about blind applications of the

Monte Carlo average of canonical TST rates, but clearly more work is needed given its

success thus far.

Further caution is warranted given that not all of the elementary mechanisms com-

prising surface diffusion are fully understood. Traditional hops to nearest neighbors may

be accompanied by many other processes including site exchange whereby the adsorbate

and a surface atom exchange positions resulting in a net displacement, [50, 51] long jumps

to sites further than nearest-neighbors, and possibly even sub-surface diffusion. However,

these various complex mechanisms make reactive flux approaches difficult to employ when

the transition path is not known or perhaps contains multiple geometrically disparate exit

channels.

The situation is compounded by the fact that in order to achieve an accurate description

of the bulk, many layers of surface atoms must be included in simulations [38]. In principle,

the only way to know when one has included a large enough underlying surface is to continue

to increase the number of layers until a clear convergence of the target observable has been

reached. To circumvent this costly exercise, several investigations have allowed only those
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atoms within the vicinity of the adsorbate to move while others are pinned to their equilib-

rium positions [52, 53, 33, 34, 54]. While this results in a dramatic computational savings, it

overly dampens the long time scale processes of the surface. Furthermore, one must average

over many trajectories in order to acquire reasonable statistics of the hopping process and

properties of interest such as the hopping distribution. All of these considerations lead to

state-of-the-art simulations of surface diffusion in which thousands (or more) surface atoms

are subdivided into varying hierarchies of dynamical treatments, while nevertheless requir-

ing substantial computing power in order to integrate several thousand trajectories each on

the order of a nanosecond. Unfortunately most molecular dynamics packages are not de-

signed for surface dynamics and therefore lack the ability or needed generality to correctly

and accurately construct these hierarchies, and this leads many researchers to write their

own simulation codes.

Beyond the dilute adsorbate limit that is the focus of the work described here, the role

of step edges, coverage, sticking and scattering in adatom diffusion has been explored by

a cornucopia of computational approaches ranging from coarse-grained to ab initio meth-

ods [7, 8, 9, 55, 10, 11]. For example, it might seem that surface coverage effects can be

completely described by a simple extension of the theory for single adatom hopping. How-

ever nothing could be farther from the truth as the diffusion now often includes concerted

motions and may proceed by completely different mechanisms resulting in large qualitative

changes in the diffusion rates [3, 29, 4, 5]. In such cases, the degree to which long-time

correlations persist plays an important role in determining diffusion rates. Similar compli-

cations arise in the case of gas-surface scattering. Of particular note, within the context of

reduced-dimensional descriptions, the “washboard model” —wherein the atomistic surface

is replaced by an effective washboard potential— has been shown to qualitatively capture

the energetic and orientational dependencies of the process [56, 57]. In cases with low energy

gas-surface collisions, the sticking probability increases thereby leaving behind a transient

ballistic adsorbate species that can not be described by the standard equilibrium diffusion

description [3]. A more extensive discussion of the role of these features and many other

relevant factors will not be discussed further. Indeed, the main focus of the work described
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here is on those regimes where the surface diffusion can be adequately characterized by

a reduced-dimensional model in which the primary modes that are explicitly retained are

sufficient to describe the adsorbate motion parallel to the surface.

1.2 Molecular Dynamics Simulations and Projective Models

1.2.1 Atomistic Models

Despite the difficulties facing computational efforts, their use has been essential in unrav-

eling the complicated dynamics associated with surface diffusion and in determining the

fundamental dissipation pathways. The seemingly simple transition from one adsorption

site to its nearest neighbor is deceptively complex and is governed by a number of competing

elementary mechanisms. As has been emphasized in the previous sections, the many-body

coupling between the surface and adsorbate dominates surface diffusion and it governs when

an adsorbate will hop and when it will stop. The primary coupling pathways can be repre-

sented by mechanical dephasings resulting from the classical interactions with the phonon

bath of the surface and the quantum interactions with electron-hole pair excitations in the

electronic continuum of the surface [58, 20, 21, 10, 22, 41, 3]. Generally the ratio of the vi-

brational frequencies of the adsorbate to that of the substrate dictates whether the phonon

or electronic pathway will dominate with the latter being favored when the ratio is far from

unity, although in general both mechanisms will be active to some extent [5, 10]. Within a

classical framework, the bulk can be represented within a simulation as an external harmonic

bath —whose spectrum is equivalent to the phonon spectrum of the underlying bulk sur-

face up to some desired level of accuracy— to which the surface atoms are coupled [33, 34].

However an accurate theory is needed to account for the coupling of the surface to the

bulk metal’s electronic states. The inherent nature of the process brings into question the

validity of the Born-Oppenheimer approximation given that the adsorbate does not interact

with a single adiabatic potential energy surface, but rather a continuum of delocalized states

associated with the metal, and relatively small changes in energy can result in excitations of

electron-hole pairs [22]. As a result, Carr-Parinello dynamics involving electronic processes

occurring on surfaces may not be applicable in general. Provided the coupling is weak,
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one possible approach that has been proposed is the “molecular dynamics with electronic

friction” method designed to take electron-hole pair contributions into account resulting

in a Langevin-type equation of motion for each explicit degree of freedom [20]. That is,

an additional Langevin bath is introduced to describe the electronic response to adsorbate

motion, albeit with its own characteristic electronic spectrum and perhaps also an effective

electronic temperature that is not equal to the bulk temperature.

Several other theoretical and computational studies have been carried out that focus on

particular aspects of surface diffusion and demonstrate that many factors can be important

under certain circumstances. The role of lattice vibrations in the hopping process has been

explored in detail by Rahman and co-workers [59, 60, 61, 32]. They note that although

the rate is largely determined by the activation energy, which can in turn be accurately

obtained from static high level ab initio calculations, the vibrational (entropic) contribu-

tions to the prefactor on flat surfaces and along step edges may be large and should not be

ignored. In addition, a description of the diffusion of light atoms across metal surfaces must

incorporate quantum mechanical effects. Hydrogen migration on a variety of substrates has

been explored within the context of quantum transition state theory in which it was found

that the motion of the hydrogen normal to the surface results in a significant number of

barrier recrossings leading to substantial errors in the transition state theory approxima-

tion [62, 63, 64, 65, 66]. Several computational studies aimed at elucidating the effect of

surface geometry on the hopping mechanisms and the ability of simulations to reproduce

experimental diffusion coefficient values have been explored in detail [67, 68, 69, 70, 71].

Systematic studies of the role of coverage and long jumps have shown that both can have

a dramatic impact on bulk diffusion rates [72, 73, 43, 74, 64]. These and other results have

provided the foundation for general scaling arguments for the magnitude of the self diffusion

constant based on macroscopic properties of the solid [31, 30].

A fundamental requirement on all of the computational studies on metal surface dynam-

ics is the need to perform simulations with realistic potentials and in a feasible amount of

time. To this end, the temperature-accelerated dynamics method [75, 14, 76] has arisen as a

possible approach for reaching the latter limit. With the exception of quantum simulations,
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most classical simulations are based on semiempirical potentials derived either from the

embedded atom method or effective medium theory [77, 78, 79]. However a recent potential

energy surface for hydrogen on Cu(1 1 0) based on density functional theory calculations

produced qualitatively different results from those of the embedded atom method including

predictions of different preferred binding sites [80].

This brief review is in no way a complete list of all the simulations of surface diffusion

that have been performed to date, but rather serves to illustrate the range of simulations that

can typically be performed at present and the physical properties they can address, as well

as an indication of the challenges facing current and future efforts. Moreover, it should be

clear that there are substantial advantages to developing and implementing new algorithms

in which one can reduce the number of atoms that must be treated explicitly within these

models while retaining accuracy and the ability to calculate the requisite observables. This

is precisely where projective methods can play a role, though they do not always retain the

latter two requirements.

1.2.2 Projective Models

As has been described, classical molecular dynamics simulations provide a detailed descrip-

tion of surface diffusion but are remiss of all important quantum effects and sit on the

cusp of computationally feasible simulations. As a result, many techniques for construct-

ing coarse-grained simulations have been developed ranging from purely phenomenological

descriptions to more rigorous approaches. The crux of these models lies in constructing

projection operators to remove the fast degrees of freedom that are irrelevant to the process

of interest [81, 82, 83]. In this manner, many modes of the surface are reduced to one effec-

tive mode influencing the surface diffusion. Usually this is described within a generalized

Langevin framework for each degree of freedom of the adsorbate whose equation of motion

is of the form

mv̇ = −m
∫ t

0
γ(t− t′)v(t′) dt′ + ξ(t) −∇U(q) , (3)

where γ(t−t′) is a time-dependent friction term including the entire history of the trajectory,

ξ(t) is a zero-mean stochastic process and U(q) is the deterministic potential of mean force
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experienced by the adsorbate. This equation of motion is equivalent to a Hamiltonian

system in which the primary degrees of freedom are coupled bilinearly to a bath of harmonic

oscillators [82, 83, 84]. The origin of the stochastic force in the Langevin equation is related

to the undetermined initial conditions of the bath in the Hamiltonian system. The former

is connected to the friction by a fluctuation-dissipation relation that ensures the system

approaches thermal equilibrium in the steady state [85]. Equation 3 is in no way more

tractable than the Hamiltonian approach until one assumes a form for the friction kernel

that is generally short-lived and physically corresponds to a quick response of the bath to

the system motion. Calculations have shown that this approximation is usually justified

particularly in the context of surface diffusion [37, 38, 3, 86]. Following this prescription,

Tsekov and Ruckenstein have developed an exact Langevin description of the surface within

the harmonic approximation for the coupling of the surface atoms [35, 36]. Additionally in

a series of papers, Tully and co-workers have developed a model in which a small number

of surface atoms closest to the adsorbate are treated explicitly [52, 53, 33, 34, 54]. These

are then coupled to a Langevin bath constructed to represent the bulk phonon spectrum of

the surface.

These studies have paved the way for more phenomenological approaches that although

less rigorous have nonetheless provided useful insights into the diffusion process. It is

generally accepted that the potential of mean force U(q) on which the adsorbate moves

is corrugated and can be adequately approximated by a periodic function whose period

is related to the lattice spacing of the surface [38, 28, 3]. The barrier heights impeding

diffusion are derived from the activation energy determined either experimentally or from a

higher level of theory. Furthermore, the friction kernel typically decays on a very short time

scale on the order of a few hundred femtoseconds [38] and the magnitude lies in the low to

intermediate friction regime [37, 28]. The fast decay is much shorter than any time scale

related to surface diffusion and so the generalized Langevin equation can be approximated

by the simplified memoryless Langevin equation

mv̇ = −mγv + ξ(t) −∇U(q) . (4)
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This adiabatic approximation assumes the bath is capable to instantaneously responding

to the motions of the subsystem.

At this level of description, the simulations are so inexpensive that it is possible to

explore the full range of the parameters and obtain converged results. Often here one is

not concerned with making quantitative comparisons with experimental values but rather

in extracting general qualitative trends or in searching for new phenomenon [87, 88, 89, 90].

Using such models, several groups have employed phenomenological Langevin equations

to probe the role of friction and how the particular structure of the potential of mean

force can influence surface diffusion [91, 92, 93, 94, 95, 96]. Alternatively, as for example

in references [28, 29], through comparison with experimental data the authors were able

to deduce the form of the potential and friction so as to reproduce experimental results

providing valuable insights on the nature of the system. Within this formalism, the subject

of multiple hops has received considerable attention. It has been shown that the probability

of observing a long jump can be strongly influenced by both the form of the potential as

well as the friction [91, 93, 87, 97, 98, 99, 39, 37, 40, 100, 95, 96]. The ability of these

models to probe a large range of parameters provides bounds for which to look for new

phenomenon experimentally or at a higher level of simulation, as well as an intuitive and

simplified picture of the process which can often be obscured by the sheer amount of data

produced by all-atom simulations.

As has been emphasized throughout this introduction there are many length and time

scales that influence adsorbate diffusion from couplings with electron-hole pairs to surface

phonon modes all of which have been shown to be non-negligible in certain instances [101,

58, 10, 22, 32, 60]. However, in most coarse-graining procedures all of these effects are

averaged into a single effective mode governed by a simple (generalized) Langevin equation

with a static potential of mean force. A central question remains as to whether this is an

adequate description. If not, how should one go about constructing a reduced dimensional

model that is capable of retaining some of these features. Keeping with the simplicity of the

Langevin framework, there are only two possibilities to account for the multi-scale factors,

the potential of mean force or the friction term and noise terms. Recent advances involving
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the coupling of a particle to multiple or time-dependent baths leading to modifications of

the friction kernel and the noise term is one possibility that may provide some insight to

the problem [102, 103]. Alternatively one could incorporate the multi-scale details in the

potential of mean force by allowing for time-dependent variations in the structure as have

been explored by several authors [104, 105, 106, 107, 108, 109]. The latter approach is one

of the main features described in the following chapters.

1.3 Overview

Chapter 2 describes molecular dynamics simulations of adsorbate diffusion on metal sur-

faces in the spirit of those described earlier in Section 1.2.1. The shear computational

effort required for this study necessitates the development of the coarse-grained simulations

discussed in the remaining chapters. In particular, calculations in the low temperature

regime become increasingly impractical due to the poor hopping statistics. However, this

fact does not undermine the utility of such simulations and at a larger temperatures, a

detailed atomistic description of the diffusion path and mechanism can be obtained. In this

chapter, parallel classical simulations are constructed and carried out to provide estimates

for the various parameters required for Langevin simulations. Calculations of the diffusion

coefficient are first performed to validate the method, and then the dynamic friction and

potential of mean force are extracted. These simulations serve as the groundwork for the

work carried out in Chapters 3 and 4.

Chapter 3 provides a more thorough introduction to the Langevin dynamics described

in Section 1.2.2. The primary extension discussed herein is the incorporation of the multi-

ple time scale interactions mentioned at the end of the preceding section through a time-

dependent stochastic potential of mean force. A standard feature associated with models

of diffusion over a single stochastic barrier is the so-called “resonant activation” [104] in

which the rate of passage over the barrier may be strongly affected by the associated fluc-

tuations in the underlying potential. The key questions addressed in this work are whether

this phenomenon will continue to be observed in periodic or quasi-periodic one- and two-

dimensional systems resembling those that are often used in the study of surface diffusion,
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and if so how robust this phenomenon is with regards to the particular nature of the po-

tential. It is found that the resonant activation does indeed exist in extended systems and

that it is largely insensitive to the details of the potential of mean force. Therefore, it is

proposed that the ability to spatially control this phenomenon would provide one with the

ability to direct diffusive motion along the surface [90].

Chapter 4 continues along the lines of Chapter 3 focusing on an alternative method to

include the dissipative term in the Langevin equation [110]. In the presence of a stationary

potential of mean force, the damping arises only from the fluctuations in the surrounding

bath, viz. the noise. However, if the potential is also stochastic then an additional frictional

term must be incorporated to ensure the system remains in thermal equilibrium. In previous

work [109, 111, 90], this has been achieved through an iterative self-consistent procedure

such that this requirement is strictly enforced. In this chapter, an alternative method based

on an approximate analytic form is derived and the limits of its validity are addressed. In the

wider context, this analysis demonstrates that stochastic potentials provide an alternative

origin of the space-dependent friction that has been the focus of much attention in the

literature.

The remaining chapters detail fruitful collaborative work on topics largely unrelated to

surface diffusion. Chapter 5 discusses a novel approach to transition state theory (TST)

in noisy environments. The reaction rate is a key factor in many chemical systems and

reasonable estimates for this quantity can generally be obtained from transition state theory

or one of its descendants. In isolated systems such as gas phase chemical reactions, TST may

indeed provide an accurate approximation, but unfortunately many interesting chemical

systems are noisy (i.e. governed by a stochastic differential equation typified the Langevin

equation) due to complex interactions with the surrounding environment. Consequently in

these cases TST most always provides only an upper bound to the true rate. While many

previous theoretical treatments of this problem have taken advantage of the equivalence of

the Langevin equation with the corresponding Hamiltonian or Fokker-Planck description in

which the noise in included implicitly, here we stay within the Langevin framework. The

elegant approach of Bartsch et al. [112, 113] based on the construction of a special reference
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trajectory that gives rise to a noiseless coordinate system is applied in numerical simulations

of prototypical reactive systems in order to address the utility of this method with respect

to traditional approaches [114].

Finally, Chapter 6 outlines the construction of a new checking function that may prove

useful for protein structure validation [115], and its ensuing incorporation into a web server

to facilitate its use in the community [116]. One of the grand challenges facing theoretical

and computational scientists is to develop methods capable of reconstructing the compli-

cated secondary and tertiary structure of a protein given only sequence information. Not

surprisingly, current efforts take advantage of several well-established metrics to judge the

quality and consistency of a given proposed structure. This chapter provides an additional

check based on dihedral angle analysis to aid in protein modeling. With the ever-increasing

number of protein structures determined by experimental or computational methods, the

existing database of information contained therein grows accordingly giving rise to a sta-

tistical ensemble that can be readily probed to provide statements on the compatibility of

a given structure with the existing database. In Chapter 6, this approach is employed to

extend the standard analysis of dihedral angle correlations within a given amino acid to

correlations that may exist between neighboring residues. Based on these results, a new

checking function for protein structure analysis is introduced that is rooted in information

theory and has subsequently been incorporated into a convenient web-based tool for use in

the community.1

1 Aside from Chapter 2, this introduction and the remaining chapters largely represent material that has
been published or submitted as an original scientific work [90, 110, 115, 114, 116, 117].
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CHAPTER II

REDUCED DIMENSIONAL MODELS DERIVED FROM

MOLECULAR DYNAMICS SIMULATIONS OF TRANSPORT ON

METAL SURFACES

2.1 Introduction

Diffusion on metal surfaces remains an area of intense study due to the intriguing physics

governing the fundamental processes involved as well as its implications in a wide range

of technological applications [12, 11, 10, 5]. However, as was discussed extensively in the

preceding chapter, the large dimensionality of the system and the multiple time scales

involved are the source of substantial difficulties for both experiment and theory [24, 25, 26,

118, 119]. Furthermore, the complexity of a model that is capable of incorporating all of

these dependencies may fail to shed light on the elementary mechanisms involved and can

often obscure simple, physical interpretations. In these situations, it would be advantageous

to develop reduced descriptions of the process that are capable of capturing the essential

features of the diffusive motion of the adsorbates [34, 35, 36, 38, 12, 11]. Such models

provide an intuitive description of the system by projecting out all of the non-essential

degrees of freedom and retaining only those that are vital to the process at hand. From

a computational perspective, these models are ideal since they are exceedingly efficient

while still capable of yielding reliable results. Unfortunately, such models may sometimes

be too coarse or lack the requisite transferability to make their development worthwhile.

For example, in some instances the full-dimensional description is absolutely necessary

to analyze microscopic level details that are not present in the coarse-grained description.

Obviously, the optimal situation is to have access to both the complete atomistic description

of the system as well as its coarse-grained counterpart and to have the ability to readily

convert between the two based on the length and time scales of interest. Of course, the

viability of such an approach is contingent upon the fact that both models are correctly
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describing the physical process of interest and are capable to providing meaningful results

and predictions.

The purpose of this chapter is to create such a model and demonstrate that the reduced-

dimensional description is capable of providing results in agreement with higher level atom-

istic simulations. A model potential that is capable of reproducing the qualitative trends

observed experimentally for self diffusion on the (1 0 0) surface of nine different metals is

used in full molecular dynamics simulations. The diffusion coefficients are extracted and

a comparison between the current results and those obtained in previous studies is pre-

sented. Then for the silver surface, a coarse graining procedure is applied in which every

atom of the surface is projected out leading to a Langevin model of adsorbate motion on

an effective potential of mean force. However, the method is completely general and readily

allows one to retain some number of surface atoms if they are required for the process at

hand as for example in gas-surface collisions or when exploring the site exchange mecha-

nism [50, 51]. In many situations there is no reason to believe that the Langevin model

which is equivalent to a subsystem coupled to a harmonic bath should provide an accu-

rate description of the system. However, for surface diffusion this approximation should be

rather good since the substrate may often be quite reasonably described within a harmonic

representation. Within this framework, the potential of mean force and the dynamic fric-

tion required for the Langevin description are extracted. Approximations for these values

based on purely physical considerations have served as the starting point for many studies

of surface diffusion [52, 53, 33, 34, 54]. An additional outcome of this work is that the

simple phenomenological models of this type are shown to be rather reasonable. Finally

an analysis is presented of the reduced-dimensional system and how estimates of the rate

can be computed from transition state theory without recourse to any further numerical

simulations. This result is of particular interest in the low-temperature regime where brute

force dynamics simulations become computationally impractical.
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2.2 Molecular Dynamics Simulations

Classical molecular dynamics simulations of self diffusion on the (1 0 0) surface of Ag, Al,

Au, Cu, Ir, Ni, Pd, Pt and Rh have been performed. This is an analogous set to the

systems studied by Feibelman [31] with density functional calculations and a subset of

those examined by Agrawal et al. [30] with classical Monte Carlo techniques. Remarkably,

these two very different simulations arrived at the same conclusion that the self diffusion

coefficient for a variety of metals can be reliably estimated from macroscopic properties of

the surface. This result is also reproduced here with molecular dynamics simulations.

In this work, the metal surface is represented as a mixed-ensemble perfect slab that is

ten layers thick each of which contains 400 atoms. Periodic boundary conditions are applied

in the plane only. The bottom two layers are held fixed with positions given by the exper-

imental lattice spacing [120]. The next four layers are kept at constant temperature using

a chain of Nose-Hoover thermostats [121, 122]. The remaining layers and all adsorbates

are simulated with undissipated Newtonian dynamics using a time step of 1 fs [34, 123].

Although the top layers are not dissipated the coupling to the lower thermostatted layers

leads to simulations that are not strictly energy conserving. The advantage of this approach

is that the surface can be held at a constant temperature (after some equilibration) and

therefore the diffusion coefficient is well defined so that an activation energy and prefactor

may be extracted. However, the dynamics of the adsorbate and its nearest neighbors are

largely unaffected by the damping introduced by the thermostats. In the simulations de-

scribed here, the particular number of NVT layers was observed to have a negligible impact

on the average properties, although all were performed at rather high temperatures. The

surface atoms are modeled by a simple potential consisting of only Van der Waals interac-

tions with the parameters that were developed in reference [30]. Although admittedly this

description is not completely adequate, it is sufficient to demonstrate the main purpose of

this work that coarse-grained models can capture the essential features of the corresponding

higher level model. For computational efficiency, the pairwise interactions for each atom

in the bulk are evaluated up to third-nearest neighbors. A larger neighbor list size does

not significantly change the results. The forces on the adsorbates, however, include a much
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larger neighbor list. Upon initialization, the system is equilibrated for 1 ns. The subsequent

49 trajectories are run on the same thermalized slab following an appropriate randomization

of the adsorbates initial conditions and a brief 10 ps equilibration.

2.2.1 Diffusion Rates

The diffusion coefficient has been determined from the standard relations for the mean-

squared displacement

4Dt = 〈(r(t) − r(0))2〉 , (5)

and the velocity autocorrelation function

D =
1

2

∫ ∞

0
〈v(0)v(t)〉dt . (6)

In the case of the symmetric (1 0 0) surfaces under study, only the isotropic diffusion in the

plane of the surface is considered, and each adsorbate is left unconstrained with respect to

the coordinate normal to the surface. Following the equilibration periods described above,

the relevant quantities in equations (5) and (6) for the adatom are calculated from 1500

independent trajectories of 135 ps each. In the standard manner, the slope of the mean

squared displacement or the integral of the velocity autocorrelation function of the diffusing

atom yield the diffusion coefficient. These two approaches produce the same result within

statistical error. As is well known, the hopping is an activated process and as such the

diffusion coefficients for each metal obey an Arrhenius-like equation,

D = D0 exp (−Ea/kBT ) , (7)

allowing one to extract the activation energy and prefactor from a collection of diffusion

coefficients measured over a series of temperatures. The diffusion profiles for the nine

metals are displayed in Figure 2 along with the results reported in reference [30]. Rather

good agreement is observed between the current simulations and the previous study even

though the latter were calculated by Monte Carlo techniques (cf. equation 2). Moreover,

the results scaled to the appropriate dimensionless units, T0 = kBT/ǫ and D0 = D
√

m/ǫσ2

where ǫ and σ, and m represent the respective potential parameters and mass for a given
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Figure 2: Diffusion coefficients depicting the results of the present MD simulations (circles)
along with those derived from the prefactors and activation energies reported previously in
reference [30] displayed as lines and triangles. The black, blue, green, red, violet, yellow,
maroon, dark green, and turquoise lines reflect the diffusion on silver, copper, gold, palla-
dium, aluminum, iridium, nickel, rhodium and platinum surfaces, respectively. Each point
was obtained from the slope of the adatom’s mean-squared displacement averaged over 1500
independent 135 ps trajectories.

metal, lead to universal behavior for all metals as seen in Figure 3 [31, 30]. However, at low

temperatures, the statistical error in the current method becomes obvious.

2.3 Reduced-Dimensional Systems

In coarse-grained simulations, the potential of mean force (PMF) plays a central role in

governing the dynamics. Calculations have been performed to extract the PMF experienced

by an adatom diffusing across the silver surface. The procedure involves calculating the

forces on a ghost atom placed at given positions ra above the surface,

dw

dra
=

〈

∂U

∂ra

〉

, (8)

where the average is taken over different configurations of the substrate. Once obtained,

the PMF w(r), is obtained by integrating the mean forces from the full dimensional system.

Many positions ra must be evaluated in order to achieve a sufficient representation of the

underlying surface. Fortunately, this challenging procedure can be simplified by taking

advantage of the high symmetry of the surface. One needs to only evaluate the forces

at specified positions inside of a unit cell enabling one to average over every cell on the

surface. In practice, 500 independent trajectories are simulated for 65 ps each with the
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Figure 3: Diffusion coefficients for each of the metals displayed in Figure 2 in appropriate
dimensionless units. The black, blue, green, red, violet, yellow, maroon, dark green, and
turquoise lines reflect the diffusion on silver, copper, gold, palladium, aluminum, iridium,
nickel, rhodium and platinum surfaces, respectively.

forces evaluated on a three-dimensional grid containing 1000 points above each unit cell of

the surface. Once obtained, the ensuing integration of equation (8) is performed. Since

the PMF is a state function, statistical error can be minimized by averaging the results

of integrating many paths between points on the grid of average forces. Between nearest

neighbors approximately 50 independent random walker paths are integrated and the results

averaged to produce w(ra). In this way, the PMF evaluated at a constant 1.85 Å (the

approximate spacing between layers in the lattice) above the silver surface unit cell is

displayed in Figure 4 and the one-dimensional projection along the reaction coordinate (the

diagonal component of Figure 4) is displayed in Figure 5.

The friction can most readily be obtained by evaluating the fluctuation-dissipation re-

lation

γ(t− t′) =
1

mkBT
〈δF (t′)δF (t)〉 , (9)

and realizing that the noise in the Langevin description simply represents the deviations of

the instantaneous force from the average, δF (t) = F (t) − 〈F 〉 in the molecular system. It

is efficient to simultaneously evaluate the requisite force autocorrelation function at each

point in the grid during the course of the potential of mean force calculation. As displayed

in Figure 6, the friction consistently displays a very short decay time on the order of 200
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Figure 4: The potential of mean force evaluated at a fixed height 1.85 Å above the surface.
The peaks correspond to equilibrium positions of atoms in the top layer of the surface while
the minima correlate with the positions of atoms in the first sublayer. Diffusing adsorbates
traverse the relative maxima between the two.
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Figure 5: The potential of mean force (red crosses) along the reaction coordinate evaluated
at a fixed height 1.85 Å above the surface. The green points display the average potential
and the solid lines represent harmonic fits near the well bottom and barrier providing a
frequency of ω = 6 ps−1 and barrier height 0.648 eV.
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Figure 6: The force autocorrelation function (eV/Å)2 evaluated at the well (lower) and
barrier (upper) on the Ag surface at a temperature of 0.08 eV and a fixed height 1.85
Å above the surface. Within the Ohmic approximation, this corresponds to the very low
friction regime (0.3/fs at the barrier and 0.01/fs at the well).

fs regardless of whether it is evaluated at a minimum or a maximum along the reaction

coordinate. This fast relaxation time was also observed in reference [38]. Since all motion

relevant to surface diffusion occurs on a much longer time scale, this observation further

justifies the standard use of Ohmic friction in Langevin simulations of surface diffusion.

The magnitude is determined by replacing the dynamic friction with a delta function of

the same area. These simulations result in a value typically lies in the low friction regime

(γ ≪ ω), although the difference in magnitude between the well and the barrier is more

than an order of magnitude possibly leading to the need for a space dependent friction.

2.4 Conclusions

In this chapter, a rigorous approach to obtaining the relevant parameters required for a

coarse-grained description of surface diffusion from full molecular dynamics simulations has

been performed. Within the Langevin representation, an overall reduction of the compu-

tational effort is achieved that scales with the number of atoms in the slab. This fact

becomes all the more advantageous as the size and complexity of the adsorbed species in-

creases. Furthermore, with these quantities in hand, it becomes trivial to evaluate many
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important properties associated with surface diffusion. From the nature of the PMF the

location of the preferred adsorption site is immediately obvious. Likewise, by combining the

knowledge of the activation energy obtained from the PMF with the value of the friction

constant, an accurate estimate of the rate may be obtained directly from transition state

theory [124, 125, 47]. The coarse-grained description developed here and employed in the

next two chapters allows one to circumvent the costly atomistic dynamics when search-

ing for new and interesting phenomenon while retaining an accurate representation of the

system.
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CHAPTER III

A PHENOMENOLOGICAL MODEL FOR SURFACE DIFFUSION:

DIFFUSIVE DYNAMICS ACROSS STOCHASTIC POTENTIALS

3.1 Introduction

As was demonstrated in the preceding chapters, theoretical efforts are capable of quali-

tatively reproducing experimental results by employing simple phenomenological models

consisting of a periodic substrate resembling the atomic unit cell with barrier heights to

diffusion on the order of the activation energy [33, 34, 126]. As an extension to these models

for the surface, we have previously utilized a periodic, stochastic potential of mean force

such that the barriers are no longer static in time [111]. This inclusion enables the equation

of motion to account for both the electronic structure and time-dependent nature of the

surface provided that its statistical properties are known. Additionally it was essential to

extend this description into the low-friction regime in order to accurately account for the

weak interactions of the adsorbate with the surface as has been observed by several exper-

iments [127, 128] and the results of the previous chapter. Perhaps not surpringly, some

peculiarities have been noted with this class of stochastic potentials [129, 104, 130]. In par-

ticular, the rate of diffusion across the surface is heavily dependent upon the fluctuations

of the barriers leading to a maximum in the rate of transport when the inherent time scale

of the dynamics is of the same order as these fluctuations. This phenomenon, which was

first termed “stochastic resonance” in a model for climatic changes [129] when the driving

potential is deterministic (and likely periodic), and later [104] “resonant activation” when

the potential is nondetermistic has been the subject of considerable research over the past

decade, and is the primary motivation for this chapter [129, 104, 130, 108, 39, 97, 89, 131].

The ultimate goal herein lies in the possibility of providing a novel means for patterning

a surface at the atomic level. Theoretically, it has been shown that the stochastic resonance

persists in two-dimensions when the process is driven by an external field [88]. Additionally,
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we have shown that if one can instead introduce internal fluctuations into a one-dimensional

surface, then it is possible to enhance the diffusion of adsorbates [111]. Experiments have

proven that electron and photon bombardment of surfaces can enhance adsorbate diffu-

sion [132, 133]. It has also been shown recently through a series of experiments that the

electric field produced by a scanning tunneling microscope can stimulate adatom diffusion

toward the area around the tip on a room temperature metal surface, and that this can

be done in a non-uniform manner leading to the formation of complex structures at the

sub-nanometer scale [134, 135, 136]. Here, we propose a more general mechanism based

upon resonant activation that can be used to control the diffusive behavior in a less in-

tensive manner by stimulating the surface on a broad scale. If one could further obtain

some spatial control over these fluctuations, then it is conceivable that one could pattern a

surface in any way desired in a non-destructive manner using the intrinsic properties of the

surface to guide the path of the adsorbate.

In the present case, we have extended the phenomenological equation of motion to

include two-dimensional, stochastic potentials as a first step toward a more realistic model

of the adatom dynamics, as well as to provide fundamental insights into the mechanisms

governing these systems. Will nontrivial effects arise due to coupling between the spatial

degrees of freedom? Recent evidence from several experiments have concluded that diffusion

processes involve multiple, complex hopping mechanisms to both nearest and non-nearest

neighbors which suggests that it may be possible [127, 128, 118]. For example, it has been

proposed that an adatom that originally traverses linearly along one direction may later

change its course during its interactions with the surface and diffuse along the other [118].

In this case a one-dimensional potential will never be capable of modeling the dynamics

properly. The results shown here are in agreement with this picture in that the two-

dimensional transport properties are found to be non-trivially related to the corresponding

one-dimensional results.

In Section 3.2, the heuristic construction of the equation of motion for an underdamped

particle experiencing a stochastic potential is presented, as well as a brief description of the

characterization of the hopping process. Section 3.3 presents a comparison of the dynamics
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seen on two different variants of the two-dimensional surface and their corresponding one-

dimensional counterparts. As in earlier work, the numerical rates obtained for a surface at

the limits of the correlation time in the stochastic potential are computed as a verification

for the intermediate regimes.

3.2 Model and Methods

The diffusive behavior of a Brownian particle traversing a stochastic potential is governed

by the Langevin equation (LE)

v̇ = −γv + ξ(t) + F (q; t) , (10)

where v = q̇ is the velocity of the particle, γ is the friction constant, and F (q; t) is a

stochastic external force. For clarity, the mass of the particle has been set to unity through

a canonical transformation, but is readily included. The thermal fluctuations present in

the system are described by ξ(t), and are treated in the standard manner as a Gaussian

white noise source with zero mean and correlation determined by the fluctuation-dissipation

theorem:

〈ξ(t)ξ(t′)〉 = 2kBTγthδ(t− t′) . (11)

In the presence of a stochastic potential, the friction constant must be renormalized to

balance this additional noise in order to satisfy equipartition, especially in the low fric-

tion regime where these contributions may become significant. This has presently been

accomplished through a self-consistent procedure described previously, [109] in which γ is

renormalized according to the relation

γ(n+1) = γ(n)

(〈v2(t)〉n
kBT

)

, (12)

at each n-th iteration until convergence. An alternative that includes the spatial dependence

of the friction has been derived based upon an extension of the fluctuation-dissipation

theorem, and is main focus of the following chapter. In brief, the major criticism to the

current approach lies in the approximation made in developing equation (12) in which

F (q; t) is treated as a local noise source obeying a fluctuation-dissipation relation equivalent
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to equation (11). However, the stochastic potentials discussed here have memory and are

therefore nonlocal in nature leading to non-vanishing cumulants at third and higher orders.

These effects are included, but only in an average manner, in the self-consistent approach

and are ignored in the space-dependent approach all together. However, at this level of

description, both methods are capable of capturing the essential dynamical effects as will be

demonstrated in Chapter 4 Here, for convenience we will employ the simpler self-consistent

approach.

The stochastic potential gives rise to a time-dependent force, F (t) ≡ −∇qU(q; t). In

the model studies that follow, the form of the potential, U(q; t), is either that of a set of

merged harmonic oscillators (MHOs) or sinusoidal. The MHO potentials can be represented

explicitly as

U(x; t) =























1
2k0(x− x0

m)2 for x0
m < x ≤ x−m

V ‡
m + 1

2k
‡
m(x− x‡m)2 for x−m < x ≤ x+

m

1
2k0(x− x0

m+1)
2 for x+

m < x ≤ x0
m+1

, (13)

where the wells and barriers are centered at x0
m = −λ/2 +mλ and x‡m = mλ, respectively.

The connection points are constructed to ensure continuity in the potential and its first

derivative; this leads to the result x±m = ±k0λ/(2k0 − 2k‡m)+mλ. The width of the barriers

vary stochastically in time according to the relation k‡m = −(k0 + η(m, t)). This, in turn,

defines the barrier height V ‡
m = −k0k

‡
mλ2/(8k0 − 8k‡m).

In this work, the two-dimensional sinusoidal potentials are given the simple form,

U(x, y; t) = (2Eb + η(t))

(

sin

(

2πx

a

)

sin

(

2πy

a

)

+ 1

)

, (14)

where the wells are connected by barriers along the diagonals, and the one-dimensional

potentials are similarly defined as

U(x; t) =

(

Eb +
1

2
η(t)

)(

sin

(

2πx

b

)

+ 1

)

. (15)

The two have equivalent well-to-well distances if b = a
√

2. (See Appendix A.0.1 for the

connection between equation (14) and the rectilinear form chosen in reference [91].) In

both cases, Eb is the barrier height and η(t) is an auxiliary stochastic variable. In the
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numerical investigations, the thermal energy is chosen so that it is 1/6 of the average

value of the barrier heights. The constant factors in the amplitudes are included to insure

consistency between the barrier heights in the two models. In two-dimensions, particles

selectively escape over the saddles of the potential, as opposed to the one-dimensional case

in which they are forced to traverse the maxima. As such, one can reference the values of

the instantaneous barrier height for both the one- and two-dimensional potentials to the

chosen temperature such that it has the values, 6kbT + η(t).

As can be seen from the form of the equations above, these potentials fall into two general

classes based upon the spatial correlations of the barrier heights. For instance, all barriers

of the sinusoidal potential fluctuate in unison, i .e. coherently, with one another, while the

barriers of the MHOs are capable of fluctuating independently, i .e. incoherently. Nonethe-

less, in the limit that the MHOs are forced to fluctuate coherently, the transport properties

that it gives rise to are nearly identical to those found for the corresponding stochastic

sinusoidal potential. Consequently the numerical results for the one-dimensional coherent

stochastic MHO potential have been omitted throughout this chapter. For simplicity, the

one-dimensional stochastic coherent sinusoidal potential and incoherent MHO potential will

be referred to as 1Dsin and 1DMHO, respectively. In addition to the two-dimensional coher-

ent sinusoidal potential, a quasi-incoherent two-dimensional sinusoidal potential has also

been included by allowing the barriers in the two respective dimensions to fluctuate inde-

pendently of one another by including a stochastic variable for each dimension. These will

henceforth be referred to as the coherent, 2DC, and incoherent, 2DI, potentials. A fully

incoherent two-dimensional surface has been developed in which every barrier is allowed to

fluctuate independently of all other barriers, and is currently being tested [137].

As mentioned previously, the stochastic features of these potentials are contained in

η(t), which is, in turn, defined as an Ornstein-Uhlenbeck process. It is described by the

well-known stochastic differential equation,

η̇ = −η
τ

+

√

2σ2

τ
ζ(t) , (16)

where σ2 is the variance of the distribution, τ is the η-correlation time in the stochastic
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potential, and ζ(t) is an additional white noise term. As such, η(t) has a probability

distribution,

P (η) =
1√

2πσ2
exp

(

− η2

2σ2

)

, (17)

and is correlated in time through the expression,

〈η(t)η(t′)〉 = σ2 exp

(

−|t− t′|
τ

)

. (18)

Modification of τ allows one to control the extent of the exponentially decaying correlation

in the barrier heights. Simulations are performed over ten decades in the η-correlation

time, τ . In the lower limit, a fully random surface with variations in the barrier heights

from one instant in time to the next is parameterized only by the variance. The higher

limit essentially corresponds to the sampling of single realizations of the potential energy

surface whose barrier heights are determined by the initial values of η as chosen from the

distribution given by equation (17).

The dynamics of these systems were characterized by the mean first passage time

(MFPT) of a particle to escape from an initial minima of the potential. The correspond-

ing rate for such a process is given by the inverse of this quantity. However, one must be

cautious in defining when a particle has escaped from its initial well. A standard transition

state approach is not adequate when considering this class of potentials because the bar-

rier heights (and possibly positions) are not fixed. A method capable of accounting for this

type of phenomena is the use of a geometrical constraint in the phase space of the Brownian

particle [138]. More precisely, the criterion used to characterize a first passage process is

defined as the time required for a particle to escape its present minima and stabilize with

an energy E ≤ DkbT in another minima, where D is the dimensionality of the system. The

MFPT is thus defined as the average of the first passage times over all trajectories,

τMFPT ≡ lim
N→∞

1

N

N
∑

i=1

τFPT(i) . (19)

Stochastic trajectories were obtained by numerical integration of the coupled equations (10)

and (16) according to the method described by Ermak and Buckholtz [139, 140]. For these

simulations, the MFPT was seen to converge with respect to both the time step size and

number of trajectories when their values were 0.001 and 10,000, respectively.
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Figure 7: The MFPT versus the correlation time, τ , at kBT = 2/3 (in units of some
standard temperature kBT0) on the 2DI potential in the overdamped regime for values of
the friction constant, γth: 0.8 (solid curve and x symbols), 2 (dashed curve and circles), 4
(dotted curve and squares), and 8 (dot-dashed curve and triangles). The variance, σ2, is
equal to 0.2 and 0.6 in the top and bottom panels, respectively. The calculations for the
MFPTs in the τ = 0 and τ = ∞ limits are described in the text and are presently displayed
on the ordinates.

3.3 Results and Discussion

As a first test of our approach, the dynamics were studied in the overdamped regime. This

regime has been studied extensively over the last decade, largely due to the phenomenon

known as resonant activation [104]. Depending on the η-correlation time, τ , of the fluctu-

ations of the potential, a minimum in the MFPT (maximum in the rate) is observed for

these systems. The results for our simulations in the high friction regime are displayed in

Figure 7 for the 2DI potential, with the top and bottom panels representing two different

values of the variance of the distribution given in equation (17). The correction to the fric-

tion constant due to the stochastic potentials is negligible compared with the large thermal

component in this regime. The values at the ordinates represent the numerically calculated

values of the MFPT for the τ = 0 and τ = ∞ limits. In the zero η-correlation time limit, the

fluctuations in the potential are so rapid that the diffusive particle effectively experiences

the average, stationary potential, from which the dynamics are computed. At the opposite

31



limit, however, the barrier height is essentially a fixed value representing dynamics on a

single realization of the surface whose magnitude is sampled from the distribution given

by equation (17). As can be seen, the behavior of the MFPT calculated for intermediate

values of the η-correlation time is approaching the respective limits, which lends weight to

our physical understanding of the phenomenological prescription.

Until recently, these simulations have only been performed in the overdamped regime

due to an inability to accurately describe the friction in the underdamped regime where

additional dissipative factors must be included to maintain equipartition. Using the method

described above for constructing this correction, we have extended these simulations into

the low friction regime. If there is no coupling between the two degrees of freedom, i .e. the

passage time is simply related to the probability of escape, then the rate (inverse MFPT)

on the two-dimensional surfaces should be twice that of the corresponding one-dimensional

potential. Plotted in Figure 8 and 9 are the MFPTs for two values of the variance obtained

for each of the three sinusoidal surfaces with those from the 1D model scaled by a factor of

1/2 to test this hypothesis. The well-to-well distance is
√

2 for all three potentials. The

top, middle, and bottom panels correspond to values of the friction constant of 0.08, 0.2, and

0.4, respectively. For low to intermediate values of the η-correlation time, τ , the behavior of

the MFPT on the one-dimensional potential essentially mirrors that of the two-dimensional

coherent potential except for a constant shift to lower passage times that is invariant to

changes in friction or variance. This can be attributed to topographical differences between

the two surfaces. For example, in one-dimension, the particle may surmount the barrier if

it acquires enough energy, regardless of its corresponding direction of travel. However, the

two-dimensional potentials includes four areas of almost insurmountable energy that the

particles must avoid in order the escape, thus increasing the passage time.

At low η-correlation time, the MFPT’s for both of the two-dimensional potentials are

coincident. This is the result one would expect since this regime corresponds to the dynamics

of the average potential in which the two surfaces are equivalent. As τ is increased, and

hence the surface behaves less like the average, the differences between the two-dimensional

models becomes significant, especially when the variance of the distribution controlling
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Figure 8: The MFPT versus the correlation time, τ , in the underdamped regime for each
of three potentials: 1Dsin (solid curve and x symbols), 2DC (dashed curve and squares),
and 2DI (dot-dashed curve and triangles). The top, middle, and bottom panels represent
results obtained at the values, 0.08, 0.2, and 0.4, of the friction constant, γth, respectively.
The variance, σ2, is equal to 0.2 and the well-to-well distance is

√
2 in all three cases. The

limits displayed on the ordinates were obtained from numerical simulations as in Figure 7.
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Figure 9: The MFPT versus the correlation time, τ , for the same systems as described
in Figure 8 but with the variance, σ2, set to 0.6.

the range of possible barrier heights is increased, as seen in Figure 9. In the case of the

2DC stochastic potential, when τ is large, all four exit channels are described by the same

barrier height and hence a particle with insufficient energy to escape over one barrier can

not escape over any of the others. On the other hand, in the 2DI stochastic potential,

despite the presence of such an exit channel, the other exit channel will have a nonneglible

probability of being described by a lower barrier height that gives rise to escape on a time

scale shorter than τ . Consequently the incoherent potential can give rise to faster transport

than the coherent potential for sufficiently large τ . As the friction is reduced and hence the

particle becomes more energetically limited, this phenomenon becomes more pronounced.

To explore the effects of coherent and incoherent barriers further, as well as the impact

of lattice spacing, simulations were performed for the one- and two-dimensional sinusoidal

surfaces as well as the fully incoherent MHO potential. The MFPTs for these four potentials

are displayed in Figure 10. Again the top, bottom, and middle panels correspond to values

of the thermal friction of 0.08, 0.2, and 0.4, respectively. The MFPTs obtained from the
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Figure 10: The MFPT for each of four stochastic potentials characterized by the variance,
σ2 = 0.22, and well-to-well distance equal to 4, but with all other parameters the same as in
Figure 8. The corresponding potentials are: 1Dsin (solid curve and x symbols), 2DC (dotted
curve and triangles), 2DI (dot-dashed curve and squares), and 1DMHO (dashed curve and
circles).

35



one-dimensional potentials are scaled by 1/2 as in Figure 8 and 9. The lattice spacing for

all potentials is chosen as 4 and the variance is 0.22 to satisfy restrictions made by the MHO

potential (see Appendix A.0.2). As opposed to Figure 8 and 9, the small η-correlation time,

τ , behavior of all four potentials is equivalent. The results for the two-dimensional potentials

are essentially unchanged from those of Figure 8, while the one-dimensional potentials are

shifted to longer MFPTs. The only difference between Figure 8 and Figure 10 with respect

to the dynamics across the corresponding stochastic potentials is an increase in the lattice

spacing from
√

2 to 4. The resulting effects on the MFPT may be due to coupling of

the two degrees of freedom in the two-dimensional potentials. Any energy acquired can

be dissipated through either degree of freedom, while in one-dimension this is not possible.

The two-dimensional potentials are then mostly energy diffusion limited in which the lattice

spacing will have a negligible effect. However, the diffusing particles on the one-dimensional

surfaces do not have access to this mechanism, and therefore spatial diffusion effects can

play a small, but noticeable effect. In the large τ regime, the MFPTs increase in the order:

1DMHO < 2DI < 1Dsin < 2DC. In this regime, the two incoherent potentials diffuse at a

faster rate than the coherent potentials as a result of the decoupled exit channels. Again,

the effects of the four impassable areas of the two-dimensional potentials are reflected in

their respective shifts to larger passage times.

The stochastic rate enhancement for the 1Dsin, 2DC, and 2DI potentials can be seen

in Figures 11, 12, and 13, respectively, for a variance of 0.6. The top, middle, and

bottom panels display the total rate, Γ∞, single hop rate, Γ1, and multiple hop rate, Γm ≡

(1 − Γ1). Each is normalized with respect to the corresponding rate obtained from the

average potential i .e., the τ = 0 limit. The rate enhancement is seen for all three potentials,

although slightly larger in one-dimension than in two. The effects of coherency play a small

role as seen from the results of the 2DC and 2DI potentials, the latter providing a minor

adjustment to the overall rate for most values of τ . However, at large τ , the rate on the

coherent potential is significantly lower than the average, while the incoherent potential is

able to avoid this decrease due to the uncoupled exit channels. As can be seen from all three

figures, the rate enhancements for single and multiple hops are roughly equal. Although not
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Figure 11: Hopping rates obtained on the 1Dsin potential normalized with respect to
the corresponding rates obtained on the average potential displayed as a function of the
correlation time, τ , for a variance of σ2 = 0.6 and values of the friction constants γth:
0.08 (solid curve and x symbols), 0.2 (dashed curve and circles), and 0.4 (dotted curve and
squares). The top, middle, and bottom panels display the total rate, Γ∞, the single hopping
rate, Γ1, and the multiple hop rate, Γm, respectively.
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Figure 12: Normalized rates obtained from the 2DC potential displayed as a function of
the correlation time, τ . All of the parameters are the same as those in Figure 11.
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Figure 13: Normalized rates obtained from the 2DI potential displayed as a function of
the correlation time, τ . All of the parameters are the same as those in Figure 11.

shown for brevity, the multiple hopping probabilities have also been calculated for all three

potentials and follow the same trend. This is the expected result since the fluctuations in

the barrier height are relatively small compared with the average and therefore should not

enhance or impede a particle with sufficient energy to complete a multiple hop trajectory.

3.4 Concluding Remarks

This chapter presents an application of a recent model that describes the diffusive behavior

of a Brownian particle influenced by a stochastic potential of mean force in the low friction

regime. An extension into this regime was necessary to adequately characterize the compli-

cated process of surface diffusion. Here, we have provided some insights to the fundamental

nature of this process. In particular, these simulations have revealed that the dynamics

on one-dimensional potentials and the corresponding two-dimensional analogue are similar,

except in the extreme limits of large τ . Additionally, the results presented here are en-

couraging with regards to the ultimate goal of providing a new mechanism for patterning

a surface by utilizing the dynamic range in the rates as modulated by τ in the barrier.

This study has confirmed that the rate enhancement is observed in extended dimensions,

follows a similar trend to the one-dimensional behavior, and in particular depends on τ .

A forthcoming application of the model will provide a more detailed study of incoherent,
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but prescribed, surfaces to see the extent to which patterns can emerge on a surface [137].

The next chapter continues the discussion at the beginning of Section 3.2 on dissipating the

Langevin equation in the presence of a secondary external force. In Chapter 4, an alterna-

tive method based on a space-dependent friction is constructed and a comparison between

it and the method used here is presented.
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CHAPTER IV

DISSIPATING THE LANGEVIN EQUATION IN THE PRESENCE OF

AN EXTERNAL STOCHASTIC POTENTIAL

4.1 Introduction

In the theory of diffusion processes over fixed barriers, numerous studies have shown that

the dissipative term in the Langevin equation is rarely constant along the reaction coor-

dinate [141, 142, 143, 144, 145, 146, 147, 148]. A general rate theory when the friction is

both space- and time-dependent has been developed to account for this phenomenon over

the entire friction regime [149, 150, 151]. One might näıvely expect that a space-dependent

component must be included in the friction kernel to capture the essential dynamics of a

given system. However, this is not always the case. Several groups have shown that the

average dynamical properties may still be adequately described by a generalized Langevin

equation with space-independent friction even when the reaction coordinate has a strong

spatial dependence [146, 142, 152, 144]. An analysis by Haynes and Voth concluded that

the key factor is not whether the friction is space-dependent, since it generally will be,

but rather how the friction varies along the reaction coordinate [153]. In particular, they

suggest that the symmetry of the space-dependent friction with respect to the barrier can

be used as a metric for evaluating the role of the friction in the dynamics. Similar prod-

uct and reactant states will give rise to similar (symmetric) friction components about the

transition state. Perhaps surprisingly, an antisymmetric friction does not have a signif-

icant impact on the dynamics, while a symmetric friction can result in large deviations

from the predictions of standard rate theories for processes with space-independent fric-

tion [153, 146, 143, 154, 144, 148]. Thus, the Langevin model with a uniform effective

friction can often approximate the dynamics of projected variables even if the formal pro-

jection would have required a space-dependent model.
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The central question explored in this chapter is whether a single uniform effective fric-

tion suffices even when the Langevin system is subjected to an external space-dependent

stochastic potential. As discussed extensively in the preceding chapter, the behavior of a

Brownian particle diffusing across various subsets of this class of potentials has been the sub-

ject of intense research [104, 108, 39, 89, 131, 155, 156, 157, 158]. This activity has largely

been motivated by the discovery of resonant activation in which the rate of transport over

a stochastic barrier exhibits a maximum as a function of the correlation time in the fluc-

tuations of the barrier height [104]. However, until recently, simulations of these systems

have not been performed in the low friction regime, where deviations from equipartition

may occur, due to an inability to adequately describe the friction in the presence of an ad-

ditional stochastic force [109, 111]. In the preceding chapter and other previous works, the

dissipation of this excess energy was achieved through a self-consistent approach in which

the friction constant is renormalized iteratively until equipartition is satisfied [109, 111, 90].

This renormalization is approximate because it does not explicitly account for the correla-

tions between the external stochastic forces across space and time, but rather uses a single

mean friction to dissipate theses forces at times longer than their correlation times. A pos-

sible improvement to the self-consistent approach can be obtained by allowing the friction

to be space-dependent while explicitly ignoring the memory in the stochastic potential. In

the special case that the stochastic potential has no memory, then this treatment is ex-

act. However, this approximation is often not justified when modeling real systems and

therefore, the model potentials employed here are chosen to have an exponentially decaying

memory of their past states. In the most extreme cases, these correlations can result in devi-

ations from equipartition during the course of the simulation, although the space-dependent

friction dissipates such fluctuations correctly in most situations. The general conclusion ap-

pears to be that the more detailed space-dependent approach is in qualitative agreement

with the self-consistent approach and hence, as in the fixed barrier case, Langevin systems

with stochastic forces may be dissipated by a single (though renormalized) uniform friction.

The conclusions of this chapter are supported by a study of two different classes of

one-dimensional problems in which the particle diffuses across a periodic array of coherent
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or incoherent barriers. These two cases can be specified by the respective sinusoidal or

merged-harmonic-oscillator potentials used in the preceding chapter. For such simple forms

of the stochastic potential, analytic expressions for the friction as a function of the spatial

coordinate can readily be obtained and are presented in Section 4.2. The resulting Langevin

dynamics across these potentials dissipated either uniformly or through the space-dependent

friction are illustrated in Section 4.3.

4.2 Langevin Model with Stochastic Potentials

The diffusion of a particle influenced by a stochastic potential of mean force can be ade-

quately described by a phenomenological Langevin equation of the form,

v̇ = −γv + ξ(t) + F (x; t) , (20)

where F (x; t) ≡ −∇xU(x; t) is an external stochastic force, and γ is the friction required to

dissipate both the thermal forces and those due to the external stochastic potential. As in

the previous chapter the thermal bath is described by ξ(t), which is a Gaussian white noise

source with time correlation given by the fluctuation-dissipation relation (FDR),

〈ξ(t)ξ(t′)〉 = 2kBTγthδ(t− t′) . (21)

In the limit that F (x; t) = F (x; 0) for all t, these equations reduce to the Langevin equation

with γ = γth. Otherwise, the question remains as to what is the appropriate form for the

damping term. Two approaches for addressing this question are presented in Sections 4.2.2

and 4.2.3, after first describing the details of the stochastic potentials.

4.2.1 Stochastic Potential Representation

The space-dependent friction (SDF) that arises from the fluctuations in F (x; t) can readily

be evaluated analytically for the two classes of one-dimensional stochastic potentials out-

lined in the preceding chapter. The first is the sinusoidal potential described earlier by

equation (15) in which the barriers fluctuate coherently with each other. The second is

constructed using a series of merged harmonic oscillators (MHOs) given explicitly by equa-

tion (13) in which each barrier is allowed to fluctuate independently (incoherently) of the
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others. The parameters for each of the potentials are chosen such that the lattice spacing

is 4 and the thermal energy of the particle is 1/6 of the average value of the barrier heights.

The stochastic term, η(t), accounting for the time-dependent fluctuations in the barrier

heights is again chosen as the Ornstein-Uhlenbeck process of the preceding chapter governed

by the stochastic differential equation (16). The corresponding probability distribution is

given by equation (17) with the time correlation of equation (18). The distribution of

barriers heights for the sinusoidal potential is given directly by the distribution of η(t),

but due to the nature of the expression for the barrier heights of the MHOs, the resulting

distribution for this potential takes on a more complex form that is sharper and slightly

skewed compared with equation (17). As a result, a much smaller range of fluctuations is

allowed for the MHO than the sinusoidal potential to ensure that the distribution does not

become significantly non-Gaussian. Additional details on the exact behavior of the MHO

barrier heights are provided in Appendix A.0.2 and reference [109]. For consistency, the

dynamics of the system are again characterized by the mean first passage time approach

described in Section 3.2 of the previous chapter employing a geometrical constraint in the

phase space of the particle [138, 90].

4.2.2 Uniform Dissipation

In previous work [109], a self-consistent procedure was developed to ensure that the evolution

of the system governed by the Langevin equation (20) remains in thermal equilibrium.

This was accomplished through an iterative procedure in which the friction that is now

given by the sum of the two independent contributions from the thermal bath and the

stochastic potential, i.e. γ ≡ γth + γF, is renormalized according to the relation given in

equation (12). The friction for the next iteration is determined from the value of the friction

at the current iteration scaled by the magnitude of the deviation from equipartition seen in

the dynamics until convergence is reached to within a desired accuracy. As mentioned in

the preceding chapter, the main criticism to this approach lies in the approximation made

in developing equation (12) in which the stochastic potential is treated as a local noise

source, γF, obeying a fluctuation-dissipation relation equivalent to equation (21). However,
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the stochastic potentials have memory and are therefore nonlocal in nature leading to non-

vanishing cumulants at third and higher orders. These effects are included, but only in an

average manner, to second order in this approach.

4.2.3 Space-Dependent Dissipation

An alternative approach to dissipating the external stochastic force relies on replacing the

space- and time-dependent friction, γ(x, t), by a space-dependent friction, γ(x(t)), satisfying

a local FDR. Given that the size of the fluctuations in F (x; t) depend on x at a given t, a

Brownian particle moving quickly across the surface will experience a series of forces whose

relative magnitudes depend on the particle’s velocity. However when the the Brownian

particle moves slowly, the particle will sample only the local fluctuations of the stochastic

potential in the vicinity of its local position x. In this regime, the particle arrives at a

local quasi-equilibrium which must necessarily satisfy the FDR locally. This suggests that

the dissipation should not be uniform, but rather should depend on position, and therefore

indirectly on time. It should be noted that while the mean-field approach described in

the previous subsection is capable of including the average of the correlations between the

fluctuations, the approximation made here does not account for any of the memory effects.

However, in the limit that there is no memory in the external stochastic potential, the

following results are exact.

The question now arises of how to explicitly describe the friction constant in the pres-

ence of an additional fluctuating force resulting from the potentials of mean force given in

equations (15) and (13). The friction constant must dissipate the excess energy that arises

from the fluctuating forces through a local space-dependent FDR,

2kBTγc(x; t) = 〈δFc(x; t)
2〉 , (22)

where the cumulative force is simply the sum of the thermal Gaussian noise and the stochas-

tic force arising from the external potential, Fc = Fth+FU. Assuming the respective fluctua-

tions in the bath and the potential are uncorrelated, i.e. 〈δFthδFU〉 = 0, then equation (22),

reduces to

2kBTγc(x; t) = 〈ξ(t)ξ(t′)〉 + 〈δFU(x; t)2〉 , (23)
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The thermal fluctuations are Ohmic as given in equation (21), and the relationship for the

fluctuations in the force is δFU(x; t) ≡ FU(x; t) − 〈FU(x; t)〉η , where the average is taken

with respect to the auxiliary stochastic variable, η. The average value of the force can be

determined according to the usual integrals,

〈FU(x; t)〉 =
−
∫∞
−∞dη P (η)∇xU(x; t)
∫∞
−∞dη P (η)

, (24)

where the fluctuations in the force are governed by the stochastic Ornstein-Uhlenbeck pro-

cess, η, whose probability distribution is given by equation (17).

The remaining steps of the derivation rely upon the specific form of the potential. As

an illustration, the SDF is evaluated explicitly below for the simpler sinusoidal (coherent)

stochastic potential. (The results for the incoherent MHO potential can be found in Ap-

pendix B.) The derivation begins by direct evaluation of equation (23) for the specific class

of potentials. As remarked above, the first term reproduces the FDR, equation 21, for the

thermal forces. Ignoring the correlation in the forces at different times, the second reduces

to:

〈δFU(x; t)2〉 =
π2

4
cos2

(πx

2

)

∫ ∞

−∞
dη

(

Eb +
1

2
η

)2

P (η) − (25)

[

π

2
cos
(πx

2

)

∫ ∞

−∞
dη

(

Eb +
1

2
η

)

P (η)

]2

. (26)

The Gaussian integrals are readily evaluated to yield:

〈δFU(x; t)2〉 =
σ2π2

16
cos2

(πx

2

)

. (27)

Upon substitution into equation (22), the explicit form of the SDF is

γc(x; t) = γthδ(t− t′) +
σ2π2

32kBT
cos2

(πx

2

)

. (28)

This is the simplest possible form for this result, and is due to the separability of the

potential into a sum of deterministic and linear stochastic terms. In fact, it is easily shown

that for any separable potential of the form,

U(x; t) = Ū(x) + η(t)W (x) , (29)
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Figure 14: Representative fluctuations over one period of the MHO potential and force
(top panel), and the resulting space-dependent friction (bottom panel). The numerical
component in the bottom panel is displayed as the solid black line, with the analytic result,
given in Appendix B, as the dotted white line. The temperature is 2/3, the variance is 0.22,
and the thermal friction is 0.08.

where Ū(x) is the deterministic component of the potential of mean force, then the addi-

tional friction due to the stochastic potential is given by

〈δFU(x; t)2〉 = (∇xW (x))2
∫

dη (η2 − η)P (η) , (30)

provided the distribution is normalized. The MHO does not satisfy the condition of equa-

tion (29) and hence its friction correction can not be obtained by equation (30). The form

of the friction correction for the MHO consequently contains more terms, but the requisite

approximation (that the forces are uncorrelated at different times) enters the derivation in

a conceptually equivalent way.

4.3 Results and Discussion

The analytic and numerical space-dependent components of the friction over one period of

the MHO and sinusoidal potentials can be seen in the bottom panels of Figures 14 and 15,

respectively, with the numerical results averaged over 500 representative trajectories. The

top panels display the fluctuations in the potential and the resulting forces that give rise to

the space-dependent friction. The analytic forms of the SDF, displayed as the dotted white
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Figure 15: Representative fluctuations over one period of the sinusoidal potential and
force (top panel), and the resulting space-dependent friction (bottom panel). The numerical
result is displayed as the solid black line, with the analytic result, given by equation (28),
shown as the dotted white line. The parameters used are the same as in Figure 14.

line, agree with the corresponding numerical results, and exact agreement is obtained upon

further averaging. The fluctuations in the forces reach a maximum at approximately the

midpoint between the minima and maxima, where deviations from the average force take

on the largest values. The fluctuations in the potential are largest at the barriers, while the

forces are zero at these locations. This leads to a vanishing contribution to the total friction

from the space-dependent component at these points. In the well region, the behavior of

the SDF for the sinusoidal and MHO potentials is inherently different. The SDF for the

MHO is zero outside of the barrier region since the wells do not fluctuate by construction.

However, the sinusoidal potential fluctuates continuously throughout leading to a friction

correction along the entire reaction coordinate. Consequently, the magnitude of the friction

correction in simulations employing the sinusoidal potential are slightly larger than that in

those employing the MHO. But, as illustrated below, this effect does not have a dramatic

effect on the resulting dynamics.

Values of the friction corrections calculated from the iterative and space-dependent

approaches for the MHO and sinusoidal potentials are displayed in Table 1 with the values

of the thermal friction listed in the left-most column. The variance and correlation time for
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Table 1: The average of the friction corrections, γF, calculated by the iterative self-
consistent (0) and space-dependent (sdf) approaches for the MHO and sinusoidal potentials.
The resulting temperatures are also included for the space-dependent friction. In all cases
the temperature is 2/3 (in units of a standard temperature, kBT0), the variance, σ2 = 0.22,
and the correlation time, τc = 1.

MHO Sin
γth 〈γF〉0 〈γF〉sdf 〈v2〉sdf 〈γF〉0 〈γF〉sdf 〈v2〉sdf

0.08 0.00 0.01 0.67 0.00 0.03 0.69

0.2 0.00 0.01 0.67 0.00 0.03 0.68
0.4 0.00 0.01 0.67 0.01 0.03 0.67

both potentials is 0.22 and 1, respectively. The resulting temperatures, (kBT ≡ 〈v2〉), are

also listed for the space-dependent approach. The friction correction in the self-consistent

method ensures equipartition by definition, and therefore, is not listed. The magnitude of

the SDF for all values of τc follow accordingly; however this is the only value with respect

to the given variance for which any deviation from equipartition is observed. As can be

seen, both the self-consistent and space-dependent components of the total friction for

each potential provide negligible contributions for this variance since the magnitude of the

fluctuations in the barrier height are relatively small. Therefore the total friction is a sum

of a large thermal component and a space-dependent contribution. The slight differences in

the magnitudes of the SDF for the two potentials can be attributed to the piecewise nature

of the MHO potential. The particles spend most of the simulation time in the wells which

do not fluctuate. A contribution to the total friction from the space-dependent term is

included only when the energetically-limited particle accumulates enough energy to explore

the upper portion of the MHO potential.

To further explore the accuracy of the space-dependent approach, the sinusoidal poten-

tial has been studied with a ten-fold increase in the variance from 0.22 to 2.2. The values

of the friction correction from these simulations are listed in Table 2.
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Table 2: The average of the friction corrections, γF, calculated by the iterative self-consistent (0) and space-dependent approaches (sdf)
for the sinusoidal potential. The resulting temperatures are also included for the space-dependent friction method. The temperature is
2/3 in all cases and the variance, σ2 = 2.2.

τc = 10−1 τc = 100 τc = 101

γth 〈γF〉0 〈γF〉sdf 〈v2〉sdf 〈γF〉0 〈γF〉sdf 〈v2〉sdf 〈γF〉0 〈γF〉sdf 〈v2〉sdf

0.08 0.04 0.28 0.72 0.05 0.29 0.74 0.01 0.28 0.68
0.2 0.04 0.28 0.71 0.05 0.29 0.72 0.01 0.28 0.68
0.4 0.04 0.28 0.70 0.06 0.29 0.71 0.01 0.28 0.67
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The displayed correlation times, τc, are those that exhibit the largest resonant activation.

Consequently, if memory effects in the barrier heights are important in determining the

friction constant, it should be manifested here. Although not shown for brevity, outside

this region of the correlation time, the magnitude of the deviations from equipartition

decrease rapidly, but the size of the space-dependent components remains roughly constant.

Similarly, the corresponding corrections arising in the self-consistent method also approach

zero. As can be seen from Table 2, the space-dependent approach results in a correction that

is roughly constant for all values of the correlation time, while the iterative approach does

exhibit some variation with τc. This is the expected result since the space-dependent friction

assumes the fluctuations in the potential are local and therefore, ignores any correlation

in the barrier heights. The iterative approach, however, is capable of incorporating the

memory of the potential into the friction correction, but only in an average manner. As a

consequence, significant deviations from equipartition may be observed when simulations are

performed with a space-dependent friction that ignores the correlation effects, as illustrated

by this extreme example.

Figures 16 and 17 display the MFPTs obtained for the MHO potential with the results

from the space-dependent and self-consistent approaches in the top and bottom panels,

respectively. The results in Figure 16 have been calculated using a variance of σ2 = 0.05,

while those in Figure 17 use σ2 = 0.22. The corresponding results for the sinusoidal po-

tential using a variance of 0.22 can be seen in Figure 18. The values on the broken axis

represent the numerically calculated MFPTs at the limits of the correlation time, τc. In the

zero-correlation time limit, the fluctuations in the potential are so rapid that the particle

effectively experiences the average, stationary potential, from which the dynamics were cal-

culated. In the limit of infinite correlations, fluctuations in the potential are nonexistent,

and therefore the particle experiences a single realization of the potential with constant

barrier heights determined by the initial value sampled from the distribution. The MFPTs

displayed in Figure 17 obtained with a larger variance alters the magnitude of the resonant

activation, but influences the results for the two approaches equally. The results from the

simulations with a space-dependent friction are systematically shifted to lower MFPTs as
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Figure 16: The mean first-passage times (MFPT) for a particle diffusing across the MHO
stochastic potential are displayed for two possible scenarios of the dissipative mechanism.
The top panel uses space-dependent friction, and the bottom displays the uniform friction
determined by the self-consistent method. The variance for both is 0.05, and the three lines
correspond to values of the thermal friction of 0.08 (solid curve with x symbols), 0.2 (dashed
curve with triangles), and 0.4 (dot-dashed curve with squares). The symbols on the broken
axis represent the numerically calculated MFPTs at the limits of the correlation time.
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Figure 17: The mean first-passage times (MFPT) for a particle diffusing across the MHO
stochastic potential are displayed for two possible scenarios of the dissipative mechanism.
The parameters are the same as in Figure 16, except the variance is 0.22.
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Figure 18: The mean first-passage times (MFPT) for a particle diffusing across the sinu-
soidal stochastic potential are displayed for two possible scenarios of the dissipative mech-
anism. Other than the change from the MHO to the sinusoidal potential, the parameters
are the same as in Figure 17.

seen in all three figures. This trend is most readily explained through Table. 1. In the low

friction regime, an increase in the friction increases the corresponding rate of transport.

The average space-dependent contribution is always larger than its respective mean field

counterpart, and is expected to have the largest effect on the results with the smallest ther-

mal friction. The fluctuations present along the entire reaction coordinate of the sinusoidal

potential do not appear to have a dramatic effect on the dynamics. The results in Figure 18

for the sinusoidal potential follow the same trend as those in Figure 16 and 17 for the MHO

potential indicating that the SDF approach is capable of adequately describing the fluctua-

tions in the system. Aside from the shift, the general behavior of the MFPT is adequately

reproduced by both methods, particularly at larger values of the thermal friction when

the space-dependent component becomes less significant. At this level of description, each

of the two approaches for constructing the friction are capable of capturing the essential

dynamics of the system. However, some advantage is gained by using the self-consistent

method because it ensures the system is kept at constant temperature for all values of the

correlation time throughout the simulation, while the space-dependent approach may lead
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to deviations in extreme cases. The most significant difference between the two methods

can be seen at intermediate correlation times, in which the resonant activation observed

from the iterative approach is slightly more pronounced. This can particularly be seen in

the MFPTs when the friction takes on the smallest value of γth = 0.08. Since the resonant

activation arises from correlations in the barrier heights, it is not surprising that simulations

incorporating a friction capable of accounting for this phenomenon can have a noticeable

impact on the dynamics, even if it does so only in an average manner.

4.4 Conclusions

The space-dependent friction arising from the presence of a secondary (external) stochas-

tic potential in the Langevin equation has been explicitly derived for two simple classes

of stochastic potentials. The numerical results are in excellent agreement with analytic

expressions describing the space-dependent friction. The resulting dynamics have been

compared to those obtained using an alternate approach in which a uniform correction is

calculated self-consistently. Although the latter approach does effectively include the time

correlation between the barrier fluctuations at long times, the former does not in any sense.

This neglect may result in deviations from equipartition in some extreme cases. However,

both approaches are capable of capturing the essential dynamics of the system and lead

to the now-expected resonant activation phenomenon. Consequently, the central result of

this chapter is that the Langevin dynamics of a particle under the influence of external

stochastic potentials can be properly dissipated by a single uniform renormalized friction

without loss of qualitative (and often quantitative) accuracy.

The role of the memory time in an external stochastic potential acting on a particle

described by a generalized Langevin equation of motion is still an open question. In this

limit, there would presumably be an interplay between the memory time of the thermal

friction and that of the stochastic potential. When the latter is small compared to the

former, the quasi-equilibrium condition central to this work would no longer be satisfied

by the particle, and hence it is expected that a non-uniform (and time-dependent) friction

correction would then be needed.

53



This concludes the explicit work on describing surface diffusion through molecular dy-

namics and Langevin simulations, although the following chapter is implicitly connected to

all the results described thus far. In Chapter 5 an alternative method to calculate chemical

reaction rates based on a moving dividing surface is discussed. This quantity has been the

primary observable in the studies of diffusion on metal surfaces and over fluctuating barriers

described in the previous chapters although rate estimates are generally of importance to

practically all molecular systems.
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CHAPTER V

IDENTIFYING REACTIVE TRAJECTORIES USING A MOVING

TRANSITION STATE

5.1 Introduction

It is perhaps surprising how many problems in chemistry, physics, and biology can be

reduced to the simple model of diffusion over a barrier [159]. Although chemical reactions

in all phases of matter provide the prime example [160, 161], a plethora of systems that

evolve from suitably defined “reactant” to “product” states are amenable to a description

in this framework [162, 163, 164, 165, 166, 167]. The diffusion of adsorbates across a surface

discussed in Chapters 2, 3 and 4 necessarily satisfies this criteria. Transition State Theory

(TST) [168, 47, 161] or one of its descendants [169, 125, 124] is often used to approximate the

rate of these reaction processes. This theory is based on the assumption that the reaction

rate is determined in a small volume of the phase space near the barrier. It is then possible

to define a dividing surface separating reactants from products and obtain the rate from

the flux through this surface. The optimal location of the dividing surface is that which

minimizes the number of recrossings —the fundamental idea of variational transition state

theory [170, 171, 172, 173, 174]. When the system of interest can be viewed as isolated from

its environment, as in low-density gas phase chemical reactions, TST may indeed provide an

excellent approximation to the rate. However, most processes of interest do not take place

in isolation, but rather in a complex environment where interactions between the system

and its surroundings occur on time scales comparable to that of the reaction: In a reaction

occurring in the condensed phase, for instance, the dynamics of the solute is strongly coupled

to that of the solvent. In this case, the fundamental assumption of TST, that the dividing

surface is crossed once and only once, no longer holds [175, 176, 142, 177]. On the time

scale of the reaction event, fluctuations of the environment will almost inevitably cause

recrossings of the dividing surface that lead to an overestimation of the rate.
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To overcome the recrossing problem, many TS dividing surfaces have been suggested in

the literature [178, 161, 179, 174] which provide systematic (and simple) approximations

to the optimal TS dividing surface. In some cases, the dividing surface has been identi-

fied in the infinite-dimensional phase space consisting of the system and an explicit set of

bath oscillators [180, 181, 179]. This approach leads to an excellent approximation to the

rate [179, 125]. Interestingly, the same result was subsequently obtained without recourse

to the explicit heat bath model, using instead a collective reaction coordinate containing

the influence of the bath directly [182].

In a recent series of papers [183, 184], the recrossing problem was reformulated using

a dividing surface that is itself moving stochastically so as to avoid recrossings. The mo-

tion of that surface follows the unique trajectory —named the TS trajectory— that never

leaves the barrier region. Any reactive trajectory crosses the moving surface once and only

once, whereas a nonreactive trajectory does not cross at all. This construction extends the

approach of [182] in that it provides not only a reaction coordinate, but also the complete

geometric structure by specifying all of the unstable and stable degrees of freedom glob-

ally [185]. The previous purely analytic studies [183, 184] are complemented here with a

numerical investigation of the reaction dynamics for a two-dimensional stochastic nonlinear

model. It will be shown that the moving dividing surface offers considerable computational

advantages over the traditional fixed surface: Its use can significantly reduce the simulation

time required to distinguish between reactive and nonreactive trajectories. Indeed, for a

harmonic barrier it identifies reactive trajectories a priori, so that the need to simulate

their dynamics does not arise at all. In an anharmonic system, the identification of reactive

trajectories by the moving surface is no longer exact. Nevertheless, for moderately strong

anharmonicities it provides a useful approximation, and its advantages over the fixed sur-

face are retained. In addition, the moving TS surface introduces novel observables that

characterize the reaction process on a microscopic level. Most prominently, it allows one to

define a unique reaction time for each individual trajectory.

The outline of this chapter is as follows: In Section 5.2, the two-dimensional stochastic

nonlinear model that is the focus of the computational studies in this chapter is defined and
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the construction of the moving TS dividing surface and its associated geometric structures

is briefly reviewed. In Section 5.3, the ensemble of trajectories is specified by a thermal

distribution of particles localized at the conventional TST dividing surface. This barrier

ensemble is reminiscent of the weighting distribution in standard rate expressions and is

appropriate even in nonlinear cases. Its simple structure also readily leads to the analytic

determination of several observables of the model system in the harmonic limit (Section 5.4).

They are in precise agreement with the numerical results presented in Section 5.5. The latter

section also demonstrates that observables converge faster when evaluated using the moving

dividing surface rather than conventional numerical methods, both in the harmonic limit

and in systems with anharmonic barriers. This observation is particularly useful in the

anharmonic case when the chosen system is not amenable to analytic approaches.

5.2 Preliminaries

Although the general theory is applicable to systems with an arbitrary number n of degrees

of freedom, the following discussion will be restricted to n = 2 coordinates under the

influence of a stochastic bath. This choice can be made without loss of generality because

it exhibits all the salient features of the higher-dimensional cases: It can encompass an

unbound (reactive) direction and a bound bath mode whose interaction with the reactive

mode is strong enough to require its explicit description. The coupling of the modes is

described by a Taylor expansion about a transition point (or col) on the potential energy

surface. Such a model with a minimum number of nonlinear terms is described in this

section. It will be used in the following to study the effect of increasing anharmonicity on

the identification of reactive trajectories.

To set the stage for the following investigations, the construction of the moving TST

dividing surface and the associated invariant manifolds is summarized in the remainder

of this section. The reader interested in a full exposition is referred to references [183]

and [184], where the formalism was first introduced.
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5.2.1 The Two-Dimensional Dissipative Model

A prototypical reactive system within a solvent may be described by the Langevin equa-

tion [84]

~̈qα(t) = −∇~qU(~qα(t)) − Γ~̇qα(t) + ~ξα(t) . (31)

The vector ~q here denotes a set of n = 2 mass-weighted coordinates, U(~q) the potential of

mean force governing the reaction, Γ a symmetric positive-definite friction matrix and ~ξα(t)

a fluctuating force assumed to be Gaussian with zero mean. The subscript α represents

randomness by labeling different instances of the fluctuating force. The latter is related to

the friction matrix Γ by the fluctuation-dissipation theorem [84]

〈

~ξα(t)~ξTα (t′)
〉

α
= 2 kBT Γ δ(t− t′) , (32)

where the angular brackets denote the average over the instances α of the noise. Although

not strictly necessary, the friction is often taken to be isotropic, i.e.,

Γ = γI , (33)

with a scalar friction constant γ.

The reactant and product regions in configuration space are separated by a potential

barrier whose position is marked by a saddle point ~q‡0 = 0 of the potential U(~q). In its

vicinity, the potential is approximately harmonic and can always be written in a diagonal

normal form. In general, anharmonic terms will be present in the potential. In the neighbor-

hood of the saddle point, where the reaction rate is determined, they are only moderately

strong, but usually not negligible. In this chapter, we include a typical (even) higher-order

nonlinear term and focus on the potential

U(x, y) = −1

2
ω2

xx
2 +

1

2
ω2

yy
2 + kx2y2 , (34)

where the position vector is written as ~q = (x, y), and the constant k quantifies the nonlinear

coupling of the different degrees of freedom. Note that the nonlinearity in the potential

(34) is symmetric in the coordinate system and neglects other fourth order terms that are

typically retained in the analysis of anharmonic barriers. (See, e.g., reference [186], in which

58



such coupled anharmonic potentials have been used to study the H+H2 ⇀↽ H2 +H reaction

and bound vibrational systems.) However, as discussed in Appendix C, it is amenable

to an analytic treatment that simplifies the numerical computation of the forward and

backward trajectories, while providing sufficient coupling to break the exact integrability of

the harmonic system.

In the special case k = 0, the system is globally harmonic. In this instance, the con-

structions outlined below yield a moving dividing surface that is strictly free of recrossings.

If k 6= 0, deviations from the harmonic dynamics will arise outside the TS region that may

lead to error in the identification of reactive trajectories. Nonetheless, the wealth of micro-

scopic detail that the moving dividing surface reveals can most easily be illustrated using

the harmonic limit. This is shown in Sections 5.3 and 5.5.1. The real power of the numeri-

cal method, however, lies in addressing nonlinear systems; the accuracy of the approximate

identification of nonlinear reactive trajectories is discussed in Section 5.5.2.

With the potential (34), the Langevin equation (31) reads

~̈qα(t) = Ω~qα(t) +O(q3α) − Γ~̇qα(t) + ~ξα(t) , (35)

where

Ω =







ω2
x 0

0 −ω2
y






(36)

is the matrix of second derivatives of U(~q). The nonlinear terms in equation (35), which

stem from the anharmonic contributions to the potential (34) will be ignored in the re-

mainder of this section, where an exact dividing surface for the harmonic limit will be

constructed. The full nonlinear equation of motion (31) will be taken up again in the nu-

merical calculations of Section 5.5.2. The following presentation can easily be generalized

to N spatial dimensions if y is understood to denote an (n − 1)-dimensional vector and

the corresponding squared frequency ω2
y an (n − 1)-dimensional symmetric matrix whose

eigenvalues need not be degenerate.
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5.2.2 The Transition State Trajectory

As was shown in [183, 184], equation (35) can be rewritten in phase space, ~z = (~q,~v), with

~v = ~̇q, as

~̇zα(t) = A~zα(t) +







0

~ξα(t)






(37)

with the 2n-dimensional constant matrix

A =







0 I

Ω −Γ






, (38)

where I is the n × n identity matrix. The matrix A is readily diagonalized to yield the

eigenvalues ǫj and the corresponding eigenvectors ~Vj. Equation (37) then decomposes into

a set of 2n independent scalar equations of motion

żαj(t) = ǫjzαj(t) + ξαj(t) , (39)

where zαj are the components of ~z in the basis ~Vj of eigenvectors of A and ξαj are the

corresponding components of (0, ~ξα(t)).

A particular solution of equation (39) is given by

z‡αj(t) =















∫ 0
−∞ e−ǫjτξαj(t+ τ) dτ if j such that Re ǫj < 0,

−
∫∞
0 e−ǫjτξαj(t+ τ) dτ if j such that Re ǫj > 0.

(40)

Whereas a typical trajectory will eventually descend into either the reactant or the product

wells, the trajectory given by equation (40) has the important property [183, 184] that it

remains in the vicinity of the saddle point for all time. In this respect it resembles the

equilibrium position on the saddle that represents the unique trajectory in the absence of

noise that never descends from the saddle. We named this distinguished trajectory the

Transition State Trajectory in [183, 184] because it plays as central a role in the TST in a

noisy environment as the equilibrium point does in conventional TST. Although the integral

representation (40) defines the TS trajectory, it does not provide the most efficient way of

calculating it. In fact, by means of an algorithm that was introduced in [184] an instance

of the TS trajectory can be sampled almost as efficiently as an instance of the fluctuating

force itself.

60



5.2.3 The Relative Dynamics

Once the TS Trajectory ~z‡α(t) = (~q‡α(t), ~v‡α(t)) is given, any other trajectory under the

influence of the same noise can be described in relative coordinates

∆~z(t) =







∆~q(t)

∆~v(t)






= ~zα(t) − ~z‡α(t) , (41)

where the TS Trajectory serves as the origin of a moving coordinate system. The relative

coordinate vectors can be written without a subscript α because they satisfy the noiseless

equation of motion

∆~̈q(t) = Ω∆~q(t) − Γ∆~̇q(t) , (42)

or, in phase space,

∆~̇z(t) = A∆~z(t) (43)

and are, therefore, independent of the noise. Using the eigenvectors of A, one can construct

invariant manifolds and a no-recrossing surface of the noiseless relative dynamics. According

to equation (41), they can then be regarded as being attached to the TS Trajectory and

being carried around by it. In this way one obtains moving invariant manifolds and a

moving no-recrossing surface in the phase space of the full, noisy dynamics [183, 184].

In the two-dimensional case of the potential in equation (34) under isotropic friction as

specified in equation (33), the eigenvalues of A can be found explicitly:

ǫu = −1

2

(

γ −
√

γ2 + 4ω2
x

)

, ǫs = −1

2

(

γ +
√

γ2 + 4ω2
x

)

,

ǫt1 = −1

2

(

γ −
√

γ2 − 4ω2
y

)

, ǫt2 = −1

2

(

γ +
√

γ2 − 4ω2
y

)

. (44)

The corresponding eigenvectors read

~Vu =



















1

0

ǫu

0



















, ~Vs=



















1

0

ǫs

0



















, ~Vt1 =



















0

1

0

ǫt1



















, ~Vt2=



















0

1

0

ǫt2



















. (45)

61



These simple analytic results are obtained because isotropic friction leads to a decoupling

of the reactive and the transverse degrees of freedom. The eigenvectors ~Vu and ~Vs span the

reactive x-vx subspace, whereas ~Vt1 and ~Vt2 span the transverse subspace y-vy.

The knowledge of the eigenvectors allows one to explicitly specify the coordinate trans-

formation between position-velocity coordinates ∆x,∆y,∆vx,∆vy and the diagonal coor-

dinates ∆xu,∆xs,∆xt1,∆xt2 that characterize a phase space point via ∆~x =
∑

i ∆xi
~Vi. In

the reactive subspace, these transformations read

∆x = ∆xu + ∆xs , ∆vx = ǫu ∆xu + ǫs ∆xs (46)

with the inverse

∆xu =
∆vx − ǫs ∆x

ǫu − ǫs
, ∆xs =

−∆vx + ǫu ∆x

ǫu − ǫs
. (47)

For all values of γ and ωx, the eigenvalue ǫu is positive, whereas ǫs is negative. They

correspond to one-dimensional stable and unstable subspaces within the reactive degree

of freedom which, together with representative trajectories, are illustrated in Figure 19.

The coordinate ∆xu determines the fate of a trajectory in the remote future: Trajectories

with ∆xu > 0 descend into the product well, those with ∆xu < 0 into the reactant well.

Similarly, a stable coordinate ∆xs > 0 indicates a trajectory that comes out of the product

well in the distant past, whereas a trajectory with ∆xs < 0 comes out of the reactant well.

A forward-reactive trajectory that changes from reactants to products is thus characterized

by ∆xs < 0 and ∆xu > 0, whereas a backward-reactive trajectory has ∆xs > 0 and

∆xu < 0. Each reactive trajectory crosses the line ∆x = 0 once and only once. This line,

or in several degrees of freedom the hypersurface defined by this condition, can therefore

serve as a recrossing-free dividing surface between reactants and products. Furthermore,

the invariant stable and unstable subspaces themselves act as separatrices between reactive

and nonreactive trajectories. Once the initial condition of a trajectory is known relative to

these separatrices, it can unambiguously be classified as reactive or non-reactive.

5.3 The Barrier Ensemble

The rate calculation of infrequent events —such as that in chemical reactions— can be

greatly simplified by sampling trajectories in the transition state region rather than in
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Figure 19: Phase portrait illustrating the relative dynamics in the reactive degree of free-
dom. Dashed lines indicate the stable and unstable manifolds of the equilibrium point, and
the dotted arrows display the corresponding eigenvectors that span the diagonal coordinate
system. Solid curves illustrate representative trajectories. White dots indicate two possi-
bilities for the position and velocity of the TS trajectory at time t = 0, the vertical lines
the corresponding barrier ensembles. The probability density is given by the line widths.

the reactant region [187, 188, 44, 189, 190]. The transition path sampling technique, for

example, focuses exclusively on reactive trajectories and therefore mitigates the difficulty

of studying high-dimensional systems [191, 192, 193, 194, 195]. Nonetheless, the rate of

infrequent events has long been known to be described by a flux-flux correlation function

relative to a fixed dividing surface [196, 197, 44]. (But see reference [198] for a recent

enhanced-sampling strategy to smooth the potential and thereby speed up the calculations.)

One difficulty in computing the correlation function, however, is the need for the simulated

trajectories to be evolved for very long times simply to determine which trajectories are

reactive. We will show below that the use of the time-dependent TST dividing surface may

allow one to resolve that question in a more efficient way by identifying the nature of the

trajectory —viz. reactive or not— at significantly earlier evolution times.

In order to sample the reactive trajectories efficiently, it is useful to use initial conditions

in which all the particles are placed on the fixed TST dividing surface (x = 0) at t = 0.

That choice guarantees that the trajectories will cross the surface at least once, but it does
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not prevent them from recrossing it. Consistent with the Boltzmann weighting in the flux-

flux-correlation function [196, 197, 44], the initial conditions are distributed along the stable

transverse direction y and the velocities according to the probability density function,

f(x, y, vx, vy) = (2π kBT )3/2 ωy exp
{

−(ω2
yy

2 + v2
x + v2

y)/2 kBT
}

δ(x) . (48)

This choice defines the barrier ensemble. The integration of the Boltzmann-weighted flux

of these states gives the TST estimate of the numerator of the rate expression. If all these

states were reactive and never recrossed (returned to) the fixed TST dividing surface, this

estimate would be exact. The questions to be resolved below concern the deviation of

the true dynamics from this TST estimate. These question will be investigated for both

harmonic and anharmonic barriers. In all cases, the initial conditions will be sampled from

the same barrier ensemble (48).

A stochastic trajectory is determined not only by its initial condition, but also by the

specific instance of the fluctuating force that is acting upon it. In a full-fledged rate cal-

culation, for example, an average has to be taken over both the initial conditions and the

noise. The focus of this chapter, however, is the information that can be obtained about

the microscopic reaction dynamics using the moving TS surface. For simplicity, a particular

instance of the noise has therefore been used to illustrate most of the results. Nevertheless,

the calculations presented here were repeated for several such noise sequences always lead-

ing to the same qualitative conclusions and thereby confirming that the results shown here

are indeed typical. (These are not shown here for the sake of brevity.) While averages over

the noise will tend to wipe out much of this microscopic detail, it is instructive to confirm

the convergence of the identification of trajectories in calculating averages. In what follows,

the average of the forward and backward reaction probability will be used to illustrate the

convergence and degree of accuracy achievable using the moving TS surface to identify the

reactive trajectories.

5.4 Analytic Results

Although anharmonicities have to be addressed in a typical chemical system, it is helpful

to begin with the harmonic limiting case because it is amenable to an analytic treatment.
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On the one hand, the harmonic limit illustrates the level of microscopic detail in which the

moving TST method allows one to describe the reaction mechanism. On the other hand,

the analytic results derived here provide a benchmark against which the performance of the

numerical calculations of Section 5.5 can be assessed.

5.4.1 Reaction Probabilities

The fate of individual trajectories in the barrier ensemble (48) can easily be determined

if their initial conditions are transformed into relative coordinates. The projection onto

the reactive degree of freedom is illustrated in Figure 19. Since in space-fixed coordinates

the barrier ensemble is centered around ~q = ~v = 0, the distribution function in relative

coordinates is peaked at the stochastic position ∆~q = −~q‡α(0), ∆~v = −~v‡α(0). It reads

explicitly

frel(∆x,∆y,∆vx,∆vy) = (2π kBT )3/2 ωy

exp
{

−(ω2
y(∆y + y‡α)2 + (∆vx + v‡xα)2 + (∆vy + v‡yα)2)/2 kBT

}

δ(∆x+ x‡α) . (49)

The forward-reactive part of the ensemble is formed by those trajectories whose initial

velocity ∆vx is so large that the trajectory lies above both the stable and the unstable man-

ifold of the equilibrium point. The knowledge of the eigenvectors (45) allows one to locate

these separatrices quantitatively. Reactive trajectories are thus found to be characterized

by the condition

∆vx > ∆vx,min :=















−x‡αǫs : x‡α > 0 ,

−x‡αǫu : x‡α < 0 .

(50)

Therefore, the probability for a member of the barrier ensemble to be forward-reactive is

given by

Pf =

∫

d∆x

∫

∆vx>∆vx,min

d∆vx

∫

d∆y

∫

d∆vy frel(∆x,∆y,∆vx,∆vy)

= (2π kBT )−1/2

∫ ∞

∆vx,min

d∆vx exp
{

−(∆vx + v‡xα)2/2 kBT
}

=
1

2
erfc

(

∆vx,min + v‡xα√
2 kBT

)

, (51)
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which has been written in terms of the complementary error function [199]

erfc(x) =
2√
π

∫ ∞

x
exp(−t2) dt . (52)

In a similar manner, backward-reactive trajectories satisfy

∆vx < ∆vx,max :=















−x‡αǫu : x‡α > 0 ,

−x‡αǫs : x‡α < 0 ,

(53)

and their probability in the ensemble is

Pb =
1

2
erfc

(

−∆vx,max + v‡xα√
2 kBT

)

. (54)

5.4.2 Reaction Times

In contradistinction to a space-fixed dividing surface, the moving TS surface is crossed once

and only once by each reactive trajectory. This allows us to define a unique reaction time ∆t‡

for each reactive trajectory: It is the time when the trajectory crosses the dividing surface,

relative to the initial time when the coordinates are specified by the barrier ensemble. If the

initial conditions ∆xu(0) and ∆xs(0) in the reactive degree of freedom are prescribed, the

reaction time can be calculated explicitly. The dynamics of the reactive degree of freedom

is given by

∆xu(t) = ∆xu(0)e
ǫut , ∆xs(t) = ∆xs(0)e

ǫst . (55)

The dividing surface is characterized by the condition ∆x = 0, which can be rewritten in

relative coordinates as ∆xu = −∆xs. The reaction time ∆t‡ at which this condition is

satisfied is easily found to be

∆t‡ =
1

ǫu − ǫs
ln

−∆xs(0)

∆xu(0)
=

1

ǫu − ǫs
ln

∆vx(0) − ǫu∆x(0)

∆vx(0) − ǫs∆x(0)
. (56)

It is defined for all initial conditions that are either forward- or backward-reactive. For a

forward-reactive trajectory, ∆vx(0) > 0. Because ǫu > 0 and ǫs < 0, it can easily be seen

from equation (56) that ∆t‡ > 0 if ∆x(0) < 0, as it should be for trajectories that start on

the reactant side of the dividing surface and are still to cross it. Similarly, a trajectory with
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∆x(0) > 0 is already on the product side, and its reaction time is negative. A backward-

reactive trajectory, on the other hand, has an initial velocity ∆vx(0) < 0. In this case,

∆t‡ < 0 if ∆x(0) < 0 and ∆t‡ > 0 if ∆x(0) > 0.

If the initial position ∆x(0) is fixed, the reaction time (56) tends to zero as ∆vx(0) → ∞:

Trajectories with large initial velocities cross the barrier fast. On the other hand, as the

separatrices that bound the reactive region are approached, i.e. ∆vx(0) → ǫu∆x(0) if

∆x(0) > 0 or ∆vx(0) → ǫs∆x(0) if ∆x(0) < 0, trajectories keep barely enough energy to

cross the barrier, and their reaction times tend to +∞ or −∞, respectively.

Once the reaction time is given as a function of initial conditions, the distribution for

the forward- or backward-reactive part of the barrier ensemble (48) is readily obtained. In

the former case, its probability distribution function is given by

p(∆t) =
1

Pf

∫

d∆x

∫

∆vx>∆vx,min

d∆vx

∫

d∆y

∫

d∆vy

frel(∆x,∆y,∆vx,∆vy) δ(∆t− ∆t‡(∆x,∆vx,∆y,∆vy)) . (57)

The normalization factor 1/Pf accounts for the fact that only the forward-reactive part of

the ensemble contributes to the distribution.

The distribution function (57) can in its most convenient form be written in terms of

the dimensionless scaled time ∆τ ‡ = (ǫu − ǫs)∆t
‡. It then reads

p̃(∆τ ‡) =
1

ǫu − ǫs
p(∆τ ‡/(ǫu − ǫs))

=
|r|√
πPf

e∆τ‡

(1 − e∆τ‡)2
exp

{

−
(

r

1 − e−∆τ‡
+ w

)2
}

, (58)

where

r =
q‡α(0) (ǫu − ǫs)√

2 kBT
, (59)

w =
v‡α(0) − ǫuq

‡
α(0)√

2 kBT
. (60)

The reaction probability Pf can be written in terms of r and w as

Pf =















1
2 erfc(r + w) : r > 0 ,

1
2 erfc(w) : r < 0 .

(61)
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Figure 20: The distribution (58) of reaction times (a) for w = 1 and r = 0.2 (solid),
r = 0.5 (dashed) and r = 1 (dotted), (b) for w = −1 and r = −0.2 (solid), r = −0.5
(dashed) and r = −1 (dotted).

The valid range of ∆τ ‡ is 0 < ∆τ ‡ < ∞ if q‡α(0) > 0 and −∞ < ∆τ ‡ < 0 if q‡α(0) < 0.

The distribution function (58) is normalized so that its integral over that range is one.

Remarkably, the distribution depends only on the two parameters r and w, even though

the system dynamics and the distribution of initial conditions are determined by the five

parameters ωb, γ, T , q‡α(0) and v‡α(0).

In a similar manner, the distribution of reaction times can be computed for the backward-

reactive part of the ensemble. The result is again given by equation (58), except that the

valid range is now −∞ < ∆τ ‡ < 0 if q‡α(0) > 0 and 0 < ∆τ ‡ <∞ if q‡α(0) < 0. To obtain the

proper normalization, the reaction probability Pf in the prefactor of equation (58) must be

replaced by the backward-reaction probability Pb, which in terms of the scaled parameters

reads

Pb =















1
2 erfc(−w) : r > 0 ,

1
2 erfc(−r − w) : r < 0 .

(62)

As can be seen from Figure 20, the reaction-time distribution (58) is highly asymmetric

around its peak. The probability distribution function is flat at τ = 0, where all of its
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derivatives are zero. For large |τ |, it decays exponentially like

p̃(∆τ ‡) ≈















r e−(r+w)2

√
π Pf

e−∆τ‡

: q‡α(0) > 0, ∆τ ‡ → +∞ ,

r e−w2

√
π Pf

e∆τ‡

: q‡α(0) < 0, ∆τ ‡ → −∞ .

(63)

Because the distribution is so highly asymmetric, the average reaction time will be signif-

icantly larger than the most probable reaction time that is indicated by the maximum of

the distribution function.

5.5 Numerical Results

As soon as the anharmonicities of the potential in a realistic chemical system have to

be taken into account, the equations of motion can no longer be solved analytically, and

recourse must be taken to numerical methods. In what follows, the initial conditions,

at t = 0, are chosen from the distribution specified in equation (48). All trajectories

are evolved forward and backward in time to t = ±Tint/2 using the stochastic integration

algorithm introduced by Ermak and Buckholz [139, 140]. For the backward propagation, the

integration scheme was modified as described in Appendix C. In a conventional calculation

of the exact rate expression, reactive trajectories are identified according to the positions

they attain at the start and end of the integration interval: Trajectories that at t = −Tint/2

and t = +Tint/2 are located on opposite sides of the space-fixed dividing surface x = 0

are classified as forward- or backward-reactive; others are classified as nonreactive. This

criterion, however, is only reliable if the total integration time Tint is sufficiently large. At

short times, recrossings of the dividing surface introduce unavoidable errors.

An alternative criterion for the identification of reactive trajectories is obtained if the

space-fixed dividing surface is replaced by the moving TS surface described above. In the

most naive implementation, trajectories can be classified as reactive if they are on opposite

sides of the moving TS surface at t = ±Tint. If the moving-TS-surface algorithm is used

instead, Tint can be reduced by as much as a factor of 2 while still obtaining nearly accurate

results. In addition, given that the moving TS surface is exactly free of recrossings in the

harmonic limit and approximately so in an anharmonic potential, the integration can be

stopped as soon as a trajectory crosses the moving surface: There is no need to follow the
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trajectory further and check for recrossings. Therefore, when the moving TS surface is used,

the actual integration time will on average be much smaller than the nominal integration

time Tint.

The reliability of this identification is illustrated below using the two-dimensional saddle

point potential of equation 34 with and without anharmonicity, k. In all of the numerical

calculations, the units are chosen for simplicity such that kBT = 1. The friction is isotropic,

with γ = 0.2 in these units, and selected so as to be near the turnover between the energy-

and space-diffusion limited regimes. Although most of the calculations assume the same

fixed noise sequence, averages of the forward and backward reaction probabilities over the

noise are also shown below. In the former, the number of trajectories is fixed at Nt = 15000,

which is large enough to make statistical errors negligible. In the single-noise calculations

on the two-dimensional harmonic barrier, the transverse frequency ωy = 1.5, and the barrier

frequency is set to ωx = 1.0. The latter is reduced to ωx = 0.75 for the noise-averaging and

in the nonlinear cases in order to accentuate the nonlinear coupling.

5.5.1 Harmonic Systems

A typical reactive trajectory and the TS trajectory in the harmonic limit (k = 0), are

shown in Figure 21. Clearly, the space-fixed dividing surface x = 0, in contrast to the

moving TS surface, is crossed many times. The respective percentages of trajectories clas-

sified either as reactive and nonreactive using the fixed dividing surface are displayed as

a function of integration time in Figure 22. Because all trajectories start on the dividing

surface, at very short times, every trajectory is classified as either forward- or backward-

reactive. Subsequent recrossings of the transition state result in transient fluctuations of

the reaction probabilities that slowly approach the true, long-time values. Figure 22 also

shows the percentage of trajectories that are nonreactive as well as those that cross the fixed

dividing surface only once at Tint = 0. The latter comprise the majority of the reaction

events, whereas the percentage contributed by reactive trajectories is comparatively small.

Nevertheless, the fluctuations in the computed reaction probabilities that are caused by

recrossings are considerable.
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Figure 21: The evolution of a member of the ensemble and the Transition State Trajectory
depicted as the gray and black lines, respectively. The underlying potential is included, and
the fixed transition state x = 0 is highlighted by the heavy black line. The time-independent
projection is shown on the base of the figure. The sample trajectory is backward-reactive
since it is a reactant in the future and product in the past. As can be seen, the Transition
State Trajectory remains in the vicinity of the barrier for all times.
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Figure 22: Reaction probabilities calculated using the fixed dividing surface displayed as
a function of total integration time. The fractions of forward-reactive, backward-reactive,
and nonreactive trajectories are shown as the solid, dashed, and dotted lines, respectively.
The dash-dotted line represents the fraction of trajectories that cross the surface only once
at Tint = 0. In these simulations, Nt = 15000 trajectories were integrated, the friction
constant γ = 0.2, and the barrier frequency is ωx = 1.
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Figure 23: The number of recrossings (dot-dashed line) of the fixed transition state
normalized by the total number of trajectories. The components of the total that resulted
in a forward-reactive or backward-reactive trajectory are shown as the solid and dashed
lines, respectively. Recrossings that resulted in a nonreactive trajectory are displayed as
the dotted line. The simulation parameters are the same as in Figure 22.

Because recrossings are crucial to the performance of the algorithm, it is instructive to

analyze them in more detail. Figure 23 shows the average number of recrossings per trajec-

tory as a function of the total integration time. The trivial crossing of the dividing surface

that all trajectories undergo at t = 0 is not included. The number increases monotonically

as the trajectories cross and recross the transition state. Eventually, it reaches a plateau as

they leave the barrier region and are lost into either the product or reactant states. In addi-

tion, Figure 23 decomposes the total number of recrossings into those recrossings that occur

on trajectories that are found to be forward-reactive, backward-reactive or nonreactive at

the given integration time. Because the classification of a particular trajectory can change

with increasing integration time, these contributions are not monotonic. Most prominently,

as the number of nonreactive trajectories decreases almost to zero at Tint ≈ 2 (see Figure 22),

the contribution of nonreactive trajectories shows the same behavior. For large integration

times, the largest contribution to recrossings stems from nonreactive trajectories, which are

bound to recross the dividing surface at least once. In fact, a comparison of Figure 22 and

Figure 23 reveals that nonreactive trajectories on average recross more than three times

before they finally leave the barrier region. Most of the reactive trajectories, by contrast,

do not recross, and their contribution to the recrossing statistics is much smaller. Asymp-

totically, both forward and backward reactive trajectories recross on average approximately
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Figure 24: Reaction probabilities as a function of integration time calculated using the
moving (solid curves) or the fixed (dashed curves) dividing surface. The upper set of curves
represents forward-reactive probabilities, with the lower set depicting the corresponding
back reactions. The dotted curves indicate the asymptotic values Pf = 0.3332 and Pb =
0.4993 calculated from equation (61) or (62), respectively. The simulation parameters are
the same as in Figure 22.

0.25 times.

The dynamics is greatly simplified if the moving TS surface is used instead of the

fixed one. Reaction probabilities computed using either surface are compared in Figure 24.

Because the trajectories start at a distance from the moving TS surface, the corresponding

rates are zero for short integration times. They then steadily increase toward the true long-

time probabilities. Since the dividing surface cannot be recrossed, the asymptotic values are

approached monotonically. The erratic fluctuations of the computed reaction probability

that the fixed surface produces are absent if the moving TS surface is used, so that a strict

lower bound for the reaction probability is obtained even for very short integration times.

In quantitative terms, the moving TS surface identifies a trajectory as reactive if its reaction

time ∆t‡ lies within the integration interval, so that the finite-time reaction probability for

a forward reaction is given by

Pf(Tint) = Pf × Prob

{

|∆t‡| < Tint

2

}

, (64)

and a similar expression for the backward-reaction probability. The reaction probabilities

computed from the moving TS surface are therefore determined by the distribution (58) of

reaction times. The convergence toward the long-time probability is described by the long-

time tail (63) of the reaction-time distribution and is exponentially fast. Indeed, Figure 24
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shows that reaction probabilities computed using the moving TS surface converge much

faster than those obtained from the fixed surface. Moreover, in cases such as the current

problem, in which the separatrices between reactive and non-reactive trajectories are known

exactly, the reaction probabilities Pf and Pb can be computed a priori, without having to

perform any numerical simulations. The values obtained from equations (61) and (62) are

also indicated in Figure 24. They agree precisely with the asymptotic probabilities obtained

from the simulation. Thus, the moving TS surface can provide accelerated convergence in

the rate for finite-time computations for linear problems.

The analytic reaction probabilities, equations (61) and (62), for the harmonic barrier

represent the limiting values that are obtained for one instance of the noise using a large

number Nt of trajectories. To obtain a macroscopically observable reaction probability, one

has to average these results over a large number Nξ of realizations of the noise. That average

cannot be obtained analytically, but it can be easily calculated by a numerical quadrature.

It provides a useful benchmark for the convergence of the computational schemes with

respect to Nt and Nξ. Figure 25 illustrates the forward and backward reaction probabilities,

averaged over Nξ realizations of the noise, as a function of Nξ and for different values of Nt.

The solid and dashed curves are obtained if reactive trajectories are identified through the

criteria provided by the fixed and the moving TS surfaces, respectively. As expected for a

symmetric barrier, forward and backward reaction probabilities converge toward the same

limit. Moreover, the distributions of forward and backward reaction probabilities agree, as

shown in Figure 26. For large Nt, the results in Figure 25 agree with the analytic value

displayed as the dot-dashed curve in the figure’s bottom panel. Therein, dotted curves are

used to indicate the 95% confidence interval to further illustrate that the simulations are

converging toward the correct limit as expected.

The simulation results in Figure 25 that employ the conventional criterion for identifying

trajectories have been computed using the large integration time Tint = 21.5, to illustrate the

exact results within the error bars of the number average. However, it should be clear from

Figure 22 that the moving-TS-surface criterion often identifies reactive trajectories in less

than half this time, and once so identified a trajectory does not need to be integrated further.
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Figure 25: The reaction probabilities averaged over different instances of the noise on the
harmonic potential for four different values of the number of trajectories (Nt) in the ensem-
ble. The solid lines depict the results predicted by equation (61) or (62). The dashed and
dotted lines are the results obtained using the respective fixed or moving dividing surfaces.
In the harmonic case, these two surfaces provide the same results and are indistinguishable.
For the case of Nt = 1000 the light dotted lines display the 95% confidence interval with
respect to the number of noise sequences sampled (Nξ). The simulation parameters are the
same as those defined in Figure 27.
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Figure 26: The distribution of reaction probabilities in the harmonic limit calculated
from equation (61) or (62) from Nξ = 20000 different instances of the noise. The x-symbols
display the results for forward-reactive probabilities and the o-symbols are for backward-
reactive. The simulation parameters are the same as those defined in Figure 27.
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Given that the calculation of the moving surface itself —which amounts to the calculation

of the TS trajectory— takes roughly as much computational effort as the integration of an

ensemble trajectory, computational savings can thus be obtained from the use of the moving

surface whenever the number Nt of trajectories per noise sequence is larger than 2.

5.5.2 Nonlinear Systems

The true test for the usefulness of the moving transition state lies in its ability to identify

reactive trajectories beyond the linear regime. If nonlinearities are present, the relative

coordinate (41) does not achieve a complete separation of the relative motion from the

motion of the TS Trajectory. Therefore, the moving dividing surface will not strictly be

free of recrossings. However, if the nonlinearities are weak, recrossings can be expected

to be rare. In these cases, the moving dividing surface will be recrossing-free to a useful

approximation. Indeed, our results indicate that its advantages over a fixed dividing surface

persist well beyond the harmonic limit.

We investigate the performance of the moving dividing surface in the example of the

potential (34), with the coupling constant k now taking non-zero values. The reaction

probabilities for several different values of k are displayed in Figure 27. To accentuate the

anharmonicity, the barrier frequency was reduced to ωx = 0.75 to allow trajectories to spend

more time in the barrier region before escaping. For the transverse frequency, the value ωy =

1.5 was retained. Evidently, for sufficiently long integration times the moving transition

state provides essentially the same result as the fixed dividing surface for all values of the

coupling constant up to k = 0.1. However, the reaction probabilities converge toward the

long time limit monotonically and much faster than those computed with the fixed dividing

surface. Therefore, the computational advantages that the moving surface offers in the

harmonic limit persist even in the presence of quite substantial nonlinearities. Eventually,

of course, the use of a moving dividing surface based upon the harmonic approximation

ceases to be meaningful, as can be seen for k = 0.5 and k = 1. For the specific instance

of noise used in these calculations, the results obtained from the moving and fixed dividing

surfaces remain in agreement for the backward-reactive trajectories, whereas a substantial
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Figure 27: Reaction probabilities as a function of integration time calculated using the
moving (solid line) or fixed dividing surface (dashed line) for various values of the coupling
constant. The time step has been reduced to 8 × 10−6 for convergence and the barrier
frequency changed to ωx = 0.75 to accentuate the nonlinearity. For the case k = 0, the
results for the reaction probabilities as calculated from equation (61) or (62) are included
as the dotted lines.

difference arises for the forward-reactive trajectories. As is to be expected of any TST

scheme, in these cases the moving dividing surface overestimates the reaction probability

because any trajectory that crosses the surface is assumed to be reactive, whereas the

possibility of recrossings is neglected. Although not shown, a different instance of the noise

does not change the trends observed in Figure 27.

As in the harmonic limit, the computational advantages of the moving dividing surface

in systems with moderate nonlinearities stem from the fact that it is approximately free

of recrossings. This is illustrated in Figure 28. The average number of recrossings per

trajectory of the fixed transition state exhibits similar behavior for small to moderate values

of the coupling constant. It approaches approximately one recrossing per trajectory in the

long-time limit. In these cases, the number of recrossings of the moving dividing surface is

so much smaller than the corresponding number for the fixed surface that it is not visible in

the figure. At larger coupling, the number of recrossings of the fixed dividing surface does

not converge to a finite long-time limit, but instead increases linearly with the integration
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Figure 28: The average number of recrossings of the moving transition state (solid lines)
and the fixed transition state (dashed line) normalized by the total number of trajectories
for given values of the coupling constant. The simulation parameters are the same as those
defined in Figure 27. The values for the moving transition state are too small to be seen on
the same scale in the top four panels.
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time. The onset of a similar behavior occurs at approximately the same value of Tint for

the moving dividing surface as well.

This increase in the number of recrossings for both the fixed and the moving surfaces is

caused by a small percentage of trajectories in the ensemble that never leave the TS region

for negative times, but rather get trapped in an oscillation in the stable transverse degree

of freedom y. If the value of y is sufficiently large, the reactive degree of freedom x in

the potential (34) ceases to be unstable but instead behaves as a harmonic oscillator with a

(possibly large) effective frequency ω̃2
x = k y2−ω2

x. As a result of these fast oscillations in the

reactive degree of freedom, the dividing surfaces are crossed many times. This mechanism

has been confirmed by a detailed trajectory analysis, which for brevity we do not show. It

is a rather peculiar feature of our model potential due to the presence of only one higher

order coupling term in the potential (34). We would not expect that such aberrant behavior

would arise in a typical system.

It is clear from Figure 27 that for moderately strong anharmonicities the moving tran-

sition state correctly identifies the overall number of reactive trajectories. However, that

number is a macroscopic observable, and it is not immediately clear whether, on a micro-

scopic level, individual reactive trajectories are identified correctly. The fraction of trajec-

tories that are identified correctly by the moving transition state is displayed in Figure 29,

where the “correct” identification for a given trajectory has been assumed to be given by

the fixed dividing surface for a sufficiently long integration time. In the cases of weak to

moderate coupling, the classification obtained from the moving dividing surface is correct

for all trajectories, but, as expected, it begins to fail for coupling strengths around k = 0.5.

The fact that the identification of the backward trajectories is poorer than that for the

forward trajectories at large k is not surprising. The initial distribution —particles located

at the naive fixed transition state with forward velocity— disfavors backward trajectories

which must recross the fixed TS at least twice more in order to reach the appropriate bound-

ary conditions. Nevertheless, Figure 29 confirms that the favorable behavior of the moving

surface that is apparent in Figure 27 indeed reflects a correct description of the underlying

microscopic dynamics.
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Figure 29: The fraction of correctly identified trajectories according to the moving tran-
sition state. The correct identification of a trajectory is that defined by the fixed transition
state at the end of the simulation, Tint = 21. The correctly identified backward-reactive or
forward-reactive trajectories are displayed as the solid and dashed lines, respectively. The
simulation parameters are the same as those defined in Figure 27.
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Figure 30: The reaction probabilities across an anharmonic potential (with a coupling
of k = 0.1) are shown as a smooth function of the number of different instances of the
noise (Nξ) and a discrete function of the number of trajectories (Nt) used to represent the
ensemble average. The dashed lines and dotted lines result from the use of the fixed or
moving dividing surfaces in the identification of trajectories, respectively. Note that the
ordinate ranges over the very narrow interval between .37 and .41, and hence the converged
exact and approximate approaches are nearly equal. The simulation parameters are the
same as those defined in Figure 27.

Figure 30 displays the noise-averaged reaction probabilities for the fixed and moving

dividing surfaces for a coupling of k = 0.1. The results display the same convergence

behavior in both cases, except that for the moving TS surface they are shifted to larger

values by roughly 5%. This small error is due to the small percentage of trajectories

that recross the moving dividing surface, as seen for a particular instance of the noise in

Figure 28. Because the potential barrier described by equation 34 is symmetric even for

k 6= 0, the average values of the forward and backward reaction probabilities Pf and Pb are

equal. The simulation results converge rapidly, with respect to both Nt and Nξ, toward

their limiting value. These results demonstrate that the moving TS surface retains its

reliability and its computational advantages for moderate values of the anharmonicity upon

noise averaging as well as for a single instance of the noise.

5.6 Concluding Remarks

We have recently developed an analytic method for constructing a time-dependent stochas-

tic dividing surface that is strictly free of recrossings [183, 184]. In the present chapter, it

81



has been shown that this moving dividing surface can be used to identify reactive trajec-

tories reliably in linear and nonlinear systems: In the harmonic limit, the moving dividing

surface attached to the TS trajectory is strictly free of recrossings, while in more general

(nonseparable) cases it is approximately so. The identification of reactive trajectories using

the moving dividing surface has been seen in this article to be fairly accurate even in the

presence of large anharmonic coupling. It can be obtained in roughly half the time that is

required to confirm the nature of a trajectory by numerically evolving it to its final state.

In several of the calculations presented in this article, observables have been calculated

for a particular instance of the noise while averaging over the initial conditions of the subsys-

tem. In such restricted averages, the use of the moving surface reduces the computational

cost of the calculation by a factor of two or more. A typical average of an observable, how-

ever, requires one to include multiple instances of the noise. When the average is performed

using the machinery of the moving TS surface, the TS trajectory must be generated for each

instance of the noise. If only one system trajectory is calculated for each noise sequence, the

computational effort to calculate both the sample trajectory and the moving TS surface is

about the same as calculating a single (longer) trajectory. Improved efficiency can still be

obtained if one recognizes that the average should be taken by sampling several trajectories

for each noise sequence. Apart from the insight into the microscopic reaction dynamics that

the moving dividing surface offers, it consequently also provides computational advantages

in the calculation of macroscopic observables. Moreover, the the algorithm is embarrassingly

parallel when sampling across trajectories associated with a given noise sequence. (Indeed,

although not discussed explicitly in the text, the codes have been parallelized across several

processors with near linear scaling.)

In summary, we envision at least two approaches in which the TS-trajectory criterion for

reactive trajectories will be useful in calculating reaction rates: (i) In harmonic (or nearly

harmonic) systems, the algorithm described here provides a formally exact expression for

the reaction probability given a noise sequence. This term and related averages can be used

to substantially reduce the required computational time because it limits the numerical

effort to a sampling of the noise. (ii) In arbitrary anharmonic systems, the criterion can
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be used to reduce the computational effort to calculate any correlation function —such as

that in the reaction-rate expression— that relies on the correct identification of reactive

trajectories. The rate expression and other related observables that can take advantage of

the identification of reactive trajectories will be calculated in future work. As an illustration,

the TS-trajectory criterion was seen in this work to converge the forward and backward

reaction probabilities even in a fairly anharmonic case. Thus the central result of this

chapter is: the moving dividing surface can be used reliably and efficiently to identify

reactive trajectories.
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CHAPTER VI

DIHEDRAL-ANGLE INFORMATION ENTROPY AS A GAUGE OF

SECONDARY STRUCTURE PROPENSITY

6.1 Introduction

The number of structures in the Protein Data Bank (PDB) [200] has increased dramatically

during the past decade. More than 28,000 structures had been deposited as of October 2004

when the results were first collected for this study and the count stands at at a little more

than 37,000 as of July 2006. The accuracy of any new structure is of obvious importance

because any error makes predictive methods more difficult to validate and creates problems

for structural data-mining efforts [201, 202, 203]. As the various computational methods

mature, it becomes increasingly important to derive a varied set of scores or checking

functions that assess and validate protein structures. Existing and new checking functions

are also vital in the area of de novo structure prediction for validation. The Ramachandran

plot [204] has provided a useful framework for discerning patterns in the dihedral angle

correlations and has been successfully used as a guide during structure refinement. However,

it is the work of Thornton and coworkers [205, 206, 207, 208, 209] that pioneered the field of

structure validation [210, 211, 212, 213, 214, 215, 216, 217] using scores based upon known

statistical properties of the existing database. Although such checks are not foolproof as

they rely on the working hypothesis that a new structure will “interpolate” within the

known database, they at least raise the question of whether a new structure is atypical or

is merely “extrapolating” outside of the database. In particular, Thornton and coworkers

have proposed simple and effective ways to test the stereochemical quality of a proposed

structure. Such approaches, based only on coordinates rather than on free energies or

dynamical considerations, are easy to code and quick to process while still having significant

merit, especially when used in conjunction with new measures.

In this study, an information-theory entropy is proposed based on the backbone dihedral
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angle distributions of the protein structure. It underlies an auxiliary robust checking func-

tion for evaluating the compatibility of a given protein structure with the experimentally

derived structures in the PDB with respect to its dihedral angles. The twenty Ramachan-

dran plots—i.e., φi-ψi distributions—for each of the naturally occurring amino acids are

reconstructed using all of the nonredundant experimental protein structures available in the

October 2004 PDB using a 90% sequence identity cutoff. In addition, the four-hundred ψi-

φi+1 distributions accounting for the statistics in the two dihedral angles between specified

adjacent amino acids have also been constructed and are presented. The latter distributions

have been seen to contain nontrivial structure and the present results —over the existing

larger database— serve to validate prior conclusions [218, 219, 220, 221]. The information-

theory entropy, S, is defined in terms of the probabilities (or likelihood) of particular pairs

of dihedral angles along the protein given its primary structure. A standard entropy is de-

fined using an ideal (but likely unattainable) structure in which every angle pair, φi-ψi and

ψi-φi+1, takes on the value with maximum probability, where the index i labels a residue

along a chain. The entropy difference, ∆S, is defined relative to the standard entropy of

this structure, and has been calculated for all nonredundant protein structures in the PDB.

A histogram of these entropy differences leads to a nontrivial distribution. As a simple test

of whether such a distribution is sensitive to differences between the theoretically and ex-

perimentally generated structures in the PDB, this distribution has been obtained for each

cohort. The deviations in these distributions will be seen to emerge primarily from those

theoretical structures that have been obtained using statistical information that ignores

long range correlation due to, for example, secondary structural elements.

Furthermore, the distribution in ∆S can be used to define auxiliary checking functions,

herein called D1 and D2, that characterize the degree to which the dihedral angles of a given

structure are compatible with the existing database. The ∆S distribution is peaked at a

nonzero value because a typical structure contains a certain degree of correlation between

distant residues due to secondary structural interactions. The use of the statistical distri-

butions in the calculation of ∆S implies that this information is included in an averaged,

or mean-field like, sense. Thus D2 can signal the existence of atypical structures whose
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unusual behavior is due to specific interactions between distant residues. Of course, devia-

tions may also be due to incorrectly obtained structures, though such a determination is not

available simply from the knowledge of D2. It therefore complements the scores available

in PROCHECK [205, 206] and WHAT CHECK [202] in that it includes the ψi-φi+1 corre-

lations, and it provides a simple check of the deviation from non-mean-field like structure.

Hence this measure can be used to guide modeling studies and to validate experimentally

derived structures, while bolstering the tools that are available to guide the formation of

de novo and engineered protein structures. In fact, D2 provides an information-rich tool to

guide experiments involving the replacement or redesign of large sections of protein struc-

ture (e.g., loop modeling). These new measures also complement the work of Shortle and

coworkers [222, 223, 224, 225] who focus on the propensities of a given residue’s dihedral

angles due to the nearby structure through an energy-based scoring function rather than on

the mutual probability of given residue pairs. These subtle distinctions give rise to differ-

ences in the information that the respective checking functions or scores report. Thus the

central result of this work is the construction of a new checking function D2 that comple-

ments the existing checking functions by reporting on the extent to which the propensity of

the dihedral angle deviations differ in a given protein from those of the reference database.

6.2 Methods

6.2.1 φi-ψi and ψi-φi+1 Distributions

Dihedral angle analysis [226, 227, 228, 229] of protein backbones is helpful in structure

validation and modeling [205, 206, 207, 208, 209, 210, 212, 213, 214, 215, 216, 230, 231, 217,

232, 233, 234, 235, 236, 237, 238]. Conventional Ramachandran plots PR(φi, ψi) characterize

the probability distribution for angles φi and ψi for each R of the twenty natural amino

acids, where the two dihedral angles are defined by the backbone atom sequences, C(i− 1)-

N(i)-CA(i)-C(i) and N(i)-CA(i)-C(i)-N(i + 1), respectively as shown in Figure 31. An

extensive analysis of the Ramachandran plots using a fairly recent edition of the PDB has

been reported by Hovmöller et al. [226].

Although useful, the information contained in a Ramachandran plot is not sufficient to
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Figure 31: The backbone dihedral angles in a tripeptide ALA-ALA-ALA. Blue: nitrogen,
black: carbon, red: oxygen.

construct a scoring function for high-accuracy protein structure validation. For example,

flanking residues are known to affect the probability distribution in the dihedral angles of a

given residue [239, 240, 241, 242, 243, 244, 245, 222, 223, 224, 225]. As previously suggested,

one defines the PRi,Ri+1(ψi, φi+1) distributions —in which the angles are associated with

the sequential residues— to complement the information in the Ramachandran plot [218,

219, 220, 221]. Since the ψi-φi+1 plot accounts for the correlation between two adjacent

residues, its use in structure assessment provides a nontrivial sequence dependent measure

of the likelihood that a given pair of residues will be connected by the specified dihedral

angles. In principle, one could also account for the explicit correlations present between

additional structural observables such as in the recent study by Esposito et al. [246] on the

correlation between ψ and the angle ω describing the rotation of the peptide bond. However,

only the correlation between φ and ψ around a residue and between bonded residues will be

addressed because, as shown below, that suffices to provide a different first-order estimate

of protein structure than other scores presently available.

6.2.2 Data-mining the ψi-φi+1 Distributions

In order to obtain the 400 possible ψi-φi+1 distributions labeled by each of the pairs of

naturally occurring amino acids, a statistically representative sample of all possible proteins

needs to be available. In the present work (as with other similar studies), the sublibrary

of deposited structures in the PDB are assumed to be representative of the protein space

once it has been systematically pruned: such as DNA, RNA and complexes of proteins

with DNA or RNA, are removed. Model structures are discarded because of the unknown
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Table 3: The name and number of proteins in the sublibraries used in this work are listed in
the first and second columns, respectively. The peak and width of the ∆S(90) distributions
shown in panel c of Figure 33 and evaluated using the dihedral angle distributions from
NR90 are also listed.

Sublibrary Structures Peak/10−3 Width/10−4

EXP 24,444 4.17 0.96
NR100 11,157 4.24 0.92
NR90 2,762 4.37 0.98
NR70 2,176 4.74 1.03
NR50 1,768 4.85 1.04
NR100T 644 4.44 0.79

possibility that such theoretically-derived structures may be of a different level of accuracy

or representation. Additionally, structures with missing residues or containing unified atoms

have been removed. (Although more aggressive pruning could have been done by discarding

structures according to a more rigorous standard for its resolution, this was not done in this

investigation.) After pruning the PDB subject to these criteria, the resulting library (called

“EXP” throughout this work) includes a total of 24,444 experimentally derived structures.

The NR50, NR70 and NR90 sublibraries result from the intersection of the EXP library

of October 2004 PDB structures with the nonredundant sequence databases posted in the

PDB —as listed in the April 2005 update— at the 50%, 70% and 90% sequence identity

levels, respectively [247]. The NR100 sublibrary is a subset of the EXP library in which a

single arbitrarily-chosen structure is retained for each redundant sequence at 100% sequence

identity. Note that, by definition, no two structures in a given database share a sequence

identity greater than or equal to that of the database’s defining percentage level. Hence,

for example, the NR100 sublibrary will be smaller than the EXP library as the former

includes only one structure for a given sequence. The subset, NR100T, of theoretically-

derived —viz., model— protein structures in the PDB at 100% sequence identity will also

be investigated for confirmation of the relative level of information contained therein. The

number of structures in each library is shown in Table 3.

All 400 ψi-φi+1 and 20 Ramachandran plots have been generated for each of the five
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sublibraries, NR50, NR70, NR90, NR100 and EXP. Their construction is described explic-

itly in Appendix D. Typical 1-D distributions of the projections of the φi-ψi Ramachandran

plots and the ψi-φi+1 plots are displayed in Figure 32. (for the procedure, cf. Appendix D.)

These results demonstrate the sequence dependence of the ψi-φi+1 distribution, in accor-

dance with the previous reports [248, 218, 220]. Importantly, the dependence of ψi on the

second residue and φi+1 on the first residue obviously illustrates the impact of the distant

residue identity on the absolute value of the maximum probability. The effects on glycine

are particularly pronounced as the peak position of the distribution changes with the dis-

tant residue identity (Figure 2b). The 420 histogramed distributions for NR90 have been

saved into a single database which can, in turn, be used to calculate the dihedral-angle

information entropy difference, ∆S, defined in Eq. 70 below.

6.2.3 The Dihedral-angle Information Entropy

Given a proposed protein structure for a particular primary sequence, and the distribution

functions described above, one can calculate an information-theory-based entropy for the
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angle pairs about and between the residues of the chain. In particular, for a given structure

~q containing the coordinates a given protein, the dihedral angle pairs across its n residues

consist of the (n− 2) φi-ψi pairs with their associated probabilities PRi
(φi, ψi) at each site

i for i ranging across 2 and n − 1. Similarly, ~q gives rise to the (n − 1) ψi-φi+1 pairs and

associated probabilities PRi,Ri+1(ψi, φi+1) between successive residues at i and i + 1 for i

ranging across 1 and n − 1. For convenience, these two sets are interlaced into a single

vector ~Υ whose 2n− 3 entries are defined as:

Υ2i−1 ≡ (ψi, φi+1) for 1 ≤ i ≤ n− 1 (65a)

Υ2i ≡ (φi+1, ψi+1) for 1 ≤ i ≤ n− 2 , (65b)

A Shannon entropy rooted in information theory [249] can now be rewritten as

S(~q) = −
2n−3
∑

k=1

Pξk
(Υk(~q)) lnPξk

(Υk(~q)) , (66)

where the argument in ~Υ(~q) specifies the angles according to the particular structure ~q, and

the residues are paired according to

ξ2i−1 ≡ (Ri, Ri+1) for 1 ≤ i ≤ n− 1 (67a)

ξ2i ≡ Ri+1 for 1 ≤ i ≤ n− 2 , (67b)

corresponding to the structure of ~Υ. A standard information entropy for a given structure

can be defined in terms of the most probable dihedral angles for a given primary sequence,

S◦(~q) = −
2n−3
∑

k=1

P̄ξk
ln P̄ξk

(68)

in which the maximal values are defined simply as

P̄ξk
(~q) ≡ max

Υk

Pξk(~q)(Υk) , (69)

and depend on ~q only with respect to the specification of its primary sequence, ~ξ(~q). The

averaged entropy difference for a given structure relative to the standard can be written

simply as

∆S(~q) = (S◦(~q) − S(~q))/(2n − 3) . (70)
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where (2n− 3) is the normalization factor.

Solis and Rackovsky [250, 251] defined a similar information entropy to that of Eq. (66)

for protein structure prediction. However, none of their measures emphasized the use of

the ψi-φi+1 distributions, and the possible correlation between neighboring amino acids that

such distributions may display. Meanwhile, the GOR algorithm [252, 253] uses the statistics

of the multiple sequence alignment of segments of 17 or more residues in length to predict

secondary structure assignments. The approach in this article is complementary to the GOR

algorithm in that both recognize the need for studying multiple residue correlations: the

latter emphasizes a larger segment while limiting the number of possibilities to the secondary

structural motifs whereas the former —viz. the present approach— emphasizes segments

limited to residue pairs while extending the accessible space to that of a discretization of

the two-angle space with more than 5000 bins —viz. possible configurations.

Given the coordinates of a protein structure, the series of dihedral angles {Υk} can

readily be computed. The probabilities entering in the sum of the structural entropy each

depend on the relative probability that the measured dihedral angles are compatible with the

corresponding residue(s) they connect. That is, the probabilities entering in equation (66)

are {PRi
(wk(i), vl(i)), PRi,Ri+1(vl(i), wk(i+1))} where φi ∈ wk(i) and ψi ∈ vl(i) given that {wk}

and {vl} are the partitions in the angle space used to construct the histogramed distribu-

tions. This procedure, while direct, discretizes the possible results. Smoother estimates of

the dihedral-angle information entropy could be obtained using standard interpolating tech-

niques. But this is not done here because the simpler discrete approach provides estimates

of the structural entropy with sufficient accuracy to test the proposed checking functions.

6.2.4 A Checking Function for Secondary Structure Propensity

Given the normalized probability distribution, P (∆S), and a putative structure with well-

defined dihedral angles, {(φi, ψi), (ψi, φi+1)}, an integrated probability function for the

entropy difference can be defined by merging the left and right cumulative distribution
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functions as

I(~q) =















∫ ∆S(~q)
0 P (∆′) d∆′ if ∆S < ∆S

∫∞
∆S(~q) P (∆′) d∆′ if ∆S ≥ ∆S

(71)

where ∆S is the median value of ∆S. The integral I will, by definition, take the value

of 1
2 when evaluated at the median. The deviation relative to the median can thus be

characterized by

D1(~q) =















ln (2I) if ∆S(~q) < ∆S

− ln (2I) if ∆S(~q) ≥ ∆S

(72)

which takes the value of 0 for the median structure, and otherwise measures the distance

away from the median structure in the distribution. When D1 is negative (positive) it

signals that the deviation is below (above) the median.

In order to make the D1 checking function even more intuitive, a new checking function

D2 is defined to roughly describe the number of standard deviations away from the median

structure through the expression

D2(~q) =















√
2erf−1(2I − 1) if ∆S(~q) < ∆S

√
2erf−1(1 − 2I) if ∆S(~q) ≥ ∆S

. (73)

As described in Appendix D.0.5, the D2 checking function evaluated for a Gaussian distribu-

tion with zero mean and unit standard deviation is exactly equal to the number of standard

deviations away from the median structure. ThusD2 may be interpreted as a measure of the

relative likelihood for ∆S in terms of deviations from the mean. It effectively uniformizes

the distribution in the sense that it maps the original distribution precisely to the normal

curve. In particular, values of |D2| larger than 3 suggest that the specified structure in

a group of structures whose cumulative likelihood, while possible, is less than 0.13%. To

check the effectiveness of these new scores, D1 and D2 are calculated separately for the

EXP and the NR100T libraries below.
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6.3 Results and Discussion

6.3.1 Dihedral Angle Distributions

The ψi-φi and φi-ψi+1 dihedral angle distributions for all five libraries described in Sec-

tion 6.2.2 are described in detail in Appendix D. In addition to their role in the present

work, they may be of use in homology-based methods for constructing proteins. For ex-

ample, Srinivasan and coworkers [218, 219, 220] have used such distributions to predict

backbone conformations of short polypeptides.

6.3.2 On the Choice of the Sequence Database

In order to implement the checks of Section 6.2.4, an underlying database must be selected.

The EXP library would be a poor choice because it necessarily includes multiple copies of the

same structure. Theoretically-derived structures should also be ignored because they may

differ from the experimental database. In order to choose which of the experimental subsets

of the nonredundant sublibraries —NR50, NR70, NR90 or NR100— would be optimal, it is

helpful to construct the corresponding dihedral-angle information entropy and their relative

properties. In particular, the distributions of ∆S(X) —based on the NRX sublibrary— have

been evaluated across all the structures in each of the five sublibraries: NR50, NR70, NR90,

NR100, and EXP. The statistical error in ∆S(X) decreases with increasing X because the

size of the sublibrary increases with X. But at the same time, the bias due to redundancy

is also increasing with X.

The distributions of ∆S(X) are shown in Figure 33. The EXP library and NR100 sub-

library contain several sets of structures with considerable sequence identity resulting in

skewed distributions regardless of the choice of the checking function. As expected, the rel-

ative small size of the sublibraries underlying the ∆S(50) and ∆S(70) measures leads to noisy

distributions. Meanwhile, the distributions in ∆S(100) appear to be broadened by the un-

derlying redundancy in the NR100 sublibrary. The differences between the five sublibraries

appears to be revealed —and perhaps converged— most sharply by panel c which displays

the distributions for ∆S(90). One might be tempted to choose ∆S(70) instead of ∆S(90)

because both scores reveal that the NR90 distribution is more like that of the redundant
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Figure 33: The distributions of ∆S(50), ∆S(70), ∆S(90) and ∆S(100) evaluated across
several sublibraries are displayed in panels a, b, c and d, respectively. In each panel the
information entropy difference ∆S is evaluated across the NR50, NR70, NR90 and NR100
sublibraries, and the EXP library.
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Figure 34: Distributions of ∆S evaluated across the 2,762 experimental structures in the
NR90 sublibrary (circles) and 644 theoretical structures in the NR100T sublibrary (squares).
Note that in order to make the results comparable, the distributions have been normalized
by the bin size, i.e., 4 × 10−5 and 8 × 10−4, respectively.

libraries. However, the better statistics of ∆S(90) in light of the relatively small redundancy

error, and the similarity in the peak positions between NR100 and NR90 as listed in Table 3,

suggests that NR90 is an optimal choice. In light of this heuristic argument, NR90 is used

in the remainder of this chapter as the underlying distribution in calculating ∆S and the

associated checking functions; the superscript in ∆S(90) is henceforth omitted.

The distributions of ∆S for experimental and theoretical structures in NR90 and NR100T,

respectively, are shown in Figure 34. The mean value and standard deviation σ of ∆S of ex-

perimental structures are 4.38× 10−3 and 5.74× 10−4, respectively, indicating that roughly

71% of the total structures have a ∆S between 3.81 × 10−3 and 4.95 × 10−3, i.e., between

〈∆S〉 − σ and 〈∆S〉+ σ. The mean value and standard deviation for the theoretical struc-

tures are 4.35×10−3 and 6.82×10−4, respectively, and about 64% of the theoretical models

have a ∆S within one standard deviation of the mean of the experimental models. The

two distributions are surprisingly similar, particularly as the difference seen between the

NR90 and NR100 distributions does not appear to persist for NR100T. The origin of this

likely lies in the fact that the NR100T sublibrary does not have NR100’s degree of sampling

bias because the latter contains many similar single-point mutants. However, on average,

fewer theoretically determined structures are within a σ of the mean and this is a notable

95



difference between the experimental and theoretical structures. This result is likely a con-

sequence of the fact that many theoretical structures use rule sets for their construction

which do not reflect the degree of correlation between distant residues present in nature.

These observations indicate the insight that ∆S provides on the relative compatibility of a

given structure with respect to the experimental NR90 sublibrary of the PDB.

One possible concern here is that the only standard for inclusion of a protein within

any of these libraries with respect to the accuracy of the structure lies in the fact that

the reported structure provides sufficient information to obtain all of its dihedral angles.

One could use more rigorous criteria employing R-factors or other self-reported position

error bars. Indeed several studies that have developed checking functions have used such

rigorous criteria [202, 205, 206]. However, we found that implementation of these criteria

in constructing libraries nearly requires a file-by-file assessment as the requisite information

is not coded uniformly through the PDB. Meanwhile our preliminary constructions of such

libraries, while modifying the dihedral-angle distributions slightly, do not lead to appreciably

distinct distributions in the information theory entropies or the various checking functions.

Hence all the results reported here have been obtained using the simple rule for structure

identification described above.

6.3.3 D1 and D2 Checks

The distributions of D1 calculated using Eq. 72 across the NR90 and NR100T sublibraries

are shown in Figure 35. The distributions are nearly Gaussian as suggested above. How-

ever, features seen above in Figure 34 in assessing the relative compatibility between the

NR90 and NR100T sublibraries are still visible in Figure 35. The distributions in D2 dis-

played in Figure 36 retain these features as well, but the uniformizing procedure outlined

in Appendix D.0.5 now leads to a normal Gaussian distribution for the NR90 structures.

Interestingly, the lack of correlation in some of the NR100T structures is exhibited by a

shoulder on the left side of the NR100T distribution.

Although the definitions of D1 and D2 may appear cumbersome, their generalized forms

are helpful so as to account for the fact that the probability distribution in ∆S is not
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Figure 35: Distributions of D1 evaluated across the NR90 (circles) and NR100T (squares)
sublibraries. In all cases, D1 is determined using equation 72 with ∆S equal to the corre-
sponding median value (=4.38×10−3) of the experimental structures in the NR90 sublibrary.
The solid line is a Gaussian distribution with zero mean value and unit standard deviation.
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Figure 36: Distributions of D2 evaluated across the NR90 (circles) and NR100T (squares)
sublibraries. The median value of ∆S of experimental structures has been used. The solid
line is the same Gaussian distribution as in Figure 35.
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symmetric. If it were symmetric, then the simpler arguments at the end of the previous

section using a single characteristic σ would suffice. As remarked previously (and shown

explicitly in Appendix D.0.5), in the limit that the distribution in ∆S is Gaussian, the

definition ofD2 reduces precisely to the number of standard deviations that a given structure

differs from the median. In summary, equations 72 and 73 define equivalent new checks, D1

and D2, for the compatibility of the dihedral angles of a given structure with the existing

PDB set of nonredundant experimental structures, although D2 is preferred because it takes

on nontrivial values even for exponentially unlikely structures.

To illustrate the values of the D1 and D2 checks, it is helpful to examine a few rep-

resentative structures arbitrarily chosen from the PDB. The HIV envelope glycoprotein

(1g9nG) [254], the p53 DNA binding domain (1tupA) [255], and the G-protein α-1 chain

(1gg2A) [256] are fairly common proteins whose structures have been resolved and deposited

in the PDB. The D1 values for these structures are −0.06, −0.25 and 0.23, respectively,

which alone might not seem to provide a simple score of the structural quality. However, the

D2 values are −0.08, −0.32 and 0.33. These values are easily interpreted as they indicate

that all three structures are within one standard deviation of the PDB database. That is,

their dihedral angles with respect to correlation about a residue and between residues are

typical of the structures in the NR90 sublibrary. But recall that their information entropy

is consequently greater than their corresponding standard entropies. Thus, they evidently

exhibit propensities for secondary structural interactions that are typical of the structures

in the NR90 sublibrary.

Alternatively, the D2 check can be used to identify protein structures whose angles are

atypical with respect to the distribution of correlated angles in the PDB. Such atypical

structures are not necessarily incorrect structures. Indeed, when D2 is large and negative,

the structures could be correct but for whatever reason contain dihedral angles in the most

probable positions independent of the sequence beyond their nearest neighbors. Alterna-

tively when D2 is large and positive, particularly strong correlations of distant residues may

give rise to angles that adopt low probability configurations. Though correct structures exist

that satisfy such limits, they are still atypical relative to the distribution because, as shown
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in Figure 34, most of the experimental structures in the NR90 sublibrary have a structural

entropy difference near the mean, ∆S. This raises the intriguing possibility that D2 can be

used to highlight atypical regions in proteins that are atypical due to some functional con-

straint. These regions could arise for reasons related to active site architectures or regions

critical to forming protein-protein interactions. Hence the D2 measure may serve a role in

highlighting regions of interest when structures of unknown function or physiological role

are solved as part of ongoing high throughput structural proteomics efforts. Long range

interactions through a protein structure are of course important to understanding cataly-

sis, concerted movements, and even when seeking to understand the evolutionary history

of proteins within a conserved family of proteins. Thus D2 can highlight these potential

regions within a structure too.

6.3.4 The Role of D2 in Checking Theoretical Structures

All structures in the NR90 and NR100T sublibraries whose value of |D2| is larger than or

equal to 3 are listed in Table 4. The number of such structures is 17 (0.6%) and 11 (1.7%)

for the experimentally and theoretically derived structures, respectively. The structures

in the larger EXP and model protein libraries have also been assessed according to the

D2 check. It was found that 264 (1.1%) and 66 (6.7%) structures are atypical out of the

24444 experimental and 981 theoretical structures available, respectively. The fact that

in these sublibraries, the theoretical structures are much more likely to be atypical than

the experimental structures is a possible indicator that the former is somehow different

to naturally occurring structures. More importantly, the primary difference manifests as

a shoulder in the distributions in the negative D2 region. This is the region that signals

structures that are near to the structures with standard entropy. Thus the dihedral angles

deviate little from the most likely angles, indicating that they have not been altered by

secondary interactions. It should come as no surprise that some fraction of the theoreti-

cally derived structures contain dihedral angles that lack such information. However, the

important result here is that D2 is a reporter of such propensities.
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Table 4: The atypical structures —namely those structures whose |D2| value is greater
than or equal to 3.0— are listed according to their PDB ID —augmented by the chain ID.
The corresponding D1 and D2 values are also provided. Note that there are 17 experimental
(left) and 11 theoretical (right) structures. Perhaps noteworthy, is the fact that the sequence
identity between 1jekA and 1jekB is only 17.6%, and hence can lead to rather different values
of these measures.

Experimental Theoretical
PDB ID D1 D2 PDB ID D1 D2

1a2xB 7.0 3.9 1clgA -7.9 -4.4
1a92A -7.0 -3.9 1l1uT 7.0 3.9
1bb1B 7.9 4.4 1lh8A -6.1 -3.1
1czqA -6.7 -3.3 1llkA -6.7 -3.3
1g6uA -7.0 -3.9 1lp0A -6.7 -3.3
1jekA -7.0 -3.9 1m5gT 7.0 3.9
1jekB 7.0 3.9 1n1rA -6.1 -3.1
1jrjA -6.7 -3.3 1opvA -6.1 -3.1
1l2pA -7.0 -3.9 1sewA -7.9 -4.4
1l2yA -6.4 -3.1 1sr1 -6.7 -3.3
1motA -6.7 -3.3 2clgA -6.0 -3.0
1mz9A -6.1 -3.1
1n7sA -7.0 -3.9
1nyjA -7.0 -3.3
1pd7B 7.9 4.4
1qr9A -7.0 -3.9
1sb0B 7.0 3.9
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Table 5: The values of D2 for series of template structures (TS) and the corresponding
model structures (MS) derived from them are shown for the 1fdx target. The sequence
identity (SI), and the RMSD between the MS and target are also provided. Note that the
use of the target as the TS results in a different MS than the target as indicated by a
nonzero value in their RMSD.

Template SI(%) D2(TS) D2(MS) RMSD(Å)

1fdx 100.0 -0.73 -0.03 0.26
1fdn 66.7 -1.05 -0.08 0.69
5fd1 42.6 -0.48 -0.04 1.67
1fxd 35.2 -0.34 -0.04 5.27
2fxb 20.4 -0.12 -0.06 8.15

This can be further illustrated through a study of the D2 check on a series of struc-

tures constructed by homology modeling. The success of the homology modeling package,

MODELLER [257, 235], has previously been shown using several template structures (TS)

to construct model structures (MS) for the protein with PDB ID, 1fdx. This study has

been reproduced here with the additional construction of the model structure based on the

known 1fdx target structure as a template. The sequence identities (SI) and RMSD’s are

shown in Table 5, and illustrate the previously reported success. Namely, the greater the

sequence identity between primary structures of the TS and target, the smaller the RMSD

between the MS and the target. Although it should be noted that the RMSD is not zero

even when the target structure is used as the TS. As also reported in Table 5, the D2 check

of the target structure (= −0.73) is far from zero, as is the value of this checking function for

most of the TS’s. However, the D2 checks of all five predicted MS’s are nearly zero, and all

are evidently different to that of the corresponding TS and to that of the target structure.

The D2 check does not differentiate between these 5 MS’s in terms of their relative fidelity

to the target structure. Other scores or checking functions are needed for (and indeed some

satisfy) this property. However, the consistently zero value in the D2 checks of the MS’s

illustrates the fact that structures predicted by MODELLER, while often containing high

fidelity to the target structure, leave out some property that would make them atypical of

the PDB in the sense that is measured by the D2 check. This property is the long-range
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Table 6: The D2 check, G-factor and Z-score values for ten different protein structures
available in the PDB are listed.

PDBID D2 G-factor Z-score

1tupA -0.32 -0.02 0.41
1g9nG -0.08 -0.14 -4.47
1gg2A 0.33 0.07 -3.56
1stn -0.8 0.06 -0.04
1jekA -3.9 0.75 4.23
1jekB 3.9 0.67 5.41
1n7sA -3.9 0.62 3.77
1l1uT 3.9 0.05 -6.53
1lp0A -3.3 0.12 3.36
1lh8A -3.1 0.31 4.09

correlation in the dihedral angles between non-neighbor residues. While perhaps not sur-

prising that MODELLER removes this propensity, it is nevertheless useful that D2 check

provides a quick verification of this removal and it evidently provides an independent check

for what could be done to expand the functionality of programs such as MODELLER.

6.3.5 D2 and Other Checking Functions

A comparison between D2 check, the torsion angle G-factor in PROCHECK [205, 206] and

the Ramachandran Z-score of WHAT CHECK [202] has been made for several example

structures in the PDB. The torsion angle G-factors is a log-odds score of the observed

distributions of the φi-ψi combination. A low G-factor often indicates an unusual struc-

ture [205, 206]. The Ramachandran Z-score is the the number of standard deviations that

the score deviates from the expected value. It shows how “normal” the φi-ψi angles in a pro-

tein structure are. Z-scores above 4.0 and below -4.0 are very uncommon [202]. The results

are shown in Table 6 for six experimental structures —1tupA, 1g9nG, 1gg2A, 1stn, 1jekA,

1jekB and 1n7sA— and three theoretical structures —1lluT, 1lp0 and 1lh8A— which have

been chosen because they provide a range of D2 values. Except for two structures, 1g9nG

and 1gg2A, the Z-scores are compatible with the D2 values in terms of the assessment that

the structures are typical or not typical. However, most of the structures contain G-factors

that are not compatible with their D2 checks in terms of this assessment. (Note that in
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order to run PROCHECK, a resolution for a structure must be specified. Although this is

readily available for experimental structures, it is evidently not available for the theoreti-

cal structures. Nevertheless, the theoretical structures where run with varying resolutions

—2.0, 2.5 and 3.0 Å— all resulting in the same values for the G-factors.) In summary, D2

check differs from PROCHECK and WHAT CHECK in their assessments of these protein

structures, and evidently provides distinct information about the structures. In particular,

as seen above, the use of the dihedral-angle correlation between neighboring residues in

the D2 checking function allows one to obtain a signal of the presence for propensities be-

tween residues beyond the nearest neighbor. It thereby complements the information from

PROCHECK and WHAT CHECK.

6.4 D2Check Web Server

The D2 check function has recently been incorporated into a web-based server so as to read-

ily allow its use in the analysis of existing PDB structures or new structures at the residue

and protein scales. The server also provides related information such as the Ramachandran

plot and ψi-φi+1 plot of a protein structure. The values of D2Check at the residue scale can

easily be summarized using a novel color strip [258] that is also generated by the server.

All of the server-side interface and file handling software has been written in perl, php

and/or html with server-side includes. The user provides structural information either

through a direct upload of a file that follows the PDB file protocol, or by inputing the PDB

ID of the protein of interest. The default output includes the protein’s Ramachandran plot,

its ψi-φi+1 plot, the D2 check value for the whole protein, and a color strip summarizing

the D2 check values at the residue scale in a compact form. Several options are available

to the user: one can request analysis of a particular chain within the structure, elect to

receive the source files for the φi-ψi distribution, and/or elect to receive the source file for

the D2Check values at the residue scale. This data is provided (once available) by way an

e-mail alert message containing an html link to a page with a randomized address. (The

results are deleted within 7 days on the server and are unlikely to be found by a webbot.

Nevertheless, in future versions, these pages will use security protocols to further ensure the
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Figure 37: Given a protein structure as illustrated in panel (a) for the 1STN protein,
the D2Check server constructs the the Ramachandran plot (panel (b)), the ψi − φi+1 plot
(panel (c)), the D2 value for the overall protein, and the D2 color strip (panel (d)).

protection of user data from other users.)

The underlying server-side engines were developed locally and perform various calcula-

tions using the structural information available in the PDB file. It is by the use of these

engines that the D2Check server obtains the ψi-φi+1 and φi-ψi distributions for a given

structure, references the library of distributions precomputed from the PDB, calculates a

structure entropy of a given protein chain, obtains the information-theory entropies, and

produces the D1 and D2 scores [258].

The D2Check server can be used to obtain the D2 check values at the residue scale

—when analyzing the dihedral angles between and about residues— and at the protein

scale —when averaging over the entire structure. In the former case, it is convenient to

provide a simple and compact visualization of the 2n − 3 values. To this end, a color strip

is produced by the server that uses a succession of colors to represent the values along the

protein chain, starting with the N-terminus. Typical graphical outputs of the server are

illustrated in Figure 37, for the staphylococcal nuclease (1STN) structure of [259]. Future

upgrades will allow the user to make requests for multiple file (or multiple chain) processing

and the systematic detailed comparison of two different sequences, including a difference

strip of the corresponding D2Check values at the residue scale.

6.5 Conclusion

A dihedral-angle information entropy describing how a particular model protein is similar

to naturally occurring proteins has been discussed in this work. Based on this entropy, new
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checking functions, D1 and D2, are proposed as a check of the likelihood of the compatibility

of the dihedral angles of a given structure to the experimental structures in the PDB. The

results for both experimentally and theoretically derived structures in the PDB indicate

that this method is simple and effective.

Generally speaking, the D1 and D2 checks signal the propensity for a protein to contain

secondary structural interactions in comparison with the PDB. The overall structures found

to be atypical by these checking functions may be classified as either: (i) weakly correlated

(or mean-field like) in the sense that residues beyond the nearest residue do not affect

the dihedral angles, (ii) strongly correlated in the sense that distant residues lead to large

deviations in the dihedral angles away from the typical values, or (iii) incorrect in the

sense that some of the angles may have been incorrectly assigned. In particular, large

negative values of D2 check indicate structures that are perhaps too likely, while large

positive values indicate structures that are perhaps too unlikely in comparison with the the

typical structures of the PDB database. The use of D2 check at the residue level has been

developed and will be discussed separately [258]. D2 check is complementary to existing

scoring functions used in assessing structure predictions but provides a different form of

stereochemical information. For example, it can be used in concert with other functions to

identify important or unusual parts of a structure.

One criticism that could be levied against this work —and indeed against many bioin-

formatic tools based on a reference set— centers on the question of whether the chosen

reference sublibrary of the PDB is representative of the protein universe. The recent work

of Zhang et al. [260] suggests that the diversity of single-domain structures available in the

PDB database is indeed representative of the protein universe. But there may be a dan-

ger that the distribution of such structures is skewed in some way. In order to reduce the

presence of such biasing, the reference sublibrary selected in this work excluded structures

that had over 90% sequence redundancy. Meanwhile, the statistical information available

from the current size of the database was sufficient only for bins with 5◦ windows. While

both the coverage of the protein space and the accuracy of the distributions appear to be

sufficient in the treatment performed here, one would expect that both would improve in
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the future as the PDB grows.

One additional result of this work is the confirmation that the ψi-φi+1 plots contain

correlation between dihedral angles of a given residue and the identity of the neighboring

residue. This result validates previous observations [248, 218, 219, 220, 242, 244, 245]. It

is seemingly in contradiction of the Flory isolated-pair hypothesis [261] in which it was

assumed that the φi-ψi distribution of each residue in a protein backbone is independent

of the neighbors’ identities. However, the differences found here are sufficiently small that

violations of the isolated-pair hypothesis are subtle. For this same reason, it is not surprising

that Brooks and coworkers [262] found that the isolated-pair hypothesis holds very well upon

averaging over the ensemble to obtain conformational entropies.

In summary, this work serves to increase the awareness of the effect of nearest neighbor

frequency on the pairwise dihedral distributions and introduces a useful series of checking

functions that can be used to interpret both experimental and theoretical protein structures.
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CHAPTER VII

CONCLUSIONS

Current research efforts in surface science have largely been driven by experimental methods

capable of creating and probing structures at ever smaller scales. Soon it should be possible

to perform detailed classical simulations of systems that are of the same macroscopic size as

those that can be created in the laboratory. Unfortunately, while the length scales obtain-

able by theory and experiment may become comparable, a large disparity in the accessible

time scales will still exist. That is, without major algorithmic and theoretical advances,

standard molecular dynamics will not be able to reach physically-relevant macroscopic time

scales in the near future. Coarse-graining on some level will continue to be necessary. The

use of projective (stochastic) models —e.g. the Langevin model— in a rigorously defined

approach allows for a consistent treatment of the remaining modes whose detailed dynamics

are of interest.

To demonstrate the utility of such an approach the costly molecular dynamics simula-

tions of surface diffusion introduced in Chapter 2 provide a general prescription for extract-

ing the relevant parameters required in coarse-grained Langevin models. This in turn, allows

one to efficiently explore hypothesized mechanisms and interesting phenomenon associated

with surface diffusion (cf. Chapter 3) while maintaining a physically realistic description

of the system. Perhaps more importantly, the coarse-grained representation allows one to

extend the range of parameters that can be explored when brute force dynamics simulations

become impractical. This applies, in particular, to the low temperature regime where the

rate of the diffusion process becomes too slow to follow in a reasonable amount of simulation

time. However, the coarse-grained description is less sensitive to this fact and hence may

prove to be a powerful method for the study of surface diffusion. A final feature gleaned from

Chapter 2 confirms the adequacy of the simple phenomenological models often employed by

practitioners of Langevin simulations of surface phenomenon. Periodic potentials of mean
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force with barrier heights related to the activation energy and dynamics that lie in the

underdamped regime is precisely what have been found from the rigorous coarse-graining.

Based on these observations, the studies of diffusion over fluctuating barriers in ex-

tended systems discussed in Chapters 3 and 4 were readily performed in the coarse-grained

representation with minimal computational effort. The goal of attaining atomic-level con-

trol over the motion of adsorbates on surfaces discussed therein remains an active area of

research due to its potential impact on a wide range of fields. By taking advantage of

the large differences in diffusion rates induced by the resonant activation, this may offer

an alternative route to gaining such control. While this possibility has been confirmed in

Langevin systems [137] one of the key features of this hypothesis remains to be addressed.

Can this phenomenon be observed in molecular simulations of surface diffusion and if so,

what is the most desirable mechanism to give rise to such behavior?

The crux of the proposed mechanism for inducing the resonant activation is to control

the relaxation time of the barrier fluctuations, and this change should be directly manifested

in the corresponding force autocorrelation function. Unfortunately, as seen in Figure 6, the

relaxation rate of metal atoms on metal surfaces is incredibly fast, and any method for

modifying the fluctuations must occur on a similar time scale. Most likely, no physically

realizable approach will give rise to the desired phenomenon in this system. However there

are several proposed mechanisms for increasing the relaxation time that remain to be tested.

One possible method for affecting such a change is to alter the composition of the under-

lying subsurface layers, necessarily leading to a modification of the associated potential

and forces. Alternatively, one may introduce a variety of adsorbed molecular species that

interact with different modes of the surface hence giving rise to different correlations. Re-

gardless, once a mechanism for modifying the memory time of the barriers is determined,

the Langevin simulations of Chapters 3 and 4 indicate that it can presumably be utilized

in a straightforward manner to control the diffusive properties of the adsorbed species.

It is questions of this type that have been the motivation for much of the methods

development described here. In general terms, the ability to take advantage of the properties

of complex nonequilibrium environments in order to modify or control a desired observable
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has played a central role in the early chapters of this work and may have a profound impact

on the future design and construction of new materials. Unfortunately the tools required

for such studies are not implemented in any standard simulation packages and hence each

respective chapter required a sizable amount of code development. Furthermore in order to

begin to address these topics, one must first gain an understanding of the system subject

to these conditions, and the fundamental knowledge gained from such a study along with

the methods used to obtain it are interesting and useful to the community regardless of the

outcome. The tools developed in these chapters readily allow one to address a variety of

systems whether it be a thin polymer film adsorbed on a surface, the complex interactions

of many small molecules on a surface, or perhaps even the impact of external fields on the

diffusion processes (cf. Figure 1). While such features can in some instances be explored

with brute force simulation techniques, as the system becomes larger and more complex, it

becomes all the more advantageous to possess alternative approaches for their simulation

—such as the Langevin description— in terms of convenience, elegance and understanding.

Moreover, in some instances coarse-grained descriptions are the only option available. As

in the case of polymer systems adsorbed on surfaces mentioned above, atomistic simulations

involving both the dynamics of the substrate as well as the adsorbed polymeric moieties

quickly become prohibitively expensive. If one is interested for example, in the the self-

assembly properties of the polymers or electron transport within the film, the dynamics of

the substrate are of little concern to the process at hand but are nevertheless still necessary

for an accurate description of the system. The ability to rigorously subsume the surface

dynamics within a Langevin description allows one to recover some of the computational

cost of the simulation, while retaining an adequate representation of the process.

In addition to the simulations of surface diffusion discussed in the introductory chapters,

several other interesting topics have been explored including the nature of the transition

state in a noisy environment and the construction of tools for protein structure validation.

The development of a time-dependent transition state that is strictly free of recrossings in

harmonic systems and its ensuing implementation and validation were discussed in Chap-

ter 5. The moving dividing surface that is attached to the transition state trajectory can
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serve as an alternative to the standard fixed transition state and it plays an analogous role

in a noisy environment. Furthermore, the moving surface also possesses several advanta-

geous numerical properties such as improved convergence of the desired observables and a

reduced number of recrossings in anharmonic cases. The corresponding development of a

rate formalism based on the transition state trajectory is currently in progress.

The rate is of primary importance for almost every chemical process and several theoret-

ical estimates for this quantity are available. However, despite several decades of develop-

ment they still suffer from a well-known deficiency in that all quickly become unreliable in

anharmonic systems, leaving only recourse to costly numerical simulations in this situation.

Practically speaking no chemically relevant molecular system is harmonic and this fact leads

directly to the main benefit of the moving transition state. The ability to still provide a

transition state that is approximately free of recrossings in these cases is a major advance

when coupled with its improved convergence properties. While only simple prototypical

reactive systems were studied in Chapter 5, in real systems such as those of Chapter 2 the

numerical effort required to obtained a converged rate is highly nontrivial. The moving

transition state has the ability to mitigate a substantial amount of this cost.

A recent extension of the transition state trajectory to Hamiltonian systems may provide

the most straightforward method of applying this approach to molecular systems, although

the corresponding Langevin formalism would function equally as well provided the projec-

tion to the coarse-grained representation has been performed. In molecular systems, there

are often two problems associated with practical implementations of rate theory calcula-

tions. The first is related to the well-known deficiencies of the chosen dividing surface but

the second is more troubling and remains in general an unresolved issue. In highly dimen-

sional systems such as for example protein folding dynamics, it is often difficult to even

define a reaction coordinate for the process, much less extract the relevant parameters for

a coarse-grained representation. However, provided this requirement is fulfilled and the re-

action coordinate in known —which is indeed the case for the surface dynamics simulations

of Chapter 2, most simple organic reactions and isomerizations, as well as numerous other

systems of chemical relevance— then only an analysis of the bath dynamics is needed to
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complete the construction of the moving dividing surface. The rate calculation would then

proceed in the same manner as any other, except the moving transition state would be

used as the reactivity criterion instead of the standard fixed surface, and hence little new

machinery would be needed.

Finally the development of a checking function for protein structure validation outlined

in Chapter 6 provides an additional tool for those involved with protein structure design

and modeling. This challenging task often takes advantage of several independent checks

to gauge the quality of a given proposed structure. Chapter 6 provides such a metric based

on information theory that characterizes the compatibility of a particular model protein’s

dihedral angles to those in the database of naturally occurring proteins. Additionally, to

facilitate its use a convenient web interface has been created providing the community with

open access to these tools.

The results briefly discussed in Section 6.4 allude to a potentially very useful feature of

this checking function. If aD2 value is assigned at the residue level, instead of averaging over

the entire protein as was largely the focus of Chapter 6, then it becomes immediately obvious

where atypical segments of the protein are located. Furthermore, within this framework it

becomes trivial to determine the areas that are effected for example by a point mutation. In

this case the difference of the D2 values evaluated at the residue level along the native and

mutant protein structures displays the changes that occur in the immediate vicinity of the

mutation due to modifications of the local structure as expected. But perhaps surprisingly,

changes at distant residues also appear which may be spatially close to the said mutation

although very far away along the sequence. This observation may have wide applicability in

the community as a particularly simple indicator of the long-range correlations in proteins.
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APPENDIX A

PROPERTIES OF THE STOCHASTIC BARRIERS

A.0.1 Sinusoidal Potentials

The two-dimensional potential presented here is the same as that used in previous work on

the diffusive motion on coupled and uncoupled stationary surfaces [91]. Although the form

in equation (14) may at first glance appear coupled, a simple point transformation, rotating

the coordinate frame by π/4, can be used to define the new coordinates, u = x + y and

v = x− y. This readily reduces equation (14) to

U(x, y; t) = (2Eb + η(t)) [2 − cos(v) − cos(u)] , (74)

which is equivalent to the nonstochastic decoupled potential used in reference [91] when

η = 0.

A.0.2 Merged Harmonic Oscillators

The barrier height for the MHO potentials is not given by a simple additive stochastic

variable as with the sinusoidal potentials. As a consequence, the barrier height distribution,

PMHO(V ‡
m), is no longer given by equation (17). However, it can easily be determined

according to

PMHO(V ‡
m) = P

(

η(V ‡
m)
) ∂η(V ‡

m)

∂V ‡
m

, (75)

where η(V ‡
m) is related to the barrier height as before. This distribution is both sharper and

slightly skewed in comparison to the Gaussian distribution in η. Therefore, the stochastic

sinusoidal potentials parameterized by η with a variance of 0.2 and 0.6 correspond approx-

imately to stochastic MHO barriers with a variance of 0.05 and 0.22, respectively. (The

correspondence is due to the sharpening in the distribution, but it is approximate because

the former is symmetric while the latter is slightly skewed.) Although it is possible to

increase the variance in the random variable to yield stochastic MHO barrier heights with

the large variances (e.g., 0.2 and 0.6) initially investigated using sinusoidal potentials in
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Section 3.3, it is not desirable because it leads to a significantly non-Gaussian distribution

in the barrier heights. Moreover, this wide η distribution contains a significant probability

for inverse barriers, vis-a-vis wells, in which k‡m < 0. (Note that when this probability is

vanishingly small as in most of the cases in this work, the dynamics are not significantly af-

fected.) Consequently, the parameters for the sinusoidal potentials were chosen to coincide

with those of the stochastic MHO.
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APPENDIX B

SPACE-DEPENDENT FRICTION FOR MERGED HARMONIC

OSCILLATOR POTENTIALS

The piecewise nature of the MHO potential results in a piecewise form for the associated

SDF. Although incoherent, every barrier gives rise to the same averages, and hence the

procedure needs to be carried out only over a small region defined by the closed interval,

[x0
m, x

‡
m]. The limits of integration over this region can be determined from the expression

for the connection points

x−m = − k0λ

2k0 − 2k‡m
+mλ , (76)

where k‡m = −(k0 + η(t)). This can equivalently be expressed as

η(t) = − k0λ

2(x−m −mλ)
− 2k0 . (77)

At the top of the barrier, when x−m = x‡m, η(t) = ∞. In the intermediate region for arbitrary

x,

η(t) = − k0λ

2(x−mλ)
− 2k0

≡ η∗ . (78)

Otherwise, at the minimum when x−m = x0
m, η(t) = −k0.

Although it is apparent from the expression for the barrier height that the corresponding

distribution is non-Gaussian, the resulting forces are Gaussian with the probability given

by equation (17). The average force for a given x is simply the weighted average of the

forces when x is in the respective regions, (x0
m, x

−
m) and (x−m, x

‡
m), which correspond to η

regions of (−k0, η
∗) and (η∗,∞). The resulting integral for the average value of F (x; t) is

now:

〈FU(x; t)〉 =

∫ η∗

−k0
dη F (x)P (η) +

∫∞
η∗ dη F (x)P (η)

∫∞
−k0

dη P (η)
. (79)
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Here, one must be careful in determining which portion of the force to use in the above

equation. For example, when η < η∗, the majority of the force is due to the barrier portion

of the potential, not the well component. The average can thus be expressed as

〈FU(x; t)〉 = −
∫ ∞

η∗

dη k0(x− x0
m)P ′(η) +

∫ η∗

−k0

dη (k0 + η)(x− x‡m)P ′(η) , (80)

where P ′(η) is defined through the normalization condition, i .e.,

∫ η∗

−k0

dη P ′(η) +

∫ ∞

η∗

dη P ′(η) ≡ 1 , (81)

which leads to the probability distribution

P ′(η) =
2√

2πσ2

exp
(

− η2

2σ2

)

1 + erf
(

k0√
2σ2

) , (82)

where erf(x) is the standard error function. Use of the normalization condition reduces the

average force to

〈FU(x; t)〉 = k0(x− x‡m) − [k0(x− x0
m) + k0(x− x‡m)]

∫ ∞

η∗

dη P ′(η)

+ (x− x‡m)

∫ η∗

−k0

dη ηP ′(η) . (83)

The remaining integrals are readily computed; the explicit form of the average force is

〈FU(x; t)〉 = k0(x− x‡m) −
(

k0(2x− x0
m − x‡m)

)





1 − erf
(

η∗
√

2σ2

)

1 + erf
(

k0√
2σ2

)





+ (x− x‡m)

√

2σ2

π





exp
(

− k2
0

2σ2

)

− exp
(

− (η∗)2

2σ2

)

1 + erf
(

k0√
2σ2

)



 . (84)

The second quantity to be computed is the average of the square of the force, and

the derivation follows that (above) of the average force. The limits of integration are the

same and the Gaussian integrals can be calculated in the same manner. Again using the

normalization requirement, the first integral is eliminated such that

〈FU(x; t)2〉 = k2
0(x− x‡m)2 + [k2

0(x− x0
m)2 − k2

0(x− x‡m)2]

∫ ∞

η∗

dη P ′(η)

+ 2k0(x− x‡m)2
∫ η∗

−k0

dη ηP ′(η) + (x− x‡m)2
∫ η∗

−k0

dη η2P ′(η) . (85)
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The first two integrals are the same as before, and the third can be obtained with little

effort. The resulting mean squared force is

〈FU(x; t)2〉 = k2
0(x− x‡m)2 +

(

k2
0(x− x0

m)2 − k2
0(x− x‡m)2

)





1 − erf
(

η∗
√

2σ2

)

1 + erf
(

k0√
2σ2

)





+
4k0σ

2

√
2πσ2

(x− x‡m)2





exp
(

− k2
0

2σ2

)

− exp
(

− (η∗)2

2σ2

)

(

1 + erf
(

k0√
2σ2

))





+ σ2(x− x‡m)2





erf
(

η∗
√

2σ2

)

+ erf
(

k0√
2σ2

)

1 + erf
(

k0√
2σ2

)





−
√

2σ2

π
(x− x‡m)2





η∗ exp
(

− (η∗)2

2σ2

)

+ k0 exp
(

− k2
0

2σ2

)

1 + erf
(

k0
2σ2

)



 . (86)

The SDF for the MHO potential is then obtained by appropriate substitutions into equa-

tion( 11).
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APPENDIX C

BACKWARD TIME STOCHASTIC INTEGRATOR

The simulations of the reaction dynamics presented in Section 5.5 require one to follow a

stochastic trajectory numerically from t = 0 both forward in time to t = T/2 and backward

in time to t = −T/2. For the forward propagation, a standard stochastic integration

scheme [139, 140] has been implemented. The backward integration requires special care

if one wishes to follow the same stochastic trajectory both forward and backward in time.

The modification of the integration scheme that is necessary to this end is described here.

The forward numerical integrator for Langevin equations [139, 140] takes the form

r(t+ δt) = r(t) + c1v(t) + c2a(t) + δr , (87)

v(t+ δt) = c3v(t) + c4a(t) + c5a(t+ δt) + δv , (88)

where a(t) is the acceleration caused by the potential of mean force, the ci are numerical

coefficients that depend on the time step δt and the damping constant γ, and the random

variables δr and δv are sampled from a known Gaussian distribution. Time reversal in this

algorithm can be obtained through a shift in time by −δt so that t becomes t− δt and t+ δt

becomes t. This replacement and a simple reorganization leads to

r(t− δt) = r(t) − c1v(t− δt) − c2a(t− δt) − δr , (89)

v(t− δt) =
1

c3
[v(t) − c4a(t− δt) − c5a(t) − δv] . (90)

The backward step (89) cannot be evaluated as it stands because the acceleration a(t− δt)

depends on the position r(t− δt) that is yet to be determined. To circumvent this problem,

we substitute equation (90) into equation (89) to obtain

r(t− δt) = r(t) − c1
c3

[v(t) − c5a(t) − δv] − δr +

(

c1c4
c3

− c2

)

a(t− δt) . (91)

When the acceleration a(t− δt) is expressed in terms of the position r(t− δt) through the

equation of motion, equation (91) becomes an implicit equation for the positions r(t− δt)
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at the earlier time. For all but the simplest potentials, it cannot be solved explicitly.

Specifically, for the anharmonic potential (34),

U(x, y) = −1

2
ω2

xx
2 +

1

2
ω2

yy
2 + kx2y2 , (92)

it leads to the coupled equation system

x(t− δt) = X(t) +

(

c1c4
c3

− c2

)

(

ω2
xx(t− δt) − 2kx(t− δt)y(t− δt)2

)

, (93)

y(t− δt) = Y (t) −
(

c1c4
c3

− c2

)

(

ω2
yy(t− δt) + 2kx(t− δt)2y(t− δt)

)

, (94)

where X(t) and Y (t) denote the contributions of the first three terms in equation (91). In

the harmonic limit k = 0, the two equations uncouple and can be solved for simple explicit

expressions for the position updates. For nonzero k, equations (93) and (94) represent an

implicit integration scheme. It can be converted into an explicit method by rearranging the

terms into

x(t− δt) =
X(t)

1 −
(

c1c4
c3

− c2

)

(ω2
x − 2ky(t− δt)2)

, (95)

y(t− δt) =
Y (t)

1 +
(

c1c4
c3

− c2

)

(

ω2
y + 2kx(t− δt)2

)

. (96)

The denominators in equations (95) and (96) are updated using equations (93) and (94), but

the unknown corrections involving a(t−δt) are neglected because the coefficient c1c4/c3−c2

is of second order in the time step δt. This leads to

x(t− δt) ≈ X(t)

1 −
(

c1c4
c3

− c2

)

(ω2
x − 2kY (t)2)

, (97)

y(t− δt) ≈ Y (t)

1 +
(

c1c4
c3

− c2

)

(

ω2
y + 2kX(t)2

)

. (98)

Finally, we insert these approximations into the right-hand sides of equations (95) and (96)

to obtain an explicit integration scheme backwards in time.
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APPENDIX D

CONSTRUCTION OF THE DIHEDRAL-ANGLE DISTRIBUTIONS

This appendix describes the specific approach used to generate the ψi-φi+1 and φi-ψi plots.

An analysis of these distributions, confirming that the former is not trivially related to the

latter, is also included here. Additionally the construction of the uniformizing cumulative

Gaussian distribution used to generate the D2 check is provided.

D.0.3 Data-mining the ψi-φi+1 distributions

All 400 ψi-φi+1 plots have been generated for each of the five sublibraries, NR50, NR70,

NR90, NR100 and EXP. The ψi-φi+1 space has been discretized into a two-dimensional grid

consisting of 5◦×5◦ bins. Often, such results are summarized in a plot of the frequencies of

occurrence, that is, the number of observed angles in a given bin [248, 234]. If the sample

size is large enough, such a frequency (normalized by all the hits) is a good estimate of

the integrated probability over all structures with angles in the domain space of the bin.

In what follows, the sampling size of the sublibraries of the current PDB is assumed to be

“large enough” and this integrated probability is loosely referred to as a probability. In

addition, the 20 φi-ψi plots are generated from the pruned sublibrary following the same

approach. These 420 histogramed distributions can be saved into a single database which

can, in turn, be used to calculate the structure entropy differences as described in the text.

The dependence of ψi and φi+1 on the identity of the residue can be further elucidated

by comparison with the one-dimensional distributions obtained from projections of the
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Ramachandran and ψi-φi+1 plots, i.e.,

P ′
R(ψi) =

∫

dφiPR(φi, ψi) (99a)

P ′′
R(φi) =

∫

dψiPR(φi, ψi) (99b)

P ′
R<,R>

(ψi) =

∫

dφi+1PR<,R>(ψi, φi+1) (99c)

P ′′
R<,R>

(φi+1) =

∫

dψiPR<,R>(ψi, φi+1) . (99d)

In addition, a measure of the correlation between ψi and φi+1 can be obtained from the

difference,

Pc = |PR<,R>(ψi, φi+1) − P ′
R<

(ψi)P
′
R>

(φi+1)| . (100)

A nonzero value of Pc indicates correlation between the two angles.

D.0.4 Dihedral Angle Distributions

The ψi−φi and φi−ψi+1 dihedral angle distibutions have been obtained for all five libraries

described in Section D.0.3. The observations to be described in this subsection are true for

each of these sets and hence will be illustrated using only one of them; namely the NR90

sublibrary. Although any of the others could be used for this purpose, it has also been

chosen because it was found to be the best choice (as described in Section 6.3.2 of the

primary manuscript) for the use of the D1 and D2 scores defined in Section 6.3.3, and hence

this illustrations is also useful in interpreting the subsequent analysis of the manuscript.

The relative abundance of each residue pair and that of each residue in the NR90

sublibrary are shown in Table 7. Eight representative plots of ψi-φi+1 distributions are

shown in Figure 38. All 20 φi-ψi and 400 ψi-φi+1 plots are included in the Supplement B.

The chosen distributions are those for the {i, (i + 1)} pairs, ALA-SER (a), ALA-GLU (b),

SER-ALA (c), GLU-ALA (d), ARG-GLY (e), ARG-GLU (f), GLY-ARG (g), and GLU-

ARG (h). It is easily seen that the distribution varies in a nontrivial manner for each

residue. In particular, each row illustrates that the distribution is heavily dependent on the

order of the sequence. (This is not surprising since the structure along the dipeptide bond

is strongly influenced by the order of the residues.) In addition, the differences between the

two pairs of distributions —a, b and e, f— in which the second residue is varied while the
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other remains the constant, as well as the two pairs of distributions —c, d and g, h— for

which the first residue is similarly varied, also demonstrate that the identity of a distant

residue affects the ψi-φi+1 distributions.

Figure 39 shows the correlation, Pc, calculated from equation (100) between ψi and

φi+1 for two pairs ALA-GLU and ARG-GLU. It illustrates that there is strong correlation

between the two angles, which provides further justification that the ψi-φi+1 plot contains

nontrivial information. Thus both the φi-ψi and ψi-φi+1 plots provide important informa-

tion about the conformation of protein secondary structures.
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Figure 38: Logarithmic probability distribution of ψi-φi+1 for ALA-SER (a); ALA-
GLU (b); SER-ALA (c); GLU-ALA (d); ARG-GLY (e); ARG-GLU (f); GLY-ARG (g);
GLU-ARG (h). The results were obtained from samples of 2,696; 2,517; 2,424; 2,532;
1,520; 1,494; 1,844; 1,501 angle pairs, respectively. Three-letter names are used to identify
the corresponding amino acid as in Table 7. The subscripts i and i + 1 on ψi and φi+1,
respectively, were omitted. The scale is the same for all plots.
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Table 7: The relative abundance that a given ordered R<-R> residue pair is found in the NR90 sublibrary for all 400 possible such
pairs is listed below. Note that the ordering is from the N ′ to C ′, and hence the abundance of R<-R> is not necessarily equal to that
of R>-R<. Three-letter names are used to identify the corresponding amino acid. The total number of pairs in the database is 506,633.
The last line displays the relative abundance of given residue in the database for all 20 amino acids. The total number of residues in the
database is 503,871.

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

Ala 0.76 0.36 0.32 0.45 0.12 0.29 0.50 0.59 0.18 0.41 0.67 0.46 0.16 0.28 0.33 0.53 0.45 0.11 0.26 0.56
Arg 0.33 0.25 0.19 0.27 0.09 0.17 0.30 0.30 0.10 0.28 0.41 0.23 0.09 0.23 0.20 0.25 0.21 0.06 0.18 0.35
Asn 0.32 0.18 0.25 0.22 0.08 0.16 0.24 0.40 0.10 0.27 0.38 0.23 0.08 0.20 0.26 0.31 0.27 0.08 0.19 0.31
Asp 0.45 0.24 0.25 0.30 0.11 0.17 0.35 0.47 0.11 0.35 0.50 0.35 0.11 0.27 0.29 0.35 0.33 0.09 0.26 0.40
Cys 0.15 0.10 0.10 0.10 0.07 0.08 0.10 0.15 0.05 0.08 0.16 0.12 0.03 0.07 0.11 0.14 0.11 0.02 0.06 0.10
Gln 0.30 0.17 0.16 0.18 0.07 0.20 0.22 0.29 0.07 0.19 0.34 0.22 0.08 0.15 0.17 0.26 0.21 0.07 0.14 0.27
Glu 0.50 0.30 0.29 0.36 0.10 0.24 0.48 0.41 0.12 0.38 0.57 0.43 0.13 0.24 0.22 0.31 0.31 0.12 0.22 0.44
Gly 0.57 0.36 0.34 0.45 0.16 0.29 0.41 0.64 0.16 0.43 0.58 0.50 0.14 0.32 0.30 0.62 0.52 0.12 0.33 0.54
His 0.14 0.09 0.09 0.11 0.06 0.08 0.11 0.17 0.09 0.12 0.18 0.11 0.05 0.10 0.14 0.13 0.13 0.05 0.08 0.14
Ile 0.44 0.25 0.28 0.34 0.10 0.19 0.34 0.37 0.12 0.30 0.38 0.36 0.09 0.19 0.26 0.39 0.35 0.07 0.20 0.36
Leu 0.67 0.44 0.37 0.47 0.13 0.39 0.58 0.60 0.17 0.39 0.65 0.56 0.14 0.27 0.39 0.60 0.53 0.08 0.27 0.57
Lys 0.49 0.24 0.29 0.37 0.11 0.21 0.43 0.43 0.11 0.36 0.54 0.42 0.11 0.23 0.27 0.33 0.34 0.08 0.22 0.46
Met 0.15 0.09 0.09 0.12 0.03 0.08 0.13 0.15 0.04 0.10 0.16 0.15 0.07 0.07 0.07 0.13 0.12 0.02 0.06 0.14
Phe 0.27 0.16 0.19 0.27 0.07 0.15 0.22 0.30 0.09 0.19 0.31 0.25 0.07 0.14 0.24 0.28 0.27 0.05 0.16 0.24
Pro 0.38 0.20 0.20 0.28 0.08 0.16 0.37 0.42 0.10 0.20 0.35 0.24 0.07 0.17 0.22 0.39 0.24 0.07 0.16 0.36
Ser 0.48 0.28 0.29 0.36 0.16 0.25 0.34 0.74 0.13 0.34 0.57 0.35 0.12 0.27 0.29 0.73 0.40 0.12 0.25 0.49
Thr 0.46 0.23 0.25 0.32 0.14 0.20 0.30 0.46 0.13 0.34 0.58 0.31 0.10 0.28 0.30 0.40 0.39 0.12 0.25 0.53
Trp 0.10 0.06 0.09 0.09 0.03 0.07 0.09 0.14 0.04 0.09 0.11 0.10 0.03 0.05 0.06 0.09 0.09 0.03 0.06 0.12
Tyr 0.25 0.17 0.20 0.23 0.10 0.15 0.20 0.28 0.08 0.19 0.29 0.18 0.07 0.19 0.20 0.26 0.25 0.09 0.20 0.22
Val 0.56 0.33 0.32 0.45 0.13 0.25 0.44 0.44 0.17 0.37 0.58 0.49 0.13 0.26 0.33 0.46 0.56 0.09 0.25 0.52

7.78 4.49 4.56 5.73 1.90 3.76 6.14 7.76 2.17 5.39 8.28 6.05 1.88 3.94 4.64 6.94 6.11 1.55 3.79 7.12
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Figure 39: Correlation between ψi and φi+1 for ALA-GLU (a) and ARG-GLY (b). Pc is
on a logarithmic scale and the subscripts on ψi and φi+1 were omitted for clarity.

D.0.5 The D2 checking function for a Gaussian Distribution

If the probability distribution in equation (71) were a Gaussian distribution with median

located at zero, and standard deviation σ, then both it and D2 check in equation (73) could

be measured directly with only a slight modification of the domain of integration. Namely,

I(x) ≡















1
σ
√

2π

∫ x
−∞ e−y2/2σ2

dy if x < 0

1
σ
√

2π

∫∞
x e−y2/2σ2

dy if x ≥ 0

, (101)

which can also be expressed by the error function,

I(x) ≡















1
2(1 + erf( x

σ
√

2
)) if x < 0

1
2(1 − erf( x

σ
√

2
)) if x ≥ 0

, (102)

where erf(·) is the error function defined as

erf(x) ≡ 2√
π

∫ x

0
e−y2

dy . (103)

If I is expressed in terms of the number of standard deviations away from the median as

I(±nσ) ≡ 1

2
− 1√

2π

∫ nσ

0
e−y2/2σ2

dy , (104)

then insertion of I into equation (73) leads to the claimed result,

D2 = ±nσ . (105)
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By setting σ equal to 1 in the definition of D2 as done in equation (73), D2 takes on values

that are equal to the increment in standard deviations for the same relative cumulative

probability as in the Gaussian distribution. This mapping performed by way of equating

cumulative probabilities effectively “uniformizes” the actual distribution.
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