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Introduction

Since the discovery of the characteristic x-ray lines by C. G. Barkla [Bark08], the
x-ray fluorescence radiation was considered to be isotropically emanated and to be
independent of the mechanism creating the core hole which is refilled during the
fluorescence process. This picture has been commonly accepted until the discovery
of the x-ray resonant Raman effect in the middle of the 1970s (see [Hämä89] for an
introduction and see references therein).

More subtle effects like the Bloch ~k-selectivity of resonantly excited valence fluores-
cence spectra remained undiscovered until the advent of intense synchrotron radi-
ation sources and the availability of high resolution single crystal monochromators
and spectrometers.

First evidence for the Bloch ~k-selectivity of resonant inelastic x-ray scattering (RIXS)
spectra was found by Rubensson et al. in 1990. They discovered that in the case
of a resonant excitation by monochromatic photons with energies close to the Si
L2,3 binding energy (100 eV), the shape of the valence fluorescence line from a Si
single crystal sample depends on the actual energy of the incident photons [Rube90].
However, at that time this observation was attributed to a multielectron excitation
due to shake processes during the creation and the subsequent annihilation of the
core hole.

Only two years later, Ma et al. presented RIXS spectra from the C K edge in di-
amond (284 eV), showing a more drastic dependence of the valence line shape on
the incident photon energy [Ma92]. They for the first time explained this effect
in terms of the electronic band structure of the sample by treating the resonantly
excited fluorescence process as one single scattering process instead of using the
absorption-followed-by-emission picture. Applying the Kramers-Heisenberg formula,
they derived the law of Bloch ~k-momentum conservation. It states that the differ-
ence between the Bloch ~k-vector of the photoelectron and the Bloch ~k-vector of
the valence electron refilling the core hole, must equal the momentum ~q transferred
to the electron system by the scattering photon. Thereby the absorption and the
emission part of the scattering process are interconnected via the electronic band
structure. Based on this mechanism the authors have explained the occurence of
distinct spectral features in the valence fluorescence line as a function of the actual
energy of the incident photons.

Miyano and coworkers proved the incident energy dependence to be caused by the
electronic band structure by comparing Si L2,3 RIXS spectra from a Si single crystal
to RIXS spectra from amorphous Si, measured under identical experimental condi-
tions. The spectra obtained from the single crystal depend on the incident energy as
expected, whereas the spectra gained from the amorphous sample do not [Miya93].
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2 Introduction

By the middle of the 1990s, the law of Bloch ~k-momentum conservation was well
established. Within a short time several fundamental articles were published. In
1994 Johnson and Ma presented the first set of calculated ~k-selective RIXS spectra
[John94]. They compared the calculated RIXS spectra from the K edge of C in
diamond to the previously measured ones [Ma92]. In the same year Ma gave an

extensive derivation of the Bloch ~k-conserving RIXS cross section [Ma94]. Shortly

after, Ma and Blume discussed the conditions required for a Bloch ~k-conserving
scattering process [Ma95a]. They stated, that both the valence and the conduction
band states have to be delocalized, and that the localization of the core hole does
not disturb the Bloch ~k-conservation as long as it is impossible to identify the atom
whose core state actually has been excited. Moreover, Ma and coworkers explicitly
showed the importance of a nonvanishing amount of the momentum transfer ~q for
the RIXS process. They measured the resonantly excited Si Kβ valence fluorescence
line with ~q parallel to the 〈100〉, 〈110〉, and 〈111〉 crystal axes and found the shape
to show a significant dependence on the orientation of ~q relative to the crystal axes
[Ma95b]. Thanks to the high energy of the Si Kβ radiation (1839 eV), the size of
the momentum transfer ~q is not negligible compared to the size of the first Brillouin
zone of the sample. Therefore, the photoelectron and the valence electron refilling
the core hole do not have the same Bloch ~k-momentum, as it is the case if the C K
edge (285 eV) or the Si L edge (100 eV) is investigated.

In the follwing years Bloch ~k-selective RIXS was applied to a variety of materials
such as hexagonal BN at the B K edge [Jia96, Carl99, Shir01], graphite at the C K
edge [Carl95, Carl99], SiC at the Si L and at the C K edge [Lüni97], and the III-IV
semiconductors AlN and GaN at the N K edge and InP at the P K edge [Eise99].

However, Bloch ~k-selective RIXS so far has not been applied to metallic samples
nor has it been tested within the hard x-ray regime. In this thesis a study of RIXS
at the K edge of Ni in NiAl and at the Cu K edge in metallic Cu is presented,
demonstrating the validity of the Bloch ~k-conservation for RIXS using hard x-rays
and its applicability to metals and alloys. In order to do so, the measured spectra
are compared to calculated ones that are based on a linearized augmented plane
waves (LAPW) band structure calculation.

Moreover, four effects that may affect the Bloch ~k-conserving RIXS process are
discussed for the example of metallic Cu:

1. The interaction with phonons in the intermediate state can lead to the partial
destruction of the ~k-momentum conservation resulting in a non-~k-conserving frac-
tion present in the RIXS spectra. The amount of this non-~k-conserving fraction is
investigated by means of measurements performed at different temperatures.

2. The shift of bands due to the screening of the core hole is accounted for within a
supercell calculation. Special attention will be paid to the convergence of the charge
density with respect to the size of the supercell.

3. In the case of late 3d elements like Ni and Cu, the valence band is dominated
by the 3d electrons whereas only a small admixture of 4p states is present. As-
suming the dipolar matrix element to be two orders of magnitude larger than the
quadrupolar matrix element, about 90 % of the valence fluorescence line is due to the
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dipolar 4p→1s transition and approximately 10 % of the intensity stems from the
quadrupolar 3d→1s transitions. The relative strength of the dipolar and quadrupo-
lar transititions is calculated ab initio, based on the LAPW calculation.

4. The low energy tail of the valence fluorescence spectra is dominated by the KNN
radiative Auger satellite, partly obscuring the shape of the Bloch ~k-selective valence
spectra. This satellite is accounted for by a semiempirical model which is derived
from the resonant double differential scattering cross section. The model is validated
by investigating the KMN and KMM radiative Auger satellites.

The thesis is organized as follows. Within Chapter 1 the fundamentals of Bloch ~k-
selective resonant inelastic x-ray scattering are presented. In Chapter 2 the principles
of the density functional theory (DFT) and of the LAPW method are resumed. The
results on NiAl are given in Chapter 3. In the following chapters the four effects
mentioned above are discussed, and the results are applied to Cu in Chapter 8.
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Chapter 1

Bloch ~k-Selective Resonant Inelastic
Scattering of X-rays

This chapter resumes the theoretical fundamentals of inelastic x-ray scattering and
gives a short description of x-ray absorption and emission as well as nonresonant
inelastic x-ray scattering processes. Then the resonant inelastic scattering scheme
is evaluated revealing a law of Bloch ~k-momentum conservation. Its implication for
the lineshape of resonantly excited valence fluorescence spectra is discussed in the
last section.

1.1 Inelastic X-Ray Scattering

The scattering of x-rays by an electron system can be described as follows. The
incoming photon, characterized by its energy h̄ω1, its momentum h̄~k1, and its po-
larization vector ε̂1, is scattered into an outgoing photon having the energy h̄ω2, the
momentum h̄~k2, and the polarization vector ε̂2. During the scattering process the
energy h̄ω = h̄(ω1 − ω2) and the momentum h̄~q = h̄(~k1 − ~k2) are transferred to the
electron system of the sample thereby undergoing a transition from the ground state
into an excited state.

q

k2ω2ω1 k

Θ

, ,ε2,, 1 ε1
energy transfer:

h̄ω = h̄(ω1 − ω2)

momentum transfer:

h̄~q = h̄(~k1 − ~k2)

|~q | ≈ 2|~k1| sin Θ/2

Figure 1.1: The scattering process.
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6 1. Bloch ~k-Selective Resonant Inelastic Scattering of X-rays

Within the low energy transfer limit, when ω1 ≈ ω2 and thus |~k1| ≈ |~k2|, the mo-

mentum transfer |~q | is determined by the scattering angle Θ via |~q | ≈ 2|~k1| sin (Θ/2)
(Fig. 1.1).

The quantity measured in the experiment is the double differential scattering cross
section (DDSC) which is defined as the number of photons scattered into the energy
interval [h̄ω2, h̄ω2 +dh̄ω2] and into the interval of the solid angle [Ω,Ω+dΩ] normal-
ized to the incoming photon flux. The DDSC is related to the transition probability
of the system wi7→f by

d2σ

dω2 dΩ
= N0

∑
i,f

pi
I0

wi7→f ρf , (1.1)

where pi is the probability for the system to be in the initial state |i〉,

I0 =
N0

V
c is the incident photon flux, ρf =

V

(2π)3

ω2
2

c3

denotes the photon density of the final states and where V is the scattering volume.
The electron system of the sample without external fields is described by the many
particle Hamiltonian

H =
∑
j

− h̄2

2m
~∇2
j + V (~rj) ≡ H0, (1.2)

where the sum over j covers all electrons of the system. In the presence of a photon
field the vector potential operator ~A(~rj) acting on the jth electron has to be included
into the kinetic energy term of the Hamiltonian:

H =
∑
j

1

2m

(
−ih̄~∇j −

e

c
~A(~rj)

)2

+ V (~rj). (1.3)

The vector potential can be expanded into photon creation and photon annihilation
operators a and a†:

~A(~rj) =
∑
λ

√
2πh̄c2

V ωλ

(
ε̂λ aλ e

i~kλ·~rj + ε̂∗λ a
†
λ e
−i~kλ·~rj

)
. (1.4)

where the index λ labels both the wave vector and the polarization of each photon
state. Within the Coulomb gauge (~∇ · ~A = 0) the photon field results in two
additional terms in the Hamiltonian that are considered to be the interaction term
Hint:

H =
∑
j

− h̄2

2m
~∇2
j +

ih̄e

mc
~A(~rj) · ~∇j +

e2

2mc2
~A(~rj)

2︸ ︷︷ ︸
Hint

+V (~rj) = H0 +Hint. (1.5)

The photon field is only a small perturbation to the electron system and therefore
can be accounted for by means of time dependent perturbation theory. Up to second
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order the transition probability is then given by

wi7→f =
2π

h̄

∣∣∣∣∣〈f |Hint|i〉+
∑
m

〈f |Hint|m〉〈m|Hint|i〉
εm − εi

∣∣∣∣∣
2

δ(εf − εi), (1.6)

where |m〉 is an intermediate state. The states |i〉, |m〉, and |f〉 are compound states
describing both the electron system of the sample and the photon field.

Now considerations are restricted to processes with at most one photon present in
the initial and in the final state. Thus, the states |i〉 and |f〉 consist of the many
particle states |a〉 and |b〉 of the sample and a single photon state characterized by

|ε̂1
~k1〉 and |ε̂2

~k2〉 respectively. Accordingly, the energies εi and εf are the energies
of the sample Ea and Eb plus the energies of the photons h̄ω1 and h̄ω2 respectively.
Thus

|i〉 = |a, ε̂1
~k1〉 εi = Ea + h̄ω1 and

|f〉 = |b, ε̂2
~k2〉 εf = Eb + h̄ω2. (1.7)

Before the transition probability for scattering processes is calculated, the transition
probability for the absorption and the emission of one single photon originating from
the ~A · ~∇ term in 1st order perturbation theory is discussed (the second addend of
Eq. 1.5 is inserted into the first addend of Eq. 1.6).

a) Absorption of a photon:
The photon annihilation operator aλ of the vector potential
contributes only to the DDSC if a photon with energy h̄ωλ,
wave vector ~kλ, and polarization vector ε̂λ is present in the
initial state and has been annihilated in the final state. With
the inital and final states

|i〉 = |a, ε1
~k1〉 εi = Ea + h̄ω1

|f〉 = |b, 0〉 εf = Eb

hω1

a
b

λ must equal 1 and the annihilation operator results in δλ,1|0〉. Now the sum over λ
can be carried out and the transition probability becomes

wi7→f =
2π

h̄

2πh̄c2

V ω1

e2

m2c2

∣∣∣∣∣〈b|∑
j

ih̄ei
~k1·~rj ε̂1 · ~∇j|a〉

∣∣∣∣∣
2

δ(Eb − Ea − h̄ω1) (1.8)

b) Similarly the transition probability for emission processes is obtained and with

|i〉 = |a, 0〉 εi = Ea

|f〉 = |b, ε̂2
~k2〉 εf = Eb + h̄ω2 one gets

wi7→f =
2π

h̄

2πh̄c2

V ω2

e2

m2c2

∣∣∣∣∣〈b|∑
j

ih̄e−i
~k2·~rj ε̂∗2 · ~∇j|a〉

∣∣∣∣∣
2

δ(Eb − Ea + h̄ω2) (1.9)
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Spectroscopies based on these transitions are x-ray absorption spectroscopy (XAS)
and x-ray emission spectroscopy (XES), giving access to the unoccupied and the
occupied density of states, respectively.

The terms contributing to the transition probability of photon scattering (one

photon in, one photon out) are the ~A · ~A term in 1st order and the ~A · ~∇ term in
2nd order perturbation theory.

The ~A · ~A term in 1st order (inserting the third addend of
Eq. 1.5 into the first addend of Eq. 1.6) describes nonresonant
inelastic scattering. The product of the two vector potentials
yields four terms

Aλ · Aλ′ ∝ aλaλ′ + aλa
†
λ′ + a†λaλ′ + a†λa

†
λ′ (1.10)

of which clearly only the second and the third contribute to
the DDSC. With the definitions in Eq. 1.7 the second term
persists if λ = 1 and λ′ = 2, whereas the third term remains
if λ = 2 and λ′ = 1. Thus, the transition probability is:

hω2hω1

ba

wi7→f =
2π(2πh̄c2)2

h̄V 2ω1ω2

(
e2

mc2

)2
∣∣∣∣∣〈b|∑

j

ei
~k1·~rj ε̂1 · e−i

~k2·~rj ε̂∗2|a〉

∣∣∣∣∣
2

δ(Eb+h̄ω2−Ea−h̄ω1)

=
8π3h̄e4

m2V 2ω1ω2

(ε̂1 · ε̂∗2)2

∣∣∣∣∣〈b|∑
j

ei~q·~rj |a〉

∣∣∣∣∣
2

δ(Eb − Ea − h̄ω), (1.11)

with ~q = ~k1 − ~k2 and ω = ω1 − ω2.

The ~A·~∇ term in 2nd order (inserting the second addend of Eq. 1.5 into the second
addend of Eq. 1.6) yields a resonant and a nonresonant contribution depending on
the intermediate state |m〉. A contribution to the DDSC results only if two or no
photons are present in the intermediate state, since the first vector potential operator
creates or annihilates only one photon.

a) The nonresonant term:
With two photons present in the intermediate state

|m〉 =
∣∣∣c, λ1

~k1, λ2
~k2

〉
and thus εm = Ec + h̄ω1 + h̄ω2

the emission process takes place before the absorption
process. The respective transition probability is

a b

hω1 hω2

c

wi7→f =
2π

h̄

∣∣∣∣∣
(
eh̄

mc

)2∑
c

〈b|
∑

j
~A2 · ~∇j|c〉〈c|

∑
j
~A1 · ~∇j|a〉

Ec − Ea + h̄ω2

∣∣∣∣∣
2

δ(Eb − Ea − h̄ω1 + h̄ω2).

(1.12)
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Since |a〉 is the ground state of the sample Ec − Ea is always positive and the
process can never be resonant. Thus, this term can be neglected in comparison to
the nonresonant ~A · ~A term in first order.

b) The resonant term:
If no photon is present in the intermediate state |m〉 =
|c, 0〉 and thus εm = Ec the absorption process takes
place before the emission process and with 1.7 the tran-
sition probability reads:

hω1

a

hω2

bc

wi7→f =
2π

h̄

2πh̄c2

V ω1

2πh̄c2

V ω2

(
e2

m2c2

)2

×

∣∣∣∣∣∑
c

〈b|
∑

j ih̄e
−i~k2·~rj ε̂∗2 · ~∇j|c〉〈c|

∑
j ih̄e

i~k1·~rj ε̂1 · ~∇j|a〉
Ec − Ea − h̄ω1 − iΓc/2

∣∣∣∣∣
2

× δ(Eb − Ea − h̄ω1 + h̄ω2). (1.13)

In contrast to the previous term this one becomes resonant if the energy of the inci-
dent photon h̄ω1 equals the energy difference of the initial and any of all intermediate
state of the sample. This is the case if the incident photon energy is close to the
binding energy of an electron in the sample. The quantity −iΓc/2 is introduced to
account for the finite lifetime of the intermediate state |c〉.
Thus, up to second order perturbation theory only two terms contribute to inelastic
scattering processes: the ~A · ~A term in 1st order and the ~A · ~∇ term in 2nd order
perturbation theory. Since the number of photons in the incident beam is small
compared to the interaction time, the probability to find the system in its ground
state |a〉 is one (pa = 1). Thus, the double differential scattering cross section (1.1)
becomes:

d2σ

dω2 dΩ
=

∑
a,b

pa
V 2

(2π)3

ω2
2

c4
wa→b

= h̄
ω2

ω1

e4

c4m2

∑
b

∣∣∣∣∣(ε̂1 · ε̂∗2) 〈b|
∑
j

ei~q·~rj |a〉

+
1

m

∑
c

〈b|
∑

j ih̄e
−i~k2·~rj ε̂∗2 · ~∇j|c〉〈c|

∑
j ih̄e

i~k1·~rj ε̂1 · ~∇j|a〉
Ec − Ea − h̄ω1 − iΓc/2

∣∣∣∣∣
2

× δ(Eb − Ea − h̄ω1 + h̄ω2). (1.14)

The first term is dominating the DDSC if the energy of the incident photon h̄ω1

is far away from binding energies of the electrons of the sample. If on the other
hand the energy of the incident photon is close to a binding energy of an electron of
the sample then the denominator of the second term is close to zero and causes the
DDSC to be dominated by the second term.

The first term describes nonresonant processes, generally referred to as inelastic x-
ray scattering spectroscopy (IXSS). It is proportional to the dynamic structure factor
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S(~q, ω) yielding information about the spatial and temporal correlation of the valence
electrons of the sample. If the energy and momentum transfer to the system are small
compared to characteristic energies and characteristic reciprocal distances of the
electron system, respectively, then individual and collective excitations are probed,
for example plasmons and electron-hole pair excitations [Schü91]. In case of large
energy and momentum transfers to the system the impulse approximation can be
applied leading to Compton scattering. Thereby information about the momentum
density and the occupation function of the electronic ground state of the sample can
be obtained [Coop85].

For the special case |b〉 = |a〉 one gets elastic scattering. If |b〉 differs only slightly
from |a〉, e.g. due to interacion with phonons, quasi-elastic (Rayleigh) scattering is
present. In the case of a linearly polarized x-ray source the ε̂1 · ε̂∗2 factor in Eq. 1.14
offers the opportunity to suppress the so called quasi-elastic line present in the
resonant scattering spectra.

The second term of 1.14 describes the resonant inelastic x-ray scattering (RIXS).
Due to the involvement of the electron binding energy Ec −Ea in the DDSC, RIXS
it is element selective. Moreover, since the momentum operator ~p = −ih̄~∇ and the
polarization vector ε̂ are present in both scattering operators, RIXS is sensitive to
the angular momentum of the electronic states and depends on the polarization of
the x-rays. This makes RIXS a powerful tool to investigate the electronic structure.

In addition, RIXS exhibits a law of Bloch ~k-momentum conservation when valence
electrons are probed. As a consequence, the shape of resonantly excited valence
fluorescence spectra changes when either the incident energy or the momentum
transfer is altered. This effect will be addressed in more detail in the following
section.

1.2 The Resonant Inelastic Scattering Cross Section

So far no assumption has been made about how the electron system of the sample
reacts to the transfer of energy and momentum. For resonant inelastic scattering
one now assumes that only one electron interacts with a photon at a time, i.e. during
the absorption of a photon one electron is excited from a bound state into a formerly
unoccupied state above the Fermi energy, and during the emission of a photon one
electron from the valence band refills the previously created core hole. Moreover, one
assumes that the excitation and the deexcitation of an electron does not affect the
other electrons of the sample via Coulomb interaction but that they remain ‘frozen’
in their states.

It is important to note that the frozen core approximation is only valid as long as
the creation of holes in valence states is concerned. If a hole in the valence band is
created the resulting change of the potential is uniform over the whole sample, due
to the delocalization of valence states. Thus, the states of the other valence electrons
are only marginally affected. If on the other hand a strongly bound core electron
is removed from its shell, all electrons within the outer shells screen the core hole
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thus changing their states. Accordingly, the calculated binding energy of the Cu 1s
electrons for example is underestimated in the frozen core approximation by about
1.6%. Again the valence states remain nearly unaltered since the core hole is widely
screened by the inner shell electrons as will be shown in Chapter 5.

Furthermore, due to the creation or the annihilation of a core hole the rearrange-
ment of the electrons causes a sudden change of the atomic potential, leading to
the possibility of double ionization excitations during the absorption or during the
emission of a photon. The first kind of processes leads to the hypersatellites (see for
example [Deut95, Diam00, Ster00] and Appendix C) whereas processes of the latter
kind cause the radiative Auger satellites that will be described in Chapter 7.

By applying the frozen core approximation one can replace the many particle wave
functions used so far by single particle wave functions. Thus, the sums over j vanish.
Secondly, the states may be characterized by a single hole wave function instead of
a product of electron wave functions. The necessary replacements are depicted in
Figure 1.2. Namely |a〉, |c〉, and |b〉 are replaced by the conduction band state |i〉,
the core state |m〉, and the valence state |f〉, respectively.

hω1

a

hω2

bc

a c b
m

f

i
EF

Figure 1.2: Many particle and single particle states of the sample.

Accordingly, the total electron energies Ea, Ec, and Eb are replaced by the single
electron energies Ei, Em, and Ef . Furthermore, the sum over the initial states i
has to be reintroduced, since the hole state in the conduction band is not known a
priori. Thus, the resonant part of the DDSC becomes:

d2σ

dω2 dΩ
= h̄

ω2

ω1

( e

mc

)4∑
i,f

∣∣∣∣∣∑
m

〈f | ih̄e−i~k2·~r ε̂2 · ~∇ |m〉 〈m| ih̄ei
~k1·~r ε̂1 · ~∇ |i〉

Em − Ei − h̄ω1 − iΓm/2

∣∣∣∣∣
2

× δ(Ef − Ei − h̄ω1 + h̄ω2). (1.15)

For the derivation of the Bloch ~k-conserving RIXS cross section further assumptions
about the wave functions have to be made. The states in the conduction band and
in the valence band of a conducting periodic crystal can be described by Bloch wave
functions:

|i〉 = |ni~ki〉 = ei
~ki·~r uni~ki(~r ) and |f〉 = |nf~kf〉 = ei

~kf ·~r unf~kf (~r ), (1.16)
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where n is the band index, ~k is the Bloch wave vector, and un,~k is a lattice periodic
function. In the original paper of Ma [Ma94] the core state |m〉 is described by a

tight binding orbital |m〉 =
∑

~R e
i~kc·~Rψc(~r− ~R ). Thus, the intermediate state |m〉 is

characterized by the wave vector ~kc. A more striking Ansatz, suggested by Eisebitt
[Eise00], will be used here:

|m〉 = |nj ~Rj〉 = ψnj(~r − ~Rj ), (1.17)

where ψ is an atomic wave function with core level index nj centered at the atomic

position ~Rj. With this choice |m〉 is characterized by the atomic level of the core
wave function and by the position of the atom at which the core hole is localized.
Moreover the single particle hole states are replaced by the corresponding single
particle electron states, noticing that a hole wave function is the complex conjugate
of the corresponding electron wave function, and that the energy of a hole state is
the negative of the corresponding electron state. Thus, the DDSC becomes

d2σ

dω2 dΩ
= h̄

ω2

ω1

( e

mc

)4∑
ni~ki

∑
nf~kf

∣∣∣∣∣∣
∑
nj ~Rj

M2(nf , ~kf , nj, ~Rj)M1(ni, ~ki, nj, ~Rj)

Eni~ki − Enj ~Rj − h̄ω1 − iΓnj ~Rj/2

∣∣∣∣∣∣
2

× δ(Eni~ki − Enf~kf − h̄ω1 + h̄ω2), (1.18)

where

M1(ni, ~ki, nj, ~Rj) = 〈ei~ki·~r uni~ki(~r )|ih̄ei~k1·~r ε̂1 · ~∇|ψnj(~r − ~Rj )〉 and

M2(nf , ~kf , nj, ~Rj) = 〈ψnj(~r − ~Rj )|ih̄e−i~k2·~r ε̂∗2 · ~∇|ei
~kf ·~r unf~kf (~r )〉 (1.19)

are the transition matrix elements. Those can be evaluated by (i) substituting

~r− ~Rj = ~r ′, (ii) making use of the lattice periodicitiy of u(~r ), and (iii) by assuming
that the spatial extent of the core wave function is small compared to the lattice

spacing and thus e−i
~ki·~r ′ ≈ 1 and ei

~kf ·~r ′ ≈ 1:

M1(ni, ~ki, nj, ~Rj) =

∫
d~r e−i

~ki·~r uni~ki(~r ) ih̄ei
~k1·~r ε̂1 · ~∇ ψnj(~r − ~Rj)

(i)
=

∫
d~r ′ e−i

~ki·(~r ′+~Rj) uni~ki(~r
′ + ~Rj) ih̄e

i~k1·(~r ′+~Rj) ε̂1 · ~∇ ψnj(~r
′)

(ii)
= e−i

~ki·~Rj ei
~k1·~Rj

∫
d~r ′ e−i

~ki·~r ′ uni~ki(~r
′) ih̄ei

~k1·~r ′ ε̂1 · ~∇ ψnj(~r
′)

(iii)
= e−i

~ki·~Rj ei
~k1·~Rj

∫
d~r ′ uni~ki(~r

′) ih̄ei
~k1·~r ′ ε̂1 · ~∇ ψnj(~r

′)︸ ︷︷ ︸
M ′1(ni,~ki,nj)

, (1.20)

M2(nf , ~kf , nj, ~Rj) = e−i
~k2·~Rj ei

~kf ·~Rj
∫
d~r ′ ψnj(~r

′) ih̄e−i
~k2·~r ′ ε̂2 · ~∇ unf~kf (~r

′)︸ ︷︷ ︸
M ′2(nf ,~kf ,nj)

.(1.21)

Hence, the matrix elements M ′
1 and M ′

2 are independent of ~Rj. Stating that the
energy and the lifetime of a core hole are independent of the position of the atom,
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one finds that Enj ,Rj = Enj and Γnj ,Rj = Γnj and the sum over the intermediate
states can be carried out at once:∑

~Rj

ei
~k1·~Rj e−i

~k2·~Rj e−i
~ki·~Rj ei

~kf ·~Rj =
∑
~Rj

ei(
~k1−~k2−~ki+~kf )·~Rj = δ ~G,(~k1−~k2−~ki+~kf ), (1.22)

~G being any reciprocal lattice vector. Thus, the DDSC reads

d2σ

dω2 dΩ
= h̄

ω2

ω1

( e

mc

)4∑
ni~ki

∑
nf~kf

∣∣∣∣∣∣δ ~G,(~k1−~k2−~ki+~kf )

∑
nj

M ′
2(nf , ~kf , nj)M

′
1(ni, ~ki, nj)

Eni~ki − Enj − h̄ω1 − iΓnj/2

∣∣∣∣∣∣
2

× δ(Eni~ki − Enf~kf − h̄ω1 + h̄ω2). (1.23)

Moreover, the denominator constitutes a Lorentzian which converts into a δ-function
in the case of Γnj ⇒ 0:

lim
y→0

∣∣∣∣ 1

x− iy

∣∣∣∣2 = lim
y→0

1

x2 + y2
= lim

y→0
Lor(x, y) = 2πδ(x). (1.24)

For the time being, one may assume that the lifetime of the intermediate state is
infinite giving rise to: δ(Eni~ki − Enj − h̄ω1). Using this δ-function to remove Eni~ki
and h̄ω1 from the total energy conservation δ(Eni~ki − Enf~kf − h̄ω1 + h̄ω2) one ends

up with

d2σ

dω2 dΩ
= h̄

ω2

ω1

( e

mc

)4∑
ni~ki

∑
nf~kf

∑
nj

∣∣∣M ′
1(ni, ~ki, nj)

∣∣∣2 δ(Eni~ki − Enj − h̄ω1)

× δ ~G,(~k1−~k2−~ki+~kf )

∣∣∣M ′
2(nf , ~kf , nj)

∣∣∣2 δ(Enf~kf − Enj − h̄ω2). (1.25)

This formula will be discussed in the following. The first matrix element and first
δ-function together with the sum over the initial states ni~ki describes the absorption
part of the scattering process, in analogy to the absorption probability in formula
1.8. Likewise the second matrix element, the second δ-function, and the sum over
nf~kf describe the emission part of the scattering process.

The sum over all unoccupied states ni~ki together with the δ-function δ(Eni~ki−Enj−
h̄ω1) gives rise to the unoccupied density of states (DOS) thus containing the crystal

properties of the sample whereas the matrix element
∣∣M ′

1(ni, ~ki, nj)
∣∣2 reflects the

atomic part of the transition probability, namely the overlap between the core wave
function ψnj(~r

′) and the valence wave function uni~ki(~r
′) mediated by the scattering

operator ih̄e−i
~k1·~r ′ ε̂1·~∇. Since ψnj(~r

′) is strongly localized, only the part of unf~ki(~r
′)

localized at the same atom contributes to the matrix element, making the absorption
process element specific. The same considerations apply to the emission part of the
scattering process. Therefore, RIXS an element specific technique.

In the matrix elements M ′
1 and M ′

2 the exponential of the scattering operator may be
expanded into its Tailor series giving rise to the series of multipole operators impos-
ing the respective selection rules and angular dependencies from the polarization of
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the photon, thereby making RIXS selective to orbital and magnetic quantum num-

bers. For the time being only the term e−i
~k2·~r′ ≈ 1, being of zeroth order in ~k2 · ~r′,

will be kept, leading to the dipole approximation. Contributions from quadrupolar
transitions will be discussed in the Chapters 3 and 6.

If absorption and emission of the photon are treated as two independent consecutive
processes, i.e. one uses the ~A · ~∇ term in 1st order for both the absorption and
the emission process and calculates the product of both, one gets the same cross
section except for the Kronecker-δ which interconnects the two parts into one single
scattering process. The consequence of the Kronecker-δ is the conservation of the
Bloch ~k-momentum: The difference of the wave vectors of the incoming and the
outgoing photon (i.e. the momentum transfer ~q ) has to equal the difference of the

Bloch ~k-momenta of the conduction and the valence electron involved in the process
modulo any reciprocal lattice vector.

1.3 Bloch ~k-Momentum Conservation

The influence of the Bloch ~k-momentum conservation on the line shape of valence
fluorescence spectra may be explained by the example of RIXS at the Ni K edge in
NiAl. The states relevant in the scattering process are depicted in Fig. 1.3. It shows
the electronic band stucture of NiAl in the vicinity of the Fermi energy EF along
the high symmetry directions of the Brillouin zone1. The diameter of the circles is
proportional to the fraction of Ni 4p orbitals contributing to the respective state.
Also shown is the Ni 1s state at 8333.0 eV below EF from which an electron is
excited into the conduction band after the absorption of a photon with energy h̄ω1.
The first δ-function in Eq.1.25 determines the energy of the states in the conduction
band the core electron can be excited into.

Due to the band structure not the whole Brillouin zone but only ~k-points on the
respective isoenergetic surface can contribute to the absorption process. In Fig. 1.3
the incident energy is chosen to be 2 eV above the K-absorption threshold, marked
by the horizontal bar. At this energy only a limited number of ~k-points allowed
states exist. Additionally within the dipole approximation the first matrix element
requires the conduction band state to have Ni p-character. In the above example
the strongest Ni p-character is present around the R point of the Brillouin zone.
Thus, in the sum over ni~ki predominantly states with ~ki in the vicinity of the R
point remain.

Now the Kronecker-δ, conserving the Bloch ~k-momentum of the process, comes into
play. Since ~k1−~k2 = ~q is determined by the scattering angle and since ~ki is selected
by h̄ω1 via the band structure as described above, δ ~G,~k1−~k2+~ki−~kf together with the

sum over ~kf selects specific ~kf , in this example at a point between Γ and M, marked

by a vertical bar in Fig. 1.3. Thus, only electrons with a Bloch ~k-vector equal to ~kf

1One has to keep in mind that the x-axis of Fig. 1.3 describes a zigzag path through the
Brillouin zone and that thus distances on the x-axis are generally not proportional to the distances
in 3D-space
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Figure 1.3: RIXS at the
K edge of Ni in NiAl.
The diameter of the
circles is proportional to
the fraction of Ni 4p
character of the
electron states.

can refill the core hole, thereby emitting a photon with an energy determined by the
second δ-function. Again the matrix element requires the emitting orbitals to be of
Ni p-character. In our example one would expect to see a strong emission line at -3
eV and two smaller lines at -0 and -8 eV below the Fermi energy.

Thus, not the whole Brillouin zone contributes to the emission spectrum but only
a restricted number of ~k-points, that are selected by h̄ω1 and by the momentum
transfer ~q via the band structure. If one changes the energy of the incoming photon,
then a different set of ~ki is selected, thereby also selecting a new set of allowed
~kf , even if the momentum transfer ~q is kept constant. If on the other hand the

energy of the incoming photon is kept constant, the selected ~ki remain the same,
but by changing the scattering angle and thus changing the momentum transfer ~q the
allowed values of ~kf are changed as well. As a result the shape of the resonantly
excited valence fluorescence line strongly depends on both the energy of the incoming
photon and on the momentum transfer.

This is one of the advantages offered by the use of hard x-rays. In the case of soft
x-rays, where |~k1| and |~k2| are much smaller than the dimensions of the first Brillouin

zone, the ~k-momentum conservation reduces to ~ki = ~kf . Thus, the RIXS spectra
obtained by the use of soft x-ray are idependent of the scattering angle and depend
solely on the incident energy. In contrast, Bloch ~k-selective RIXS using hard x-rays
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via the length and the direction of ~q with respect to the crystal axes of the sample
introduces additional degrees of freedom.

In short: the Bloch ~k-conservation in the RIXS process leads to valence RIXS spectra
that are selective to the Bloch ~k-momentum.

However, there are some restrictions to the picture drawn above. Firstly the inter-
mediate state has a limited lifetime, thus Γ1s 6= 0. Therefore the first δ-function has
to be replaced by a Lorentzian leading to excitations into a broader energy region
around the incident energy. Thereby the number of ~k-points accessible in the ab-
sorption process is enlarged. Similarly in the emission process the second δ-function
has to be modified leading to a broadening of the fluorescence line. Secondly the
momentum transfer ~q is not infinite sharp defined in the experiment resulting in
a further increase of the number of ~k-points contributing to the emission process.
Finally the energy resolution of both the monochromator and the analyzer has to
be accounted for.

Nevertheless, it is possible to obtain Bloch ~k-selective spectra from a large variety of
samples. Moreover, in many cases it is possible to perform a kind of band tracing,
i.e. the dispersion of certain features in the RIXS spectra can be directly assigned
to the dispersion of certain bands in the electronic band structure.



Chapter 2

Band Structure Calculation using the
LAPW Algorithm

In order to compare measured Bloch ~k-selective fluorescence spectra to calculated
ones, the electronic band structure of the sample has to be obtained. Among the
numerous methods available, the density functional theory (DFT) has proven suc-
cessful for the description of both molecules and crystals.

An extensive description of the linearized augmented plane waves (LAPW) method
can be found in the book by David J. Singh [Sing94].

2.1 Density Functional Theory and Kohn-Sham
Equations

Condensed matter consists of a system of electrons that interact with the atomic
nuclei and with each other. The calculation of the electronic structure therefore
results in a many particle problem whose Schrödinger equation cannot be solved
analytically. Thus, one needs to find approximations to the general problem. An
elegant solution is based on the theorem of Hohenberg and Kohn [Hohe64]:

The total energy of a system of interacting electrons in an external
potential is a functional of the electron density. The total energy is
minimized by the electron density of the electronic ground state.

The functional Etot = Etot[ρ] generally is of the form

Etot[ρ] = Te[ρ] + Ti[ρ] + Eee[ρ] + Eii[ρ] + Eei[ρ], (2.1)

where Te[ρ] and Ti[ρ] are the kinetic energies of the electrons and of the nuclei,
whereas Eee[ρ], Eii[ρ], and Eei[ρ] describe the electron-electron, the nucleus-nucleus,
and the electron-nucleus interactions, respectively.

Often the adiabatic approximation is applied. Since the nuclei are much heavier than
the electrons, the latter follow the slow movements of the nuclei in a quasi-static
manner. Thus, the electron system remains is its ground state even if the nuclei

17
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oscillate around their equilibrium positions. Therefore Ti and Eii can be omitted if
one is interested in electronic properties only.

However, the functional describing the electron-electron interactions is unknown in
general and is subject to approximation. Usually Eei is split up into the local part
of the Coulomb interaction giving rise to the Hartree total energy of the electron-
electron interaction EH and into the exchange-correlation functional Exc which con-
tains the non-local many particle part of the the electron-electron interaction. This
yields:

Etot[ρ] = T [ρ] + Eei[ρ] + EH[ρ] + Exc[ρ] (2.2)

with the energy functionals:

T [ρ] the kinetic energy of the electrons,
Eei [ρ] the potential energy of the electrons in the potential of the nuclei,
EH [ρ] the Coulomb part of the electron electron interaction, and
Exc [ρ] the exchange correlation energy of the electrons.

A direct minimization yielding the electron density ρ of the ground state is not
feasible since the number of parameters needed to properly describe the electron
density is much too large. Indeed from 2.2 the Kohn-Sham equations can be derived
[Kohn65],

(T + Vei(~r ) + VH(~r ) + Vxc(~r )) ϕi(~r ) = εi ϕi(~r ), (2.3)

where the Kohn-Sham orbitals ϕi(~r ) are single particle like wave functions. The
electron density then is given by the sum over the squares of all occupied Kohn-
Sham orbitals:

ρ(~r ) =
∑
occ

ϕ∗i (~r )ϕi(~r ). (2.4)

As in Eq. 2.2 the potentials depend on the electron density:

VH(~r ) = e2

∫
d3r′

ρ(~r ′ )

|~r − ~r ′|
and Vxc(~r ) =

δExc[ρ]

δρ(~r )
. (2.5)

Again, the exchange-correlation energy Exc[ρ] contains the non-local part of the
electron-electron interaction. It may be calculated within the local density approx-
imation (LDA)

Exc[ρ] =

∫
d~r ρ(~r ) εxc(ρ(~r )), (2.6)

where εxc (ρ(~r )) is the exchange-correlation energy per electron of the homoge-
neous electron gas, which can be calculated exactly. Thus, the non-local exchange-
correlation of the inhomogeneous system is expressed in terms of its density ρ(~r ) and
the exchange-correlation of the homogeneous electron gas εxc corresponding to the
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local density of the actual system. Although succesfull in many cases, the LDA can
be improved by considering not only the local density but also its gradient, giving
rise to the generalized gradient approximation (GGA), see e.g. [Perd92, Perd96]. By
means of these approaches, the non-local exchange-correlation functional is replaced
by a local potential, being a prerequisit for the applicability of the density functional
theory.

The advantage of the Kohn-Sham equations over the equation of Hohenberg and
Kohn is the fact that the many particel problem is reduced to the solution of a
series of single particle Schrödinger equations that are only coupled via the total
potential V = Vei + VH + Vxc. Consequently these equations must be solved self-
consistently:

One chooses a certain set of wave functions ϕ
(1)
i (~r ) having eigenvalues ε

(1)
i and

calculates the respective electron density ρ(1)(~r ). Thereof one determines the total
potential V (1)(~r ), solves the Kohn-Sham equations and thus finds new eigenvalues

ε
(2)
i and wave functions ϕ

(2)
i (~r ). From these again a charge density ρ(2)(~r ) can be

otained. This cycle is performed until the electron density has converged to a stable
distribution.

In the case of a crystalline substance the Bloch theorem gives rise to further sim-
plifications. Like the wave function also the charge distribution, the potential and
thus the whole Hamiltionian have lattice periodicity and symmetry. Thus, for the
calculation of bulk properties it is sufficient to obtain the solution of the Kohn-Sham
equation on a grid of ~k-points in the irreducible wedge of the Brillouin zone, thereby
reducing the computational effort significantly.

2.2 The Kohn-Sham Orbitals

Although the direct numerical solution of the Kohn-Sham equations is in principle
possible, the Kohn-Sham orbitals are mostly expanded into a basis φα(~r ),

ϕi(~r ) =
∑
α

ciαφα(~r ), (2.7)

thereby introducing the expansion coefficients ciα that are now the only variables
to be determined self-consistently. Then the solution of the Kohn-Sham equations
reduces to an eigenwert problem. In order to do so, the expanded Kohn-Sham
orbitals 2.7 are inserted into the Kohn-Sham equation 2.3. The resulting eigenwert
equation is multiplied from left by the basis and the integration over the unit cell
is performed on both sides. The integrals are the elements of the matrices Hαα′

and Sαα′ . The expansion coefficients ciα are the components of the eigenvectors ci
corresponding to the eigenvalues εi.

Hϕi(~r ) = εiϕi(~r ) (2.8)∑
α

ciαHφα(~r ) = εi
∑
α

ciαφα(~r ) (2.9)
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∑
αα′

∫
φ∗α′(~r )Hφα(~r )d3r︸ ︷︷ ︸

Hαα′

ciα = εi
∑
αα′

∫
φ∗α′(~r )φα(~r )d3r︸ ︷︷ ︸
Sαα′

ciα (2.10)

(Hαα′ − εiSαα′)ciα = 0 (2.11)

The resulting eigenwert problem can be solved efficiently by well established matrix
algorithms.

However, the basis functions φα(~r ) are in general not eigenfunctions of the Hamilto-
nian H and therefore the Hamilton matrixHαα′ is not diagonal in general. Although
the basis φα(~r ) is complete it is not necessarily orthonormal. Therefore the overlap
matrix Sαα′ usually is not the unit matrix.

As an example the Kohn-Sham orbitals are expanded into plane waves:

φα(~r ) = φ~G,~k(~r ) = ei(
~k+ ~G )·~r. (2.12)

Here the ~k are Bloch wave vectors from within the irreducible wedge of the first
Brillouin zone and the ~G are the reciprocal lattice vectors. Practically the expansion
has to be truncated at ~G = ~Gmax resulting in a set of n reciprocal lattice vectors. At
a given point ~k in reciprocal space the basis consists of n plane waves. Accordingly
the matrices H and S have n×n components giving rise to n eigenvalues εi,~k and n
eigenvectors ci,~k with n components ci,~k, ~G.

2.3 The Choice of the Basis Functions

The choice of the basis functions φα(~r ) strongly influences the performance of the
algorithm. The better the basis is matching the actual Kohn-Sham orbitals, the
faster the charge density will converge. In addition, the algorithm is less sensitive
to possible restrictions of the flexibility of the basis, if the Kohn-Sham orbital are
well suited to the problem. Moreover, the basis should enable a fast calculation of
the matrix elements Hαα′ and Sαα′ .
In a solid the wave functions of the electrons in the vicinity of the atomic nuclei,
where the potential strongly varies, are similar to atomic wave functions, whereas
between the atomic nuclei, where the potential is nearly constant, the electron wave
functions are similar to plane waves.

2.3.1 Plane Waves

If plane waves are used as a basis, a large number of expansion coefficients has to
be taken into acount in order to adequately describe the short range oscillations of
the wave functions in the vicinity of the nuclei. This leads to large matrices whose
inversion is rather time consuming and sometimes is outnumbering the advantage
of the fast calculation of the matrix elements due to the orthogonality of the basis.
To overcome this difficulty, two different strategies can be used.
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2.3.2 Pseudopotentials

In pseudopotential methods the states corresponding to localized electrons are ex-
cluded from the calculation. Their influence on the valence electrons is only ac-
counted for by the screening of the potential of the atomic nuclei. Thus, the strongly
varying atomic potential is replaced by a smooth pseudopotential. Within this po-
tential the valence electrons can be considered to move like nearly free electrons,
which can be properly described by a small set of plane waves. The disadvantage of
this method is the extensive calculation of the pseudopotential which in contrast to
the total potential V (~r ) is not local but depends on ~k.

2.3.3 APW Methods

The second possibility is based on a dual representation of the basis functions. The
direct space is divided into spheres centered at the atomic positions and into the
interstitial space in between the atomic spheres. Within the interstitial region the
basis consists of plane waves, whereas within the atomic spheres the wave functions
are represented by atomic orbitals. Thus, in each region the basis is well suited
to represent the behaviour of the single electron wave functions in the Kohn-Sham
equation. Since the Kohn-Sham orbitals have to be continuous, the plane waves
are augmented at the sphere boundary by a linear combination of atomic orbitals.
Thus, this method is named Augmented Plane Waves (APW).

The basis functions are defined as follows:

φ~k, ~G(~r ) =

{
1√
Ω
ei(

~k+ ~G )·~r ~r ∈ Interstitial∑
lm a~k ~Glmul(r)Ylm(r̂ ) ~r ∈ Spheres.

(2.13)

Therein Ylm(r̂ ) are the spherical harmonics and the ul(r) denote the solutions of the
radial part of the Schrödinger equation:(

− d2

dr2
+
l(l + 1)

r2
+ V (r)− El

)
r ul(r) = 0. (2.14)

where El is an energy parameter and where V (r) is the spherical component of the
total potential within the atomic sphere. The coefficients a~k ~Glm are determined from
the continuity condition at the sphere boundary.

In analogy, the potential V and the electron density ρ are expanded:

V (~r ) =

{
1√
Ω

∑
~G V ~Ge

i ~G·~r ~r ∈ Interstitial∑
lm Vlm(r)Ylm(r̂ ) ~r ∈ Spheres.

(2.15)

ρ(~r ) =

{
1√
Ω

∑
~G ρ ~Ge

i ~G·~r ~r ∈ Interstitial∑
lm ρlm(r)Ylm(r̂ ) ~r ∈ Spheres.

(2.16)

The muffin-tin approximation, where only coefficients with l = 0, m = 0, and
~G = 0 are taken into account, restrics the potential to be spherical within the atomic
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spheres and to be constant within the interstitial region. Calculations making use
of further components are called full potential calculations.

A major drawback of the APW method is that the solution of the radial Schrödinger
equation depends on the energy parameter El. As a consequence the augmented
plane waves are only in those cases solutions of the Kohn-Sham equation where the
respective energy eigenvalue ε equals the energy parameter El. Thus, the APWs
have no variational freedom to follow the shift of band energies if the energy pa-
rameters are kept fixed throughout the self-consistence circle. Therefore, after each
digonalization of the Hamilton matrix, the energy parameter for each band must be
varied until it equals its respective energy eigenvalue. This procedure can be rather
time consuming.

2.3.4 LAPW Method

To overcome the described limitation of the APW method Koelling and Arbman
[Koel75] performed a Taylor expansion of the radial wave function ul(r) with respect
to the energy parameter El:

ul(ε, r) = ul(El, r) + (ε−El) u̇l(El, r) +O
(
(ε−El)2

)
, (2.17)

where u̇l(El, r) denotes the partial derivative of the radial function with respect to
the energy parameter evaluated at E = El:

u̇l(El, r) =
∂ul
∂E

∣∣∣∣
E=El

. (2.18)

The consideration of the first derivative of the radial wave function with respect
to the energy parameter leads to the linearization of the APWs with respect to
the energy. Therefore these basis functions are called Linearized Augmented Plane
Waves (LAPW). Within this basis the Kohn-Sham orbitals are solutions of the
Kohn-Sham equation in those cases where the energy parameter El differs from the
respective band energy ε. Thereby the flexibility of the basis is increased to such an
extent that in principle one single El can be used for all valence states.

Thus, the LAPW basis is defined as

φ~k, ~G(~r ) =

{
1√
Ω
ei(

~k+ ~G )·~r ~r ∈ Interstitial∑
lm

(
a~k ~Glmul(r) + b~k ~Glmu̇l(r)

)
Ylm(r̂ ) ~r ∈ Spheres,

(2.19)

where the matching coefficients a~k ~Glm and b~k ~Glm are determined to ensure the con-
tinuity of both the LAPW orbital φ~k, ~G(~r ) and its first derivative at the sphere
boundary. The radial wave functions and their energy derivatives are obtained from(

− d2

dr2
+
l(l + 1)

r2
+ V (r)− El

)
r ul(r) = 0 (2.20)

with the condition limr→0 ru̇l(r) = 0 and by(
− d2

dr2
+
l(l + 1)

r2
+ V (r)− El

)
r u̇l(r) = r ul(r). (2.21)
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Moreover, the orthonormalization conditions∫ RMT

0

(r ul(r))
2 dr = 1

∫ RMT

0

r2ul(r)u̇l(r) dr = 0 (2.22)

are imposed, where RMT is the muffin-tin radius, i.e. the radius of the atomic sphere.
Due to the above mentioned orthonormalization the matrices H and S can easily be
calculated from the coefficients ci,~k ~G, a~k ~Glm and b~k ~Glm.

Furthermore, summation over ~G at a certain ~k for a given combination of l and
m yields the partial charge Ql,m(~k, i), representing the contribution of the atomic
orbital with quantum numbers l and m to the Kohn-Sham orbital with wave vector
~k and band index i. Thus, the partial charges contain information about the hy-
bridization of states. Similarly the partial densities of states DOSl,m are obtained

by summation over ~k and ~G with l and m kept fixed.

In principle it is possible to treat all electronic states in a solid as LAPWs. However,
such expenses are not necessary for the core electrons. Since these are strictly
confined within the atomic spheres they do not interact with the neighbouring atoms
and thus are not subject to hybridization. Instead, the core states can be treated
within an purely atomic calculation. In the case of the WIEN97 package the core
states are obtained from a relativistic calculation considering only the spherical
part of the current total potential. Especially in the case of high Z materials this
distinction between core and valence states reduces the effort significantly. The
energy separating core and valence states has to be choosen in such a way that
the core orbitals are strictly confined to within the atomic spheres to ensure their
orthogonalization with respect to the valence states.

Another important modification to the picture drawn in the preceeding sections is
the mixing of the charge density. If the new density ρ(2), obtained from the starting
density ρ(1) in the first iteration cycle, is directly used as the input for the second
iteration step, the charge will not converge, but will oscillate between two different
charge distributions. Therefore, only a small fraction of the new density ρ

(j)
out is

admixed to the old density ρ
(j)
in :

ρ
(j+1)
in = (1− α)ρ

(j)
in + αρ

(j)
out (2.23)

If the mixing parameter α is sufficiently small the charge density converges. In the
case of simple metal convergence can be reached for α ≈ 0.1. This type of mixing
is named Pratt or direct mixing. However, often different components of the charge
exhibit different convergence behaviour. Thus, it can be difficult to find the best
choice of α. Therefore, more sophisticated mixing schemes have been constructed.
The most common of these is the Broyden mixing scheme [Broy65], where the mixing
parameter is determined individually for each parameter of the charge density. If a
certain density parameter exhibits an oscillatory behaviour its mixing parameter is
set to a smaller value than for a well converging density component.



24



Chapter 3

Bloch ~k-Selective RIXS from NiAl at
the K Edge of Ni

To show the validity of the Bloch ~k-momentum conservation in the hard x-ray regime
resonantly excited valence fluorescence spectra have been measured from a single
crystal sample of the ordered stoichiometric alloy Ni1Al1, using excitation energies
h̄ω1 close to the Ni K edge. By using a binary compound one can show the element
specificity of RIXS. Moreover, the difficulties related to core excitons [Veen97] are
not present in this metallic sample. Stoichometric NiAl crystallizes in the CsCl
structure with a lattice constant of a = 2.88 Å. Since it has only one Ni and one
Al atom within the unit cell and due to the high symmetry of the crystal, the band
structure consists only of a few bands (see Fig. 1.3). Therefore, the conduction band

structure of NiAl allows to select a relatively limited number of Bloch ~k-points to
contribute to absorption and emission.

The measurements have been performed at beamline ID28 at the ESRF using a
Rowland spectrometer suited for spherically bent analyzer crystals with a bending
radius of 1 m, allowing for an energy resolution of about 0.5 eV at 8 keV photon
energy. The spectrometer and its x-ray optical properties are described elsewhere
[Schü95, Kao96]. A short description can be found in Appendix E. The incident radi-
ation was monochromatized to about 8335 eV by a Si 111 double crystal monochro-
mator and an additional two-reflection Si 333 channel cut crystal. The energetic
width of the incident beam was set to 0.85 eV resulting in an over-all experimental
resolution of 1.0 eV FWHM. Valence fluorescence spectra have been measured for
a set of four ~q-values each parallel to the 〈110〉 axis and for 5 different incident
energies h̄ω1 for each ~q. Series of measured spectra for fixed ~q and for fixed h̄ω1 are
shown in Figs. 3.1, 3.2, and 3.3, respectively, clearly featuring dependence on both
the incident energy and the momentum transfer.

The experimentally choosen values for ~q within the first Brillouin zone were 0.1,

Table 3.1: Experimentally
chosen reduced and absolute
values of the momentum
transfer ~q and corresponding
scattering angles for NiAl.

~qred [2π/a] ~qabs [2π/a] |~qabs| [a.u.] Θ [◦]

0.1 ·〈110〉 1.9 ·〈110〉 3.43 87.86

0.25 ·〈110〉 1.75 ·〈110〉 3.16 79.43

0.4 ·〈110〉 1.6 ·〈110〉 2.88 71.50

0.5 ·〈110〉 1.5 ·〈110〉 2.71 66.42

25
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Figure 3.1: Measured (solid lines) and calculated (dashed lines) spectra with
constant momentum transfer together with the estimated radiative Auger satellite
(dotted line). The incident energy E = h̄ω1 is given with respect to the Ni 1s
binding energy (8333 eV). |~q | is given in units of |〈110〉|2π

a
. The narrow peak

dispersing from 8333.6 eV to 8338.5 eV is due to quasi-elastic scattering. To make
the calculated spectra comparable to the experiment the sum of the calculated
spectra and the estimated satellite are shown.

0.25, 0.4, and 0.5 in units of 〈110〉 · 2π
a

, a being the lattice constant. To suppress the
quasi-elastic line (see Chapter 1 Page 10) a scattering angle close to 90◦ is desirable.
Therefore, ~q has been extended by a 〈220〉 reciprocal lattice vector, according to
~qabs = ~qred + 〈220〉, where ~qred denotes the reduced vector being confined to within
the first Brillouin zone. Table 3.1 summarizes the reduced and absolute values of the
momentum transfer as well as the corresponding scattering angles. The excitation
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Figure 3.2: Measured (dashed lines) and calculated (solid lines) spectra with
constant incident energy together with the estimated radiative Auger satellite
(dotted line). Units are as in Fig. 3.1.

energy h̄ω1 for each ~q was set to 0.6, 1.1, 1.7, 2.4, and 5.5 eV above the 1s binding
energy of Ni (8333 eV).

Inherent to this technique is the fact that the valence emission spectra lie on top
of the so-called radiative Auger satellite to the valence line, being the excitation
of another valence electron into the conduction band during the emission process
resulting in an energy loss to the emitted photon (see for example [Åber71]). The
minimal energy loss of this process is zero whereas the maximum energy loss is only
limited by the fluorescence energy of the corresponding parent line. Therefore, the
radiative Auger satellite of the valence line is showing a steep drop on its high energy
side coincident with the binding energy of the 1s electron and a slowly decreasing
tail on its low energy side as is indicated in Figs. 3.1–3.3. Since the behaviour of
the satellite in this energy regime has not yet been calculated and since this satellite
cannot be measured independently from its parent line it has to be approximated
by a model function. The satellite line shown in Fig. 3.1–3.3 consists of a linear
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Figure 3.3: Measured (dashed lines) and calculated (solid lines) spectra with
constant incident energy together with the estimated radiative Auger satellite
(dotted line). Units are as in Fig. 3.1.

function multiplied by a arctan function with a width of 2.2 eV. The radiative
Auger satellites will be discussed in more detail in Chapter 7.

The measured spectra are compared to theoretical RIXS spectra calculated from
Eq. 1.25 as derived in Chapter 1. The calculated spectra are based on a band
structure calculation obtained with the WIEN97 package [Wien97], using the full
potential LAPW algorithm as described in Chapter 2. The energy eigenvalues and
the partial charges at 9139 ~k-points within the irreducible wedge of the first Bril-
louin zone have been used. Furthermore, the finite energy resolution of both the
monochromator and the spectrometer together with the lifetime broadening of the
1s core hole were taken into account. Additionally, self absorption effects have been
accounted for. Part of the code used for the calculation is described elsewhere
[Enki98].

While the dipole approximation generally yields satisfactory results, this is not the
case for the valence fluorescence spectra of the late 3d elements. In the case of Ni
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Figure 3.4: The CsCl
crystal structure and the
irreducible wedge of the
Brillouin zone of NiAl. Γ
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0.45 4p electrons contribute to the dipolar transition into the 1s core hole but 9 3d
electrons give rise to the quadrupolar transition. Assuming that the quadrupolar
matrix element is two orders of magnitude smaller than the dipolar matrix element,
20 % of the fluorescence intensity are due to the 3d→1s quadrupolar transition.

For the calculation of the RIXS spectra of NiAl the energy dependence of the dipole
matrix elements of the Ni-1s to Ni-4p transition, as calculated by the WIEN97
program, has been used, whereas for the quadrupolar Ni-3d to Ni-1s transition a
constant matrix element as estimated above has been applied. The relative intensity
of the 4p→1s dipolar and the 3d→1s quadrupolar transitions as well as the energy
dependence of the quadrupolar matrix element will be discussed in Chapter 6.

As can be seen from Figs. 3.1–3.3 there is considerable agreement between the mea-
sured and the calculated spectra. Despite the fact that the Bloch ~k-space resolution
(via the conduction band structure) is limited by the energy width of the interme-
diate state (Γ = 1.44 eV [Zsch89]), the shape of the fluorescence spectra changes
significantly with both the incident energy (Fig. 3.1) and the momentum transfer
(Fig. 3.2). A dispersion of the low energy shoulder in both cases (marked by the
arrows) is clearly visible. Also the growth of the main peak at -3 eV with increasing
incident energy is nicely reproduced in the calculated spectra (Fig. 3.1), justifying
the assumptions made above.

These changes can be easily explained by distinct features of the electronic band
structure (see Fig. 3) in connection with the length and the orientation of the mo-
mentum transfer ~q relative to the crystal axes of the sample. The unit cell of NiAl
and the corresponding irreducible wedge of the Brillouin zone are depicted in Fig. 3.4.
If h̄ω = EK + 1.7eV (Fig. 3.2), the possible values for ~ki are distributed around the

R-point. With increasing |~q | the ~kf are shifted parallel to the 110 direction from the
R-point to the X-point and consequently the lowest band with p-character around
X causes the dispersing shoulder. Similarly in Fig. 3.1 the growth of the main peak
at -3 eV is originating from the p-states around M.

Even though the spectra of the series with h̄ω = EK + 5.5 eV (Fig. 3.3) are different
from the spectra at h̄ω = EK +1.7 eV, the changes with varying ~q are not as large as
in the series at lower energy. From the good agreement with the calculated spectra
taking into accout the fully ~k-conserving scattering process, one can conclude that
this decreasing ~q-sensitivity is exclusively a band structure effect. The reduced ~k-
selectivity of the spectra gives evidence of an increased number and a more widely
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Figure 3.5: The
electronic band structure
of NiAl. The lower and
upper bar indicate the
incident energy at which
the RIXS spectra
depicted in Fig. 3.2 and
Fig. 3.3 have been
measured, respecively.

spread distribution of ~kf -points that contribute to the emission, originating from the
increased number of bands in the energy region dominating the absorption process.

Thus, one has to distinguish between the ~k-conservation, which is an attribute
of the RIXS process, and the ~k-selectivity, being a property of the RIXS spec-
trum.

The possible destruction of the ~k-conservation due to interaction with phonons will
be treated in Chapter 4.

Conclusion

The Bloch ~k-momentum conservation is valid in the hard x-ray regime and RIXS
spectra from the metallic NiAl sample show the expected Bloch ~k-selectivity. The
use of hard x-rays makes the Bloch ~k-selective RIXS spectra dependent on both the
incident energy and the momentum transfer.



Chapter 4

Destruction of the Bloch
~k-Momentum Conservation

As shown in Chapter 1, the Bloch ~k-momentum selectivity of resonantly excited
valence fluorescence spectra is based on the Bloch ~k-momentum conservation in the
RIXS process. However, this picture is only true as long as apart from the electrons
directly involved in the scattering process no interaction with quasi-particles like
phonons takes place.

In the case of such an intermediate state relaxation, certain energy and momentum
is added to or removed from the electron system of the sample. Since the energy
of a phonon is usually much smaller than the energies of interest in the valence
band the energy transfer provoked by the phonon can be neglected. In contrast,
the momentum transferred by the phonon can adopt arbitrary values within the
first Brillouin zone. Therefore, the momentum ~q = ~k1 − ~k2 deposed into the sample
by the photons differs from the momentum ~qel actually transferred to the electron
system (see Fig. 4.1).

Figure 4.1: Alteration of the
momentum transfer by interaction with
phonons.
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phon

el

k

k
q
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In other words, the momentum of the phonon must be included into the Kronecker-δ
(see Eq. 1.25) expressing the momentum conservation:

δ ~G,(~k1−~k2−~ki+~kf ) =⇒ δ ~G,(~k1−~k2−~ki+~kf+~qphon). (4.1)

Since the momentum of the phonon is only limited by the first Brillouin zone, the ac-
tual momentum transfer ~qel is randomized and the Bloch ~k-momentum conservation
of the RIXS process is lost. If the randomization is complete, the whole Brillouin
zone contributes to the emission process and the RIXS spectra resemble the shape
of ordinary ~k-unselective fluorescence spectra, as obtained if the incident energy is
high above the respective absorption threshold.
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4.1 The Shape of the ~k-Unselective Spectrum

As will be shown in Section 7.4 even in the case of a non ~k-conserving process
the RIXS spectra depend on the energy of the incident photon via the core hole
Lorentzian and via the fine structure of the unoccupied DOS, leading to the x-ray
resonant Raman effect. Moreover, satellite lines due to double ionization processes
during the absorption of the incoming photon may change the shape of RIXS spectra
from valence electrons (see introductory section of Chapter 7). Therefore, a ~k-
unselective spectrum must be measured at incident energies in the same range as
the ~k-selective spectra are recorded.

To obtain a ~k-unselective spectrum the momentum transfer ~q has to be randomized
completely. This can be done in two different ways: The ~k-unselective spectrum can
be calculated by averaging a complete set of measured ~k-selective spectra, whose
different momentum transfer vectors cover the whole first Brillouin zone, or it may
be obtained from a powder sample. However, these different approaches feature a
subtle difference. By averaging a complete set of measured spectra the direction
and the magnitude of ~q are averaged, whereas in the case of a powder spectrum
only the direction of ~q is averaged. The aim of this section is to show that the two
approaches, despite their different influence on ~q, yield identical spectra. Fig. 4.2
shows ~k-unselective valence fluorescence spectra of Cu obtained by the two different
methods.

0

1

2

3

4

5

6

7

8

9

10

8965 8970 8975 8980 8985 8990

In
te

ns
ity

 [
ar

b.
 u

ni
ts

]

Fluorescence Energy [eV]

 4eV (× 1.00)
 6eV (× 0.96)
 8eV (× 0.92)

10eV (× 0.88)
powder

Figure 4.2: Bloch ~k-unselective RIXS spectra from valence electrons of Cu. The
spectra drawn with dotted lines have been calculated by averaging sets of
measured ~k-selective spectra. The respective incident energies relativ to the 1s
binding energy of 8979 eV and the scaling factors are indicated in the key. Drawn
with a solid line is a spectrum obtained from a powder sample.
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In the calculation of the four averaged spectra 8 different values of ~q have been
accounted for. The complete set of measured Bloch ~k-selective RIXS spectra from
Cu is shown in App. D. For details of the experimental conditions see Chapter 8. To
compensate for the increasing fluorescence intensity as the incident energy is raised
the spectra have been scaled as indicated in the figure.

The powder spectrum has been measured at the HARWI beamline of the HASYLAB
using the 511 Si sagittally focussing double crystal monochromator and the Rowland
spectrometer [Wohl00] using a spherically bent 553 Si analyzer crystal with a bending
radius of 1 m, resulting in an over-all energy resolution of about 1 eV. As can be seen
from the position of the quasi-elastic line, the powder spectrum has been measured
at 5 eV above the absorption threshold, i.e. within the energy range where RIXS
spectra from single crystal samples show the Bloch ~k-selectivity. To suppress the
statistical noise and due to the different energy resolutions of the two different data
sets the powder spectrum has been convoluted by a Gaussian with a FWHM of 1eV.

Despite the difference of the two methods the spectra have identical shape, except for
the averaged spectrum measured at 4 eV above the K edge. This can be attributed
to the fact that the ~k-selectivity of the spectra reduces with increasing incident
energy, as described in Chapter 3. At 6 eV above the absorption threshold the whole
irreducible wedge of the Brillouin zone is sampled by the ~kf acessible by as few as 8

different values of ~q. In contrast, at smaller incident energies the ~k-selectivity of the
spectra is so large, that 8 different values of ~q are not sufficient to yield a uniform
distribution of the ~kf within the first Brillouin zone.

Thus, RIXS spectra from a powder sample can considered to be completely ~k-
unselective.

4.2 ~k-Conservation and ~k-Selectivity

In extension to the nomenclature defined on Page 30 it is usefull to distinguish
between ~k-unselective and non-~k-conserving spectra. A ~k-unselective spectrum is
characterized by the fact that the whole first Brillouin zone contributes to the fluo-
rescence process. It is not important, how the uniform distribtion of the ~kf is accom-

plished, whether it is due to band structure features or due to a non-~k-conserving
scattering process, e.g. due to interaction with phonons. Thus, a non-~k-conserving
spectrum always is ~k-unselective.
In contrast, a ~k-conserving spectrum may be ~k-selective (e.g. the spectra from NiAl

excited at 1.7 eV above the Ni K edge, shown in Fig.3.2) or ~k-unselective (e.g. the
spectra from NiAl excited at 5.5 eV above the Ni K edge, shown in Fig.3.3), de-
pending on the band structure and on the incident energy.

If for a certain fraction of the scattering processes the Bloch ~k-conservation is de-
stroyed, the resulting RIXS spectrum can be considered to be a combination of a
non-~k-conserving and of a ~k-conserving spectrum:

Itotal(h̄ω2) = (1− f) · Inon−~k−cons(h̄ω2) + f · I~k−cons(h̄ω2). (4.2)
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Throughout the literature dealing with soft x-ray Bloch ~k-selective RIXS, the pure
~k-conserving contribution is obtained by subtracting the largest possible fraction of a
~k-unselective spectrum from each spectrum, without resulting in negative intensities.
Thus, for each incident energy a different ~k-conserving fraction is obtained. The
~k-unselective spectrum is usually obtained by measuring a fluorescence spectrum
excited high above the absorption threshold [Eise00]. As pointed out above, satellites
due to double ionization processes during the absorption of the incident photon must
not be present in this high energy spectrum, calling for special attention.

However, this procedure is strictly speaking valid only, if the purely ~k-conserving
spectra strongly differ from the ~k-unselective spectum. More precisely, each ~k-
conserving spectrum must exhibit a region of vanishing intensity within the valence
band region. Otherwise, if even from a ~k-conserving spectrum some fraction of
the ~k-unselective spectrum can be subtracted. Then the ~k-conserving fraction is
underestimated and the extracted ~k-conserving spectrum is not correct. This is
demonstrated by the calculated RIXS spectra from NiAl (see Figs. 3.1, 3.2, and

3.3 in Chapter 3). Although these spectra are ~k-conserving, large fractions of a
~k-unselective spectrum can be subtracted. Moreover, from Ni spectra and from
Cu spectra (see App. D) measured at the same incident energy but at different

momentum transfer vectors, different fractions of the ~k-unselective spectrum can be
subtracted, clearly indicating that this approach fails in this case.

As can be observed in all series of Bloch ~k-selective RIXS spectra, the ~k-selective
fraction of a RIXS spectrum (i.e. what remains after the subtraction of the largest

possible ~k-unselective fraction) decreases with increasing incident energy (see for ex-
ample [Lüni97, Eise00]). According to [Eise00], this behaviour is due to the electron-
phonon scattering rate which increases with the energy of the excited electron. In
fact, in the case of Si the incident energy dependence of the ~k-conserving fraction
calculated from the electron-phonon scattering rate agrees qualitatively with the
fraction obtained from the measured spectra [Eise00].

According to [Ma94] the ~k-conserving fraction f can be estimated from the energetic
lifetime broadening of the intermediate state Γc and the Debye energy h̄ωD:

f ≈ e−
h̄ωD
Γc (4.3)

Table 4.1 compares values of f calculated according to Eq. 4.3 to measured ones for
some substances. Despite the simplicity of the relation used, the calculated values
agree fairly good in the case of diamond and Si. If one assumes that Eq. 4.3 yields
the upper limit for the ~k-conserving fraction, this would imply, that the ~k-unselective
fraction measured at the absorption edge is solely due to electron-phonon scattering
and that no band structure effects contribute to the ~k-unselective fraction. As a
consequence, if this was perfectly true, the ~k-selective fraction would equal the ~k-
conserving spectrum.

However, the agreement between the calculated and the measured ~k-conserving frac-
tion is bad for the case of SiC, indicating that either Eq. 4.3 fails or that the
~k-conserving fraction cannot be determined by the subtraction of a ~k-unselective
spectrum. In the light of the above considerations, it is unclear to which extent the
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Subst edge E [eV] Γc [eV] θD [K] h̄ωD [eV] fcal. fmeas.

diam C K 285 0.16 2230 0.19 0.3 0.4 [John94]

SiC C K 285 0.16 1270 0.11 0.5 0.3 - 0.1 [Lüni97]

Si L2,3 100 0.10 1270 0.11 0.3 0.6 - 0.1 [Lüni97]

Si Si L2,3 100 0.10 645 0.055 0.6 0.7 - 0.4 [Eise00]

Si K 1841 0.48 645 0.035 0.9 -

Cu Cu K 8971 1.55 343 0.030 0.98 -

Table 4.1: Measured and calculated ~k-selective fractions

~k-unselective fraction obtained from the measured spectra is due to electron phonon
scattering and to which extent it is merely stemming from the increasing number
of bands present at higher energies above EF, as it is the case for NiAl and Cu.
Certainly more investigations are necessary in this field.

Despite the above limitations it is possible to extract part of the band structure
from RIXS spectra of SiC [Lüni97]. As a rule of thumb, the above procedure is
expected to work best if there are few bands in the valence region and if the core
hole broadening is small.

4.3 Determination of the ~k-Conserving Fraction

According to Eq. 4.3 a ~k-conserving fraction of nearly 100% is expected for Cu, if
only electron-phonon interactions are considered to destroy the ~k-momentum conser-
vation. Accounting for the increase of electron-phonon scattering rate with increas-
ing incident energy, a reduction of the ~k-conserving fraction is expected at higher
incident energies.

The electron-phonon interaction can result in the creation as well as in the annihi-
lation of a phonon. Of course, the phonon annihilation rate is proportional to the
number of phonons present and thus depends on the temperature of the sample.
Accordingly, Eq. 4.3 is transformed into

Itotal(T ) = (1− f(T )) · Inon−~k−cons + f(T ) · I~k−cons. (4.4)

Thus, it is possible to determine the phonon contribution to the non-~k-conserving
fraction, independent of the loss of ~k-selectivity due to the increasing number of
bands, by performing a temperature dependent experiment. Although only the non-
~k-conserving contribution due to the annihilation of phonons is thereby obtained, at
least the order of magnitude of the total phonon contribution can be gained.

A ~k-selective RIXS spectrum from Cu has been measured at two different temper-
atures under otherwise identical experimental conditions. The spectrum measured
at room temperature then can be calculated as the weighted sum of the purely ~k-
conserving spectrum measured at 10 K and of the purely ~k-unselective spectrum
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Figure 4.3: Measured ~k-selective RIXS spectra from Cu at room temperature (solid

line) and at 10 K (dashed line) together with the ~k-unselective spectrum obtained
from a powder sample (dotted line). The spectra have been convoluted with a
Gaussian with a FWHM of 1 eV. In the lower panel difference spectra are shown,
as decribed in the text.

obtained from the powder sample:

Iwarm
!

= Itotal = (1− f ′(300K)) · Ipowder + f ′(300K) · Icold. (4.5)

The variational parameter f ′, denoting the ~k-conserving fraction when only phonon
annihilation processes are accounted for by the ~k-unselective fraction, is determined

by means of a fit procedure demanding Iwarm
!

= Itotal.

The incident energy h̄ω1 = EK +5 eV = 8984 eV and the momentum transfer ~qabs =
3.0 · 〈100〉2π

a
⇔ ~qred = 1.0 · 〈100〉2π

a
, corresponding to Θ = 70◦, were chosen to yield a

~k-selective RIXS spectrum that significantly differs from the ~k-unselective spectrum.
The ~k-selective spectrum from the single crystal sample has been measured at room
temperature and at 10 K and is shown in Fig. 4.3, in comparison to the spectrum
obtained from the powder sample. To facilitate the comparison of the three spectra
they have been convoluted with a Gaussian of a FWHM of 1 eV, suppressing the
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statistical noise of the spectra. As shown in the upper panel, the valence spectrum
obtained from the powder (non-~k-conserving RIXS) differs significantly from the

spectra obtained from the single crystal (~k-conserving RIXS), whereas latter spectra
are quite similar to each other. In the lower panel the differences of the spectra are
depicted. The difference between the two single crystal spectra (solid line) shows a
asymmetry that is larger than the statistical error, as indicated by the error channel
(dotted lines), and thus is significant. Drawn with a dashed line is the difference
remaining after the fit according to Eq. 4.5, yielding f ′ = 75 %. Although smaller
than the difference Iwarm − Icold a significant asymmetry is still present, which will
be discussed in what follows.

4.4 Thermal Expansion of the Sample

The residuum of the difference Iwarm−Itotal may stem from the change of the valence
band width due to the thermal expansion of the sample, that has been neglected so
far. If the temperature is reduced from 300 K to 10 K the lattice constant reduces
by 0.345 % from aT=300K = 3.6044 Å to aT=10K = 3.6022 Å, as can be determined
from a direct measurement (-0.35 %) and from the integration of the temperature
dependent thermal expansion coefficient (-0.34 %) [LandBö].

Using a = 3.6022 Å a band structure calculation of Cu has been performed, to
determine the influence of thermal expansion on the shape of the valence band.
The resulting calculated ~k-selective valence spectrum at 10 K is compared to the
respective spectrum calculated at 300 K in Fig. 4.4. As in the experiment the
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Figure 4.4: Calculated ~k-selective RIXS spectra from Cu at room temperature
(solid line) and at 10 K (dashed line). The radiative Auger satellite has been
omitted.
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spectrum at low temperature is broader than the spectrum at room temperature.
This is due to the fact that at low temperatures the lattice constant is smaller, the
overlap between neighbouring atoms is larger and thus the band width is larger at
lower temperatures. In the case of the calculated spectra good agreement between
the 10 K and the 300 K spectrum can be obtained, if the energy axis of the 10 K
spectrum is stretched by c = 1.5 % according to E ′ = E + (1 + c)(E − 8979 eV).
In analogy, the two different measured spectra can be made equal by applying a
stretching factor of c = 2.2 % to the 10 K spectrum, beeing not too different from
c = 1.5 % in the case of the calculated spectra.

Thus, the spectrum measured at room temperature can be obtained from the spec-
trum measured at 10 K either by acounting for the thermal expansion by means of a
stretching factor to the energy axis or by considering a non-~k-conserving contribution
due to electron-phonon interactions in the intermediate state. The corresponding
difference spectra Iwarm − Istretched and Iwarm − Itotal are depicted in Fig. 4.5. The
asymmetry that is present in the difference Iwarm− Itotal is not present in the differ-
ence Iwarm − Istretched. This clearly indicates, that thermal expansion of the sample
is the dominating effect in the temperatre dependence of Bloch ~k-selective RIXS
spectra.
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Figure 4.5: Differences of RIXS spectra from Cu. The spectrum at room
temperature is obtained from the spectrum at 10 K either by acounting for the
thermal expansion (solid line) or by considering a ~k-unselective contribution
(dashed line).

In the next step of investigation it is desirabel to account for both the thermal
expansion and the non-~k-conserving processes in the calculation of the spectrum at
300 K from the spectrum measured at 10 K. Unfortunately the fit determining the
stretch factor c and the ~k-selective fraction simultaneously is highly unstable and
thus does not yield any useful results. Moreover, if the fit according to Eq. 4.5 is
performed with the stretch factor fixed at c = 1.5 % the difference still remains
asymmetric. Therefore, within the statistical error of the present dataset, a non-~k-
conserving fraction can neither be acertained nor be ruled out.
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Conclusion

To date it is still unclear to what extent in the soft x-ray regime the electron-phonon
interaction in the intermediate state contributes to the reduction of the Bloch ~k-
selectivity of RIXS spectra, if the incident energy is increased. More investigation
is needed in this field.

In the hard x-ray regime the difference of shape between the ~k-selective spectra
measured at room temperature and at 10 K can be explained in terms of thermal
expansion of the sample. The non-~k-conserving fraction, if any is present at all,
amounts only to a few percent, as is expected from semiempirical considerations
(see Eq. 4.3), but its precise determination is not possible from this dataset. In the
following, the RIXS process in the hard x-ray regime will be considered to be purely
~k-conserving.
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Chapter 5

Screening of the Core Hole
Investigated by a Supercell
Calculation

As stated in Chapter 1, so far it has been assumed that in the scattering process only
one electron is excited and another one is refilling the previously created core hole.
All other electrons are assumed to remain ‘frozen’ in their states. In this case the
ground state energy eigenvalues and wave functions can be used in the calculation
of the scattering cross section. Indeed this picture is simplified too much, since the
1s hole present in the intermediate state is screened by the outer electrons, thereby
changing their eigenvalues and wave functions. In a simplified treatment the ionized
atom may be thought to have increased its atomic number by one, often treated in
the so-called Z+1 approximation. Similarly the 4p hole in the final state is subject
to screening, but since valence states are strongly delocalized their screening hardly
affects the band stucture.

In the above considerations it has been implicitly assumed that the interaction time
of the excited core electron with the photon is long enough to allow for the relax-
ation of the other electrons in the ionized atom and in the surrounding atoms. As a
rule of thumb, the ‘frozen core’ or ‘sudden’ approximation1 is valid if an excitation
of an electron takes place to values high above its threshold energy, whereas the
‘adiabatic’ approximation has to be applied if relaxation effects become important,
which is the case if the process occurs near its threshold. This is due to the fact that
near the threshold energy the kinetic energy of the excited electron is small leaving
sufficient time for the electron system to relax before the electron has left the vicin-
ity of the ionized atom. Evidence for this assumption can be obtained e.g. from the
X-ray satellites originating from double ionization processes during the absorption
of a photon (see introductory section of Chapter 7). These processes show a char-
acteristic onset energy and intensity saturation behaviour. In the saturation region,
i.e. high above the threshold, the inensity of these satellites is properly accounted
for by the sudden approximation, whereas in the onset region the adiabativ approx-
imation is valid [Ster00]. Moreover, the onset energies and the energetic positions of

1A prominent example of the sudden approximation is the impulse approximation in the theory
of Compton scattering, stating that the ground state momentum density is reflected in the Compton
profile if the incident energy is much larger than the characteristic energies in the sample.
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the satellites can be calculated within the Z+1 apprximation. Is the case of a RIXS
process, the excitation takes place in the close vicinity of an absorption edge, thus
justifying the assumption of total screening.

According to the final states rule the energy transferred in an absorption or emission
process is determined by the electron configuration present in the respective final
state. In the case of resonant inelastic scattering from valence electrons, the initial
state is identical to the ground state of the electron system, the intermediate state
is marked by the existence of a vacancy in a core level, and in the final state the core
hole has been refilled and a hole state is present in the valence band (see Fig. 1.2).
Since the intermediate state is the final state of the absorption part of the process,
the absorption process is governed by the unoccuppied DOS in the presence of a
core hole. In analogy, the emission part of the scattering cross section is determined
by the occupied DOS in the presence of a hole state in the valence band. Usually,
due to its delocalization, the valence hole states are neglected, and a ground state
band structure is used in the calculation of the emission energies.

In the framework of the density functional theory supercell calculations are widely
used to account for the screening of core holes in crystalline samples. Within the
supercell concept, the core vacancy of the ionized atom positioned in a finite crystal
is approximated by an infinite number of periodically arranged core vacancies in an
infinite crystal. The unit cell of this crystal, i.e. the supercell, consists of several
primitive cells of the standard lattice. It contains only one ionized atom and sev-
eral neutral ones. The fraction of ionized atoms in the supercell is reduced by the
formation of unit cells containing more and more neutral atoms until the distance
between neighbouring ionized atoms is so large that no interaction beween them is
perceivable. In this limit, the supercell describes one single core state in an otherwise
perfect single crystal. In the actual calculation, the supercells are increased step by
step, until no further changes of DOS are observed.

Due to the localization of the core state involved in the RIXS process, only the
partial DOS of the atom whose core electron is excited plays a role in the absorption
and the emission process (see Section 6.4). In the RIXS process at the Cu K edge the
core hole can be accounted for by calculating the partial 4p-DOS of the ionized atom
together with its corresponding 1s →4p matrix element, and by the consideration
of both in the absorption part of the scattering process.

In this chapter the application of the supercell method to the 1s core hole in Cu,
occuring in the RIXS process from valence electrons at the Cu K edge, is presented.
After describing the geometry of the considered supercells the influence of the core
hole on the DOS of the ionized atom and on the neighbouring atoms is described.
Then a detailed description of the convergence of the DOS with inreasing cell size
is given, observing various parameters such as the DOS of the ionized and of the
neutral atoms, the energy of core states, and the number of iterations needed to
obtain a self-consistent charge distribution. Finally, the influence of the core hole
on the K-XANES is discussed.
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5.1 Geometry of the Supercells

Supercells with total numbers of 4, 8, 32, and 108 atoms have been accounted
for. However, some of these atoms are equivalent to each other since they have
the same distance from the ionized atom, which is demonstrated in Fig. 5.1. This
twodimensional supercell contains a total number of four atoms but only three of
them are inequivalent ones. Atom A has the vacancy in the 1s orbital, whereas the
other three atoms are in their ground states. The two atoms labeled B are equivalent
to each other, since their four nearest neighbours are two ionized atoms and two
neutral atoms, whereas atom C has only neutral atoms on its nearest neighbour
sites. Accordingly, the atoms in the three-dimensional supercells are subdivided
into groups of equivalent atoms.

Figure 5.1: Nonequivalent and
equivalent atoms. In this
twodimensional supercell the
unit cell, marked by the
dashed line, consists of four
atoms. Of these only three are
inequivalent ones. The two
atoms labeled B are equivalent
to each other.

A

C

B

B

The atomic positions within the three smallest cells is depicted in Fig. 5.2. From
left to right the cells contain a total number of 4, 8, and 32 atoms and have 2, 3, and
6 inequivalent positions, respectively, which are labeled A to F. The ionized atom
is placed at position A. The cells containing 8 and 32 atoms are represented by an
8th of their simple cubic unit cells. Each color denotes a different class of equivalent
atoms.

The supercells containing 4, 32, and 108 atoms have a simple cubic lattice, whereas

/2a /2aa

A A A
B B

D

E

F

B

CC

Figure 5.2: Atomic positions within the three smallest supercells of Cu. The
primitive basis cells are spanned by three vectors as indicated. In the case of the
cell containing 32 atoms the vectors have the length AC · 2.
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Natom SG a [Å] arel Nineq dii [Å]

1 fcc 3.61 1 1 2.55

4 sc 3.61 1 2 3.61

8 fcc 7.22 2 3 5.11

32 sc 7.22 2 6 7.22

108 sc 10.83 3 10 10.83

Table 5.1: Geometric parameters of the supercells for the consideration of the 1s
core hole in Cu. The paramters are explained in the text.

the cell containing 8 atoms is based on a fcc lattice. The positions, equivalencies
and distances of all atoms are given in Appendix A. Table 5.1 summarizes the
basic geometric parameters of the supercells. Therein the total number of atoms in
the supercell Natom, the space group SG, the lattice constant a, the relative lattice
constant arel, the number of inequivalent atoms in the supercellNineq, and the nearest
neighbour distance between the ionized atoms dii are specified. dii increases linearly
with the lattice constant, where in case of a fcc lattice a has to be divided by

√
2.

The total number of atoms is calculated as Natom = a3
rel · f , where ffcc = 1 and

fsc = 4, and the number of inequivalent atoms Nineq increases like
√
Natom.

Fortunately, the number of iterations Nite required to obtain a self-consistent charge
distribution does not rise proportional to Natom but increases only slightly with the
increase of Nineq (see Table 5.2). However, in the case of the 108-atomic supercell
Nite ≈ 30 is expected from the other cells, and the observed number of 50 iterations
is surprisingly high. This finding will be discussed in Section 5.5.

Nevertheless, the total time ttot needed to reach self-consistency dramatically in-
creases with increasing cell size. This is due to the fact that the time t~k required

to solve the eigenvalue problem for one ~k-point depends on the number of plane
waves NPW used in the expansion and grows like N2···3

PW . Since the number of the
plane waves is proportional to the total number of atoms in the unit cell, t~k shows
the same rapid growth. On a PentiumII 233 MHz processor t~k ranges from a few

seconds to many hours. However, the number of ~k-points in the irreducible wedge
of the Brillouin zone can be reduced as the supercell becomes larger, since the cor-
responding reciprocal unit cells becomes smaller and less ~k-points are sufficient to

Natom Nineq Nite N~k t~k tite ttot SRAM

1 1 12 286 1.5 s 5 m 1 h 0.2 MB

4 2 14 165 7.8 s 21 m 5 h 1 MB

8 3 18 72 45 s 54 m 16 h 5 MB

32 6 23 20 63 m 21 h 21 d 75 MB

108 10 50 4 16 h 2.6 d 130 d 900 MB

Table 5.2: Computational requirements of the supercells.
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create a grid of a given point distance. Thus, the time tite required to perform one
cycle of the iteration process ranges from a few minutes to some hours, and the total
time ttot needed for the supercell calculation ranges from one hour in the case of the
standard calculation to 130 days in the case of Natom = 108.

To complete such a demanding calculation within reasonable time, one starts with a
small set of ~k-points that is extended as the charge density converges. Additionally,
the calculation can be distributed to several machines, based on the splitting of
the ~k-mesh into smaller subsets. Moreover, the work space SRAM required within
the LAPW algorithm grows quadratic with the number of plane waves and thus is
proportional to N2

atom. In the case of the 108-atomic cell 1GB of work space was
required.

5.2 Supercells without a Core Hole

To ensure that no artefacts occur due to the use of supercells, one can specify
the ground state electron configuration for all atoms while retaining the classes of
inequivalent atoms. This has been performed for the supercells with 4 and 8 atoms.
The resulting partial densities of the p and d electrons are shown in Fig. 5.3. In
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Figure 5.3: The Cu d- and p-DOS of 4 atomic and 8 atomic supercells without a
core hole. The DOS of both supercells (dashed lines) are identical to the respective
DOS of the standard calculation (solid lines). A, B, C denote the different
inequivalent atoms.
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both supercells the DOS of the inequivalent Cu atoms are identical to each other and
agree well with the standard calculation of Cu. Artefacts due to the finite number of
~k-points available in the ~k-space integration have been suppressed by a convolution
with a Gaussian with a FWHM of 0.2 eV.

The supercells without a core hole show an extremely slow convergence. Due to the
absence of a force that pulls the charge into a certain direction, the charge oscillates
indifferently between the identical but inequivalent atoms. Since these oscillations
exhibit no damping, very small mixing parameters like α = 0.01 and smaller together
with the direct mixing scheme (see Section 2.3.4 Page 23) are required. To converge
the charge distribution to the usual level, up to 100 steps of iteration are necessary.
The convergence behaviour of the supercells containing 8 atoms with and without a
core hole is shown in Fig. 5.4.
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Figure 5.4: The convergence behaviour of 8 atomic supercells with and without a
core hole. The total charge within the atomic sphere at position A is plotted as a
function of the number of iterations.

The supercell with a core hole has reached convergence after 18 iterations (panel
a), whereas the charge of the supercell without a core hole shows a quasiperiodic
oscillation, if Broyden’s mixing scheme (see Page 23) is used (panel b). In the case
of direct mixing with a mixing parameter α = 0.1 the oscillation is smaller (panel
c), but to reach a level of convergence as in the case with core hole α had to be
reduced to α = 0.01 after the 52th iteration step (panel d).
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5.3 Influence of the 1s Core Hole on the DOS

To demonstrate the general effect of the 1s core hole on the valence DOS in Cu,
smallest supercell with Natom = 4 is regarded. It has 2 inequivalent atoms, of which
the atom at position A contains the 1s vacancy (see left panel in Fig. 5.2). As
can be seen from Fig. 5.3 the valence band of Cu (atomic electron configuration
[Ar]4s1 3d10) is dominated by the 3d-states with small admixtures of 4s- and 4p-
states. Thus, the total DOS is widely identical to the 3d-DOS. Figure 5.5 compares
the total DOS of the two inequivalent atoms in the 4-atomic supercell to the total
DOS of Cu and Zn.
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Figure 5.5: The total DOS of the two inequivalent atoms in the 4-atomic cell with
core hole together with the total DOS of Cu and Zn.

The neutral atom in the supercell (position B) has a total DOS similar to the total
DOS of standard Cu. This indicates that the screeening is strong and that the
atomic neighbours of the ionized atom remain widely unaffected by the 1s core hole.
The ionized atom in the supercell (postion A) in contrast has a DOS similar to the
DOS of Zn, as is expected from the Z+1 approximation.

5.4 Treatment of the Excited Electron

The excited 1s electron can be treated in two different ways. It either can be thought
to be removed from the crystal, leading to a charged supercell, or the electron can
be promoted into a bound state at EF, resulting in a neutral supercell. Neutral
cells have one valence electron per unit cell more than charged ones. Therefore, in
neutral cells the binding energies are larger than in charged ones, since EF is slightly
shifted to higher energies. This can be demonstrated by observing the total DOS of
atoms without a core hole (see Fig. 5.6). In charged supercells the total DOS of the
neutral atoms retain their positions relative to the Fermi energy (corresponding to
0 eV binding energy in the figures) if the size of the cell increases. In neutral cells
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Figure 5.6: d-DOS of the neutral atoms with the largest distane to the ionized
atoms in charged and neutral cells with 4 and 8 atoms.

on the other hand, the total DOS of the neutral atoms exhibits shifts towards lower
binding energies with increasing cell size, since the additional electron is subdivided
beween more atoms. For infinitively large cells the difference between charged and
neutral supercells vanishes. Aside from the shift, the DOS of charged and neutral
cells containing 8 atoms have identical shape, whereas in the supercell with 4 atoms
the shape of the DOS exhibits only minor differences.

In reality, the excited electron is delocalized and therefore it is distributed over the
whole crystal. Thus, in the case of small supercells a charged cell is more realistic
than a neutral cell. Therefore, in what follows the considerations are restricted to
charged cells.

5.5 Convergence of the DOS with Increasing Size of
the Supercell

As was shown in Section 5.3 the 3d-DOS of the ionized atom shifts from a binding
energy of -3 eV to an energy of -7 eV upon the appearance of the core hole. With
increasing size of the charged supercell the 3d-DOS of the ionized atom further shifts
to higher binding energies, as shown in Fig. 5.7. Moreover, the width of the 3d band
decreases, since the 3d-states become more core-like as they shift to larger binding
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Figure 5.7: 3d-DOS of ionized atoms in charged supercells.

energies. The 3d amplitude increases simultaneously, keeping the total number of
3d-states constant. The energetic positions, the width, and the occupation of the 3d-
DOS for the supercells with 4, 8, 32, and 108 atoms are summarized in Tab. 5.3. The
marginal difference between the two largest supercells indicates that convergence is
reached at a cell size of 108 atoms.

Compared to the 3d-DOS (see Fig. 5.5), the 4p- and 4s-DOS of the ionized atom
are relatively unaffected by the presence of the 1s core hole, as shown in Fig. 5.8.
However, concerning the size of the supercell, the 4p- and 4s-DOS show the same
convergence behavior, as the 3d-states. In the case of the 4s- ans 4p-states the
energetic shifts result in a change of the shape, which for the s-DOS is much stronger
than for the p-DOS due to the larger delocalization of the latter. Remarkably, above
EF both partial DOS show only minor changes.

This convergence behaviour found for the DOS of the ionized atom can also be
observed in the partial DOS of the neutral atoms in the supercell. As the size of
the supercell increases, the DOS of different neutral atoms become more similar.
In the case of the larger cells they perfectly resemble the respective DOS of the
standard Cu. Apparently the screening of the core hole is completed at the ionized
atom. The d-DOS of the neutral atoms are depicted in Fig. 5.9, whereas the p-
and s-DOS are reproduced in Appendix A. To eliminate the spikes due to the small
number of ~k-points in the irreducible wedge of the Brillouin zone, the DOS have

supercell pos [eV] width [eV] occupation [e−/atom]

4 atoms -6.85 0.46 9.01

8 atoms -7.16 0.21 9.05

32 atoms -7.41 0.13 9.04

108 atoms -7.48 0.10 9.04

Table 5.3: Parameters of the 3d-DOS of ionized atoms in charged supercells.



50 5. Screening of the Core Hole Investigated by a Supercell Calculation

0.00

0.05

0.10

0.15

D
O

S 
[e

- /(
eV

 a
to

m
)]

�

p

0.00

0.05

0.10

0.15

-10 -8 -6 -4 -2 0 2 4 6

D
O

S 
[e

- /(
eV

 a
to

m
)]

�

Binding Energy [eV]

s Cu standard
4-atomic
8-atomic

32-atomic
108-atomic

Figure 5.8: The 4p- and 4s-DOS of the ionized atom in charged supercells. The
oscillations in the DOS of the supercell containing 108 atoms are due to the small
number of ~k-points available for the integration over the Brillouin zone.

been broadened by a Gaussian of a FWHM of 0.2 eV. Apparently the differences
between the supercells containing 32 and 108 atoms are almost negligible, indicating
that 108 atoms in a supercell are sufficient to treat the screening of the 1s core hole
in Cu.

Moreover, the small peaks at about -7 eV, originating from the hybridization between
3d-orbitals of the ionized atom with its nearest neighbour atoms, becomes weaker
as the supercell becomes larger. The same behaviour is observed in the 4p- and
4s-orbitals (see App. A).

Finally, the dramatic increase of the number of iterations from 23 in the case of
32 atoms to 50 in the case of 108 atoms in the supercell indicates the arrival at
convergence. Within the supercell containing 108 atoms the distance between the
ionized atoms is so large, that the attractive force of the core hole does not reach
the neutral atoms that are most distant from the ionized ones. This gives rise to
instabilities of the convergence process similar to the charge fluctuations in the case
of supercells without a core hole. These fluctuations result in an extraordinary
increase of the number of iterations needed to reach convergence, as described in
Section 5.1.
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Figure 5.9: 3d-DOS of neutral atoms in charged supercells. The small peaks at
about -7 eV are due to hybridization with 3d-states of the ionized atom.
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5.6 Influence of the 1s Core Hole on the other Core
States

The shift of the electronic states to higher binding energies due the screening of the
core hole cannot only be observed in the 3d-states dominating the valence band, but
also in the core states. The 1s core hole is mainly screened by the innermost shells
of the atom, indicated by the large energy shifts induced by the core hole. Table 5.4
summarizes the binding energies as obtained from the standard calculation of Cu and
compares them to the values found for the supercells. For the latter, the energetic
shifts with respect to the standard calculation are given for both the ionized atom
and for the most distant neutral atom. All energies are in Rydberg units. The
energies of the spin-orbit split states 2p and 3p have been obtained from a weighted
average of the two sub-states.

1s 2s 2p 3s 3p

standard 650.262 77.965 67.278 8.297 5.160 E [Ry]

4 atoms 24.394 4.960 6.028 0.652 0.670 ∆E [Ry]

8 atoms 24.412 4.980 6.049 0.673 0.691 of the

32 atoms 24.426 4.996 6.064 0.688 0.707 ionized

108 atoms 24.430 5.000 6.068 0.693 0.711 atom

4 atoms -0.053 -0.056 -0.055 -0.060 -0.059 ∆E [Ry]

8 atoms -0.031 -0.033 -0.033 -0.034 -0.031 of the most

32 atoms -0.017 -0.018 -0.018 -0.019 -0.018 distant

108 atoms -0.013 -0.014 -0.014 -0.015 -0.015 neutral atom

Table 5.4: Binding energies of the core states in the standard calculation and in
charged supercells. The upper and lower panel contain the energies of the ionized
atom and of the most distant neutral atom, respectively. The energies are given as
eneregy differences with respect to the Cu standard calculation. All energies are
given in Rydberg units.

The binding energies for the ionized atoms are shifted towards larger values and
show a convergence behaviour, as expected, whereas the orbital energies of the most
distant neutral atom converge towards the energies of the standard Cu calculation.

As in the case of the valence DOS, not only the parameters of the most distant
neutral atom converge towards the values of the standard calculation. Indeed, the
binding energies in all neutral atoms converge towards the standard values, as is
depicted in Fig. 5.10. A similar convergence behaviour is found for the other core
orbitals.

Moreover, from the difference of the total energies per atom the ionization energy
Eio of the 1s electron can be calculated:

Eio(1s) = Etot(supercell)/Natom − Etot(standard). (5.1)
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Figure 5.10: Convergence
of the 1s orbital energies
in neutral atoms with
increasing cell size.
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All supercells yield the same 1s ionization energy Eio(1s) = 9006 eV, which is 0.3 %
larger than the actual value of 8979 eV. In contrast, the 1s orbital energy is 8843
eV which is 1.6 % smaller than 8979 eV. Thus, the consideration of screening effects
within a supercell approach gives a better result than the frozen core approximation.

5.7 XANES Calculated from Supercells

To estimate the influence of the core hole on the RIXS process, the XANES of the Cu
K edge is calculated from the DOS of the ionized atom as obtained in the supercell
calculation.

As will be shown in the next chapter, the dipolar 1s→4p and the quadrupolar 1s→3d
processes may contribute to the absorption process. The absorption intensity is
proportional to the partial DOS multiplied by the repective matrix element ME.
Since the p- and d-DOS are of similar size in the region of the unoccupied states,
while quadrupolar transitions are roughly two orders of magnitude smaller than
dipolar transtitions, only the dipolar 1s→4p contribution has to be considered. To
account for the finite lifetime of the intermediate state the absorption spectrum
DOS ·ME is convoluted with a Lorentzian of FWHM = Γ0 = 1.55 eV [Zsch89].

For excitation energies high above the absorption edge, the additional broadening
due to the finite lifetime of the excited electron has to be accounted for. According
to Müller et al. [Müll82] this can be done by means of an energy dependent width
of the Lorentzian:

Γ(E) = Γ0 + 0.1E [eV], (5.2)

where E is the difference between the incident energy h̄ω1 and the energy of the
absorption edge.

In Fig. 5.11 the Cu K XANES spectra obtained from the standard calculation and
from the charged supercell with 108 atoms are compared to the measured K XANES
of Cu. The agreement of both the calculated spectra and the measured spectrum
is satisfying. However, the second peak at about 6 eV (marked by the arrow),
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Figure 5.11: XANES spectrum of the Cu K edge obtained from the standard
calculation and from the charged supercell with 108 atoms compared to the
measured XANES spectrum of Cu.

which is overestimated in the calculation from the ground state DOS, is damped in
the spectrum obtained from the supercell. Thus, the agreement with the measured
XANES is only slightly affected by the consideration of the core hole.

Conclusion

In this chapter the supercell method for the consideration of core holes was described
in detail. Special attention was paid to the convergence behaviour of the DOS with
increasing cell size. It was demonstrated that the 1s core hole of 3d elements is
mainly screened by the core states (see Tab. 5.4) and by the 3d-electrons of the
ionized atom (see Fig. 5.5), due to their strong localization. The 4p and the 4s-DOS
of the ionized atom exhibit only minor changes due to the core hole (see Fig. 5.8),
whereas the DOS of the neighbouring atoms remain largely unaffected (see Fig. 5.9).
Since the K-XANES predominantly monitors the 4p-DOS, the core hole has only
little influence on the shape of the Cu K edge.

Thus, only a small effect of the core hole on RIXS is to be expected. Therefore in
the absorption part of RIXS the core hole will be neglected from now on and the
ground state band structure will be used in the calculation of both the emission and
the absorption part of the RIXS process.



Chapter 6

The Contribution of Quadrupolar
Transitions

So far the ~A · ~p scattering operator has been accouted for within the dipole approx-
imation. However, in the case of the 3d transition metals, as already mentioned
in Chapter 3, also quadrupolar transitions have to be considered. In Cu for exam-
ple the eleven valence electrons subdivide into 10 3d, 0.6 4p, and 0.4 4s electrons,
as was found out from the band structure calculation by integrating the occupied
partial densities of states. If one assumes a quadrupolar transition matrix element
to be two orders of magnitude smaller than a dipolar matrix element, the 3d→1s
quadrupolar transition in the valence fluorescence line is only a factor of six less
intense than the 4p→1s dipolar transition. Due to their different degree of local-
ization, the 3d- and 4p-states give rise to densities of states that strongly differ in
shape (see Chapter 5). Therefore, the relative intensity of dipolar and quadrupolar
transitions influences the shape of valence fluorescence spectra, and thus must be
properly accounted for. However, the absorption process in the case of Cu is not
influenced by quadrupolar transitions, since in the conduction band the 3d-DOS is
not large enough to compensate the small quadrupolar matrix element.

Moreover, radiative transitions show a characteristic angular behaviour. In the case
of a dipolar transition the intensity depends on the orientation of the photon’s po-
larization vector relative to the crystal axes of the sample. Quadrupolar transitions
additionally depend on the orientation of the photon wave vector with respect to
the crystal axes [Dräg84, Dräg88]. However, in the case of a cubic crystal lattice the
angular dependence of dipolar transitions involving a core state with l = 0 vanishes,
since the p-states are degenerate in a cubic system. Only the angular dependence
of the quadrupolar transitions persists. This will be discussed in Section 6.7.

In the case of the 3d transition metals the 4p- and 3d-states are indistinguishably
mingled in the valence fluorescence line. Fortunately, as the atomic number Z is
increased from 29 (Cu) to 33 (As), the binding energy of the 3d states increases from
a few eV to several tens of electron volts. Therefore, the quadrupolar fluorescence
line more and more separates from the valence line with increasing atomic number,
as is shown in Fig. 6.1. Due to the separation of the 3d→1s quadrupolar peak
from the 4p→1s dipolar peak both transitions can be measured independently in
As, Ge, and Ga. This offers the opportunity to calculate the relative fluorescence
intensities of the quadrupolar transitions and to compare them to the measured

55



56 6. The Contribution of Quadrupolar Transitions

spectra. Then the quadrupolar contribution to the valence fluorescence spectra of
Cu can be properly accounted for, improving the agreement between measured and
calculated spectra.
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Figure 6.1: Measured dipolar and quadrupolar valence fluorescence lines. The
fluorescence energies are relative to the respective 1s binding energy EK , indicated
for each element. The valence fluorescence lines are found in the range of -10 to 0
eV. The peaks at energies above zero are due to quasi elastic scattering, except for
Ge where it is a satellite due to a double electron excitation during the absorption
process [Ster00]. For the elements Cu and Zn the high energy tail of the Kβ1,3 line
is visible at low energies. The dispersing low energy feature from As to Zn marked
by the arrow is due to the 3d→1s quadrupolar transition. In the case of Cu the
quadrupolar line is mingled into the dipolar fluorescence line. The spectra have
been measured at beamlines ID16 (Ga, As, Cu) and ID28 (Ge) of the ESRF and at
beamline G3 of the HASYLAB (Zn).
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6.1 Dipole and Quadrupole Operator

First the dipole and the quadrupole operator will be derived from the ~A·~p term of the
interaction Hamiltonian (see for example Eq. 1.15). Expansion of the exponential

up to first order in ~k · ~r yields

〈f | ei~k·~r(h̄ε̂ · ~∇) |i〉 ' 〈f | (1 + i~k · ~r)(h̄ε̂ · ~∇) |i〉
= 〈f | h̄ε̂ · ~∇ |i〉+ 〈f | ih̄ ~k · ~r ε̂ · ~∇ |i〉 . (6.1)

To obtain the electric dipole operator, only the zeroth order is needed. Making use
of the equation of motion of ~p

~p = −ih̄~∇ =
m

ih̄
[~r,H0] (6.2)

the momentum operator ~p in the matrix element can be replaced by ~r:

〈f | h̄ε̂ · ~∇ |i〉 =
m

h̄
〈f | ε̂ · (~rH0 −H0~r) |i〉

= −m(Ef − Ei)
h̄

〈f | ε̂ · ~r |i〉

= −mω 〈f | ε̂ · ~r |i〉 . (6.3)

Similarly the first order part of the expansion can be treated using the identity
[Brou90]

h̄ ~k · ~r ε̂ · ~∇ =
m

2h̄

[
ε̂ · ~r ~k · ~r,H0

]
+
i

2
(~k × ε̂) · ~L, (6.4)

leading to the transition amplitude Ai,f up to first order as

Ai,f = −mω 〈f | ε̂ · ~r |i〉 − imω
2
〈f | ε̂ · ~r ~k · ~r |i〉 − 1

2
〈f | (~k × ε̂) · ~L |i〉 . (6.5)

The third term, that contributes to magnetic dipole transitions, does not contain a
radial variable. It therefore vanishes if |i〉 and |f〉 are orthogonal as it is the case
for x-ray emission and absorption. Thus, only the first and second term persist.
Further there are no interference terms between the first and the second term since
(a+ ib)(a+ ib)∗ = a2 + b2. Hence the intensity I of the transition is given by

I = Ai,fA
∗
i,f ∝ |〈f | ε̂ · ~r |i〉|

2 +
1

4

∣∣∣〈f | ε̂ · ~r ~k · ~r |i〉∣∣∣2 , (6.6)

where the first and second part describe the electric dipole and the electric
quadrupole transitions, respectively. By means of this formula the relative intensi-
ties of the dipole and the quadrupole transitions between the states |i〉 and |f〉 can
be calculated.
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6.2 Radial and Angular Part of the Matrix Elements

Assuming that the wave functions |i〉 and |f〉 can be described by atomic wave
functions, consisting of a radial function R(r) and of a spherical harmonic Y m

l (r̂),

|i〉 = Rl0(r)Y m0
l0

(r̂) and |f〉 = Rl(r)Y
m
l (r̂), (6.7)

the dipole matrix element MD can be split into an angular integral MA
D and a radial

integral MR
D :

MD = 〈f | ε̂ · ~r |i〉 =

∫
d~r Rl(r)Y

m∗
l (r̂) ε̂ · ~r Rl0(r)Y m0

l0
(r̂)

=

∫
dΩ Y m∗

l (r̂) ε̂ · r̂ Y m0
l0

(r̂)︸ ︷︷ ︸
MA

D

∫
r2dr Rl(r) r Rl0(r)︸ ︷︷ ︸

MR
D

. (6.8)

The same splitting applies to the quadrupole matrix element MQ:

MQ = 〈f | ε̂ · ~r ~k · ~r |i〉 =

∫
d~r Rl(r)Y

m∗
l (r̂) ε̂ · ~r ~k · ~r Rl0(r)Y m0

l0
(r̂)

=

∫
dΩ Y m∗

l (r̂) ε̂ · r̂ k̂ · r̂ Y m0
l0

(r̂)︸ ︷︷ ︸
MA

Q

k

∫
r2dr Rl(r) r

2 Rl0(r)︸ ︷︷ ︸
MR

Q

. (6.9)

Then the total transition intensity is given by

I = MDM
∗
D +

1

4
MQM

∗
Q

= MA
DM

A∗
D (MR

D )2 +
k2

4
MA

QM
A∗
Q (MR

Q )2. (6.10)

From the angular integrals the selection rules and the angular dependencies of the
transitions arise, whereas the radial integrals, containing the radial wave functions,
determine the intensity of the transition.

In the following sections the angular and the radial integral will be calculated sep-
arately to yield the intensity of the 3d→1s quadrupolar transition relative to the
4p→1s dipolar transition.

6.3 The Angular Integrals

Although it is possible to express the spherical harmonics Y m
l in terms of the polar

coordinates θ and φ (see Fig. 6.6) and to calculate the respective integrals, it is more
concise and easier to use the formalism of the spherical harmonics. This derivation is
based on the detailed article by C. Brouder [Brou90]. First, the necessary formulae
are listed.
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1. The orthonormality of the spherical harmonics, Eq. 3.139 of [Bied81]:∫
dΩ Y m1∗

l1
(r̂) Y m2

l2
(r̂) = δl1,l2 δm1,m2 . (6.11)

2. The scalar product expressed in terms of spherical harmonics:

â · b̂ =
4π

3

∑
λ

Y λ∗
1 (â)Y λ

1 (b̂). (6.12)

3. Gaunt’s integral over three spherical harmonics, Eq. 3.192 of [Bied81] or
Eq. 4.34 of [Rose57]:∫

dΩ Y m∗
l (r̂)Y m1

l1
(r̂)Y m2

l2
(r̂)

=

[
(2l1 + 1)(2l2 + 1)

4π(2l + 1)

] 1
2

(l10 l20|l0) (l1m1l2m2|lm) (6.13)

= 〈l‖l1‖l2〉 (l1m1l2m2|lm) (6.14)

= C l m
l1 m1 l2 m2

. (6.15)

Therein denote:

(l10 l20 |l0) and (l1m1l2m2|lm) the Wigner or Clebsch-Gordan coefficients,

〈l‖l1‖l2〉 the reduced matrix element, and

C l m
l1 m1 l2 m2

the Gaunt coefficient.

4. The expansion of a product of spherical harmonics in terms of spherical har-
monics, Eq. 3.436 of [Bied81] or Eq. 4.32 of [Rose57]:

Y λ
1 (r̂)Y µ

1 (r̂) =
∑
nν

C n ν
1λ 1µ Y

ν
n (r̂)

=
∑
ν

C 2 ν
1λ 1µ Y

ν
2 (r̂) + C 0 0

1λ 1µ Y
0

0 (r̂) (6.16)

Y λ∗
1 (r̂)Y λ′

1 (r̂) =
∑
aα

C 1λ
1λ′ aα Y

α∗
a (r̂)

=
∑
α

C 1λ
1λ′ 2α Y

α∗
2 (r̂) + C 1λ

1λ′ 0 0 Y
0∗

0 (r̂) (6.17)

Here the triangle condition of the Gaunt coefficients for l1, l2, l has been used:

C l m
l1 m1 l2 m2

= 0
unless l ∈ {l1 + l2, l1 + l2 − 1, . . . , |l2 − l1|}
and l1 + l2 + l = even,

(6.18)

(see Eq. 3.191 and Eq. 3.195 in [Bied81]).

The Wigner coefficients can be calculated by means of Eq. 3.171 in [Bied81].
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6.3.1 The Angular Integral of the Dipole Operator

First the scalar product ε̂ · r̂ is expressed in terms of the spherical harmonics (see
Eq. 6.12), leading to an integral over three spherical harmonics:

MA
D =

∫
dΩ Y m∗

l (r̂) ε̂ · r̂ Y m0
l0

(r̂)

=
4π

3

∑
λ

∫
dΩ Y m∗

l (r̂) Y λ∗
1 (ε̂) Y λ

1 (r̂) Y m0
l0

(r̂), (6.19)

which can be evaluated using Gaunt’s Integral (6.15):

MA
D =

4π

3

∑
λ

C l m
l0 m0 1λ Y

λ∗
1 (ε̂) . (6.20)

Now one can calculate the square of the matrix element

|MA
D |2 = MA

DM
A∗
D =

(
4π

3

)2∑
lm

∑
l′m′

∑
λλ′

C l m
l0 m0 1λ C

l′ m′

l0 m0 1λ′ Y
λ∗

1 (ε̂) Y λ′

1 (ε̂), (6.21)

and expand the product of the spherical harmonics of ε̂ making use of (6.17):

|MA
D |2 =

(
4π

3

)2∑
lm

∑
l′m′

∑
λλ′

C l m
l0 m0 1λ C

l′ m′

l0 m0 1λ′

∑
aα

C1λ
1λ′ aα Y

α∗
a (ε̂)

=

(
4π

3

)2∑
lm

∑
l′m′

∑
λλ′

C l m
l0 m0 1λ C

l′ m′

l0 m0 1λ′ C
1λ
1λ′ 0 0 Y

0∗
0 (ε̂)

+

(
4π

3

)2∑
lm

∑
l′m′

∑
λλ′

C l m
l0 m0 1λ C

l′ m′

l0 m0 1λ′

∑
α

C1λ
1λ′ 2α Y

α∗
2 (ε̂). (6.22)

The first and second addend of Eq. 6.22 describe the isotropic and the polarization
dependent part of the dipole transition intensity, respectively. For case in question
here, i.e. RIXS at the K edge of a cubic substance, the anisotropic part of the
transition probability vanishes (see Section 6.7). Therefore, only the first addend is
considered further.

Now one can apply the triangle condition of the Gaunt coefficients for m1,m2,m :

C l m
l1 m1 l2 m2

= 0 unless m1 +m2 = m (6.23)

to the third Gaunt coefficient in Eq. 6.22. It follows that λ must equal λ′. Since in
every l,m-pair |m| ≤ l, λ can take only the values −1, 0, 1.

With C1λ
1λ′ 0 0 = 1√

4π
∀λ and Y 0∗

0 (ε̂) = 1√
4π

one finds that

C1λ
1λ′ 0 0 Y

0∗
0 (ε̂) =

1

4π
δλ,λ′ . (6.24)



6.3. The Angular Integrals 61

Moreover, from λ = λ′ it follows, by applying the triangle conditions, that l = l′ and
m = m′ thus reducing Eq. 6.22 to:

|MA
D |2 =

(
4π

3

)2∑
lm

∑
λλ′

C l m
l0 m0 1λ C

l m
l0 m0 1λ′

1

4π
δλ,λ′

=

(
4π

3

)
1

3

∑
lm

∑
λ

(
C l m
l0 m0 1λ

)2
. (6.25)

Applying the triangle conditions to the remaining Gaunt coefficient, the dipole se-
lection rules can be easily deduced, yielding

l = l0 ± 1 and m =

{
m0

m0 ± 1.
(6.26)

6.3.2 The Angular Integral of the Quadrupole Operator

By analogy to the treatment of the dipole operator both scalar products ε̂ · r̂ and
k̂ · r̂ are expressed in terms of spherical harmonics (see Eq. 6.12):

MA
Q =

∫
dΩ Y m∗

l (r̂) ε̂ · r̂ k̂ · r̂ Y m0
l0

(r̂)

=

(
4π

3

)2∑
λµ

∫
dΩ Y m∗

l (r̂) Y λ∗
1 (ε̂) Y λ

1 (r̂) Y µ∗
1 (k̂) Y µ

1 (r̂) Y m0
l0

(r̂). (6.27)

In this case one has to deal with an integral over four spherical harmonics depending
on r̂. Since only integrals over three spherical harmonics are covered by Gaunt’s
integral, one has to reduce the number of spherical harmonics. This can be done by
using Eq. 6.16, i.e. by expanding a product of two spherical harmonics in terms of
a sum of spherical harmonics:

Y λ
1 (r̂)Y µ

1 (r̂) =
∑
ν

C 2 ν
1λ 1µ Y

ν
2 (r̂) + C 0 0

1λ 1µ Y
0

0 (r̂). (6.28)

Considering the second term and imposing the triangle condition for m1,m2,m one
finds similar to 6.24:

C 0 0
1λ 1µ Y

0∗
0 (r̂) =

1

4π
δλ,−µ. (6.29)

Therefore the only remaining factors containing λ and µ in Eq. 6.27 are:∑
λµ

Y λ∗
1 (ε̂) Y µ∗

1 (k̂)
1

4π
δλ,−µ =

∑
λ

Y λ∗
1 (ε̂) Y −λ∗1 (k̂) =

∑
λ

Y λ∗
1 (ε̂) Y λ

1 (k̂)

=
3

4π
ε̂ · k̂ = 0 (with Eq. 6.12), (6.30)

since the polarization vector ε̂ is perpendicular to the wave vector k̂ of the photon.
Thus, only the first term remains and Eq. 6.27 reduces to

MA
Q =

(
4π

3

)2∑
λµν

∫
dΩ Y m∗

l (r̂) Y m0
l0

(r̂) Y ν
2 (r̂) C 2 ν

1λ 1µ Y
λ∗

1 (ε̂) Y µ∗
1 (k̂) , (6.31)
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which can be evaluated using Gaunt’s integral (see Eq. 6.15) resulting in:

MA
Q =

(
4π

3

)2∑
λµν

C l m
l0 m0 2 ν C

2 ν
1λ 1µ Y

λ∗
1 (ε̂) Y µ∗

1 (k̂) . (6.32)

Now the square of the matrix element can be calculated:

|MA
Q | = MA

QM
A∗
Q =

(
4π

3

)4∑
lm

∑
l′m′

∑
νν′

C l m
l0 m0 2 ν C

l′ m′

l0 m0 2 ν′

×
∑
λλ′

∑
µµ′

C 2 ν
1λ 1µ C

2 ν′

1λ′ 1µ′Y
λ∗

1 (ε̂) Y λ′

1 (ε̂) Y µ∗
1 (k̂) Y µ′

1 (k̂) , (6.33)

whereon Eq. 6.17 can be applied. In Section 6.7 it will be shown, that for the case
of the 3d→1s transitions of As, Ge, Ga, and Cu no polarization effects are to be
expected. Thus, as in the case of the dipole operator, only the Y 0

0 parts of the
expansions are kept and Eq. 6.24 is used to get Kronecker δ-functions for λ, λ′ and
µ, µ′ resulting in:

|MA
Q | ≈

(
4π

3

)4∑
lm

∑
l′m′

∑
νν′

C l m
l0 m0 2 ν C

l′ m′

l0 m0 2 ν′

×
∑
λλ′

∑
µµ′

C 2 ν
1λ 1µ C

2 ν′

1λ′ 1µ′ C
1λ
1λ′ 0 0 Y

0∗
0 (ε̂) C1µ

1µ′ 0 0 Y
0∗

0 (k̂)

=

(
4π

3

)4∑
lm

∑
l′m′

∑
νν′

C l m
l0 m0 2 ν C

l′ m′

l0 m0 2 ν′

∑
λλ′

∑
µµ′

C 2 ν
1λ 1µ C

2 ν′

1λ′ 1µ′
δλ,λ′

4π

δµ,µ′

4π

=

(
4π

3

)2
1

9

∑
lm

∑
l′m′

∑
νν′

C l m
l0 m0 2 ν C

l′ m′

l0 m0 2 ν′

∑
λµ

C 2 ν
1λ 1µ C

2 ν′

1λ 1µ . (6.34)

Again the triangle condition on m1,m2,m can be used to get rid of the sums over
ν ′, m′, and l′, successively ending up with:

|MA
Q | ≈

(
4π

3

)2
1

9

∑
lm

∑
λµν

(
C l m
l0 m0 2 ν C

2 ν
1λ 1µ

)2
. (6.35)

As in the case of the dipole operator the first Gaunt coefficient contains the selection
rules:

l =

{
l0
l0 ± 2

with l = l0 = 0 forbidden and m =


m0

m0 ± 1
m0 ± 2.

(6.36)

6.3.3 The Weighting Factors

With the Equations 6.25 and 6.35 the angular integrals between the states |l0m0〉
and |lm〉 can be calculated for the dipole and the quadrupole operator, respectively.
This yields the weighting factors Wl0m0,lm as shown in Table 6.1. They are within
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WD · 3
l0 0 1 1 1 2 2 2 2 2
m0 0 -1 1 1 -2 -1 0 1 2

l m

0 0 1/3
1/3

1/3

1 -1 1/3
6/15

3/15
1/15

1 0 1/3
3/15

4/15
3/15

1 1 1/3
1/15

3/15
6/15

2 -2 6/15

2 -1 3/15
3/15

2 0 1/15
4/15

1/15

2 1 3/15
3/15

2 2 6/15

3 -3 15/35

3 -2 5/35
10/35

3 -1 1/35
8/35

6/35

3 0 3/35
9/35

3/35

3 1 6/35
8/35

1/35

3 2 10/35
5/35

3 3 15/35

WQ · 9
l0 0 1 1 1 2 2 2 2 2
m0 0 -1 1 1 -2 -1 0 1 2

l m

0 0 2/15
2/15

2/15
2/15

2/15

1 -1 2/75
6/75

12/75

1 0 6/75
8/75

6/75

1 1 12/75
6/75

2/75

2 -2 2/15
8/147

12/147
8/147

2 -1 2/15
12/147

2/147
2/147

12/147

2 0 2/15
8/147

2/147
8/147

2/147
8/147

2 1 2/15
12/147

2/147
2/147

12/147

2 2 2/15
8/147

12/147
8/147

3 -3 30/175

3 -2 20/175
10/175

3 -1 12/175
16/175

2/175

3 0 6/175
18/175

6/175

3 1 2/175
16/175

12/175

3 2 10/175
20/175

3 3 30/175

Table 6.1: Weighting factors Wl0m0,lm for dipolar (upper table) and for quadrupolar
transitions (lower table).
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l0 0 1 2 3
l

0 1 2/3

1 1/3
4/15

2/3
2/5

2 2/15
2/5

4/21
3/5

3 6/35
3/7

8/45

Table 6.2: Reduced weighting
factors Wl0,l for dipolar (bold)
and for quadrupolar transitions
(thin).

the range of 0 to 1 if the transition is allowed and they are zero if the transition
is forbidden. The weight factors for the dipole transitions also can be found in
[Neck75]. The Wl0m0,lm are invariant if l and l0 are interchanged. Thus, one is free
to assign l0 and m0 to the core state involved in the radiative process.

If the core states with angular momentum quantum number l0 are 2l0 + 1-fold de-
generate, the magnetic quantum number m0 of the core hole is not known. Hence,
one has to sum over m0 leading to weight factors Wl0,lm which turn out to be in-
dependent of m as well. This results in the reduced weight factors Wl0,l that are
summarized in Table 6.2.

6.4 The Radial Integrals

According to Equations 6.8 and 6.9 the radial parts of the dipolar and the quadrupo-
lar transition matrix elements are calculated from

MR
D =

∫
r2 dr Rl(r) r Rl0(r) and MR

Q =

∫
r2 dr Rl(r) r

2 Rl0(r), (6.37)

respectively, wherein Rl(r) and Rl0(r) are the radial functions of the valence and of
the core state, respectively. However, in the LAPW algorithm the single electron
valence states are linear combinations of plane waves that within the atomic spheres
are expanded in terms of atomic like wave functions with different orbital quantum
numbers l as defined by Eq. 2.7 and 2.19:

ϕi,~k(~r ) =
∑
~G

ci,~k, ~Gφ~k, ~G(~r )

φ~k, ~G(~r ) =

{
1√
Ω
ei(

~k+ ~G )·~r ~r ∈ Interstitial∑
lm

(
a~k ~Glmul(r) + b~k ~Glmu̇l(r)

)
Ylm(r̂ ) ~r ∈ Spheres.

(6.38)

Therein the expansion coefficients ci,~k, ~G and the matching coefficients a~k ~Glm and
b~k ~Glm give rise to the partial density of states DOSl,m(E), the spherical harmon-
ics Ylm(r̂ ) are treated within the angular integral, and the radial functions ul(r)
and u̇l(r) have to be considered within the radial integral of the transition matrix
element.

In the general case, the integrals in the Equations 6.37 have to be extended over the
whole unit cell, which would require the expansion of the plane waves in terms of
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spherical harmonics. However, since the radial function of the core state Rl0(r) is
strictly confined to the atomic sphere, the radial integrals only have to be calculated
up to the muffin tin radius RMT (see Page 23).

Due to the fact that ul(r) and u̇l(r), apart from the potential, only depend on the

expansion energy El, and since the same radial functions are used for all ~k and ~G,
the radial integrals give rise to the energy dependent radial matrix elements MR

D (E)

and MR
Q (E) that are valid for all states ~k and ~G having the energy E. The code

for the calculation of MD used in the WIEN package [Wien97] was modified to yield
MQ as well.

Thus, the ingredients for the calculation of the radiative transition probability are
the partial densitiy of states DOSlm(E) multiplied by the respective radial matrix
elements Mlm(E) and weighted with the respective factors Wl0,l from the angular
integrals. In the case of quadrupolar transitions additionally the factor k2/4 has to
be accounted for (see Eq. 6.10).

6.5 Comparison with Measured Spectra

In order to verify the above given procedure, fluorescence spectra of As, Ge, and Ga
have been calculated, including both the dipolar and the quadrupolar transitions.
They are compared to the measured spectra in Fig. 6.2.

The intensity of the quadrupolar transition turns out to be underestimated by a
factor of 1.2 common to all elements considered here. Moreover, the 3d peaks as
calculated from the ground state band structures (dashed lines) occure at higher
energies than in the measured spectra (solid lines). This is due to the screening of the
3d hole present in the final state of the quadrupolar transition which is not considered
in the ground state band structure. The screening of the 4p hole created in a dipolar
transition apparently has no significant effect, since the shape of the dipolar valence
fluorescence line is nicely reproduced by the ground state band structure.

To account for the screening of the 3d hole the band structures of Ga, Ge, and As
have been calculated with a 3d9 configuration. In order to enforce the nine-fold occu-
pation within the WIEN package, the 3d-states have to be treated as core electrons.
This treatment is justified by the strong localization of the 3d-states, emphasized
by the fact that less than 0.05 core electrons leak out of the muffin tin radii in all
three cases (see Page 23). Moreover, calculations of the 3d10 configurations with
the 3d-states treated as core states have been performed, yielding exactly the same
spectra as with the 3d-states in the valence band.

The quadrupolar fluorescence lines obtained from the 3d9 configurations are depicted
with dotted lines in Fig. 6.2. The intensity of the quadrupolar peaks has not changed
significantly, but the positions of the peaks are shifted towards lower energies, as
expected. Indeed they now occur at lower energies than in the measured spectra.
Apparently for this case the screening effects are overestimated roughly by a factor
of two.
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Figure 6.2: Measured and calculated dipolar and quadrupolar fluorescence lines.
The fluorescence energies are relative to the respective 1s binding energy EK ,
indicated for each element. The measured spectra are drawn with solid lines.
Spectra calculated from the 3d10 configurations are given with dashed lines,
whereas spectra from the 3d 9 configurations are plotted with dotted lines.

To bring the 3d peaks calculated from the ground state band structure to the po-
sitions they show in the measurements they have to be shifted by -5.5 eV, -4.6 eV,
and -4.0 eV in the case of As, Ge, and Ga, respectively, and for Zn a shift of -2.4
eV was determined in the same way. For Ni the shift is expected to be significantly
smaller since the 3d electrons in Ni, due to their smaller binding energy, are more
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Figure 6.3: Differences
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calculated energetic positions
of quadrupolar transitions.
For Z from 30 to 33 the
differences could be
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fluorescence spectra (filled
circles). The other two data
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indirectly.
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delocalized than the d electrons in Ga, Ge, and As. From the good agreement be-
tween measured and calculated Bloch ~k-selective spectra of NiAl (see Chapter 3)
one concludes that in that case no noteworthy shift is present. Therefore, it seems
to be justified to assume a shift of -1 eV for Cu. These findings are summarized in
Fig. 6.5.

From these results it is concluded that in the case of Cu the energetic position of
the 3d-states, as obtained from a calculation of the electronic ground state, has to
be shifted by -1 eV towards lower energies if quadrupolar transitions into the 1s
states are to be considered. Moreover, the intensity of the quadrupolar contribution
is correctly accounted for within the scheme described above, if an additional factor
of 1.2 is introduced.

6.6 Dipolar and Quadrupolar Emission in Cu

The interplay of the DOS and the matrix elements determining the shape and the
intensity of the valence fluorescence line of Cu is demonstrated in Fig. 6.4. Although
the valence band is dominated by the 3d electrons, the emission spectrum mainly

Figure 6.4: DOS, matrix
elements, and emission
intensity at the valence
fluorescence line of Cu.
In the emission spectrum
the broadening due to
the finite lifetime of the
intermediate state has
not been accounted for.
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Figure 6.5: Influence of the quadrupolar transition on the valence fluorescence
spectrum of Cu. The calcuated fluorescence spectrum (thick solid line) is
confronted with a measured spectrum (dots) obtained from a powder sample and

thus showing no Bloch ~k-selective features. The radiative Auger satellite (thin
solid line) is calculated as described in Chapter 7. The dashed and the dotted lines
represent calculated spectra were the 3d contribution has been neglected and
doubled, respectively. The peak at 8984 eV is due to quasi-elastic scattering. In
the inset the first derivatives are shown.

reflects the 4p electrons since the matrix element for the quadrupolar transition is
a factor of 200 smaller than the dipolar matrix element.

The corresponding valence fluorescence spectrum, including the core hole Lorentzian
with a FWHM of 1.55 eV is shown in Fig. 6.5. The calcuated fluorescence spectrum
(thick solid line) is confronted with a measured spectrum (dots) obtained from a

powder sample and thus showing no Bloch ~k-selective features. The thin solid line
is the radiative Auger satellite which will be considered in the next Chapter. The
dashed and the dotted lines represent calculated spectra where the 3d contribution
has been omitted (dashed line) and where the 3d contribution is assumed to be twice
as large (dotted line). In the inset the first derivatives of the spectra are depicted.
They clearly show that the slope of the high energy shoulder is described best by
the spectrum taking into account the 3d contribution as described in this chapter.
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6.7 The Angular Dependence of the 3d→1s
Quadrupolar Transition

So far the angular dependence of the quadrupolar contribution has been neglected.
If the core state has s-symmetry, the intensities of the dipolar and quadrupolar
transitions have the following angular dependence [Boch98]:

ID ∝ pxε
2
x + pyε

2
y + pzε

2
z (6.39)

IQ ∝ dxy (εxky + εykx)
2 + dyz (εykz + εzky)

2 + dxz (εzkx + εxkz)
2

+ dx2−y2 (εxkx − εyky)2 + 3dz2 (εzkz)
2 . (6.40)

Therein px, . . . and dxy, . . . are the partial densities of states, while ε2x, . . . and
(εxky + εykx)

2 , . . . are the corresponding so-called partial spectral weights (see for
example [Boch98]). The partial spectral weights express the angular dependence of
the transitions and contain the cartesian coordinates of the polarization vector ε̂ and
of the wave vector k̂. These formulae can be derived from the equations shown in
Section 6.3, as well as from a different approach which is given in Appendix B. Ap-
parently the dipole transitions are independent of ε̂ if the partial densities of states
px, py, and pz are degenerate as it is the case for cubic crystals.

In a cubic system the d-orbitals are split into the eg and t2g symmetries according to
eg = dx2−y2 + dz2 and t2g = dxy + dyz + dxz, respectively (see for example [Atki97]).

The orientation of ε̂ and k̂ with respect to the coordinate system of the crystal can
be defined in terms of the three angles θ, φ, and ψ, as depicted in Fig. 6.6.

Figure 6.6:
Orientation of ε̂
and k̂ in terms of
θ, φ, and ψ.

k
ε

φ

θ
y

z

x

ψ kx = sin θ cosφ

ky = sin θ sinφ

kz = sinφ

εx = cos θ cosφ cosψ − sinφ sinψ

εy = cos θ sinφ cosψ − cosφ sinψ

εz = − sin θ cosψ

In the case of a fluorescence process the polarization of the outgoing photon usually
is not known. Therefore the two possible orientations of ε̂ corresponding to ψ = 0◦

and ψ = 90◦ have to be considered. Moreover, in the experiments to be discussed
here ~k was perpendicular to the crystal z-axis of the sample, corresponding to θ =
90◦. The resulting dependence on φ, being proportional to the scattering angle Θ,
of the eg and t2g partial spectral weights is shown in Fig. 6.7

The scattering angle was close to 90◦ in the experiments in question here, correspond-
ing to φ = 45◦. If the polarization vector ε̂ of the outgoing photon is perpendicular
to the scattering plane (which is spanned by ~k1 and ~k2), ψ is equal to 0◦. In this
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case the 3d→1s fluorescence radiation originates exclusively from the t2g-states. If
on the other hand the polarization vector ε̂ is parallel to the scattering plane, ψ
is equal to 90◦ and only the eg-states are reflected in the quadrupolar fluorescence
spectrum. Thus, under the experimental conditions of the experiment in quesiton
here, equal contributions from the eg- and t2g-states are to be expected.

Moreover, even large fluctuations of the partial spectral weights would have only
marginal influence on the shape of the fluorescence spectra, since the eg and t2g

DOS of Cu have similar shape, as shown in Fig. 6.7. In the case of Ga, Ge, and
As no effect at all is to be expected, since there the width of the 3d bands is much
smaller than the energetic lifetime broadening due to the core hole.
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Conclusion

The relative intensity of the 4p→1s dipolar and the 3d→1s quadrupolar fluorescence
radiation can be properly accounted for by the calculation of the respective matrix
elements along the described lines. Moreover, the energetic position of the 3d-states,
as obtained from a calculation of the electronic ground state, has to be shifted by
-1 eV towards lower energies for the case of Cu, if 3d→1s transitions are to be
considered. Angular dependence effects can be neglected for the case of Cu.
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Chapter 7

The Radiative Auger Satellite of the
Valence Fluorescence Line

Apart from the the so-called diagram lines such as the Kα1,2 and Kβ1,3 lines for
example, a variety of satellite structures is visible in x-ray fluorescence spectra.
Despite their low intensity many have been observed as early as in the 1920s (see for
example [Druy27]). The low energy feature obscuring the valence fluorescence line
as described in Chapter 3, can be assigned to one of these satellites. If calculated
valence fluorescence spectra are to be compared to measured ones, this satellite line
has to be properly accounted for. Therefore knowledge of its shape is essential.

Within this chaper, the low energy satellite of the valence fluorescene line of Cu is
accounted for by means of a semiempirical model function, that is derived from the
resonant term of the DDSC. The applicability of this model function is confirmed at
another satellite line which is influenced by the Cu Kβ1,3 fluorescene line. Therefore
this chapter is organized as follows. In the first sections the fundamentals of the
x-ray satellites are resumed. Then the intensity of the valence satellite as a function
of the atomic number Z is investigated. In the subsequent sections the shape of
resonantly excited fluorescence lines and the shape of the low energy satellites are
derived from the DDSC. The resulting formulae are then applied to the Cu Kβ1,3

fluorescene line and to its low energy satellite line. Finally the shape of the low
energy satellite of the valence line is investigated.

The x-ray satellites cannot be explained within the frozen core approximation. They
rather originate from the rapid change of the potential during the creation or an-
nihilation of a core hole. The change of the potential leads to a rearrangement of
the electronic states and gives rise to double ionization processes. In such a shake
process, figuratively speaking the rearranging electrons ‘shake’ away one electron.

Shake processes during the absorption of an electron or a photon can occur if the
energy of the incoming particle is large enough to excite two or more electrons of
the same atom into the formerly unoccupied states. These multi-ionization processes
during the absorption of a particle therefore show a characteristic onset at a certain
incident energy. The x-rays emitted during the subsequent radiative relaxation can
be thought of as ordinary fluorescence lines from atoms having additional vacancies,
the so-called spectator hole states. Consequently, the resulting satellite lines have
linewidths similar to the respective diagram lines.

73
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Usually, but not always, these satellites occur at higher energies than their parent
lines since the screening of the nuclear charge is reduced due to the absence of an
inner shell electron. Within the Z+1 approximation the energetic position of the
satellite is equal to the energy of the diagram line added to the difference of the
ionization energies of the second ejected electron in the element considered and in
the Z+1 element. Recent studies of satellite lines due to a shake process during the
absorption of a photon are the Cu Kα3,4 satellites [Frit98], the Cu Khα1,2 hypersatel-
lites [Diam00], the Ge Kβ′′′ satellites [Ster00], and the Cu Kβ′ and Kβ′′ satellites
[Deut95]. The latter are also discussed in Appendix C.

7.1 The Radiative Auger Effect

X-ray satellites that occur due to shake processes during the emission of a photon
are referred to as radiative Auger satellites (RAS) since the underlying process is
complementary to the nonradiative Auger effect (AE).

An Auger process consists of a radiationless deexcitation of an electron into a pre-
viously generated core hole together with the simultaneous excitation of another
electron into the unoccupied states. Thus, the initial state of this process contains
one inner shell vacancy, whereas in the final state two vacancies are present. The
energy difference between the final and the initial state is carried away by the excited
electron, the so-called Auger electron, by its kinetic energy Ee− :

Ee− = ∆E = Ei − Ef . (7.1)

In many cases the kinetic energy is large enough to let the Auger electron escape from
the sample. The energy distribution of the Auger electrons can then be measured
and gives rise to the Auger electron spectroscopy, which has proven to be a valuable
tool for the elemental analysis of gases and surfaces.

In a radiative Auger process only part of the energy difference ∆E is transferred
to the Auger electron whereas the rest of the energy is emitted as a photon. From
another point of view, a fluorescence photon suffers an energy loss due to the simul-
taneous excitation of another electron into unoccupied states. The energy difference
∆E thereby is arbitrarily subdivided between the photon and the Auger electron:

h̄ω2 + Ee− = ∆E = Ei − Ef . (7.2)

Therefore, in contrast to satellites originating from shake processes during the ab-
sorption of a photon, the resulting satellite feature is situated on the low energy
side of its corresponding parent line. Radiative Auger satellites can extend over
hundreds of electron volts, and usually they show only little fine structure. The
fluorescence energy corresponding to the minimal energy loss, where Ee− = 0 and
thus h̄ω2 = ∆E = Ei − Ef , is the onset energy of the radiative Auger satellite.

The radiative Auger satellite to a Kβ1,3 line shown in Fig. 7.1 is due to secondary
ionization of the 3p level during relaxation of a 3p electron into the 1s level. Thus,
the onset energy of the satellite is equal to the Kβ1,3 fluorescence energy minus the
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Figure 7.1: Schematic
diagram of the radiative
Auger satellite to a Kβ1,3

line.

satellite
radiative Auger

E K

minimal

Kβ1,3

lossE

shakefluorescence

3p

E

binding energy of the 3p state. This onset energy is identical to the energy of the
Auger electron in the complementary Auger process (see Fig. 7.2).

At the onset energy, the satellite shows a sharp rise. Towards lower photon energies,
i.e. larger energy losses, the intensity of the satellite slowly decreases, since small
energy losses are more likely to occur than large energy losses. This is due to
the fact that the overlap between the orbitals involved in the secondary excitation
rapidly decreases with increasing energy difference (see for example [Pire64, Livi88]).
Therefore, radiative Auger satellites exhibit a shape similar to a shark fin.

The nomenclature for the radiative Auger satellites is identical to the nomenclature
for the Auger lines. It consists of three letters: the first labels the principal quantum
number of the hole present in the initial state, and the two other letters label the

K 1,2α

fluorescence lines and 
shakeup satellites

KLN KMM KMN KNNKLL KLM

KLL KLM KLN KMM KMN KNN

K 2,5β

K 1,3β

E

E

Auger lines

3p

4p

2p

Figure 7.2: Schematic diagram of the K series of Auger lines (upper panel) and the
respective radiative Auger satellites together with the fluorescence emission lines
(lower panel) possible for the 4th row elements.
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vacancies present in the final states.

Since the initial and final state of the Auger and of the radiative Auger process are
the same, each Auger line has a corresponding radiative Auger satellite in the x-ray
spectrum. The variety of radiative Auger and nonradiative Auger lines possible for
4th row elements is shown in Fig. 7.2. The satellites originating from a valence
electron excitation KLN, KMN, and KNN are widely obscured by their respective
parent lines Kα1,2, Kβ1,3, and Kβ2,5, whereas the other satellites KLL, KLM, and
KMM are separated from their parent lines and thus can be measured independently.

7.2 The Onset Energies of Radiative Auger
Satellites

In the case of the KLL satellite the energies Ei and Ef are the total energies of
the electron system in the presence of one 1s hole and two 2p holes, respectively. If
the emission of the fluorescence photon and the simultaneous excitation of another
electron are treated as two independent processes the total energy released in the
shake process is

∆E = EK − (EL + E ′L), (7.3)

where EK and EL are binding energies of the K shell and the L shell in a neutral
atom, respectively, whereas E ′L is the binding energy of an L electron in the presence
of a hole in the L shell. To this formula several approximations can be applied.

• Frozen core approximation: The change of the binding energies upon the
creation and annihilation of core holes is neglected, as is shown in Fig. 7.1.
Then the total energy released equals:

∆E = Ei − Ef = EK − EL − EL. (7.4)

The shift of eigenstates towards lower energies due to the screening of the hole
in the L shell is neglected. Thus, the onset energies calculated within this
approximation are too large.

• Z+1 approximation: The binding energy of an electron in an atom with
atomic number Z in the presence of a hole in another shell is assumed to equal
its respective binding energy in an atom with atomic number Z+1:

∆E = EK(Z)− (EL(Z) + EL(Z + 1)) . (7.5)

In this case the band shifts due to screening are overestimated, yielding onset
energies that are too small in comparison with the experiment.

• ∆Z approximation: This is a compromise between the two approximations
described above by using fractional nuclear charges:

∆E = EK(Z)− (EL(Z) + EL(Z + ∆Z)) , (7.6)
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where

EL(Z + ∆Z) = (1−∆Z)EL(Z) + ∆ZEL(Z + 1). (7.7)

The fractional charge ∆Z(Z) ∈ [0, 1] has to be determined empirically.

In addition, the splitting of states due to spin orbit coupling has to be accounted for
in the calculation of the onset energies. Each combination of hole states, e.g. L3L3,
L3L2, L2L2, and so on in the L shell, gives rise to a separate satellite line, resulting
in a fine structure in the high energy region of the radiative Auger satellites, close
to their onset energies. However, a more detailed calculation of the onset energies
requires knowledge of the coupling between the two unfilled shells in the final state.
For light elements the coupling scheme is pure L−S, for heavy atoms it is j−j,
and for elements in the middle of the periodic table intermediate coupling has to be
considered (see for example [Carl75]). Fig. 7.3 shows the Auger transitions that can
arise from KLL processes, as a function of the atomic number Z.

Figure 7.3: Spin orbit coupling schemes: relative Auger energies of KLL transitions
as a function of Z, reproduced from [Carl75]. At low Z pure L−S coupling gives
rise to six Auger lines. For high Z nearly pure j−j coupling also yields six lines.
In the region of intermediate coupling nine transitions are possible. Similar
coupling applies to the KMM transitions.
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Though the characteristic energies of the Auger and of the radiative Auger effect are
identical, since they can be calculated from the same total energy considerations,
the two processes originate from different transition operators. Therefore they have
different transition matrix elements and thus are governed by different selection
rules.

The nonradiative Auger effect is due to a Coulomb interaction whereas, the radia-
tive Auger effect arises from a fluorescence photon that virtually photoejects another
electron. The Coulomb operator Hint ∝ e2

r
leads to ∆l = ∆s = ∆j = 0 which is

fulfilled for arbitrary combinations of any three subshells. Thus, the energy conser-
vation is the only restriction to the occurence of the nonradiative Auger effect.

In contrast, the dipole operator Hint ∝ ~A · ~p governing the radiative Auger effect
introduces the dipole selection rules ∆l = ±1,∆s = 0,∆j = ±1. This difference is
demonstrated by the existence of a 1s to 2s2s nonradiative Auger transition which
does not occur in the radiative Auger spectrum (see for example [Carl75]).

More light is shed on the nature of the radiative Auger effect, if the transition
probability is actually calculated. This was done by Åberg [Åber71] using formulae
given by Löwdin [Löwd55]. These allow to calculate the transition matrix elements
of Slater determinants that are built up from nonorthogonal basis sets. This yields

I ∝
∣∣∣〈Ψ1| ~A · ~p |Φ1〉 〈Ψ2| 1̂ |Φ2〉

∣∣∣2 = |MDMM|2 , (7.8)

where 1̂ is the one-operator, defined by 1̂ |Φ〉 = |Φ〉. The matrix element |Φ1〉→|Ψ1〉
describes the radiative annihilation of the core hole, while |Φ2〉→|Ψ2〉 accouts for the
nonradiative shake excitation. Thus, the radiative Auger effect is due to a combined
electric dipole and electric monopole transition. It is governed by dipole selection
rules in the fluorescence part of the process and by monopole selection rules for the
secondary excitation. As a result, some transitions allowed in an Auger process are
forbidden in a radiative Auger process, e.g. KL1L1.

It is important to note that |Φ〉 and |Ψ〉 are eigenstates of different Hamiltonians.
The |Φ〉 are eigenstates in the presence of the core hole, while the |Ψ〉 are eigenstates
with no core hole present. Otherwise Ψ2 and Φ2 would be orthogonal and the
monopole matrix element MM = 〈Ψ2| 1̂ |Φ2〉 would vanish. Reversely, the stronger
the orbial emitting the shake electron changes upon the annihilation of the core hole,
the larger is the overlap between the formerly orthogonal states Ψ2 and Φ2, and the
larger is the intensity of the resulting radiative Auger satellite.
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7.3 The Intensity of the Valence Auger Satellite

The intensity of radiative Auger satellites as a function of the atomic number Z has
been studied both experimentally and theoretically. Especially the KLL and KMM
satellite lines have been investigated extensively in the last decades. Experimental
and theoretical results found in the literature are shown in Fig. 7.4. There the
relative shake probability, i.e. the integrated intensity of the satellite line with respect
to the integrated intensity of its parent line, Psat = Isat/Iparent line, is depicted for
elements in the range of Z = 10 to 35. The intensity of the satellite lines decreases
with increasing atomic number Z, and shake processes from outer shells are more
likely to occur than shake processes involving inner shell electrons (PKLL < PKMM).
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Figure 7.4: Measured relative intensities of KLL and KMM satellites compiled
from the literature as a function of Z together with shake probabilities calculated
by Åberg [Åber71] and Scofield [Scof74]. Measured KMM probabilities have been
reproduced from [Kesk80]. The original articles are [Utri73], [Kesk74], [Serv75],
[Kesk80]. The measured KLL probabilities are taken from [Åber71] and [Koo90].

However, the KNN satellite line of the 3d elements has not attracted attention so
far. In the case of the 4th row elements, the KNN satellite stems from the valence
fluorescence radiation with a simultaneous shake excitation of another valence elec-
tron. Spectra of the Kβ2,5 valence fluorescence line together with its radiative Auger
satellite are shown in Figure 7.5 for the elements from Co to As (Z=27 to Z=33).

The intensity of the KNN satellite line strongly decreases with Z as is expected
from the results on the KLL and KMM satellites. However, at its onset energy the
KNN satellite is partly obscured by the valence fluorescence line occuring at energies
between -10 eV and the Fermi level. In the case of Co, Ni, Cu, and Zn the high
energy tail of the Kβ1,3 line also conceals the low energy tail of the KNN satellite.
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Figure 7.5: Series of KNN valence satellite spectra (solid) together with the
adapted satellite line (dashed). The energies are given relative to the respective 1s
binding energy EK , indicated for each element. The valence fluorescence lines are
found in the range of -10 to 0 eV. The peaks at energies above zero are due to
quasi elastic scattering, except for Ge where it is a satellite due to a double
electron excitation during the absorption process [Ster00]. For the elements Co to
Zn the high energy tail of the Kβ1,3 line is visible at low energies. The dispersing
low energy feature from Zn to As is due to the 3d→1s quadrupolar transition. The
spectra have been measured at beamlines ID16 (Ga, As, Cu) and ID28 (Ge, Ni) of
the ESRF and at beamline G3 of the HASYLAB (Co, Zn).
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Figure 7.6: The relative
intensity of the KNN
valence satellite.
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This makes it difficult to determine properly the shape as well as the intensity of
the valence radiative Auger satellites.

Nevertheless, to estimate the relative shake probability for the KNN line PKNN the
line shape adopted for the satellite in Chapter 3 is applied again. It consists of a
linearly rising function multiplied by an arctan function centered at the 1s binding
energy:

I(E) = (1 + s(E − EK))h

[
0.5− 1

π
arctan

(
2(E − EK)

Γ

)]
+ b, (7.9)

where s, h, and Γ are the slope, the hight, and the width of the satellite, respectively,
and where b accounts for a constant background. Γ has been set equal to the
energetic width of the intermediate state, and the slope of the satellite line has been
set to s = 0.01 to make the estimated satellite match all measured spectra. The
dependence of PKNN on Z is shown in Fig. 7.6.

As expected, one finds that PKNN(Z) shows the same dependence on Z as PKMM(Z)
and PKLL(Z). However, the KNN satellite is much more intense than the KMM and
the KLL satellite within the Z range considered here. PKNN ranges from 10 % to
280 %, whereas PKMM and PKLL are about 1.5 % and 0.4 %, respectively. Although
the absolute value of PKNN strongly depends on the choice of s, the dependence of
PKNN on Z is not affected. Thus, the results shown here are at least qualitatively
correct.

In order to properly account for the KNN radiative Auger satellite in the interpre-
tation of Bloch ~k-selective RIXS spectra the KMM satellite of Cu was measured.
From its shape the shape of the KNN satellite line can be deduced. Due to its low
intensity, the KMM line merely appears as a series of ripples on the low energy tail
of the Kβ1,3 fluorescence line, as can be seen from Figure 7.7. To obtain the pure
KMM line from the measured spectrum, the low energy tail of the Kβ1,3 fluorescence
line has to be subtracted, which is done in what follows.

The rest of this chapter is organized as follows. In Section 7.4 a method for the
calculation of resonantly excited fluorescence lines is derived, including the influence
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Figure 7.7: The Cu Kβ1,3 and Kβ2,5 fluorescence lines together with the KMM and
KNN radiative Auger satellites. The Kβ1,3 line has been reduced by a factor of 75.
Between the two diagram lines the KNN satellite is visible. The ripples on the low
energy tail of the Kβ1,3 line are the KMM lines. The faint peak at 8990 eV,
marked by an arrow, is the quasi-elastic line.

of the lifetime broadening of the intermediate state as well as the fine structure of
the unoccupied DOS. Applying this method the Kβ1,3 line of Cu is calculated, and is
compared to measured spectra in Section 7.6. In Section 7.5 the shape of radiative
Auger satellites is deduced from the shape of their parent lines. In Section 7.7 the
KMM satellite is extracted and then compared to the shape predicted. Finally the
results are applied to the KNN radiative Auger satellite in Section 7.8.
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7.4 Influence of Core Lorentzian and Unoccupied
DOS on the Fluorescence Line Shape

Starting from formula 1.25 in Chapter 1,

d2σ

dω2 dΩ
∝

∑
ni~ki

∑
nf~kf

∑
nj

∣∣∣M ′
1(ni, ~ki, nj)

∣∣∣2 δ(Eni~ki − Enj − h̄ω1)

× δ ~G,(~k1−~k2−~ki+~kf )

∣∣∣M ′
2(nf , ~kf , nj)

∣∣∣2 δ(Eni~ki − Enf~kf − h̄ω1 + h̄ω2), (7.10)

the lifetime of the intermediate state is accounted for by replacing the first δ-function
with the corresponding Lorentzian:

δ(Eni~ki−Enj − h̄ω1)⇒ 1

(Eni~ki − Enj − h̄ω1)2 + (Γ
2
)2

= L(Eni~ki−Enj − h̄ω1) (7.11)

d2σ

dω2 dΩ
∝

∑
ni~ki

∑
nf~kf

∑
nj

∣∣∣M ′
1(ni, ~ki, nj)

∣∣∣2 L(Eni~ki − Enj − h̄ω1)

× δ ~G,(~k1−~k2−~ki+~kf )

∣∣∣M ′
2(nf , ~kf , nj)

∣∣∣2 δ(Eni~ki − Enf~kf − h̄ω1 + h̄ω2). (7.12)

To show the general influence of the incident energy on the shape of resonantly ex-
cited fluorescence lines one may assume a non Bloch ~k-momentum conserving process
and omit the Kronecker-δ. Moreover, it is usefull to restrict the considerations to
experimental conditions where only one core state, e.g. the 1s level, is involved in
the scattering process. Thus, the sum over nj can be omitted:

d2σ

dω2 dΩ
∝

∑
ni~ki

∑
nf~kf

∣∣∣M ′
1(ni, ~ki, 1s)

∣∣∣2 L(Eni~ki − E1s − h̄ω1)

×
∣∣∣M ′

2(nf , ~kf , 1s)
∣∣∣2 δ(Eni~ki − Enf~kf − h̄ω1 + h̄ω2). (7.13)

Next one transforms the sums over the states ni~ki and nf~kf into integrals over Ei
and Ef , thereby introducing the unoccupied and occupied densities of states Nu and
No, respectively:

d2σ

dω2 dΩ
∝

∫
dEi |M ′

1(Ei)|2 Nu(Ei)L(Ei − E1s − h̄ω1)

×
∫
dEf |M ′

2(Ef )|2 No(Ef )δ(Ei − Ef − h̄ω1 + h̄ω2). (7.14)

As shown in Chapter 6, the matrix elements can be evaluated, giving rise to the
angular momentum selection rules from the angular part of the overlap integral.
From the radial part of the integral an energy dependent radial matrix element for
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each angular momentum quantum number l arises, governing the intensity of the
respective transition. Accordingly the DOS is split up with respect to l into partial
densities of states. Summation over all angular momentum quantum numbers yields
the energy dependent intensity factors Iu and Io for the unoccupied and the occupied
bands, respectively, containing both the DOS and the matrix elements.

d2σ

dω2 dΩ
∝
∫
dEiI

u(Ei)L(Ei−E1s−h̄ω1)

∫
dEfI

o(Ef )δ(Ei−Ef−h̄ω1+h̄ω2). (7.15)

By defining the 1s binding energy to be zero and by performing the integral over Ef
one gets:

d2σ

dω2 dΩ
∝
∫
dEiI

u(Ei)L(Ei − h̄ω1)Io(Ei − h̄ω1 + h̄ω2). (7.16)

The substitution Ei − h̄ω1 = ε yields:

d2σ

dω2 dΩ
∝
∫
dεIu(h̄ω1 + ε)L(ε)Io(h̄ω2 + ε). (7.17)

If now again it is assumed that Γ = 0 and thus L(E) = δ(E) one finds that the
shape of the emission spectrum depends solely on the DOS of the occupied states
and that the shape is independent of the incident energy:

d2σ

dω2 dΩ
∝ Iu(h̄ω1)Io(h̄ω2). (7.18)

The incident energy merely determines the over-all intensity of the fluorescence
radiation via the factor Iu(h̄ω1), as can be seen from panel a) of Figure 7.8. There
it is assumed, that the unoccupied DOS, indicated by the dotted line, has no fine
structure and that the fluorescence radiation arises from one single infinitely sharp
state with the energy Ef . Since only one single state with the energy Ei=h̄ω1 can
be reached by the excited electron, the fluorescence spectrum consists of one single
infinitely sharp line.

However, if one has to deal with a finite lifetime of the intermediate state, the shape
of the emission line also depends on the incident energy. Due to the nonvanishing
width of the Lorentzian, many states Ei corresponding to different values of ε can
be reached in the absorption process, as shown in panel b) of Fig. 7.8. Via the
conditions

ε = Ei − h̄ω1 and h̄ω2 = Ef − ε = Ef − Ei + h̄ω1 (7.19)

the state Ef gives rise to fluorescence photons with different energies. The respective
intensity depends on the intensity of the Lorentzian at the energy ε = Ei−h̄ω1. This
causes fluorescence lines to be of Lorentzian shape. If the incident energy is close
to the Fermi energy EF, only a part of the Lorentzian is covering unoccupied states.
This leads to the asymmetry of fluorescence lines in the case of resonant excitation.

Moreover, if the incident energy is smaller than the binding energy of the core
electron, i.e. h̄ω1 < EF, only the low energetic tail of the fluorescence line is present.
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Figure 7.8: Broadening of fluorescence lines due to the lifetime of the intermediate
state (see text).

This case is depicted in panel c) of Fig. 7.8, where the thin dashed line indicates the
energetic position of the Lorentzian. The cutoff energy h̄ω2 = Ef − EF + h̄ω1 (see
Eq. 7.19), determined by the energetic distance ε3, depends linearly on the incident
energy, causing the positions of fluorescence lines to shift linearly with the incident
energy. This behaviour is called the Raman shift of the fluorescence lines.

So far the shape of the unoccupied DOS has been neglected. If one now assumes the
DOS to have a fine structure, as indicated by the dotted line in panel d) of Fig. 7.8,
the absorption probability at a given energy ε does not only depend on the intensity
of the Lorentzian at this energy. It also depends on the DOS via factor Iu(h̄ω1 + ε)
in Eq. 7.17. Consequently, features of the unoccupied DOS are reflected in the shape
of the fluorescence line, as indicated in panel d).

To obtain a more compact description, one can rewrite Eq. 7.17 by substituting
ε → −ε and by defining the product of the Lorentzian with the unoccupied DOS
as the absorption intensity Iabs(−ε) ≡ Iu(h̄ω1 − ε)L(−ε), given by the solid line in
Fig. 7.8. Further defining the absorption intensity mirrored at zero Ĩabs(ε) ≡ Iabs(−ε)
one gets:

d2σ

dω2 dΩ
∝

∫
dε Iu(h̄ω1 − ε) L(−ε) Io(h̄ω2 − ε)

=

∫
dε Ĩabs(ε) I

o(h̄ω2 − ε). (7.20)

Thus, the emission line has the shape of the occupied DOS convoluted with the
mirrored product of the core hole Lorentzian and the unoccupied DOS. However, in
case of incident energies h̄ω1 well above the binding energy of the core electron the
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influence of the DOS is not visible since well above EF the DOS shows only small
oscillations of about 10%.

This correlation, as stated by Eq. 7.20, between the unoccupied DOS and the shape
of resonantly excited fluorescence spectra, not only allows one to calculate the shape
of non ~k-selective RIXS spectra, but it also permits to extract the shape of the
unoccupied DOS from RIXS spectra if the DOS of the occupied states is known
[Magd01].

7.5 The Line Shape of Radiative Auger Satellites

In the last section the shape of resonantly excited florescence lines has been calcu-
lated by taking into account the occupied and unoccupied DOS together with the
corresponding transition matrix elements. Along similar lines the shape of radia-
tive Auger satellites can be obtained. The states involved in the combined dipole
monopole transition during the emission process giving rise to the radiative Auger
satellites are depicted in Fig. 7.5. To calculate the line shape of the satellite line
one extends Eq. 7.13 by introducing a third matrix element describing the monopole
transition, according to Eq. 7.8:

M ′
3 =

∫
d~r ′ un′~k ′(~r

′) 1̂ un~k(~r
′), (7.21)

where un~k(~r
′) and un′~k ′(~r

′) denote the lattice periodic parts of the corresponding
Bloch wave functions (compare with Equations 1.20 and 1.21). This yields:

d2σ

dω2 dΩ
∝

∑
ni~ki

∑
n~k

∑
n′~k′

∑
nf~kf

∣∣∣M ′
1(ni, ~ki, 1s)

∣∣∣2 L(Eni~ki − E1s − h̄ω1)

×
∣∣∣M ′

3(n,~k, n′, ~k′)
∣∣∣2 ∣∣∣M ′

2(nf , ~kf , 1s)
∣∣∣2

× δ(Eni~ki + En~k − En′~k′ − Enf~kf − h̄ω1 + h̄ω2), (7.22)
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Figure 7.9: Single electron states
involved in a radiative Auger process.
The monopolar nonradiative
secondary excitation occurs between
|n~k 〉 and |n′~k′ 〉. In the case of the
KNN satellite, |c〉 is the 1s state,

whereas |nf~kf 〉 and |n~k 〉 are valence
states.
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As in section 7.4 one transforms the sums into integrals, thereby introducing the
densities of states No,u, where the superscripts o and u denote occupied and unoc-
cupied states, respectively. Additionally the states are split with respect to angular
momentum:

d2σ

dω2 dΩ
∝

∫
dEi

∫
dE

∫
dE ′

∫
dEf L(Ei − E1s − h̄ω1)

×
∑
li

|M ′
1(Ei, li, 1s)|2 Nu(Ei, li)

×
∑
l

∑
l′

|M ′
3(E, l, E ′, l′)|2 No(E, l) Nu(E ′, l′)

×
∑
lf

|M ′
2(Ef , lf , 1s)|2 No(Ef , lf )

× δ(Ei + E − E ′ − Ef − h̄ω1 + h̄ω2). (7.23)

Treating the ~A · ~p operators of M ′
1 and M ′

2 in dipole approximation, the angular
integrals of the matrix elements yield δli,p and δlf ,p, respectively, whereas the 1̂
operator in M ′

3 (see Eq. 7.21) results in δl,l′ . The radial integrals of M ′
1, M ′

2, and
M ′

3 lead to the energy dependent radial matrix elements MR
li

(Ei), M
R
lf

(Ef ), and

MR
l,l′(E,E

′) respectively, giving:

d2σ

dω2 dΩ
∝

∫
dEi

∫
dE

∫
dE ′

∫
dEf L(Ei − E1s − h̄ω1)

×
∑
li

∣∣MR
li

(Ei)
∣∣2 δli,p Nu(Ei, li)

×
∑
l

∑
l′

∣∣MR
l,l′(E,E

′)
∣∣2 δl,l′ No(E, l) Nu(E ′, l′)

×
∑
lf

∣∣∣MR
lf

(Ef )
∣∣∣2 δlf ,p No(Ef , lf )

× δ(Ei + E − E ′ − Ef − h̄ω1 + h̄ω2). (7.24)

Performing the sums over li, lf , and l′ one gets:

d2σ

dω2 dΩ
∝

∫
dEi

∫
dE

∫
dE ′

∫
dEf L(Ei − E1s − h̄ω1)

×
∣∣MR

p (Ei)
∣∣2 Nu

p (Ei)

×
∑
l

∣∣MR
l,l(E,E

′)
∣∣2 No

l (E) Nu
l (E ′)

×
∣∣MR

p (Ef )
∣∣2 No

p(Ef )

× δ(Ei + E − E ′ − Ef − h̄ω1 + h̄ω2). (7.25)

Now the radial matrix elements and the DOS depending on Ei and Ef can be com-
bined into the energy dependent intensity factors Iu

p (Ei) and Io
p(Ef ), respectively.
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Furthermore, the 1s binding energy E1s is defined to be zero, and the integral over
Ef is performed:

d2σ

dω2 dΩ
∝

∫
dEi

∫
dE

∫
dE ′

∫
dEf L(Ei − E1s − h̄ω1) Iu

p (Ei) I
o
p(Ef )

×
∑
l

∣∣MR
l,l(E,E

′)
∣∣2 No

l (E) Nu
l (E ′)

× δ(Ei + E − E ′ − Ef − h̄ω1 + h̄ω2) (7.26)

=

∫
dEi

∫
dE

∫
dE ′ L(Ei − h̄ω1) Iu

p (Ei) I
o
p(Ei + E − E ′ − h̄ω1 + h̄ω2)

×
∑
l

∣∣MR
l,l(E,E

′)
∣∣2 No

l (E) Nu
l (E ′). (7.27)

Next one can introduce the deviation from the incident energy ε = h̄ω1−Ei and the
energy loss ε′ = E − E ′ leading to:

d2σ

dω2 dΩ
∝

∫
dε

∫
dε′ L(−ε) Iu

p (h̄ω1 − ε)︸ ︷︷ ︸
Iabs(−ε)

Io
p(h̄ω2 + ε′ − ε)

×
∑
l

∫
dE

∣∣MR
l,l(E,E − ε′)

∣∣2 No
l (E) Nu

l (E − ε′)︸ ︷︷ ︸
S(ε′)

(7.28)

=

∫
dε

∫
dε′ Ĩabs(ε) I

o
p(h̄ω2 + ε′ − ε) S(ε′) ∝ I(h̄ω2), (7.29)

where again the absorption intensity Iabs(−ε) ≡ Iu(h̄ω1−ε)L(−ε) and the absorption
intensity mirrored at zero Ĩabs(ε) ≡ Iabs(−ε) have been defined and where the energy
loss function S(ε′) describing the monopole transition has been introduced.

With the substitutions

ε = a h̄ω2 + ε′ = b h̄ω2 = c one yields

I(c) =

∫
db

∫
da Ĩabs(a) Io

p(b− a) S(c− b)

=

∫
db Ifluo(b) S(c− b). (7.30)

Thus, the radiative Auger satellite apparently is the convolution of an energy loss
function with the corresponding fluorescence line, which is already described in Sec-
tion 7.4. Since the energy loss function contains the unoccupied DOS Nu

l (E − ε′)
the satellite has a fine structure showing a XANES like behavior in the vicinity of
its onset energy, as was shown by Åberg and Utriainen [Åber75].

Formulae similar to those above previously have been derived, e.g. by Pirenne and
Longe [Pire64], as well as by Livins and Schnatterly [Livi88]. However, the approach
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presented here makes no far-reaching assumption about the actual wave functions
and the corresponding transition matrix elements. Therefore it is well suited for the
semiempirical calculation of the satellites. Moreover, the satellite and its parent line
can be treated within the same framework.

Although all ingredients of this algorithm, namely the densities of states and the
dipolar and monopolar matrix elements, can be obtained from ab initio calculations,
the exact evaluation of Eq. 7.28 is complicated by the fact that the states |i〉, |m〉,
and |f〉 contain zero, one, and two hole states, respectively. Thus, for each hole
configuration one separate band structure calculation has to be performed, yielding
the necessary densities of states. Moreover, matrix elements between states with
different hole configurations have to be calculated. This is especially important in
the case of the monopolar matrix element MR

l,l, which vanishes if the states involved
have the same hole configuration.

Therefore, certain approximations are necessary. In the following the influence of
the unoccupied DOS Nu

l on the energy loss function S is neglected and one single
state for No

l is assumed. The monopolar matrix element MR
l,l can be approximated

by an exponential, which is supported by findings of Livins and Schnatterly [Livi88],
Krause et al. [Krau68], and Pirenne and Longe [Pire64].

7.6 The Line Shape of the Resonantly Excited
Cu Kβ1,3 Fluorescence Line

A series of RIXS spectra of the Cu Kβ1,3 fluorescence line has been measured at
the beamline G3 of the HASYLAB, by using a Si 553 analyzer crystal in the 1m
Rowland spectrometer which is described elsewhere [Schü95, Wohl00]. The incident
radiation was monochromatized by a Ge 311 double crystal monochromator. The
over-all energy resolution was about 1 eV. The energy of the incident photon has
been varied between the 1s binding energy of Cu (8979 eV) and 9130 eV. Two of
these spectra are shown in Fig. 7.10 and 7.12.

The Kβ1,3 fluorescence line of Cu can be subdivided into four main contributions,
as shown in Fig. 7.10. The fluorescence line is dominated by the diagram lines Kβ1

and Kβ3 that are separated by a spin orbit splitting of 2.5 eV, in accordance with
other values found in the literature (e.g. see Table VI of [Deut95]). In the range of
the low and high energy tails of the Kβ1,3 line the Kβ′ and Kβ′′ satellite lines arise,
respectively. These are due to shake processes during the absorption of the incoming
photon, as found by M. Deutsch et al. [Deut95]. From multiplet calculations they
have been attributed to 3d hole spectator states. In Appendix C this finding is
confirmed by observing the intensity of the Kβ′ and Kβ′′ satellites as a function of
the incident energy. The slowly decreasing low energy tail of the Kβ1,3 fluorescence
line originates from the KMN radiative Auger satellite, which arises from a shake
process of a valence electron during the radiative transition of a 3p electron into the
1s hole.

The fit was performed according to Eq. 7.20. The occupied states Io(E) consist of a
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Figure 7.10: Fit of the Cu Kβ1,3 diagram lines together with the Kβ′ and the Kβ′′

satellite lines. The energy of the incoming photons is about 150 eV larger than the
1s binding energy.

sum of four Lorentzians. Each of these describes one diagram or satellite line. The
Lorentzians account for the multiplet splitting as well as for the lifetime broadening
of the final state. A Lorentzian of FWHM=1.55 eV accounts for the lifetime of
the 1s core hole in Cu [Zsch89]. The function Iu(h̄ω1) corresponds to the DOS of
the unoccupied p-states multiplied by the corresponding matrix element. As shown
in Fig. 7.11, Iu(h̄ω1) has been extracted from a measured XANES spectrum by
deconvolution from the core Lorentzian. The deconvolution has been done by fit-
ting equidistanly distributed Lorentzians (∆E = 0.5 eV) with Γ = 1.55 eV to the
measured XANES spectrum. The intensities of the Lorentzians, being the only vari-
ational parameters in the fit, yield the absorption intensity Iu(h̄ω1). The energetic
width of the incoming radiation, which is about 1 eV, has not been removed. Before
performing the convolution, Iabs has been normalized to unity.

To describe the KMN radiative Auger satellite, an exponential multiplied by an
arctan function has been used:

IKMN(E) = I ed(E−E0)

[
0.5− 1

π
arctan

(
(E − E0)

w

)]
+ b. (7.31)

The decay factor of the exponential results in d = 0.041 1/eV, the center position
E0 is 8895.9 eV and the width of the arctan is w = Γ/2 = 2.6 eV, where Γ is the
energetic width of the Cu Kβ1,3-line. For details of the fit procedure see Appendix C.

The parameters obtained by the fit procedure are resumed in Table 7.1. Comparison
to the values found by M. Deutsch and coworkers [Deut95] shows that the relative
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Figure 7.11: XANES and Iu(h̄ω1) = DOS ·ME at the Cu K edge, as obtained from
the XANES by deconvolution from a Lorentzian of FWHM = 1.55 eV.

intensities agree up to a few percent. The positions of the Kβ1 and Kβ3 lines
differ by 0.40 eV and 0.45 eV, respectively, due to a different calibration, whereas
the positions of the Kβ′ and the Kβ′′ satellite lines show a small but not systematic
deviation. The widths of the diagram lines in the present fit are about 1.5 eV smaller
due to the fact that the core Lorentzian is separately accounted for. However, the
widths of the Kβ′ and the Kβ′′ satellite lines in the present work are significantly

Line Parameter this work Deutsch Difference

Kβ1 E[eV] 8905.11 8905.51 0.40

Γ[eV] 2.39 3.72 1.33

I rel. 0.72 0.72 0%

Kβ3 E[eV] 8902.65 8903.10 0.45

Γ[eV] 1.89 3.43 1.54

I rel. 0.31 0.32 3%

Kβ′ E[eV] 8897.20 8897.06 -0.14

Γ[eV] 4.20 7.62 3.42

I rel. 0.07 0.07 2%

Kβ′′ E[eV] 8908.20 8908.45 0.25

Γ[eV] 3.56 6.63 3.07

I rel. 0.20 0.21 5%

Table 7.1: Parameters found for the Kβ1,3 fluorescence line and for the Kβ′ and the
Kβ′′ satellite lines in comparison with the parameters found by Deutsch [Deut95].
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Figure 7.12: Fit of the Cu Kβ1,3 fluorescence line excited at the 1s binding energy.
The Kβ′ and the Kβ′′ satellite lines have disappeared. The diagram contributions
to the fluorescence line are strongly asymmetric due to the influence of the
unoccupied DOS.

smaller than the values found by Deutsch, even if the different treatment of the core
Lorentzian is considered.

As can be seen from Fig. 7.10 the agreement between measured data and the fit curve
is excellent. However, at an incident energy of about 150 eV above the absorption
edge, the influence of the unoccupied DOS on the shape of the fluorescence spectrum
is not significant. This is no longer true at incident energies close to the absorption
edge. In Fig. 7.12 a spectrum recorded at the 1s binding energy EK = 8979 eV is
shown. The Kβ′ and the Kβ′′ satellite lines have disappeared and the fluorescence
line is strongly asymmetric due to the influence of the unoccupied DOS. Again the
agreement between the measured spectrum and the fit curve is very good, confirming
the validity of the algorithm for the calculation of resonantly excited fluorescence
spectra.

7.7 The KMM Radiative Auger Satellite of Cu

The KMM radiative Auger satellite of Cu has been measured at beamline W2
(HARWI) of the HASYLAB, making use of the Si 311 sagittally focussing dou-
ble crystal monochromator. The fluorescence radiation was analyzed with the 1m
Rowland spectrometer. In order to cover a significant fraction of the extended satel-
lite structure, the 642 reflection of a Si 531 analyzer crystal has been used, with an
asymmetry angle of 6.35◦, and allowing for a covered energy from 8600 eV to 9100
eV. The over-all energy resolution was 1.5 eV.
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Figure 7.13: The measured Cu KMM radiative Auger satellite lines (dots) together
with a fit function (solid line) consisting of five shark fin functions (dashed lines)
according to Eq. 7.31. A measured spectrum obtained by Keski-Rahkonen and
Ahopelto [Kesk80] is shown as a dotted line. For comparison, the scaled down Cu
Kβ1,3 spectrum is given as a thin solid line.

After the spectral decompositon of the Cu Kβ1,3 fluorescence spectrum, its low en-
ergy tail has been extrapolated into the energetic region of the KMM radiative Auger
satellite. Its subtraction leads to the pure KMM spectrum as shown in Fig. 7.13.

In comparison to the KMM spectrum obtained by Keski-Rahkonen and Ahopelto
[Kesk80] a significantly better resolution and a slightly better statistical accuracy
could be achieved. By means of a fit procedure the KMM satellite has been decom-
posed into five shark fin functions according to Eq. 7.31, given by the dashed lines.
The respective parameters are summarized in Table 7.2.

The width of the shark fin functions are expected to be constant since they are

Line I w [eV] d [1/eV] E0 [eV]

1 0.453 2.54 0.0492 8860.4

2 0.374 2.42 0.0455 8841.8

3 0.958 7.23 0.0284 8803.5

4 0.370 4.36 0.0115 8774.7

5 0.262 5.35 0.0056 8739.7

Table 7.2: Parameters for the KMM radiative Auger satellite lines of Cu. I, w, d,
and E0 are the intensity, the width, the decay factor, and the onset energy,
respectively, of each shark fin, according to Eq. 7.31.
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Shell K M1 M2 M3 M4 M5 M2,3 M4,5

Cu 8979.0 120.0 75.3 72.8 1.8 1.5 73.6 1.6

Zn 9659.0 137.0 87.6 85.6 7.9 8.0 86.3 8.0

Table 7.3: Binding energies of the K and M shells in Cu and Zn [Zsch89], together
with the averaged M2,3 and M4,5 energies, taking into account the occupation
numbers.

connected to the width of the parent line. Only the width of he first two shark fins
agree with the FWHM of the Cu Kβ1,3 fluorescence line, whereas the widths of the
other fins are too large. This is attributed to the overlap of several radiative Auger
satellites within the same energy regime. The decay factor steadily decreases with
decreasing onset energy.

In order to assign certain final states to the different onset energies, the KMM ener-
gies have been calculated within the frozen core and within the Z+1 approximation
according to Eq. 7.4 and 7.5, respectively. Therein the energies as listed in Table
7.3 (taken from [Zsch89]) have been used and j−j coupling has been applied by
making use of the averaged 3p- and 3d-energies M2,3 and M4,5. Moreover, the onset
energies can be derived from measured LMM Auger energies according to

E(KMM) = E(Kα1) + E(L3MiMj)

= E(Kα2) + E(L2MiMj) where i, j = 1, 2, . . . , 5. (7.32)

These onset energies taken from [Kesk80] as well as the calculated energies from
the Z+1 and frozen core approximation are summarized in Table 7.4. They are
compared to the measured KMM satellite in Fig. 7.14.

As expected, the energies predicted by the frozen core approximation differ signifi-
cantly from the values calculated within the Z+1 approximation. The latter agree
fairly well with the energies obtained from measured LMM energies on which the
assignment of the lines will be founded. Apparently the onset energies of the third

KM1M1 KM1M2,3 KM2,3M2,3 KM1M4,5

LMM 8721.5 8765.1 8813.9 8841.5

8778.1 8820.5 8845.5

Z+1 8722.0 8768.4∗ 8819.1 8840.4∗

FC 8739.0 8785.4 8831.8 8857.4

Table 7.4: Onset energies of the KMM radiative Auger satellites obtained from
measured LMM lines and calculated within frozen core and Z+1 approximation.
The spin orbit splitting has been neglected by making use of the averaged energies
M2,3 and M4,5 taken from the last two colmns of Tab.7.3. In the energies marked
with ∗ E(M1) was chosen to be the 3s binding energy in Zn.
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Figure 7.14: Calculated onset energies compared to the measured Cu KMM
radiative Auger satellite line. The vertical bars indicate the calculated onset
energies obtained within the frozen core (bottom row) and Z+1 approximation
(middle row). Onset energies calculated from LMM Auger spectra [Kesk80] are
shown in the top row. The shown spectra are identical to those in Fig. 7.13.

and the fourth shark fin can be assigned to M2,3M2,3 and M1M2,3 final states, re-
spectively. The second shark fin belongs to a KM1M4,5 transition, stemming from
a quadrupolar 3d→1s radiative decay with the simultaneous excitation of a 3s elec-
tron. However, the fifth shark fin, if at all, could be assigned to a M1M1 final state
which is forbidden in a radiative Auger process. Moreover, the first shark fin could
not be assigned.

For a more detailed analysis of the KMM radiative Auger satellite, considering all
final states known from LMM Auger measurements and including the unoccupied
DOS, data with a larger signal to noise ratio have to be obtained. Nevertheless, the
general shape of the radiative Auger satellites can be approximated by the shark fin
function, which will be used to account for the KNN satellite, present in the valence
fluorescence spectra.

7.8 The KNN Radiative Auger Satellite of Cu

As shown in Section 7.5, the energy loss function S and thus the shape of the
radiative Auger satellites depends on the DOS of the occupied states No

l (E), the
DOS of the unoccupied states Nu

l (E), and the monopole matrix element MR
l,l(E,E

′)
mediating the transition between these states.

The valence electrons of Cu have mainly d-character. As it is known from the
band structure calculation 10 3d electrons oppose to 0.6 4p and 0.4 4s electrons.



96 7. The Radiative Auger Satellite of the Valence Fluorescence Line

From the supercell calculation one can conclude that within the valence band only
the states of the 3d electrons change upon the creation or annihilation of the 1s
hole, whereas the 4s- and 4p-states remain widely unaltered (see Chapter 5). Since
those states that change much upon the annihilation of the core hole give rise to a
large monopolar matrix element (see Page 78), within the valence band only the 3d
electrons contribute significantly to the monopole excitation of the radiative Auger
process1.

Due to the final states rule, the electron configuration present after the annihilation
of the core hole has to be considered in the calculation of the energy loss function.
More precisely, the final state of the KNN satellite consists of one hole in the 4p-
states, originating from the radiative part of the transition, and of one 3d hole
created during the monopolar transition. Due to the delocalization of the 4p-states,
the influence of the 4p hole can be neglected, whereas the 3d-states have to be
shifted by about 1 eV to lower energies in the presence of a 3d hole, as was shown in
Chapter 6. If the fine structure of the 3d-DOS is neglected, the DOS of the occupied
states No

d may be approximated by a Gaussian with a FWHM of 2 eV positioned at
3.5 eV below the Fermi energy (see Fig. 6.4), wherein the shift of -1 eV due to the
screening of the 3d hole already is included.

As in the case of the other radiative Auger satellites, the DOS of the unoccupied
states will be considered to be constant, and for the matrix element again an expo-
nential is used. Thus, the loss function S is the matrix element convoluted with the
Gaussian describing the occupied 3d-DOS.

According to Eq. 7.30 the satellite line can be calculated as the convolution of the
energy loss function with a pure valence fluorescence spectrum. The shape of the
fluorescence spectrum in the energy range between the Kβ1,3 and the Kβ2,5 line is the
sum of the high energy tail of the Kβ1,3 line, the KNN satellite line, and the Kβ2,5

line. The fit yields a decay factor of 0.03788 1/eV in the exponential, in agreement
with the decay factors of the KMN and the KMM satellites. The result is depicted
in Fig. 7.15 showing good agreement between the fit function and the measured
spectrum.

Conclusion

The diagram lines are accompanied by a variety of satellite lines. The low energy
satellites are due to double excitation processes during the emission of a fluorescence
photon. This radiative decay is complementary to the nonradiative Auger effect and
thus is named radiative Auger effect. From the variety of radiative Auger satellites
the KMM, the KMN, and the KNN satellites from Cu have been observed. The low
energy tail of the valence fluorescence spectra is dominated by the KNN radiative
Auger satellite, partly obscuring the shape of the Bloch ~k-selective valence spectra.
This satellite has been accounted for by a semiempirical model which was derived
from the resonant double differential scattering cross section. The model involves

1Therefore, the Auger satellite to the valence line correctly must be named KMN. In analogy,
the Auger satellite dominating the low energy tail of the Cu Kβ1,3 line in reality is a KMM satellite
(see Fig. 7.10). But in order to maintain a concise nomenclature the prior notation will be kept.
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Figure 7.15: The radiative Auger satellite to the valence fluorescence line of Cu
(thin solid line) together with the high energy tail of the Cu Kβ1,3 line (dashed)
and with the Cu Kβ2,5 valence line (dotted) amounting to the thick solid line, in
agreement with the measured spectrum (dots).

the convolution of an energy loss function with the parent line of the respective
satellite. Investigating the KMN and KMM radiative Auger satellites this model
has been confirmed.

For the first time the KNN satellite of the late 3d elements has been investigated.
The relative intensity of the KNN satellite decreases with increasing atomic number
Z as it is the case for other transition as the KMM and the KLL satellites.

From this it is concluded that the treatment evolved in this Chapter correctly de-
scribes the over-all shape of the radiative Auger satellites.
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Chapter 8

Bloch ~k-Selective RIXS from Copper

In contrast to the RIXS experiment on NiAl as described in Chapter 3, in the experi-
ment on Cu not only momentum transfer vectors along one high symmetry direction
were investigated, but a set of reduced ~q-vectors was chosen to cover the whole Bril-
louin zone in an equidistant manner. The smallest set of ~q-vectors complying with
this requirement, consists of the six high symmetry points Γ, ∆, X, W, Σ, and L.
However, since the measurement at the Γ-point, corresponding to a Bragg reflection
and thus provoking a very intense quasi-elastic line, is experimentally not feasible,
three neighbouring points on the 〈100〉, 〈110〉, and 〈111〉 axes have been considered
instead. The actually used values of ~qred are depicted in Fig. 8.1.

Figure 8.1: The irreducible wedge of the
Brillouin zone of fcc lattices. The
~q vectors considered in the experiment
are marked by circles.

Γ KΣ

X

∆
W

Λ

L

U

As in the experiment on NiAl the reduced momentum transfer vectors ~qred have been
extended by a reciprocal lattice vector to obtain larger momentum transfer vectors
~qabs resulting in scattering angles close to 90◦. Thereby the quasi-elastic Rayleigh
line is widely suppressed. Fig. 8.2 clarifies the location of the irreducible wedge of
the Brillouin zone that was actually used in the experiment. The Γ-point of this
Brillouin zone is centered at the 〈400〉 reciprocal lattice vector.

The surface of the 〈100〉 single crystal sample was oriented perpendicular to the
momentum transfer vector ~q, thereby making one 〈100〉 axis parallel to ~q. Moreover,
by means of a Laue pattern, another 〈100〉 axis was adjusted to be perpendicular to
the scattering plane. Thus, the values of ~q parallel to the 〈100〉 axis can be reached
by choosing the scattering angle Θ according to Tab. 8.1 and by choosing both the
inclinations between the sample and the incoming and outgoing x-ray beam equal
to Θ/2. To access the other values of ~q, the sample additionally must be tilted
horizontally by α (see Fig.8.2) and vertically by β, as also denoted in Tab. 8.1.
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Figure 8.2: Location of the irreducible wedge of the Brillouin zone used in the
RIXS experiment on Cu. The ~q vectors that have been accounted for are marked
by the circles.

The experiment has been performed at beamline ID16 of the ESRF, making use
of the Rowland spectrometer [Schü95, Kao96], equipped with a Si 642 analyzer
crystal. The incoming beam was monochromatized by the Si 111 double crystal
pre-monochromator. To stabilize the energy of the incident photons and to further
narrow down the energetic width of the photon beam a Si 333 channel cut crystal
was used. The over-all energy resolution was limited to 1.4 eV by the analyzer
crystal. For each of the ~q-vectors specified above, RIXS spectra at five different
incident energies have been measured, namely at 2, 4, 6, 8 , and 10 eV above the 1s
binding energy of Cu corresponding to 8979 eV. The full set of spectra is shown in
Appendix D.

In Fig. 8.3 the impact of the three corrections on the calculated ~k-selective spectra of
Cu is demonstrated. In panel a) the valence line without the KNN radiative Auger
satellite and without the 3d→1s quadrupolar transitions is shown. In this case the
low energy region is not reproduced by the calculated spectrum. If the KNN satellite
is accounted for, the over-all agreement is improved significantly, as it is shown in
panel b). However, both tails of the valence fluorescence line are overemphasized
in the calculated spectrum. This problem is overcome by additionally including the
3d→1s quadrupolar transitions. In panel c), the high and low energy tails are then
correctly reproduced by the calculated spectra, but the position of the main peak is

~qred [2π/a] ~qabs [2π/a] |~qabs| [a.u.] Θ [◦] α [◦] β [◦]
1/4 , 0 , 0 3.75 , 0.00 , 0.00 3.45 91.56 0.00 0.00
1/4 , 1/4 , 0 3.75 , 0.75 , 0.00 3.46 91.83 3.81 0.00
1/4 , 1/4 , 1/4 3.75 , 0.75 , 0.75 3.47 92.09 3.81 3.81
1/2 , 0 , 0 3.50 , 0.00 , 0.00 3.22 83.97 0.00 0.00
1/2 , 1/2 , 0 3.50 , 0.50 , 0.00 3.26 85.02 8.13 0.00
1/2 , 1/2 , 1/2 3.50 , 0.50 , 0.50 3.29 86.07 8.13 8.05

1 , 0 , 0 3.00 , 0.00 , 0.00 2.76 69.97 0.00 0.00

1 , 1/2 , 0 3.00 , 0.50 , 0.00 2.80 71.08 9.46 0.00

Table 8.1: Experimentally chosen reduced and absolute values of the momentum
transfer ~q and the corresponding scattering angles for Cu, as well as the angles α
and β defining the orientation of the sample.
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Figure 8.3: Impact of the three corretions on the calculated Bloch ~k-selective RIXS
spectra of Cu. The calculated spectra (dashed lines) are compared to the measured
ones (solid lines). Also given is the sum of the KNN satellite and the high energy
tail of the Cu Kβ1,3 fluorescence line (dotted lines). The measured spectrum has
been obtained at ~qred = 〈1|0.5|0〉 · π/a and at h̄ω1 = EK + 6 eV = 8985 eV. For
further explanations see text.

still not matching the measured spectrum. By considering the shift of the 3d states
towards higher binding energies, which is due to the screening of the 3d hole, also
the main peak position is properly accounted for. The corresponding calclulated
spectrum including all three effects is depicted in panel d). Compared to panel b)
the agreement between the calculated and the measured spectrum is significantly
improved, emphasizing the importance of the proper consideration of the 3d states
in the case of RIXS valence spectra from 3d elements. Thus, all three effects are
important in order to correctly describe the shape of Bloch ~k-selective RIXS spectra
from Cu.

In Fig. 8.4 a series of RIXS spectra recorded at different incident energies and at
a momentum transfer ~qred = 〈1|0.5|0〉 · π/a corresponding to the Γ-W distance is
compared to calculated RIXS spectra. In the calculation the 3d-states of Cu have
been accounted for as described in Chapter 6. For both the 4p→1s and the 3d→1s
transitions the energy dependent radial matrix elements as well as the weight factors
from the angular matrix elements have been used. Moreover, the 3d states have been
shifted by 1 eV towards higher binding energies, accounting for the strong screening
of the 3d hole present in the final state in case of a quadrupolar transition. The
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Figure 8.4: Measured (solid lines) and calculated (dashed lines) Bloch ~k-selective
RIXS spectra of Cu together with the KNN radiative Auger satellites (dotted
lines). The incident energies are given with respect to the K edge of Cu. The
reduced momentum transfer ~qred is equal to the Γ-W distance. The peaks at 8981,
8983, and 8985 eV are due to quasi-elastic scattering.

dotted lines depict the high energy tail of the Cu Kβ1,3 line as well as the radiative
Auger satellites, calculated according to Chapter 7.

Although the calculated spectra are in reasonable agreement with the measured
ones in general, some details are not reproduced in the calculation. The shoulder at
the high energy side of the spectrum recorded at 10 eV above the K edge is more
prominent in the measured spectrum, and the main peak of the spectrum excited at
2 eV above the edge is not at the correct position in the calculated spectrum. The
origin of these differences, also appearing in the spectra recorded at the other values
of the momentum transfer ~q, is unclear and requires further investigation.
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An explanation for these differences may be found in the difficulty to treat correctly
the 3d hole in the final state of the quadrupolar transitions. The screening of the
3d hole surely has more drastic consequences than a mere shift of the 3d band. In
fact also a band narrowing, as observed at the 3d states in the presence of the 1s
core hole, is to be expected. For a satisfactory treatment of the 3d hole final state
a 3d9 configuration has to be enforced, as it has been done in Ga, Ge, and As.
However, within the LAPW algorithm, this requires to treat the 3d states as core
states, resulting in dipersion-less 3d bands surely being not appropriate for the late
3d elements. Thus, the 3d hole final states cannot be properly treated within the
standard WIEN package. Additionally, interactions between the excited electron
in the conduction band and the 4p or 3d hole in the final state may give rise to
additional corrections, as they have been reported for RIXS in the soft x-ray regime
[Shir01].

More generally, apart from the difficulty to account correctly for the hole states in the
final state of the scattering process the remaining differences between the calculated
and the measured spectra may indicate that the calculated band structure differs
from the actual band structure of Cu.
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Conclusion

In this thesis, the validity of the Bloch ~k-momentum conservation of RIXS in the
hard x-ray regime and its applicability to metallic samples have been demonstrated
by probing the K edge of Cu and the K edge of Ni in NiAl. The shape of resonantly
excited valence fluorescence spectra does not only depend on the incident energy
but also on the size and the direction of the momentum transfer ~q if hard x-rays
are used. Thus, in the hard x-ray regime more parameters can be varied in the
experiment than in the soft x-ray regime, where only the incident energy determines
the shape of the spectra. This is a clear advantage of hard x-rays.

Four effects influencing the Bloch ~k-conserving RIXS process have been investigated:
the destruction of the ~k-conservation due to electron-phonon interaction in the
intermediate state, the screening of the 1s core hole present in the intermediate
state, the contribution of 3d→1s quadrupolar transitions in the fluorescence process,
and the KNN radiative Auger satellite partly obscuring the valence fluorescence line.

There is no measurable contribution from non-~k-conserving processes in the case of
Cu. Indeed, only a small ~k-unselective fraction of a few percent is expected, since
the lifetime of the 1s core hole in Cu is shorter than the electron-phonon interaction
time, i.e. the energetic lifetime width Γ1s is larger than the Debye energy h̄ωD. Thus,
in the case of hard x-rays a ~k-unselective fraction does not have to be considered,
faciliating the interpretation of the spectra.

For a determination of the ~k-selective fraction free of doubt, experimental data
with a better signal-to-noise ratio have to be obtained . Moreover, temperature
dependent measurements of Bloch ~k-selective RIXS spectra in the soft x-ray regime,
where significant ~k-unselective contributions exist, are desirable.

Due to the final states rule only the absorption part of the RIXS process can be
affected by the core hole present in the intermediate state. By means of a supercell
calculation of Cu it was found that the 1s core hole is completely screened by the
core states and by the strongly localized 3d electrons. The 4p states, dominating
the RIXS process via the dipole selection rules, remain largely unaffected. The
good agreement between calculated and measured XANES spectra is only slightly
improved by the consideration of the core hole. Therefore, the ground state electronic
band structure can be legitimately used to calculate RIXS spectra in the case of RIXS
at the K edge of the late 3d elements. This finding is emphasized by the fact that
the measured spectra are nicely reproduced by calculated spectra, where the core
hole has not been accounted for.

Moreover, a detailed description of the supercell approach has been given. The con-
vergence of the charge density with respect to the size of the supercell has been
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thoroughly investigated by monitoring various parameters as the DOS of the ion-
ized and of the neutral atoms, as the binding energies of the core states, and as
the number of iterations needed to obtain a converged charge density for a given
supercell.

The intensity of the quadrupolar 3d→1s transition relative to the dipolar 4p→1s
transition has been calculated from first principles. The result has been verified
by comparing calculated to measured fluorescence spectra in the case of Ga, Ge,
and As, where the 3d fluorescence line is separated from the 4p fluorescence line.
Apart from a factor of 1.2 the calculated intensities of the 3d transitions agree with
the experimental findings, whereas the measured energies of the 3d fluorescence
lines are smaller than the calculated fluorescence energies obtained from the ground
state band structure. This effect is due to the screening of the 3d hole existing
in the final state if a quadrupolar transition takes place. The calculation of the
3d fluorescence lines in the presence of a 3d hole results in a shift towards smaller
energies as expected, however leading to even lower fluorescence energies than in the
experiment. To overcome this overestimation of the screening, the 3d9 configuration
should be treated within a supercell calculation. Moreover, it was extrapolated from
the data on As, Ge, Ga, and Zn that in case of Cu a shift of -1eV is necessary to
account for the screening of the 3d hole.

The most striking feature of the valence fluorescence lines of the 3d elements is the
KNN radiative Auger satellite, which is due to a double ionization process during the
emission of a fluorescence photon. The KNN satellite extends between the Kβ1,3 and
the Kβ2,5 valence line dominating the low energy tail of the valence line. In order to

be properly considered in the investigation of the Bloch ~k-selective valence spectra,
the shape of the KNN satellite has been accounted for by a semiempirical model,
which was derived from the resonant double differential scattering cross section. The
model involves the convolution of an energy loss function with the parent line of the
satellite. Investigating the KMN and KMM radiative Auger satellites of Cu this
model has been confirmed.

For the first time the relative intensity of the KNN satellite has been investigated.
In the range of Z from 27 (Co) to 33 (As) its intensity decreases as a function of
the atomic number Z as it is the case for other radiative Auger satellites such as
the KMM and the KLL satellites. In contrast to these, the KNN satellite can be as
intense as its parent line.

Moreover, in Appendix C the Cu Kβ′ and Cu Kβ′′ satellites, originating from a
double ionization during the absorption of a photon, have been examined. From
their threshold energy it was possible to confirm that they are due to a 3d spectator
hole. The short saturation range of 50 eV corresponding to 0.5 % of the threshold
energy indicates that the Cu Kβ′ and Cu Kβ′′ satellites are dominated by shakeup
processes.

Making use of the results described above Bloch ~k-selective RIXS spectra from Cu
have been calculated. Due to the proper consideration of the 3d states and of the
KNN satellite they agree well with the measured spectra.
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In this work versatile knowledge about the Bloch ~k-selective resonant inelastic x-ray
scattering process in the hard x-ray regime has been gained. Thanks to the thor-
ough investigation of effects influencing the RIXS process such as electron-phonon
interaction, hole screening, and double ionization, processes, the main features of
the hard x-ray valence fluorescene line of the late 3d transition metals have been
widely understood. Based on the results of this work it is possible to investigate
the feasibility of a band structure reconstruction from hard x-ray Bloch ~k-selective
RIXS spectra, whithout making assumptions about the dispersion of the unoccupied
bands. Such an attempt may also be beneficial for further research within the soft
x-ray regime.
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Appendix A

Details of the Supercells

Atomic Positions in the Supercells

supercell ATOM MULT POS

4 atoms 1 1 0 0 0

2 3 1/2 0 0

8 atoms 1 1 0 0 0

2 3 1/4
1/4 0

3 1/2
1/4

1/4

3 1 1/2
1/2

1/2

32 atoms 1 1 0 0 0

2 3 1/4
1/4 0

6 3/4
1/4 0

3 3/4
3/4 0

3 3 1/2 0 0

4 3 1/2
1/2 0

5 3 1/2
1/4

1/4

6 3/4
1/2

1/4

3 3/4
3/4

1/2

6 1 1/2
1/2

1/2

ATOM: number of inequivalent atom
MULT: multiplicity of the position
POS : position within the unit cell

The actual atomic positions within the
supercell are obtained from the coor-
dinates POS by means of permutation.
The sum of the multiplicities yields the
total number of atoms.

supercell ATOM MULT POS

108 atoms 1 1 0 0 0

2 3 1/6
1/6 0

6 5/6
1/6 0

3 5/6
5/6 0

3 3 1/3 0 0

3 2/3 0 0

4 3 1/3
1/3 0

6 2/3
1/3 0

3 2/3
2/3 0

5 6 1/2
1/6 0

6 5/6
1/2 0

6 3 1/2
1/2 0

7 3 1/3
1/6

1/6

3 2/3
1/6

1/6

6 1/3
5/6

1/6

6 2/3
5/6

1/6

3 5/6
5/6

1/3

3 5/6
5/6

2/3

8 6 1/3
1/6

1/2

6 2/3
1/6

1/2

6 2/3
5/6

1/2

6 1/3
5/6

1/2

9 1 1/3
1/3

1/3

3 2/3
1/3

1/3

3 2/3
2/3

1/3

1 2/3
2/3

2/3

10 3 1/2
1/2

1/3

3 1/2
1/2

2/3

Table A.1: Atomic positions within the supercells
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Figure A.1: The 4p-DOS of neutral atoms in charged supercells.
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Figure A.2: The 4s-DOS of neutral atoms in charged supercells.
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Appendix B

Angular Dependence of Quadrupolar
Matrix Elements

The aim of this section, following [Bochar], is to transform the quadrupolar transition

operator into an expression containing the Cartesian coordinates of ~k and ~ε as well
as the d-like solid harmonics, sometimes referred to as the real spherical harmonics,
namely Yxy, Yyz, Yzx, Yx2−y2 , and Yz2 .

First the product of the two scalar products is figured out and terms containing the
same combinations of x, y, and z are combined:

ε̂ · r̂ k̂ · r̂ = (εxx+ εyy + εzz) (kxx+ kyy + kzz) (B.1)

= εxkxx
2 + εxkyxy + εxkzxz

+ εykxxy + εykyy
2 + εykzyz

+ εzkxxz + εzkyyz + εzkzz
2 (B.2)

= (εxky + εykx)xy + (εykz + εzky) yz + (εzkx + εxkz)xz (B.3)

+ εxkxx
2 + εykyy

2 + εzkzz
2 (B.4)

Looking at line B.3 one recognizes that these mixed terms are proportional the d-
orbitals Yxy, Yyz, and Yzx, respectively. Thus, only the terms in line B.4 have to be
considered further. For the time being the z2-term is put apart and the x2 and y2

terms are extend and recombined:

εxkxx
2 + εykyy

2 (B.5)

= +
1

2
εxkxx

2 +
1

2
εykyy

2 +
1

2
εxkxx

2 +
1

2
εykyy

2

+
1

2
εxkxy

2 +
1

2
εykyx

2 − 1

2
εxkxy

2 − 1

2
εykyx

2 (B.6)

= +
1

2
εxkx

(
x2+y2

)
+

1

2
εyky

(
x2+y2

)
+

1

2
εxkx

(
x2−y2

)
− 1

2
εyky

(
x2−y2

)
(B.7)

= +
1

2
(εxkx + εyky)

(
x2 + y2

)
+

1

2
(εxkx − εyky)

(
x2 − y2

)
. (B.8)

Here the second term of the last line is proportional to the Yx2−y2 solid harmonic.
The first term will now be treated together with the previously postponed z2 term.
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First one makes use of the fact that ~ε · ~k = εxkx + εyky + εzkz = 0:

1

2
(εxkx + εyky)

(
x2 + y2

)
+ εzkzz

2 = −1

2
εzkz

(
x2 + y2

)
+ εzkzz

2

= +
1

2
εzkz

(
2z2 − x2 − y2

)
. (B.9)

Then one notices that x2 + y2 + z2 = 1⇔ −x2 − y2 = z2 − 1 yielding

+
1

2
εzkz

(
2z2 − x2 − y2

)
= +

1

2
εzkz

(
3z2 − 1

)
, (B.10)

which is proportional to the Yz2-orbital. Collect the parts and end up with:

ε̂ · r̂ k̂ · r̂ = (εxky + εykx)xy + (εykz + εzky) yz + (εzkx + εxkz)xz

+
1

2
(εxkx − εyky)

(
x2 − y2

)
+

1

2
εzkz

(
3z2 − 1

)
. (B.11)

Using the real representations of the Y to replace the components of r̂:

Yz2 =
√

5
16π

(3z2 − 1) ⇔ 1
2

(3z2 − 1) =
√

4π
15
Yz2

√
3

Yx2−y2 =
√

15
16π

(x2 − y2) ⇔ 1
2

(x2 − y2) =
√

4π
15
Yx2−y2

Yxy =
√

15
4π
xy ⇔ xy =

√
4π
15
Yxy

Yyz =
√

15
4π
yz ⇔ yz =

√
4π
15
Yyz

Yzx =
√

15
4π
zx ⇔ zx =

√
4π
15
Yzx

(B.12)

the quadrupole operator can be written as:

ε̂ · r̂ k̂ · r̂ =
[

(εxky + εykx)Yxy + (εykz + εzky)Yyz + (εzkx + εxkz)Yxz

+ (εxkx − εyky)Yx2−y2 +
√

3εzkzYz2

] √4π

15
. (B.13)

Since the angular part of s-wave functions is merely a constant, the quadrupolar
matrix element between d- and s-orbitals reduces to an integral over two angular
functions that is equivalent to the orthonormality condition of the solid harmonics.
Thus, the transition intensity I = | 〈d| ε̂ · r̂ k̂ · r̂ |s〉 |2 amounts to:

IQ ∝ dxy (εxky + εykx)
2 + dyz (εykz + εzky)

2 + dxz (εzkx + εxkz)
2

+ dx2−y2 (εxkx − εyky)2 + 3dz2 (εzkz)
2 , (B.14)

where the dxy, . . . are the d-partial charges. Along the same lines the angular
dependence of dipolar transitions to and from s-orbitals is calculated.



Appendix C

The Onset and Saturation of the Cu
Kβ′ and Cu Kβ′′ Satellites

As already described in Section 7.6, the characteristic shape of the Cu Kβ1,3 flu-
orescence line is due to the spin orbit splitting of the 3p states, giving rise to the
asymmetric shape of the main line, and due to the two satellite lines provoking the
shoulders at the low energy and the high energy tails of the fluorescence line (see
upper left panel of Fig. C.1). These satellites are named Kβ′ and Kβ′′, respectively,
and originate from a double ionization process during the absorption of the incoming
photon [Deut95]. This leads to the subsequent emission of a fluorescence photon in
the presence of a spectator hole. From a multiplet calculation, taking into account
several double hole configurations, Deutsch and coworkers conclude that the Kβ′

and Kβ′′ satellites stem from the secondary excitation of a 3d electron resulting in
a 3d spectator 1s3d→3p3d fluorescence process. Due to the interaction with the
incompletely filled 3d-shell the 3p states split up into a multiplet which results in
the two satellite lines. That the Kβ′ and Kβ′′ originate from a 3d spectator state
can be confirmed by monitoring the intensity of the two satellite lines as a function
of the incident energy.

In Fig. C.1 spectra recorded at four different incident energies, selected from a series
of nine spectra, are shown. Thanks to the consideration of the unoccupied DOS in
the calculation of the RIXS spectra, as described in Section 7.4, the respective fit
functions resemble even the smaller details of the fine structure. The intensity of
the satellite lines decreases faster than the intensity of the main lines as the incident
energy is reduced. At h̄ω1 = 8990 eV the satellites have almost completely vanished.

The absence of the satellite lines in the spectra measured at lower incident energies
leads to instabilities of the fit since in that case more Lorentzians are present than
are actually needed to describe the spectra. In fact, the supplementary Lorentzians
assume unphysically large widths of several tens of electron volts, occur at positions
that are not sensible, and partly have a negative intensity. This failure of the
fitfunction clearly indicates that the satellite lines have vanished. Therefore, the
positions and widths of the satellite lines have to be determined from the spectra at
higher incident energies.

Surprisingly, at incident energies below 9000 eV the sum of the redundant Kβ′ and
Kβ′′ satellite functions amounts to a function having the shape and the energy as
expected for the KMN radiative Auger satellite, clearly indicating the presence of
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Figure C.1: Series of RIXS spectra from the Cu Kβ1,3 fluorescence line. The
measured spectra (dots) are well reproduced by the fit (thick lines) as described in
Section 7.6. The constituents of the fit function are depicted in thin lines. The
KMN radiative Auger satellite, although present in the fit, has been omitted in the
figure.

the KMN satellite in the spectra. In the work of Deutsch et al. [Deut95] a linear
background has been subtracted from the measured spectrum, thereby suppressing
the KMN satellite.

In a first step the β1, β3, and β′′ lines have been used to fit the measured spectra
in the range between 8900 and 8920 eV. From these fits the position and width
of the β′′ contribution, as well as the widths of the β1 and β3 lines have been
determined. These parameters were obtained by letting all parameters float at first
and by consecutively fixing one after the other. In a second step the width and
the position of the β′ line have been acquired. The energy range for the fit was
extended over the whole range covered in the experiment (8875 to 8920 eV), and
the parameters for the β′′ line have been set to the previously determined values.
In this fit the shape of the KMN satellite, as extracted from the low energy residua
occuring in the spectra at 8979, 8980, and 8985 eV incident energy, has been kept
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Figure C.2: Peak intensities of the five constituents of the Cu Kβ1,3 fluorescence
line as a function of the incident energy.

fix. Thus, the free parameters in the final fit were the positions of the Kβ1 and
Kβ3 lines, as well as the intensities of all five constituents. The quality of the fit is
emphasized by the fact that in the whole series of nine spectra the positions of the
two main lines vary by only 0.07 eV and that the relative intensity of the main lines
IKβ1/IKβ3 = 2.22 varies only by about 6 %.

The peak intensities of the five constituents as a function of the incident energy are
depicted in Fig. C.2. The intensities of the Kβ1 and Kβ3 lines resemble the near edge
fine structure of the Cu K edge, as far as the limited number of data points permits
to say. The intensities of the Kβ′ and Kβ′′ satellite lines steadily decrease with
decreasing incident energy and settle around zero below 8990 eV incident energy.

In Fig. C.3 the intensities of the Kβ′ and Kβ′′ satellites normalized to the sum of
the Kβ1 and Kβ3 intensities are shown. Apart from a factor of 2.7 the two satellite
lines show the same onset behaviour, indicating that these satellites originate from
the same shake process.

The onset energy is situated in the energy range between 8985 and 8990 eV, corre-
sponding to 6 and 11 eV above the Cu K edge. From the supercell calculation the
3d binding energy in the presence of a 1s hole is found to be 7.5 eV (see Section 5.5).
Additionally, the shift of the 3d states due to the 3d hole screening of about 1 eV
must be accounted for (see Chapter 6.5), yielding an onset energy of 8.5 eV which
is in good agreement with the experimental finding. Thus it is confirmed that the
Kβ′ and Kβ′′ satellites stem from the secondary excitation of a 3d electron resulting
in a 3d spectator 1s3d→3p3d fluorescence process.

The intensity of the satellite lines reaches saturation at about 50 eV above the
threshold which is 0.5 % of the threshold energy. This short saturation range indi-
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Figure C.3: Relative peak intensities of the Kβ′ and Kβ′′ satellite lines as a
function of the incident energy.

cates that the Kβ′ and Kβ′′ satellites are dominated by shakeup processes, i.e. the
shake electron is excited into localized states. This is in agreement with the fact
that the shake processes are governed by the monopole selection rule (see Section
7.2), enforcing that the 3d shake electron is excited into the unoccupied 3d or 4d
states, which are more localized than the other conduction band states.

Other shake satellites of Cu exhibit significantly larger saturation ranges. For the Cu
Kα3,4 satellites, stemming from a 2p spectator 1s2p→2p2p transition, a saturation
range of 1 keV, or 10 % of the threshold energy, has been reported [Frit98]. The Cu
Khα1,2 hypersatellites, that are due to a 1s spectator 1s1s→1s2p transition, show
an even larger saturation range. In fact, saturation is not reached at the upper
measurement limit of 25 keV, beeing 6.5 keV above the threshold of 18.35 keV
[Diam00]. Thus, the lower limit of the saturation range corresponds to 38 % of the
threshold energy.



Appendix D

RIXS Spectra from Copper

Figure D.1: Series of Bloch ~k-selective RIXS spectra from valence electrons at the
K edge of Cu. The spectra have been normalized to the intensiy of the incident
radiation.
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Appendix E

Details of the Experimental Setup

The measured spectra shown in this thesis have been obtained at the HASYLAB and
at the ESRF. At the HASYLAB the bending magnet beamline G3 and the wiggler
beamline W2 (HARWI), and at the ESRF the undulator beamlines ID28 and ID16
have been used. In all cases the incident synchrotron radiation was monochromatized
by means of a double crystal monochromator. At the beamlines G3 and HARWI
the monochromator has two separate single crystals, Si 311 at G3 and Si 511 at the
HARWI, of which the first monochromator crystal is water cooled to compensate
the heat load of the synchrotron radiation. The pre-monochromators of beamlines
ID16 and ID28 of the ESRF consist of a liquid N2 cooled monolithic Si 111 double
crystal, which demands an additional two-bounce channel cut crystal to further
narrow down the energetic width of the monochromatic beam. The channel cut
serves also to compensate for the temperature drift of the pre-monochromators,
stabilizing the beam at the selected energy. At ID16 of the ESRF the spot size of
the monochromatic beam at the sample is reduced to 100 µm × 1 mm (hor. × vert.)
by means of two x-ray mirrors. At the HARWI beamline of the HASYLAB the
second monochromator crystal is bent sagittally to horizontally focus the wiggler
beam, which has a width of 100 mm at the first monochromator crystal. Thereby
on the sample a focus of 3 mm × 5 mm can be achieved. At the beamline G3 of the
HASYLAB and at ID28 of the ESRF no focussing elements are available.

In order to obtain a proper normalization of the fluorescence spectra with respect to
the intensity of the incoming beam, either a PIN diode (ESRF) or a NaJ detector
(HASYLAB) is used. Moreover, at the HASYLAB beamlines an ionization chamber
and a Ge-detector have been used to detect the incoming beam and the fluorescence
radiation emitted from the sample, respectively, allowing for an additional intensity
monitorization of the incoming and of the scattered beam.

The sample was mounted on a sample holder which, in the case of the measurements
on Cu at ID16 was fully motorized, allowing for well defined rotation and tilting of
the sample, required to select certain momentum transfer vectors ~q (see Chapter
8 Fig. 8.2 and Tab. 8.1). In the case of the temperature dependent measurements
on Cu (see Chapter 4), the samples were mounted onto a closed cycle He cryostat,
permitting sample temperatures down to 10 K.

The fluorescence radiation emitted from the samples in all cases has been energy
analyzed by means of Rowland type single crystal spectrometers, having a Rowland
circle radius of r = 0.5 m, corresponding to a bending radius of R = 2r = 1 m
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Figure E.1: The principle of a Rowland spectrometer.

for the spherically bent analyzer crystals (SBAC). The principle of the Rowland
spectrometer is depicted in Fig. E.1. Photons emitted from one point P of the
sample, are hitting the SBAC at different positions, but nevertheless have the same
incident angle θ with respect to the spherically bent crystal planes of the analyzer
crystal. Via Bragg’s law λ = 2d sin θ, d being the distance of the scattering crystal
planes, only photons having the wave length λ, corresponding to the energy E =
hc/λ, are reflected from the SBAC and are focussed onto the point D of the detector,
which is symmetric to the point P of the sample. X-rays emitted from another point
P’ of the sample are only then reflected by the SBAC and focussed onto the point D’
of the detector, if they have the energy E ′ matching their incident angle θ′. Thus,
each point P of the sample and each point D of the detector corresponds to one
certain photon energy E1. As a consequence a whole fluorescence spectrum ranging
from E ′ to E can be recorded by means of a position sensitive detector (PSD), if
the region between P and P’ of the sample is homogeneously illuminated by the
incoming beam. The resulting spectrum is referred to as PSD spectrum.

The picture drawn above is true in the strict sense only, if the crystal planes of the
SBAC are bent with the radius R and if the surface of the SBAC is curved with
the radius r of the Rowland circle. However, since such a single crystal is difficult
to produce, the curvature of the surface with r is omitted and the single crystal is
only bent with the radius R. The resulting aberration can be neglected as long as
the diameter of the SBAC is small compared to the radius r. Moreover, vertical to
the rowland circle the crystal planes of the analyzer crystal have to be bent with
a radius of R′ = R sin(θ), which requires a toroidally bent single crystal. Thus, if
a spherically bent analyzer crystal is used instead, the resulting aberration is small
if θ is close to 90◦. A detailed analysis of these effects and their influence on the

1These x-ray optical properties of the Rowland spectrometer can be easily proven by applying
some basic laws of geometry.
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energetic resolution of the spectrometer can be found in [Wohl00].

The spectrometers used at the ESRF and at the HASYLAB exhibit several impor-
tant differences. At the ESRF, the horizontal width of the spot on the sample is
less than 100 µm. Therefore, the energetic width of the beam focussed on the de-
tector, depending on the energy and on the analyzer crystal, is about 0.1 eV at 8
keV, in the case of a perfect analyzer crystal. Thus, instead of a position sensitive
detector, a PIN diode can be used without degrading the energy resolution of the
spectrometer. To measure an x-ray spectrum, the SBAC and the detector are moved
to achieve different Bragg angles θ while retaining the Rowland geometry. At the
spectrometer used at ID16 and ID28 only the angle of the SBAC with respect to
the sample and the position of the detector are changed, but the distances between
sample and SBAC, and between SBAC and detector are kept constant.

The spectrometer used at the HASYLAB, where the spot size on the sample mea-
sures several square millimeters, is equipped with a position sensitive gas propor-
tional counter having a spatial resolution of 100 µm. Thus, the energy resolution of
the spectrometer is only limited by the quality of the SBAC. To measure an x-ray
spectrum, a series of PSD spectra obtained at different positionings of the spec-
trometer have to be combined. In contrast to the ESRF, in the spectrometer at the
HASYLAB also the distances between sample, SBAC, and PSD have to be changed,
in order not to spoil the resolution of the spectrometer. By acquirering PSD spectra
that have a large (i.e. > 90%) overlap with their neighbouring PSD spectra, the re-
sulting fluorescence spectrum is independent of the actual illumination distribution
on the sample. A 3-dimensional view of the spectrometer used at the HASYLAB is
shown in Fig. E.2.

ionization
chamber

PSD

SBAC

sample

Figure E.2: A 3-dimensional view of the Rowland spectrometer as used at the
HASYLAB (Picture reproduced from [Wohl00]).
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[Åber75] T. Åberg and J. Utriainen, Sol. Stat. Comm. 16, 571 (1975). 88

[Atki97] P. W. Atkins and R. S. Friedman, Molecular Quantum Mechanics, 3rd

Edition, Oxford University Press (1997). 69

[Bark08] C. G. Barkla, C. A. Sadler, Philos. Mag. 16,550 (1908). 1

[Bied81] L. C. Biedenharn, J. D. Louck, Angular Momentum in Quantum Physics
in Encyclopedia of Mathematics Vol. 8, Addison-Wesley, 1981. 59
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[Deut95] M. Deutsch, G. Hölzer, J. Härtwig, J. Wolf, M. Fritsch and E. Förster,
Phys. Rev. A 51, 283 (1995). 11, 74, 89, 90, 91, 115, 116

[Diam00] R. Diamant, S. Huotari, K. Hämäläinen, C. C. Kao, and M. Deutsch,
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[Lüni97] J. Lüning, J.-E. Rubensson, C. Ellmers, S. Eisbitt, W. Eberhardt,
Phys. Rev. B 56, 13147 (1997). 2, 34, 35

[Lytle] F. D. Lytle, The XAFS Database,
http://xafsdb.iit.edu:80/database/data/Farrel_Lytle_data/.

[Ma92] Y. Ma, N. Wassdahl, P. Skytt, J. Guo, J. Nordgren, P. D. John-
son, J.-E. Rubensson, T. Boske, W. Eberhardt, S. D. Kevan,
Phys. Rev. Lett. 69, 2598 (1992). 1, 2

[Ma94] Y. Ma, Phys. Rev. B 49, 5799 (1994). 2, 12, 34

[Ma95a] Y. Ma, M. Blume, Rev. Sci. Instr. 66, 1543 (1995). 2

[Ma95b] Y. Ma, K. E. Miyano, P. L. Cowan, Y. Aglitzkiy, B. A. Karlin,
Phys. Rev. Lett. 74, 478 (1995). 2

[Magd01] U. Magdans, Die Messung der spinpolarisierten unbesetzten 5d Zustands-
dichte von Eu in EuO, diploma thesis, University of Dortmund (2001).
86
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