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SUMMARY 
 
 
 
One inherent impetus to the development of new or better design methods is the 

challenge of solving realistic design problems of complex systems, where ‘realistic’ 

means no simplifications have been made to the design problem except for the 

mathematical abstraction of the design problem itself. Specifically, realistic conceptual 

design problems of complex systems have four common features: multidisciplinary, 

multi-objective, design decisions being made in the presence of uncertainties, and 

decisions being made in a relatively short time period with limited resources. Those 

realistic conceptual design problems are either for design concept generation and 

selection or for design alternative generation and selection. Although design has been 

viewed as a discipline for more than three decades, the current state-of-the-art design 

methods have limitations and in many cases are not suitable to handle realistic conceptual 

design problems. This will be particularly true for the cases of design alternative 

generation and selection where revolutionary design concepts are considered. This drives 

the need for a new framework to solve realistic conceptual design problems of design 

alternative generation and selection. Considering the fact that high fidelity but time 

consuming tools are used to generate the training sample for surrogate model 

construction when a design is revolutionary, this new framework in turn requires a hybrid 

surrogate modeling method to achieve high accuracy for many kinds of problems with a 

small training sample. This new framework also requires a surrogate model selection 

advisor to choose the best surrogate model for a given complex physics-based model 

based on a balance between model accuracy and complexity. 
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The purpose of this research is to provide such a framework. The proposed 

framework combines separately developed multidisciplinary optimization, multi-

objective optimization, and joint probability assessment methods together but in a 

decoupled way, to solve joint probabilistic constraint, multi-objective, multidisciplinary 

optimization problems that are representative of realistic conceptual design problems of 

design alternative generation and selection. The intent here is to find the Weak Pareto 

Frontier (WPF) solutions that include additional compromised solutions besides the ones 

identified by a conventional Pareto frontier. This framework starts with constructing fast 

and accurate surrogate models of different disciplinary analyses in order to reduce the 

computational time and expense to a manageable level so that the design space can be 

explored quickly, obtain trustworthy probabilities of the probabilistic constraints (PC) 

and WPF, and so as to enable conceptual design decision making in shorter time period. 

A new hybrid method is formed that consists of the second order Response Surface 

Methodology (RSM) and the Support Vector Regression (SVR) method capturing the 

global tendency and the local nonlinear behavior respectively. The purpose of forming 

this hybrid method is to provide a method that can achieve high accuracy for many kinds 

of problems with a small training sample. The three parameters needed by SVR to be pre-

specified are selected using practical methods and a modified information criterion that 

makes use of model fitting error, predicting error, and model complexity information. 

The model predicting error is estimated inexpensively with a new method called Random 

Cross Validation. In order to select a surrogate model without unnecessary complexity 

from RSM, SVR, and the hybrid method, this modified information criterion is also used 

as a surrogate model advisor to select the best surrogate model for a given problem. 
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A new neighborhood search method based on Monte Carlo simulation is proposed 

to find valid designs that satisfy the deterministic constraints and are consistent for the 

coupling variables featured in a multidisciplinary design problem, and at the same time 

decouple the three loops required by the multidisciplinary, multi-objective, and 

probabilistic features. Two schemes have been developed. One scheme finds the WPF by 

finding a large enough number of valid design solutions such that some WPF solutions 

are included in those valid solutions. Another scheme finds the WPF by directly finding 

the WPF of each consistent design zone that is made up of consistent design solutions. 

Then the probabilities of the PC’s are estimated, and the WPF and corresponding design 

solutions are found. 

Three pure mathematical model fitting problems are used to demonstrate that the 

hybrid method of RSM and SVR really can obtain more accurate surrogate models with 

better results where sometimes the (second order) RSM, SVR, and Neural Network 

methods can not fit a given problem well with a small training sample. This illustrates the 

need for the hybrid method. 

Three two-objective and one three-objective deterministic optimization problems 

are used to demonstrate that this framework can find the true weak Pareto frontier. The 

results show this framework can be used for many types of problems, such as cases of 

multiple-to-one mapping from design solutions in the design space to objective points in 

the objective space, problems of which the WPF is made up of spatially disjointed 

segments, and problems with constraints and more than two objectives. 

A typical aircraft design problem and a reusable launch vehicle design problem 

under probabilistic constraints are solved to demonstrate the feasibility of this framework 
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for engineering-based problems. The results of these two design problems show that both 

neighborhood search schemes can find the WPF. These results also show the methods to 

select the pre-specified parameters of SVR work well for engineering-based problems, 

the hybrid surrogate models are fast and accurate, and the surrogate model advisor can 

select the best surrogate model for a given problem or each response of an engineering-

based problem. 
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1 INTRODUCTION AND MOTIVATION 

 
 
 
Although design has been viewed as a discipline for more than three decades, the 

conceptual design methods already developed have limitations and many are unable at 

times to handle realistic conceptual design problems of complex systems for design 

alternative generation and selection, where ‘realistic’ means no simplifications have been 

made to the design problem except for the mathematical abstraction of the design 

problem itself. This drives the need for a new framework to solve such kind of problems, 

especially those involving revolutionary design concepts and technologies. 

1.1 The Conceptual Design Process 

Ever since the Industrial Revolution in England in the late 18th century, the 

extensive adoption of complex mechanisms such as automobiles, aircraft, and rockets has 

forced people to do design in a disciplined way. Before this, a design relied on a 

designer’s engineering intuition, talent, and experience, to compose concepts together to 

provide a viable solution for a given mission. Although design is still both a science and 

an art even in modern days [1] with engineering intuition and experience being necessary, 

it has undoubtedly become a discipline that provides the methodology to decompose 

mission or customer requirements, find and compose proper concepts in an organized or 

structured way, and finally provide a solution. Design as a discipline is based on 

mathematics, scientific and technical knowledge, other information of analytical 

disciplines, and information integration technology. Design as a discipline can provide 

better solutions such as the optimal solutions than engineering intuition or experience 

can, or even be the only means to provide viable solutions when new and complex 



2 

systems to be tackled are beyond the capability of an experienced designer. As 

complements to the discipline of design, however, engineering intuition and experience 

can provide good starting points or efficient details of the overall solution. 

A formal definition of design was given by Blumrich in 1970 as “Design 

establishes and defines solutions to and pertinent structures for problems not solved 

before, or new solutions to problems which have previously been solved in a different 

way” [2]. This definition is the symbol of the discipline of design. 

Engineering design can be divided into three major phases: conceptual design, 

preliminary design, and detailed design [3]. Conceptual design can be further divided into 

need identification and problem definition, concept generation, concept selection [1], and 

design alternative generation and selection. A design concept is an idea that represents a 

family of similar design alternatives and eventually is described by a parametric model 

with some design variables to predict or estimate the performance, quality, and cost of 

this family of design alternatives, while a design alternative is a specific design resulting 

from specific values of the design variables [4]. In this research, ‘design solution’ is often 

used as a more familiar term to most people for ‘design alternative’.  

All possible design concepts form the concept space. A good way to explore the 

concept space is to form a morphological matrix that consists of functions and sub-

functions required by a design problem and corresponding possible ‘hows’ [1], such as 

different technologies, number of engines, wing shapes, etc. A design concept is a 

combination of such ‘hows’. For example, design concept 1 is a combination of 3 engines 

of technology 1, straight wing, low wing, etc; and design concept 2 a combination of 2 
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engines of technology 2, swept wing, middle wing, etc. Therefore the concept space has a 

combinatorial property. 

Each design concept has a design space, which is formed by the ranges of the 

design variables of the parametric model of this design concept. A design alternative is 

thus a point in a design space, or a sized design concept, as shown in Figure 1-1. 

 
 

 

Figure 1-1: The Design Space and a Design Alternative of a Design Concept 
 
 
The output of the conceptual design phase is a family of design alternatives. One 

example is the design of the Korean trainer T-50, as shown in Figure 1-2. During the 

conceptual design, 19 concepts were generated and evaluated. Some of the concepts are 

sized, and at the end three design alternatives are provided for preliminary design. 

Another example is the design of a notional wing spar, as shown in Figure 1-3. The 

design concept is selected as a flat plate. A design alternative is provided when the length 

and depth of this plate are determined according to wing span, airfoil shape, and location. 
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Figure 1-2: Design Process of Korean Trainer T-50 (Adapted from [5]) 
 
 

 
 

Figure 1-3: Design Process of a Wing Spar [3] 
 
 

1.2 The Design Process Paradigm Shift and Required Design Methods 

A design process paradigm shift is underway and proposes a change in the way 

complex systems are being designed. The new design process paradigm entails tradeoffs 

between conflicting objectives, integration of life-cycle disciplines, and a probabilistic 

design approach to handle uncertainties. 

1.2.1 The Design Process Paradigm Shift and Its Implications 

Today’s design paradigm is experiencing a shift from design for performance, 

without much consideration of the cost implications, to design for affordability and 

Conceptual Design 

406 
506  

101 

201 

301 

104 

Concept Generation and Selection Design Alternatives Detail Design Preliminary Design 

12 Major Configuration Updates 



5 

quality with a life-cycle emphasis. The goal of this new paradigm is to design complex 

systems with high quality at a competitive cost while accounting for the life-cycle 

behaviors of those systems [6]. Affordability as a concept is also introduced, under this 

paradigm as the ratio of system effectiveness to system cost, or in other words, the 

balance between performance (or more generally benefit) and cost. The life cycle of a 

product consists of 15 processes or stages if one looks closely, and can be divided into 

the pre-market and market phases [1]. For aircraft, the life cycle can be simplified as 6 

main stages: conceptual design, preliminary design, detailed design, production, service, 

and retirement. 

In the traditional design approach, the design goal is to maximize performance 

without much consideration of the cost. Usually a handful of design concepts or design 

alternatives are selected for further analysis after the conceptual design phase and usually 

one design alternative is selected for further development. Thus there is a limited amount 

of design freedom in this process, where design freedom is the ability to generate viable 

engineering alternatives and make design changes during the product development stages 

before product release [7]. Consequently, the design decisions made in the early stages 

such as conceptual and preliminary designs determine a large portion of the total life 

cycle cost (LCC) committed, and with few exceptions high LCC is incurred. Those 

decisions also can have significant impact on the whole life cycle of a product, including 

product quality and customer satisfaction. 

This situation can be changed in the new design paradigm by shifting to a more 

gradually decreasing design freedom curve and a more gradually increasing cost 

committed curve. To achieve the two new curves, downstream design knowledge must be 
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brought to the early design phases such as conceptual design in order to make educated 

decisions (increasing knowledge), where design knowledge is the information about the 

product, the process and operational environment; performance-cost tradeoffs must be 

made in early design phases; the design freedom must be kept open by adopting 

probabilistic  design approach to provide a family of design alternatives in order to 

mitigate the effects of uncertainties [7]; and higher fidelity knowledge should be brought 

into the conceptual design phase through higher fidelity design and analysis tools [6]. 

With more design freedom and higher fidelity knowledge, the cost committed by the 

design decisions will be decreased. Thus the total life cycle cost will be decreased. This 

“cost-knowledge-freedom” interaction from conceptual design to production is shown in 

Figure 1-4, where the cost is the LCC. 

 
 

 
Figure 1-4: "Cost-Knowledge-Freedom” Interaction and Shift for Future Design Paradigm [6, 7]  
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The above design paradigm shift requires handling more conflicting design 

objectives. Traditional design has only performance objectives; modern design has to 

handle conflicting performance and cost objectives. With conflicting objectives, there is 

no best solution, there are only best compromised solutions or efficient solutions, 

typically called Pareto frontier (PF) solutions. As shown in Figure 1-5, there are many 

possible solutions in the objective space, and the Pareto frontier solutions are at the edge 

of the cloud of points. Therefore, Pareto frontier solutions enable efficient tradeoffs 

between performance and cost, or selection by the identification of the User. Pareto 

frontier solutions are a locus of different solutions; with these solutions, the design 

freedom is kept open. 

 
 

 

Figure 1-5: Pareto Frontier Points and Inefficient Points in the 2D Objective Space 
 
 
The above design paradigm shift also requires handling more disciplines involved 

in the life cycle and more design requirements or constraints during the conceptual design 

phase. In addition to conventional disciplines such as propulsion, performance, and 
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stability and control, economics (for cost and profit), manufacturing, and safety, as shown 

in Figure 1-6. Now requirements or constraints from different levels must be considered 

at the same time, including traditional customer requirements and technical standards, 

and new regulatory requirements such as emission and noise. For aircraft design, relevant 

different levels may include discipline, vehicle system, transportation system, and global 

system levels. Here transportation system includes aircraft, airport, flight route facilities, 

etc; and global system includes the country and the Earth in the viewpoints of national 

economics and ecological impacts. 

 
 

 
 

Figure 1-6: Variable Fidelity of Aircraft Synthesis and Sizing [7] 
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uncertainties and keep the design freedom open; last, to perform rapid assessments, since 

the conceptual design phase is relatively very short compared with the total life cycle and 

there is an enormous number of possible concepts and design alternatives that need to be 

investigated. 

With respect to the mathematical model of a conceptual design problem, the design 

paradigm shift implies a realistic model is desired. Here ‘realistic’ means no 

simplifications have been made to the design problem except for the mathematical 

abstraction of the design problem itself. The common features of the realistic conceptual 

design problems include: multiple conflicting design objectives; multiple disciplinary 

analyses with coupling variables; probabilistic constraints to capture the effects of 

uncertainties; and use of accurate or high fidelity disciplinary knowledge due to profound 

effects of design decisions on LCC. 

1.2.2 Concepts of Multi-Objective Optimization Methods 

As mentioned previously, the design of complex systems needs to handle 

conflicting objectives and Pareto frontier solutions enable efficient tradeoffs among those 

conflicting objectives. The reason for Pareto frontier solutions is discussed in more detail 

here. 

In most cases, the quality of the complex systems must ultimately be assessed by 

more than one criterion, and all of the corresponding objectives of those criteria should 

be optimized simultaneously. Often, the objectives are conflicting in such a way that 

optimization of a single objective leads to poor performance for other objectives. 

Generally speaking, there are many potential design solutions to a multi-objective 

optimization problem (MOO). During the early stages of decision-making, the designer 
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or technical engineer often has little information about the relative importance of the 

individual objectives, or which criterion is more important. These decisions are usually 

not made by the designer; instead, these decisions are preferences that vary depending on 

a stakeholder’s viewpoint [8]. In the absence of a decision maker, all the objectives may 

be treated with equal importance, and a whole family of such solutions of which no 

objective can be further improved without degrading any other objectives must be found. 

These solutions are denoted as Pareto frontier solutions. 

From the above description, there are no other solutions better than the PF ones in 

terms of all objectives. Therefore, if anyone of the PF solutions is selected according to a 

given criterion for tradeoff among the conflicting objectives, this PF solution is the best. 

In this sense, PF solutions enable efficient tradeoff since no efforts will be wasted on the 

inferior solutions. 

Because of the high efficiency of PF solutions for tradeoff, the purpose of 

mathematical optimization is to give a variety of PF solutions, or in the ideal case to 

determine the entire set of PF solutions, to the User or customer who is the decision-

maker. With the PF solutions, the User can determine the optimum design according to 

certain preferences for the objectives during the decision-making process. This is an 

important ability for engineering design, as shown in Ref. [9], “Pareto front techniques 

help define the biggest bang-for-buck so that, for instance, the DoD can decide on how 

much performance it can afford”. 

The user may also choose to relax the requirements so as to accept such design 

solutions for which at least one, but not all, objectives are better than those of other 

design solutions. This is a means by which the design solution space is opened up and 
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more trade-off choices become available. These relaxed MOO solutions are denoted as 

weak Pareto frontier (WPF) solutions. 

1.2.3 Concepts of Multidisciplinary Optimization Methods 

Multidisciplinary design optimization methods are formulated to integrate different 

disciplinary analyses together to handle the interactions and enable a concurrent 

engineering process to solve such design and optimization problems efficiently. 

The different disciplines interact with each other through the coupling variables 

among those disciplines. A coupling variable (denoted as CX) is both an output of a 

disciplinary analysis and an input of another where the first disciplinary analysis directly 

or indirectly needs input information from the second one. A single-discipline design 

such as the design of the engine in the aircraft design may have coupling variables if 

some outputs are fed back. 

Coupling variables complicate multidisciplinary design. There are three main 

impacts of these variables. First, design freedom is reduced since only some design points 

or solutions in the system level design space lead to converged values for the coupling 

variables themselves. These points are called consistent design points, and form 

disjointed zones in the design space, which are called consistent design zones. Second, 

those variables require many iterations of the multidisciplinary analysis in order to find 

every single consistent design point since these consistent design zones are disjointed. In 

other words, equality constraints entailed by those variables in the multidisciplinary 

analysis process complicate the design problem. Third, special solving procedures are 

required to decouple the complex interactions introduced by coupling variables to find 

consistent design points. 



12 

If there are (explicit) design constraints in the multidisciplinary design, only some 

of the consistent design points can satisfy those constraints. These points are called 

feasible design points, or herein, candidate design points. Consequently, the feasible 

design space consists of disjointed feasible design zones that are inside of and no larger 

than the corresponding consistent design zones. Obviously more iterations of 

multidisciplinary analysis are required to find every feasible design point from the 

disjointed consistent design zones. Sometimes a consistent zone may contain disjointed 

feasible design zones, and this makes the design even more complicated. 

1.2.4 Concepts of Probabilistic Design Methods 

The conceptual design of complex systems is probabilistic in nature, such that 

decisions are made in the presence of uncertainties. Simply speaking, uncertainty is the 

incompleteness of design knowledge, or a difference between reality and what is 

expected [7]. In more detail, uncertainties are caused by ambiguity of the requirements, 

variations in material properties, incomplete knowledge of the manufacturing process and 

operational environment such as variations in manufacturing precision and loading 

conditions, modeling assumptions, and other sources  [6]. 

Uncertainties can significantly affect the decision-making process. Traditional 

multidisciplinary design optimization methods use a deterministic approach so that the 

optimal design solutions are frequently pushed to the limits of design constraint 

boundaries, leaving little or no room to accommodate uncertainties in system input, 

modeling, simulation, and operation environment [10]. As a result, those design solutions 

may be highly sensitive to the variation of the uncertain factors. This can lead to serious 

performance loss suffering from the high likelihood of undesired events such as some 
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extreme off-design conditions, or being conservative and consequently not economically 

viable. 

 Most often the effects of uncertainties are embodied in the probabilistic constraints 

(PC) [11]. A probabilistic constraint is that the probability of satisfying one constraint 

must be greater than a prescribed level. This constraint is called limit state function (LSF). 

For example, to consider the variation in material properties and/or load conditions, the 

PC can be stated as the probability that the maximum stress in a structure is less than a 

given level must be greater than 99.9%, or that the failure probability must be less than 

0.1%. To consider system-level requirements subject to future changes, the designer can 

use a stricter-than-current requirement, for example, if the takeoff distance is to be less 

than 5,500 feet, a stricter requirement can be made as that the takeoff distance must be 

less than 5,000 feet; and the PC can be stated as that this stricter requirement must be 

satisfied with a probability greater than 85%. 

To consider the effects of uncertainties, the conceptual design of complex systems 

has to adopt a probabilistic design approach. The probabilistic design approach is quite 

different from the (traditional) deterministic design approach. As shown in Figure 1-7, an 

imaginary constraint analysis for average required yield per revenue passenger mile 

($/RPM) and cruise speed, the deterministic constraints are fixed, defined by only two 

lines, while the probabilistic constraints are not fixed or well defined, instead, these 

probabilistic constraints are represented by two bands. Consequently, use of the 

deterministic design approach provides one design alternative, while the probabilistic 

design approach yields a family of design alternatives. 
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Figure 1-7: Constraints of Deterministic and Probabilistic Design Approaches 
 
 
For evolutionary designs, there are a small number of uncertainties to be considered, 

and variations of those uncertainties are usually small; therefore, only a few design 

alternatives are needed. For revolutionary designs, a lot more assumptions are being 

made, and therefore there are more uncertainties, and variations are greater; therefore, a 

much larger set of design alternatives must be considered for examination. 

As mentioned previously, the conceptual design phase includes design concept 

generation and selection, and design alternative generation and selection. The 

probabilistic design processes for design concepts and design alternatives are different. 

This is due to two main differences. First, the distributions are different. In probabilistic 

design, the designer actually controls only the nominal values of the design variables, 

such as the mean values. The distributions of a design concept are for those nominal 
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are for the values of the design variables about a set of nominal values. Usually these 

distributions are not uniform. This difference is illustrated in Figure 1-8. 

 
 

 
 

Figure 1-8: Distributions of a Design Concept and a Design Alternative in Probabilistic Design 
 
 
Second, the constraints imposed on the design alternatives are different. When 

assessing the probability of a design concept via sampling techniques for design concept 

generation and selection, each sampling point is checked to see if all deterministic 

constraints are satisfied. Here a sampling point is actually a design alternative. Therefore, 

only deterministic constraints are imposed on each design alternative of this concept, 

although probabilistic constraints are imposed on this concept. When assessing the 

probability of a design alternative via sampling techniques for design alternative 

generation and selection, similarly each sampling point is checked to see if all 

deterministic constraints are satisfied. What is different in this case is that a sampling 
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this case probabilistic constraints are imposed on a design alternative, although 
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deterministic constraints are imposed on each possible physical realization of this design 

alternative. 

In most cases, the PC’s are not independent because those constraints share some 

variables, either random or deterministic. Because of those shared variables, the effects of 

uncertainties propagate around, and thus those PC’s must be satisfied jointly. Obviously, 

the effect of the PC’s is that under PC’s some of the WPF solutions found by traditional 

methods under deterministic constraints are not eligible and have to be discarded. 

1.3 The Need for a New Framework for Design Alternative Generation and 

Selection 

Many conceptual design methods have been developed to accommodate the new 

design paradigm. These methods follow the Integrated Product and Process Development 

(IPPD) methodology [7, 12] that systematically integrates and applies all life cycle 

disciplines into the early design phases. Examples of such methods are the Technology 

Identification, Evaluation, and Selection (TIES) method [6], Joint Probabilistic Decision 

Making (JPDM) method [8], and Robust Design Simulation (RDS) method [13], to name 

a few. Those methods are good for realistic problems of design concept generation and 

selection, and have been successfully applied in many design projects. 

However, those methods are not suitable for realistic problems of design 

alternative generation and selection because of some of the following limitations. Some 

of those methods are used with monolithic legacy codes that are suited for evolutionary 

designs, but not suitable for revolutionary designs that are out of the scope of those codes. 

Usually there are no explicit treatments for the coupling variables. When solving a 

revolutionary design, this is a problem because separate disciplinary analyses are used in 
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this case and the convergency of coupling variables has to be treated by the designer, 

instead of the disciplinary analyses. Some of those methods treat multiple objectives with 

a single Overall Evaluation Criterion (OEC). The problem of this treatment is that the 

solutions are not guaranteed true Pareto frontier solutions [14]. The last limitation is that 

usually there is no algorithm to search for a design alternative that satisfies all 

probabilistic constraints. This is because usually sample filtering type methods (e.g. 

Monte Carlo sampling and filtering) are used to handle the combinatorial property of the 

concept space and to assess the design concept probabilities by sampling design 

alternatives. When selecting design alternatives, these types of methods are inefficient 

and can not guarantee PF solutions since it is possible that none of the sampling points is 

a PF solution, or in the worse case none satisfies all probabilistic constraints. 

Therefore, there is no suitable method for realistic conceptual design problems of 

design alternative generation and selection according to the previous investigation in 

terms of treatment of probabilistic constraints, explicit search for PF, and explicit 

treatment of coupling variables. This is a gap that needs to be filled. And to fill this gap is 

the main motivation of this research. 

It is important to form a new method or framework for realistic conceptual design 

problems of design alternative generation and selection. Because of the limitations, 

current conceptual design methods can only be used to solve simplified problems of 

design alternative generation and selection. For example, when the design concept is 

revolutionary, the step to check the convergency of coupling variables may be skipped 

because of lack of explicit treatment for coupling variables; or a design alternative may 

be accepted without checking if it is a PF solution because of lack of an algorithm to 
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search for design alternatives that satisfy all probabilistic constraints. The problem with 

design alternatives obtained from simplified problems is that the solutions may lead to 

increased risk and cost in the later design phases. There may be more and serious risk and 

cost for revolutionary designs because of more uncertainties and greater variation. 

1.4 Research Objective 

In a general sense, AIAA MDO Technical Committee [9] and NASA Langley 

Research Center [15] summarized the elements needed by new design methods in the 

aerospace industry, which include techniques to handle Pareto Frontiers with multiple 

design objectives, loosely coupled multidisciplinary design optimization (MDO) 

frameworks or architectures to efficiently handle a wide variety of problems, better 

approximation methods than current popular methods such as RSM and ANN to reduce 

computing time and cost, and algorithms to account for uncertainties and perform 

optimization under uncertainties at conceptual through detailed design phases. 

Obviously, the above general expectations for new methods in the aerospace 

industry are a detailed version of the desired features of a conceptual design method in 

order to accommodate the new design paradigm. Considering the above general 

expectations, the primary goal of this research is to formulate a practical framework to 

solve realistic conceptual design problems for design alternative generation and selection, 

where ‘practical’ means having the desired elements, including handling multiple design 

objectives and finding weak Pareto frontier (WPF) solutions; handling multiple life-cycle 

disciplines and the interactions among these disciplines in a loosely coupled way; 

performing probabilistic design to account for uncertainties; and performing rapid 
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assessment and enabling use of accurate or high fidelity knowledge by accurate 

approximation methods. 

One note is that this framework should find weak Pareto frontier solutions instead 

of PF solutions since WPF can provide additional compromised design solutions for 

tradeoff than PF as discussed previously. And later on, a short term of ‘realistic 

conceptual design problem’ will be used for ‘realistic conceptual design problem of 

design alternative generation and selection’. 

The above expectations for the new framework require the implementation of joint 

probabilistic (constraint), multi-objective, multidisciplinary optimization (JPMOMDO) 

and finding the WPF solutions. This framework is thus called “a framework for the 

determination of weak Pareto frontier solutions under probabilistic constraints”. 
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2 BACKGROUND 

 
 
 
In this chapter, the necessary background literature is reviewed according to the 

desired elements for the new framework. First of all is the mathematical statement of the 

problem that represents a realistic conceptual design problem (of design alternative 

generation and selection) that the new framework should solve. Since the new framework 

should be based on accurate surrogate models, a literature review of the state-of-the-art in 

DoE and surrogate-modeling methods, and related surrogate-modeling concepts is 

presented. Additional methods relevant to this framework are investigated and include: 

model assessment and model selection methods, joint probability assessment methods, 

probabilistic design methods, multi-objective optimization methods, and 

multidisciplinary optimization methods. 

2.1 Mathematical Statement of Realistic Conceptual Design Problems and Solving 

Considerations 

A joint probabilistic (constraint), multi-objective, multidisciplinary optimization 

problem, which represents a realistic conceptual design problem to be solved by the new 

framework, can be represented by the following mathematical model: 

 Minimize: T
e XfXfXfXF )](,),(),([)( 21 K=  objective functions (2.1) 

Subject to: 

 ( ) mjthXgP jjj ,1)( =≥≤ α  inequality PC’s (2.2 ) 

 ( ) lkthXhP kkk ,1)( =≥= β  equality PC’s (2.3 ) 

 cqCXCX O
q

I
q ,1==  coupling variable constraints (2.4 ) 
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where 

 T
nxxxX ],,,[ 21 L=  (random) design variables  

 )(,),(),( 2211 XfyXfyXfy ee === K  responses/objectives  

 O
q

I
q CXCX ,  input and output coupling variables 

 )(),( XhXg kj  limit state functions  

 
kj thth ,  thresholds  

 
kj βα ,  required probabilities  

The constraints jj thXg ≤)(  and kk thXh =)(  are deterministic constraints. The 

functions in Equations 2.1, 2.2, and 2.3 may be linear or non-linear functions. Those 

constraints may be explicit or implicit functions of design variables X , and may be 

evaluated by analytical or numerical techniques depending on if those constraints are 

explicit functions. For most engineering problems, constraints are non-linear and implicit 

functions and have to be evaluated numerically using complex evaluation techniques 

such as finite element method. 

The values of the design variables X  are actually nominal values (such as mean 

values and the most probable values), and for each value there is a probabilistic 

distribution. Thus, the objective of this optimization problem is to find the set of nominal 

values of the design variables that satisfies the probabilistic constraints as well as 

minimizes the objective functions by adjusting the nominal values of the design 

variables. 
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With almost no exception, this JPMOMDO problem has to be solved iteratively, 

even with explicit functions. Therefore this iterative solving process requires a large 

number of complete analyses or simulations. When Equations 2.1, 2.2, and 2.3 are 

explicit functions, evaluations can be done very fast and the time needed to obtain the 

final optimal result is not a concern; however, for most engineering problems, the time 

needed to obtain the final optimal result is enormous and thus a big concern. 

First, these equations are not explicit to the designer because the computer models 

are complex and often only executable binary files are available. Therefore it is not trivial 

to perform sensitivity analyses or calculate gradients (derivatives) that are used to 

accelerate the optimization process, whereas it is almost at no cost with explicit functions.  

Second, a single complete analysis or simulation needs a non-trivial amount of time 

because of the complex evaluation techniques adopted. Third, the multimodal nature of 

engineering problems often force the designers to use non-gradient based optimization 

techniques such as Genetic Algorithms (GA) or Simulated Annealing (SA) in order to 

avoid being trapped at a local minimum and to find the global minimal solution, but 

require a huge number of complete analyses or simulations. Last, a multi-objective 

optimization problem needs much more complete analyses or simulations than single-

objective optimizations. 

Therefore, it is impractical for real engineering problems to use exclusively 

complex analysis or simulation models for the purpose of optimization. A preferable 

strategy is to use surrogate models of complex high-fidelity models to reduce time 

consumption during optimization [16]. Actually, almost all multidisciplinary design 

optimization methods, such as Bi-level Integrated System Synthesis method (BLISS) [17] 
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and Collaborative Optimization method (CO) [18], to name a few, strongly recommend 

use of surrogate models to ensure good performance or efficiency in terms of time 

consumption. Depending on the formation of the mathematical representation of the 

design, the objectives and/or the constraints may be approximated with surrogate models. 

Additionally, to solve the JPMOMDO problem, a loosely coupled or completely 

decoupled architecture is needed. If no special means are taken, a JPMOMDO problem 

can be solved in a nesting-loop approach, as shown in Figure 2-1, and three nesting loops 

are entailed. In this way, the computational time and load would be again too great to be 

accepted even when surrogate models are used. For example, if each loop requires 1,000 

iterations, those three nesting loops require 1,000,000,000 iterations by product. 

Therefore, the solving process of the JPMOMDO problem must be loosely coupled or 

completely decoupled of the MDO, JPA, and MOO methods. 

 
 

 

Figure 2-1: Potential Process of a Realistic Conceptual Design in a Nesting Loop Approach 
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In summary, the iterative solving process of the optimization methods requires a 

large number of analyses or simulations, thus surrogate models of the objectives and/or 

constraints are used to reduce the amount of time of the optimization process to an 

acceptable or manageable level; and even with surrogate models, in order to solve the 

JPMOMDO problem, a loosely coupled or completely decoupled architecture is needed. 

2.2 Sampling Methods / Design of Experiments 

Sampling methods or designs of experiment (DoE’s) provide guidance for the 

selection of points to be evaluated such that the maximum information can be extracted 

from a minimum number of experiments. The classical DoE methods are briefly 

reviewed and some important modern sampling methods are summarized. In this section, 

three modern DoE methods are described. The overview of generic sampling methods, 

the overview of classical DoE methods, and other two modern DoE methods are provided 

in APPENDIX A. 

2.2.1 Three Modern DoE’s 

With the development of science and technology, many physical systems or 

phenomena are studied so thoroughly that people describe those systems or phenomena 

by mathematical equations and perform simulation by solving these equations either 

analytically or numerically. When those equations and the methods are executed on a 

computer, it is called a computer experiment. A computer experiment is quite different 

from a corresponding physical experiment mainly from two aspects [19]. First, the result 

of a computer experiment is deterministic for a specific set of values of free variables 

including the design variables, whereas there are random errors for a physical experiment. 

Therefore the considerations of classical DoE’s to minimize the effects of random errors 
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of the physical experiments, such as putting sample points at or near to the boundaries of 

the design space and replication of sample points, are not necessary or useful for a 

computer experiment. Second, it is very easy to change the levels of design variables in a 

computer experiment by just setting different numbers for the design variables, whereas 

for a physical experiment this may require making more prototypes or more elaborate and 

tedious work setting up the experimental conditions. Therefore, a computer experiment 

can have many more levels for the design variables than a physical one.  

Due to the differences between a computer experiment and a corresponding 

physical one, the DoE’s for computer experiments call for different considerations. The 

DoE’s specifically developed for computer experiments are called modern DoE’s. A 

consensus among researchers is that the sample points should be distributed throughout 

the design space, i.e. space filling, for computer experiments [20-22]. Modern DoE’s are 

widely applied to computer experiments or simulations to construct surrogate models, 

and have been found to be able to provide a more accurate surrogate model than the 

classical DoE’s [23]. Besides, Modern DoE’s can improve the interpolation based 

surrogate-modeling methods [19], and minimize the bias error, which are caused by “the 

difference between the functional form of the true response trend, and the functional form 

of the assumed or estimated trend” [20].  Three popular modern DoE methods, i.e. LHC, 

HS, and MC are introduced in the following sections, and two more, i.e. OA and UD are 

introduced in APPENDIX A. 

2.2.1.1 Latin Hypercube Sampling 

Latin hypercube sampling is the first modern DoE developed specifically for 

computer experiments [24, 25]. The most popular algorithm for LHC sampling is: 
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where ix  is the ith design variable that is normalized to ]1,0[  from its original 

interval ],[ u
i

l
i xx , n  is the number of design variables, s is the number of sample points, 

s
ii ππ ,,1

K  is an independent random permutation of the sequence of integers 0, 1, Ω, 

1−s , and U is a uniform random value on ]1,0[ . The superscript j  denotes the sample 

point number. There are !s  permutations of integers in π , all of which are equally likely 

to be picked without replacement. The interval of each design variable is divided into s 

subintervals, or “bins”, and the whole design space is divided into ns  bins. 

 
 

 
Figure 2-2: Example of Two Dimensional Latin Hypercube Sampling 
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12.0,,, 4
2

3
2

2
2

1
2 =UUUU , 0.67, 0.87, 0.68. Using a similar method as for the π  sequences, 

the values of the two U sequences gives the location of each sample point within its 

respective bin.  

The Equation 2.6 gives only the algorithm for design variables with uniform 

distributions, but the LHC can be used for design variables with non-uniform 

distributions, as described in Ref. [26]. However, because of the deterministic computer 

experiments, the distributions of the design variables will not affect the accuracy of the 

surrogate model as long as the sample points are properly selected. Therefore, Equation 

2.6 could be used for surrogate-modeling regardless of the real distributions of the design 

variables. 

The LHC sampling has a significant advantage: the user can freely decide the 

number of sample points without restrictions to sample sizes that are specific multiples or 

powers of n . Besides, it can obtain good uniformity for small sized sample data. It has 

one main disadvantage, i.e. the freedom in the U  sequence can cause large correlations 

among the design variables that may reduce the predicting accuracy of the surrogate 

model [23]. The correlation can be reduced to a user-specified level with some 

computation cost. 

A derivative of LHC sampling, lattice sampling, is obtained by replacing the U  

sequence with a fixed value of 0.5, see Equation 2.7. The result is that each sample point 

is placed at the center of its respective bin, rather than randomly within the bin. 
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2.2.1.2 Hammersley Sequence Sampling 

Hammersley sequence sampling is an alternative space filling sampling method 

[27]. Unlike LHC, Hammersley sequence sampling does not directly use a random 

number generator to generate the sampling points, but makes use of the randomness 

inside a prime number sequence. Its algorithm is as follows. 

First, let’s introduce the Radix-R notation of an integer. For a specific base R (e.g. 

10) integer, p , can be represented in Radix-R notation as 
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where [ ]pm Rlog= , and the square brackets, [ ], denotes the integer portion of the 

number inside the brackets. 

The inverse radix number function generates a unique number on the interval ]1,0[  

by reversing the order of the digits of p  around the decimal point, i.e. 
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Then the HS sample points are generated as 
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where ix  is the ith design variable that is normalized to ]1,0[  from its original 

interval ],[ u
i

l
i xx , n  is the number of design variables, s is the number of sample points, 

1−= jq j , and 121 ,,, −nRRR K  are any 1−n  consecutive numbers of the prime number 

sequence (2,3,5,7,11,13,17,…). 

A two dimensional example is shown in Figure 2-3, where  2=n  and 20=s .  
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Figure 2-3: Example of Two Dimensional Hammersley Sequence Sampling 

 
 
The HS sampling has two significant advantages. First, the user can freely decide 

the number of sample points. Second, the correlations among the design variables are 

very low, and this helps generate surrogate models with better predicting accuracy. 

Simpson et al [28] show that the HS sampling method tends to yield more accurate 

surrogate models in terms of lower model fitting errors. Therefore, the HS sampling 

method is a potential candidate for surrogate-modeling in this research. However, HS 

sampling has two main disadvantages. First, the distribution of the design variables can 

not be used to generate sample points. Second, if the sample size is small, the uniformity 

of the distribution of sample points is bad. As a rule of thumb, the sample size should not 

be less than n10 , where n  is the number of variables. 

2.2.1.3 Monte Carlo Sampling 

The (univariate) Monte Carlo sampling is exactly the pseudo-Monte Carlo sampling, 

of which “pseudo” implicates the use of a pseudo-random number generation algorithm 

that is intended to mimic a truly random natural process. It was first applied to computer 
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experiments in 1949 [29]. The MC sampling method is a genuine random sampling 

method if there is a true random number generator, and its algorithm makes use of the 

concept of the inverse transform method [30, 31]. 

Suppose )(xF  is the CDF of a random variable X , then the MC sampling method 

generates the sampling points as 

 )(1 UFx −=  ( 2.11 ) 

where )(1 ⋅−F  is the inverse function of )(xF , and U  is a uniform random variable 

of which values are generated by a (pseudo-) random number generator in computer 

experiments. Figure 2-4 shows the process to generate a sample point by MC sampling. 

 
 

 
Figure 2-4: Univariate Monte Carlo Sampling Process 

 
 
Although MC sampling is a genuine random sampling method, the randomness of 

its sampling process often leads to over- and under-sampled regions of the design space 

especially when the sample size is small. Therefore it should not be relied on unless a 

large sample size is used [31]. 
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2.3 Surrogate-Modeling Methods 

In this section, some basic concepts of surrogate-modeling methods and one 

popular surrogate-modeling method for engineering problems, i.e. the Response Surface 

Methodology, is reviewed, and the newly developing Support Vector Regression method 

is introduced. APPENDIX B describes three other popular surrogate-modeling methods 

for engineering problems, i.e. (Artificial) Neural Network, Gaussian Process, and Kriging. 

APPENDIX B also discusses other concepts such as statistical inferences, the problem of 

“Curse of Dimensionality”, the problem of regression, the regression related decision 

principles (i.e. the Empirical Risk Minimization principle, the principle of “Occam’s 

Razor”, and the Structural Risk Minimization principle). 

2.3.1 Surrogate-Modeling Preliminaries  

Surrogate-modeling methods are developed from statistical inference and regression 

estimation methods. In this section, the notion of surrogate model is discussed, and the 

relationship of statistical inference and regression estimation to surrogate-modeling 

methods is discussed. 

2.3.1.1 The Notion of Surrogate Model 

Kleijnen defines surrogate model (or metamodel) as a “model of a model” [32]. 

The two ‘models’ in Kleijnen’s definition have different meanings. The second 

‘model’ means a physics-based mathematical model abstracting the mechanism of a 

physical phenomenon in a scientific and engineering domain. Usually a computer 

program or model can be established based on this mathematical model [33]. These 

physics-based computer models are accurate and comprehensive enough such that the 

process can be simulated for the corresponding physical phenomena and satisfactory 
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analysis results can be obtained with these computer programs. The significance of these 

achievements is obvious: both expensive experiments and time are greatly reduced if a 

similar phenomenon is to be studied. In this sense, the second “model” also means the 

corresponding computer analysis or simulation program. 

In general, physics-based models work as follows: supplying a vector of design 

variables (inputs) X  and computing a response (output) y . Thus, physics-based models 

can be represented as 

 ( )Xfy =  (2.12 ) 

The first ‘model’, i.e. ‘surrogate model’, is an approximated model of the previous 

physics-based (computer) model and replaces the later one in the design process, 

especially in the conceptual design stage. 

While time is a concern as discussed in Chapter 1, it is also very hard for the 

designer to get insight into the physics-based disciplinary models, because the designer 

often has an executable computer code instead of the source code. The situation is even 

worse in a multidisciplinary design. Thus, the designer may never uncover the functional 

relationship between design variables X  and responses Y , and may never find the ‘best’ 

settings for design variables X  [34].  

Therefore, the multidisciplinary nature of the design of modern complex systems 

has posed challenges to the designers – how to decrease the time needed for a complete 

physics-based multidisciplinary analysis or simulation and get some insight into the 

functional relationship between design variables X  and response y ? 

A widely used strategy is to utilize approximation models, i.e. surrogate models, 

which are approximations of the complex physics-based models, but at a much lower cost 
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in terms of both time and computational load. This model is created by fitting a 

regression of some output values (i.e. the values of the responses) of the physics-based 

model, and these values are selected by some sampling techniques such as Design of 

Experiment (DoE). Because the surrogate model can not duplicate all the output values of 

the physics-based model, it is an approximation. 

A surrogate model is often represented as 

 ( )Xgy =ˆ  (2.13 ) 

And so 

 ε+= yy ˆ  (2.14 ) 

where ε  represents the error of approximation and/or (random) measurement errors, 

if any. 

In order to substitute the original accurate and complex physics-based models, the 

surrogate models need to satisfy the following requirements: 

1) Accurate enough, in order to obtain reliable prediction and subsequent design; 

2) Much faster, justifying existence;  

3) Easy to use, without complex setup work or many human interactions; 

Besides, there are two additional requirements [34]: 

4) Provide a better understanding of the functional relationship between design 

variables X  and response y ; 

5) Make easier integration of disciplinary models or surrogate models. 

Now surrogate-modeling can be defined as the process of selection of an 

experimental design, a regression technique or surrogate model type, regression of the 

selected output values, and validation to assess the goodness of model fitting, to build a 
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“model of a model” as an approximate yet fast surrogate for a complex computer analysis 

or simulation program or code [35, 36]. 

However, a surrogate model is not limited to be a model of a physics-based model; 

it can be a model of a set of experimental data for which the physics-based model has not 

yet been established. In this case, obviously, it is nothing more than a regression model of 

the experimental data. 

In general, the surrogate model is only meaningful in the predictive sense, while the 

physics-based model is both predictive and explanatory to the original physical 

phenomena. However, with certain regression techniques such as the Response Surface 

Methodology [33], the surrogate model is also meaningful in the explanatory sense if the 

contribution or importance of each factor or interaction in it is considered. 

As an approximation, the goodness of model fitting and predicting accuracy of the 

surrogate models are important. However, in certain cases, part of the predicting 

capability of the surrogate model has to be sacrificed in order to obtain insights into the 

nature of the problem. One such example is the screening test. In a screening test, the 

main purpose is to identify the primary contributors to a response, and the goodness of 

model fitting and predicting accuracy are the second important concerns [37]. 

It should be pointed out that surrogate models are not only used to provide fast 

approximations for the original physics-based models, but also used to provide fast 

analyses for derivatives of the original physics-based models to reduce the computational 

cost for optimization [38, 39]. 
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2.3.1.2 Surrogate-Modeling Based on Regression Estimation and Statistical 

Inference 

Both surrogate-modeling and regression estimation try to obtain a mathematical 

relationship (function) between a response variable y  and an input variable vector X . 

For this reason one may think surrogate-modeling is the same as regression estimation 

before looking in depth. Although surrogate-modeling is developed from regression 

estimation, these two methods are different in several aspects. First, the responses of 

sample data for surrogate-modeling have no random components for a given design 

variable vector X  because those responses are generated by the computer program of the 

deterministic function between a response y  and the design variable vector X , whereas 

those for regression estimation do because usually those responses are observed results of 

real life phenomena. Second, to generate the sample data, surrogate-modeling runs the 

computer program just once, whereas regression estimation needs to run the same DoE 

several times, or a distribution function for values of the response y  has to be assumed if 

the DoE is run only one time because it is to obtain a mathematical relationship between 

the mean or expected value of a response variable y and a vector X of predictor variables 

(see Figure B-1 in APPENDIX B for example). Third, for surrogate-modeling it is better 

to use the modern space filling sampling techniques (modern DoE’s). For regression 

estimation it is better to use the classical DoE’s, as discussed previously. However, 

despite these differences, surrogate-modeling directly or indirectly uses the methods of 

regression estimation. Surrogate-modeling can directly use the methods developed for 

regression estimation to obtain the simpler approximated functional relationship because 

a deterministic response is a special case of the random ones described by distribution 
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functions. Except for the Gaussian Process, almost all surrogate-modeling methods make 

use of the concept of the empirical risk function or an equivalent concept such as mean 

square error. For these reasons, surrogate-modeling and regression estimation are usually 

thought of as the same. Surrogate-modeling also directly or indirectly uses the methods of 

statistical inference.  For example, Kriging and Gaussian Process need to first directly 

infer the parameters of the assumed distribution function and then the surrogate model is 

established; other surrogate-modeling methods such as RSM need to check if the error 

distribution is close to the one implied or assumed by the regression method used and 

estimation of the error distribution uses the statistical inference methods. 

Surrogate-modeling is related to regression estimation and statistical inference by 

rephrasing the Equation 2.14. 

 ε+= yy ˆ  (2.14 ) 

where error ε  is now a systematic error related to the selection of the surrogate 

model ŷ . 

The surrogate model ŷ  is obtained by regression estimation methods; then the 

distribution of the error ε  is analyzed by statistical inference methods; if the error 

distribution is close to the one implied or assumed by the regression method used, then 

one can be sure that a good surrogate model is obtained; otherwise, improvements to the 

surrogate model ŷ  must be made until the requirements of goodness of fitting are met. 

One example is the RSM. A good surrogate model by RSM is obtained when the error 

distribution follows a normal distribution ),0( 2σN  [33]; otherwise, means such as 

adding higher order terms (HOT) or transformation have to be taken to meet this 

requirement. Some surrogate-modeling methods need to first assume the properties or 
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distribution function of the error ε , and then this information is used to obtain the 

surrogate model. Such examples are Kriging and Gaussian Process. 

The above cases can be called particular surrogate-modeling, because those 

methods make use of particular or parametric inference methods. Another class of 

surrogate-modeling methods is general surrogate-modeling, which does not need the 

information about the error distribution. Such examples are SVR and ANN. 

Usually, if the functional relationship between the response and the design vector is 

known and simple to be described explicitly, particular surrogate-modeling should be 

used, such as the univariate linear regression method (see Figure B-1 in APPENDIX B 

for details). However, if many aspects of the physical phenomenon are unknown or hard 

to be described explicitly, such as the relationship embodied in a very complicated 

computer model, the general surrogate-modeling methods should be used as those 

methods are more versatile and powerful [40]. 

As a consequence of parametric inference, the particular surrogate-modeling 

methods suffer the problem of “curse of dimensionality” (see APPENDIX B for details), 

i.e. the sample size and computer resources have to be increased exponentially with the 

number of the design variables, or the model accuracy level increases slowly with the 

sample size. Besides, the accuracy of the results obtained by particular surrogate-

modeling methods can be very bad if the assumed error distribution is far from the real 

one. 

Because of independence on (error) distribution, the general surrogate-modeling 

methods do not have the problem of “curse of dimensionality”; and can obtain 
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satisfactory accuracy for many kinds of problems. Therefore, general surrogate-modeling 

methods have become popular in recent applications. 

According to the form of the family of functions ),( θXg  (see APPENDIX B) 

during the regression process, the surrogate-modeling methods can be divided into 

another two classes: linear or nonlinear surrogate-modeling. For linear surrogate-

modeling methods, such as RSM, the function family is the combinations of some 

definite functions (such as x , 2x , xsin , )2sin( x , xe , and xe2 ) with θ  being the 

coefficients of these definite functions, and the linear algebra method are often used to 

solve for all these coefficients. For nonlinear surrogate-modeling methods, such as ANN, 

SVR, the function family is a combination of some indefinite functions (i.e. function 

families, such as )sin( bax+ , and baxe + ) with θ  being the coefficients of these indefinite 

functions and the unknown scalar(s) in these indefinite functions, and thus linear algebra 

can not be used to solve for θ . The indefinite functions are often called the “kernel 

functions” or simply “kernels”. Usually the parameter(s) in the kernel are pre-specified or 

determined before the coefficients of the kernels. 

2.3.2 Two State-of-the-Art Surrogate-Modeling Methods 

The Response Surface Methodology, one popular surrogate-modeling method for 

engineering problems, is reviewed, and the newly developing Support Vector Regression 

is introduced. APPENDIX B describes other three popular surrogate-modeling methods 

for engineering problems, i.e. (Artificial) Neural Network, Gaussian Process, and Kriging. 

2.3.2.1 Response Surface Methodology 

Response Surface Methodology is a well investigated and commonly applied 

surrogate-modeling method in engineering designs [33, 41]. In aerospace engineering, 
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RSM has been used for a variety of applications, particularly in multidisciplinary design 

and optimization [13, 42, 43]. RSM uses polynomials to approximate the true response 

behavior, and the polynomials are called the response surface equations (RSE). Usually a 

second order polynomial equation is used. The main reason for this is that considerable 

practical experience has shown that a second order model works well for many real 

problems. Higher order terms can be also added in if needed. The general second order 

RSE including linear, quadratic and interaction terms is as following: 
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where ŷ  is the predicted response, ix  are the design variables, 0b  is the intercept 

term, ib , iib , and ijb  are related coefficients.  0b , ib , iib , and ijb  are the parameters to be 

estimated from the sample, and there are totally 2/)2)(1( ++ nn  parameters. 

The maximum likelihood method is the general way to estimate the above 

parameters for any distribution the errors may have, but the least square approach is the 

easiest way if the errors are normally distributed [33]. Let 
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In fact, this polynomial approximation can be considered as a truncated Taylor 

series expansion around a point [41] with all higher order effects being negligible. 

Therefore, the resulting surrogate model may have poor approximation accuracy if there 

are many design variables and/or large ranges for the design variables, because the error 

term in the Taylor series expansion increases with the number of variables and the ranges 

of the variables [37]. If the behavior of the response is far away from a second order 

polynomial (or equivalently the error distribution is not normal), the accuracy will be 

poor, and higher order terms should be added in. 

2.3.2.2 Support Vector Regression 

In this section, the concept of Vapnik-Chervonenkis (VC) dimension and the 

structural risk function, which are the key parts of the theory of SVM, will be introduced, 

and then the theory of SVR is introduced. 

Support Vector Regression (SVR) is a new surrogate-modeling method that 

originates from Support Vector Machine (SVM). SVM was developed for classification 

or pattern recognition problems starting in the late 1970s [44-46]. For classification or 

pattern recognition, SVM has been applied to many real world problems, such as isolated 

handwritten digit recognition, object recognition, speaker identification, face detection in 

images, and text categorization. SVM is also applied to several other areas, such as bio-

informatics and artificial intelligence. Many other methods, such as ANN, have been 

used in these areas; however, what distinguishes SVM is its solid mathematical 

foundation: instead of adopting the empirical risk minimization (ERM) principle to 

minimize the empirical risk for a given sample, SVM adopts the SRM principle to 



41 

minimize the structural risk that is the upper bound of the (empirical) risk [44]. By 

minimizing this upper bound, SVM leads to lower model predication errors for new or 

unseen data, i.e. those that are not in the sample, and thus has much better ability to 

generalize problems. 

The main difference between a regression (or surrogate-modeling) problem and a 

classification problem is that the response of the regression problem is a continuous 

variable, whereas the response of the classification problem is a discrete variable with 

values such as -1 and 1. By replacing the loss function of the SVM method with a new 

one, the SVM method is modified to become the SVR method. Therefore, SVR inherits 

most of the advantages of SVM, such as the advantages of the SRM principle. It should 

be noted that this new risk function for SVR is not guaranteed to be the upper bound of 

the empirical risk because the response values of the sample may be far from the local 

extremes. This shows the importance of sampling methods that can be used to mitigate or 

even eliminate this problem. SVR also has other advantages. The optimization problem 

used to find the parameters of the surrogate model is a convex quadratic one, and thus 

there is only a global optimal solution and no other local minima. Because of this, SVR 

does not require a computation-intensive global optimizer and the resulting final model 

has high certainty, where certainty means that the final model should have similar 

performance if different algorithms or different search starting points are used to estimate 

the parameters in the surrogate model. Since there is only one (global) optimal solution 

for SVR, as long as the optimization method used by SVR can find this solution, the 

same final model will be obtained, and thus SVR has high certainty. The model fitting 

speed of SVR is relatively fast, usually taking less than one minute for a moderate sample 
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size. And it has the property of sparseness in sample point selection for the final surrogate 

model [47], where sparseness means that not all sample points are needed for the final 

surrogate model, although this can be known only after the model fitting process. The 

sample points that are used in the final surrogate model are called “support vectors”, and 

this is where SVM and SVR get the names and are distinguished from other methods. 

Because of the above advantages, SVR has become the-state-of-art method for 

surrogate-modeling in recent years. SVR is not only applied to surrogate-modeling [35, 

48, 49], but also many other areas such as time series prediction problems [50, 51], stock 

market prediction [52], and electricity load forecasting [53]. In these applications, SVR 

has shown promising empirical performance. Fan et al [49] is one of the first to apply 

SVR in the aerospace industry for regression fitting of aerodynamic data, in which SVR 

is concluded to have evidently better model predicting performance than ANN and 

another superiority over ANN: high certainty. In contrast, quite different final models 

may be obtained with different training algorithms for ANN, and thus ANN has lower 

certainty. 

2.3.2.2.1 The VC Dimension and Structural Risk Function 

SVM is formulated to solve a classification problem: given a (training) sample 

{ }),(,),,(),,(: 2211 sss XyXyXyS K , where [ ]TnxxxX ,,, 21 K=  is the vector of the (input) 

design variables, }1,1{−∈iy  (i.e. the value of iy  is either -1 or 1), find a hyperplane 

0)( =Xg  such that it separates the sample points iX ’s with 1−=iy  from those with 

1=iy  in the input space defined by nxxx ,,, 21 K . In other words, find an approximation 

)(ˆ Xgy = , then the sign of ŷ  can indicate which class this sample point X  is in: the 

class of 1−=y  or  the class of 1=y . 
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The separating hyperplane function family ),( θXg  has a Vapnik-Chervonenkis 

dimension. VC dimension is a scalar to measure the separating capacity of a 

separating/shattering hyperplane family. It is defined as follows [48, 44, 46]: 

The VC dimension of a function family is h  if and only if there exists a set of 

sample/training points { }h

iiX 1=  such that these points can be shattered in all h2  possible 

ways by this function family, and that no such set { }q

iiX 1=  exists, where hq > , that also 

satisfies this property. 

The process to determine the VC dimension of a linear function family baxx += 12  

in the 2 dimensional input space is depicted in Figure 2-5. The 3 sample points a, b, and c 

can be separated by the linear functions (in red) in 823 =  ways, Figure 2-5-A. However, 

the linear functions can not separate points a and c from points b and d if a fourth sample 

point d is added in, as depicted in Figure 2-5-B. Therefore, the VC dimension of this 

linear function family is 3 for these sample points. Figure 2-5-C shows a closed curve 

function can separate points a and c from points b and d. 
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Figure 2-5: Example to Show the VC Dimension of a Linear Function Family in the 2 dimensional 

Input Space [54] 
 
 
Generally the VC dimension is not equal to the number of the free parameters in the 

function family. For example, the linear function family in the n  dimensional input space 

has a maximum VC dimension of )1( +n , while the function family cbxax += )sin( 12  

has a maximum VC dimension of infinite [55]. 

Use the concepts of risk function and empirical risk function, i.e. Equation B.5 and 

B.6 respectively (see APPENDIX B), the following bounds for the risk function holds 

with probability α−1  [44], 
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where h  is the VC dimension of the function family ),( θXg  for the give sample 

points, and s is the number of sample points. 

Then the SVM model is constructed by solving the following problem [44] 

 

s

hsh
XgRR empS

)4/ln()1/2ln(
)),((:Minimize

αθ
θ

−++=  (2.18 ) 

where SR  is the structural risk function. 

Therefore, SVM finds the optimal approximation )(ˆ Xgy =  by using the SRM 

principle to minimize the structural risk SR  that is the upper bound of the empirical risk. 

However, it is difficult to calculate the VC dimension h  given specific sample points. 

The common practice is to find an upper bound on h  and try to minimize this upper 

bound on h  [46]. Therefore usually the practical form of the structural risk function SR  

is different from the above Equation 2.18, as can be seen later. 

2.3.2.2.2 The Theory of Support Vector Regression 

The Support Vector Regression method is developed from the SVM method. At 

first, one may doubt how this can happen, since SVM is used to separate two groups of 

points while SVR is used to find an approximation function of the design variables to the 

response. Actually, SVM and SVR have one commonality: separating two groups of 

points, as shown as an example in Figure 2-6. In Figure 2-6-A the response values iy  of 

the red and green points are different, say -1 and 1, respectively, and the points are 

divided into two groups according to the response values. The goal of SVM is to find an 

optimal line to separate these two groups of points, and this line separates the two groups 

of points onto its two sides.  In Figure 2-6-B, the points are generated from a linear 

relationship and an additive noise. The goal of SVR is to find an optimal line that 
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approximates the real linear relationship, and this line has also the effect of separating the 

sample points onto its two sides. 

 
 

 
Figure 2-6: Example to Show the One Commonality between Classification and Regression 
 
 
As mentioned previously, the SVM method can not be directly used for regression, 

its loss function should be replaced with a new one to consider the difference between 

classification and regression problems: the response values of classification are discrete, 

whereas those of the regression are continuous. In the rest of this section, popular loss 

functions of SVR are introduced, then the practical form of the structural risk function 

SR  is described, and finally the algorithm of SVR is provided. 

There are four popular loss functions for SVR: quadratic, Laplace, Huber, and ε-

insensitive loss functions. Other loss functions are also proposed but not popular, such as 

soft insensitive loss function [56], polynomial, piecewise polynomial [57], etc. Figure 2-7 

illustrates the first four popular loss functions. 
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Figure 2-7: Illustrations of Four Loss Functions for SVR 

 
 
The quadratic loss function is given as Equation 2.19, Laplace as Equation 2.20, 

Huber as Equation 2.21, and ε-insensitive as Equation 2.22. 

 2))(())(())(,,( XgyXgyLXgyXL quadquad −=−=  (2.19 ) 

 )())(())(,,( XgyXgyLXgyXL LaplaceLaplace −=−=  (2.20 ) 
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The performance of SVR depends on the loss function used [48, 57]. The quadratic 

loss function corresponds to the conventional least square error criterion and can be used 

if the errors are assumed to be normally distributed. The Laplace loss function is less 
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sensitive to outliers than the quadratic one. The Huber loss function is a robust loss 

function that has optimal properties when the error distribution is unknown. The ε-

insensitive loss function is an approximation of Huber loss function and can also be used 

when the error distribution is unknown. The quadratic, Laplace and Huber loss functions 

will produce no sparseness in the sample points, i.e. all sample points will be used in the 

final regression model/surrogate model. The ε-insensitive loss function designed by 

Vapnik, however, can produce sparseness [55]. Therefore, due to this advantage and its 

calculation simplicity, the ε-insensitive loss function becomes the most frequently used 

loss function for SVR. However, one has to make a tradeoff between accuracy and 

sparseness if the ε-insensitive loss function is to be used [57] since less sparseness or 

more points used usually results in higher accuracy. 

For SVR, the regression/surrogate model has the following form [58]: 

 bXWXgy +Φ== )(,)(ˆ  (2.23 ) 

where ⋅⋅,  means dot product, W  is a vector of scalars (weights) to be estimated, 

b  is the bias or intercept to be estimated, and )(XΦ  is a function vector.  Therefore, the 

parameters to be estimated are W  and b . The functions in )(XΦ  can be linear or 

nonlinear, such as ),()( 21 xxX =Φ  and ),2,()( 2
221

2
1 xxxxX =Φ , where TxxX ],[ 21= , and 

the explicit form of )(XΦ  does not need to be known. 

Based on the above denotations in Equation 2.23, the practical form of the 

structural risk function SR  to be minimized is given as 

 2

1 2
1

))(,,(
1

WXgyXL
s

R
s

i
iiiS += ∑

=

 (2.24 ) 
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where ()L  is the loss function, WWW ,
2 = . The first term on the right hand side 

is actually the empirical risk function. 

The term 
2

2
1

W  is related to the upper bound of the VC dimension of the 

functional family ),( θXg  as shown in the theory of SVM [48]. Because the VC 

dimension is a measure of the “capacity” of the functional family to approximate, and 

usually high capacity leads to overfitting [57], this term needs to be minimized. To 

minimize 
2

2
1

W  is called to enforce “flatness” [58]. 

However, it is not easy to minimize the structural risk SR  given in Equation 2.24. It 

is found that the optimization problem of minimizing this structural risk can be converted 

to another convex minimization problem that is easier to solve and has only one global 

optimal solution. This alternative minimization problem is established as follows [57]. 

Let (residual) )(Xgy −=γ , then the loss function can be written as )(γL . Then 

the alternative convex quadratic minimization problem is given as 
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2.25 

 

) 

where 0>C  is a pre-specified constant and sometimes called the regularization 

factor, +
iξ  and −

iξ are slack variables representing upper and lower bounds of the 

deviation )( ii Xgy − , and 0≥ε  is the pre-specified tolerable deviation. 
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The reason to introduce the slack variables +
iξ  and −

iξ  is that the tolerable deviation 

ε  can occasionally not be satisfied and thus some loss is incurred. ε  has the same 

meaning as that in the ε-insensitive loss function, and for other loss functions 0=ε . 

Figure 2-8 depicts these variables when the ε-insensitive loss function is used for a linear 

regression problem. 

The constant C  determines the tradeoff between flatness of the final surrogate 

model )(Xg  and the amount up to which deviations even greater than ε  are accepted. If 

s
C

1= , the alternative minimization problem, i.e. Equations 2.25, is exactly the same as 

the original problem of minimizing the structural risk given in Equation 2.24. With an 

increase of C  more emphasis is put on the loss function and the structural risk function 

Equation 2.24 is more like the conventional empirical risk function, with less regard to 

capacity of the functional family. However, the value of C  can be optimized, and thus 

the alternative minimization problem is more flexible than the original problem. 

 
 

 
Figure 2-8: Example to Account for Slack Variables for Linear Regression with the ε-Insensitive 

Loss Function 
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The Lagrangian function of Equations 2.25 is constructed as [59] 
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where LagF  is the Lagrangian function, +
iα , −

iα , +
iη  and −

iη  are Lagrangian 

multipliers, and W , b , +
iξ  and −

iξ  are called the primal variables. 

The multipliers must be non-negative, i.e. 

 0,,, ≥−+−+
iiii ηηαα  (2.27 ) 

According to the necessary conditions for the saddle point of the Lagrangian 

function to be an optimal solution of its original problem Equation 2.25, the partial 

derivatives of LagF  with respect to the primal variables have to vanish, i.e.  
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i
iiiLagW XWF αα  ( 2.28 ) 

 
0)(

1
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=
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s

i
iiLagbF αα  ( 2.29 ) 

 0)( =−−+∂=∂ +++
++ iiiLag LCF
ii

ηαεξξξ  ( 2.30 ) 

 0)( =−−+∂=∂ −−−
−− iiiLag LCF
ii

ηαεξξξ  ( 2.31 ) 

Substituting Equations 2.28, 2.29, 2.30, and 2.31 into 2.26 yields the convex 

quadratic dual optimization problem [59], omitting some superscripts + and -, and some 

subscript i  of α  and ξ , as follows: 
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Denoting )(),(),( jiji XXXXk ΦΦ= , which is called the kernel function, the 

optimization problem Equations 2.32 is equivalent to the following standard optimization 

problem: 
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By solving this optimization problem, Equations 2.34, the values of α  and ξ  are 

determined. Because this optimization problem is quadratic, it is convex and thus has 

only one global optimal solution. 

The ε-insensitive loss function is used to show how to further simplify Equations 

2.34 to make it practically useful. In this case, ξξεξ ==+ )(L . Then we get 

 01)( =⋅−=+ ξξεξT   

Moreover, one can conclude from 1)( =+∂ εξξ L , )( εξα ξ +∂≤ LC , and 0, ≥αξ  

that [ ]C,0∈α  and { } 0|inf =≥= αξξ C . Then the Equations 2.34 are simplified as  
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Table 1 summarizes the conditions on α  and formulas of )( εξ +CT  for the four 

popular loss functions. 
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Table 1: Some Terms of the Dual Optimization Problem for Different Loss Functions 
 

Loss function ε  α  ξ  )( εξξ +∂ L  )( εξ +CT  

Quadratic 0=ε  [ ]∞∈ ,0α  
C2

α
 

C

α
 

C4

2α−  

Laplace 0=ε  [ ]C,0∈α  0 1 0 

Huber 0=ε  [ ]µα C,0∈  
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
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otherwise,
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otherwise,

 if,

µ

µαα
C
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


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<−

otherwise,
2

 if,
2

2

2

µ

µαα

C

C
C  

ε-insensitive 0≠ε  [ ]C,0∈α  0 1 0 

 
 
If the kernel function has a bias term, such as the inhomogeneous polynomial kernel 

shown later, then b  is accommodated within the kernel function as a result of the 

optimization process [48]. In this case, the term should be dropped and the surrogate 

model is given by 

 
∑

=

−+ −==
s

i
iii XXkXgy

1

),()()(ˆ αα  (2.35 ) 

Observing Equation 2.35 it can be found that the input vectors of the design 

variables, i.e. the sample points iX  or the new point X , only appear inside the dot 

product of the kernel function )(),(),( jiji XXXXk ΦΦ= . Because this dot product for 

any one pair of input vectors is a scalar, the dimensionality of the input space is hidden 

from the remaining optimization process. This provides a way of addressing the “curse of 

dimensionality” [48]. 
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According to the KKT conditions, for the saddle point of the Lagrangian function to 

be an optimal solution of its original problem Equation 2.25, 3 sets of necessary 

conditions must be satisfied. The following are some of these conditions: 

 

0))(,(

0))(,(

=−Φ−++

=+Φ+−+
−−

++

bXWy

bXWy

iiii

iiii

ξεα

ξεα
 

 

 

If the ε-insensitive loss function is used, several useful conclusions can be drawn 

from the above equations. First, for the samples outside the ε-tube (see the shaded region 

in Figure 2-8 as an example), i.e. samples with ε≥− )( ii Xgy , it can be shown that  

0))(,( =+Φ+−+ + bXWy iiiξε  or 0))(,( =−Φ−++ − bXWy iiiξε , but not both. For 

all the samples inside the ε-tube, i.e. ε<− )( ii Xgy , it can be shown that 

0))(,( >+Φ+−+ + bXWy iiiξε  and 0))(,( >−Φ−++ − bXWy iiiξε . These 

conclusions mean that for the samples outside the ε-tube only one of the Lagrangian 

multipliers +
iα  and −

iα  is nonzero and the other one is zero, and for all the samples inside 

the ε-tube the Lagrangian multipliers +iα  and −
iα  are zero. Second, from Equation 2.35 

and the first conclusion it is known that not all samples contribute to the estimation of W  

and the consequent surrogate model )(Xg , but only the ones outside of the ε-tube do. 

This is the sparseness in sample selection, and the sample points with nonzero 

Lagrangian multipliers are called the “support vectors”.  

The sparseness feature is very important when the sample is large because it 

reduces the number of terms in the surrogate model resulting in some loss of accuracy but 

improves the calculation speed of the surrogate model. Otherwise, the calculation can be 
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quite slow when the sample size is very large. For this unique advantage, the ε-insensitive 

loss function is selected as the only loss function for SVR in this research. 

Not all functions can be selected as the kernel function ),( XXk ′ , where X and 

X ′ are input vectors. The kernel function ),( XXk ′  has to satisfy Mercer’s condition 

[57], such that the kernel matrix ),( jiij XXkK =  is positive definite in order that a unique 

optimal solution is guaranteed to the quadratic optimization problem Equation 2.34 [35]. 

Table 2 lists the common kernel functions. 

 
 

Table 2: Common Kernel Functions of SVR 
 

Linear XXXXk ′=′ ,),(  

Polynomial 
d

XXXXk ′=′ ,),(  

Inhomogeneous polynomial ( )d
cXXvk +′= ,)( , c  is a constant (bias) 

Gaussian radial basis function (GRBF) 












 ′
−=′

2

2

2

,
exp),(

σ
XX

XXk  

Exponential radial basis function (ERBF) 






 ′
−=′

22

,
exp),(

σ
XX

XXk  

Sigmoid (multi-layer perceptron) ( )γρ +′=′ XXXXk ,tanh),(  

 
 
A new kernel can be generated by positive linear combination of kernels, or from 

the product of kernels [57]. 

 Combination: ∑ ′=′
i

ii XXkcXXk ),(),( , 0>ic   
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 Product: ∏ ′=′
i

i XXkXXk ),(),(   

The Matlab® codes of SVR used in this research are developed based on the codes 

in Ref. [48]. 

2.3.3 Comparisons of Surrogate-Modeling Methods 

Although many surrogate-modeling methods have been developed, only a small 

number of those methods have been successfully applied to various engineering design 

processes from different fields, such as Response Surface Methodology (RSM), Kriging 

(KG), Gaussian Process (GP), (artificial) neural network (ANN), radial basis functions 

(RBF), and multivariate adaptive regression splines (MARS). 

However, even those successful surrogate-modeling methods have advantages and 

disadvantages, and there is no single method that is superior to the others in all 

circumstances. Some surrogate-modeling methods are very good at some particular types 

or domains of engineering problems, but those methods fail to achieve adequate 

performance for other types or domains of problems. Examples can be seen in the 

surrogate-modeling comparison literatures such as Ref. [35] and [60]. The reasons 

causing this phenomenon are the complex nature of engineering physics-based models 

and the performance of the SM’s. For example, some SM’s are good at low order 

nonlinear relationships but not good at high order ones, such as the second order RSM; 

on the other hand, some SMs are good at high order nonlinear relationships but not good 

at low order ones, such as MARS [60]. 

Different SM’s can be compared qualitatively in a more theoretical way than 

observing SM’s performance of handling engineering problems. Generally, the 

comparison criteria for different SM include the following [60]: 
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1. Accuracy for different complexity (order of nonlinearity) of test problems, under 

different sample sizes (scale of the sample data), and with noise; 

2. Robustness in terms of variance of error values for different samples generated 

by different sampling methods; 

3. Efficiency in terms of time used for surrogate model construction and new 

predictions; 

4. Transparency in terms of the capability of providing information for 

contributions of factors and interactions among those factors; 

5. Simplicity in terms of the number of parameters needed to be specified by a user. 

In Ref. [60], four well known methods including RSM, MARS, RBF and KG are 

systematically compared with the above five criteria. There are functions of 14 test 

problems of different complexity in this comparison. The comparison results show the 

following: 

1. In terms of accuracy and robustness, MARS, RBF and KG perform equally well 

under large sample sizes; RBF is the best under small and scarce sample size; and RSM is 

the best with noise; 

2. In terms of efficiency for surrogate model construction, KG is the most time-

consuming; and RSM needs the least time; 

3. In terms of efficiency for new predictions, all methods need trivial time and work 

equally well; 

4. In terms of transparency, RSM is the best in that a simple polynomial function is 

obtained and the contributions of each design variable and the interaction among those 

variables can be easily assessed; 
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5. In terms of simplicity, both RSM and RBF are the best in that the user does not 

need to specify any parameters to obtain the best accuracy, whereas MARS and KG need 

the involvement of the user to do so. 

In Ref. [35], SVR is systematically and quantitatively compared with four well 

known methods including RSM, MARS, RBF, and KG with the previous four criteria for 

26 engineering test problems of different complexity. The comparison results show SVR 

has the best overall performance, i.e. in terms of accuracy and robustness, SVR 

outperforms almost all the other four methods except for KG has smaller maximum error; 

in terms of efficiency, SVR takes similar time as MARS and much less time than KG, 

whereas RSM and RBF are much faster; in terms of transparency, SVR has explicit 

functions as RSM and RBF, but can not tell the contributions of each design variable and 

the interaction among those variables. However, in terms of simplicity, SVR needs the 

user to specify several parameters depending on the kernel used, and thus is not easy to 

use. 

Although ANN is also a well known method and can approximate complex models 

very well, it is not included in the comparisons in Ref. [35] and [60] mainly due to three 

reasons [61]: first, it has no transparency in that it is hard to output and understand the 

functions that construct the surrogate model; second, how to obtain the best fitted model 

for a given training sample is still an art since there are many factors to be pre-selected, 

such as the number of layers and optimization algorithm for training; and third, it takes a 

long training time and expensive computational cost. On the other hand, it has been 

shown in many engineering applications that SVR produces equally accurate, if not better, 

results than ANN [35]. Moreover, it has been shown that ANN tends to overfit the 



60 

sample data and results in a model that is accurate with the sample data but has large 

errors with new predictions [48], whereas SVR has no such problem because of its 

mathematical foundation. Table 3 shows qualitative comparison of different surrogate-

modeling methods. 

 
 

Table 3: Qualitative Comparison of Surrogate-Modeling Methods 
 

 Accuracy 

(RMSE) 

Accuracy 

(MAE) 

Robustness Computing 

efficiency 

Trans-

parency 

Simplicity No 

Over-

fitting 

No Curse of 

dimensionality 

RSM         

MARS         

RBF         

Kriging         

GP         

ANN         

SVR         

          

Excellent:  Good:  Fair:  Yes:  No:  

Note: RMSE means root mean square error; MAE means maximum absolute error; 

Over-fitting and Curse of dimensionality are two disadvantages to be avoided; 

RMSE and MAE are defined in APPENDIX D, and curse of dimensionality in APPENDIX B. 
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2.4 Model Assessment and Model Selection Methods 

In this sub-section, the concepts of model assessment and model selection methods 

are described, and the information criteria are summarized. Then practical methods are 

introduced to select three parameters of SVR, i.e. the regularization factor C , ε  if the ε-

insensitive loss function is used, and the kernel parameter σ  if GRBF or ERBF kernel 

function is used. 

APPENDIX D discusses two types of model errors, i.e. model fitting error and 

model predicting error, and two popular measures of model errors, i.e. Root Mean Square 

Error (RMSE) and Maximum Absolute Error (MAE). APPENDIX D also summarizes 

other two popular model assessment and model selection methods, i.e. cross validation 

and bootstrap based on model predicting error, which are classified as re-sampling 

methods.  

2.4.1 Concepts of Model Assessment and Model Selection 

After construction of surrogate models, the quality of the resulted surrogate models 

should be assessed based on some criteria. In Ref. [60] multiple assessment criteria are 

advocated for assessment and comparison of surrogate-modeling methods, including 

accuracy, efficiency, robustness, model transparency, and simplicity. However, 

robustness and transparency are difficult to quantify; the computing efficiency is not a 

big concern for surrogate-modeling since all resulted surrogate models are fast for new 

predictions, although the construction efficiency is a concern before model selection; and 

simplicity can be addressed by the model fitting process (note that simplicity is 

concerned with the number of parameters that need to be specified by the user). 

Therefore, robustness, transparency, efficiency, and simplicity will not be used as criteria 
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for quantitative model selection. Accuracy seems now to be the only criterion for model 

selection. However, complexity should be another criterion, as implied by the Occam’s 

razor principle (see APPENDIX B for details), that a simpler surrogate model is 

preferred. Low complexity is considered to generally imply low model predicting error 

because a simpler surrogate model is less likely to overfit a sample set. Overfitting is 

considered as the main cause of high model predicting error when the model fitting error 

is low. However, if a surrogate model is too simple for a problem, for example, a straight 

line for a circle, this simple model will also have high predicting error because of 

underfitting. Therefore, the criteria to assess surrogate models should include both 

accuracy and complexity. Accuracy can be measured by the model fitting error and/or the 

model predicting error. The complexity can be measured by the number of parameters to 

be estimated. Unfortunately, all existing model assessment methods do not use all of 

model fitting error, model predicting error, and model complexity. 

Simply speaking, the problem of model selection is to select a surrogate model that 

best satisfies the given criterion from a set of surrogate models. It includes 2 or 3 folds: 

selection of surrogate model structures or surrogate-modeling methods; selection of 

parameters of the surrogate model; and if a kernel surrogate-modeling method is used, 

such as SVR, the selection of kernel functions. The surrogate model structure implies the 

specific form of the surrogate model assumed by a surrogate-modeling method, for 

example, the RSM assumes the polynomial functions as the surrogate model structure. 

Since different surrogate-modeling methods have different degrees of complexity, there 

is a need to select a simpler surrogate model structure on top of adequate accuracy for a 

specific problem. Although the parameters of a surrogate model are estimated based on 
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the given sample set, the estimation results of the parameters can be different if different 

estimation algorithms are used, such as the different training algorithms in the ANN 

surrogate model. Therefore, there is a need to select the best set of the estimation results 

for the parameters. For the kernel function based surrogate-modeling methods, different 

kernel functions result in different final surrogate models, and thus there is a need to 

select the best kernel function. 

2.4.2 Information Criteria 

Information criteria (IC) are one class of methods that are devised specifically for 

the purpose of model selection. Here, “devise” implies that the practical forms of 

information criteria are not derived mathematically (i.e. no proof), but given. However, 

those methods do have some theoretical foundations, such as the maximum likelihood 

principle. Additionally, IC methods have shown great success in model selection for a 

wide array of problems. For these reasons, the practical forms of the information criteria 

will be provided directly without detailed review of the theoretical foundations. 

There are three main approaches of the information criterion methods: Akaike 

information criterion (AIC), Bayesian information criterion (BIC), and minimum 

description length (MDL). The best model is the one with the minimum value of the 

information criterion. The MDL [62] is not as popular as AIC and BIC because of three 

main reasons. First, the MDL uses description length as the information criterion, which 

is based on the coding theory of the information theory1, but the extension of description 

                                                 

1  Information theory is the mathematical theory of data communication and storage to tackle the 
engineering problem of the reliable transmission of information over a noisy channel. Its main result is that 
by appropriate encoding and decoding of the information, the information can be communicated over a 
noise channel with an arbitrarily small probability of error (http://en.wikipedia.org/wiki/information 
_theory) 
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length as a measure of the goodness of a model is not intuitive to many engineers. Second, 

the MDL is complicated for application because it does not have a fixed form for 

different model selection problems and thus the appropriate form for a specific family of 

models has to be derived accordingly. Third, its appropriate form for a model selection 

problem is often found to be almost the same as BIC. For these reasons, the MDL is not 

described in this research. 

The AIC is the first IC method devised for general model selection problems [63]. 

It ingeniously incorporates two information sources: the goodness of model fitting and 

the complexity of a model, and achieves a balance between these two. The goodness of 

model fitting is measured by the log-likelihood function based on the maximum 

likelihood principle, or exactly the Kullback-Leibler information criterion [64]; and the 

complexity of a model is measured by the number of parameters of the model to be 

estimated. An equivalent but computationally convenient expression, i.e. the practical 

form, is given as [65, 66] 

 ( )
s

m2
ˆlnAIC 2

MLE += σ  (2.36 ) 

where m  is the number of parameters in the model, s is the sample size, and 2MLEσ̂  

denotes the maximum likelihood estimation of the variance of the residual term, 
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(2.37 ) 

The BIC is another popular information criterion [67]. It takes a Bayesian approach 

for model selection, deriving an approximation to a Bayesian posterior estimation of the 

parameters of a model from the given sample. A practical form of BIC is given as [65, 66] 
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 ( )
s

sm )ln(
ˆlnBIC 2

MLE += σ  (2.38 ) 

Comparing Equations 2.36 and 2.38 one can infer that the BIC imposes more 

penalty on model complexity than AIC if 8≥s .  Therefore, BIC will select a model with 

the number of parameters no greater than that selected by AIC. In addition, BIC is shown 

to select the correct model asymptotically with probability one2 if the correct model is 

one of the candidate models and the sample size ∞→s  [65]. For these reasons, BIC is 

often preferred to AIC for engineering applications that can only afford a small sample 

size [68]. 

Comparing Equations 2.36 and 2.38 one can also find that AIC and BIC can be 

generalized as the following form [66] 

 ( ) )(ˆlnIC 2
MLE smϕσ +=  (2.39 ) 

where )(sϕ  is a positive function of the sample size and satisfies the condition 

0)(lim =
∞→

s
s

ϕ . 

Based on this generalization, many derivatives of AIC and BIC are devised by 

modifying one or two terms in the generalized Equation 2.39 for better performance with 

respect to specific surrogate-modeling methods, such as the modified AIC and BIC for 

neural network in Ref. [68], the ones in Ref. [69], and the one in Ref. [70]. In this 

research, new modified AIC and BIC are devised to include three kinds of information: 

model fitting error, model complexity, and model predicting error. 

 

 

                                                 

2 A model selection criterion that select the correct model asymptotically with probability one if the sample 
size approaches infinite is said to be consistent. 
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2.4.3 Practical Selection of Three SVR Parameters  

There are many parameters to be selected or estimated in SVR. Those parameters 

are the weight vector W , the intercept b , the regularization factor C , the kernel 

parameter(s), and the tolerable deviation ε  if the ε-insensitive loss function is used (for 

other loss functions 0=ε ). Since the quality of the final surrogate model depends on all 

the parameters, now the question is: how can all these parameters be selected or 

determined? By solving the alternative convex quadratic minimization problem Equation 

2.25, W  and b  can be determined, given pre-specified C , ε , and kernel parameter(s) 

that are usually given such as by experts of SVR. Now the question is reduced to: how 

can a non-expert user pre-specify or select C , ε , and kernel parameter(s)? 

One way to pre-specify these three sorts of parameters is to use an optimizer, such 

as the Genetic Algorithms or Simplex Optimization as described in Ref. [71]; another 

way is to construct a new alternative minimization problem, such as described in Ref. [72] 

to automatically select ε  given pre-specified C  and kernel parameter(s). However, the 

two approaches are computationally expensive, and do not make use of the information 

contained in the sample, i.e. a priori knowledge, to select these parameters, as the SVR 

experts do. 

The parameters C  and ε  can be selected based on the information contained in the 

sample no matter what the kernel function and kernel parameter(s) are. The kernel 

parameter(s) can be selected later using model selection methods discussed previously. 

Therefore here the focus is on the selection of the parameters C  and ε , using the 

practical methods in Ref. [73]. 
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When the ε-insensitive loss function is used, as mentioned previously, the 

regularization factor C  determines the tradeoff between flatness of the final surrogate 

model )(Xg  and the amount up to which deviations greater than ε  are accepted; and 

with increase of C  more emphasis is put on the loss function and the structural risk 

function in Equation 2.24 is more like the conventional empirical risk function. As 

described previously (see Table 1), in this case the dual variables C≤≤ α0 . Further, 

referring to Equation 2.35, the dual variables are used as linear coefficients in the final 

surrogate model. Therefore, a “good” value for C  could be chosen to be equal to the 

range of the response values of a sample. However, this selection of C  is sensitive to 

possible outliers in the sample, thus the practical selection of C  is given as 

 ( )yy yyC σσ 3,3max −+=  (2.40 ) 

where y  and yσ  are the mean and the standard deviation of the response values of 

the sample, respectively. 

As shown previously (see Figure 2-8), the tolerable deviation ε  controls the width 

of the ε-insensitive zone. In addition, according to the theory provided before the value of 

ε  affects the number of support vectors to construct the final surrogate model. Therefore, 

the value of ε  should be proportional to the model fitting error level. On the other hand, 

the selection of ε  should depend on the sample size: intuitively, larger sample sizes 

should require smaller value of ε  such that more support vectors can be selected to 

improve accuracy. Two practical selections of ε  are given as 

 

s

sln
3 Eσε =  , or 

s
Eσε =  

 

where Eσ  is the standard deviation of the residuals or model fitting error. 
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In this research it is found that the second practical selection can provide better 

results in most cases, and thus is used for selection of ε . 

 

s
Eσε =  (2.41 ) 

Now the problem is that the residuals are not known a priori, and need to be 

estimated from the sample. The k -nearest-neighbor method can be used to estimate Eσ . 

In the k -nearest-neighbor method, the (pseudo) predicted response value of each sample 

point iy~  is estimated as the average of the responses values of the k  nearest sample 

points, where the distance between two sample points is measured by the Euclidian 

distance. Typically, the value of k  is in the 2 – 6 range, and a value of 3 is recommended 

and used in this research. Then the estimation of Eσ  is given as 
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(2.42 ) 

Then the estimation Eσ̂  of Eσ  is substituted into Equation 2.41 to select the 

practical value of ε . 

If the Gaussian radial basis function is selected as the kernel function, the kernel 

parameter σ , which is called the width of the radial basis function, is also suggested in 

Ref. [73] to be set to  

 )5.0,1.0(~nσ   

where all the n  design variables are pre-scaled to [0,1] range. 

In this research it is found the interval can be extended to a wider one and 

sometimes provide better results. 

 )5.0,01.0(~nσ  (2.43 ) 



69 

2.5 Preliminaries of Probabilistic Design Methods 

In the section, the basics of probabilistic design and the methods to incorporate the 

effects of uncertainties in design are summarized. 

2.5.1 The Basics of Probabilistic Design 

In early design stages there is a high degree of uncertainty. As mentioned in 

Chapter 1, uncertainty is the incompleteness of design knowledge, or a difference 

between reality and what is expected. There are many specific sources of uncertainties, 

such as ambiguity of the requirements, analysis or simulation tool fidelity, incomplete 

knowledge of the manufacture process and operational environment including human 

interactions, immaturity of the new technologies, and approximation errors introduced by 

the surrogate models for the physics-based analysis and simulation tools. Figure 2-9 

provides a comprehensive summary of the sources of uncertainty and error in 

computational simulation in early design stages. 

Although surrogate models are used to increase knowledge in the early design 

stages such that educated (with more information) decisions can be made and avoid 

locking in the final life cycle cost (LCC) and performance, it is still possible that bad 

decisions can be made because of the uncertainty existing in these stages. On the other 

hand, as mentioned in Chapter 1, the design solutions of the traditional deterministic 

multidisciplinary design optimization may be highly sensitive to the variation of the 

uncertain factors, leading to performance loss, or suffer from high likelihood of undesired 

events, or being conservative and consequently uneconomic. Therefore, advanced design 

techniques or methods have been developed to handle uncertainties. 
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Figure 2-9: Framework for Sources of Uncertainty and Error [74] 
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The research of design techniques to handle uncertainties that pervades all areas of 

science and engineering has been an interesting and fundamental research topic for 

engineers and scientists for a long time. Traditionally, the uncertainty is accounted for in 

design by the use of scaling parameters such as safety factors, and this kind of method 

has proved useful by past decades of experiences. However, when new configurations or 

materials are used, it is difficult to determine a proper value for the scaling factor; besides, 

the measures of reliability or robustness can not be given [15].  

The uncertainty analysis or uncertainty based design has become a crucial technique 

in many engineering fields such as the aerospace industry. Once it is realized and adopted, 

the following potential benefits can be achieved [15]: 

1. Increase of confidence in analysis or simulation tools; 

2. Reduction of design cycle time, cost, and risk; 

3. Increase of system performance while meeting the reliability requirements; 

4. Increase of robustness of the system; 

5. The performance or behavior of the system at off-nominal conditions can be 

evaluated. 

Many advanced methods have been developed for this purpose, such as 

probabilistic design, fuzzy logic, and interval analysis [15]. The probabilistic design 

methods are very important and popular means to deal with the pervasive uncertainties, 

because the difference between model-based prediction and reality caused by 

uncertainties can be described by probability distributions. There are two developing 

fields in this area, one is reliability design, and the other is robust design. The detailed 

task of reliability design is different in different engineering fields. From the viewpoint of 
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operation, it is to design a system, or component, or device to perform without failure for 

a specified period of time under specified operating conditions; from the viewpoint of 

some disciplines such as structural design, it is to prevent catastrophic failures. The 

robust design, on the other hand, is to obtain less variation of performance or maintain 

good performance at off-design conditions. One uncertainty classification and 

corresponding design methods are shown in Figure 2-10. 

 
 

 
 

Figure 2-10: Uncertainty Classification and Design Domains [75] 
 
 
Generally, reliability design deals with extreme events, or the “tails” of a 

probability distribution, while robust design is interested in the behavior in the zone 

around a nominal value such as the mean of a probability distribution. This difference is 

illustrated in Figure 2-11. 
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Figure 2-11: Reliability versus Robustness on Probability Density Functions [15] 
 
 
For complex engineering systems, probabilistic design methods are realized 

typically using random sampling techniques such as Monte Carlo simulation (MCS) or 

other statistical sampling methods such as Fast Probability Integration (FPI). This is 

because for a complex engineering system the real functional relationship between a 

response and design variables is usually implicit and in general it is very difficult to 

establish its explicit form, the analytical way of uncertainty propagation by derivative 

analysis of the functional relationship can not be used. 

Monte Carlo simulation is the most popular random sampling technique for 

complex engineering systems because of its ability to obtain the most accurate probability 

distribution [76].  However, a large number (in thousands) of complete analyses are 

required in order to obtain an accurate probability distribution using this technique. For 

small event probability values, an even larger number (in tens or hundreds of thousands) 

of analyses are required because the accuracy of Monte Carlo simulation decreases 

rapidly for lower and lower event probability values. For example, it is a low requirement 

to require the structural failure rate to be less than 0.01% for an important building in its 

designed life time. Because this failure probability means 1 failure out of 10,000 

scenarios or cases analyzed, more than 10,000 cases are needed in order to obtain an 
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accurate distribution. The following Equation 2.44 is used to estimate the probability 

calculation error ε  (%) of the Monte Carlo simulation [77]. With this equation the 

number of analyses needed for %01.0=fP  with an error of no greater than 5% is 

estimated as 80,000. 
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⋅
−⋅
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)1(200

ε  (2.44 ) 

where N  is the number of different analyses or simulations required, fP  is the 

failure probability, and ε  is the maximum error (%) of fP . 

Obviously this approach is unaffordable in terms of time if the time-consuming 

physics-based models such as finite element based analysis are used to do the Monte 

Carlo simulation, and thus again the fast surrogate models are required. 

The probabilistic design methods based on surrogate models and the Monte Carlo 

simulation have been widely applied to early design stages in engineering fields, such as 

undersea weapon system design [78], car crashworthiness design [79], and gas turbine 

blade reliability design [80], to name a few. Significant improvements to the system 

performance and accuracy of the reliability and robustness assessments have been made 

by these methods. New characteristics of probability distributions of the system 

performance have been found, which might not be discovered otherwise, such as in Ref. 

[80], the distribution of the core temperature of a gas turbine engine is non-normal 

instead of normal that has been assumed for a long time. 

It has to be pointed out that the probabilistic design result also depends on how 

accurate a surrogate model captures the variations of the responses with respect to the 

perturbations of the design variables [81]. However, it is more difficult to check this kind 
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of accuracy than goodness of model fitting, and it is assumed that the more accurate the 

surrogate models are, the better the ability of the surrogate models is to capture those 

variations. 

2.5.2 Mathematical Foundation of Joint Probability Assessment 

The probability and statistics theories of a single random variable are the standard 

contents of probability and statistics textbooks, and those contents are omitted here. 

The general expression for the joint probability of multiple arbitrarily distributed 

continuous variables is given as 

 ∫ ∫=∈ nn
A

n xxxxxxfAXXXP ddd),,,(]),,,[( 212121 KKKK  (2.45 ) 

where A  is the event space, ),,,( 21 nxxxf K is the multivariate joint probability 

density function (PDF). This joint PDF satisfies the following conditions: 

1. Positive definite: ),,,(0 21 nxxxf K≤  

2. Unit integral property: 1ddd),,,( 2121 =∫ ∫Ω
nn xxxxxxf KKK , where Ω  is the state 

space comprising all possible different events. For continuous random variables, the state 

space is defined by the intervals of all random variables. 

Given a joint PDF, a new concept comes up, i.e. the marginal distribution. A 

marginal distribution is a univariate distribution function, which can be determined by 

integrating the joint PDF with respect to the other random variables over the entire state 

space. As an example, the marginal distribution of the random variable 1X  is given as 
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The marginal distribution is important in practice since in most cases one knows the 

marginal distributions and uses those distributions to construct the joint distribution. 
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The random variables are mutually independent if and only if the joint distribution 

function of those variables is equal to the product of corresponding marginal distributions 

given as 
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The conditional probability density function (CPDF) is the (joint) probability 

density function for some variables given the other variables taken specific values. The 

most useful CPDF is for a single variable. For example, the CPDF for 1X  is given as 
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 (using Equation 2.46). 

The relationship among the joint, marginal and conditional probability density 

functions is illustrated by a bivariate case in Figure 2-12. 

 
 

 
Figure 2-12: Illustrations of Joint, Marginal and Conditional Probability Density Functions [82] 

 
 
Given the joint density function, the mean (or expected value) and variance of a 

random variable can be calculated as 
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The covariance and correlation coefficient between two random variables can be 

calculated as 
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Let ),,,( 21 nxxxVV K=  a function of the random variables 1X , 2X ,Ω, nX , then 

usually V  is a random variable as well. The mean and variance of V  can be calculated 

with Equations 2.49 and 2.50 by substituting 1X  with V . Further, the cumulative 

distribution function of V  can be calculated by [82] 

 ∫ ∫=≤= nn
R

V xxxxxxfvVvF
v

ddd),,,()(P)( 2121 KKK  (2.53 ) 

where VR  is the region over which vxxxV n ≤),,,( 21 K . 

2.5.3 Joint Probabilistic Assessment Methods 

Many methods have been developed for assessment of the probability of violating 

either one function of random variables, which is called a limit state function (LSF), or 

multiple limit state functions. These methods can be classified as two groups: simulation 

based and analytical. The most popular and most widely used simulation based method is 

the empirical distribution function (EDF) method based on Monte Carlo simulation. The 

most popular analytical methods for single LSF are the fast probability integration (FPI) 

family methods based on the concepts of most probable point (MPP) and LSF [8]. There 
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are good descriptions of the FPI family methods in Ref. [83], and APPENDIX E provides 

a concise illustration of the concepts of MPP and LSF. 

It is important to assess the joint probability of violating multiple LSF’s, because 

those LSF’s are usually correlated instead of mutually independent since those LSF’s 

have some input variables in common. The probabilistic assessment methods for single 

LSF are skipped here. 

2.5.3.1 The EDF Method 

The empirical distribution function method first uses empirical data, which are 

generated with computational simulation, or experimentation, or actual measurements, to 

generate a sample of the joint PDF or cumulative distribution function based on the 

simulation counting technique. This sample is fitted to construct an approximate joint 

PDF or CDF. Then this fitted joint PDF or CDF is used to estimate the joint probability 

of violating the LSF’s. 

A joint PDF (sample) is generated using the following simulation counting equation: 
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And a joint CDF (sample) is generated using the following equation: 

 
),,,(

1
),,,(

1
22112211 ∑

=
≤≤≤=≤≤≤

N

i
immiiimmii ayayayI

N
ayayayF KK  (2.55 ) 

where N  is the number of sample points, 1Y , 2Y ,Ω, mY  are response functions of 

random variables 1X , 2X ,Ω, nX , ia  are pre-specified values for the response functions, 

and )(⋅I  is the indicator function, giving 1 if the conditions in the parenthesis are all 

satisfied or 0 otherwise. 
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Denote jz , qj ,,1K=  being the q  limit state functions of interest. The EDF 

method is shown in Figure 2-13 by an example for single LSF. 

 
 

 
Figure 2-13: Example Using Empirical CDF to Estimate fP  

 
 
In practice, however, the joint probability of violating the LSF’s ( 0>Z ) is usually 

directly estimated by the following counting Equation 2.56, instead of being obtained 

from the fitted joint PDF or CDF. 
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The most popular computational simulation method is Monte Carlo simulation, 

which is based on the multi-variate Monte Carlo sampling (see APPENDIX F for details). 

The basic idea of MCS is simple: first a set of sample points are generated by the multi-

variate Monte Carlo sampling method; then the responses of the sample points are 

obtained. Thus a random sample is obtained or a random process is simulated. The 

required number of sample points  N  with an error of no greater than ε  can be estimated 

based on Equation 2.44, which is repeated with here: 
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The Monte Carlo simulation is extremely appealing since it requires the least 

amount of statistical knowledge and does not need to known the explicit functional 

relationship between a response function and the random variables. It can be the most 

accurate approach given enough sample points, and asymptotically converges to an exact 

answer as the number of sample points approaches to infinity. The last advantage of the 

Monte Carlo simulation is that it can work with probability distribution functions over 

finite intervals. This is very important because in reality the interval of a random variable 

in most cases is finite instead of infinite as in the theory of normal distribution. 

2.5.3.2 Analytical Probability Assessment Methods 

The basic idea behind the analytical joint probability assessment methods for 

multiple LSF’s is to directly construct the joint probability density function of the 

responses based on some information of the (random) design variables, or the responses, 

which are random variables as well. 

For the analytical methods that are based on information of responses, such as the 

Nataf PDF transformation method (NPDF) [82] and Bandte PDF method (BPDF) [8], 

those methods usually require information of the marginal distributions and/or covariance 

matrix of the responses. However, in practice, this information is very difficult to obtain, 

if at all. Therefore, these methods are not practical. 

One common problem with the above methods is that the (random) design variables 

are indirectly linked to the (joint) PDF of the responses and thus these methods are 

difficult to be used for the design space exploration process. To overcome the problems 

with the above methods, two methods are developed: multi-response first order second 
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moment method (MFOSM), and multi-response inverse transformation method (IPDF) 

[80]. These two methods make use of the partial derivatives of the responses with respect 

to the (random) design variables while constructing an approximate joint PDF of the 

responses, and thus are classified as sensitivity-based methods. The partial derivatives are 

approximated numerically using methods such as finite difference. Those methods are 

practical because those methods do not require distribution information of the responses 

and thus are easy to use. In addition, the (random) design variables are now directly 

incorporated into the joint PDF of the responses and thus these methods can be used for 

the design process. The main limitations of MFOSM are that it assumes the responses are 

normally distributed and makes linear approximation to the responses. The main 

limitation of IPDF is that it requires the inverse functions of the responses with respect to 

design variables must exist and be unique. This compels this method to use linear 

approximation functions of the responses since the inverse functions may not be unique 

otherwise, although theoretically this method does not have to. 

2.5.4 Summary of Robust Design and Reliability Design Methods 

As mentioned previously, there are two main fields that handle the effects of 

uncertainties: the reliability design and robust design. In these two fields, the design 

variables are treated differently as with the objective functions. 

The independent variables can be classified into two groups: control variables (CV) 

and noise variables (NV). The control variables are the ones that are controlled, or 

specified, or selected by a designer, such as the operating temperature, the shape and 

dimensions of a component, the properties of a material, etc. The noise variables are the 

ones that are out of control of a designer while the product is being manufactured or used 
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in the field up to the end of its lifetime, such as the random material properties, 

manufacturing tolerances, random loads, the production quantity, utilization hour, 

economic range, load factor, ambient temperature, etc. 

In robust design, variation is considered only for the noise variables and a noise 

variable is represented by a probabilistic distribution and a range. A control variable, on 

the other hand, is treated deterministically with a single value over a range (without using 

a distribution), and its value is adjusted during the design process. Then the variation 

(such as standard deviation) of a response from a target value is estimated with the 

distributions and ranges of the noise variables at a given set of values of the control 

variables. 

The objective of robust design is to find the set of values of the control variables 

that minimizes some responses and the variation of some other responses with respect to 

the noise variables by adjusting the control variables and making sure that the response 

does not violate the limit state function(s). Figure 2-14 illustrates the difference between 

a robust design solution and a deterministic design solution. 

There are many realizations of the robust design methods in different areas, such as 

Ref. [13] and [84] for aircraft multidisciplinary design optimization, Ref. [78] for 

submarine weapon system design, Ref. [85] for flexible wing design optimization, Ref. 

[86] for airfoil shape design optimization, to name a few. One such example is shown in 

Figure 2-15. 
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Figure 2-14: Difference between a Robust Design Solution and a Deterministic Design Solution 

 
 

 
Figure 2-15: Example Implementing Robust Design [7] 

 
 
In reliability design, variation is considered for both the noise variables and control 

variables. There are three main approaches to handle the effects of these uncertain 

variables, i.e. the use of a safety factor, the use of the absolute worst case, and the use of 

probability [1]. The first two approaches are conventional approaches, and the third one 
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is the modern reliability design of interest. As in robust design, a noise variable is 

represented by a distribution and range. However, the representation of a control variable 

is more complicated than a noise variable. In reliability design, a control variable is 

represented by a nominal value such as mean value (or expected value), a probabilistic 

distribution, and a range. Each nominal value may correspond to a specific distribution 

and a specific range, i.e. for different nominal values the corresponding distributions and 

ranges can be different. Typically, the nominal values are used to calculate the (average) 

response that a designer concerns, and adjusted by the designer. The distributions and 

ranges are used to estimate the probability of violating a criterion or criteria, along with 

those of the noise variables, using a probability assessment method discussed previously. 

A probability is estimated for each set of values of the control variables along with the 

corresponding distributions and ranges. 

The objective of reliability design is to find the set of nominal values of the control 

variables that makes the probability of violating a criterion or criteria less than the target 

value as well as maximizes or minimizes some performance measures such as $/RPM 

and weight, by adjusting the nominal values of the control variables. Figure 2-16 

illustrates the difference between a reliability design solution and a deterministic design 

solution. 

Some reliability design methods are a simplified version of the above process. In 

these simplified methods, a control variable is represented by a distribution and a range, 

and the designer assigns only one value to a control variable based on these distribution 

and range, instead of a nominal value and its corresponding distribution and range; and a 

probability is estimated with the distributions and ranges of all control variables, instead 



85 

of for each set of values of the control variables. Sometimes the control variables are 

even treated as deterministic ones, and the variation is caused only by the noise variables. 

 
 

 
Figure 2-16: Difference between a Reliability Design Solution and a Deterministic Design Solution 

 
 
A note is that the reliability design methods are usually referred to as probabilistic 

design methods, which in this case do not include robust design methods. In addition, 

although the reliability design methods are originally developed to solve the structure 

reliability problems, those methods are now extended to other problems, such as viability 

of a product over its life cycle. 

There are many realizations of the reliability design methods in different areas, 

including mechanical systems considering material uncertainties [87], aircraft concept 

and preliminary design [8], mechanical systems considering manufacturing and 

operational uncertainties [88], aircraft impact dynamics design optimization [89], to name 

a few. One such example is shown in Figure 2-17. 
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Figure 2-17: Example Implementing the Simplified Reliability Design [8] 
 
 

2.6 Multi-Objective and Multidisciplinary Optimizat ion Methods 

In this section, the basic concepts and methods of multi-objective and 

multidisciplinary design optimization are summarized. 

2.6.1 Multi-Objective Optimization Methods 

Often, in a multi-objective optimization problem the criteria are conflicting in such 

a way that optimization of a single criterion results in poor performance for another 

criterion. In this case, there is no optimal solution that simultaneously optimizes all the 

objective functions; instead, the concepts of a Pareto frontier and weak Pareto frontier are 

employed. Assuming all the objective functions are to be minimized, in the design space 

the definitions of a PF point (or solution) and a WPF point are given as follows [14]: 
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• Pareto frontier point: A point ∗X  is a Pareto frontier point if and only if there does 

not exist another point +X , such that )()( ∗+ ≤ XFXF , and )()( ∗+ < XFXF ii  for at 

least one objective function, where )()( XfXF ii =  (see Equation (). 

• Weak Pareto frontier point: A point ∗X  is a weak Pareto frontier point if and only 

if there does not exist another point +X , such that )()( ∗+ < XFXF . 

Correspondingly, in the objective space the vector )( ∗XF  defines a frontier point, 

either a Pareto frontier point, or a weak Pareto frontier point. 

In this research, two kinds of Pareto frontier or weak Pareto frontier are 

differentiated, i.e. deterministic frontier and probabilistic frontier. The deterministic 

frontier satisfies all the deterministic constraints, while the probabilistic frontier satisfies 

all the probabilistic constraints that require first satisfying the deterministic constraints. If 

there are no special notes, a Pareto or weak Pareto frontier means a probabilistic frontier. 

According to the above definitions, a point is a WPF point if there is no another 

point that improves all of the objective functions simultaneously, while a point is a PF 

point if there is no another point that improves at least one objective function without 

degrading any other objective functions. Therefore, all PF points are WPF points, but not 

vice versa. Because of relaxation by definition, the WPF solutions are more useful for 

practical applications than the PF ones. Figure 2-18 shows the difference between PF and 

WPF points in the two dimensional objective space. In this figure, the PF points are 

points b, e, and g, while the WPF points are points a, b, c, d, e, f, g, and h. The Figure 

2-19 shows the difference in the three dimensional objective space. It can be seen that the 

difference is very obvious in this case that the WPF includes more points that form a 

different section of the edge beside the common section of the PF and WPF points. 



88 

 
 

 
Figure 2-18: Example to Show the Difference between PF and WPF in the 2D Objective Space 
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Figure 2-19: Example to Show the difference between PF and WPF in the 3D Objective Space 
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It can be shown that the methods to obtain PF solutions can easily be modified to 

obtain WPF solutions. Therefore, no difference is made for the methods to obtain PF or 

WPF solutions. Many methods have been developed to find the optimal solution(s) of a 

multi-objective optimization problem in the sense of PF or WPF. Reference [14] provides 

a good survey of these methods. 

These methods can be divided into two groups, one that needs articulation of 

preferences, and one that does not. The first group usually uses a preference parameter, 

such as a weight for an objective function to show the preferences of the decision-maker 

either explicitly or implicitly. With the help of the preference parameter, the objective 

functions can be combined to form a single (objective) utility function, such as the most 

common one, weighted overall evaluation criterion method, or a single utility function 

without direct information of the objective functions, such as the Goal Attainment 

method [90]. After forming the single utility function, a single-objective optimizer is used 

to find a multi-objective optimal solution. By varying the preference parameter 

systematically, a set of MOO solutions, i.e. the PF or WPF solutions, can be found. 

Usually the constraints are treated directly by the single-objective optimizer, i.e. without 

using a penalty approach that further increases the complexity of the utility function. 

The standard form of the Goal Attainment optimization problem is as follows: 

 Minimize: λ  

                 Subject to:  
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 λ  a scalar variable  

 
iw  weights  

 
ib  goals for the objective functions  

Figure 2-20 shows the basic idea of the Goal Attainment method, in which W  and 

B  are the vectors of weights and objective goals, respectively. From this figure, the 

vector of the objective goals is better to be outside of the objective space F , and the 

Pareto frontier of the objective space can be either convex or concave. 

 
 

 
Figure 2-20: Illustration of the Basic Idea of the Goal Attainment Method (adapted from [90]) 

 
 
A very important conclusion that one can draw from this figure is that the weights 

vector W  is not used to put different weights or preferences on different objectives; 

instead, it is just a means to define the search direction. Therefore, the Goal Attainment 

method is actually a non-preference method in the author’s opinion, and it should not be 

classified as a method with preferences. 
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The second group does not need the preference information to find the PF or WPF 

solutions. In contrast to the first group of methods treating the objective functions 

indirectly and finding one PF or WPF solution at a time, this group treats the objective 

functions directly without forming a single utility function and provides a set of PF or 

WPF solutions as a whole. The most popular method of this group is the Genetic Multi-

objective Algorithm. One disadvantage of the Genetic Multi-objective Algorithm is that 

the constraints are not addressed directly and usually a penalty approach has to be used. 

In this research, a new Monte Carlo simulation based method is formed to find the WPF 

solutions. 

These methods can also be divided into another two groups, one that finds a single 

PF or WPF solution at a time, and one that directly generates a set of solutions. An 

example of the first group is the Goal Attainment method discussed above. Special 

procedures are required to find a set of PF solutions with the first group methods, since it 

is desirable that such a method has practical attributes: a) it should generate evenly 

distributed PF points in the objective space; b) it should explore the entire objective space 

and not neglect any region [91]. To generate a set of evenly distributed PF points of the 

whole objective space, one approach is to systematically change the parameters in a 

single solution MOO method, such as the weights in the OEC method. However, this 

approach does not always result in an even distribution of PF points even though the 

weights are evenly varied [91]. Another approach is to directly generate such a set of PF 

points, such as the modified Normal Constraint  (NC) method [92], and the new method 

that will be provided later in this research. The main reason not to use the modified NC 

method and instead to develop a new method in this research is that the modified NC 
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method needs non-trivial optimization effort to generate initial search points, whereas the 

new method does not. 

2.6.2 Multidisciplinary Optimization Methods 

As mentioned previously, a multidisciplinary design optimization problem features 

coupling variables, and these variables and the design constraints make the design very 

complicated. First, design freedom is reduced and disjointed consistent design zones 

result in the system level design space. Second, those methods entail equality constraints 

for the coupling variables in the multidisciplinary analysis process and thus require many 

iterations of multidisciplinary analysis in order to find every single consistent design 

point. Third, special solving procedures are required to untangle or decompose the 

complex interactions introduced by coupling variables and to find consistent design 

points. Last, the design constraints further reduce the design freedom and entail more 

effort to find final feasible design solutions. 

Figure 2-21 shows the design structure matrix (DSM) of a transportation aircraft 

multidisciplinary design problem (see APPENDIX H) that will be solved later. The boxes 

D, A, W, and P represent the disciplinary analysis of zero-lift drag contributing analysis 

(CA), aerodynamics CA, weights CA, and performance CA, respectively. In this DSM, 

there are two coupling variables, i.e. brV  and landingW . brV  is one input of the D CA and 

also one output of the A CA; landingW  is one input of the A CA and one output of the W 

CA. The design variables are b , l , S , toW , and iT . 

Depending on availability of optimization ability in the disciplinary contributing 

analyses, different approaches are developed to find the optimal solutions from the 

consistent design zones. If there is not optimization ability in the disciplinary CA’s, the 
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common approaches are optimization with (relaxed) Fixed Point Iteration method (FPI) 

and optimizer based decomposition method (OBD) [93]; if all the disciplinary 

optimization ability is turned off and combined into a single system-level optimizer, the 

approach used is called All-at-Once method (AAO) [94]; if the disciplinary optimization 

ability is to be kept (only part of it in fact), multi-level MDO methods are used, such as 

the Collaborative Optimization method (CO) [18],  Modified Collaborative Optimization 

method (MCO) [95], and Bi-Level Integrated System Synthesis method (BLISS) [17]. 

 
 

 
Figure 2-21: Example of the DSM of a Multidisciplinary Aircraft Design Problem 
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the MDO approaches above, OBD can completely decouple the problem and the resulted 

alternative problem is easier to understand than the others. This approach should be 

considered by the new framework. 
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3 RESEARCH QUESTIONS AND HYPOTHESES 

 
 
 

In Chapter 1, a need is established to formulate a new framework for realistic 

conceptual design problems of design alternative generation and selection. In Chapter 2, 

the state-of-the-art enabling techniques for the new framework were reviewed, which 

included methods of surrogate modeling, joint probabilistic assessment, probabilistic 

design, multi-objective optimization, Pareto frontier finding, and multidisciplinary 

optimization. Based on the desired elements for the new framework discussed in Chapter 

1 and state-of-the-art enabling techniques and methods reviewed in Chapter 2, research 

questions are raised for the formation of the new framework and three hypotheses are 

proposed. 

3.1 About Formulation of the New Framework 

One idea proposed about the formulation of the new framework is to combine some 

of the presented methods together. Since each of those methods is good at solving a 

specific problem, a hybrid approach might be able to handle a more general set/category 

of problems. 

However, when making use of the advantages of those methods, the disadvantages 

also need to be overcome. For example, each of the methods available for consideration 

of MDO, JPA, MOO, and PF implies considerable computational load and run time since 

those methods usually find a solution by iteration. For a MOO method, it is difficult to 

find a PF point in the objective space, and it is much more difficult to find a 

corresponding PF solution in the design space since usually the design space is not 
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involved when finding a PF point in the objective space; a probabilistic design method 

faces similarly serious difficulty when finding a corresponding solution in the design 

space. 

Therefore, when combining the methods of MDO, JPA, MOO, and PF finding 

together, the nesting loop approach can not be adopted,  which gives a loop to each of 

those methods, because this approach will entail unacceptable computational load and 

time. Those methods need to be combined in a decoupled way. In addition to this 

decoupling requirement, the weak Pareto frontier points in the objective space and 

corresponding design solutions in the design space should be found at the same time, in 

order to avoid the difficulties that the current methods are suffering. 

The observation on current practice shows that the combination of the above four 

kinds of methods has not been achieved yet, although some of those methods are 

combined, such as the TIES, RDS, component reliability assessment method [80] 

combining MDO and joint probability assessment (JPA); the fuzzy Pareto Frontier 

method [96] combining MDO, MOO, and finding PF; and the aero-propulsion 

component design method [97] combining MDO, MOO, and a separate probabilistic 

assessment. 

One obvious reason for this combination not being done is that no existing 

approaches can combine those four kinds of methods together but in a decoupled way, 

and also enable finding the weak Pareto frontier points in the objective space and 

corresponding design solutions in the design space at the same time, although the above 

examples show some approaches can combine some, not all, of those methods. Another 

possible reason is that those methods may not work well with each other since those 
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methods are developed separately. For example, the MDO methods usually are developed 

to solve a single objective problem and thus do not work well with MOO methods, and 

vice versa; the analytical probabilistic assessment methods do not perform well with 

complex multidisciplinary models as shown by experiences of the author and many other 

people; the Monte Carlo probabilistic assessment method can work well with complex 

models, but the computational load may be huge if it is directly combined with a MDO or 

MOO method. 

As discussed in Chapter 1, accurate approximation methods are desired for the new 

framework in order to perform rapid assessment and make use of accurate or high fidelity 

knowledge. There are more reasons for accurate approximation methods. Since the 

conceptual design decisions have very important effects on final performance, quality, 

and 70 to 80 percent of the cost [1], and the probabilistic assessment and design results 

are sensitive to the accuracy of the surrogate models, these surrogate models must be 

accurate enough [9, 15, 81] in order to obtain trustworthy probabilities of the PC’s and 

subsequent WPF. 

Considering the fact that different high fidelity but time consuming tools are used to 

create the training samples for construction of surrogate models when a design is 

revolutionary, there should be a surrogate modeling method to be accurate for many types 

of problems with a small training sample. This method does not need to be the most 

accurate one all the time, but it really needs to have broad adaptability with a small 

training sample. Although one can try several surrogate-modeling methods at the same 

time and pick the best one, it is possible that none of these methods are good. Therefore, 
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to avoid this situation, there is a need to have a surrogate-modeling method that is known 

to be accurate for many types of problems with a small training sample. 

The previous comparison of major surrogate modeling methods in Chapter 2 shows 

that all those methods have advantages and disadvantages, and there is no single method 

that is superior to the others in all circumstances. In other words, none of those methods 

has the desired broad adaptability, needless to say high accuracy with a small training 

sample. Instead of creating a brand new method, it is hoped some existing methods can 

be combined to keep the advantages and overcome the disadvantages of those methods, 

so that the resulting hybrid method is accurate for many types of problems with a small 

training sample. 

In fact, hybrid surrogate-modeling is not a new idea. In Ref. [98], RSM and ANN 

has been combined together to achieve better approximation capability. In this 

combination, RSM is used to capture the global tendency, and ANN is used to capture 

(local) high non-linear behavior. However, because of the disadvantages of ANN, this 

hybrid surrogate-modeling method has not been widely accepted, although RSM itself 

has been widely applied to many engineering problems.  

Inspired by the hybrid method of RSM and ANN, RSM and SVR are considered to 

construct a new hybrid method. Second order RSM has been accepted by engineers and 

has been widely applied to various engineering problems. It is very easy to use, very 

transparent, very fast, and very accurate for low nonlinear problems. With the form of 

polynomial functions obtained by second order RSM, the contributions of different 

design variables and the interaction terms of those variables can be easily identified. This 

kind of information provides more insights into the system behavior and can be used to 
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improve reliability and robust designs. Therefore, second order RSM is strongly 

recommended that it should be executed first to see if a reasonable fit can be obtained 

[60]. However, second order RSM is not accurate for high nonlinear problems, or in these 

cases only accurate in a small neighborhood because of its mathematical foundation of 

Taylor series expansion. For multi-objective optimization, the region of interest will 

rarely be reduced to a small neighborhood by optimization [84]. It suffers the problem of 

“curse of dimensionality”. Improvement to the accuracy of the response surface models 

goes slowly, if at all, with increase of the size of the sampling data, because if the order 

of the polynomial is selected, the number of coefficients is known; then if the sample size 

is larger than the number of coefficients, the extra data will help little with the accuracy. 

SVR, although it is a new method, has been shown to be robust, accurate with good 

computational efficiency, and have good functional explicitness comparable to that of 

second order RSM as discussed in Chapter 2. SVR is accurate for many high nonlinear 

engineering problems [35], and does not suffer the problem of “curse of dimensionality” 

because of its solid theoretical foundations using the SRM principle as the risk 

minimization principle. 

The other three surrogate modeling methods discussed, i.e. Kriging, Gaussian 

Process, and Neural Network, are not selected for several reasons. Kriging and Gaussian 

Process are particular surrogate-modeling methods, making assumptions directly or 

implicitly about the distribution of the error in Equation 2.14, i.e. Kriging needs to select 

proper correlation functions and Gaussian Process needs to assume that the error 

distributions are independent normal distributions. When the error distributions assumed 

are quite different from the real ones, the accuracy will be low. Those methods also suffer 
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the problem of “curse of dimensionality” inherited from the particular or parametric 

inference method. And for Kriging only, it has the problem of low construction speed. 

For Neural Network, although it is a general surrogate-modeling method and does not 

have the problem of “curse of dimensionality”, it has problems with the training process, 

i.e. it is difficult to select a proper training optimization algorithm for all kinds of 

problems. An improper training optimization algorithm will result in a local minimum 

solution, or overfitting because of the ERM principle as the risk minimization principle. 

The last reason is that the accuracy level of those methods is not better than that of SVR 

according to the comparison provided in Chapter 2. 

Therefore, it is believed by this author that a hybrid surrogate-modeling method 

with the combination of second order RSM and SVR (RSSVR) will be accurate for many 

types of problems with a small training sample. This new method is needed by the 

engineering practice and will make improvements to designs with surrogate models. 

The second order RSM will be referred to as RSM hereafter. 

A good SM for a given problem should be both accurate and simple. In other words, 

if the accuracy level of two SM’s constructed by two different SM methods is similar, the 

simpler one should be used; or if the complexity level of two SM methods is similar, the 

more accurate SM should be used. Since the model accuracy can be measured by model 

fitting error and model predicting error, this requires a good model selection advisor to 

balance the model fitting error, model predicting error, and model complexity. 

Unfortunately, all existing model assessment methods either do not use all of model 

fitting error, model predicting error, and model complexity, or have other shortcomings. 

For example, the coefficient of determination (2R ) measures the model fitting error or 
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goodness-of-fit, it almost invariably increases and never decreases with the number of 

parameters, and thus can not be used as a model selection criterion [65]; instead, the 

adjusted 2R  corrects this problem with an adjustment to the number of parameters, and is 

widely used as a model selection criterion [68]. The hypothesis testing procedure needs 

subjective judgment on the levels of significance, therefore there are ambiguities in this 

method, and it can not be used as a model selection method [63]. There are also other 

criteria developed during the past based on the concepts similar to model fitting error, 

such as pC  criterion and pS  criterion, but those criteria were not widely adopted. Cross 

validation and bootstrap methods estimate the model predicting error. When those 

methods are used for model selection, one additional disadvantage is that those methods 

are time consuming. The information criteria AIC and BIC balance model fitting error 

and model complexity, and this is a great improvement. Although AIC and BIC have 

been successfully used to select the best model for many surrogate-modeling methods, it 

has been reported that those criteria have difficulties to select models for the neural 

network method, i.e. those criteria fail to reliably select the best model [68, 99]. The main 

reason is that there are typically a large number of parameters to be estimated in an ANN 

model such that an ANN model can have very low model fitting error but high model 

predicting error, i.e. the problem of overfitting. This observation confirms that it is not 

enough to include just the model fitting error and model complexity, instead, inclusion of 

the model predicting error is also needed. Therefore, a new model selection advisor needs 

to be created that make use of and balance model fitting error, model predicting error, 

and model complexity. 
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Additionally, since the current methods to estimate the model predicting error is 

time consuming, such as cross validation and bootstrap, a new method may need to be 

formulated to estimate the model predicting error at a much faster speed than cross 

validation and bootstrap. 

3.2 Research Questions 

Based on the considerations of the new framework, three top-level questions are 

first asked, and then detailed questions are listed in order to develop this framework into 

a specific method. 

Research Question A: Since RSM is good at capturing the global tendency and SVR 

is good at capturing (local) high non-linear behavior, is it possible to combine these two 

methods to make a new hybrid method that can be accurate for many types of problems 

with a small training sample?  

Various factors affect the success of a surrogate-modeling method. These factors 

include the nonlinearity of the model, the dimension or number of the design variables, 

data sampling techniques, size of the sampling data, and pre-specified parameter settings 

of the surrogate-modeling method. In order to form a new hybrid surrogate-modeling 

method of RSM and SVR, the following questions are asked: 

1. Although it has many advantages and good characteristics, can SVR be used 

directly in engineering problems like RSM has been impressively demonstrated in the 

past? Or what means should be taken to make it suitable? 

2. How can RSM and SVR be combined to form a new hybrid surrogate-modeling 

method that is accurate for many types of problems with a small training sample? 
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3. Using the previous five criteria for comparison in Chapter 2, is this hybrid 

method of RSM and SVR better than RSM or SVR for engineering problems? Or under 

what situation is it better? 

4. Is it possible to quantify the five criteria, such that the above comparison in 

Question 3 can be reliably made? 

5. Is it possible to create and formulate a process for which all pre-specified 

parameters of SVR can be determined automatically such that this hybrid surrogate-

modeling method is as simple to use as RSM? 

6. Is there a kernel function for SVR that can work well for all engineering 

problems?  If not, how to select a kernel function for different problems? 

7. What is the best data sampling technique for this hybrid surrogate-modeling 

method? 

The Question 6 above is important to make this method practical to the average 

engineers. 

Research Question B: Since none of the current surrogate model selection methods 

balances model accuracy and complexity, where model accuracy is measured by model 

fitting error or model predicting error, is it possible to make a new method that will 

achieve this kind of balance? 

There are many quantitative measures of model accuracy and complexity. Selecting 

proper quantitative measures of model accuracy and complexity and properly combining 

these two kinds of measures together are the keys of the selection advisor of the 

surrogate-modeling methods.  In order to form a new selection advisor, the following 

questions are asked: 
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8. What quantitative measures of model accuracy and complexity are appropriate 

for the purpose of selection of surrogate-modeling methods? 

9. What is the proper way to combine the measures of model accuracy and 

complexity together so that a balance is achieved between these two kinds of measures? 

10. When the accuracy is at the same level, can the selection criterion select the 

surrogate model constructed with the simpler surrogate-modeling method? 

Research Question C: Since current multidisciplinary optimization methods, multi-

objective optimization methods, and joint probability assessment methods are developed 

in parallel, is it possible to form a new framework to combine those methods all together 

but in a decoupled way to solve a joint probabilistic constraint, multi-objective, 

multidisciplinary optimization problem, and at the same time find the WPF solutions? 

The feasibility of a new framework depends on several factors, such as how to find 

consistent designs, how to find WPF points, how to relax the thresholds in the PC’s 

because of the errors introduced by the surrogate models, et al. In order to form a new 

framework for determination of the WPF design solutions under probabilistic constraints, 

the following questions are asked: 

11. At which level is the surrogate model constructed, i.e. at disciplinary or system 

level? 

12. How can a consistent design solution be found with this framework? 

13. Can the optimal consistent design solutions of the single-objective optimization 

problems with deterministic constraints be found, or near solutions be found? 

14. How can the WPF of each disjointed consistent design zone be found? 
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15. How can the number of search starting points be selected such that an 

appropriate number of WPF points can be found? 

16. How can evenly distributed WPF points be found for practical usefulness? 

17. Because of the errors introduced by the surrogate models, how can the 

thresholds in the PC’s be relaxed such that trustable probabilities can be obtained? 

18. What is the best scheme for this new framework in terms of ability to find WPF 

solutions and computational time? 

3.2 Hypotheses 

Based on the considerations about the formulation of the new framework and the 

research questions, the hypotheses of this research are proposed as follows: 

Hypothesis A: A hybrid surrogate-modeling method based on a combination of 

RSM and SVR is not only feasible for complex physics-based models, but also makes 

improvement over either RSM or SVR where either one of RSM and SVR can not obtain 

satisfactory results, and can obtain high accuracy for many types of problems with a 

small training sample 

The assessment criteria to support the above hypothesis A are as follows: 

1. Accuracy for different complexity (order of nonlinearity) of test problems, under 

different sample sizes (scale of the sample data); 

2. Robustness in terms of variance of error values for different samples generated 

by different sampling methods; 

3. Efficiency in terms of time used for surrogate model construction and new 

predictions; 

4. Transparency in terms of function relationship and factor contributions; 
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5. Simplicity in terms of the number of parameters needed to be specified by a user; 

6. Vulnerability to the problem of “curse of dimensionality”. 

Hypothesis B: A surrogate model selection method based on a modified 

information criterion can select the best surrogate-modeling method for a given problem 

in terms of balance between accuracy and complexity, where accuracy is measured by 

both the model fitting error and model predicting error. Specifically, in this research the 

candidate surrogate-modeling methods are the second order RSM, SVR, and the hybrid 

method of these two. 

The assessment criteria to support the above hypothesis B are as follows: 

1. A quantitative measure or measures of model accuracy for comparison of 

surrogate models constructed by different surrogate-modeling methods; 

2. A measure or measures of model complexity for comparison of surrogate models 

constructed by different surrogate-modeling methods; 

3. A combined measure of model accuracy and complexity that achieves a balance 

between accuracy and complexity for comparison of surrogate models constructed by 

different surrogate-modeling methods. 

One thought is that, it may be very difficult, if at all, to develop a method advisor 

that can select the best one from all known surrogate-modeling methods. For this reason, 

in this research the method advisor to be developed is only required to select the best one 

from RSM, SVR, and the hybrid method of RSM and SVR to be formulated later in this 

research. Whether it can be extended to select from more methods can be future work. 

Hypothesis C: A Monte Carlo simulation based method can be used not only to 

obtain probabilities of satisfying the PC’s, but also to find the weak Pareto frontier in the 
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objective space that jointly satisfies the PC requirements and the compatibility constraints 

for the coupling variables among the disciplinary analyses. Thus a new framework that is 

based on the Monte Carlo simulation method can determine in a decoupled way the WPF 

design solutions under probabilistic constraints for a multi-objective, multidisciplinary 

design optimization problem. 

The assessment criteria to support the above hypothesis C are as follows: 

1. Ability to find consistent design solutions; 

2. Ability to find the optimal consistent design solutions for single-objective 

optimization problems with deterministic constraints, or solutions very close to these 

optimal single-objective ones; 

3. Ability to find the weak Pareto frontier; 

4. Ability to find an appropriate number of weak Pareto frontier points; 

5. Ability to find evenly distributed weak Pareto frontier points. 
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4  FRAMEWORK FORMULATION 

 
 
 
Now that the relevant background literature has been reviewed, a new Monte Carlo 

simulation based framework is devised to determine the WPF solutions under PC’s for 

multi-objective and multidisciplinary design optimization problems for design alternative 

generation and selection. 

This framework starts with constructing fast and accurate surrogate models of 

different disciplinary analyses in order to reduce the computational time and expense to a 

manageable level and obtain trustworthy probabilities of the PC’s and the WPF. The 

surrogate modeling methods are limited in this research to RSM, SVR, and a new hybrid 

method that consists of the second order RSM and SVR. The parameters of SVR to be 

pre-specified are selected using practical methods and a new modified information 

criterion that makes use of model fitting error, predicting error, and model complexity 

information. The best surrogate modeling method for a given problem is also selected 

using this modified information criterion. Then a new neighborhood search method based 

on Monte Carlo simulation is used to find valid designs that are consistent for the 

coupling variables featured in a multidisciplinary design problem and satisfy all the 

deterministic constraints. Two schemes have been developed. One scheme finds the WPF 

by finding a large enough number of valid design solutions such that some WPF solutions 

are included in those valid solutions. Another scheme finds the WPF by directly finding 

the deterministic WPF of each consistent design zone that is made up of consistent design 

solutions. Then the probabilities of the PC’s are estimated, and the WPF and 

corresponding design solutions are found. 
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4.1 Surrogate Modeling and Model Selection 

This section introduces space filling sampling methods used in this research, some 

considerations about surrogate modeling, the random cross validation method for model 

predicting error, the modified information criteria, the hybrid surrogate-modeling method 

RSSVR, and last the flowchart of the new hybrid surrogate-modeling method and model 

selection advisor. 

4.1.1 The Space Filling Sampling Methods 

Latin Hypercube sampling, Hammersley sequence sampling, and Monte Carlo 

Sample are selected for this research for three reasons. The first reason is that the user 

can freely decide the number of sample points. The second is that the uniformity and 

randomness of the sampling points are satisfactory. The last but not the least is that the 

sampling points can be generated very fast. 

Comparing the Latin hypercube sampling and Hammersley sequence sampling 

methods, the latter has two advantages. One advantage is that the correlation among the 

design variables of the sampling points is very low, which helps generate surrogate 

models with high predicting accuracy. The Latin hypercube sampling method can not 

guarantee low correlation. The other advantage is that the generation of sampling points 

is repeatable because Hammersley sampling does not use a random number generator, 

which helps comparison of results and data management, e.g. there is not need to save the 

sampling points and instead the sampling points can be generated whenever needed. 

Based on the above observation, the Hammersley sequence sampling method is 

used to generate training sampling points for construction of surrogate models, and the 
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Latin hypercube sampling method is used to generate sampling points for assessment of 

the model predicting error. 

4.1.2 The Ranges of the Design Variables 

The construction of accurate surrogate models requires careful selection of ranges 

of the design variables. These ranges form the design space. The infeasible regions in the 

selected design space will result in failed cases or outliers. Although the failed cases and 

outliers can be identified and excluded, too many failed cases and outliers will decrease 

the fitting accuracy of the surrogate model over the given design space. This problem 

makes the prediction by this surrogate model doubtful; seemingly good predictions can 

be obtained for the points in the infeasible regions. In such cases, the design space has to 

be changed by trial and error to avoid most, if not all, of the infeasible regions. 

In probabilistic design, the designers are handling the nominal values (such as mean 

values, and the most probable value) of the design variables, and thus the design space is 

the ranges of the nominal values of the design variables. Therefore before construction of 

surrogate models for probabilistic design, there are two kinds of design spaces to be 

differentiated. The first design space is the design space for the probabilistic designer, i.e. 

the ranges of the nominal values of the design variables. The second design space is the 

extended design space (EDS) over which the surrogate models are constructed. Since the 

design variables are randomly distributed about every nominal value, the extended design 

space must be larger than the design space to accommodate the distributions of the design 

variables. Figure 4-1 illustrates the concept of extended design space of a two-variable 

design problem. As a rule of thumb, for example, for a normally distributed variable, the 

lower limit of this variable in the extended design space should be at least σ3  less than 
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that in the design space, while the upper limit should be at least σ3  greater than that in 

the design space. 

 
 

 
Figure 4-1: Illustration of the Difference between the Design Space and Extended Design Space 

 
 
With surrogate models constructed over the extended design space, the designers of 

probabilistic design problems can reduce most of the extrapolation and obtain more 

accurate results. The extended design space also should be adjusted by trial and error to 

avoid infeasible regions. 

4.1.3 Normalization of Values of Both Design Variables and Responses 

It is a common practice to normalize the values of design variables for several 

reasons. First reason is to avoid the problem of deemphasizing the small-valued variables 

by the large-valued ones. In an engineering problem usually there are small-valued 

variables and large-valued ones, for example, a drag coefficient is less than 0.1, while the 

wing span can be at the magnitude of 100 ft for a transport aircraft. Without 

normalization, the coefficients of the small-valued variables in the surrogate model can 
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be very small so that these design variables have no effects on the fitted response.  The 

second reason is that the coexistence of small and large values may make it difficult to 

inverse a matrix, an operation often needed by a surrogate-modeling method. The last 

reason is that large values can cause numerical problem if exponential functions are used 

in the surrogate-modeling methods. One example is the GRBF in the SVR. 

In this research, the response values are also normalized. The main reason is to 

establish a standard process to select the three pre-specified parameters of SVR: the 

regularization factor C , the deviation ε , and the parameter σ  of the GRBF kernel. 

Without normalization of the response values, it is very hard to determine the criteria for 

selecting these three parameters because the criteria should change with different 

magnitudes of response values. 

The values of the design variables will be normalized to [0, 1], and the values of 

responses will be normalized to [0, 100]. The following equations are used for 

normalization: 

 Design variables: )/()( ELEUEL XXXXX −−=  

Responses: )/()(100 minmaxmin YYYYY −−=  

(4.1) 

where ELX  and EUX  are the lower limit and upper limit of the extended design 

space, respectively; and minY  and maxY  are the minimum and maximum values of the 

response of the training sample, respectively. 

To denormalize the responses and RMSE’s, use the following equations: 

 
Responses: 

100
)( minmax

min

YYY
YY

−+=  ( 4.2 ) 
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RMSE: 

100

)(RMSE
RMSE minmax YY −

=  ( 4.3 ) 

Where Y  is the predicted response by the surrogate model constructed with the 

normalized sample, and RMSE is the error calculated with such a surrogate model. 

4.1.4 The Random Cross validation Method 

When surrogate models are used to facilitate the design process, it is very important 

to obtain the accuracy information of the surrogate models in terms of model fitting error 

and model predicting error. While the model fitting error is calculated easily by 

comparing the true response values and the values predicted by the surrogate model, the 

model predicting error can be estimated by either one of the following two ways: using 

an additional random sample, or using re-sampling methods without an additional 

random sample. Using a random sample is the most reliable way to estimate the model 

predicting error, but the expense of this approach is very high because one has to run 

costly physics-based models to obtain the random sample. On the other hand, one would 

prefer using the costly random sample to construct or improve the surrogate model 

instead of holding it just for the purpose of error estimation. Therefore, the re-sampling 

methods are highly preferred. However, the computational expense of the conventional 

re-sampling methods such as cross validation and bootstrap is still substantial. A new re-

sampling method, called random cross validation (RCV), is formed in this research. The 

scheme of this random cross validation method is show in Figure 4-2. Note again that in 

this research the surrogate models are limited to RSM, SVR and the hybrid RSSVR. 
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In this scheme, the surrogate model FinalMM  is the surrogate model used for design, 

and the intermediate surrogate model RCVMM  is constructed using the same method and 

pre-specified parameters of FinalMM  for SVR or the new hybrid method RSSVR. 

 
 

 
 

Figure 4-2: Scheme of Random Cross Validation for Estimation of Model Predicting Error 
 
 
This random cross validation method is computationally cheap comparing with the 

conventional re-sampling methods because it just needs to execute once. It is found to be 

able to provide a reasonable estimation of the model predicting errors for the surrogate 

∏ Generate training sampling points TrnX  

∏ Obtain true responses TrnY  

∏ Construct surrogate model FinalMM  

Generate random sampling points RCVX  

Construct surrogate model RCVMM  with RCVX  and RCVŶ  

Obtain predicted responses Trn

~
Y  of  TrnX  with RCVMM  

Obtain predicted responses RCVŶ  of  RCVX  with FinalMM  

Compute RMSE of TrnY  and Trn

~
Y , and denoted as RCVRMSE  

Use RCVRMSE  as the model 

predicting error of FinalMM  
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models constructed by SVR and the new hybrid surrogate modeling method. 

Unfortunately, it does not always perform well for surrogate models constructed by RSM. 

4.1.5 The Modified AIC and BIC Information Criteria  

As discussed previously, a new model selection criterion is needed that makes use 

of the model fitting error, model predicting error, and model complexity. The original 

information criteria make use of two kinds of information, i.e. the model fitting error and 

model complexity measured by the number of parameters in the surrogate model. Since 

the model predicting error of the surrogate models now can be inexpensively estimated 

by the random cross validation method, it can be included into the information criteria 

such that all three kinds of information, i.e. model fitting error, model complexity, and 

model predicting error, are used. Then those modified information criteria can be used as 

the desired new model selection criterion. 

For RSM or SVR individually, the modified AIC and BIC, denoted as AICC1 and 

BICC1, are as follows: 

 ( ) ( )( )
s

m2
RMSElnˆln

2
1

AICC1 2
RCV

2
MLE ++= σ  (4.4) 
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where m  is the number of parameters in the model, s is the sample size, and 2MLEσ̂  

denotes the maximum likelihood estimation of the variance of the residual term. It can be 

shown that 2
Trn

2
MLE RMSEˆ =σ . 
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2
MLE RMSEˆ =σ  (4.6) 
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For the hybrid surrogate-modeling of RSM and SVR, since the same sample are 

used twice as shown later, the modified AIC and BIC, denoted as AICC2 and BICC2, are 

as follows: 
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where RSMm  is the number of parameters in the RSM method, SVRm  is the number 

of parameters in the SVR method. 

Just for the purpose of comparison, for the hybrid surrogate-modeling of RSM and 

SVR, the original AIC and BIC, Equations 2.36 and 2.38, respectively, are adapted as 

follows: 
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4.1.6 Model Selection and the Model Selection Advisor 

In this research, the task of model selection includes 3 folds: the selection kernel 

function of SVR, selection of parameters of the surrogate model, and selection of 

surrogate model structures. These three folds of model selection are executed using 

different methods. 

The kernel function of SVR is pre-selected as the Gaussian radial basis function. 

The GRBF has received significant attention because of its good performance for various 

complex problems [35]. This characteristic is very important since usually one does not 

know the complex relationship between the response and the design variables, and thus it 
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is very hard to select the best kernel function in advance. For this reason, GRBF is 

selected as the only kernel function for SVR in this research, although it may not be the 

best one for a specific problem. 

After selecting the kernel function of SVR as the Gaussian radial basis function, it 

is still very hard to use SVR because there are several general parameters that have to be 

pre-selected by a user, such as the regulation factor C , the deviation ε  if the ε-

insensitive loss function is used, and the parameter σ  of the GRBF kernel. After these 

parameters are selected by the user, the method will automatically select the other 

parameters. For a user who does not know the details of the SVR method, this parameter 

selection work is difficult. Therefore, selection of these general parameters has to be 

automated. 

The first two general parameters of SVR to be selected are the regularization factor 

C  and the deviation ε . These two can be selected by the practical methods using 

Equations 2.40 and 2.41, respectively. The third parameter σ  has to be selected by the 

user according to some criterion. Theoretically the structural risk function can be a 

criterion for selection of the parameter σ . However, because in general it is very hard to 

calculate the VC dimension, the structural risk function can not be used for this purpose. 

Instead, either one of the new modified information criteria AICC and BICC is used to 

select the best parameter σ  by minimizing the modified information criterion used, with 

the aid of an optimizer. 

Since all the values of the design variables and responses are normalized, the 

process to select parameters of SVR is standardized, i.e. for any different problems the 

computer codes are the same.  
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The two new modified information criteria are also used to select the best model 

structure among RSM, SVR, and the hybrid RSSVR. For each response, three candidate 

surrogate models are constructed using RSM, SVR, and the hybrid method, and the one 

with minimum value of the information criterion used is chosen as the final surrogate 

model for design. This model structure selection method is called the model selection 

advisor. 

4.1.7 The Scheme for Hybrid Surrogate-Modeling with RSM and SVR and the 

Model Selection Advisor 

As a solution to the first hypothesis about forming a hybrid method of RSM and 

SVR, a scheme is provided in Figure 4-3 and Figure 4-4 based on the new techniques and 

considerations in the previous sub-sections. This scheme includes not only the process to 

construct a surrogate model using the hybrid method of RSM and SVR, but also model 

selection from the surrogate models constructed by RSM, SVR, and the hybrid method 

RSSVR by the model selection advisor discussed above. 

For the hybrid method RSSVR, the scheme first uses RSM to fit the model, then 

uses SVR to fit the errors or residuals between the true responses and the predicted values 

by the surrogate model just constructed by RSM. The final surrogate model is then the 

sum of the RSM part and the SVR part. 
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Figure 4-3: Scheme for Hybrid Surrogate-Modeling with RSM and SVR and Model Selection 

Advisor - ⅠⅠⅠⅠ 
 
 

∏ Generate sampling points TrnY  by Hammersley sequence 

sampling method over the extended design space 

∏ Generate sampling points RCVX  by Latin hypercube 

sampling method over the extended design space 

Obtain responses TrnY  of TrnX through physics-based analyses 

Normalization of TrnX , TrnY , RCVX : TrnX , TrnY , RCVX  

Construct metamodel RSMMM  

  ∏ Using sample 1S  ( TrnX + TrnY ) 

Construct metamodel SVRMM  

  ∏ Using sample 1S  ( TrnX + TrnY ) 

  ∏ Practical selection of SVR general 
parameter C  and ε  

  ∏ Select optimal parameter σ  by 
minimizing AICC1 or BICC1 

  ∏ The RCVRMSE  in AICC1 or BICC1 
is obtained by random cross 

validation with RCVX  and 1S  

∏ Calculate RSMRCV,RMSE  by random 

cross validation with RCVX and 1S  

∏ Calculate RSMTrn,Ŷ  

∏ Calculate the error RSMTrn,TrnRSM ŶY −=ε  ∏ Calculate SVRRCV,RMSE  by random 

cross validation with RCVX and 1S  

A 

∏ Determine the set of design variables X  
∏ Determine the design space of the design variables 
∏ Determine the distributions of the design variables 
∏ Determine the extended design space 
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Figure 4-4: Scheme for Hybrid Surrogate-Modeling with RSM and SVR and Model Selection 

Advisor - ⅡⅡⅡⅡ    
 
 

4.1.8 The Levels of Surrogate Models 

The surrogate models for design can be constructed at either disciplinary level or 

system level. Disciplinary-level surrogate models are recommended if possible. First, for 

Construct metamodel RSMMM ε  

  ∏ Using sample 
RSMεS  ( TrnX + RSMε ) 

  ∏ Using SVR method 
  ∏ Practical selection of SVR general parameter C  and ε  
  ∏ Select optimal parameter σ  by minimizing AICC1 or BICC1 

  ∏ The RCVRMSE  in AICC1 or BICC1 is obtained by random 

cross validation with RCVX  and 
RSMεS  

A 

Construct surrogate model HybridMM  

  ∏ RSMMMMMMM RSMHybrid ε+=  

Calculate HybridRCV,RMSE  by random 

cross validation with RCVX and 1S  

Calculate the AICC’s or BICC’s of RSMMM , SVRMM ,  and HybridMM  

∏ Using RSMRCV,RMSE , SVRRCV,RMSE , HybridRCV,RMSE , respectively 

∏ Determine the minimum AICC or BICC 
∏ Select the corresponding normalized surrogate model as 

FinalMM  

Construct the surrogate model FinalMM  
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MDO it is preferred to use surrogate models for disciplinary models than a single global 

surrogate model for the whole multidisciplinary analysis or simulation. This is because 

disciplinary surrogate models may lead to less number of analyses or simulations [16]. 

Second, the relationships among the disciplinary responses and design variables in the 

resulted disciplinary surrogate models have physical meanings, whereas those 

relationships may not make sense in the monolithic system-level surrogate models. Third, 

when there are coupling variables among different disciplines, disciplinary surrogate 

models are better used or have to be used to assure consistence of coupling variables. 

However, sometimes one has to construct system-level surrogate models if there are 

only monolithic legacy codes available. The monolithic legacy codes, such as FLOPS 

[100], integrate different disciplines together, and thus can not be used to construct 

disciplinary surrogate models. In this case, the consistency of coupling variables is 

assumed to be attained inside the codes. 

4.2 Determination of the WPF Solutions under PC’s 

The realistic conceptual design of complex systems requires solving a joint 

probabilistic, multi-objective, multidisciplinary optimization problem and finding the 

WPF solutions for design alternative generation and selection. With the aid of the 

accurate surrogate models that captures the essence of physics-based models and reduces 

the computational expense to a manageable level, a new Monte Carlo simulation based 

method is formed to address this need. This section first introduces the new techniques 

that are the foundation of this new method; then some considerations about solving the 

JPMOMDO problem are given; and last the flowchart of the new Monte Carlo simulation 

based method is provided. 
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4.2.1 Defining the Neighborhoods for Searching Consistent Designs 

As mentioned previously, the multidisciplinary design usually features coupling 

variables, which result in disjointed consistent design zones in the design space and 

makes it difficult to find the feasible solutions and WPF. Therefore, the first task of this 

new Monte Carlo simulation based method is to find an approach to address the problem 

of disjointed consistent design zones. 

As mentioned in Chapter 3 Research Questions and Hypotheses, considering what 

is needed for a method to solve a JPMOMDO problem and find WPF, this method should: 

1) Find a MDO solution under deterministic constraints very fast and at low cost, 

which is consistent for all coupling variables and satisfies all deterministic constraints, 

denoted as valid solution; 

2) Explore the entire design space without missing any disjointed consistent design 

zones;  

3) On top of requirement 2), be able to find the WPF under deterministic constraints 

over each disjointed consistent design zone, i.e. local deterministic WPF, if any; 

4) Find enough and evenly distributed points for each local deterministic WPF; 

5) On top of all above, find the global WPF under probabilistic constraints, i.e. 

global probabilistic WPF over the whole design space; 

6) Find enough and evenly distributed points for the global probabilistic WPF. 

The current methods can combine together some of MDO, MOO, and JPA, but not 

all of the three. Usually those methods adopt a nesting-loop approach with each loop to 

handle either MDO, or MOO, or JPA. Although this approach has been successfully 
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applied to many problems and the computational time and cost are acceptable since there 

are at most two loops nested together, it will result in unacceptable long computational 

time and high cost if solving a JPMOMDO problem and finding the WPF since there will 

be three loops nested together and both computational time and cost increase 

exponentially with the number of loops. 

One may consider using domain spanning search methods such as grid search and 

random search methods since those methods do not have the problem of nesting loops. 

The grid search method establishes a grid network in the design space and uses the grid 

knots as search points. This method can guarantee a uniform distribution of the search 

points over the design space, but the difficulty comes from choosing the appropriate 

fineness of the grid. With a coarse grid network, one may not obtain any consistent 

designs in some consistent design zones; another problem is that one may not obtain 

enough consistent design points to find the WPF with a certain confidence. These two 

problems are illustrated with a two design variable example in Figure 4-5. On the other 

hand, with a fine grid network, the computational time may be unacceptable, especially 

for high dimensional design problems. 

The random search method generates random search (design) points and checks the 

convergence criteria for the coupling variables. There are two main problems with this 

random search method. First, because the search points are randomly generated, it is 

possible that only a very few of those points, if not none, are found to be consistent 

designs. Second, one does not know when to stop the search, because it is hard, if at all, 

to make randomly generated search points uniformly distribute over the whole design 
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space since one should not control the random number generator. For these reasons, the 

domain spanning search methods are not adopted in this research. 

 
 

 
Figure 4-5: Example to Show the Problems with Grid Search 

 
 
However, combining the ideas of grid search and random search together and 

making modifications, a new neighborhood search method is formed to efficiently search 

for consistent design points. The basic idea of this method is to search the neighborhoods 

of search starting points using an optimizer. This idea is inspired by the fact that most 

optimizers require a starting point and low and upper bounds of the design variables. One 

can imagine that the low and upper bounds define a hypercube in a n  dimensional space. 

This approach starts with a set of initial search points that are generated over the design 

space by uniform Monte Carlo sampling, thus those points are randomly distributed while 

cover the whole design space uniformly at the same time. This set of sampling points is 

denoted as sampling points 2S . Then a hypercube is defined to which each starting point 
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is centered. The hypercube of each starting point is called the neighborhood of this point. 

The sizes of the neighborhoods should be defined such that the neighborhoods can cover 

the entire design space, although there may be overlapping among those neighborhoods. 

Then an optimizer is used to search for a consistent design point within this hypercube. 

As long as the neighborhood of a starting point overlaps with a consistent design zone, 

the optimizer usually can find a consistent design either on the boundary of this 

consistent design zone or inside it, depending on the performance of the optimizer used. 

Figure 4-6 illustrates the idea of this approach. This approach is called Monte Carlo 

simulation based neighborhood search method. 

 
 

 
Figure 4-6: Illustration of the Neighborhood Search Method 
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X1 

X2 

Design space 

Consistent 
design zones 

Consistent 
design point 

Search path 

Neighborhood 

Search 
starting point 



126 

sampling points. If the sampling points are uniformly distributed within the design space, 

then each hypercube can occupy 
2

1
s

 times the total volume of the design space, where 2s  

is the size of 2S ; and the length of ith side of the hypercube can be  in
x

s
∆

2

1
, where ix∆  

is the range of ith design variable. However, in order to allow some non-uniform 

distribution of the starting points, a larger length of ith side of the hypercube for 

overlapping is given as 

 
nix

s
a ini ,,1,

2

2

K=∆=  (4.11 ) 

where ia  is the length of ith side of the hypercube, ix∆  is the range of ith design 

variable. 

Denotes a starting point as 0X , then the lower and upper bounds of ith design 

variable in a neighborhood search problem is given as 

 
ni

a
xx

a
x i

ii
i

i ,,1,
22 00 K=+≤≤−  (4.12 ) 

One note is that if a part of a neighborhood is not within the design space, this part 

should be cut off. 

This neighborhood search method has many advantages. First, unlike the modified 

Normal Constraint method, no optimization effort is used to generate initial search points. 

Second, like the modified NC, this method also guarantees evenly distributed global 

PF points over the whole design space. This method combines the flexibility of the 

random search method and uniformity of the grid search method. Since this set of initial 

search points is generated over the design space by uniform Monte Carlo sampling, those 
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points are randomly distributed while covering the entire design space uniformly at the 

same time. Since the initial search points are uniformly distributed, under this mechanism 

no disjointed consistent design zone will be missed as long as the neighborhoods will 

cover the entire design space. Usually an optimizer will reach a different consistent 

design if starting from a different initial search point. Since the initial search points are 

randomly distributed, under this mechanism the consistent design solutions will be 

randomly distributed and some of those solutions will be on or near the local 

deterministic WPF’s. Since each neighborhood is small, it is almost impossible for a 

neighborhood to contain more than one local deterministic optimal design. Therefore, if 

the optimizer is used to directly search for a local deterministic WPF point of the part of a 

consistent design zone within a neighborhood, it will almost surely find such a point. 

Therefore, the global (probabilistic) WPF can be found by either indirectly or directly 

searching for local deterministic WPF’s, and the representing discrete points of the global 

WPF will be evenly distributed. One note is that the coupling variables are included into 

the design variables of the optimizer, as can be seen later, and by doing so the 

multidisciplinary problem is decoupled. From the above description one can see that this 

neighborhood search method solves a MDO problem in a way almost the same as the 

OBD method in the sense of decoupling based on an optimizer. 

The third advantage of is that the required number of initial search points can be 

estimated since it is based on Monte Carlo simulation. If one thinks the instance of 

obtaining a global WPF is probabilistic, then the required number of initial search points 

can be estimated based on Equation 2.44. The rule-of-thumb equation will be given later.  
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In summary, this new Monte Carlo simulation Based neighborhood search method 

can satisfy the requirements to solve a JPMOMDO problem and find the WPF because of 

the characteristics and advantages described above. 

Undeniably, this neighborhood search method requires a large number of initial 

search points since it is based on Monte Carlo simulation. However, this large number of 

initial search points is necessary for finding a global WPF under probabilistic constraints. 

On the other hand, one may suspect this method requires unacceptable computational 

time since there are such a large number of neighborhoods to be searched by an 

optimizer. However, since each neighborhood is small and usually contains one local 

optimal design, the optimization process is fast in a neighborhood. Therefore, the overall 

computational time is not long but manageable. 

4.2.2 Two Schemes for the Neighborhood Search Method 

Although the neighborhoods are defined and used to search for consistent design 

points, it needs some special schemes to wisely use this concept to find the consistent 

designs because the number of consistent designs is infinite and not all consistent design 

solutions are feasible, satisfying both the deterministic and probabilistic constraints. 

The goals of such a scheme are to find valid designs (points), and the valid designs it has 

found include some designs being the WPF points or designs near to the WPF points. 

Some valid designs are also the (probabilistic) WPF points; some ones are close to the 

WPF points and are denoted as near WPF design solutions. Two Monte Carlo simulation 

based schemes are formed for the above goals. 

First of all, there is one fundamental requirement for a satisfactory scheme: the 

scheme must be able to find the optimal valid design solutions for single-objective 
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optimization problems with deterministic constraints, or design solutions very near to 

these optimal single-objective ones. This is because the design solutions for these single-

objective optimization problems can be fair easily found by an existing single-objective 

optimizer. If one scheme can not find such design solutions or near ones, obviously it is 

not suitable. 

Since the two schemes are based on Monte Carlo simulation, the instance of 

obtaining a useful WPF is probabilistic, and thus the size of 2S  can be estimated based on 

Equation 2.44.  

Denote the number of sampling points estimated by Equation 2.44 as 0s , the 

number of coupling variables as CXn , and the number of objective functions as OFn , then 

as a rule of thumb, the size of 2S  is given as 

 
0C2 2 sns =  ( 4.13 ) 

 ),max( CXOFC nnn =  ( 4.14 ) 

The first scheme uses the deterministic constraints and sets errors of the coupling 

variables as objective functions to be minimized, then uses the a multi-objective 

optimizer, such as the Goal Attainment optimizer “fgoalattain” in Matlab®, to search one 

valid design solution for each search starting point, if any. Figure 4-7 shows the first 

scheme. 
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Figure 4-7: First Scheme for the Neighborhood Search Method 

 
 
The second scheme directly finds the deterministic WPF of the part of a consistent 

design zone in a neighborhood for each search starting point, if any. This scheme first 

searches for the optimal valid design solutions of e  single-objective optimization 

problems, if any. The objective function of each single-objective optimization problem is 

one of the e  original objectives. The constraints of each of the single-objective 

optimization problem include all the deterministic constraints and CXn  convergence 

conditions for the coupling variables. Then the above e objective function values are set 

as the goals for a multi-objective optimization problem. The objective functions of this 

multi-objective optimization problem are the e original objectives, and the constraints 
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are all the deterministic constraints and the convergence conditions for the coupling 

variables. Note that the optimal valid design solutions of the single-objective 

optimization problems are also deterministic WPF solutions. By this way, the 

deterministic WPF of the part of a consistent design zone in a neighborhood is 

represented by )1( +e  points, if any. A single-objective optimizer, such as “fmincon” in 

Matlab®, is used for the single-objective optimization problems, and another optimizer 

such as “fgoalattain” is used for the multi-objective optimization problem. Figure 4-8 

shows the basic idea and Figure 4-9 shows the flowchart of the second search scheme. 

 
 

 
Figure 4-8: Idea of the Second Search Scheme 
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Figure 4-9: Second Scheme for the Neighborhood Search Method 
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usually an engineering problem is so complicated that one can not determine the true 

WPF, or one can not afford to use the original models (the CA’s) to find the true WPF. 

Second, the design solutions found by the two schemes are different. Thus more solutions 

can be found by using the two schemes at the same time. 

4.2.3 Relaxation of Converging Conditions for Coupling Variables and Thresholds 

in PC’s 

Because of the errors inherent in the surrogate models, the convergence conditions 

for the coupling variables and the thresholds in the PC’s should be relaxed with some 

tolerances. These tolerances have to be carefully selected in order to neither exclude too 

many or even all true valid designs, nor include too many designs that are not true valid 

designs. 

The tolerances can be selected based on the RMSE of the model predicting errors of 

the surrogate models, whereas the model fitting errors are not appropriate for this purpose. 

Since the random cross validation method is able to provide a reasonable estimation of 

the model predicting errors for the surrogate models constructed by the new hybrid 

surrogate-modeling method, as a rule of thumb, the tolerance is given as 

 
HybridRCV,RMSE2 tolerance=  (4.15 ) 

The pseudo programs for relaxation are shown in Figure 4-10 and Figure 4-11. 

 
 

 
 

Figure 4-10: Pseudo Program for Relaxation of Convergence Conditions of Coupling Variables 
 
 

If error_of_CX  ≥  tolerance 
    convergence_condition = error_of_CX  − tolerance 
Else 
    convergence_condition = 0 
End 
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Figure 4-11: Pseudo Programs for Relaxation of Constraint Conditions in PC’s 
 
 

4.2.4 The Flowchart for Determination of the WPF Solutions of a JPMOMDO 

Problem 

One basic assumption for this new framework of determination of the WPF 

solutions of a JPMOMDO in this research is: if the search starting points 2S  are 

randomly uniformly generated (uniform Monte Carlo sampling) and the size of 2S  is 

large enough, e.g. the sample size estimation given by Equation 4.13, the valid designs 

found by the neighborhood search method can include some WPF design solutions or 

near WPF design solutions. This is because when the number of sample points of 2S  is 

large, the neighborhoods are small, and the values of the responses of the consistent 

designs in a neighborhood, if any, are approximately constant. Under this assumption, if 

there is a local WPF design solution in a neighborhood, the other valid designs in this 

neighborhood are very close to this design solution. 

This part of flowchart starts with obtaining the valid design solutions 3S . For each 

design of 3S , the values of the design variables are treated as nominal values (such as 

mean values), and a Monte Carlo sampling is executed according to the distributions of 

If tolerance)( +≥ jj thXg  

    constraint_condition = tolerance)( −− jj thXg  

Else 
    constraint_condition = 0 
End 
 

If toleranceabsolute ))(( ≥− kk thXh  

    constraint_condition = toleranceabsolute ))(( −− kk thXh  

Else 
    constraint_condition = 0 
End 
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the design variables about this point of 3S . The sample size estimation is given by 

Equation 2.44. The resulted sample points are denoted as 4S . 

Each design point of 4S  is checked to see if it is a valid design, and the probabilities 

of satisfying each PC (probability of success, POS) are calculated for all valid design 

points of 4S  using the counting Equation 2.56. Then probabilities of the valid design 

points of 4S  are used to check if those points satisfy the PC’s jointly. If the all the PC’s 

are satisfied jointly, the corresponding design solution of 3S  is saved as a candidate 

design, which is a feasible design. A candidate design solution is a valid design solution 

of 3S  of which random sample points 4S  result in satisfaction of all PC’s jointly. The 

resulting candidate points are denoted as 5S . 

Then the multiple objective values of the candidate points 5S  are evaluated, and are 

used to discover the points on the WPF in the objective space. 

As the last step, the design solutions of 5S  corresponding to these WPF points are 

located accordingly, and are denoted collectively as WPFS . 

The flowchart is shown in Figure 4-12. 

A final note is that the thresholds ‘0’ in the definition of the WPF point can be 

relaxed with a positive value such that more near WPF points can be obtained. 
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Figure 4-12: Flowchart for Determination of the WPF Solutions under PC’s 
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5  IMPLEMENTATION AND RESULTS 

 
 
 
Three pure mathematical examples are used to demonstrate the capacity of SVR 

and the new hybrid surrogate-modeling method to fit given models. The qualities of the 

surrogate models of the three methods RSM, SVR, and hybrid method are also compared 

quantitatively and visually. The hybrid method is also compared with the Neural Network 

method for those three examples. Three two-objective and one three-objective 

deterministic optimization problems are used to demonstrate that this framework can 

surely find the true weak Pareto frontier, although only the second search scheme is used 

since the first search scheme can not be used without coupling variables. A simple yet 

typical aircraft design problem and a simple yet typical reusable launch vehicle design 

problem are solved to demonstrate the feasibility of this new framework for 

determination of the WPF solutions under PC’s. Here ‘simple’ just means the disciplinary 

analyses are formulated with explicit equations, which do not exist in a real design 

process. 

5.1 Pure Mathematical Examples of Surrogate Modeling 

The three pure mathematical examples given here are the hemisphere, wave 

function, and Rastrigin function. Those examples are selected in this research because 

those examples have different orders of nonlinearity, numbers of local extremes, and 

global behaviors. All these three examples have two design variables and can be 

visualized. For each example, the three different surrogate-modeling methods RSM, SVR, 

and the hybrid method are used to construct the surrogate models, and the results are 
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compared. The Neural Network method is also compared with the hybrid method with 

the three examples above. 

5.1.1 The Upper Hemisphere Example 

For this example of upper hemisphere, three cases are considered: 

Case 1, the values of the design variables and the responses are not normalized, the 

kernel is exponential radial basis function (ERBF), and the general parameters of SVR C , 

ε  and σ  are given by trial and error; 

Case 2, the values of the design variables and responses are not normalized, the 

kernel is GRBF, the parameters C and ε  are estimated by the practical estimation 

method, and the parameter σ  is given by trial and error; 

Case 3, the values of the design variables are normalized while the response values 

are not, the kernel is GRBF, the parameters C  and ε  are estimated by the practical 

estimation method, and the parameter σ  is selected by minimizing the modified 

information criterion BICC. 

For each case, all the three surrogate-modeling methods are used to construct 

surrogate models. For each case, the training sample for surrogate model construction 

includes 100 points by HS sampling, the sample for estimation of the true model 

predicting error (MPE) includes 200 points by LHC sampling, and the sample for RCV 

includes 200 points by LHC sampling. The upper hemisphere is given as: 

 ]10,10[,,100 21
2
2

2
1 −∈−−= xxxxy   

Figure 5-1 shows the upper hemisphere over the given design space. 
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Figure 5-1: Illustration of the Upper Hemisphere 

 
 
The values of the general parameters and goodness of fit are listed in Table 4, and 

the visualization of the resulted surrogate models is shown in Figure 5-2 – Figure 5-8. 

 
 

Table 4: Values of General Parameters and Goodness of Fit for the Upper Hemisphere 
 

Case Method Parameters of SVR 2R  TrnRMSE  RCVRMSE  MPERMSE  

RSM  0.96083 0.49266 0.33693 0.45627 

SVR C =200; ε = 0.01; σ =2 1.00000 0.00995 0.34065 0.47713 

 

1 

Hybrid C =200; ε = 0.01; σ =2 0.99999 0.00981 0.22215 0.31217 

RSM  0.96083 0.49266 0.34768 0. 50033 

SVR C =14.05; ε = 0.0158; σ =1.5 0.99998 0.01584 0.29786 0.39346 

 

2 

Hybrid C =1.487; ε = 0.0198; σ =1.5 0.99723 0.13895 0.20400 0.29038 

RSM  0.96083 0.49266 0.20382 0.49182 

SVR C =14.05; ε = 0.0158; σ =0.081 0.99998 0.01568 0.11946 0.41626 

 

3 

Hybrid C =1.487; ε = 0.0198; σ =0.027 0.99990 0.02525 0.35913 0.42541 
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Figure 5-2: Surrogate Model for the Upper Hemisphere by RSM – Case 1, 2, 3 
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Figure 5-3: Surrogate Model for the Upper Hemisphere by SVR – Case 1 
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Figure 5-4: Surrogate Model for the Upper Hemisphere by Hybrid – Case 1 
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Figure 5-5: Surrogate Model for the Upper Hemisphere by SVR – Case 2 
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Figure 5-6: Surrogate Model for the Upper Hemisphere by Hybrid – Case 2 
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Figure 5-7: Surrogate Model for the Upper Hemisphere by SVR – Case 3 
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Figure 5-8: Surrogate Model for the Upper Hemisphere by Hybrid – Case 3 

 
 

5.1.2 The Wave Function Example 

For this example of wave function, three cases are considered: 

Case 1, the values of the design variables and the responses are not normalized, the 

kernel is ERBF, and the general parameters of SVR C , ε  and σ  are given by trial and 

error; 

Case 2, the values of the design variables and responses are not normalized, the 

kernel is GRBF, the parameters C and ε  are estimated by the practical estimation 

method, and the parameter σ  is given by trial and error; 

Case 3, the values of the design variables are normalized while the response values 

are not, the kernel is GRBF, the parameters C  and ε  are estimated by the practical 

estimation method, and the parameter σ  is selected by minimizing the modified 

information criterion BICC. 
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For each case, all the three surrogate-modeling methods are used to construct 

surrogate models. For each case, the training sample for surrogate model construction 

includes 120 points by HS sampling, the sample for estimation of true MPE includes 200 

points by LHC sampling, and the sample for RCV includes 200 points by LHC sampling. 

The wave function is given as: 

 ]10,10[,,)2sin()( 211
2
2

2
1 −∈−= xxxxxy   

Figure 5-9 shows the wave function over the given design space. 
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Figure 5-9: Illustration of the Wave Function 

 
 
The values of the general parameters and goodness of fit are listed in Table 5, and 

the visualization of the resulted surrogate models is shown in Figure 5-10 – Figure 5-16. 
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Table 5: Values of General Parameters and Goodness of Fit for the Wave Function 
 

Case Method Parameters of SVR 2R  TrnRMSE  RCVRMSE  MPERMSE  

RSM  0.39492 25.27269 21.12868 26.73301 

SVR C =200; ε = 0.01; σ =1.5 1.00000 0.01000 6.89083 6.38921 

 

1 

Hybrid C =200; ε = 0.01; σ =1.5 1.00000 0.01000 6.83087 6.03544 

RSM  0.39492 25.27269 25.39322 28.41188 

SVR C =98.01; ε = 0.0088; σ =1.5 0.99997 0.17855 3.82165 4.79405 

 

2 

Hybrid C =76.14; ε = 0.0116; σ =1.5 0.99998 0.14097 3.40355 4.21043 

RSM  0.39492 25.27269 25.02884 26.95390 

SVR C =98.01; ε = 0.0088; σ =0.069 1.00000 0.00875 2.84765 6.38358 

 

3 

Hybrid C =76.14; ε = 0.0116; σ =0.069 1.00000 0.01155 4.81235 4.73529 
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Figure 5-10: Surrogate Model for the Wave Function by RSM – Case 1, 2, 3 
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Figure 5-11: Surrogate Model for the Wave Function by SVR – Case 1 
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Figure 5-12: Surrogate Model for the Wave Function by Hybrid – Case 1 
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Figure 5-13: Surrogate Model for the Wave Function by SVR – Case 2 
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Figure 5-14: Surrogate Model for the Wave Function by Hybrid – Case 2 
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Figure 5-15: Surrogate Model for the Wave Function by SVR – Case 3 
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Figure 5-16: Surrogate Model for the Wave Function by Hybrid – Case 3 
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5.1.3 The Rastrigin Function with 36 Peaks Example 

For this example of the Rastrigin function with 36 peaks, three cases are considered: 

Case 1, the values of the design variables and the responses are not normalized, the 

kernel is ERBF, and the general parameters of SVR C , ε  and σ  are given by trial and 

error; 

Case 2, the values of the design variables and responses are not normalized, the 

kernel is GRBF, the parameters C and ε  are estimated by the practical estimation 

method, and the parameter σ  is given by trial and error; 

Case 3, the values of the design variables are normalized while the response values 

are not, the kernel is GRBF, the parameters C  and ε  are estimated by the practical 

estimation method, and the parameter σ  is selected by minimizing the modified 

information criterion BICC. 

For each case, all the three surrogate-modeling methods are used to construct 

surrogate models. For each case, the training sample for surrogate model construction 

includes 120 points by HS sampling, the sample for estimation of true MPE includes 200 

points by LHC sampling, and the sample for RCV includes 200 points by LHC sampling. 

The Rastrigin function with 36 peaks and consequently 25 troughs is given as: 
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Figure 5-17 shows the Rastrigin function with 36 peaks and 25 troughs over the 

given design space. 
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Figure 5-17: Illustration of the Rastrigin Function with 36 Peaks 

 
 
The values of the general parameters and goodness of fit are listed in Table 6, and 

the visualization of the resulted surrogate models is shown in Figure 5-18 – Figure 5-24. 

 
 

Table 6: Values of General Parameters and Goodness of Fit for the Rastrigin Function with 36 Peaks 
 

Case Method Parameters of SVR 2R  TrnRMSE  RCVRMSE  MPERMSE  

RSM  0.5783 10.66359 5.70557 10.50619 

SVR C =200; ε = 0.01; σ =0.7 1.0000 0.01000 12.76412 11.32161 

 

1 

Hybrid C =200; ε = 0.01; σ =0.7 1.0000 0.01000 7.38529 8.07982 

RSM  0.5783 10.66359 7.64147 10.42822 

SVR C =87.45; ε = 0.0166; σ =0.7 0.99811 0.71784 5.01745 8.38019 

 

2 

Hybrid C =32.12; ε = 0.0307; σ =0.7 0.98210 2.24653 3.97741 6.15362 

RSM  0.5783 10.66359 7.60002 9.58444 

SVR C =87.45; ε = 0.0166; σ =0.057 0.99999 0.06214 9.04092 12.14723 

 

3 

Hybrid C =32.12; ε = 0.0307; σ =0.050 1.00000 0.03055 4.34022 5.35881 
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Figure 5-18: Surrogate Model for the Rastrigin Function by RSM – Case 1, 2, 3 
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Figure 5-19: Surrogate Model for the Rastrigin Function by SVR – Case 1 
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Figure 5-20: Surrogate Model for the Rastrigin Function by Hybrid – Case 1 
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Figure 5-21: Surrogate Model for the Rastrigin Function by SVR – Case 2 
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Figure 5-22: Surrogate Model for the Rastrigin Function by Hybrid – Case 2 
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Figure 5-23: Surrogate Model for the Rastrigin Function by SVR – Case 3 
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Figure 5-24: Surrogate Model for the Rastrigin Function by Hybrid – Case 3 

 
 

5.1.4 Comparison with Neural Network 

In Ref. [35], SVR is compared with RSM, MARS, RBF, and KG, but ANN is not 

compared with. Now that an integrated Neural Network software package BRAINN [101] 

is available that can automatically determine the number of hidden layer nodes and 

prevent overfitting in many cases, the hybrid method is compared with ANN. 

To have a fair comparison, the following setup has been established. First, the same 

training sample is fed into the hybrid method and ANN. For the hybrid method, the 

whole sample is used for model construction, while for ANN, 80% of the sample points 

are used for model construction, and the other 20% points are used as validation cases to 

determine the best number of hidden layer nodes, which is also a part of the surrogate 

model. Second, the same random sample is used for MPE calculation. Third, the 

algorithm to choose the best value of σ , the third pre-specified parameter of SVR, is 
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changed to minimizing the following combined error ‘comb_error’ in Equation 5.1, 

instead of minimizing a modified information criterion. This is because the ANN model 

obtained with the BRAINN package minimizes both MFE and MPE, instead of a 

modified information criterion. By minimizing ‘comb_error’, a hybrid method model can 

also minimize both MFE and MPE. 

 ( )2
RCV

2
MLE RMSE5.0ˆ5.0lncomb_error ∗+∗= σ  (5.1 ) 

The Upper Hemisphere, Wave function, and Rastrigin function with 36 peaks are 

used again. For the Upper Hemisphere example, 100 sampling points are used; for the 

other two examples, 120 points are used. The values of the general parameters and 

goodness of fit are listed in Table 7. In this table, the column TrnRMSE  is the model 

fitting error, and MPERMSE  is the true model predicting error calculated with random 

samples. The visualization of the resulted surrogate models is shown in Figure 5-25 – 

Figure 5-30. 

 
 

Table 7: Goodness of Fit of RSSVR and NN for Three Pure Mathematical Examples 
 

Example Method Number of hidden layer  nodes 

Parameters of SVR 

2R  TrnRMSE  MPERMSE  

ANN 55 0.99375 0.16737 0.34982 Upper 
Hemisphere 

Hybrid C =1.487; ε = 0.020; σ =0.106 0.99522 0.17708 0.31499 

ANN 15 0.99988 0.27333 0.88934 Wave 
function 

Hybrid C =76.14; ε = 0.012; σ =0.097 0.99968 0.61234 2.99815 

ANN 20 0.70044 6.97226 11.32308 Rastrigin 
function 

Hybrid C =32.12; ε = 0.031; σ =0.057 0.99934 0.42737 6.05625 
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Figure 5-25: Surrogate Model for the Upper Hemisphere by ANN – Comparison 
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Figure 5-26: Surrogate Model for the Upper Hemisphere by Hybrid – Comparison 
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Figure 5-27: Surrogate Model for the Wave Function by ANN – Comparison 
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Figure 5-28: Surrogate Model for the Wave Function by Hybrid – Comparison 
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Figure 5-29: Surrogate Model for the Rastrigin Function by ANN – Comparison 
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Figure 5-30: Surrogate Model for the Rastrigin Function by Hybrid – Comparison 
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5.1.5 Discussion 

In Table 4 –  Table 7, the column TrnRMSE  is the model fitting error, RCVRMSE  is 

the estimated model predicting error using the Random Cross Validation method, and 

MPERMSE  is the true model predicting error calculated with random samples. Observing 

and analyzing the model fitting results of the three pure mathematical examples, the 

following conclusions can be drawn: 

1. Being used individually, RSM is good for low nonlinear problems such as the 

example of upper hemisphere, while SVR and hybrid method are good for both low and 

high nonlinear problems such as the examples of wave function and Rastrigin function. 

2. The surrogate models constructed by the hybrid method almost always have the 

best accuracy in terms of both MFE and MPE, with different kernel functions and 

methods to select the parameters of SVR. This is because RSM can well capture the 

global behavior of the problem, while SVR can well capture the local nonlinear behavior. 

3. With increase of complexity of the problems, the differences of accuracy 

between the surrogate models constructed by the hybrid method and the others become 

more substantial, especially when the parameters C , ε , and σ  of SVR are automatically 

selected. This can be seen in the Case 3 of the example of the Rastrigin function. In this 

case, the hybrid method recovers two more peaks in the upper middle part than SVR. 

4. The ERBF kernel is very good for MFE, i.e. the MFE of the surrogate models 

constructed with it is very small, but not for MPE. On the other hand, the GRBF kernel is 

good for both MFE and MPE, and works well for all examples. 

Remember that for SVR and the hybrid method, Case 1 uses ERBF kernel, and 

Cases 2 and 3 use GRBF kernel.  In Table 4 –  Table 6, one can see that the MFE’s of 
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Case 1 are always the smallest in the three cases, but in most cases the MPE’s of Case 1 

are the greatest; the MFE’s of Cases 2 and 3 are small, although not as good as those of 

Case 1; the MPE’s of Cases 2 and 3 are small and usually better than those of Case 1. 

5. The random cross validation method can provide reasonable estimation for the 

MPE, especially for the surrogate models constructed by the hybrid method. The 

RCVRMSE  is quite close to the MPERMSE  as can be seen in all examples. 

6. The automatic process for selection of parameters of SVR works very well, since 

the MFE’s and MPE’s of all the automatically fitted SVR and hybrid models are small. 

This includes normalization of the values of the design variables, selection of the 

parameters C  and ε  by the practical method, selection of the kernel parameter σ  by 

minimizing a modified information criterion. Thus the users do not need to select the pre-

specified parameters now and can obtain good results like an expert of SVR. 

7. With a small sample size, i.e. 120, the SVR and hybrid methods obtained 

satisfactory results for the complex examples of wave function and Rastrigin function. 

The MFE’s are less than 1% and MPE’s less than 5%. Other examples that are not 

provided here show that the accuracy of the surrogate models constructed by RSM 

increases little or does not with the sample size once the order of the polynomials is 

selected, while for SVR and hybrid it steadily increases with the sample size. All of these 

confirm that the mathematical foundation of SVR overcomes the problem of “curse of 

dimensionality”. 

8. With a small sample size of 100 or 120, the hybrid method can obtain accurate 

models for many types of complex problems, while the ANN method can not. From 

Table 7 and Figure 5-25 – Figure 5-30, one can see that the hybrid method obtains high 
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accuracy for all the three examples in terms of MFE and MPE; the ANN obtains high 

accuracy for the examples of Upper Hemisphere and Wave function, but low accuracy for 

the example of Rastrigin function. Especially, only a few peaks and troughs are recovered 

with ANN, and this makes the error MPE is very high. 

5.2 Pure Mathematical Examples of Finding the Weak Pareto Frontier 

Three two-objective and one three-objective deterministic optimization problems 

are used to demonstrate that this framework can surely find the exact weak Pareto 

frontier. Those examples are selected in this research because those examples have 

different features, such as multiple-to-one mapping from the design space to the objective 

space, frontier of disjointed segments, and more than two objectives with a constraint. 

Table 8 lists the objective functions and features of these four examples. All these four 

examples have no more than three objectives and thus can be visualized. For each 

example, only the second search scheme is used since the first search scheme can not be 

used without coupling variables. 

 
 

Table 8: Objective Functions and Features of the Mathematical Examples of Finding WPF 
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5.2.1 First Mathematical Example of Finding WPF  

For this example, the size of 2S  or the number of search starting points is given the 

same as 49500 =S  with 99% probability and 2% error, since this problem is simple and 

thus less search starting points are needed. The objective functions and the feature are 

given as following: 
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The shape of the objective space is designated in Figure 5-31 by the area enclosed 

by the blue curves. The true weak Pareto frontier is the curve closer to the origin, 

including a vertical segment and an almost horizontal segment. 
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Figure 5-31: Objective Space of the First Mathematical Example of Find WPF 

 
 
The results are given in Figure 5-32. From this figure, one can see the WPF points 

obtained by the second search scheme distributed along the true WPF. Comparing the left 
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side with the right side of this figure, one can see that because the magnitude level of the 

second objective function is quite greater than that of the first objective function, the 

uniform sampling in the design space corresponds to nonuniform distribution of points in 

the objective space. Even though, many WPF points are obtained along the left vertical 

segment of the true WPF and the distribution of these points is roughly even. 
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Figure 5-32: Results of the First Mathematical Example of Finding WPF 
 
 

5.2.2 Second Mathematical Example of Finding WPF  

For this example, the size of 2S  or the number of search starting points is given the 

same as 49500 =S  with 99% probability and 2% error, since this problem is simple and 

thus less search starting points are needed. The objective functions and the feature are 

given as following: 
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The shape of the objective space is designated in Figure 5-33 by the shape 

represented by the blue points. The true weak Pareto frontier is the edges closer to the 

origin, including one concave segment and two convex segments. Also one can find that 

in some areas the blue points are much denser. This phenomenon means that the mapping 

from the design space to the objective space is multiple-to-one. 
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Figure 5-33: Objective Space of the Second Mathematical Example of Find WPF 
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The results are given in Figure 5-34. From this figure, one can see the WPF points 

obtained by the second search scheme evenly distributed along the true WPF, and the 

number of WPF points is plentiful. 
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Figure 5-34: Results of the Second Mathematical Example of Finding WPF 
 
 

5.2.3 Third Mathematical Example of Finding WPF  

For this example, the size of 2S  or the number of search starting points is given the 

same as 49500 =S  with 99% probability and 2% error, since this problem is simple and 

thus less search starting points are needed. The objective functions and the feature are 

given as following: 
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 Functions Feature 

 

 

 

P3 

)8sin(1

101

1
1

2

1

2

2

11

x
a

x

a

x
b

xa

baf

xf

π−






−=

+=
∗=

=

 

10

10

2

1

≤≤
≤≤

x

x
 

Frontier of disjointed segments 

 
 
The shape of the objective space is designated in Figure 5-35 by the area enclosed 

by the blue curves. Because of the wavelike curve at the bottom of the objective space, 

the true weak Pareto frontier consists of spatially disjointed segments, including a vertical 

segment at the left of the objective space. 
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Figure 5-35: Objective Space of the Third Mathematical Example of Find WPF 
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The results are given in Figure 5-36. From this figure, one can see the WPF points 

obtained by the second search scheme evenly distributed along the true WPF consisting 

of spatially disjointed segments, and the number of WPF points is plentiful. 
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Figure 5-36: Results of the Third Mathematical Example of Finding WPF 
 
 

5.2.4 Fourth Mathematical Example of Finding WPF  

This example is close to a real engineering problem because it has three design 

variables, three objectives, and one constraint, although a real engineering problem 

usually has more design variables, objectives, and constraints. 

For this example, the size of 2S  or the number of search starting points is given the 

same as 49500 =S  with 99% probability and 2% error, since this problem is simple and 
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thus less search starting points are needed. The objective functions and the feature are 

given in the table below. 

The shape of the objective space is designated in Figure 5-37 by the shape 

represented by the blue points. Actually, the shape of objective space is not easy to 

imagine, but it is not solid but includes intertwined three dimensional surfaces. The true 

weak Pareto frontier is also not easy to see, but it is a three dimensional curve. 
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Figure 5-37: Objective Space of the Fourth Mathematical Example of Find WPF 
 
 

The results are given in Figure 5-38. From this figure, one can see the WPF points 

obtained by the second search scheme evenly distributed along the true WPF, and the 

number of WPF points is plentiful. Also one can see the true PF and WPF are quite 

different, and as mentioned previously, the WPF has more solutions besides the PF 

solutions. 
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Figure 5-38: Results of the Fourth Mathematical Example of Finding WPF 
 
 

5.2.5 Discussion 

Although only the second search scheme is used for each example since the first 

search scheme can not be used without coupling variables, observing and analyzing the 

results of finding WPF for the four pure mathematical examples, the following 

conclusions can be drawn: 

1. The second search scheme for finding WPF is a generic for many types of 

problems, i.e. whatever the features and the complexity of the problems are, and it can 

surely find the true WPF with exactly the same procedures. 
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2. The second search scheme for finding WPF can find not only the local WPF, but 

also the global WPF. It will be not be trapped by the local WPF. This can be seen in the 

third example of which the WPF comprises 4 disjointed segments (local WPF segments). 

3. The second search scheme for finding WPF can find a large number of WPF 

points even with smaller number of search starting points than that estimated with the 

rule-of-thumb equation given in this research. This can be seen in all four examples. 

4. The WPF points found by the second search scheme are nearly evenly distributed 

over the complete frontier, or nearly evenly distributed over each of the segments of the 

complete frontier even if uniform sampling in the design space corresponds to 

nonuniform distribution in the objective space. This can be seen in all four examples. 

5.3 A Transport Aircraft Design Example 

A simple yet typical aircraft design problem is used to show the feasibility of the 

new framework of determination of the WPF solutions under probabilistic constraints. 

Here ‘simple’ just means the disciplinary analyses are formulated with explicit equations, 

which do not exist in a real design process. This problem has 

1) 4 disciplinary analyses; 

2) 7 system level design variables including 2 coupling variables that are assumed 

to be normally distributed about the mean values with σ3  symmetrical truncation (see 

APPENDIX G for a summary of the doubly-truncated normal distribution); 

3) 7 PC’s all with required POS of 0.85; and 

4) 2 design objectives. See APPENDIX H for detailed information. Figure 2-21 is 

repeated here to show the DSM of this problem. 
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Figure 2-21: Example of the DSM of a Multidisciplinary Aircraft Design Problem 

 
 
The surrogate models are first constructed, and then those models are used to find 

the WPF and its design solutions. For the purpose of validation, the original CA’s are 

also used to find the WPF, and the two kinds of WPF’s obtained with the surrogate 

models and original CA’s are compared. The exact single-objective deterministic optimal 

solutions and objective values over the given design space are obtained and given in 

Table 9. Here ‘exact’ implicates the original CA’s are used. 

 
 

Table 9: Exact Single-Objective Deterministic Optimal Results of the Aircraft Design Example 
 

Objective Objective Value b  l  S  
toW  iT  

PI 151.11 111.76 130.43 1429.31 163567.1 27746.8 

iT  20765.66 139.37 135.36 1850.00 160108.8 20765.66 
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5.3.1 Surrogate Models 

For this example, discipline-level surrogate models are constructed. A surrogate 

model is constructed for each of the responses of the discipline analyses. For each 

response, the training sample for surrogate model construction includes 150 points by HS 

sampling, the sample for estimation of true MPE includes 300 points by LHC sampling, 

and the sample for RCV includes 200 points by LHC sampling. The values of both the 

design variables and the response are normalized, the kernel is GRBF, the parameters C  

and ε  are estimated by the practical estimation method, the parameter σ  is selected by 

minimizing the modified information criterion BICC, and the best surrogate model is 

selected by minimizing the modified information criterion BICC as well. 

The selected surrogate modeling methods and goodness of fit for the responses are 

listed in Table 10 – Table 13, where TrnRMSE  is the normalized model fitting error, 

HybridRCV,RMSE  is the normalized estimation of model predicting error using Random 

Cross Validation, MPERMSE  is the normalized true model predicting error calculated 

with random samples, and RCVRMSE  is the (real) estimated model predicting error after 

de-normalization. The normalized values are actually percentage values since all 

responses are normalized to [0, 100]. The accuracy of the surrogate models is satisfactory, 

since the maximum normalized model predicting error is less than 3%, and most of errors 

are less than 1%. The results once again show that HybridRCV,RMSE  can provide reasonable 

estimation for MPERMSE , i.e. the RCV method can provide reasonable estimation for the 

model predicting error. 
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Table 10: Values of General Parameters and Goodness of Fit for the D CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

d  RSM 0.0443 0.0457 0.0321 5.619E-4 

sldc _0  Hybrid 0.0076 0.2094 0.1983 5.758E-6 

cdc _0  Hybrid 0.0074 0.2030 0.1874 5.802E-6 

 
 

Table 11: Values of General Parameters and Goodness of Fit for the A CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

takeoffD

L








 RSM 0.1250 0.1525 0.1250 0.01282 

landingD

L








 

RSM 0.7373 1.0671 0.7373 0.10379 

cruiseoptD

L

_









 

RSM 0.0774 0.1295 0.0774 0.00838 

brV  RSM 0.1454 0.1773 0.1454 0.30913 
 
 

Table 12: Values of General Parameters and Goodness of Fit for the W CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

landingW  Hybrid 0.0226 0.3842 0.3516 187.671 

frR  Hybrid 0.0205 0.4921 0.4614 0.00112 

faR  RSM 0.0321 0.0342 0.0201 0.00001 
U  

Hybrid 0.0201 0.4510 0.4225 0.00112 
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Table 13: Values of General Parameters and Goodness of Fit for the P CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

toS  Hybrid 0.0267 0.5663 0.3707 22.9246 

lS  Hybrid 0.0184 0.2960 0.1794 5.65700 

toq  Hybrid 0.0213 1.8260 1.2634 0.00201 

lq  Hybrid 0.0154 0.9421 0.5842 0.00148 

fR  SVR 0.1667 2.5723 1.9700 0.03808 
 
 

5.3.2 Design Results 

For this design example, the new framework is implemented with the two 

neighborhood search schemes. For each search scheme with the surrogate models, two 

cases are considered: the first case uses sample sizes of 2S  as 9900, and the second case 

uses 19800. The number 19800 is the estimation given by Equation 4.13 with 99% 

probability and 2% error. For each valid solution of 3S , the sample size of 4S  is given as 

792 estimated by Equation 2.44 with 99% probability and 5% error. 

With the first search scheme and surrogate models, 2518 and 4699 valid solutions 

3S  are obtained, respectively. Then 549 and 2891 candidate points of 5S  are obtained, 

respectively. Finally, 14 and 41 WPF points are obtained, respectively. The figures of the 

WPF’s in the objective space are shown in Figure 5-39 and Figure 5-40. 
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Figure 5-39: WPF Found by the First Search Scheme with 9900 points of 2S  and Surrogate Models 

for the Aircraft Design Example 
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Figure 5-40: WPF Found by the First Search Scheme with 19800 points of 2S  and Surrogate Models 

for the Aircraft Design Example 
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With the first search scheme and surrogate models, the following valid solutions 

that are the closest to the single-objective deterministic optimal solutions are found and 

listed in Table 14. The distance used here to select the closest solution is the relative 

Euclidean distance. 

 
 

Table 14: Valid Solutions Closest to Single-Objective Deterministic Optimal Solutions with the First 
Search Scheme and Surrogate Models for the Aircraft Design Example 

 

Case Objective Objective Value b  l  S  
toW  iT  

PI 151.28*, 151.06+ 112.07 132.17 1457.06 159870.06 27463.25 
1 

iT  20750.27*+ 139.12 129.67 1758.82 162128.87 20750.27 

PI 151.60*, 151.34+ 110.66 131.08 1438.78 163948.09 27886.68 
2 

iT  20697.02*+   138.86 132.20 1834.88 161679.72 20697.02 

Note: *Predicted by the surrogate models; 
+Predicted by the original CA’s. 

 
 
With the second search scheme and surrogate models, 4177 and 7235 valid 

solutions 3S  are obtained, respectively. Then 133 and 280 candidate points of 5S  are 

obtained, respectively. Finally, 11 and 10 WPF points are obtained, respectively. The 

figures of the WPF’s are shown in Figure 5-41 and Figure 5-42. 

 
 



179 

125 130 135 140 145 150 155 160
2

2.5

3

3.5
x 10

4

PI

T i

 
 

Figure 5-41: WPF Found by the Second Search Scheme with 9900 points of 2S  and Surrogate 
Models for the Aircraft Design Example 
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Figure 5-42: WPF Found by the Second Search Scheme with 19800 points of 2S  and Surrogate 
Models for the Aircraft Design Example 
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With the second search scheme and surrogate models, the following valid solutions 

that are the closest to the single-objective deterministic optimal solutions are found and 

listed in Table 15. The distance used here to select the closest solution is the relative 

Euclidean distance. 

 
 

Table 15: Valid Solutions Closest to Single-Objective Deterministic Optimal Solutions with the 
Second Search Scheme and Surrogate models for the Aircraft Design Example 

 

Case Objective Objective Value b  l  S  
toW  iT  

PI 151.40*, 151.14+ 111.96 129.51 1429.25 163465.15 27457.10 
1 

iT  20431.33*+ 139.10 138.05 1837.30 160187.87 20431.33 

PI 150.50*, 150.23+ 112.45 130.70 1438.69 164450.23 27865.69 
2 

iT  20671.82*+ 138.91 135.35 1832.20 161634.81 20671.82 

Note: *Predicted by the surrogate models; 
+Predicted by the original CA’s. 

 
 

The two WPF’s found by the first search scheme with 9900 and 19800 points of 2S  

respectively and surrogate models are compared in Figure 5-43; the two WPF’s found by 

the second search scheme with 9900 and 19800 points of 2S  respectively and surrogate 

models are compared in Figure 5-44; and the two WPF’s found by the two search 

schemes with 19800 points of 2S  and surrogate models are compared in Figure 5-45. 
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Figure 5-43: Comparison between the Two WPF’s Found by the First Search Schemes with 9900 and 
19800 Points of 2S  and Surrogate Models for the Aircraft Design Example 
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Figure 5-44: Comparison between the Two WPF’s Found by the Second Search Schemes with 9900 
and 19800 Points of 2S  and Surrogate Models for the Aircraft Design Example 
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Figure 5-45: Comparison between the Two WPF’s Found by the Two Search Schemes with 19800 
Points of 2S  and Surrogate Models for the Aircraft Design Example 

 
 

For the purpose of validation, the original CA’s are also used to find the WPF. Both 

search schemes are executed with 19800 points of 2S . Then two WPF’s are obtained. 

These two new WPF’s are compared with each other, and also compared with the 

corresponding one found with the surrogate models, respectively. These comparisons are 

given in Figure 5-46 – Figure 5-48. 
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Figure 5-46: Comparison between the Two WPF’s Found by the Two Search Schemes with 19800 
Points of 2S  and Original CA’s for the Aircraft Design Example 
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Figure 5-47: Comparison between the Two WPF’s Found by the First Search Schemes with 19800 
Points of 2S , Surrogate Models, and Original CA’s for the Aircraft Design Example 
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Figure 5-48: Comparison between the Two WPF’s Found by the Second Search Schemes with 19800 
Points of 2S , Surrogate Models, and Original CA’s for the Aircraft Design Example 

 
 

5.3.3 Discussion 

Observing and analyzing the design results of the aircraft design example, the 

following conclusions can be drawn: 

1. It is important to choose an appropriate size of the search starting points 2S . 

With the small size 2s  of 9900, the deterministic optimization problem with iT  as the 

single objective can not find a solution close to the known exact result (compare Table 9 

with Case 1 in Table 14 and Table 15). With the first search scheme, the values of iT  are 

very close to that of the exact solutions, but the values of the design variables S  and toW  

are far away from those of the exact solutions. With the second search scheme, the values 

of iT  are a little far from that of the exact solutions. Additionally, the WPF’s found with 

the small size 2s  of 9900 are not the correct ones, referring to Figure 5-43 and Figure 

5-44. 
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2. The estimation of the size of 2S  given by Equation 4.13 is adequate for a good 

result. With the size 2s  of 19800 given by Equation 4.13, solutions very close to the exact 

solutions are found for both single-objective optimal problems, comparing the results of 

Case 2 with the exact solutions (compare Table 9 with Case 2 in Table 14 and Table 15); 

the WPF’s found by two search schemes are very similar, referring to Figure 5-45; and 

the WPF points are uniformly distributed and the number of WPF points is enough for 

practical use. These justify the assumption made in section 4.2.4 that if the size of  2S  is 

large enough, the WPF or near WPF can be found. 

3. Relaxation of the constraints and the convergence criteria is necessary. From 

other experiments (not recorded in this thesis) for this aircraft example, it has been found 

that no solutions satisfying all the constraints and convergence criteria can be obtained 

with the surrogate models and zero tolerance, whereas plenty solutions have been 

obtained with the original CA’s and zero tolerance. 

One note is that the relaxation tolerance is small with respect to the magnitude of 

the response, usually less than 1%. For example, RCVRMSE  of brV  is 0.30913, then the 

relaxation tolerance is 0.61826 for this coupling variable; considering the magnitude of 

brV  is more than 500, one can this relaxation is very small. 

4. With a small sample size, i.e. 150, the hybrid method can achieve accurate result 

for many responses. The MFE’s of the hybrid models are less than 0.2%, and the MPE’s 

less than 2% (see the results of hybrid models in Table 10 – Table 13). 

5. The model selection advisor works very well. The model selection advisor selects 

different methods for different responses, all the MFE’s are less than 1%, the maximum 

MPE less than 3%, and most MPE’s less than 1% (see Table 10 – Table 13). 
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6. The Random Cross Validation method can provide good estimation for model 

predicting error. Comparing the estimation HybridRCV,RMSE  with true error MPERMSE  in 

Table 10 – Table 13, one can see the values are close, especially for the models of SVR 

and the hybrid method.  

7. The best objective values of PI and iT  found by the two search scheme with the 

surrogate models are better than those of the exact solutions, comparing Table 9 with 

Table 14 and Table 15, and referring to Figure 5-47 and Figure 5-48. The maximum 

difference for PI and iT  is about 7%. 

The reason is that the errors of the surrogate models and the relaxation of the 

constraints and convergence criteria for the coupling variables lead to solutions that are 

inferior to the exact solutions in terms of satisfying the constraints and the convergence 

criteria. However, the errors of the surrogate model can not be eliminated; and as 

mentioned previously, the relaxation has to be made, otherwise too many or even all true 

valid design solutions may be excluded. From other experiments (not recorded in this 

thesis) with smaller and zero tolerance for this aircraft design example, it has been found 

that the errors of the surrogate models are the main reason for this difference, since 

smaller and zero tolerances do reduce this difference, but not always. 

8. It can be concluded that the correct WPF is found with either search scheme for 

three reasons. The first is that the WPF’s found by the two different search schemes with 

either surrogate models or original CA’s are very similar. The second is that the WPF’s 

found with the surrogate models are close to and have similar tendency as those with the 

original CA’s, referring to Figure 5-45 – Figure 5-48. The last is that the best values of PI 

found with both schemes and the original CA’s are no more than 151.5 and almost 
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vertical lines are found in Figure 5-47 and Figure 5-48. This phenomenon is the same as 

the results obtained with a conventional optimizer and original CA’s with many different 

search starting points. Thus this aircraft deign example shows the feasibility of this new 

framework. 

5.4 A Reusable Launch Vehicle Design Example 

Another simple yet typical reusable launch vehicle (RLV) design problem is used to 

show the feasibility of the new framework of determination of the WPF solutions under 

probabilistic constraints. This design problem is a typical multimodal problem; there are 

many local extremes for each objective. With this RLV design problem, the framework is 

shown to be able to handle multimodal problems. This problem has 

1) 5 disciplinary analyses; 

2) 9 system level design variables including 4 coupling variables that are assumed 

to be normally distributed about the mean values with σ5.0  symmetrical truncation (see 

APPENDIX G for a summary of the doubly-truncated normal distribution); 

3) 1 PC’s with required POS of 0.30, and 

4) 2 design objectives. See APPENDIX I for detailed information. 

The reason that the required POS is so small is because this design problem is quite 

sensitive to the perturbation around the converged design solutions, i.e. a small 

perturbation to a converged design solution will easily result in a non-converged design 

combination. Although there is only one probabilistic constraint, this RLV design 

problem still can demonstrate the feasibility of the proposed framework since the number 

of probabilistic constraints makes no difference to the operation of the probability 

counting Equation 2.55. Figure 5-49 shows the DSM of this problem. 
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Figure 5-49: Example of the DSM of a Multidisciplinary RLV Design Problem 

 
 
The surrogate models are first constructed, and then those models are used to find 

the WPF and its design solutions. For the purpose of validation, the original CA’s are 

also used to find the WPF, the two kinds of WPF’s obtained with the surrogate models 

and original CA’s are compared. One set of exact single-objective deterministic (local) 

optimal solutions and objective values over the given design space are obtained and given 

in Table 16. Here ‘exact’ implicates the original CA’s are used. Since this RLV design 

problem is a multimodal problem, the solutions in this table should be used with the 

search starting point with which the solutions are found. With the OBD method, the 
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search starting point used is 40=ε , 3.1_ 0 =WT , 6=r , 40_ =SW , 5.0=∆ splitV , 

500,4=refS , 000,000,2=grossW ,  000,750,1=propW , and 000,200=landW . 

 
 

Table 16: Exact Single-Objective Deterministic Optimal Results of the RLV Design Example 
 

Objective Objective Value ε  
0_WT  r  SW _  

splitV∆  

grossW  651693.6 55.1 1.49 7.06 50.0 0.40 

vacIsp  431.7 10.0 1.20 5.32 25.54 0.74 

 
 

5.4.1 Surrogate Models 

For this example, discipline-level surrogate models are constructed. Except for the 

Wu CA that has only one simple response, a surrogate model is constructed for each of 

the responses of the discipline analyses. For each response, the training sample for 

surrogate model construction includes 150 points by HS sampling, the sample for 

estimation of true MPE includes 300 points by LHC sampling, and the sample for RCV 

includes 200 points by LHC sampling. The values of both the design variables and the 

response are normalized, the kernel is GRBF, the parameters C  and ε  are estimated by 

the practical estimation method, the parameter σ  is selected by minimizing the modified 

information criterion BICC, and the best surrogate model is selected by minimizing the 

modified information criterion BICC as well. 

The selected methods and goodness of fit for the responses are listed in Table 17 – 

Table 20, where TrnRMSE  is the normalized model fitting error, HybridRCV,RMSE  is the 

normalized estimation of model predicting error using Random Cross Validation, 

MPERMSE  is the normalized true model predicting error calculated with random samples, 
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and RCVRMSE  is the (real) estimated model predicting error after de-normalization. The 

normalized values are actually percentage values since all responses are normalized to [0, 

100]. The accuracy of the selected surrogate models is satisfactory, since the maximum 

normalized model predicting error is less than 5%, and most of errors are less than 1%. 

The results once again show that HybridRCV,RMSE  can provide reasonable estimation for 

MPERMSE , i.e. the RCV method can provide reasonable estimation for the model 

predicting error. 

 
 

Table 17: Values of General Parameters and Goodness of Fit for the P CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

eA  Hybrid 0.0506 0.0748 0.0718 2.794 

vacT  RSM 0.1667 0.1737 0.0000 591.290 

vacIsp  RSM 0.0000 0.0000 0.0000 0.000 

esl WT _  RSM 0.0000 0.0000 0.0000 0.000 

ep  RSM 0.0000 0.0000 0.0000 0.000 

 
 

Table 18: Values of General Parameters and Goodness of Fit for the T CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

boosterMR  RSM 2.6124 4.9476 0.0000 0.1640 

upperMR  Hybrid 0.0208 0.2749 0.2526 0.0061 
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Table 19: Values of General Parameters and Goodness of Fit for the Wb CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

boosterdryW _  Hybrid 0.0190 0.3816 0.2679 470.933 

 
 

Table 20: Values of General Parameters and Goodness of Fit for the S CA 
 

Response Method 
TrnRMSE  MPERMSE  HybridRCV,RMSE  RCVRMSE  

grossW  RSM 0.0126 0.0233 0.0258 818.953 

refS  Hybrid 0.0762 1.2993 1.1994 118.439 

propW  RSM 0.0129 0.0264 0.0277 795.409 

landW  RSM 0.0033 0.0035 0.0033 6.271 
 
 

5.4.2 Design Results 

For this design example, the new framework is implemented with the two 

neighborhood search schemes. For each search scheme, the sample sizes of 2S  is 39600. 

The number 39600 is the estimation given by Equation 4.13 with 99% probability and 

2% error. For each valid solution of 3S , the sample size of 4S  is given as 172 estimated 

by Equation 2.44 with 30% probability and 1% error. 

With the first search scheme, 10040 valid solutions 3S  are obtained. Then 6628 

candidate points of 5S  are obtained. Finally, 46 WPF points are obtained. The figure of 

the WPF’s in the objective space is shown in Figure 5-50. 
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Figure 5-50: WPF Found by the First Search Scheme with 39600 points of 2S  and Surrogate Models 
for the RLV Design Example 

 
 
With the first search scheme and surrogate models, the following valid solutions 

that are the closest to the single-objective deterministic optimal solutions from the given 

starting point are found and listed in Table 21. The distance used here to select the closest 

solution is the relative Euclidean distance. 

 
 

Table 21: Valid Solutions Closest to Single-Objective Deterministic Optimal Solutions with the First 
Search Scheme and Surrogate Models for the RLV Design Example 

 

Objective Objective Value ε  
0_WT  r  SW _  

splitV∆  

grossW  610,276.78* 
649,855.84+ 

51.88 1.50 6.92 47.62 0.39 

vacIsp  431.23*, 431.23+ 10.00 1.20 5.48 27.48 0.72 

Note: *Predicted by the surrogate models; 
+Predicted by the original CA’s. 
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With the second search scheme and surrogate models, 14891 valid solutions 3S  are 

obtained. Then 9698 candidate points of 5S  are obtained. Finally, 67 WPF points are 

obtained. The figure of the WPF’s is shown in Figure 5-51. 
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Figure 5-51: WPF Found by the Second Search Scheme with 39600 points of 2S  and Surrogate 
Models for the RLV Design Example 

 
 
With the second search scheme, the following valid solutions that are the closest to 

the single-objective deterministic optimal solutions are found and listed in Table 22. The 

distance used here to select the closest solution is the relative Euclidean distance. 

 
 

Table 22: Valid Solutions Closest to Single-Objective Deterministic Optimal Solutions with the 
Second Search Scheme and Surrogate Models for the RLV Design Example 

 

Objective Objective Value ε  
0_WT  r  SW _  

splitV∆  

grossW  620,753.09* 
651,971.82+ 

57.44 1.43 7.49 45.75 0.41 

vacIsp  431.07*, 431.07+ 10.00 1.20 5.53 27.23 0.68 
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Note: *Predicted by the surrogate models; 
+Predicted by the original CA’s. 

 
 

The two WPF’s found by the two search schemes with 39600 points of 2S  and 

surrogate models are compared in Figure 5-52. 
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Figure 5-52: Comparison between the Two WPF’s Found by the Two Search Schemes with 39600 
Points of 2S  and Surrogate Models for the RLV Design Example 

 
 
For the purpose of validation, the original CA’s are also used to find the WPF. Both 

search schemes are executed with 39600 points of 2S . Then two WPF’s are obtained. 

These two new WPF’s are compared with each other, and also compared with the 

corresponding one found with the surrogate models, respectively. These comparisons are 

given in Figure 5-53 – Figure 5-55. 
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Figure 5-53: Comparison between the Two WPF’s Found by the Two Search Schemes with 39600 
Points of 2S  and Original CA’s for the RLV Design Example 

 
 

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

x 10
6

415

420

425

430

435

440

445

450

W_gross

Is
p_

va
c

 

 

First scheme - SM

First scheme - CA

 
 

Figure 5-54: Comparison between the Two WPF’s Found by the First Search Schemes with 39600 
Points of 2S , Surrogate Models, and Original CA’s for the RLV Design Example 
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Figure 5-55: Comparison between the Two WPF’s Found by the Second Search Schemes with 39600 
Points of 2S , Surrogate Models, and Original CA’s for the RLV Design Example 

 
 

5.4.3 Discussion 

Observing and analyzing the design results of the reusable launch vehicle design 

example, the following conclusions can be drawn: 

1. The estimation of the size of 2S  given by Equation 4.13 is adequate for good 

results. With the size 2s  of 39600 given by Equation 4.13, solutions very close to the 

exact solutions are found for both single-objective optimal problems, comparing the 

results with the exact solutions; the WPF’s found by two search schemes are very similar, 

referring to Figure 5-52; and the WPF points are uniformly distributed and the number of 

WPF points is enough for practical use. These again justify the assumption made in 

section 4.2.4 that if the size of  2S  is large enough, the WPF or near WPF can be found. 

2. The WPF’s found with both search schemes and surrogate models are almost the 

same as those found with both search schemes and original CA’s, respectively, referring 
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to Figure 5-54 and Figure 5-55. The reason is that the errors of many surrogate models 

are very small, for example, the error of vacIsp  is zero. 

3. Relaxation of the constraints and the convergence criteria is necessary. From 

other experiments (not recorded in this thesis) for this RLV example, it has been found 

that much less solutions satisfying all the constraints and convergence criteria can be 

obtained with the surrogate models and zero tolerance, whereas plenty solutions have 

been obtained with the original CA’s and zero tolerance. 

One note is that the relaxation tolerance is small with respect to the magnitude of 

the response, usually less than 1%. For example, RCVRMSE  of grossW  is 819, then the 

relaxation tolerance is 1,638 for this coupling variable; considering the magnitude of 

grossW  is more than 200,000, one can this relaxation is very small. 

4. With a small sample size, i.e. 150, the hybrid method can achieve accurate result 

for many responses. The MFE’s of the hybrid models are less than 0.1%, and the MPE’s 

less than 2% (see the results of hybrid models in Table 17 – Table 20). 

5. The model selection advisor works very well. The model selection advisor selects 

different methods for different responses, all the MFE’s are less than 1%, the maximum 

MPE less than 3%, and most MPE’s less than 1% (see Table 17 – Table 20). 

The results of vacIsp , esl WT _ , and eP  can best show this. From APPENDIX I, the 

responses vacIsp , esl WT _ , and eP  are explicitly constructed by RSM. The selected 

surrogate modeling methods for these three responses are just RSM and the errors of the 

surrogate models are zero, as shown in Table 17. The success of model selection also 

means the success of the modified information criteria and the random cross validation 

method for model predicting error estimation. 
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6. The Random Cross Validation method can provide good estimation for model 

predicting error. Comparing the estimation HybridRCV,RMSE  with true error MPERMSE  in 

Table 17 – Table 20, one can see the values are close, especially for the models of SVR 

and the hybrid method. 

7. The WPF’s found with the second scheme have more points and the points are 

more evenly distributed than those found with the first scheme for this RLV example. 

This phenomenon shows that for different problems these two schemes may have 

different performance. Since one can not know if there is such a difference, it is better to 

use both schemes to solve the same problem and thus also obtain more solutions. 

8. It can be concluded that the correct WPF is found with either search scheme, 

since the WPF’s found by the two different search schemes with either surrogate models 

or original CA’s are very similar, and the WPF’s found with the surrogate models are 

very similar as those with the original CA’s, referring to Figure 5-52 – Figure 5-55. Thus 

this RLV deign example again shows the feasibility of this new framework. 

9. The WPF figure can provide additional useful information to guide the design 

process besides helping the user choose design alternatives according to his/her 

preferences. For example, the WPF figures show that increasing vacIsp  will not help much 

reduce grossW , and there is a lower limit for vacIsp  in order to satisfy the constraint. This 

kind of information can help the designer choose the right scope and direction to explore 

the design space, and thus reduce design time. 
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6 CONCLUSIONS AND RECOMMENDATIONS 

 
 
 
The realistic conceptual design problem of complex systems is characterized by 

multiple disciplines, multiple objectives, uncertainties, and a short period for decision 

making. Because of the complexity of this design problem and the limitations of solving 

techniques available, this design problem traditionally was simplified to a problem of a 

combination of only some of the first three features, and also by simplification the design 

could be finished in a short period of time. To address this deficiency, a novel systematic 

framework has been formulated to consider all the first three features of a realistic 

conceptual design problem and solve this problem in a short period of time. This 

framework has been successfully implemented for a transportation airplane design 

problem and a reusable launch vehicle design problem. Besides, lower level problems 

have been solved in order to demonstrate the advantage of or validate some new 

techniques developed for this new framework, such as the hybrid surrogate modeling of 

RSM and SVR, the model selection advisor, and the new neighborhood search method. 

In this section, the implementation results of design of complex systems and other 

exercises are surveyed to answer the driving research questions, emphasize the 

significance of the new framework, and make recommendations for future work and 

applications. 

6.1 Research Questions 

The research questions posed in Chapter 3 are actually used to guide the 

development of the framework. Now those questions are revisited and answered, based 

on the results obtained in this research. 
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1. Although it has many advantages and good characteristics, can SVR be used 

directly in engineering problems like RSM has been impressively demonstrated in the 

past? Or what means should be taken to make it suitable? 

Answer: If the kernel function is the Gaussian radial basis function, it has been 

found by the author that SVR may have the numerical problem when the values of a 

design variable are large. This is because the GRBF is a negative exponential function. 

When values of a design variable are large or the exponent is small, the computer 

program may underflow. Except this, SVR can directly be used in engineering problems. 

One way to eliminate this limitation is to normalize the values of the design variables, as 

done in this research.  

2. How can RSM and SVR be combined to form a new hybrid surrogate-modeling 

method that is accurate for many types of problems with a small training sample? 

Answer: The way that the two methods are combined in this research is that first 

RSM is used to fit the model, and the RSM partial model is obtained; then the errors of 

the RSM partial model are fitted by the SVR, and the SVR partial model is obtained; last, 

the combination of the RSM partial model and the SVR partial model is the new hybrid 

model of RSM and SVR. The results in this research show this hybrid method is accurate 

for many different responses that are constructed with small training samples (sample 

size is no more than 150). The reason is that the RSM can capture the global tendency 

very well and the SVR can capture the local nonlinear behavior very well. 

3. Using the previous five criteria for comparison in Chapter 2, is this hybrid 

method of RSM and SVR better than RSM or SVR for engineering problems? Or under 

what situation is it better? 
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Answer: The five criteria used to assess the methods’ effectiveness are accuracy, 

efficiency, transparency, simplicity, and vulnerability to the problem of “curse of 

dimensionality”. In terms of accuracy, the hybrid method can be better, especially when 

the responses have high nonlinear behaviors as shown in the Rastrigin example. For the 

other four criteria, the hybrid method is almost as good as RSM or SVR. 

4. Is it possible to quantify the five criteria, such that the above comparison in 

Question 3 can be reliably made? 

Answer: Accuracy, efficiency, and simplicity can be quantified. However, only 

accuracy and simplicity are quantified in this research and used for the comparison in 

Question 3 above. 

5. Is it possible to create and formulate a process for which all pre-specified 

parameters of SVR can be determined automatically such that this hybrid surrogate-

modeling method is simple to use as RSM? 

Answer: A process has been created and formulated to automatically determine the 

three parameters of SVR, and the results are very good, as shown in this research. The 

process includes normalization of values of design variables and responses, practical 

selection of two parameters, and optimal selection of the third parameter by minimizing 

the modified information criterion. 

6. Is there a kernel function for SVR that can work well for all engineering 

problems?  If not, how to select a kernel function for different problems? 

Answer: It has been found by other researchers and confirmed by the results in this 

research that the Gaussian radial basis function is such a kernel function for SVR. 
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However, as shown in this research, a normalization step is required for this kernel 

function to be applied to all engineering problems in order to avoid numerical difficulties. 

7. What is the best data sampling technique for this hybrid surrogate-modeling 

method? 

Answer: the Hammersley Sequence sampling technique is chosen as the sampling 

technique for the surrogate modeling methods in this research, including the hybrid 

method. The HS is chosen because the user can freely decide the number of sample 

points, the correlation is very low, and the sample points can be repeated for the purpose 

of comparison. The results in this research show high accuracy is obtained with the 

Hammersley Sequence sampling technique. 

8. What quantitative measures of model accuracy and complexity are appropriate 

for the purpose of selection of surrogate-modeling techniques? 

Answer: The model accuracy can be measured by the model fitting error and model 

predicting error, and the model complexity can be measured by the number of the 

parameters to be estimated. The model fitting error and model predicting error are 

quantitatively measured by the root mean square error in this research. 

9. What is the proper way to combine the measures of model accuracy and 

complexity together so that a balance is achieved between these two kinds of measures? 

Answer: In this research, the modified information criteria are used to combine the 

measures of model accuracy and complexity together and balance these two model 

measures. The results obtained in this research show that this way of combination is 

feasible and works very well. 
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10. When the accuracy is at the same level, can the selection criterion select the 

surrogate model constructed with a simpler surrogate-modeling method? 

Answer: as shown in the RLV example, the selection criterion, such as the modified 

information criterion BICC, does select the simpler method, like RSM versus SVR or the 

hybrid, and SVR versus the hybrid. One can see that the hybrid models are very accurate 

when the hybrid method is selected for some responses.  

11. At which level is the surrogate model constructed, i.e. at disciplinary or system 

level? 

Answer: In this research, it is suggested that the surrogate models should be 

constructed at the disciplinary level in order that the relationships between the design 

variables and the responses have physical meanings. 

12. How can a consistent design solution be found with this framework? 

Answer: In this research, a new Monte Carlo simulation based neighborhood search 

method executed with optimizers is used to find consistent designs. Two search schemes 

are formulated. 

13. Can the optimal consistent design solutions of the single-objective optimization 

problems with deterministic constraints be found, or near solutions be found? 

Answer: The examples of the transport airplane design and the RLV design show 

that at least the near solutions can be found. Besides, the mathematical examples of 

finding WPF show that the exact solutions of the single-objective optimization problems 

can be found, although there are no coupling variables in these examples. 

14. How can the WPF of each disjointed consistent design zone be found? 
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Answer: As long as the number of the search starting points is large enough, some 

WPF points of each disjointed consistent design can be found with the new Monte Carlo 

simulation based neighborhood search method. After sampling points in the objective 

space are obtained, the WPF points are picked out. 

15. How can the number of search starting points be selected such that an 

appropriate number of WPF points can be found? 

Answer: A rule-of-thumb equation is given to estimate the required number of 

sampling points for the new Monte Carlo simulation based neighborhood search method. 

This equation is based on an equation of Monte Carlo sampling for statistical inference. 

The design examples in this research show that the number of sampling points estimated 

with this equation is adequate to find appropriate number of WPF points. 

16. How can evenly distributed WPF points be found for practical usefulness? 

Answer: From a uniform sample of search starting points, the new neighborhood 

search method will lead to evenly or almost evenly distributed WPF points, as shown in 

the pure mathematical examples of finding WPF and the two complex system design 

examples. 

17. Because of the errors introduced by the surrogate models, how can the 

thresholds in the PC’s be relaxed such that trustable probabilities can be obtained? 

Answer: The thresholds can relaxed based on the model predicting errors of the 

surrogate models. A rule-of-thumb equation of the tolerance for relaxation is given in this 

research. 

18. What is the best scheme for this new framework in terms of ability to find WPF 

solutions and computational time? 
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Answer: Two search schemes are formulated for the new Monte Carlo simulation 

based neighborhood search method. Both schemes can find the WPF and corresponding 

solutions, but usually the first scheme is faster than the second one, because the 

optimization problems of the first one are simpler than those of the second one. 

Therefore, in terms of computational time, the first one is better. However, both schemes 

should be used since these two schemes will find different WPF solutions; and on the 

other hand, theoretically the second scheme will find a probabilistic WPF that is closer to 

the true probabilistic WPF, since it directly searches the deterministic WPF 

corresponding to a neighborhood. 

6.2 Summary of Contributions 

The main contribution of this research is the development of a suitable framework 

to determine WPF solutions under probabilistic constraints for realistic conceptual 

designs of complex systems. Additionally, several new capabilities are created in order to 

formulate the framework. Those contributions are now summarized. 

1. A systematic framework for determination of WPF solutions under probabilistic 

constraints for realistic conceptual design of complex systems. This framework is very 

unique as a whole because it enables solving a realistic conceptual design problem of a 

complex system in the context of multiple disciplines with coupling variables, multiple 

conflicting objectives, and uncertainties. This capability, to the best knowledge of the 

author, is the first of the kind. 

2. A new Monte Carlo simulation based neighborhood search method. The new way 

of defining the neighborhoods around the search starting points generated by the Monte 

Carlo sampling method is one key to the success of the neighborhood search method and 
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the framework. Based on this, the new neighborhood search method can handle the 

situation of spatially disjointed consistent design zones, and decouple the process to find 

WPF in the objective space and corresponding solutions that satisfy the probabilistic 

constraints. Besides, it can be executed in parallel on different computers. In other words, 

this method is a new approach of integration and coordination of complex system design. 

3. Automation of SVR. SVR is a state-of-the-art surrogate modeling method. It has 

very good performance for many types of problems. It has not been widely used in the 

aerospace industry because there are three parameters to be pre-selected and traditionally 

only the experts of SVR are capable of doing this work. Now all the three parameters can 

be automatically determined using the method developed in this research based on the 

information extracted from the sample. Since many design methods rely on surrogate 

models and SVR can provide accurate models in general, the automation of SVR enables 

more and more non-experts to use this advanced surrogate modeling method to improve 

the design results. 

4. A new hybrid surrogate modeling method of RSM and SVR. Although SVR is 

very good, it has been found sometimes it is still not accurate enough for some 

engineering problems. By combing RSM and SVR together with RSM capturing the 

global tendency and SVR capturing the local high nonlinear behavior, the new hybrid 

surrogate modeling method of RSM and SVR can further improve the accuracy for 

problems of which SVR individually can not obtain satisfactory results with a small 

training sample. 

5. A new approach for model predicting error estimation. There are mainly two 

ways to estimate the model predicting error of a surrogate model, i.e. using new random 
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cases obtained with the complex physical model and using a re-sampling method such as 

cross-validation or bootstrapping. Since it is time-consuming to run the complex physical 

model, the second way of re-sampling method is preferred. However, the traditional re-

sampling methods still need a non-trivial period of time to run, and thus it can not be used 

for the purposes of selection of one parameter of the SVR and surrogate model selection. 

A new method, called random cross validation, is developed in this research to estimate 

the model predicting error very quickly. Although there is no theoretical proof yet, the 

results show that this new method can give very good estimation of the model predicting 

error. In this research, this method is investigated and limited to the models of RSM, 

SVR, and the hybrid method of RSM and SVR, but it can be investigated with other 

surrogate modeling methods in the future to extend its usage. 

6. A model selection advisor based on modified information criteria. For a given 

problem, if the accuracy obtained by different surrogate modeling methods is similar (not 

necessary to be the same), the simpler surrogate model should be selected. Since the 

accuracy of a surrogate model is measured by the model fitting and model predicting 

error and the simplicity of the model can be measured by the number of parameters to be 

estimated, two conventional information criteria are modified in this research to achieve a 

balance among the model fitting error, model predicting error, and model simplicity, such 

that the simpler surrogate model will be selected from the models with similar accuracy. 

Thus a model selection advisor is created in this research based on the new modified 

information criteria. The results in this research show that the model selection advisor 

works very well. 
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6.3 Recommendations 

The framework for the first time enables solving a realistic conceptual design 

problem of complex systems. Strictly speaking, the framework can indeed solve a much 

more realistic problem than those which the traditional methods are solving, for example, 

surrogate models are used instead of the original CA’s. Therefore, this framework still 

needs to be improved. Although the surrogate models have to be used in the future 

because the complexity computer models keeps pace with the development of the 

computer speed, several areas are identified where improvements and continued focus 

should be made in the future. These areas include: 1) adaptive sampling; 2) modeling 

temporal randomness; 3) multidimensional data visualization. 

1. Adaptive sampling. In order to obtain a good representation of the WPF with 

enough and evenly distributed points, a large number of search starting points are used in 

this research and a rule-of-thumb equation is given to estimate this number. However, a 

phenomenon is noticed that the uniform distribution of search starting points in the 

design space may correspond to the nonuniform distribution of sampling points in the 

objective space. This phenomenon can result in that some parts of the WPF have crowded 

points while the other parts have much less points, as can be seen in the first pure 

mathematical example of finding WPF. It is possible that in some problems some parts of 

the WPF have too less points to be practically useful. Adaptive sampling is recommended 

to solve this problem. By identifying the clustering zones in the objective space, one can 

identify the less dense zones in the objective space; then go back to the corresponding 

zones in the design space and add more points in these zones. By doing this kind of 

adaptive sampling, not only the above problem of over-sparse parts of WPF can be 
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solved, but also less search starting points can be used so that the total computational 

time can be reduced. This is because a small number of additional search starting points 

in certain identified zones in the objective space will be needed instead of a much greater 

number of additional points otherwise scattering all over the whole design space. 

2. Modeling temporal randomness. The framework allows a probabilistic 

distribution is assigned around a nominal value, thus it has the capability to model the 

spatial randomness. However, in a real conceptual design problem, some uncertainties 

may exhibit both spatial and temporal randomness. Neglecting such temporal behavior 

may result in overestimating the possibility of satisfying the probabilistic constraints and 

consequent design solutions that still can not accommodate to the uncertainties. In order 

to keep the total computational cost at a manageable level, one way to consider the 

temporal randomness may be scenario analysis. The first step can be selection of several 

critical scenarios; then find the WPF solutions for each of those scenarios; and finally 

pick out the solutions that satisfy all the requirements under any of those scenarios. 

3. Multidimensional data visualization to aid the decision making process. The 

capability to find the WPF and corresponding solutions provides the decision maker the 

opportunity to make more educated decision. However, the much more information 

contained in the WPF and its solutions also makes the decision making process more 

difficult, i.e. facing more information, it is harder to make a tradeoff, needless to say a 

good tradeoff. Multi-attribute decision-making (MADM) techniques such as the 

Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) [102] can be 

used to aid the decision making process to select the ‘best’ solution according to the 

preference order of the decision maker, but those methods are not good for 
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communication among the decision makers or between the decision makers and the 

designers since how to determine the preference order needs a big discussion. Besides, 

those MADM techniques are not convenient to help analyze the rich information 

contained in the WPF and its solutions to make a better decision and reduce the time and 

cost of the design process. Multidimensional data visualization (MDDV) techniques are 

better ways for this kind of communication and data analysis. One of the most popular 

methods is the scatter plot matrix, which is a set of two dimensional scatter plots 

projected from high dimensional data. However, most of the MDDV techniques have 

various limitations, such as some of those techniques are difficult to understand, or 

computationally expensive, or not intuitive [103]. Recently a new MDDV technique, 

named hyper-space diagonal counting (HSDC) [104], is developed to overcome the 

above limitations. It intuitively visualize high dimensional (more than three) data with a 

two or three dimensional figure without loss of the meaning of the data and the concept 

of neighborhood, for example, one can display the information of two objectives on one 

axis, the information of two design variables on the second axis, and the information of 

the other three design variables on the third axis. This HSDC is recommended to be 

introduced and used with the framework to aid the decision making process. 
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APPENDIX A:  SAMPLING METHODS OVERVIEW AND SOME 
MODERN METHODS 

 

A.1 Overview of Sampling Methods 

One important step to construct a surrogate model is to obtain the sample data. 

Because the computer model is like a black box for us, the only way to obtain knowledge 

about the computer model is through the sample data. However, with limited time and 

computational resources one can not explore the entire design space of the computer 

model for this purpose. Therefore, which point to be chosen needs wise decisions. 

Sampling methods or designs of experiments are developed to wisely choose the sample 

points. Although the research on sampling methods dates back to the early 20th century 

and has made abundant achievements, there is still ongoing research in this field focusing 

on modern sampling methods, such as Ref. [20], [23], [28], [105], [106], [107], [108], 

and [109], to name a few. 

An experimental design can be defined as “a test or series of tests in which 

purposeful changes are made to the input variables of a process or system so that we may 

observe and identify the reasons for change in the output responses” [110]. The methods 

to arrange or plan those “purposeful changes” are collectively known as sampling 

methods or Design of Experiments. The input variables to be changed during the 

experiment are also called design variables or factors, and often represented by a n  

dimensional vector. The n  dimensional space defined by the lower and upper bounds of 

the n  design variables is the design space, which often is only the region of interest. A 

design point is a specific instance of the n  design variables within the design space, and 

is also called a point, or a sample point. Therefore, a sampling method or Design of 
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Experiment is in other words a procedure to choose a set of sample points in the design 

space. 

A response is a measured or evaluated quantity of the system or process 

corresponding to a specific sample point. A sample pair is the combination of a sample 

point and its response, and a sample is the collection of the sample pairs. The sampling 

procedure is formulated such that maximum trend information is gained from a limited 

number of sample pairs. This trend information is about the relationship between a 

response and the vector of the design variables. A response surface is any function that 

represents the “true” relationship over the design space. Sometimes a “response surface” 

refers in particular to a low-order polynomial function. Strictly speaking, such a 

polynomial function should be called a response surface approximation, which means any 

user-defined function as an approximation to the usually unknown true relationship. A 

response surface approximation is often called a surrogate model (or metamodel). 

A sampling method is different from another in the way or pattern the sample points 

are distributed over the design space. The sample point distribution pattern determines 

the number of sample points for an experimental design and largely affects the ability of 

an experimental design to reveal the true response surface and the accuracy of the 

consequent surrogate model. Montgomery has identified eleven criteria for a good 

experimental design [110].  The two most important criteria are identified in [23]. One is 

minimum design variable correlation. In fact, the correlation is a kind of measures of both 

uniformity and randomness of the distribution of the sampling points throughout the 

design space, and the more uniformly and randomly the sampling points are distributed, 

the better the space filling effect is. Another is that the sampling points should distribute 
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over the design space without “clustering” of sampling points or large regions of 

unexplored design space, as shown in Figure A-1, where the richness of sample space 

means the distribution pattern of the sampling points. In practice, the characteristics of a 

specific surrogate-modeling method should also be considered in order to select a proper 

sampling method such that a minimum number of sampling points are required, for 

example, a D-optimal design is often chosen for the RSM. 

 
 

 
Figure A-1: Example of Richness of Sample Space [23] 

 
 
The sampling methods nowadays can be divided into two groups, classical DoE’s 

and modern DoE’s. The classical DoE’s were developed for laboratory and field 

experiments, such as biological and agricultural experiments. The modern DoE’s were 

specifically developed for deterministic computer experiments or simulations. The main 

differences between the classical and modern DoE’s are summarized in Ref. [20]. The 

fundamental difference is that classical DoE’s assume there are random errors to be 

handled with, whereas modern DoE’s assume no random errors. Therefore, classical 

DoE’s generally put sample points at the extremes of the design space to minimize the 

effects of the random errors, whereas modern DoE’s generally put sample points 

throughout the design space (space filling). Other techniques used by classical DoE’s to 
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minimize the effects of random errors are experimental blocking, replication, and 

randomization, whereas modern DoE’s do not need those techniques. Another main 

difference is that classical DoE’s typically assume the possible values of a design 

variable are uniformly distributed between a lower and upper bound, whereas modern 

DoE’s assume both uniform and non-uniform (such as Gaussian, Weibull, exponential) 

distributions. A common attribute between classic and modern DoE’s is that the sample 

points are independently generated and can be evaluated concurrently using a parallel 

computing technique. 

While most of the sampling methods generate the sample points all at once (one-

stage sampling methods), one sampling strategy is under developing to add in new 

sampling points sequentially based on the information gathered from the earlier created 

surrogate model [21, 111]. This sampling strategy is called sequential sampling. There 

are two main advantages for sequential sampling methods. First, those methods can 

improve the accuracy of a surrogate model in a narrowed, interested, design region 

without the waste of sampling points outside this region. This is useful for surrogate-

model-based optimization with searching strategies, because only part of the design space 

will be identified and explored during the searching process. If one-stage sampling 

methods for the entire design space are used, the sampling points outside the interested 

region are wasted. Second, the user can monitor the accuracy of the surrogate model and 

decide when to stop the sampling process, and thus reduce the possibility of generating 

more sampling points than necessary. One disadvantage of this strategy is that extra 

computational costs are needed to decide which new sampling point to be selected or 

evaluate the accuracy of the intermediate surrogate models. Besides, there is no guarantee 
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that a sequential sampling method can improve the accuracy of global surrogate models 

compared to one-stage methods [111], because the information from the surrogate models 

created previously can be misleading depending on the sample points and the surrogate-

modeling methods. However, for early design stages global surrogate models are often 

used, thus one-stage sampling methods are used with maximum affordable sampling 

points for simplicity, instead of the sequential sampling methods. 

A.2 Overview of Classical DoE’s 

The classical DoE’s were first developed in the early 20th century for laboratory and 

field experiments, such as biological experiments or agricultural yield experiments. A 

common attribute among these experiments is that those experiments all have random 

error sources within the measured response. To minimize the effects of random errors, 

classical DoE’s typically put sample points at or near the boundaries of the design space 

because by doing so, more reliable trend information can be extracted in the presence of 

random errors. A theoretical explanation for doing so is given in Ref. [41] and a simpler 

one in Ref. [20]. However, this leaves the interior of the design space largely unexplored. 

The most often used classical DoE’s are full and fractional factorial designs, central 

composite design, Box-Behnken design, and alphabetical optimal designs such as D-

optimal design. The following Figure A-2 shows examples of some classical DoE’s. 
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Figure A-2: Illustrations of Some Classical DoE’s 

 
 
Despite the originally intended use of those DoE’s for laboratory and field 

experiments, classical DoE’s can also be used for computer experiments – after removing 

the unnecessary blockings and replications. In fact, 2nd order RSM is often used with the 

classical central composite design or D-optimal design, because these designs are 

efficient for this surrogate-modeling method. “Efficient” here means there are few, if any, 

unnecessary sampling points. 

A.3 Orthogonal Array Sampling 

Orthogonal array sampling is a space filling sampling method that makes use of the 

orthogonal property of an orthogonal array to uniformly distribute the sampling points 

throughout the design space [112]. Its algorithm is as follows. 
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where ix  is the ith design variable that is normalized to ]1,0[  from its original 

interval ],[ u
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uniform random value on ]1,0[ , and q  is the number of bins or levels for each design 

Three-factor 
2-level 

full factorial design 

Three-factor 
Box-Behnken design 

Three-factor 
face-centered 

central composite design 



217 

variable (q  is the same for all design variables). The superscript j  denotes the sample 

point number. 

An orthogonal array (OA) A  of strength t  ( nt < ) is a matrix of s  rows and n  

columns with every element being one of q  numbers: 1,,1,0 −qK , such that in any ts×  

sub-matrix each of the tq  possible rows occurs the same number λ  of times, which is 

actually the definition of “orthogonal” here. λ  is the index of the OA. Thus an OA is 

denoted by ),,,( tqnsOA  with tqs λ= . The following matrix is an example of OA with 

4=s , 3=n , 2=q , and 2=t  (thus 1=λ ), and Figure A-3 shows the four sample 

points in a 3 dimensional design space generated by this OA(4,3,2,2). 
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Figure A-3: Example of Three Dimensional Orthogonal Array Sampling 

 
 
The OA sampling has two significant advantages. First, because of the orthogonal 

property of an OA, the sample points are uniformly distributed in any t  dimensional 

projection of a n  dimensional design space, see Figure A-3 for example. Second, unlike 
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LHC sampling and HS sampling, OA sampling may have sample points near the corners 

and/or boundaries of the design space. The OA sampling has two main disadvantages. 

First, the user can not freely decide the number of sample points if  1>t  (recall tqs λ= ). 

Second, the OA generation is not trivial and thus it is not convenient to generate an OA 

sample instantly. Usually frequently used OA’s are published in tabular form and the user 

has to pick a proper OA table and input it into the computer for sample generation.  

The Equation A.1 gives only the algorithm for design variables with uniform 

distributions, but similar to LHC sampling, the OA sampling can be used for design 

variables with non-uniform distributions. 

A.4 Uniform Designs 

Since the uniformity of the sample point distribution is important to the accuracy of 

the surrogate model, why does one not try to distribute the sample points uniformly 

throughout the design space directly? Uniform design is such a sampling method to 

scatter the sample points uniformly in the first place, and has been popularly used since 

1980 [108, 113, 114]. 

The algorithm of UD begins with the measure of uniformity of the sample point 

distribution. Suppose nC  denotes the design space of the n  design variables,  

{ }ss XXXP ,,, 21 K=  denotes the set of the sample points, and )( sp PD  denotes the 

discrepancy of the empirical joint CDF )(XFs  of sP  from a joint uniform CDF )(XF  on 

nC . Then the uniform design of sample points is obtained by finding the ones that have 

the minimum discrepancy )( sPD  over all possible s points on nC . 

The empirical joint CDF )(XFs  is defined as: 
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where {}⋅I  is the indicator function, giving 1 if the condition in the parenthesis is 

satisfied or 0 otherwise. 

The most commonly used discrepancy function is defined as: 
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Obviously it is not trivial to find the uniform design sample points given the sample 

size s  and the design space nC , therefore, like the OA’s, the UD’s are published in 

tabular form for use. However, for 1=n , the UD is easily given as 
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with 
s

PD s 2
1

)( = . For 1>n , an approximate UD can be given, and is called a 

unique UD (UUD). The UUD can be shown to be the same as the lattice sampling (see 

Equation 2.7).  

The UD sampling method has two significant advantages, i.e. uniformity of the 

sample point distribution and the freedom of the user to choose the number of sample 

points. It should be noted that the information of the distributions of the design variables 

are intentionally ignored in UD in order to get uniformly distributed sample points. 
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APPENDIX B:  SURROGATE-MODELING PRELIMINARIES AND 
THREE MODERN METHODS 

 

B.1 Statistical Inferences 

Statistical inference can be defined as the science of deducing properties of an 

underlying (probability) distribution function of a random variable from a sample of a 

population, where the population is all possible observations available from this 

probability distribution and a sample is a particular subset of the population [115]. 

There are two main approaches to statistical inference: 

1. The parametric or particular inference; 

2. The non-parametric or general inference. 

The parametric inference is the approach of statistical inference based upon a 

distributional assumption for the population, while the non-parametric inference does not 

make any such assumptions. Thus the non-parametric inference is also called 

“distribution-independent” inference. 

The parametric inference is developed from the descriptive statistics that shows 

many events of reality can be well described by some simple distribution functions. For 

example, the dimensions of a product are in general normally distributed and the 

expected life of an electronic device is in general exponentially distributed. The creation 

of parametric inference is based on the following belief:  

One knows the problem to be analyzed very well and can find some (specific) 

simple distribution functions or the combination of those distribution funcations to 

describe the problem very well. 
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Then the task of parametric inference is to estimate the parameters of these assumed 

distribution functions, e.g. the mean and variance of a normal distribution, and/or the 

coefficients (parameters) in the combination function of those assumed functions, e.g. the 

coefficients in a polynomial function. 

Although the parametric inference has been successfully used to solve many 

problems in different areas, its results depend on the validity of the distributional 

assumption on which it is based. If a normal distribution is made, whereas the unknown 

true distribution is skewed, then the inference result is misleading. This fact leads to the 

creation of non-parametric inference based on the following belief: 

One does not have reliable a priori information about the distribution function 

underlying the problem to be analyzed or the problem is so different or complicated that 

it can not be described by only known simple distribution functions or combinations of 

those simple distributions, so it is necessary to find an approximation to the true one of 

the problem. 

Then the task of non-parametric inference is to find a method for any problem that 

can infer an approximation function to the true distribution function from the given 

sample, without making assumptions about the distribution function. 

One straightforward method of non-parametric inference is the empirical 

cumulative distribution function (CDF) method. The empirical CDF will converge to the 

true CDF with increasing sample size, and this is the result of the classical Law of Large 

Numbers. Another method is to establish a principle as a decision criterion to find a 

function or a combination of functions from a given set of functions (including the simple 

distributions and polynomials) that best approximates the unknown true distribution 
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function with increasing sample size. One such principle is the Empirical Risk 

Minimization (ERM) principle, which will be discussed later. 

The non-parametric inference is developed because of the limitations of the 

parametric inference and is widely adopted in engineering and other sciences because of 

its general validity as a result of the weak distributional assumptions. However, it has to 

be indicated that the parametric inference should be used if the distributional assumption 

is valid for a real life problem, because it will provide a more precise or more powerful 

analysis than the corresponding non-parametric inference. 

B.2 The Problem of “Curse of Dimensionality” of the Parametric Inference 

The problem of “Curse of Dimensionality” is a shortcoming of parametric inference 

that was discovered in the 1960s when computers started to be widely used to analyze 

complex models that have a large number of design variables (factors) or obtain more 

accurate approximation. It was observed that the sample size and the computational 

resources are required to increase exponentially with the increase of the number of 

factors to be considered. This phenomenon is called by R. Bellman as the “curse of 

dimensionality” [44]. 

For example, the Weierstrass theorem states that any continuous function of n  

design variables can be approximated on a finite interval by polynomials with any degree 

of accuracy. However, this polynomial approximation can only guarantee the accuracy 

)( / nsNO −  [44], where N  is the number of terms of the polynomial and s is the number 

of derivatives of the function to be approximated. Therefore, even if s is a small number, 

in order to obtain the desired level of accuracy the number of polynomial terms N  has to 

be increased exponentially with the number of design variables n . Thus the sample size 
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and computer resources also have to increase exponentially in order to obtain the 

parameters in the polynomial approximation. Or in other words, the accuracy level of the 

parametric inference increases slowly with the increase of the number of polynomial 

terms and increase of the required sample size. Besides, if the number of polynomial 

terms is fixed, the increase of sample size can just lead to trivial or even no increase of 

the accuracy level. 

Therefore, this problem of “curse of dimensionality” means that for the real life 

multivariate problems with dozens of or even hundreds of design variables, to obtain a 

good approximation one needs a large set of functions and a large required sample size, 

and one can not rely on increasing sample size to increase the accuracy level because the 

accuracy level increases slowly with increase of the sample size. This is a considerable 

limitation of the parametric inference and therefore many researchers now do not use it to 

do statistical inference. 

B.3 Problem of Regression Estimation and Related Decision Principles 

In this section the problem of regression estimation is described and the principles 

used to select the optimal regression function are introduced. 

B.3.1 Problem of Regression Estimation 

Regression is a method to obtain a mathematical relationship (function) between the 

mean or expected value of a response variable y  and a vector X of predictor variables 

),,,( 21 nxxx K  based on a sample or a set of observed pairs [116] 

{ }),(,),,(),,(: 2211 ss XyXyXyS K  

where iX  is called a sample point, and ),( ii Xy  is called a sample pair. The values 

iX  of X  are deterministic because the predictor variables are controllable, and values of 
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y  have a random component and follow an unknown distribution because usually those 

values are observed results of real life phenomena [116]. 

The above sample is generated like this: let the vectors sX i '  appear randomly and 

independently according to a known or unknown fixed distribution )(Xf X , then for each 

iX  a value of y  is selected according to a conditional distribution )( Xyf . In this case, 

there exists a joint distribution function )()(),( XfXyfXyf X= , which is unknown 

because at least the conditional distribution )( Xyf  is unknown. 

This conditional distribution )( Xyf  actually describes the relationship between 

the response variabley and the predictor variable vector X . However, it is very difficult 

to estimate this conditional distribution based on the sample data.  On the other hand, 

people are more interested in the expected or mean of y  for the purpose of prediction: 

 dyXyyfXr )()( ∫=  (B. 1 ) 

This function )(Xr  is called the regression function, and the problem of its 

estimation based on the given sample data is called the problem of regression estimation. 

Because of the unknown conditional distribution )( Xyf , it is still impossible to 

obtain the regression function )(Xr . One can hope to obtain an approximation to the 

regression function by the following method [44]: 

According to the characteristics of the problem studied, assume a family of 

functions ),( θXg , in which θ  is called the parameter and is a scalar or a vector of 

scalars to be determined; Then under conditions 

 ∞<∫∫ dydXXyfy ),(2 , ∫∫ ∞<dydXXyfXr ),()(2   
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the problem of regression estimation is reduced to the problem of minimizing the 

following risk )(θR  based on the given sample data: 

 ∫∫ −= dydXXyfXgyR ),()),(()( 2θθ  (B. 2 ) 

If the (real) regression function )(Xr  is in the function family ),( θXg , the 

minimum of risk )(θR  is attained at the regression function )(Xr ; If the regression 

function )(Xr  is not in the family ),( θXg , the minimum of risk )(θR  is attained at the 

function ),( ∗θXg  that is closest to the regression function )(Xr  in the metric )(2 PL : 

 
∫ −= dXXfXfXfXfXf X )())()(())(),(( 2

2121ρ  
 

To prove this, first denote: 

 )(),(),( XrXgXg −=∆ θθ   

Then the Equation B.2 can be written as 
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The third summand above is zero, because according to Equation B.1 
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Thus we get that 

 ∫∫∫ −+−= dXXfXrXgdydXXyfXryR X )())(),((),())(()( 22 θθ  (B. 3 ) 

Since the first summand is independent of parameter θ , the function ),( ∗θXg  that 

minimizes the risk )(θR  is the regression function )(θr  if )(θr  is in the function family 
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),( θXg ; or it is the closest function to )(θr  in the function family in the metric )(2 PL  if 

)(θr  is not in the function family ),( θXg . 

The loss function family is defined as  

 2)),((),( θθ XgyZL −=  (B. 4 ) 

where the vector Z  consists of the variable y  and the vector X , and thus has 

)1( +n  elements. 

The following Figure B-1 shows the simple univariate linear regression model, in 

which the sample points are shown as the black dots and all the conditional distributions 

)( xyF  are assumed to follow the same ),0( 2σN  distribution. In Figure B-1 the 

regression line passes the expected values or means of the normal distributions of the 

corresponding response values 1y , 2y , …, sy , and the sample points scatter around this 

regression line. 

 
 

 
 

Figure B-1: Simple Univariate Linear Regression Model (Based on [115]) 
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B.3.2 The Empirical Risk Minimization Principle 

In section B.3.1, it has been shown that the regression problem can be reduced to 

the problem of selection of the best function in the assumed function family ),( θXg  by 

minimization of the risk )(θR . However, since the joint distribution ),( Xyf  is unknown, 

the risk )(θR  in Equation B.2 still can not be minimized directly. Then, what other 

options are available? The answer is to minimize the empirical risk )(θempR . 

Using the concept of loss function ),( θZL  (note that the loss function is not limited 

to the form in Equation B.4, the Equation B.2 can be rewritten as 

 ∫= dZZfZLR )(),()( θθ  (B. 5 ) 

Then the empirical risk )(θempR  is defined as 
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The minimization solution of the empirical risk )(θempR  is considered as an 

approximation to that of the true risk )(θR , and the principle of solving the empirical risk 

function as an approximation to the solution of the true risk function is called the 

Empirical Risk Minimization principle. Obviously, this principle is distribution 

independent. Therefore, it can be applied to many types of problems. 

This ERM principle is possibly from the idea that the empirical CDF will converge 

to the true CDF with increasing sample size, although the empirical risk does not 

necessarily converge to the true risk with increasing sample size. However, it can be 

proved that some assumed function families ),( θXg  are necessary and sufficient for the 

empirical risk function to converge to the true risk function, and the rate of convergence 

depends on both the property of the assumed function and the sample size. Besides, this 
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principle does have its foundation: it was proposed based on summarization of the 

methods used in learning machines (computer programs) since the 1960’s that can do 

more or less generalized regression (regression without knowing the distribution), and the 

success of these learning machines shows the effectiveness of this principle [44].  

B.3.3 Model Selection and the Principle of “Occam’s Razor” 

By minimizing the empirical risk function, the value of the parameter θ  can be 

determined. This process is called parameter selection. A question is raised, how do we 

select the best function family ),( θXg ? This question is raised because of the 

observations: a more complex model usually has more powerful representational capacity 

and can typically fit the sample data better, but is not necessary to provide better 

prediction for further/future data (the data outside of the sample data). This process of 

function family selection is called model selection. 

A general philosophical principle known as “Occam’s razor” is used for model 

selection. 

Entities should not be multiplied beyond necessity. 

― “Occam’s razor” principle attributed to William Occam (c. 1285 – 1349). 

The exact interpretation of Occam’s razor is under discussion. The most common 

one for model selection is: the unnecessarily complex models should not be preferred to 

simpler ones. It has to be pointed out that this interpretation does not always prefer 

simpler models; in fact it just does not like the “unnecessarily” complex ones, in other 

words, if the simpler model can provide similar  level of accuracy, the complex one is not 

preferred; otherwise, if the accuracy of the simpler one is much worse than that of the 
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complex one, the complex one is preferred. Therefore, this principle needs to be used 

with other principles or methods that can balance accuracy and model complexity. 

At the first look, one may think the principle of Occam’s razor can not be proved 

mathematically, and thus its justification can only rely on two facts: first, people prefer a 

simpler model if the simpler one can fit the sample data as well as the complex one; 

second, this principle has been successfully applied to practice in the past. However, it 

can be shown that the Bayesian probability theory supports this principle quantitatively 

[117]. 

Suppose that two models 1M  and 2M  can fit a given sample data D  to the same 

level of “goodness”, and 1M  is simpler than 2M . Now we want to know which model is 

the more probable one based on the sample data. This problem is equivalent to comparing 

two conditional probabilities: )|( 1 DMP  and )|( 2 DMP .  

According to the Bayes’ theorem, )(/)|()()|( 111 DPMDPMPDMP = , and 

)(/)|()()|( 222 DPMDPMPDMP = ,  where )( iMP  is the prior probability of iM  and 

it reflects a person’s subjective preference; )|( iMDP  is the probability that the data set a 

model is based on happens to be the sample D  if the model is iM , and it is also called 

the evidence for iM ; and )(DP  is the probability that the sample D  is selected. This 

gives the following probability ratio: 
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As shown in Figure B-2, the complex model 2M  by its nature can fit a greater 

variety of data than the simpler one 1M , therefore )|()|( 21 MDPMDP > . Suppose one 
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does not have preference for any of the two models, thus )()( 21 MPMP = . Therefore, 

according to Equation B.7, )|()|( 21 DMPDMP > , i.e. the simpler model 1M  is the 

more probable one. 

 
 

 
Figure B-2: Occam’s Razor Is Supported by Bayes’ Theorem [117] 

 
 
One simple example to demonstrate Occam’s razor is the selection between a model 

of bax+ (a first order polynomial) and a model of edxcx ++2  (a second order 

polynomial). Obviously, the second model can accurately fit not only samples generated 

by a first order polynomial but also samples generated by a second order polynomial, 

while the first model can accurately fit only samples generated by a first order 

polynomial. However, if both models can fit a given sample well, then the model of the 

first order polynomial is preferred. 

B.3.4 The Structural Risk Minimization Principle 

Although the ERM principle has been successfully applied to generalized 

regressions, it causes the problem of overfitting because of its implication to minimize 

the empirical risk function )(θempR  at any cost, e.g. the traditional ANN adopting this 

principle suffers this problem. Essentially the problem of overfitting is the consequence 
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of an unnecessarily complex model being selected. Therefore the principle of Occam’s 

razor can be used to overcome this problem. 

The combination of the ERM and Occam’s razor principles led to a new principle, 

i.e. the Structural Risk Minimization (SRM) principle. In contrast to the ERM principle, 

this SRM principle minimizes an upper bound on the (empirical) risk function and thus 

finds the optimal compromise between the information amount of sample data, and the 

complexity (or accuracy, assuming the greater the complexity, the higher the accuracy) of 

the approximation of the sample data by the function chosen from the assumed function 

family ),( θXg . This compromise is achieved by capacity control, which is the 

embodiment of the Occam’s razor principle. The “capacity” here can be considered as the 

capability of a function to make the empirical risk function )(θempR  converge to the true 

risk )(θR , and is not necessarily the number of parameters of the function family 

),( θXg  [44]. 

The SRM principle has been first realized in the method of Support Vector Machine 

by V. Vapnik in late 1970’s [45], and has been shown to be superior to the ERM 

principle. As the application of SVM to regression, the Support Vector Regression is 

gaining popularity due to many attractive features and promising empirical performance 

inherited from the SRM principle. SVR is one focus of this research work and will be 

introduced later. 

B.4 Neural Network 

The (artificial) neural network (ANN or simply NN) surrogate-modeling method is 

inspired by the way that biological neural networks (e.g. the brain) function that enables 

those networks to cognize and process new data from outside [61, 118]. To emulate the 
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functions of the biological neural networks, the physical structures are abstracted in a 

ANN as three kinds of layers: the input, the hidden, and the output layers, and each layer 

generally consists of a large number of simple processing units, which are called nodes 

corresponding to the neurons (Greek: nerve cells) in a biological neural network. 

There is only one input layer and one output layer, but the number of hidden layers 

can be greater than one. Each node in one layer is connected to nodes in other layers in a 

specific way, and there is no interconnection between any two nodes in the same layer in 

a non-recurrent ANN, as in the example shown in Figure B-3. Therefore, the structure of 

a non-recurrent ANN is just a much simplified version of the real biological neural 

network. Although a recurrent ANN mimics a biological NN better with connections 

among all nodes, it is too complicated and not popular as a non-recurrent ANN. 

 
 

 
Figure B-3: Example of Multi-Layer Feed-Forward Non-Recurrent NN 

 
 
Like a biological neuron, a node receives input data from outside, processes the 

data, and sends out an output datum. The working process of a generic node is shown in 

Figure B-4. This node has 2 inputs 11 =x  and 22 =x ; the inputs are weighted by the 

weight factors 11 =w  and 22 =w , respectively; in addition, it has a bias 1=b  and a 

Input 1 

Input 2 

Input 3 

Output 1 

Output 2 

Input layer 

Hidden layer 

Output layer 



233 

corresponding weight factor 10 =w ; since the sum of the weighted values including the 

bias term, i.e. 622110 =++ xwxwbw , is greater than the threshold value 4=Θ , which has 

to be reached or exceeded for the node to produce a reaction (the neuron “fires”), a 

reaction 6=R   is obtained; then the reaction R  is processed by a transfer function f , 

which is a hard limiter function in this example; finally, this node produce an output 

1=o . 

 
 

 
Figure B-4: Working Process of a Generic Node [119] 

 
 
The nodes in different layers perform different processes. The nodes in the input 

layer directly pass the inputs to the nodes in the hidden layer, and each node has only one 

input with a unit weight factor. These nodes have no bias, threshold value, or transfer 

function. The nodes in the hidden layer usually perform the whole process shown in 

Figure B-4, except that usually the threshold value is not used (i.e. set to negative 

infinity). The nodes in the output layer have multiple inputs, and outputs of these output 
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layer nodes are the weighted sums of the inputs. These nodes have no threshold value, or 

transfer function. 

One popular transfer function is the logistic sigmoid function as below, which 

always outputs a value between 0 and 1. 
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The number of nodes in the input layer is the same as the number of design 

variables, and the number of nodes in the output layer is the same as the number of 

responses. It has been shown in Ref. [120] that an ANN can approximate any continuous 

function arbitrarily well as long as there are enough nodes in the hidden layer(s). 

Therefore, usually only one hidden layer is used and the number of nodes in this layer 

can be determined by the required accuracy level or other criteria that will be discussed 

later. 

If only one hidden layer is used and the transfer function is the above sigmoid 

function, the output of a node in the hidden layer can be given as 
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where jH  is the output of the jth hidden node; jR  is the reaction of the jth hidden 

node; jb  is the bias term for the jth hidden node; ijw  is the weight factor for the ith  design 

variable; ix  is the ith  design variable; and n  is the number of design variables. 

Then the output of a node in the output layer, i.e. a response of this ANN can be 

given as 
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where kŶ  is the kth response; kc  is the bias term for the kth response; jkd  is the 

weight factor for the jth  hidden node; jH  is the output of the jth  hidden node; and HN  is 

the number of hidden nodes. 

Combine the above three equations together, a response of this ANN with the 

sigmoid function as the transfer function is given as 

 1

1 1
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n

i
iijjjkkk xwbdcY  (B. 8 ) 

The process is called training or learning that estimates the weight factors and bias 

terms in Equation B.8. The two most common kinds of training processes are supervised 

and unsupervised training. If the ANN is trained to match the known values of the 

responses (target responses) for a given set of sample points, this is supervised training. 

Supervised training is used for surrogate-modeling. If there are no target responses to 

match, the weight factors and bias terms are adjusted according to certain given 

guidelines, this is unsupervised training. Unsupervised training is used for pattern 

recognition, classification, and control. 

The training process itself is actually an optimization process. The optimization 

objective for supervised training is to minimize the model fitting errors between the 

target and predicted responses. There are many optimization algorithms that can be used 

for ANN training, such as gradient-based methods, Simulated Annealing, and Boltzmann 

machine [119]. The Matlab® NN toolbox has a variety of optimization algorithms for 

selection. 
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The main disadvantage is that ANN needs a large training sample, in terms of 

thousands, in order to obtain good accuracy. Additionally, there are two issues have to be 

considered when selecting an optimization algorithm. First, there is the probability that an 

algorithm becomes trapped in the local minima. If the problem is known to be 

multimodal, it is better to select a global algorithm, such as Simulated Annealing or 

Genetic Algorithm. Second, if the number of nodes in the hidden layer is also to be 

determined during the training process, a tradeoff should be carefully made between 

overfitting and underfitting. An overfitted ANN surrogate model usually will have good 

model fitting accuracy but bad model predicting accuracy. An underfitted ANN surrogate 

model is the opposite: bad model fitting accuracy but better predicting accuracy. The 

early stopping and regularization methods can be used for this tradeoff [37]. 

B.5 Gaussian Process 

Gaussian Process has been applied to various problems in a large number of fields. 

It is a type of surrogate-modeling method that assumes that the (joint) distribution of the 

predicted values of the surrogate model at any points is a multivariate Gaussian 

distribution [121]. Two good summaries of the GP theory are provided in Ref. [40] and 

[122], and a realization of the GP theory is given in Ref. [37]. The GP realization given in 

Ref. [37] is as follows. 

Given a sample { }),(,),,(),,(: 2211 sss XyXyXyS K , assume a GP surrogate model is 

constructed based on this sample sS  such that the error term in Equation 2.14 follows an 

identical independent normal distribution ),( 2σµN . Then the probability ),|( Θss SYP  

follows a (joint) Gaussian distribution and is given by 
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where T
ss yyyY ],,,[ 21 K= , sC  is the covariance matrix for the sample sS , µ  is the 

mean, and Θ  is the set of parameters in the covariance function and will be given later. 

Then, when a new pair ),( 11 ++ ss Xy  is included, the probability )|( 11 ++ ss SYP  is 

similarly given by 
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The probability of obtaining a single response 1+sy  is given by 
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κσ , i.e. the predicted response for the 

new point 1+sX  and its variance. 

The popular covariance function is given by 
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where { }nkr ,,1321 ,,,:
K=Θ θθθ  are the parameters to be estimated based on the sample, 

and ,1=ijδ  if ji = ; otherwise 0. 
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The posterior probability of the parameter set Θ  based on the known sample sS  is 

obtained by Bayes’ theorem 
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Usually the parameter set Θ  is estimated by maximizing the natural logarithmic 

likelihood of its posterior probability. 
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where )(ΘP  is the prior knowledge about the probability of Θ , which can be either 

assumed to be a specific function of Θ  or just ignored [123]; the term const comes from 

the fact that )|( ss SYP  is independent of Θ  although its is unknown and thus can also be 

ignored; and µ  is assumed to be zero. Then, by maximizing L  with respect to Θ  for the 

sample sS , the estimation of Θ  is obtained. Then ss
T

s YCMy 1
1ˆ −

+ =  is used to predict the 

response for the new point 1+sX . 

B.6 Kriging 

Kriging is a widely applied surrogate-modeling method originated from the mining 

and geostatistical fields [111, 60, 21, 124-127]. The Kriging model has two parts:  

 )()()(ˆ XZXfXy +=  (B. 9 ) 

where )(ˆ Xy  is the surrogate model function of interest, )(Xf  is a function 

signifying the global behavior or tendency of the response, usually a polynomial function 

∑
=

=
k

j
jj XfXf

1

)()( β  of design variables with unknown yet coefficients jβ ’s and known 
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monomials )(Xf j ’s (for example, 2
1322110)( xxxXf ββββ +++= ), and )(XZ  is a 

function that signifies the local variations concerned with, but not limited to, the 

immediate neighborhood, and is assumed to be a realization of a stochastic process with 

mean zero, variance 2σ , and nonzero covariance. The covariance of )(XZ between any 

two of the sample points iX  and jX   is given by: 

 ),()](),(Cov[ 2
jiji XXRXZXZ σ=  (B.10) 

where ),( ji XXR  is the correlation function between the two sample points iX  and 

jX . The correlation function is assumed by the user, and the most popular one is the 

Gaussian correlation function: 

 
])(exp[),(

1
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−−=
n

k
jkikkji xxXXR θ  (B.11) 

where kθ ’s are the unknown parameters used to fit the model, ikx  and jkx  are the 

kth components of the sample points iX  and jX , respectively. 

Let T
ss yyyY ],,,[ 21 K=  as the responses of the sample points },,,{ 21 sXXX K , then 

the linear prediction equation is used for a new point X : 

 
s

T YXCXy )()(ˆ =  (B.12) 

where )(XC  is a 1×s  vector to be estimated through the sample ),( 11 Xy , 

),( 22 Xy , …, ),( ss Xy . Actually, once the values of the coefficients kβ ’s and the 

parameters kθ ’s are estimated through the sample, the estimation of )(XC  is obtained. 

However, the actual form of )(XC  does not need to be known as shown below. 
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Usually an optimizer such as Simulated Annealing is used with kθ ’s as its design 

variables, and the objective of the optimizer is to minimize the Akaike information 

criterion [124] (which will be discussed later) or maximize the likelihood function (see 

Ref. [115] for the definition) if )( jXZ ’s are normally and independently distributed with 

mean zero and variance 2σ  [128]. Of course, if kθ ’s  are given a priori as many practices 

do (such as many examples in Ref. [124]), this optimizer is not needed. 

For each set of values of kθ ’s given by the optimizer during the optimization 

process, the values of kβ ’s are solved by minimizing the mean square error (MSE) as 

follows [21]: 

 2)]()([E)](ˆ[MSE XYYXCXy s
T −=   

subject to the unbiasedness constraint: 

 )]([E])([E XYYXC s
T =   
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)(

)( 1

M , and ss XXRXXRXr ×= 11 )],(,),,([)( K , then without 

knowing the actual form of )(XC  the estimations are obtained as [21]: 

 
s

TT YRFFRF 111 )(ˆ −−−=β , and )ˆ()(ˆ)()(ˆ 1 ββ FYRXrXffXy s −+= −  (B.13) 

Alternatively, instead of the two-step method above, all the kθ ’s and kβ ’s can be 

estimated by maximizing the likelihood function or minimizing the model predicting 

error using the cross validation method [125]. 
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One major disadvantage of Kriging method is that the surrogate model construction 

can be very time-consuming if the sample size is large [60]. This is because the inverse of 

a large matrix R  is by no means non-trivial and a n  dimensional optimization problem 

has to be solved. Besides, the correlation matrix R  can be singular if some sample points 

are close to each other. 

Since the Kriging surrogate model has two parts, i.e. a polynomial for global 

behavior and a realization of a stochastic process for local variations, the Kriging method 

can be thought of a hybrid method of RSM and GP, if one expands the neighborhood for 

the second part to include all sample points over the entire design space [37]. However, 

Kriging does not make complete use of the Bayesian steps that the GP does. 

If one focuses mainly on the first part, such as using high order polynomials for the 

first part, it could be argued that Kriging is an augmented RSM; on the other hand, if one 

focuses mainly on the second part, such as using first order polynomials or even a 

constant term as the first part, then Kriging is a method dominated by local behaviors. 

Therefore, Kriging can be tailored to resemble either of RSM and GP. 
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APPENDIX C:  USING KARUSH-KUHN-TUCKER CONDITIONS TO 
CALCULATE b  IN SVR 

 

The Karush-Kuhn-Tucker (KKT) conditions [129] are necessary conditions for a 

point of a constrained optimization problem to be the optimal solution. See section 2.1 for 

the standard form of a constrained optimization problem, and see Equations 2.25 for the 

optimization problem for SVR. These conditions are used to calculate the intercept term 

b  in SVR as follows. 
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Then we get the first gradients 
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The second KKT condition states that the product of a Lagrangian multiplier and an 

inequality constraint has to vanish. From this, we get 

 0))(,( =+Φ+−+ ++ bXWy iiii ξεα  (C.1) 

 0))(,( =−Φ−++ −− bXWy iiii ξεα  (C.2) 

 0=++
ii

ξη   

 0=−−
ii

ξη   

The third KKT condition states that the grand sum of the first gradient of the 

objective function, the sum of the products of Lagrangian multiplier and first gradients of 

the inequality constraints, and the sum of the products of Lagrangian multiplier and first 

gradients of the equality constraints has to vanish. From this, we get: 
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(C.3) 

Subtract Equation C.2 from Equation C.1, and take sum of the differences over the 

index i  , we get 
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From Equation C.3 we get 
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Thus we get 
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We can see that Equations C.5 are the same as Equations 2.28 and 2.29. 

Substitute Equations C.5 into Equation C.4, and solve for b , we get 
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(C.6) 

Substituting the results from Table 1 into Equation C.6, we get the results of b  for 

different loss functions. 

For quadratic loss function, 
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For Laplace loss function, 
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For ε-insensitive loss function, 
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APPENDIX D:  ERROR MEASURES AND TWO MODEL 

ASSESSMENT AND SELECTION METHODS 

 

D.1 Model fitting Error and Predicting Error 

The model fitting error is measured by the difference between the predicted 

response values by the surrogate model and the true response values of the sample points, 

while the model predicting error is measured by the difference between the predicted 

response values by the surrogate model and the true response values of the out-of-sample 

points. The predicting error is sometimes called model representing error or 

generalization error. Because the surrogate model is constructed from a given sample, the 

out-of-sample points are unknown to the surrogate model and thus are called “new” 

points to the surrogate model. 

A good surrogate model should have both low model fitting error and low model 

predicting error, since the model fitting error is about the known sample and the model 

predicting error is about the (future) new points. However, there is no direct relationship 

between the model fitting error and model predicting error, i.e. a low model fitting error 

can not guarantee a low model predicting error [68]. The model predicting error has to be 

approximated since the number of out-of-sample points is infinite. Randomly generated 

new points can be used to reliably approximate the model predicting error, but this 

increases the cost to run the time-consuming physics-based models. The re-sampling 

methods can be used to approximate the model predicting error without using new points. 

Of all the existing error measures the root mean square error (RMSE) and 

maximum absolute error (MAE) are most popular, shown in Equations D.1 and D.2, 
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respectively. Those error measures can be used to measure both the model fitting error 

and model predicting error. RMSE measures the overall approximation error, while MAE 

measures the local approximation error revealing regional areas of poor approximation 

[35]. Obviously, RMSE and MAE are non-parametric estimations of the error, since 

calculation of these two measures does not need to know the distribution of the errors. 
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where errorn  is the number of points used to calculate the error, including sample 

points and/or new points. 

In this research, only the RMSE is used because the overall accuracy is of more 

concern in surrogate-modeling for engineering problems. 

D.2 Fundamental of the Re-Sampling Methods: the Jackknife Method 

The jackknife method and the re-sampling methods such as cross validation and 

bootstrap are originally statistical inference methods to estimate statistics (statistical 

parameters). Later on the re-sampling methods are applied to model assessment and 

model selection problems. Before introducing the re-sampling methods, the theory of the 

jackknife is introduced since it is the foundation of the re-sampling methods. 

Suppose a single random variable X  with an unknown distribution F , and a 

sample { }sXXXS ,,,: 21 K  of size s. Thus FXXX
iid

s ~,,, 21 K . It has been well known 

that the expectation EX of this random variable X  can be estimated by the sample 
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average x  from the observed sample { }ss xXxXxX === ,,, 2211 K  according to the Law 

of Large Number: 
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In a general sense, x  is the estimation of the statistic EX  as a function of the 

sample { }sXXX ,,, 21 K , i.e. ( )sXXXxx ,,, 21 K= . However, the Equation D.3 can not be 

extended in any obvious way to a general statistic θ  other than EX , e.g. the sample 

median and RMSE, to estimate its expectation θE . Instead, the jackknife method can be 

used to make this extension [130]. 

Denote θ  as the estimation of the expectation θE , and θ̂  as the estimation of the 

statistic θ  from the sample { }sXXX ,,, 21 K . Thus ( )sXXX ,,,ˆˆ
21 Kθθ = . Further, denote 

)(̂kθ  as an estimation of θ  from a sub-sample deleting the kth sample point kX , i.e. 

 ( )skkk XXXXX ,,,,,,ˆˆ
1121)( KK +−= θθ  (D. 4 ) 

Then the estimation of the expectation θE  is given as 
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It can be seen that re-sampling methods, such as cross validation and bootstrap, are 

similar to the above jackknife method. In fact, the re-sampling methods and the jackknife 

method are closely connected in theory [130], and the theory of the jackknife method 

provides the foundation for all the re-sampling methods.  

Given an error measure such as RMSE, the problem of model selection with the 

jackknife method can be stated as: select the model with the minimum expected error 

measure, where the expected error measure is estimated by Equation D.5, because the 
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error measure is one statistic θ . In this case, the meaning of Equation D.4 is to calculate 

the error measure from a surrogate model that is fitted from the sub-sample 

{ }),(,),,(),,(,),,(),,(: 11112211)( sskkkkk XyXyXyXyXyS KK ++−− . Since the expected error 

measure considers future points, i.e. the points kX ’s that are left out, it is a measure of 

the model predicting error. 

D.3 The Cross Validation Method 

The cross validation method is used to estimate the model predicting error. When 

applied to model selection, cross validation is a re-sampling method for model selection 

according to the predicting error of the candidate surrogate models [131]. The surrogate 

model with the minimum expected predicting error will be selected. The RMSE is a 

popular measure of the predicting error. The basic idea is to split the sample of size s 

into two parts; the first part with size cs  is used to construct the surrogate model; the 

second part with size cv sss −=  is used to assess the predicting error of the model (model 

validation); a new splitting of the sample is executed, and the aforementioned process is 

repeated; this process is repeated many times, and the expectation of the predicting error 

is estimated as the average of the predicting errors obtained with different sample 

splitting. Figure D-1 shows the general scheme of cross validation. From these 

procedures one can see that the cross validation method is similar to the jackknife method 

with respect to estimation of the expectation of the predicting error and creation of the 

two sub-samples during iteration. 

Several approaches of the cross validation method are proposed with different ways 

to split the sample into two parts. Four of those approaches are summarized below. 
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The basic cross validation [130, 132] first randomizes the original sample; then 

splits the sample into two halves; the first half is used to construct the surrogate model, 

and the other half is used to assess the predicting error; then switch the two halves; and 

repeat the process. 

The k -fold cross validation [131, 133] first randomizes the original sample; then 

splits the randomized original sample into k  sub-samples of approximately equal size; 

then a model is constructed from )1( −k  sub-samples and the remaining one sub-sample 

is used to assess the model; this process is repeated k  times, each time leaving out one 

different sub-sample. 

The leave-k -out cross validation [132] first draws k  sample pairs out of the 

original sample; then the remaining )( ks−  sample pairs are used to construct the model, 

and the left out k  sample pairs are used to assess the model; this process is repeated for 

all 








k

s
 ways of drawing  k  sample pairs. This approach is more computationally 

expensive than the k -fold cross validation. 

The leave-one-out cross validation [132] is a special case of leave-k -out cross 

validation with 1=k . Obviously, its computational expense is much less than that of the 

leave-k -out cross validation for 1>k . 
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Figure D-1: General Scheme of Cross Validation for Model Selection 

 
 

D.4 The Bootstrap Method 

The bootstrap method is another method to estimate the model predicting error. 

When applied to model selection, bootstrap is one re-sampling method for model 

selection according to the predicting errors of the candidate surrogate models. There are 

many approaches of the bootstrap method with quite different procedures, such as Monte 

Carlo bootstrap [130, 134] and fast bootstrap [135], but the general procedures consist of 

drawing sample pairs with replacement within the original sample to obtain a bootstrap 

sample. Thus the size of the bootstrap sample is the same as that of the original sample. 

Since the sample pairs are draw with replacement, some sample pairs of the original 

Stage 1: 
∏ Obtain sample S  

∏ Choose cs  

∏ Set 0=i  

∏ 1+= ii  

∏ Draw cs  sample pairs from sample S  

∏ Construct model (i ) with the cs  sample pairs 

∏ Predict at remaining cv sss −=  sample points 

∏ Compute and save predicting errors 

i = maximum number 
      of repeat 

Stage 2: 
∏ Compute the  average predicting error 

True 

False 
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sample may appear in the bootstrap sample many times, while some may not at all. Then 

this bootstrap sample is used to construct a surrogate model and an estimated error 

measure (such as the model fitting error) is calculated for this bootstrap sample. This 

process is repeated B  times. Then the average of the estimated error measures is used as 

the estimation of the expectation of the error measure. 

From the above procedure of the bootstrap method one can see that the bootstrap 

method is similar to the cross validation method. There are three main differences 

between those two methods: the way to draw sample pairs, the size of the samples to 

construct the intermediate models, and the way to calculate the error measure. Two 

advantages of bootstrap are that its computational load is reduced from the k -fold cross 

validation and it results in lower variance for the estimated error measures [135]. 
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APPENDIX E:  THE CONCEPTS OF MPP AND LSF OF FPI 
 

Let )(XZZ =  being the response function of random variables 1X , 2X ,Ω, nX , and 

0)()( zXZXg −=  being the limit state function (LSF), where 0z  is the critical value, and 

0>g  is undesirable (failure). 

The fast probability integration (FPI) methods are a family of methods used to 

estimate the probability fP  of achieving response values above the critical value 0z , i.e. 

0>g . This family includes the first order reliability method (FORM), second order 

reliability method (SORM), advanced FORM (AFORM), advanced mean value method 

(AMV), etc, and there are good descriptions of the FPI family methods in [83].  

According to the Equation 2.53, the probability of 0>g  can be calculated as 

 ∫ ∫=>= nnX
R

f xxxxxxfgP
g

ddd),,,()0(P 2121 KKK   

where gR  is the region over which 0)( >Xg , and ),,,( 21 nX xxxf K  is the joint PDF 

of random variables 1X , 2X ,Ω, nX . Therefore, the LSF 0)( =Xg  “cut-off” a section of 

the joint PDF of the random variables 1X , 2X ,Ω, nX .  

The FPI method uses the concept of most probably point (MPP) to estimate this 

probability fP  of violating the LSF. The MPP is the point at which the function 

0)( =Xg  circumscribes a contour line of the joint PDF, as shown at the left side of 

Figure B-1 of a bivariate example. The MPP can be found most conveniently in the 

transformed U-space in which all random variables are independently normally 

distributed. In the U-space, the MPP is the point on the transformed function 0)( =Ug  

that is closest to the origin, as shown at the right side of Figure B-1. The transformation 
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can be done using the Rosenblatt transformation method, and the distance of the MPP to 

the origin β  is used to estimate fP  as )( β−Φ=fP  [83], where )(⋅Φ  is the CDF of the 

standard univariate normal distribution.  

For the example shown in Figure E-1, )( β−Φ  is the probability defined by the 

region at the hatched side of the straight red line, and this estimation of the probability 

fP  can be easily seen to be smaller than the real probability fP . In general, the 

estimation )( β−Φ  can be greater or smaller than the real probability fP , and the 

difference between these two can be substantial. 

 
 

 

Figure E-1: Most Probable Point Location [136] 

 

MPP 
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APPENDIX F:  THE MULTI-VARIATE MONTE CARLO SAMPLING 
 

Let ),,,( 21 nxxxYY K=  a function of the random variables 1X , 2X ,Ω, nX , and then 

Y  is a random variable as well. Now one wants to generate sample points of Y  through 

the sample points of 1X , 2X ,Ω, nX . 

If the random variables 1X , 2X ,Ω, nX  are mutually independent and the marginal 

PDF’s of these variables are known, then the sample points of each random variable iX  

can be generated as 

 )(1 UFx ii
−=  (2.11 ) 

where )(1 ⋅−
iF  is the inverse function of )(xFi , )(xFi  is the marginal CDF of iX , 

and U  is a uniform random variable of which values are generated by a (pseudo-) 

random number generator in computer experiments. Figure 2-4 shows the process to 

generate a sample point by univariate MC sampling. 

 
Figure 2-4: Univariate Monte Carlo Sampling Process 

 
 

U  

1 

0 

)( ii xF  

iX  

u  

ix  

ii xUF ⇒− )(1  
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If the random variables 1X , 2X ,Ω, nX  are dependent, suppose one knows the joint 

PDF ),,,( 21 nX xxxf K  random variables 1X , 2X ,Ω, nX . First obtain the joint CDF 

),,,( 21 nX xxxF K . Generate the sample points of )1( −n  random variables using Equation 

2.11. Substitute the sample points of the )1( −n  random variables into the joint CDF 

),,,( 21 nX xxxF K , and obtain the sample point of the last one random variable using 

Equation 2.11 and the joint CDF ),,,( 21 nX xxxF K . 

If the random variables are dependent, it is very difficult to generate the sample 

points since the generation of the joint PDF and CDF is not easy. Fortunately, for most 

engineering problems the (random) design variables are independent. 
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APPENDIX G:  TRUNCATED NORMAL DISTRIBUTION 
 

The (univariate) normal distribution has wide applications in various fields. It is 

used to describe bell-shaped distributions of single random variable, or the approximately 

bell-shaped distribution of a (random) response resulted from a large number of random 

variables via the Central Limit Theorem. However, the theory of the normal distribution 

assumes the range of the random variable is from −∞ to +∞, which is not the case for 

most real-world applications and thus may lead to large errors.  Therefore, the truncated 

normal distribution should be used for the situations in which the range is finite of the 

random variable or a response of multiple random variables. Here the theory of the 

doubly truncated, univariate normal distribution is summarized as follows [137]. 

First define the PDF )(Xf  of a normally-distributed random variable X  as: 

 
+∞≤≤∞−=
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
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Then the PDF )(Xf DTN  of doubly-truncated, normally-distributed random variable 

X  is given as: 
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(G.2) 

where )(Xf  is defined in Equation G.1, LX  and RX  are the left and right limits of 

random variable X , respectively, see Figure G-1. 
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Figure G-1: Doubly-Truncated Normal Distribution (adapted from [137]) 

 
 

Denotes the CDF of )(Xf  as )(XF , then the CDF of )(Xf DTN , )(XFDTN , is given 

as: 

 















+∞≤≤

≤≤
−

−

≤≤∞−

=

XX

XXX
XFXF

XFXF

XX

XF

R

RL
LR

L

L

DTN

,0

,
)()(

)()(

,0

)(  

 

(G.3) 

 

LX  RX  µ  

)(Xf  

)(Xf DTN  

X  



259 

APPENDIX H:  A TRANSPORT AIRCRAFT DESIGN OPTIMIZATION 
PROBLEM 

 

This problem is based on the transport aircraft multidisciplinary design optimization 

problem in the class notes of Advanced Design Methods II, spring 2003, School of 

Aerospace Engineering, Georgia Institute of Technology, and is extended to a two-

objective optimization problem under probabilistic constraints. 

H1. Problem Description 

The design of a transport aircraft is a complex, multidisciplinary process. 

Traditionally, the process is decomposed into aerospace engineering disciplines, such as 

aerodynamics, weights, performance, etc, in order to make the problem easier to manage. 

The closely coupled relationships and natural iteration between the various contributing 

analyses (CA’s) provides an opportunity to use MDO techniques to improve the 

efficiency with which the design can be optimized. However, because of the uncertainties 

inevitably existing in the early stages of design, the design solutions can not be taken 

deterministically, but should be subject to probabilistic constraints. 

Assume that the aircraft design team is decomposed into four disciplinary CA’s: 

 
 

CA Discipline 

D Zero-lift Drag CA 

A Aerodynamics CA 

W Weights CA 

P Performance CA 

 



260 

 
The team’s objective is to design a mid-range passenger jet transport so that the 

productivity index (PI) is maximized and the installed total engine thrust (iT ) is 

minimized. PI is a measure of the speed and cargo carrying capability of an aircraft 

normalized by the sum of its empty and fuel weights. iT  is considered to be a measure of 

both purchase price and operational cost. There are five primary design variables: 

 
 

Variable Name Range of Mean Distribution 

b  wing span (ft) [95  145] σ3  symmetrically truncated 

normal, 2000/range=σ  

l  fuselage length (ft) [120  140] σ3  symmetrically truncated 

normal, 2000/range=σ  

S  wing area (ft2) [1300  1850] σ3  symmetrically truncated 

normal, 2000/range=σ  

toW  takeoff gross weight (lb) [155000  180000] σ3  symmetrically truncated 

normal, 2000/range=σ  

iT  installed total engine 

thrust (lb) 

[20000  35000] σ3  symmetrically truncated 

normal, 2000/range=σ  

 
 
And there are two coupling variables: 

 
 

Variable Name Range* 

brV  best range cruise speed (ft/sec) [550  800] 

landingW  landing gross weight (lb) [75000  150000] 
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* For the purpose of surrogate model construction 

 
 
The optimization problem under probabilistic constraints can be stated as follows: 

 
Maximize: 

fixpaytofrfa

paybr

WWWRR

WV
PI

−−+−
=

)1(
 

 

 Minimize: iT   

Subject to seven inequality probabilistic constraints: 

 85.0)6000( ≥≤toSP  takeoff field length (ft) 

 85.0)4000( ≥≤lSP  landing field length (ft) 

 85.0)3.0( ≥≥UP  useful load fraction 

 85.0%)7.2( ≥≥toqP  takeoff climb gradient (one engine out) 

 85.0%)4.2( ≥≥lqP  aborted landing climb gradient (one engine out) 

 85.0)1( ≥≥fRP  overall mission fuel balance (available/required) 

 85.0)5.10( ≥≤ARP  wing aspect ratio 

 
 

H2. The Models of CA’s 

The models of CA’s are given as some equations here to represent the real complex 

computer programs used by CA’s. 

 
 

Required Definitions and Constants 
 

Variable Value Description 

pN  188 number of passengers 
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N  3 number of engines 

tb  1.944E-4 sec-1 engine specific fuel consumption 

R  1.7632E7 ft required range (approximately 2900 nmi) 

cruiseh  35000 ft cruise altitude 

payW  30000 lb payload (passengers and cargo) 

fixW  1100 lb fixed equipment weight 

slρ  2.378E-3 slugs/ft3 sea-level density 

slν  1.56E-4 ft2/sec sea-level kinematic viscosity 

ltoV _  220 ft/sec takeoff and landing speed 

cρ  7.37 E-4 slugs/ft3 cruise altitude density 

cν  4.06E-4 ft2/sec cruise altitude kinematic viscosity 

ct /  0.12 airfoil thickness-to-chord ratio 

max_lc  2.6 aircraft maximum lift coefficient (takeoff and landing) 

c  bS/  mean aerodynamic wing chord (ft) 

brV  TBD best range cruise speed (ft/sec) 

DL /  Varies lift-to-drag ratio at various flight conditions 

 
 

D – Zero-Lift Drag Contributing Analysis 
 

2=wetS  wing wetted surface ratio 

)1325.4(83.1 +=
l

N
d p  fuselage diameter (to hold 

passengers) (ft) 
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( ) ( ) 0_0_0_0 dcbodydcwingdcd cccc ∆++=  zero lift drag coefficient at cruise 

 
 

A – Aerodynamics Contributing Analysis 
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W – Weights Contributing Analysis 
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P – Performance Contributing Analysis 
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APPENDIX I:  A REUSABLE LAUNCH VEHICLE DESIGN 
OPTIMIZATION PROBLEM 

 

This problem is based on the reusable launch vehicle (RLV) multidisciplinary 

design optimization problem in the class notes of Advanced Design Methods II, spring 

2006, School of Aerospace Engineering, Georgia Institute of Technology, and is 

extended to a two-objective optimization problem under probabilistic constraints.  

I1. Problem Description: 

Assume that the RLV design team has been decomposed into five disciplinary CA’s 

as follows: 

 
 

CA Discipline 

P Propulsion 

T Trajectory optimization 

Wu Weight estimation – upper stage 

Wb Dry weight estimation – booster stage 

S Sizing and scaling 

 
 
The team’s objective is to design a RLV and propulsive upper stage so that the 

gross mass of the RLV and the upper stage grossW  and the vacuum specific pulse vacIsp  

are minimized. The RLV booster stage will carry the upper stage to some staging point, 

where the upper stage will separate and continue to orbit. The booster then coasts back to 

a landing site. grossW  is a measure of the purchase price. vacIsp  is considered to be a 
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measure of operational cost since the propellant mass is the major portion of the gross 

weight and lower vacuum Isp means cheaper fuel. grossW  and vacIsp  are conflicting with 

each other because minimizing grossW  requires maximizing vacIsp  in order to carry less 

propellant. There are five primary design variables: 

 
 

Variable Name Range of Mean Distribution 

ε  Expansion ratio of the engine 

nozzle 

[10 100] σ5.0  symmetrically truncated 

normal, 2000/range=σ  

0_WT  Ratio of takeoff thrust and 

gross takeoff weight 

[1.2 1.5] σ5.0  symmetrically truncated 

normal, 2000/range=σ  

r  Engine oxidizer/fuel ratio 

(by weight) 

[4.0 7.8] σ5.0  symmetrically truncated 

normal, 2000/range=σ  

SW _  Landed weight divided by 

wing planform area 

[20  50] σ5.0  symmetrically truncated 

normal, 2000/range=σ  

splitV∆  Percentage of total V∆  

allocated to the booster stage 

[0.25 0.75] σ5.0  symmetrically truncated 

normal, 2000/range=σ  

 
 
And there are four coupling variables: 

 
 

Variable Name Range* 

grossW  The gross takeoff weight including the 

booster and upper stage 

[200000 2200000] 

refS  Booster wing planform area (ft2) [1300 7500] 
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propW  Booster main ascent propellant weight (lb) [60000 2000000] 

landW  Booster landed weight (lb) [60000 240000] 

* For the purpose of surrogate model construction 

 
 
The optimization problem under probabilistic constraints can be stated as follows: 

 Minimize: grossW   

 Minimize: vacIsp   

Subject to one inequality probabilistic constraint: 

 30.0)psi5( ≥≥epP *  Limit on nozzle exit pressure to avoid flow 

separation 

* The reason that the required probability is so small is because this design problem 

is quite sensitive to the perturbation around the converged design solutions, i.e. a small 

perturbation to a converged design solution will easily result in a non-converged design 

combination. Although there is only one probabilistic constraint, this RLV design 

problem still can demonstrate the feasibility of the proposed framework since the number 

of probabilistic constraints makes no difference to the operation of the probability 

counting Equation 2.55. 

 
I2. The Models of CA’s 

The models of CA’s are given as some equations here to represent the real complex 

computer programs used by CA’s. 
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Required Definitions and Constants 
 

Variable Value Description 

payW  32.174 ft/s2 Earth surface gravity constant 

n  5 Number engines on booster 

payW  30000 lb Payload to orbit 

slp  2116 psf Sea-level ambient pressure 

cp  446400 psf Rocket engine chamber pressure 

flightV∆  25000 ft/s Actual flight V∆  to be provided by RLV booster and 

upper stage 

k_wing 6 lb/ft2 Wing weight per unit planform area 

k_tank 0.7 lb/ft3 Tank weight per unit volume 

k_body 0.05 Body structural weight as fraction of landed weight 

k_TPS 0.04 Thermal protection system (TPS) weight as fraction of 

landed weight 

k_gear 0.03 Landing gear 

k_subsys 30000 lb Fixed subsystems weight 

K_margin 0.15 RLV dry weight margin 

ox_density 71.2 lb/ ft3 Density of liquid oxygen 

h2_density 4.41 lb/ft3 Density of liquid hydrogen 

k_residual 0.005 Residual propellant as fraction of ascent propellant 

vacspI _  420 s Isp of upper stage engine 

upperλ  0.15 Structural mass fraction of upper stage 
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P – Propulsion Contributing Analysis 
 

23254

23
_

1048.110481.1106.1

1066.3105.25467.1

rr

rC vacf

∗∗−∗∗−∗∗∗+

∗∗+∗∗+=
−−−

−−

εε

ε
 

Vacuum thrust coefficient 

(RSE – by Tim Kokan) 

2232 41333.11041.210896.1

0959.124729.0864.401

rr

rIspvac

∗−∗∗−∗∗∗+

∗+∗+=
−− εε

ε
 Vacuum Isp (RSE) 

2223

3

10815.21037.1

1098.87546.01988.05535.8

r

rrpe

∗∗+∗∗+

∗∗∗−∗+∗−=
−−

−

ε
εε

 Nozzle exit pressure (psi) 

(RSE) 

224

3

18319.0100.7

1002.49446.02551.01329.62

r

rr
W

T

e

sl

∗+∗∗+

∗∗∗−∗−∗−=

−

−

ε

εε
 

Engine sea-level thrust to 

weight ratio (RSE) 

0_WTWT grosssl ∗=  Total engine sea-level 

thrust (all engines) (lb) 

εslvacfc

sl
t pCp

T
A

−
=

_

 Total engine throat area (all 

engines) (ft2) 

te AA ε=  Total engine exit area (all 

engines) (ft2) 

sleslvac pATT +=  Total engine vacuum thrust 

(all engines) (lb) 

Note: Propulsion calculations are all for the engines on the booster stage only. 
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T – Trajectory Optimization Contributing Analysis 
 

22210

2922

88

94

66

3

3

1080.11019.8

1000.11048.7

1043.81003.4

1005.21047.1

1045.21039.4

2559.01077.3

104.2739.135073

refgross

vace

refgrossrefvac

grossvacrefe

grossevace

refgross

vaceloss

SW

TA

SWST

WTSA

WATA

SW

TAV

∗∗+∗∗+

∗∗+∗∗+

∗∗∗−∗∗∗+

∗∗∗−∗∗∗−

∗∗∗+∗∗∗−

∗+∗∗+

∗∗−∗−=∆

−−

−−

−−

−−

−−

−

−

 

Ascent velocity losses for 

booster stage (ft/s) (RSE – 

by Tim Kokan) 

losssplitflightbooster VVVV ∆+∆∗∆=∆  Total V∆  required for 

booster stage (ft/s) 










∗
∆

=
vacc

booster
booster Ispg

V
MR exp  Required booster mass 

ratio 

)1( splitflightupper VVV ∆−∗∆=∆  Total V∆  required for 

upper stage (ft/s) 













∗
∆

=
upperc

upper
upper Ispg

V
MR exp  Required upper-stage mass 

ratio 

Note: Assuming no losses for the upper stage. 

 
 

Wu – Weight Estimation (Upper Stage) Contributing Analysis 
 















−











 −
−

=

upperupper

upper

pay
upper

MR

MR

W
W

λ1

11
1

 
Gross weight of upper 

stage (lb) 

Note: In a more detailed design, this simple equation could be replaced by a series 

of more detailed performance and sizing relations. 

 
 
 



273 

Wb – Dry Weight Estimation (Booster Stage) Contributing Analysis 
 

densityhdensityox

r
r

d

_2

1

_

1

+

+=  
Propellant bulk density 

(lb/ft3) 

refwing SwingkW ∗= _  Wing weight (lb) 

land
prop

body Wbodyk
d

W
tankkW ∗+∗= __  

Body weight (lb) 

landTPS WTPSkW ∗= _  TPS weight (lb) 









∗=

e

sl

gross
engines

W

T

W
WTW 0_  

Engines weight (all) (lb) 

landgear WgearkW ∗= _  Landing gear weight (lb) 

subsyskWsubsys _=  Fixed subsystems weight 

(lb) 

)

(_

subsysgear

enginesTPSbodywingmargin

WW

WWWWmarginkW

++

+++∗=
 

Dry weight margin (lb) 

marginsubsysgear

enginesTPSbodywingboosterdry

WWW

WWWWW

+++

+++=_
 

Total dry weight – booster 

stage (lb) 

 
 

S – Sizing and Scaling Contributing Analysis 
 

)1(_1
_

−∗−
+

=
booster

boosterdryupper
stage MRresidualk

WW
W  

Booster weight just prior to 

staging (includes gross 

weight of upper stage) (lb) 

boosterstagegross MRWW ∗=  Booster gross takeoff 

weight (includes weight of 

upper stage) (lb) 
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boosterdryupperstageresidual WWWW _−−=  Booster residual main 

propellant weight (lb) 

upperstagegrossprop WWWW −−=  Booster main ascent 

propellant weight (lb) 

upperstageland WWW −=  Booster landed weight (lb) 

SW

W
S land

ref _
=  

Booster wing planform 

area (ft2) 

Note: Assuming that the landed booster weight is equal to the booster weight just 

after staging (neglecting small propellant usage during coast back to ground). 
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