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SUMMARY

One inherent impetus to the development of newetteb design methods is the
challenge of solving realistic design problems ofmplex systems, where ‘realistic’
means no simplifications have been made to thegdegproblem except for the
mathematical abstraction of the design problemfitSpecifically, realistic conceptual
design problems of complex systems have four comimeatures: multidisciplinary,
multi-objective, design decisions being made in firesence of uncertainties, and
decisions being made in a relatively short timeiqeemwith limited resources. Those
realistic conceptual design problems are either design concept generation and
selection or for design alternative generation aaldction. Although design has been
viewed as a discipline for more than three decattes,current state-of-the-art design
methods have limitations and in many cases arsuitgble to handle realistic conceptual
design problems. This will be particularly true ftre cases of design alternative
generation and selection where revolutionary desarcepts are considered. This drives
the need for a new framework to solve realisticosmtual design problems of design
alternative generation and selection. Considerimg fact that high fidelity but time
consuming tools are used to generate the trainiagpke for surrogate model
construction when a design is revolutionary, theg/iramework in turn requires a hybrid
surrogate modeling method to achieve high accufacynany kinds of problems with a
small training sample. This new framework also meggia surrogate model selection
advisor to choose the best surrogate model forvangcomplex physics-based model

based on a balance between model accuracy and exitgpl
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The purpose of this research is to provide suchrammdwork. The proposed
framework combines separately developed multidis@py optimization, multi-
objective optimization, and joint probability asse®nt methods together but in a
decoupled way, to solve joint probabilistic constramulti-objective, multidisciplinary
optimization problems that are representative afisgc conceptual design problems of
design alternative generation and selection. Thentnhere is to find the Weak Pareto
Frontier (WPF) solutions that include additionahq@omised solutions besides the ones
identified by a conventional Pareto frontier. Thimmework starts with constructing fast
and accurate surrogate models of different dist#pli analyses in order to reduce the
computational time and expense to a manageablé devthat the design space can be
explored quickly, obtain trustworthy probabilitie$ the probabilistic constraints (PC)
and WPF, and so as to enable conceptual desigsialeonaking in shorter time period.

A new hybrid method is formed that consists of$keond order Response Surface
Methodology (RSM) and the Support Vector Regresg®vR) method capturing the
global tendency and the local nonlinear behavigpeetively. The purpose of forming
this hybrid method is to provide a method that aehieve high accuracy for many kinds
of problems with a small training sample. The thpaeameters needed by SVR to be pre-
specified are selected using practical methodsaanmbdified information criterion that
makes use of model fitting error, predicting errand model complexity information.
The model predicting error is estimated inexpengiwgth a new method called Random
Cross Validation. In order to select a surrogatel@havithout unnecessary complexity
from RSM, SVR, and the hybrid method, this modifietbrmation criterion is also used

as a surrogate model advisor to select the besigate model for a given problem.
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A new neighborhood search method based on Monti® Ganulation is proposed
to find valid designs that satisfy the determimistonstraints and are consistent for the
coupling variables featured in a multidisciplinatgsign problem, and at the same time
decouple the three loops required by the multigisgry, multi-objective, and
probabilistic features. Two schemes have been dpedl One scheme finds the WPF by
finding a large enough number of valid design sohg such that some WPF solutions
are included in those valid solutions. Another sebdinds the WPF by directly finding
the WPF of each consistent design zone that is ropdef consistent design solutions.
Then the probabilities of the PC’s are estimated, the WPF and corresponding design
solutions are found.

Three pure mathematical model fitting problems @sed to demonstrate that the
hybrid method of RSM and SVR really can obtain maceurate surrogate models with
better results where sometimes the (second ord8NI,RSVR, and Neural Network
methods can not fit a given problem well with a Briraining sample. This illustrates the
need for the hybrid method.

Three two-objective and one three-objective deteistic optimization problems
are used to demonstrate that this framework cahthe true weak Pareto frontier. The
results show this framework can be used for mapggyof problems, such as cases of
multiple-to-one mapping from design solutions ie ttesign space to objective points in
the objective space, problems of which the WPF &denup of spatially disjointed
segments, and problems with constraints and marettkio objectives.

A typical aircraft design problem and a reusablentd vehicle design problem

under probabilistic constraints are solved to destrate the feasibility of this framework

XXii



for engineering-based problems. The results ofetivs design problems show that both
neighborhood search schemes can find the WPF. Theslts also show the methods to
select the pre-specified parameters of SVR world weel engineering-based problems,

the hybrid surrogate models are fast and accuaaig,the surrogate model advisor can
select the best surrogate model for a given proldemach response of an engineering-

based problem.
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1 INTRODUCTION AND MOTIVATION

Although design has been viewed as a disciplinerfore than three decades, the
conceptual design methods already developed havtations and many are unable at
times to handle realistic conceptual design problesfi complex systems for design
alternative generation and selection, where ‘rgalimeans no simplifications have been
made to the design problem except for the mathealatibstraction of the design
problem itself. This drives the need for a new fearark to solve such kind of problems,
especially those involving revolutionary design ogpts and technologies.

1.1 The Conceptual Design Process

Ever since the Industrial Revolution in England the late 18 century, the
extensive adoption of complex mechanisms such tasraliles, aircraft, and rockets has
forced people to do design in a disciplined wayfoBe this, a design relied on a
designer’s engineering intuition, talent, and eigere, to compose concepts together to
provide a viable solution for a given mission. Altlyh design is still both a science and
an art even in modern days [1] with engineeringitidn and experience being necessary,
it has undoubtedly become a discipline that pravitlee methodology to decompose
mission or customer requirements, find and composper concepts in an organized or
structured way, and finally provide a solution. [@esas a discipline is based on
mathematics, scientific and technical knowledgehept information of analytical
disciplines, and information integration technolo@esign as a discipline can provide
better solutions such as the optimal solutions thagineering intuition or experience

can, or even be the only means to provide viablatisoas when new and complex



systems to be tackled are beyond the capabilityamf experienced designer. As
complements to the discipline of design, howevagimeering intuition and experience
can provide good starting points or efficient dstaf the overall solution.

A formal definition of design was given by Blumricin 1970 as “Design
establishes and defines solutions to and pertisamoctures for problems not solved
before, or new solutions to problems which havevipresly been solved in a different
way” [2]. This definition is the symbol of the diptine of design.

Engineering design can be divided into three majoases: conceptual design,
preliminary design, and detailed design [3]. Comgaldesign can be further divided into
need identification and problem definition, concgpheration, concept selection [1], and
design alternative generation and selection. Agiiesoncept is an idea that represents a
family of similar design alternatives and eventyadl described by a parametric model
with some design variables to predict or estimhee gerformance, quality, and cost of
this family of design alternatives, while a desajternative is a specific design resulting
from specific values of the design variables [d]tHis research, ‘design solution’ is often
used as a more familiar term to most people fosiglealternative’.

All possible design concepts form the concept spaAcgood way to explore the
concept space is to form a morphological matrixt tt@nsists of functions and sub-
functions required by a design problem and cornegdpg possible ‘hows’ [1], such as
different technologies, number of engines, wingp&isa etc. A design concept is a
combination of such ‘hows’. For example, designaapt 1 is a combination of 3 engines

of technology 1, straight wing, low wing, etc; adésign concept 2 a combination of 2



engines of technology 2, swept wing, middle wing, &herefore the concept space has a
combinatorial property.

Each design concept has a design space, whichrnsetb by the ranges of the
design variables of the parametric model of thisigie concept. A design alternative is

thus a point in a design space, or a sized desigoept, as shown in Figure 1-1.
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Figure 1-1: The Design Space and a Design Alternag of a Design Concept

The output of the conceptual design phase is alyaofidesign alternatives. One
example is the design of the Korean trainer T-50slaown in Figure 1-2. During the
conceptual design, 19 concepts were generated\aidaéed. Some of the concepts are
sized, and at the end three design alternativespeoeided for preliminary design.
Another example is the design of a notional wingrs@s shown in Figure 1-3. The
design concept is selected as a flat plate. A dedigrnative is provided when the length

and depth of this plate are determined accordingng span, airfoil shape, and location.
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Figure 1-2: Design Process of Korean Trainer T-50dapted from [5])
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Figure 1-3: Design Process of a Wing Spar [3]

1.2 The Design Process Paradigm Shift and Requirddesign Methods

A design process paradigm shift is underway anghgees a change in the way
complex systems are being designed. The new desagress paradigm entails tradeoffs
between conflicting objectives, integration of {dgcle disciplines, and a probabilistic
design approach to handle uncertainties.
1.2.1 The Design Process Paradigm Shift and Its Inipations

Today’s design paradigm is experiencing a shifimfrdesign for performance,

without much consideration of the cost implications design for affordability and



qguality with a life-cycle emphasis. The goal ofstimew paradigm is to design complex
systems with high quality at a competitive cost levhaccounting for the life-cycle
behaviors of those systems [6]. Affordability asancept is also introduced, under this
paradigm as the ratio of system effectiveness &iegy cost, or in other words, the
balance between performance (or more generallyfibeaed cost. The life cycle of a
product consists of 15 processes or stages if @oks|closely, and can be divided into
the pre-market and market phases [1]. For airctiadt,life cycle can be simplified as 6
main stages: conceptual design, preliminary desigtailed design, production, service,
and retirement.

In the traditional design approach, the design geao maximize performance
without much consideration of the cost. Usuallyaamdiful of design concepts or design
alternatives are selected for further analysis afte conceptual design phase and usually
one design alternative is selected for further thigraent. Thus there is a limited amount
of design freedom in this process, where desigediven is the ability to generate viable
engineering alternatives and make design changésgdihe product development stages
before product release [7]. Consequently, the dede&risions made in the early stages
such as conceptual and preliminary designs deterraitarge portion of the total life
cycle cost (LCC) committed, and with few exceptidmgh LCC is incurred. Those
decisions also can have significant impact on thelelife cycle of a product, including
product quality and customer satisfaction.

This situation can be changed in the new desigadigm by shifting to a more
gradually decreasing design freedom curve and aengyadually increasing cost

committed curve. To achieve the two new curves,rktkgam design knowledge must be



brought to the early design phases such as coralegesign in order to make educated
decisions (increasing knowledge), where design kedge is the information about the
product, the process and operational environmegrfopnance-cost tradeoffs must be
made in early design phases; the design freedom tmiskept open by adopting

probabilistic design approach to provide a family of designraléves in order to

mitigate the effects of uncertainties [7]; and lghdelity knowledge should be brought
into the conceptual design phase through highelify{ddesign and analysis tools [6].
With more design freedom and higher fidelity knodge, the cost committed by the
design decisions will be decreased. Thus the tibéatycle cost will be decreased. This
“cost-knowledge-freedom” interaction from conceptdesign to production is shown in

Figure 1-4, where the cost is the LCC.
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Figure 1-4: "Cost-Knowledge-Freedom” Interaction ard Shift for Future Design Paradigm [6, 7]



The above design paradigm shift requires handlingremconflicting design
objectives. Traditional design has only performanbgectives; modern design has to
handle conflicting performance and cost objectis#h conflicting objectives, there is
no best solution, there are only best compromisaldtiens or efficient solutions,
typically called Pareto frontier (PF) solutions. slsown in Figure 1-5, there are many
possible solutions in the objective space, andPeto frontier solutions are at the edge
of the cloud of points. Therefore, Pareto frontsutions enable efficient tradeoffs
between performance and cost, or selection by deatification of the User. Pareto

frontier solutions are a locus of different solaso with these solutions, the design

freedom is kept open.
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Figure 1-5: Pareto Frontier Points and InefficientPoints in the 2D Objective Space
The above design paradigm shift also requires vapahore disciplines involved
in the life cycle and more design requirementsamstraints during the conceptual design
phase. In addition to conventional disciplines sush propulsion, performance, and

structure, other downstream disciplines of the tfele should be included, such as



stability and control, economics (for cost and fiypmanufacturing, and safety, as shown
in Figure 1-6. Now requirements or constraints frdifferent levels must be considered
at the same time, including traditional customequreements and technical standards,
and new regulatory requirements such as emissidmaise. For aircraft design, relevant
different levels may include discipline, vehiclessgm, transportation system, and global
system levels. Here transportation system incladesaft, airport, flight route facilities,

etc; and global system includes the country andEeh in the viewpoints of national

economics and ecological impacts.
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Figure 1-6: Variable Fidelity of Aircraft Synthesis and Sizing [7]

With respect to the conceptual design methods,déssgn paradigm shift implies
the following capabilities or features are desirdidst, to handle multiple design
objectives and find Pareto frontier solutions fdficeent tradeoffs between cost and
performance; second, to include life-cycle discip and to handle the interactions

among those disciplines; third, to perform probabd design in order to handle the



uncertainties and keep the design freedom openttaperform rapid assessments, since
the conceptual design phase is relatively verytstmmpared with the total life cycle and
there is an enormous number of possible conceptsiasign alternatives that need to be
investigated.

With respect to the mathematical model of a conedptesign problem, the design
paradigm shift implies a realistic model is desirddere ‘realisticc means no
simplifications have been made to the design probéxcept for the mathematical
abstraction of the design problem itself. The comrfeatures of the realistic conceptual
design problems include: multiple conflicting desigbjectives; multiple disciplinary
analyses with coupling variables; probabilistic stwaints to capture the effects of
uncertainties; and use of accurate or high fidalisciplinary knowledge due to profound
effects of design decisions on LCC.

1.2.2 Concepts of Multi-Objective Optimization Metlods

As mentioned previously, the design of complex eayst needs to handle
conflicting objectives and Pareto frontier solus@mnable efficient tradeoffs among those
conflicting objectives. The reason for Pareto frensolutions is discussed in more detail
here.

In most cases, the quality of the complex systerastraltimately be assessed by
more than one criterion, and all of the correspogdbjectives of those criteria should
be optimized simultaneously. Often, the objectiaes conflicting in such a way that
optimization of a single objective leads to poonfpenance for other objectives.
Generally speaking, there are many potential desigiutions to a multi-objective

optimization problem (MOO). During the early staggsdecision-making, the designer



or technical engineer often has little informatiabout the relative importance of the
individual objectives, or which criterion is momaportant. These decisions are usually
not made by the designer; instead, these decisi@preferences that vary depending on
a stakeholder’s viewpoint [8]. In the absence dkaision maker, all the objectives may
be treated with equal importance, and a whole famfl such solutions of which no
objective can be further improved without degradamg other objectives must be found.
These solutions are denoted as Pareto frontieticotu

From the above description, there are no othertisok better than the PF ones in
terms of all objectives. Therefore, if anyone af #F solutions is selected according to a
given criterion for tradeoff among the conflictingjectives, this PF solution is the best.
In this sense, PF solutions enable efficient tréfd@nce no efforts will be wasted on the
inferior solutions.

Because of the high efficiency of PF solutions tomdeoff, the purpose of
mathematical optimization is to give a variety d¥ Bolutions, or in the ideal case to
determine the entire set of PF solutions, to therds customer who is the decision-
maker. With the PF solutions, the User can detegrtiiie optimum design according to
certain preferences for the objectives during tkeeision-making process. This is an
important ability for engineering design, as shawrRef. [9], “Pareto front techniques
help define the biggest bang-for-buck so that,ifigstance, the DoD can decide on how
much performance it can afford”.

The user may also choose to relax the requiremsmtas to accept such design
solutions for which at least one, but not all, ahjees are better than those of other

design solutions. This is a means by which thegtesblution space is opened up and
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more trade-off choices become available. ThesxedldOO solutions are denoted as
weak Pareto frontier (WPF) solutions.
1.2.3 Concepts of Multidisciplinary Optimization Methods

Multidisciplinary design optimization methods amerhulated to integrate different
disciplinary analyses together to handle the imtevas and enable a concurrent
engineering process to solve such design and gatian problems efficiently.

The different disciplines interact with each otlierough the coupling variables
among those disciplines. A coupling variable (dedoas CX) is both an output of a
disciplinary analysis and an input of another wheeefirst disciplinary analysis directly
or indirectly needs input information from the sedoone. A single-discipline design
such as the design of the engine in the aircrastggemay have coupling variables if
some outputs are fed back.

Coupling variables complicate multidisciplinary @gs There are three main
impacts of these variables. First, design freedoneduced since only some design points
or solutions in the system level design space teatbnverged values for the coupling
variables themselves. These points are called st@m$i design points, and form
disjointed zones in the design space, which areca&onsistent design zones. Second,
those variables require many iterations of the ilisltiplinary analysis in order to find
every single consistent design point since thessistent design zones are disjointed. In
other words, equality constraints entailed by thwadables in the multidisciplinary
analysis process complicate the design problemrdTIspecial solving procedures are
required to decouple the complex interactions ohiced by coupling variables to find

consistent design points.
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If there are (explicit) design constraints in thaltidisciplinary design, only some
of the consistent design points can satisfy thasestrtaints. These points are called
feasible design points, or herein, candidate deggints. Consequently, the feasible
design space consists of disjointed feasible desigres that are inside of and no larger
than the corresponding consistent design zones.ioQdly more iterations of
multidisciplinary analysis are required to find gvdeasible design point from the
disjointed consistent design zones. Sometimes aistent zone may contain disjointed
feasible design zones, and this makes the desgmmore complicated.

1.2.4 Concepts of Probabilistic Design Methods

The conceptual design of complex systems is prdibabiin nature, such that
decisions are made in the presence of uncertair8iegply speaking, uncertainty is the
incompleteness of design knowledge, or a differebeéwveen reality and what is
expected [7]. In more detail, uncertainties areseduby ambiguity of the requirements,
variations in material properties, incomplete knedge of the manufacturing process and
operational environment such as variations in mactufing precision and loading
conditions, modeling assumptions, and other souf6gs

Uncertainties can significantly affect the decisimaking process. Traditional
multidisciplinary design optimization methods useeterministic approach so that the
optimal design solutions are frequently pushed he timits of design constraint
boundaries, leaving little or no room to accommedahcertainties in system input,
modeling, simulation, and operation environmenf[B3 a result, those design solutions
may be highly sensitive to the variation of the ena&in factors. This can lead to serious

performance loss suffering from the high likelihooflundesired events such as some
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extreme off-design conditions, or being conseneatind consequently not economically
viable.

Most often the effects of uncertainties are eméddn the probabilistic constraints
(PC) [11]. A probabilistic constraint is that theopability of satisfying one constraint
must be greater than a prescribed level. This cainsis called limit state function (LSF).
For example, to consider the variation in matepiaperties and/or load conditions, the
PC can be stated as the probability that the maxiratress in a structure is less than a
given level must be greater than 99.9%, or thatféilare probability must be less than
0.1%. To consider system-level requirements suldgetiture changes, the designer can
use a stricter-than-current requirement, for examiplthe takeoff distance is to be less
than 5,500 feet, a stricter requirement can be naadihat the takeoff distance must be
less than 5,000 feet; and the PC can be stateldaashis stricter requirement must be
satisfied with a probability greater than 85%.

To consider the effects of uncertainties, the cpthwad design of complex systems
has to adopt a probabilistic design approach. Toéabilistic design approach is quite
different from the (traditional) deterministic dgsiapproach. As shown in Figure 1-7, an
imaginary constraint analysis for average requiyezld per revenue passenger mile
($/RPM) and cruise speed, the deterministic comgraare fixed, defined by only two
lines, while the probabilistic constraints are figed or well defined, instead, these
probabilistic constraints are represented by twmdba Consequently, use of the
deterministic design approach provides one desltgrnative, while the probabilistic

design approach yields a family of design altexmsti
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Figure 1-7: Constraints of Deterministic and Probalilistic Design Approaches

For evolutionary designs, there are a small nurobencertainties to be considered,
and variations of those uncertainties are usuaihalks therefore, only a few design
alternatives are needed. For revolutionary designiggt more assumptions are being
made, and therefore there are more uncertaintiesyariations are greater; therefore, a
much larger set of design alternatives must beidered for examination.

As mentioned previously, the conceptual design @hasludes design concept
generation and selection, and design alternativeergéion and selection. The
probabilistic design processes for design concaptsdesign alternatives are different.
This is due to two main differences. First, thetriisitions are different. In probabilistic
design, the designer actually controls only the imainvalues of the design variables,
such as the mean values. The distributions of &gulesoncept are for those nominal

values. Usually, a uniform distribution is usedeTdistributions of a design alternative
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are for the values of the design variables abosgtaof nominal values. Usually these

distributions are not uniform. This differencellastrated in Figure 1-8.
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Figure 1-8: Distributions of a Design Concept and ®esign Alternative in Probabilistic Design

Second, the constraints imposed on the designnatiees are different. When
assessing the probability of a design concept amaping techniques for design concept
generation and selection, each sampling point ecladd to see if all deterministic
constraints are satisfied. Here a sampling poiatisally a design alternative. Therefore,
only deterministic constraints are imposed on e@design alternative of this concept,
although probabilistic constraints are imposed bis toncept. When assessing the
probability of a design alternative via samplingchieiques for design alternative
generation and selection, similarly each samplirgntpis checked to see if all
deterministic constraints are satisfied. What #$edént in this case is that a sampling
point is actually a possible physical realizatidnttis design alternative. Therefore, in

this case probabilistic constraints are imposed aordesign alternative, although
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deterministic constraints are imposed on each blesphysical realization of this design
alternative.

In most cases, the PC’s are not independent bet¢hase constraints share some
variables, either random or deterministic. Becaafgbose shared variables, the effects of
uncertainties propagate around, and thus those fA@s$ be satisfied jointly. Obviously,
the effect of the PC’s is that under PC’s somehef\WPF solutions found by traditional
methods undedeterministic constraints are not eligible and have to be doszhr
1.3 The Need for a New Framework for Design Alternd@ave Generation and

Selection

Many conceptual design methods have been develmpedcommodate the new
design paradigm. These methods follow the IntedrBr®duct and Process Development
(IPPD) methodology [7, 12] that systematically grees and applies all life cycle
disciplines into the early design phases. Exampfesuch methods are the Technology
Identification, Evaluation, and Selection (TIES)thwal [6], Joint Probabilistic Decision
Making (JPDM) method [8], and Robust Design Simala{RDS) method [13], to name
a few. Those methods are good for realistic problemdesignconceptgeneration and
selection, and have been successfully applied myrdasign projects.

However, those methods are not suitable for reéaligroblems of design
alternative generation and selection because of some of tleiog limitations. Some
of those methods are used with monolithic legaajesahat are suited for evolutionary
designs, but not suitable for revolutionary desitjred are out of the scope of those codes.
Usually there are no explicit treatments for theigling variables. When solving a

revolutionary design, this is a problem becausearstp disciplinary analyses are used in
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this case and the convergency of coupling variabkes to be treated by the designer,
instead of the disciplinary analyses. Some of thomethods treat multiple objectives with
a single Overall Evaluation Criterion (OEC). Thelgem of this treatment is that the
solutions are not guaranteed true Pareto frontikeitisns [14]. The last limitation is that
usually there is no algorithm to search for a desaiternative that satisfies all
probabilistic constraints. This is because usualynple filtering type methods (e.g.
Monte Carlo sampling and filtering) are used todiarthe combinatorial property of the
concept space and to assess the design concepabpittes by sampling design
alternatives. When selecting design alternativiesse types of methods are inefficient
and can not guarantee PF solutions since it isiieghat none of the sampling points is
a PF solution, or in the worse case none satiaflggobabilistic constraints.

Therefore, there is no suitable method for realisbnceptual design problems of
design alternative generation and selection acegrdd the previous investigation in
terms of treatment of probabilistic constraintspleit search for PF, and explicit
treatment of coupling variables. This is a gap tresds to be filled. And to fill this gap is
the main motivation of this research.

It is important to form a new method or framewodk fealistic conceptual design
problems of design alternative generation and selecBecause of the limitations,
current conceptual design methods can only be tsexblve simplified problems of
design alternative generation and selection. Famge, when the design concept is
revolutionary, the step to check the convergencgaipling variables may be skipped
because of lack of explicit treatment for coupliragiables; or a design alternative may

be accepted without checking if it is a PF solutbmtause of lack of an algorithm to
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search for design alternatives that satisfy albphlistic constraints. The problem with
design alternatives obtained from simplified profdeis that the solutions may lead to
increased risk and cost in the later design phdgese may be more and serious risk and
cost for revolutionary designs because of more tiaiceies and greater variation.

1.4 Research Objective

In a general sense, AIAA MDO Technical Committe¢ §d NASA Langley
Research Center [15] summarized the elements ndeyledtw design methods in the
aerospace industry, which include techniques tadleaRareto Frontiers with multiple
design objectives, loosely coupled multidisciplynadesign optimization (MDO)
frameworks or architectures to efficiently handlevale variety of problems, better
approximation methods than current popular metlsods as RSM and ANN to reduce
computing time and cost, and algorithms to accdont uncertainties and perform
optimization under uncertainties at conceptualugrodetailed design phases.

Obviously, the above general expectations for neethods in the aerospace
industry are a detailed version of the desiredutrest of a conceptual design method in
order to accommodate the new design paradigm. Gemsg the above general
expectations, the primary goal of this researctoiformulate a practical framework to
solve realistic conceptual design problems forglesiternative generation and selection,
where ‘practical’ means having the desired elementduding handling multiple design
objectives and finding weak Pareto frontier (WP&lugons; handling multiple life-cycle
disciplines and the interactions among these diseip in a loosely coupled way;

performing probabilistic design to account for umamties; and performing rapid
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assessment and enabling use of accurate or higHitfidknowledge by accurate
approximation methods.

One note is that this framework should find weakeRafrontier solutions instead
of PF solutions since WPF can provide additionahgmmised design solutions for
tradeoff than PF as discussed previously. And later a short term of ‘realistic
conceptual design problem’ will be used for ‘reatisconceptual design problem of
design alternative generation and selection’.

The above expectations for the new framework reqthie implementation of joint
probabilistic (constraint), multi-objective, mulgdiplinary optimization (JPMOMDO)
and finding the WPF solutions. This framework isighcalled “a framework for the

determination of weak Pareto frontier solutionsemuarobabilistic constraints”.
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2 BACKGROUND

In this chapter, the necessary background litegaisirreviewed according to the
desired elements for the new framework. First bfsathe mathematical statement of the
problem that represents a realistic conceptualgdeproblem (of design alternative
generation and selection) that the new framewodkilshsolve. Since the new framework
should be based on accurate surrogate modelsyatlite review of the state-of-the-art in
DoE and surrogate-modeling methods, and relatedogate-modeling concepts is
presented. Additional methods relevant to this #rework are investigated and include:
model assessment and model selection methods, goabtability assessment methods,
probabilistic  design methods, multi-objective  op#ation methods, and
multidisciplinary optimization methods.

2.1 Mathematical Statement of Realistic ConceptuadDesign Problems and Solving
Considerations

A joint probabilistic (constraint), multi-objectivemultidisciplinary optimization

problem, which represents a realistic conceptusigtleproblem to be solved by the new

framework, can be represented by the following matitical model:

Minimize: F(X) =[f,(X), f,(X),..., f.(X)]"  objective functions  (2.1)

Subject to:
P(gj (X) < thj)Z a; j=1m inequality PC’s (2.2
P(h(X)=th)=4 k=1 equality PC's 2.3
CX, =CX{ q=1c coupling variable constraints (3.4
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X! <X < X" i=1n side constraints (2)5
where
X =[X, %y, X, ] (random) design variables

y, = f,(X),y, = f,(X),...,y, = f.(X) responses/objectives

CXq, CXg input and output coupling variables
g,(X), h (X) limit state functions

th;, th, thresholds

a,pB, required probabilities

The constraintsg,(X) <th, and h (X) =th_ are deterministic constraints. The

functions in Equations 2.1, 2.2, and 2.3 may bedinor non-linear functions. Those
constraints may be explicit or implicit function$ design variablesX , and may be
evaluated by analytical or numerical techniqueseddmg on if those constraints are
explicit functions. For most engineering problem@straints are non-linear and implicit
functions and have to be evaluated numerically guggiomplex evaluation techniques
such as finite element method.

The values of the design variabl¥s are actually nominal values (such as mean
values and the most probable values), and for eatbe there is a probabilistic
distribution. Thus, the objective of this optimimat problem is to find the set of nominal
values of the design variables that satisfies th@babilistic constraints as well as
minimizes the objective functions by adjusting theminal values of the design

variables.
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With almost no exception, this JPMOMDO problem hase solved iteratively,
even with explicit functions. Therefore this itevat solving process requires a large
number of complete analyses or simulations. Whenakgns 2.1, 2.2, and 2.3 are
explicit functions, evaluations can be done verst fand the time needed to obtain the
final optimal result is not a concern; however, foost engineering problems, the time
needed to obtain the final optimal result is enarsnand thus a big concern.

First, these equations are not explicit to the glesi because the computer models
are complex and often only executable binary filesavailable. Therefore it is not trivial
to perform sensitivity analyses or calculate gratie(derivatives) that are used to
accelerate the optimization process, whereasailhi®st at no cost with explicit functions.
Second, a single complete analysis or simulatioedeea non-trivial amount of time
because of the complex evaluation techniques adoptard, the multimodal nature of
engineering problems often force the designerssw non-gradient based optimization
techniques such as Genetic Algorithms (GA) or Sated Annealing (SA) in order to
avoid being trapped at a local minimum and to fthd global minimal solution, but
require a huge number of complete analyses or ationk. Last, a multi-objective
optimization problem needs much more complete @ealyr simulations than single-
objective optimizations.

Therefore, it is impractical for real engineeringolpiems to use exclusively
complex analysis or simulation models for the psgof optimization. A preferable
strategy is to use surrogate models of complex -haglity models to reduce time
consumption during optimization [16]. Actually, adst all multidisciplinary design

optimization methods, such as Bi-level Integratgdt&n Synthesis method (BLISS) [17]
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and Collaborative Optimization method (CO) [18],n@ame a few, strongly recommend
use of surrogate models to ensure good performancefficiency in terms of time
consumption. Depending on the formation of the madtical representation of the
design, the objectives and/or the constraints neaggdproximated with surrogate models.
Additionally, to solve the JPMOMDO problem, a lolyseoupled or completely
decoupled architecture is needed. If no specialnsmeae taken, a JPMOMDO problem
can be solved in a nesting-loop approach, as showigure 2-1, and three nesting loops
are entailed. In this way, the computational timd sbad would be again too great to be
accepted even when surrogate models are usedx&mpée, if each loop requires 1,000
iterations, those three nesting loops require 1@@XNO00 iterations by product.
Therefore, the solving process of the JPMOMDO mobimust be loosely coupled or

completely decoupled of the MDO, JPA, and MOO meho

System level : : iterate
design variables : iterate
< iterate
v | o
Disciplinary _
cV’ d? CV: coupling
(complex) models R variables

] Yes

!

No
Probabilistic constraints (PC==p- PC's satisfied ? s

4 ‘ Yes No

I | ; — WPF point ?
Uncertainties Design Multiple conflicting
i design objectives Yes
requirements g |
WPF points and
Three nesting loops, great computational load andrhe design solutions

Figure 2-1: Potential Process of a Realistic Conceal Design in a Nesting Loop Approach

23



In summary, the iterative solving process of thémozation methods requires a
large number of analyses or simulations, thus gateomodels of the objectives and/or
constraints are used to reduce the amount of tifndhep optimization process to an
acceptable or manageable level; and even with gateomodels, in order to solve the
JPMOMDO problem, a loosely coupled or completelgailgpled architecture is needed.
2.2 Sampling Methods / Design of Experiments

Sampling methods or designs of experiment (DoEi®vide guidance for the
selection of points to be evaluated such that tagimum information can be extracted
from a minimum number of experiments. The classib@lE methods are briefly
reviewed and some important modern sampling methoelsummarized. In this section,
three modern DoE methods are described. The owvervfegeneric sampling methods,
the overview of classical DOE methods, and othermvodern DoE methods are provided
in APPENDIX A.

2.2.1 Three Modern DoE'’s

With the development of science and technology, ynphysical systems or
phenomena are studied so thoroughly that peopleridesthose systems or phenomena
by mathematical equations and perform simulationsblving these equations either
analytically or numerically. When those equatiomsl ahe methods are executed on a
computer, it is called a computer experiment. A patar experiment is quite different
from a corresponding physical experiment mainlyrfrovo aspects [19]. First, the result
of a computer experiment is deterministic for ac#fpe set of values of free variables
including the design variables, whereas thereamdom errors for a physical experiment.

Therefore the considerations of classical DoE'sminimize the effects of random errors
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of the physical experiments, such as putting sampgiets at or near to the boundaries of
the design space and replication of sample pomnts,not necessary or useful for a
computer experiment. Second, it is very easy tmgedhe levels of design variables in a
computer experiment by just setting different nurslder the design variables, whereas
for a physical experiment this may require makingenprototypes or more elaborate and
tedious work setting up the experimental conditiofiserefore, a computer experiment
can have many more levels for the design variabi@s a physical one.

Due to the differences between a computer expetina@a a corresponding
physical one, the DoE’s for computer experimentkfoa different considerations. The
DoE’s specifically developed for computer experitseare called modern DoE’s. A
consensus among researchers is that the samplis gbiould be distributed throughout
the design space, i.e. space filling, for compeatgreriments [20-22]. Modern DoE’s are
widely applied to computer experiments or simulagido construct surrogate models,
and have been found to be able to provide a moearaie surrogate model than the
classical DoE’s [23]. Besides, Modern DoE’'s can rove the interpolation based
surrogate-modeling methods [19], and minimize tias lerror, which are caused by “the
difference between the functional form of the tregponse trend, and the functional form
of the assumed or estimated trend” [20]. Threeufpmodern DoE methods, i.e. LHC,
HS, and MC are introduced in the following secticausd two more, i.e. OA and UD are
introduced in APPENDIX A.
2.2.1.1 Latin Hypercube Sampling

Latin hypercube sampling is the first modern DoEvedeped specifically for

computer experiments [24, 25]. The most populaoraigm for LHC sampling is:
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iU
=90 g cicnis<ss (2.6)

S

where x, is the ir design variable that is normalized to [01] frota original
interval [x', x" ], n is the number of design variablesjs the number of sample points,
..., is an independent random permutation of the seguef integers 0, 1...,

s—-1, andU is a uniform random value on [01]. The superscijipdenotes the sample

point number. There are permutations of integers in, all of which are equally likely

to be picked without replacement. The interval afredesign variable is divided int

subintervals, or “bins”, and the whole design spadavided intos" bins.
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Figure 2-2: Example of Two Dimensional Latin Hypereibe Sampling

A two dimensional example is shown in Figure 2-Beve n= 2ands= 4 This
design is generated using, 77, ¢, 7t = 0l2@ndm, 1, 7,7, = 2031 These two
71 sequences are put in two consecutive columnsmataix and each row of this matrix
gives the (row, column) bin location of each sampdénts, i.e. (0,2), (1,0), (2,3) and
(3,1), with bin (0,0) being at the lower left corré Figure 2-2. The values of the twb

sequences are approximately givengsuU;?, U2 U} = 08767, 0.35, 0.87, and
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Ui,UZ,UZ,U; =012, 0.67, 0.87, 0.68. Using a similar method as liert sequences,

the values of the twdy sequences gives the location of each sample pathinwits
respective bin.

The Equation 2.6 gives only the algorithm for daskariables with uniform
distributions, but the LHC can be used for desigariables with non-uniform
distributions, as described in Ref. [26]. Howeuscause of the deterministic computer
experiments, the distributions of the design vdesalwill not affect the accuracy of the
surrogate model as long as the sample points agedy selected. Therefore, Equation
2.6 could be used for surrogate-modeling regardiésise real distributions of the design
variables.

The LHC sampling has a significant advantage: tker ican freely decide the
number of sample points without restrictions to pnsizes that are specific multiples or
powers ofn. Besides, it can obtain good uniformity for smsiled sample data. It has
one main disadvantage, i.e. the freedom inlUhsequence can cause large correlations
among the design variables that may reduce theigbiregl accuracy of the surrogate
model [23]. The correlation can be reduced to ar-specified level with some
computation cost.

A derivative of LHC sampling, lattice sampling, ebtained by replacing thid
sequence with a fixed value of 0.5, see Equati@nThe result is that each sample point

is placed at the center of its respective bin,eathan randomly within the bin.

j_ 7T +05

o 1<i<nl<j<s (2.7
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2.2.1.2 Hammersley Sequence Sampling

Hammersley sequence sampling is an alternativeespling sampling method
[27]. Unlike LHC, Hammersley sequence sampling does directly use a random
number generator to generate the sampling poinis,ntakes use of the randomness
inside a prime number sequence. Its algorithm felésws.

First, let’'s introduce the Radix-R notation of ateiger. For a specific base R (e.g.

10) integer,p, can be represented in Radix-R notation as

P= PmPm-1P2P1Po (2.9
=Pt PR+ szZ +eot P RT

wherem = [IogR p], and the square brackets, [ ], denotes the integetion of the
number inside the brackets.
The inverse radix number function generates a @nigumber on the interval [01]

by reversing the order of the digits pf around the decimal point, i.e.

%(p) =P PP, Prva Prn (2.9
= poR_l"' le_Z + sz_3 teeet me_m_l

Then the HS sample points are generated as

x)(g") =(q—sl,%(qj),%z(qj),...,%_1(qj)j, l<ign,l<j<s (2.10)

where x is the " design variable that is normalized to [01] frots briginal
interval[x,x" ], n is the number of design variablesjs the number of sample points,

q'=j-1, andR,R,,...,R , are anyn— Iconsecutive numbers of the prime number
sequence (2,3,5,7,11,13,17,...).

A two dimensional example is shown in Figure 2-Beve n= 2ands= 20
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Figure 2-3: Example of Two Dimensional Hammersley &uence Sampling

The HS sampling has two significant advantagest,Fihe user can freely decide
the number of sample points. Second, the correlatammong the design variables are
very low, and this helps generate surrogate moudétls better predicting accuracy.
Simpson et al [28] show that the HS sampling metteosdls to yield more accurate
surrogate models in terms of lower model fittingoes. Therefore, the HS sampling
method is a potential candidate for surrogate-mogeh this research. However, HS
sampling has two main disadvantages. First, thiiloigion of the design variables can
not be used to generate sample points. Secortk gample size is small, the uniformity
of the distribution of sample points is bad. Asikerof thumb, the sample size should not
be less tharlOn , wheren is the number of variables.
2.2.1.3 Monte Carlo Sampling

The (univariate) Monte Carlo sampling is exactly gseudo-Monte Carlo sampling,
of which “pseudo” implicates the use of a pseudwdman number generation algorithm

that is intended to mimic a truly random naturalgass. It was first applied to computer
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experiments in 1949 [29]. The MC sampling methodaigenuine random sampling
method if there is a true random number generaitud, its algorithm makes use of the
concept of the inverse transform method [30, 31].

SupposeF (x )s the CDF of a random variabb¢ , then the MC sampling method
generates the sampling points as

x=F™U) (2.11)

where F* () is the inverse function of (x ,)andU is a uniform random variable

of which values are generated by a (pseudo-) randomber generator in computer

experiments. Figure 2-4 shows the process to genarsample point by MC sampling.

U A
T P .
u >
FLU)|l= x !
0 v i >
X X

Figure 2-4: Univariate Monte Carlo Sampling Process

Although MC sampling is a genuine random samplirghad, the randomness of
its sampling process often leads to over- and usdepled regions of the design space
especially when the sample size is small. Therefoshould not be relied on unless a

large sample size is used [31].
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2.3 Surrogate-Modeling Methods

In this section, some basic concepts of surrogatdetimg methods and one
popular surrogate-modeling method for engineerirgblems, i.e. the Response Surface
Methodology, is reviewed, and the newly developfupport Vector Regression method
is introduced. APPENDIX B describes three otherytapsurrogate-modeling methods
for engineering problems, i.e. (Artificial) Neufdktwork, Gaussian Process, and Kriging.
APPENDIX B also discusses other concepts suchaéistgtal inferences, the problem of
“Curse of Dimensionality”, the problem of regressidhe regression related decision
principles (i.e. the Empirical Risk Minimization ipciple, the principle of “Occam’s
Razor”, and the Structural Risk Minimization pripia).

2.3.1 Surrogate-Modeling Preliminaries

Surrogate-modeling methods are developed fronssitatl inference and regression
estimation methods. In this section, the notiorswfrogate model is discussed, and the
relationship of statistical inference and regressestimation to surrogate-modeling
methods is discussed.
2.3.1.1 The Notion of Surrogate Model

Kleijnen defines surrogate model (or metamodeB amodel of a model” [32].

The two ‘models’ in Kleijnen’s definition have d#fent meanings. The second
‘model’ means a physics-based mathematical modsiratiing the mechanism of a
physical phenomenon in a scientific and engineemiognain. Usually a computer
program or model can be established based on thihematical model [33]. These
physics-based computer models are accurate andrebensive enough such that the

process can be simulated for the correspondingigddyphenomena and satisfactory
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analysis results can be obtained with these computgrams. The significance of these
achievements is obvious: both expensive experimamistime are greatly reduced if a
similar phenomenon is to be studied. In this setis® second “model” also means the
corresponding computer analysis or simulation paogr

In general, physics-based models work as followsgipk/ing a vector of design

variables (inputs)X and computing a response (outpyt) Thus, physics-based models

can be represented as
y=f(X) (2.12)

The first ‘model’, i.e. ‘surrogate model’, is anpapximated model of the previous
physics-based (computer) model and replaces ther lame in the design process,
especially in the conceptual design stage.

While time is a concern as discussed in Chaptet i also very hard for the
designer to get insight into the physics-basediglisary models, because the designer
often has an executable computer code insteadeoc$dbrce code. The situation is even
worse in a multidisciplinary design. Thus, the dasr may never uncover the functional
relationship between design variabl¥sand response¥, and may never find the ‘best’
settings for design variables [34].

Therefore, the multidisciplinary nature of the dgsbf modern complex systems
has posed challenges to the designers — how teateithe time needed for a complete
physics-based multidisciplinary analysis or simolatand get some insight into the
functional relationship between design variab¥sand responsg ?

A widely used strategy is to utilize approximatiorodels, i.e. surrogate models,

which are approximations of the complex physicsedasodels, but at a much lower cost
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in terms of both time and computational load. Thiedel is created by fitting a
regression of some output values (i.e. the valdgbeoresponses) of the physics-based
model, and these values are selected by some serplkchniques such as Design of
Experiment (DoE). Because the surrogate model oadurplicate all the output values of
the physics-based model, it is an approximation.

A surrogate model is often represented as

§=g(X) (2.13)
And so
y=y+¢& (2.14)

where £ represents the error of approximation and/or (@amdmeasurement errors,
if any.

In order to substitute the original accurate anchglex physics-based models, the
surrogate models need to satisfy the following neguoents:

1) Accurate enough, in order to obtain reliabledprgon and subsequent design;

2) Much faster, justifying existence;

3) Easy to use, without complex setup work or mamyan interactions;

Besides, there are two additional requirements.[34]

4) Provide a better understanding of the functiomdhtionship between design

variables X and responsg ;

5) Make easier integration of disciplinary modeaisorrogate models.

Now surrogate-modeling can be defined as the psoaas selection of an
experimental design, a regression technique oiogate model type, regression of the

selected output values, and validation to assesgadbdness of model fitting, to build a
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“model of a model” as an approximate yet fast sgaite for a complex computer analysis
or simulation program or code [35, 36].

However, a surrogate model is not limited to beaaleh of a physics-based model;
it can be a model of a set of experimental datavtuch the physics-based model has not
yet been established. In this case, obviously, iothing more than a regression model of
the experimental data.

In general, the surrogate model is only meaningfahe predictive sense, while the
physics-based model is both predictive and exptagato the original physical
phenomena. However, with certain regression teclasicsuch as the Response Surface
Methodology [33], the surrogate model is also megful in the explanatory sense if the
contribution or importance of each factor or intéi@n in it is considered.

As an approximation, the goodness of model fiteamgl predicting accuracy of the
surrogate models are important. However, in certemses, part of the predicting
capability of the surrogate model has to be saexfiin order to obtain insights into the
nature of the problem. One such example is theesorg test. In a screening test, the
main purpose is to identify the primary contribstéo a response, and the goodness of
model fitting and predicting accuracy are the seaamportant concerns [37].

It should be pointed out that surrogate modelsrarteonly used to provide fast
approximations for the original physics-based medélut also used to provide fast
analyses for derivatives of the original physicsdzthmodels to reduce the computational

cost for optimization [38, 39].
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2.3.1.2 Surrogate-Modeling Based on Regression Hsfition and Statistical
Inference
Both surrogate-modeling and regression estimatigntd obtain a mathematical

relationship (function) between a response varigblend an input variable vectof .

For this reason one may think surrogate-modelinthéssame as regression estimation
before looking in depth. Although surrogate-modgliis developed from regression
estimation, these two methods are different in sdvaspects. First, the responses of
sample data for surrogate-modeling have no randomponents for a given design
variable vectorX because those responses are generated by theteompmgram of the

deterministic function between a responsand the design variable vectdr, whereas

those for regression estimation do because ustife responses are observed results of
real life phenomena. Second, to generate the sadgiée surrogate-modeling runs the
computer program just once, whereas regressiomastin needs to run the same DoE

several times, or a distribution function for vaud the responsg has to be assumed if

the DOE is run only one time because it is to sbtamathematical relationship between
the mean or expected value of a response varighled a vectorX of predictor variables

(see Figure B-1 in APPENDIX B for example). Thifdy surrogate-modeling it is better
to use the modern space filling sampling technigimesdern DoE’s). For regression
estimation it is better to use the classical DoEs, discussed previously. However,
despite these differences, surrogate-modeling tiijrec indirectly uses the methods of
regression estimation. Surrogate-modeling can tijracse the methods developed for
regression estimation to obtain the simpler appnaxéed functional relationship because

a deterministic response is a special case ofahdom ones described by distribution
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functions. Except for the Gaussian Process, al@bstrrogate-modeling methods make
use of the concept of the empirical risk functionaa equivalent concept such as mean
square error. For these reasons, surrogate-modmtidgegression estimation are usually
thought of as the same. Surrogate-modeling alsxityror indirectly uses the methods of
statistical inference. For example, Kriging andu&aan Process need to first directly
infer the parameters of the assumed distributiorction and then the surrogate model is
established; other surrogate-modeling methods ascRSM need to check if the error
distribution is close to the one implied or assurbgdthe regression method used and
estimation of the error distribution uses the statal inference methods.

Surrogate-modeling is related to regression esiimaind statistical inference by
rephrasing the Equation 2.14.

y=y+& (2.14)
where errore is now a systematic error related to the selection ofgheogate

model y.
The surrogate modey is obtained by regression estimation methods; tien

distribution of the errore is analyzed by statistical inference methods;hé error
distribution is close to the one implied or assurbgdhe regression method used, then
one can be sure that a good surrogate model isneltaotherwise, improvements to the

surrogate modef/ must be made until the requirements of goodneditiofly are met.
One example is the RSM. A good surrogate model $1Rs obtained when the error
distribution follows a normal distributioN (0,0° [33]; otherwise, means such as

adding higher order terms (HOT) or transformaticawvéh to be taken to meet this

requirement. Some surrogate-modeling methods nedast assume the properties or
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distribution function of the erroe, and then this information is used to obtain the
surrogate model. Such examples are Kriging and Saufrocess.

The above cases can be called particular surrogatieling, because those
methods make use of particular or parametric imiegemethods. Another class of
surrogate-modeling methods is general surrogateetimyy which does not need the
information about the error distribution. Such epées are SVR and ANN.

Usually, if the functional relationship between tiesponse and the design vector is
known and simple to be described explicitly, paftc surrogate-modeling should be
used, such as the univariate linear regression odeffee Figure B-1 in APPENDIX B
for details). However, if many aspects of the pbgsphenomenon are unknown or hard
to be described explicitly, such as the relatiopsbimbodied in a very complicated
computer model, the general surrogate-modeling ogsthshould be used as those
methods are more versatile and powerful [40].

As a consequence of parametric inference, the cp#ati surrogate-modeling
methods suffer the problem of “curse of dimensiyia(see APPENDIX B for details),
i.e. the sample size and computer resources hale tocreased exponentially with the
number of the design variables, or the model acgutavel increases slowly with the
sample size. Besides, the accuracy of the resuddtaired by particular surrogate-
modeling methods can be very bad if the assumext distribution is far from the real
one.

Because of independence on (error) distributioe, general surrogate-modeling

methods do not have the problem of “curse of dinweradity”; and can obtain
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satisfactory accuracy for many kinds of problemsergfore, general surrogate-modeling
methods have become popular in recent applications.

According to the form of the family of functiong(X,6 (¥ee APPENDIX B)

during the regression process, the surrogate-nmmaglatiethods can be divided into
another two classes: linear or nonlinear surrogatdeling. For linear surrogate-

modeling methods, such as RSM, the function fanslythe combinations of some

Z, sinx, sin(2x), €, and ™) with & being the

definite functions (such ag, X
coefficients of these definite functions, and tmear algebra method are often used to
solve for all these coefficients. For nonlinearsgate-modeling methods, such as ANN,

SVR, the function family is a combination of sommléfinite functions (i.e. function

ax+b

families, such asin(ax+b ,)ande™™) with 8 being the coefficients of these indefinite

functions and the unknown scalar(s) in these imitefifunctions, and thus linear algebra
can not be used to solve fér. The indefinite functions are often called the rfie
functions” or simply “kernels”. Usually the pararags) in the kernel are pre-specified or
determined before the coefficients of the kernels.
2.3.2 Two State-of-the-Art Surrogate-Modeling Methds

The Response Surface Methodology, one popular gateemodeling method for
engineering problems, is reviewed, and the newlyelbgping Support Vector Regression
is introduced. APPENDIX B describes other threeytapsurrogate-modeling methods
for engineering problems, i.e. (Artificial) Neufdetwork, Gaussian Process, and Kriging.
2.3.2.1 Response Surface Methodology

Response Surface Methodology is a well investigeaead commonly applied

surrogate-modeling method in engineering desigids #3]. In aerospace engineering,
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RSM has been used for a variety of applicationgjquaarly in multidisciplinary design
and optimization [13, 42, 43]. RSM uses polynomialsapproximate the true response
behavior, and the polynomials are called the respaunirface equations (RSE). Usually a
second order polynomial equation is used. The meason for this is that considerable
practical experience has shown that a second ombelel works well for many real
problems. Higher order terms can be also addetineeded. The general second order

RSE including linear, quadratic and interactiomtgiis as following:

9:b0+ibixi+ib"xi2+§ Zn:bijxixj (2.15)
= = e

where ¥ is the predicted responsg, are the design variablel, is the intercept
term, b, b, andb; are related coefficientsh,, b, b;, andb, are the parameters to be

estimated from the sample, and there are tof@lyl)(n+2) pdéameters.

The maximum likelihood method is the general way estimate the above
parameters for any distribution the errors may hawe the least square approach is the

easiest way if the errors are normally distrib&®2). Let

X1 ceoe Xn )(12 coe le X1X2 coe Xn—lxn
1%y o Xy Xa o X XaXo ot Xy X
M = 1 X1 0 X X221 X22n Xo1Xop - X2(n—1)X2n !
1 X o Xy XG X XaXeo X Xen

Ys :[yl Y, - ys]T' and Bs =[bo bl bn bll bnn b12 b(n—l)n]T'
then from the sampl&, :{(y,, X,),(Y,, X,).....(Y., X,)} a least square estimation of the

parameters is
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B, =(MIM, )My, (2.16)

In fact, this polynomial approximation can be colesed as a truncated Taylor
series expansion around a point [41] with all higloeder effects being negligible.
Therefore, the resulting surrogate model may haa ppproximation accuracy if there
are many design variables and/or large rangeshtodéesign variables, because the error
term in the Taylor series expansion increases thgmumber of variables and the ranges
of the variables [37]. If the behavior of the respe is far away from a second order
polynomial (or equivalently the error distributiosi not normal), the accuracy will be
poor, and higher order terms should be added in.
2.3.2.2 Support Vector Regression

In this section, the concept of Vapnik-Chervonen@&C) dimension and the
structural risk function, which are the key partsh® theory of SVM, will be introduced,
and then the theory of SVR is introduced.

Support Vector Regression (SVR) is a new surrogaideling method that
originates from Support Vector Machine (SVM). SVMisvdeveloped for classification
or pattern recognition problems starting in thes 14070s [44-46]. For classification or
pattern recognition, SVM has been applied to ma&ay world problems, such as isolated
handwritten digit recognition, object recogniti@peaker identification, face detection in
images, and text categorization. SVM is also appileeseveral other areas, such as bio-
informatics and artificial intelligence. Many othaerethods, such as ANN, have been
used in these areas; however, what distinguisheM S¥ its solid mathematical
foundation: instead of adopting the empirical risknimization (ERM) principle to

minimize the empirical risk for a given sample, SVadopts the SRM principle to
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minimize the structural risk that is the upper bdwf the (empirical) risk [44]. By
minimizing this upper bound, SVM leads to lower rabgredication errors for new or
unseen data, i.e. those that are not in the sampk,thus has much better ability to
generalize problems.

The main difference between a regression (or satesmodeling) problem and a
classification problem is that the response of tbgression problem is a continuous
variable, whereas the response of the classificghimblem is a discrete variable with
values such as -1 and 1. By replacing the losstiomof the SVM method with a new
one, the SVM method is modified to become the SVhwod. Therefore, SVR inherits
most of the advantages of SVM, such as the advastafjthe SRM principle. It should
be noted that this new risk function for SVR is gotiranteed to be the upper bound of
the empirical risk because the response valuekeoample may be far from the local
extremes. This shows the importance of samplindhatt that can be used to mitigate or
even eliminate this problem. SVR also has othelaathges. The optimization problem
used to find the parameters of the surrogate misdalconvex quadratic one, and thus
there is only a global optimal solution and no otteeal minima. Because of this, SVR
does not require a computation-intensive globainoger and the resulting final model
has high certainty, where certainty means that fihel model should have similar
performance if different algorithms or differenaseh starting points are used to estimate
the parameters in the surrogate model. Since ikevaly one (global) optimal solution
for SVR, as long as the optimization method usedSKR can find this solution, the
same final model will be obtained, and thus SVR high certainty. The model fitting

speed of SVR is relatively fast, usually takingslésan one minute for a moderate sample
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size. And it has the property of sparseness in Eapgnt selection for the final surrogate
model [47], where sparseness means that not alplsapoints are needed for the final
surrogate model, although this can be known onigrahe model fitting process. The
sample points that are used in the final surrogaidel are called “support vectors”, and
this is where SVM and SVR get the names and atmgisshed from other methods.
Because of the above advantages, SVR has becorsatheof-art method for
surrogate-modeling in recent years. SVR is not @agplied to surrogate-modeling [35,
48, 49], but also many other areas such as timessprediction problems [50, 51], stock
market prediction [52], and electricity load forsting [53]. In these applications, SVR
has shown promising empirical performance. Fanl ¢% is one of the first to apply
SVR in the aerospace industry for regression {ttii aerodynamic data, in which SVR
is concluded to have evidently better model pradictperformance than ANN and
another superiority over ANN: high certainty. Innt@st, quite different final models
may be obtained with different training algorithfios ANN, and thus ANN has lower
certainty.
2.3.2.2.1 The VC Dimension and Structural Risk Furteon

SVM is formulated to solve a classification problegiven a (training) sample
S, :{(yl,Xl),(yz,xz),...,(ys,xs)}, where X :[xl,x ,...,xn]T is the vector of the (input)
design variablesy, O{— 11)i.e. the value ofy, is either -1 or 1), find a hyperplane
g(X) =0 such that it separates the sample pokit&s with y, = -1 from those with
y, =1 in the input space defined by, x,,...,X,. In other words, find an approximation
y=g(X), then the sign ofy can indicate which class this sample poitis in: the

class ofy =— lor theclassof= 1
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The separating hyperplane function famgyX,8 has a Vapnik-Chervonenkis

dimension. VC dimension is a scalar to measure gbparating capacity of a
separating/shattering hyperplane family. It is dedi as follows [48, 44, 46]:

The VC dimension of a function family is if and only if there exists a set of

sample/training pointéxi}ih:l such that these points can be shattered i2"afiossible

ways by this function family, and that no such {s)éit}i‘Ll exists, whergy > h, that also
satisfies this property.

The process to determine the VC dimension of alifienction familyx, =ax +b
in the 2 dimensional input space is depicted iuFe2-5. The 3 sample points a, b, and ¢
can be separated by the linear functions (in ne®’i= 8 ways, Figure 2-5-A. However,
the linear functions can not separate points acafindm points b and d if a fourth sample
point d is added in, as depicted in Figure 2-5-Bergfore, the VC dimension of this
linear function family is 3 for these sample poirfeigure 2-5-C shows a closed curve

function can separate points a and c from poirasdd.
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Figure 2-5: Example to Show the VC Dimension of aibhear Function Family in the 2 dimensional
Input Space [54]

Generally the VC dimension is not equal to the nendj the free parameters in the
function family. For example, the linear functianiily in the n dimensional input space
has a maximum VC dimension @i+ ,Ijvhile the function familyx, = asin(ox)+c
has a maximum VC dimension of infinite [55].

Use the concepts of risk function and empiricét fisction, i.e. Equation B.5 and

B.6 respectively (see APPENDIX B), the followingumals for the risk function holds

with probabilityl-a [44],

hin(2s/h+1) -In(a /4) (2.17)
S

R(9(X,8)) < F%mp(g(xﬁ))+\/
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whereh is the VC dimension of the function famityX,8 fyr the give sample

points, ands is the number of sample points.

Then the SVM model is constructed by solving tHeWing problem [44]

hin(2s/h+1 —-In(a /4) (2.18)
S

Minignize: Ry = Remp(g(x,ﬁ))+\/
where Ry is the structural risk function.
Therefore, SVM finds the optimal approximatign=g(X by using the SRM

principle to minimize the structural risR; that is the upper bound of the empirical risk.

However, it is difficult to calculate the VC dimeos h given specific sample points.
The common practice is to find an upper boundhoand try to minimize this upper

bound onh [46]. Therefore usually the practical form of thieuctural risk functionRg

is different from the above Equation 2.18, as caisden later.
2.3.2.2.2 The Theory of Support Vector Regression

The Support Vector Regression method is developath the SVM method. At
first, one may doubt how this can happen, since S¥Msed to separate two groups of
points while SVR is used to find an approximatiandtion of the design variables to the
response. Actually, SVM and SVR have one commanadieparating two groups of

points, as shown as an example in Figure 2-6. ¢ur€i 2-6-A the response valugs of

the red and green points are different, say -1 hndespectively, and the points are
divided into two groups according to the resporslees. The goal of SVM is to find an

optimal line to separate these two groups of ppentsl this line separates the two groups
of points onto its two sides. In Figure 2-6-B, theints are generated from a linear

relationship and an additive noise. The goal of SRo find an optimal line that
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approximates the real linear relationship, andliheshas also the effect of separating the

sample points onto its two sides.
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Figure 2-6: Example to Show the One Commonality bateen Classification and Regression

As mentioned previously, the SVM method can notlibectly used for regression,
its loss function should be replaced with a new tineonsider the difference between
classification and regression problems: the respeatues of classification are discrete,
whereas those of the regression are continuouthelmmest of this section, popular loss
functions of SVR are introduced, then the practicam of the structural risk function
R is described, and finally the algorithm of SVRprsvided.

There are four popular loss functions for SVR: gqa#d, Laplace, Huber, and
insensitive loss functions. Other loss functiores @so proposed but not popular, such as
soft insensitive loss function [56], polynomialepewise polynomial [57], etc. Figure 2-7

illustrates the first four popular loss functions.
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A Loss A Loss

» »

y—9(X) y—g(X)
a. Quadratic b. Laplace
A Loss A Loss
y=9(X) A y—g(X)
c. Huber d. e-insensitive

Figure 2-7: lllustrations of Four Loss Functions fo SVR

The quadratic loss function is given as Equatidt®2Laplace as Equation 2.20,

Huber as Equation 2.21, andnsensitive as Equation 2.22.
Lquad(x’ y’ g(X)) = Lquad(y_ g(X)) = (y_ g(x))z (219)

LLapIace(X! Y, g(X)) = I—Lap|ace(y_ g(X)) = |y— g(X)| (220)

L(y=gx?, if |y-g(x)| <

Luaper (X, ¥, 8(X)) = Ligner(y = 9(X)) =1 2 Y (2.21)
,u|y—g(X)|—7, otherwise
0 if [y-g(X)|<e
= - = 2.22
L, (X,y,9(X)) = L. (y—9(X)) {|y—g(X)|—£, otherwise (2.22)

The performance of SVR depends on the loss funatsad [48, 57]. The quadratic
loss function corresponds to the conventional legstre error criterion and can be used

if the errors are assumed to be normally distribufEhe Laplace loss function is less
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sensitive to outliers than the quadratic one. Thaodfl loss function is a robust loss
function that has optimal properties when the edstribution is unknown. The-
insensitive loss function is an approximation ofolduloss function and can also be used
when the error distribution is unknown. The quadrdtaplace and Huber loss functions
will produce no sparseness in the sample poirsall sample points will be used in the
final regression model/surrogate model. Thesensitive loss function designed by
Vapnik, however, can produce sparseness [55]. Toreredue to this advantage and its
calculation simplicity, the-insensitive loss function becomes the most fretiyarsed
loss function for SVR. However, one has to makeaaldoff between accuracy and
sparseness if theiinsensitive loss function is to be used [57] sihegs sparseness or
more points used usually results in higher accuracy

For SVR, the regression/surrogate model has thewolg form [58]:

¥y =0(X) =(W,d(X))+b (2.23)

where(D[}] means dot productyV is a vector of scalars (weights) to be estimated,
b is the bias or intercept to be estimated, &{&X is g function vector. Therefore, the
parameters to be estimated &k andb . The functions in®(X )can be linear or
nonlinear, such a®(X) = (x,%,) and ®(X) = (x,+/2x%,,X2), where X =[x,,%,]", and
the explicit form of®(X )does not need to be known.

Based on the above denotations in Equation 2.28, pfactical form of the

structural risk functiorRg to be minimized is given as

R =3 L(X, v, (X)) + 2 (2.24
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where L ()is the loss functiorj[\/V”2 =(W,W). The first term on the right hand side

is actually the empirical risk function.

The term%"\/v”2 is related to the upper bound of the VC dimensidnthe

functional family g(X,68) as shown in the theory of SVM [48]. Because the VC

dimension is a measure of the “capacity” of thecfiomal family to approximate, and

usually high capacity leads to overfitting [57]jsthterm needs to be minimized. To
minimize %”\N”2 is called to enforce “flatness” [58].

However, it is not easy to minimize the structursk Ry given in Equation 2.24. It

is found that the optimization problem of minimigithis structural risk can be converted
to another convex minimization problem that is easb solve and has only one global
optimal solution. This alternative minimization ptem is established as follows [57].

Let (residual)y = y—g(X ) then the loss function can be writtenlgy . Then

the alternative convex quadratic minimization peoblis given as

Minimize %||w||2 +CZS:(L(<‘[ +£)+L(&" +¢))

Wb&" &
y, —(W,®(X,))-bs e+& (2.25)
subjectto (W, ®(X,))+b-y, <£+&
&.é =20

where C > Qis a pre-specified constant and sometimes cahedrégularization

factor, £ and & are slack variables representing upper and lowemd® of the

deviation|y, - g(X;)|, ande = Ois the pre-specified tolerable deviation.
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The reason to introduce the slack variabfésand & is that the tolerable deviation

£ can occasionally not be satisfied and thus somse ls incurrede has the same
meaning as that in theinsensitive loss function, and for other loss fiorts € = 0.
Figure 2-8 depicts these variables whenetiesensitive loss function is used for a linear
regression problem.

The constaniC determines the tradeoff between flatness of thal fsurrogate

model g(X ) and the amount up to which deviations even grahters are accepted. If
C =l, the alternative minimization problem, i.e. Equat 2.25, is exactly the same as
S

the original problem of minimizing the structurak given in Equation 2.24. With an
increase ofC more emphasis is put on the loss function andsthestural risk function

Equation 2.24 is more like the conventional empirigsk function, with less regard to
capacity of the functional family. However, the walof C can be optimized, and thus

the alternative minimization problem is more fldgithan the original problem.

HXV

Figure 2-8: Example to Account for Slack Variabledor Linear Regression with theg-Insensitive
Loss Function
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The Lagrangian function of Equations 2.25 is cardgd as [59]

Flog = %”\N”2 + Ci(L(gﬁ‘ +&)+L(& +¢))
-3 a (e E -y (W, P(X,))+b) (228)
-3 (e + &+ Y~ (W, D(X,))-b)

- i’]:ﬁr - i’]i_fi_

+

where F . is the Lagrangian functiong;”, @, 77 and ;7 are Lagrangian

Lag
multipliers, andW, b, & and & are called the primal variables.
The multipliers must be non-negative, i.e.
a’a g =20 (2.27)
According to the necessary conditions for the sadabint of the Lagrangian
function to be an optimal solution of its origingtoblem Equation 2.25, the partial

derivatives ofF ., with respect to the primal variables have to anie.

Lag

aWI:Lag :W_Z(ar_a'i_)q)(xi) =0 (228)
i=1
abFLag ZZ(ai__ai+) =0 (229)
i=1
aﬁFLag :Caé+ L(ff' +£)_ai+ —/7i+ =0 (2.30)
0, Flag =CO_L(& +€)~a -7 =0 (2.31)

Substituting Equations 2.28, 2.29, 2.30, and 2/3b 2.26 yields the convex
guadratic dual optimization problem [59], omittisgme superscripts + ard and some

subscripti of ¢ and ¢, as follows:
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_% i(a; —a7)(a] —a7)(®(X,), (X))

ij=1

Maximize <+> y(af —a7)=> &(a; +ay)
i=1 i=1

alai

(2.32)

+CY(T(E +)+T(E +£)

Zs:(af -a;)=0

subject to {a <Co.L(¢+¢)
& =inf{&|Ca,L(E+£) = a}
a,é=20

where

W = Zs:(af -a7)®(X,)
= (2.33)
T(§+e)=L({+e)—40,L(S +e)
Denoting k(X;, X,) :<CD(Xi),<D(Xj)> , Which is called the kernel function, the

optimization problem Equations 2.32 is equivalenthte following standard optimization

problem:

%Zs:(af —ar)(a@j —apk(X;, X;)

ij=1

Minimize <= yi(a' -a7)+> e(a’ +a;)
a4 i=1 i=1

—CYT(E +6)+T(E +£) (2.34)

S

Z(Q'i+ —a;)=0

subject to {a <Co L(¢+¢)
&£ =inf{&|Ca,L(+¢) = af
a,c=0
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By solving this optimization problem, Equations £.3he values oftr and ¢ are
determined. Because this optimization problem iadgatic, it is convex and thus has

only one global optimal solution.

The e-insensitive loss function is used to show howudher simplify Equations
2.34 to make it practically useful. In this caséé +¢) =|é| = &. Then we get
T({+e)=¢-¢1=0
Moreover, one can conclude fromL(é+&)= , #<Co,L(é+¢€), andé,a= 0

that ¢ 0[0,C] and & =inf{¢|C = a} =0. Then the Equations 2.34 are simplified as

> @ —an)(@; —apk(X,.X,)
Minimize ":1 .
o - yi(ai+_ai_)+z‘9(ai++ai_)
i=1 i=1
a -a’)=0
subject to ;( a)
O<a<C

Table 1 summarizes the conditions @nand formulas ofCT(é +& Yor the four

popular loss functions.
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Table 1: Some Terms of the Dual Optimization Problm for Different Loss Functions

Loss function| & a 4 0,L(&+¢) CT(¢+¢)
a a a?
i =0 | al|0w — hal -4
Quadratic [ ] C c 2
Laplace e=01| al [O, C] 0 1 0
aZ
a . a . -——, ifa<uC
—, ifa< —, ifa< ’
Huber =0 | aOfocy] | {C He C He 2C2
M, otherwise M, otherwise _Cu , otherwise
2
e-insensitive | €20 | all [O, C] 0 1 0

If the kernel function has a bias term, such asrthemogeneous polynomial kernel
shown later, therb is accommodated within the kernel function as sulteof the

optimization process [48]. In this case, the telmusd be dropped and the surrogate

model is given by

§=g(x)=3 (@ -a kX, X) (2.35)

i=1
Observing Equation 2.35 it can be found that theuinvectors of the design

variables, i.e. the sample poin¥ or the new pointX , only appear inside the dot
product of the kernel functiok(X;, X;) =<<D(Xi),CD(Xj)>. Because this dot product for

any one pair of input vectors is a scalar, the dgr@nality of the input space is hidden
from the remaining optimization process. This pded a way of addressing the “curse of

dimensionality” [48].
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According to the KKT conditions, for the saddle itaof the Lagrangian function to
be an optimal solution of its original problem Efjoa 2.25, 3 sets of necessary

conditions must be satisfied. The following are savhthese conditions:

al (e+& —y, +(W,®(X,))+b) =0
a (e+& +y, —(W,o(X))-b) =0

If the e-insensitive loss function is used, several usefuiclusions can be drawn
from the above equations. First, for the samplaside thes-tube (see the shaded region

in Figure 2-8 as an example), i.e. samples \Mth g(Xi)|2£, it can be shown that
(e+& —y +(W,®(X;))+b) =0 or (¢+& +y, —(W,®(X;))~b) =0, but not both. For
all the samples inside the-tube, i.e.|y,—g(X,)| <& , it can be shown that
(e+& —y, +<W,<D(Xi)>+b) >0 and (e+¢& +y, —<W,¢(Xi)>—b) >0 . These
conclusions mean that for the samples outsidesttubbe only one of the Lagrangian
multipliers a;” and a; is nonzero and the other one is zero, and fahalsamples inside
the e-tube the Lagrangian multipliers” anda; are zero. Second, from Equation 2.35

and the first conclusion it is known that not a@hples contribute to the estimationwf
and the consequent surrogate mogleX , byt only the ones outside of thdube do.
This is the sparseness in sample selection, ands#meple points with nonzero
Lagrangian multipliers are called the “support vest.

The sparseness feature is very important when #neple is large because it
reduces the number of terms in the surrogate nredalting in some loss of accuracy but

improves the calculation speed of the surrogateaeindatherwise, the calculation can be

55



quite slow when the sample size is very large.tRisrunique advantage, thensensitive
loss function is selected as the only loss funclosrSVR in this research.

Not all functions can be selected as the kernettfan k(X, X"), where X and
X" are input vectors. The kernel functi&iX, X' has to satisfy Mercer's condition
[57], such that the kernel matrix; =k(X;, X; i3 positive definite in order that a unique

optimal solution is guaranteed to the quadratiénegation problem Equation 2.34 [35].

Table 2 lists the common kernel functions.

Table 2: Common Kernel Functions of SVR

Linear k(X,X')=<X,X'>
. , nd
Polynomial k(X,X") = <X,X >
Inhomogeneous polynomial k(v) = (<X, X'> + C)OI , C is a constant (bias)

o : [x. X
Gaussian radial basis function (GRBF) | k(X,X") =expg -

20
S : 1%, X7
Exponential radial basis function (ERBF) K(X, X") =exp - 257
Sigmoid (multi-layer perceptron) k(X,X") = tanl{p{X, X'> + y)

A new kernel can be generated by positive lineantmoation of kernels, or from

the product of kernels [57].

Combination:k(X, X") = > ¢k (X,X"), ¢ >0

56



Product:k(X, X") = |_| k (X, X"

The Matlal’ codes of SVR used in this research are developsedbon the codes
in Ref. [48].

2.3.3 Comparisons of Surrogate-Modeling Methods

Although many surrogate-modeling methods have lmareloped, only a small
number of those methods have been successfullyedpia various engineering design
processes from different fields, such as Responsa&@ Methodology (RSM), Kriging
(KG), Gaussian Process (GP), (artificial) neuralwoek (ANN), radial basis functions
(RBF), and multivariate adaptive regression spl{ipM&RS).

However, even those successful surrogate-modelitipods have advantages and
disadvantages, and there is no single method thauperior to the others in all
circumstances. Some surrogate-modeling methodgeayegood at some particular types
or domains of engineering problems, but those nusthfail to achieve adequate
performance for other types or domains of probleEsamples can be seen in the
surrogate-modeling comparison literatures such at RB5] and [60]. The reasons
causing this phenomenon are the complex naturengiheering physics-based models
and the performance of the SM’s. For example, s@&Wes are good at low order
nonlinear relationships but not good at high omiees, such as the second order RSM,;
on the other hand, some SMs are good at high oxaldmear relationships but not good
at low order ones, such as MARS [60].

Different SM’s can be compared qualitatively in arm theoretical way than
observing SM’'s performance of handling engineeripgpblems. Generally, the

comparison criteria for different SM include théldaving [60]:
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1. Accuracy for different complexity (order of novgarity) of test problems, under
different sample sizes (scale of the sample data),with noise;

2. Robustness in terms of variance of error vafoeslifferent samples generated
by different sampling methods;

3. Efficiency in terms of time used for surrogat®dal construction and new
predictions;

4. Transparency in terms of the capability of pdowy information for
contributions of factors and interactions amongéhfactors;

5. Simplicity in terms of the number of parameteesded to be specified by a user.

In Ref. [60], four well known methods including RSMARS, RBF and KG are
systematically compared with the above five créerThere are functions of 14 test
problems of different complexity in this comparisdrhe comparison results show the
following:

1. In terms of accuracy and robustness, MARS, RBFKG perform equally well
under large sample sizes; RBF is the best undelt anthscarce sample size; and RSM is
the best with noise;

2. In terms of efficiency for surrogate model coustion, KG is the most time-
consuming; and RSM needs the least time;

3. In terms of efficiency for new predictions, alethods need trivial time and work
equally well;

4. In terms of transparency, RSM is the best ih ahsimple polynomial function is
obtained and the contributions of each design kbriand the interaction among those

variables can be easily assessed,
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5. In terms of simplicity, both RSM and RBF are thest in that the user does not
need to specify any parameters to obtain the loestracy, whereas MARS and KG need
the involvement of the user to do so.

In Ref. [35], SVR is systematically and quantitativ compared with four well
known methods including RSM, MARS, RBF, and KG wiitle previous four criteria for
26 engineering test problems of different complexithe comparison results show SVR
has the best overall performance, i.e. in termsaofuracy and robustness, SVR
outperforms almost all the other four methods ex&@mpKG has smaller maximum error;
in terms of efficiency, SVR takes similar time a®ARIS and much less time than KG,
whereas RSM and RBF are much faster; in terms asfsparency, SVR has explicit
functions as RSM and RBF, but can not tell the Gouations of each design variable and
the interaction among those variables. Howeveteims of simplicity, SVR needs the
user to specify several parameters depending okeimel used, and thus is not easy to
use.

Although ANN is also a well known method and capragimate complex models
very well, it is not included in the comparisonsRef. [35] and [60] mainly due to three
reasons [61]: first, it has no transparency in tha& hard to output and understand the
functions that construct the surrogate model; séchaw to obtain the best fitted model
for a given training sample is still an art sinbere are many factors to be pre-selected,
such as the number of layers and optimization dlgarfor training; and third, it takes a
long training time and expensive computational .c@xt the other hand, it has been
shown in many engineering applications that SVRIpoces equally accurate, if not better,

results than ANN [35]. Moreover, it has been shalvat ANN tends to overfit the
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sample data and results in a model that is accuvatethe sample data but has large

errors with new predictions [48], whereas SVR hassanch problem because of its

mathematical foundation. Table 3 shoguglitative comparison of different surrogate-

modeling methods.

Table 3: Qualitative Comparison of Surrogate-Modelng Methods

Accuracy | Accuracy | Robustnes§  Computing Trans- | Simplicity | No | No Curse of
(RMSE) | (MAE) efficiency | parency Over- | dimensionality
ftting
RSM | © © © O O o | Vv >
mars | © | O S & | © | © | X X
reF| © | © | © | O | © | © |V >
kiiging | © O O © © © | V >
s | & | O | ©&© | O | © O |V X
ANN | @ S O © © e | X v
s\k | @ S| 0 | © S S | Vv v
excelen: @  Good: @  Far (Q) Yesi/  No¢

Note: RMSE means root mean square error; MAE maandémum absolute error;
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Over-fitting and Curse of dimensionality are twsativantages to be avoided;

RMSE and MAE are defined in APPENDIX D, and curédimensionality in APPENDIX B.




2.4 Model Assessment and Model Selection Methods

In this sub-section, the concepts of model assassamel model selection methods
are described, and the information criteria arermanzed. Then practical methods are
introduced to select three parameters of SVRtheregularization facto€, ¢ if the e-
insensitive loss function is used, and the kermebmetero if GRBF or ERBF kernel
function is used.

APPENDIX D discusses two types of model errors, m®del fitting error and
model predicting error, and two popular measuresadel errors, i.e. Root Mean Square
Error (RMSE) and Maximum Absolute Error (MAE). APREIX D also summarizes
other two popular model assessment and model gglectethods, i.e. cross validation
and bootstrap based on model predicting error, hwldte classified as re-sampling
methods.

2.4.1 Concepts of Model Assessment and Model Seient

After construction of surrogate models, the quadityhe resulted surrogate models
should be assessed based on some criteria. IN@¢fmultiple assessment criteria are
advocated for assessment and comparison of suerogadeling methods, including
accuracy, efficiency, robustness, model transpgerend simplicity. However,
robustness and transparency are difficult to q@gnine computing efficiency is not a
big concern for surrogate-modeling since all reshiburrogate models are fast for new
predictions, although the construction efficiensyaiconcern before model selection; and
simplicity can be addressed by the model fittingpcess (note that simplicity is
concerned with the number of parameters that neetbet specified by the user).

Therefore, robustness, transparency, efficiencg,samplicity will not be used as criteria
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for quantitative model selection. Accuracy seems now to be the cnitgrion for model
selection. However, complexity should be anothédewon, as implied by the Occam’s
razor principle (see APPENDIX B for details), thatsimpler surrogate model is
preferred. Low complexity is considered to gengratply low model predicting error
because a simpler surrogate model is less likelgvierfit a sample set. Overfitting is
considered as the main cause of high model predieiror when the model fitting error
is low. However, if a surrogate model is too simjglea problem, for example, a straight
line for a circle, this simple model will also havgh predicting error because of
underfitting. Therefore, the criteria to assessragiate models should include both
accuracy and complexity. Accuracy can be measuyatddomodel fitting error and/or the
model predicting error. The complexity can be measuy the number of parameters to
be estimated. Unfortunately, all existing modeleassnent methods do not use all of
model fitting error, model predicting error, and eebcomplexity.

Simply speaking, the problem of model selectiotoiselect a surrogate model that
best satisfies the given criterion from a set of@yate models. It includes 2 or 3 folds:
selection of surrogate model structures or suresgaideling methods; selection of
parameters of the surrogate model; and if a kesnglbgate-modeling method is used,
such as SVR, the selection of kernel functions. Jureogate model structure implies the
specific form of the surrogate model assumed by ogate-modeling method, for
example, the RSM assumes the polynomial functientha surrogate model structure.
Since different surrogate-modeling methods haveemiht degrees of complexity, there
is a need to select a simpler surrogate modeltstieion top of adequate accuracy for a

specific problem. Although the parameters of aayate model are estimated based on
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the given sample set, the estimation results optrameters can be different if different
estimation algorithms are used, such as the diftemaining algorithms in the ANN
surrogate model. Therefore, there is a need tatsile best set of the estimation results
for the parameters. For the kernel function basgtbgate-modeling methods, different
kernel functions result in different final surrogatodels, and thus there is a need to
select the best kernel function.

2.4.2 Information Criteria

Information criteria (IC) are one class of metholist are devised specifically for
the purpose of model selection. Here, “devise” ieplthat the practical forms of
information criteria are not derived mathematicdllg. no proof), but given. However,
those methods do have some theoretical foundatsudd) as the maximum likelihood
principle. Additionally, IC methods have shown dreaccess in model selection for a
wide array of problems. For these reasons, thetipghdorms of the information criteria
will be provided directly without detailed revievi the theoretical foundations.

There are three main approaches of the informatiaerion methods: Akaike
information criterion (AIC), Bayesian informationriterion (BIC), and minimum
description length (MDL). The best model is the améh the minimum value of the
information criterion. The MDL [62] is not as populas AIC and BIC because of three
main reasons. First, the MDL uses description leragt the information criterion, which

is based on the coding theory of the informaticently, but the extension of description

! Information theory is the mathematical theory aftad communication and storage to tackle the
engineering problem of the reliable transmissiomédrmation over a noisy channel. Its main resuthat

by appropriate encoding and decoding of the infeiona the information can be communicated over a
noise channel with an arbitrarily small probabiliof error (http://en.wikipedia.org/wiki/information
_theory)
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length as a measure of the goodness of a modet istnitive to many engineers. Second,
the MDL is complicated for application because a@esl not have a fixed form for
different model selection problems and thus the@mpte form for a specific family of
models has to be derived accordingly. Third, itprapriate form for a model selection
problem is often found to be almost the same as BtC these reasons, the MDL is not
described in this research.

The AIC is the first IC method devised for generaddel selection problems [63].
It ingeniously incorporates two information sourcde goodness of model fitting and
the complexity of a model, and achieves a balamteden these two. The goodness of
model fitting is measured by the log-likelihood étion based on the maximum
likelihood principle, or exactly the Kullback-Le#sl information criterion [64]; and the
complexity of a model is measured by the numbepafameters of the model to be
estimated. An equivalent but computationally coneenexpression, i.e. the practical
form, is given as [65, 66]

AIC =In(p2,. )+ 2™ (2.36)
S

wherem is the number of parameters in the modeis the sample size, anif, .

denotes the maximum likelihood estimation of thearae of the residual term,

S

Yv-%) (2.37)
A2 — =l
Ovie _f

The BIC is another popular information criterior7[6lt takes a Bayesian approach
for model selection, deriving an approximation tBayesian posterior estimation of the

parameters of a model from the given sample. Atmaldorm of BIC is given as [65, 66]
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BIC = In(g2, . )+ MNG) (2.38)

Q

<

Comparing Equations 2.36 and 2.38 one can infer i@ BIC imposes more
penalty on model complexity than AIC &> .8Therefore, BIC will select a model with
the number of parameters no greater than thattedléy AIC. In addition, BIC is shown
to select the correct model asymptotically withhability oné if the correct model is
one of the candidate models and the sample sizex [65]. For these reasons, BIC is
often preferred to AIC for engineering applicatidhat can only afford a small sample
size [68].

Comparing Equations 2.36 and 2.38 one can alsotfiatl AIC and BIC can be
generalized as the following form [66]

IC =In(6%,¢ )+ mg(s) (2.39)
where ¢(s)is a positive function of the sample size andsfas the condition
Isi[r; @(s) =0.

Based on this generalization, many derivatives &€ And BIC are devised by
modifying one or two terms in the generalized Eouma®.39 for better performance with
respect to specific surrogate-modeling methodsh siscthe modified AIC and BIC for
neural network in Ref. [68], the ones in Ref. [68hd the one in Ref. [70]. In this

research, new modified AIC and BIC are devisedhtduide three kinds of information:

model fitting error, model complexity, and modeégicting error.

2 A model selection criterion that select the carraodel asymptotically with probability one if tsample
size approaches infinite is said to be consistent.
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2.4.3 Practical Selection of Three SVR Parameters

There are many parameters to be selected or estinmatSVR. Those parameters
are the weight vectow , the interceptb , the regularization facto€ , the kernel
parameter(s), and the tolerable deviat&oif the e-insensitive loss function is used (for
other loss functiong = ) Since the quality of the final surrogate modepends on all
the parameters, now the question is: how can a@bkdhparameters be selected or
determined? By solving the alternative convex gatciminimization problem Equation
2.25,W andb can be determined, given pre-specified £, and kernel parameter(s)
that are usually given such as by experts of SV&w lthe question is reduced to: how
can a non-expert user pre-specify or selecte , and kernel parameter(s)?

One way to pre-specify these three sorts of parnsét to use an optimizer, such
as the Genetic Algorithms or Simplex Optimizatio described in Ref. [71]; another
way is to construct a new alternative minimizatgowablem, such as described in Ref. [72]
to automatically select given pre-specifiedC and kernel parameter(s). However, the
two approaches are computationally expensive, andotl make use of the information
contained in the sample, i.e. a priori knowledgeselect these parameters, as the SVR
experts do.

The parameter€ and ¢ can be selected based on the information contaméte
sample no matter what the kernel function and Kepagameter(s) are. The kernel
parameter(s) can be selected later using modetteiemethods discussed previously.
Therefore here the focus is on the selection of ghemetersC and £, using the

practical methods in Ref. [73].

66



When the s-insensitive loss function is used, as mentionedvipusly, the
regularization factolC determines the tradeoff between flatness of thel fsurrogate

model g(X ) and the amount up to which deviations greater thame accepted; and

with increase ofC more emphasis is put on the loss function andsthectural risk
function in Equation 2.24 is more like the convendl empirical risk function. As
described previously (see Table 1), in this casedhal variable® < a < C . Further,
referring to Equation 2.35, the dual variables @sed as linear coefficients in the final
surrogate model. Therefore, a “good” value @rcould be chosen to be equal to the
range of the response values of a sample. How#werselection ofC is sensitive to

possible outliers in the sample, thus the practe#ction ofC is given as
C =maxy+30,),|y-30,)) (2.40)
wherey and o, are the mean and the standard deviation of tippnsge values of

the sample, respectively.

As shown previously (see Figure 2-8), the toleral@eiatione controls the width
of thee-insensitive zone. In addition, according to theotty provided before the value of
¢ affects the number of support vectors to constihetiinal surrogate model. Therefore,
the value ofe should be proportional to the model fitting erlevel. On the other hand,
the selection of should depend on the sample size: intuitivelygdarsample sizes
should require smaller value &f such that more support vectors can be selected to

improve accuracy. Two practical selectionscoére given as

where o;. is the standard deviation of the residuals or rhfidieg error.
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In this research it is found that the second pcattselection can provide better

results in most cases, and thus is used for sefeofic< .

e=Y€ (2.41)

Js

Now the problem is that the residuals are not knawpriori, and need to be
estimated from the sample. Tkenearest-neighbor method can be used to estimate
In the k -nearest-neighbor method, the (pseudo) predictgabrese value of each sample
point y, is estimated as the average of the responsessvaluthek nearest sample
points, where the distance between two sample pomimeasured by the Euclidian
distance. Typically, the value & is in the 2 — 6 range, and a value of 3 is reconted
and used in this research. Then the estimatiam.of given as

1
Sk 1
UE_ 1 -

s’k -1 Si=

(yi Ry )2 (2.42)

Then the estimatiord. of o, is substituted into Equation 2.41 to select the
practical value ofe.

If the Gaussian radial basis function is selectedha kernel function, the kernel
parametero , which is called the width of the radial basisdtion, is also suggested in
Ref. [73] to be set to

o" ~ (0., 05)
where all then design variables are pre-scaled to [0,1] range.
In this research it is found the interval can beeeded to a wider one and

sometimes provide better results.

o" ~ (001,05) (2.43)
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2.5 Preliminaries of Probabilistic Design Methods

In the section, the basics of probabilistic desagd the methods to incorporate the
effects of uncertainties in design are summarized.
2.5.1 The Basics of Probabilistic Design

In early design stages there is a high degree cotntminty. As mentioned in
Chapter 1, uncertainty is the incompleteness ofigde&nowledge, or a difference
between reality and what is expected. There areyrspacific sources of uncertainties,
such as ambiguity of the requirements, analysisimulation tool fidelity, incomplete
knowledge of the manufacture process and operatiemaronment including human
interactions, immaturity of the new technologias] approximation errors introduced by
the surrogate models for the physics-based anafrsis simulation tools. Figure 2-9
provides a comprehensive summary of the sourcesurmfertainty and error in
computational simulation in early design stages.

Although surrogate models are used to increase letge in the early design
stages such that educated (with more informatiegistbns can be made and avoid
locking in the final life cycle cost (LCC) and permance, it is still possible that bad
decisions can be made because of the uncertairgiingxin these stages. On the other
hand, as mentioned in Chapter 1, the design sakitad the traditional deterministic
multidisciplinary design optimization may be highégnsitive to the variation of the
uncertain factors, leading to performance lossudfier from high likelihood of undesired
events, or being conservative and consequentlyamusgic. Therefore, advanced design

techniques or methods have been developed to handégtainties.
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Figure 2-9: Framework for Sources of Uncertainty anl Error [74]
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The research of design techniques to handle umcgetathat pervades all areas of
science and engineering has been an interestingflar@hmental research topic for
engineers and scientists for a long time. Tradatilyn the uncertainty is accounted for in
design by the use of scaling parameters such asydaictors, and this kind of method
has proved useful by past decades of experienaasever, when new configurations or
materials are used, it is difficult to determinpraper value for the scaling factor; besides,
the measures of reliability or robustness can eajifsen [15].

The uncertainty analysis or uncertainty based dds&g become a crucial technique
in many engineering fields such as the aerospatesiry. Once it is realized and adopted,
the following potential benefits can be achieves]1

1. Increase of confidence in analysis or simulatamois;

2. Reduction of design cycle time, cost, and risk;

3. Increase of system performance while meetingelh&bility requirements;

4. Increase of robustness of the system;

5. The performance or behavior of the system anofhinal conditions can be
evaluated.

Many advanced methods have been developed for phipose, such as
probabilistic design, fuzzy logic, and interval s [15]. The probabilistic design
methods are very important and popular means tbvidéa the pervasive uncertainties,
because the difference between model-based pm@dicind reality caused by
uncertainties can be described by probability dhistions. There are two developing
fields in this area, one is reliability design, ahé other is robust design. The detailed

task of reliability design is different in differeangineering fields. From the viewpoint of
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operation, it is to design a system, or componmandevice to perform without failure for
a specified period of time under specified operatonditions; from the viewpoint of
some disciplines such as structural design, itoigrevent catastrophic failures. The
robust design, on the other hand, is to obtain V@sgtion of performance or maintain
good performance at off-design conditions. One wao®y classification and

corresponding design methods are shown in Figur@. 2-

(6]
<
)
= No Engineering Risk Analysis
g £ Applications Reliability-Based
% O Design & Optimization
)
- 0
[5) o
c - . . T
g- 8 Cost-Benefit Analysis Reliability is
= § Robust Design & Not an Issue
£ Optimization
5
o
Everyday Extreme
Fluctuations Events

Frequency of Event

Figure 2-10: Uncertainty Classification and DesigiDomains [75]

Generally, reliability design deals with extremeeets, or the “tails” of a
probability distribution, while robust design istenested in the behavior in the zone
around a nominal value such as the mean of a pilgpabstribution. This difference is

illustrated in Figure 2-11.
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Figure 2-11: Reliability versus Robustness on Prolimlity Density Functions [15]

For complex engineering systems, probabilistic glesmethods are realized
typically using random sampling techniques suciMaste Carlo simulation (MCS) or
other statistical sampling methods such as FadbaPility Integration (FPI). This is
because for a complex engineering system the rtewdtibnal relationship between a
response and design variables is usually implicd & general it is very difficult to
establish its explicit form, the analytical way wfcertainty propagation by derivative
analysis of the functional relationship can notbed.

Monte Carlo simulation is the most popular randoamgling technique for
complex engineering systems because of its albditgbtain the most accurate probability
distribution [76]. However, a large number (in tisands) of complete analyses are
required in order to obtain an accurate probabdistribution using this technique. For
small event probability values, an even larger nemn{m tens or hundreds of thousands)
of analyses are required because the accuracy ofteMGarlo simulation decreases
rapidly for lower and lower event probability vatué-or example, it is a low requirement
to require the structural failure rate to be ld&nt0.01% for an important building in its
designed life time. Because this failure probapiliheans 1 failure out of 10,000

scenarios or cases analyzed, more than 10,000 easaseeded in order to obtain an
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accurate distribution. The following Equation 2.#4used to estimate the probability
calculation errore (%) of the Monte Carlo simulation [77]. With thequation the

number of analyses needed By = 001 Weth an error of no greater than 5% is

o= |200M-F) (2.44)
| NP,

where N is the number of different analyses or simulatioeguired,P; is the

estimated as 80,000.

failure probability, ande is the maximum error (%) d®, .

Obviously this approach is unaffordable in termstiofe if the time-consuming
physics-based models such as finite element basalyseés are used to do the Monte
Carlo simulation, and thus again the fast surrogaidels are required.

The probabilistic design methods based on surrogatgels and the Monte Carlo
simulation have been widely applied to early destages in engineering fields, such as
undersea weapon system design [78], car crashwes$idesign [79], and gas turbine
blade reliability design [80], to name a few. Sigrant improvements to the system
performance and accuracy of the reliability andustbess assessments have been made
by these methods. New characteristics of probgbidlistributions of the system
performance have been found, which might not beodsred otherwise, such as in Ref.
[80], the distribution of the core temperature ofyas turbine engine is non-normal
instead of normal that has been assumed for atiomey

It has to be pointed out that the probabilisticigiesesult also depends on how
accurate a surrogate model captures the variabbiise responses with respect to the

perturbations of the design variables [81]. Howeutas more difficult to check this kind
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of accuracy than goodness of model fitting, and @assumed that the more accurate the
surrogate models are, the better the ability of dheogate models is to capture those
variations.
2.5.2 Mathematical Foundation of Joint ProbabilityAssessment

The probability and statistics theories of a singledom variable are the standard
contents of probability and statistics textbooks] those contents are omitted here.

The general expression for the joint probabilitynofitiple arbitrarily distributed

continuous variables is given as

PI(X3, X X)) DAL= [ [ £00,%,0.,%, ), ... dx, (2.45)

where A is the event spacef, (x,X,,...,X, i9 the multivariate joint probability

density function (PDF). This joint PDF satisfieg flollowing conditions:

1. Positive definite0< f (X, X,,..., X, )
2. Unit integral propertyj',,,J. f (X, %, .., X, )aXdX,...dx, =1, whereQ is the state
Q

space comprising all possible different events. demtinuous random variables, the state
space is defined by the intervals of all randomaldes.

Given a joint PDF, a new concept comes up, i.e.rttaginal distribution. A
marginal distribution is a univariate distributidunction, which can be determined by
integrating the joint PDF with respect to the otherdom variables over the entire state

space. As an example, the marginal distributiothefrandom variableX; is given as

00 = [ [T 06 %0 X ), (2.46)

The marginal distribution is important in practgace in most cases one knows the

marginal distributions and uses those distributimnsonstruct the joint distribution.
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The random variables are mutually independentdf @mly if the joint distribution
function of those variables is equal to the proddatorresponding marginal distributions

given as

F (X X0 %) = U f (%) (2.47)

The conditional probability density function (CPDE the (joint) probability
density function for some variables given the othamiables taken specific values. The

most useful CPDF is for a single variable. For eplenthe CPDF forX, is given as

= (X% X))
Fugen o (800 ) = e 49
XX X K1 [ %o X, fxzmxn(xz,...,xn)

where f,  « (%, %) = J'_mf (X, %,,..., X, )dX, (using Equation 2.46).

The relationship among the joint, marginal and d¢omoll probability density

functions is illustrated by a bivariate case inufeg2-12.

area=1

fX1|X2 (pr)
(conditional)

Figure 2-12: lllustrations of Joint, Marginal and Conditional Probability Density Functions [82]

Given the joint density function, the mean (or estpd value) and variance of a

random variable can be calculated as
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f, =EX) = [ [0 (0 XX, Y, X, (2.49)
Var(X,) =E[(X, = )21 = [ o[ (6 = 1) (4, %0000 %, )b, .0, (2.50)
The covariance and correlation coefficient betwageo random variables can be

calculated as
Cov(X,, X)) = [ |06 = 1 )% = 1 ) £ (%1, %, bl (2.51)

_ Cov(X;, X,) (2.52)
X JVvar(X,)Var(X,)

Yo,

Let V =V (x,X,,...,X,) a function of the random variables, , X, ,..., X, then

usuallyV is a random variable as well. The mean and vagiai® can be calculated

with Equations 2.49 and 2.50 by substitutiXg with V . Further, the cumulative

distribution function ofV can be calculated by [82]
F (V) =PV <v) = I'P;'I F (X X500y X, )AXOX, ... OX, (2.53)
where R, is the region over whickl/ (X, X,,...,X,) S V.

2.5.3 Joint Probabilistic Assessment Methods

Many methods have been developed for assessméme g@irobability of violating
either one function of random variables, which aled a limit state function (LSF), or
multiple limit state functions. These methods carclassified as two groups: simulation
based and analytical. The most popular and mostlyigsed simulation based method is
the empirical distribution function (EDF) methodskd on Monte Carlo simulation. The
most popular analytical methods for single LSFtarefast probability integration (FPI)

family methods based on the concepts of most ptelqaiint (MPP) and LSF [8]. There
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are good descriptions of the FPI family methodRéf. [83], and APPENDIX E provides
a concise illustration of the concepts of MPP aBéFL

It is important to assess the joint probabilityvodlating multiple LSF’s, because
those LSF's are usually correlated instead of nliytuadependent since those LSF's
have some input variables in common. The probaigilEsssessment methods for single
LSF are skipped here.
2.5.3.1 The EDF Method

The empirical distribution function method firstessempirical data, which are
generated with computational simulation, or expentation, or actual measurements, to
generate a sample of the joint PDF or cumulatiwridution function based on the
simulation counting technique. This sample is @itte construct an approximate joint
PDF or CDF. Then this fitted joint PDF or CDF idg0 estimate the joint probability
of violating the LSF's.

A joint PDF (sample) is generated using the follegvsimulation counting equation:

1 N
F (Y Yareos Vo) =75 2 (@1Bsees By = Yo Voo Vi) (2.54)

i=1

And a joint CDF (sample) is generated using thievahg equation:

l N
FRSaLY, a5 YnS8n) = 2 (1 S8y, <85 Yn<a,) (299
i=1
where N is the number of sample point§, Y, ,...,Y, are response functions of
random variablesX;, X,,..., X,,, & are pre-specified values for the response funstion

and | ()is the indicator function, giving 1 if the conditis in the parenthesis are all

satisfied or 0 otherwise.
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Denote z;, j=1...,q being theq limit state functions of interest. The EDF

method is shown in Figure 2-13 by an example foglsi LSF.

F(2) 4
1)
)
o T Fitted CDF
safe | failure
«——> ¥°
Pf A
D/ o
<]
[ )
0o —— -
Z=0 Z

Figure 2-13: Example Using Empirical CDF to Estimae P,

In practice, however, the joint probability of \ating the LSF's Z > 0is usually
directly estimated by the following counting Equoati2.56, instead of being obtained

from the fitted joint PDF or CDF.

N
F(z>0,2,>0,...,z,>0) :%Zl(zl >0,2,>0,...,2, > 0) (2.56)

i=1
The most popular computational simulation methodMiente Carlo simulation,
which is based on the multi-variate Monte Carlo glmg (see APPENDIX F for details).
The basic idea of MCS is simple: first a set of pEnpoints are generated by the multi-
variate Monte Carlo sampling method; then the resps of the sample points are
obtained. Thus a random sample is obtained or doranprocess is simulated. The
required number of sample poinfd with an error of no greater thancan be estimated

based on Equation 2.44, which is repeated with:here
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o= |200H-F) (2.44)
| NP

The Monte Carlo simulation is extremely appealingcs it requires the least
amount of statistical knowledge and does not nee@tnown the explicit functional
relationship between a response function and thdora variables. It can be the most
accurate approach given enough sample points, symdpaotically converges to an exact
answer as the number of sample points approacheériy. The last advantage of the
Monte Carlo simulation is that it can work with pedility distribution functions over
finite intervals. This is very important becauseeality the interval of a random variable
in most cases is finite instead of infinite ashia theory of normal distribution.
2.5.3.2 Analytical Probability Assessment Methods

The basic idea behind the analytical joint probgbiassessment methods for
multiple LSF’s is to directly construct the joinrgbability density function of the
responses based on some information of the (randesign variables, or the responses,
which are random variables as well.

For the analytical methods that are based on irdtion of responses, such as the
Nataf PDF transformation method (NPDF) [82] and @anPDF method (BPDF) [8],
those methods usually require information of thegimal distributions and/or covariance
matrix of the responses. However, in practice, ithisrmation is very difficult to obtain,
if at all. Therefore, these methods are not prakttic

One common problem with the above methods is treafrandom) design variables
are indirectly linked to the (joint) PDF of the pesises and thus these methods are
difficult to be used for the design space exploragprocess. To overcome the problems

with the above methods, two methods are developedti-response first order second
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moment method (MFOSM), and multi-response inveraasformation method (IPDF)
[80]. These two methods make use of the partiavdtves of the responses with respect
to the (random) design variables while constructamgapproximate joint PDF of the
responses, and thus are classified as sensitisggédmethods. The partial derivatives are
approximated numerically using methods such asefidifference. Those methods are
practical because those methods do not requirghdison information of the responses
and thus are easy to use. In addition, the (randides)gn variables are now directly
incorporated into the joint PDF of the responses thns these methods can be used for
the design process. The main limitations of MFOSBIthat it assumes the responses are
normally distributed and makes linear approximatian the responses. The main
limitation of IPDF is that it requires the invergmctions of the responses with respect to
design variables must exist and be unique. Thispedsnthis method to use linear
approximation functions of the responses sincerherse functions may not be unique
otherwise, although theoretically this method doetshave to.

2.5.4 Summary of Robust Design and Reliability Degn Methods

As mentioned previously, there are two main fietdat handle the effects of
uncertainties: the reliability design and robussige. In these two fields, the design
variables are treated differently as with the ofpyecfunctions.

The independent variables can be classified intbgmups: control variables (CV)
and noise variables (NV). The control variables #re ones that are controlled, or
specified, or selected by a designer, such as pleeabng temperature, the shape and
dimensions of a component, the properties of a maitetc. The noise variables are the

ones that are out of control of a designer whikeghoduct is being manufactured or used
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in the field up to the end of its lifetime, such #ee random material properties,
manufacturing tolerances, random loads, the praglucyuantity, utilization hour,
economic range, load factor, ambient temperatuce, e

In robust design, variation is considered only thoe noise variables and a noise
variable is represented by a probabilistic distitouand a range. A control variable, on
the other hand, is treated deterministically witsiragle value over a range (without using
a distribution), and its value is adjusted durihg tlesign process. Then the variation
(such as standard deviation) of a response frorargett value is estimated with the
distributions and ranges of the noise variablea given set of values of the control
variables.

The objective of robust design is to find the skevalues of the control variables
that minimizes some responses and the variati@owfe other responses with respect to
the noise variables by adjusting the control vdealand making sure that the response
does not violate the limit state function(s). Fg@-14 illustrates the difference between
a robust design solution and a deterministic desajation.

There are many realizations of the robust desigthoas in different areas, such as
Ref. [13] and [84] for aircraft multidisciplinary edign optimization, Ref. [78] for
submarine weapon system design, Ref. [85] for [flexiving design optimization, Ref.
[86] for airfoil shape design optimization, to naméew. One such example is shown in

Figure 2-15.
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Figure 2-15: Example Implementing Robust Design [7]

In reliability design, variation is considered fawth the noise variables and control
variables. There are three main approaches to &ahd effects of these uncertain
variables, i.e. the use of a safety factor, theaigbe absolute worst case, and the use of

probability [1]. The first two approaches are camvenal approaches, and the third one
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is the modern reliability design of interest. As nobust design, a noise variable is
represented by a distribution and range. Howebheryépresentation of a control variable
is more complicated than a noise variable. In bditg design, a control variable is
represented by a nominal value such as mean vaftuexpected value), a probabilistic
distribution, and a range. Each nominal value mayespond to a specific distribution
and a specific range, i.e. for different nominalues the corresponding distributions and
ranges can be different. Typically, the nominaleal are used to calculate the (average)
response that a designer concerns, and adjusteékebgesigner. The distributions and
ranges are used to estimate the probability ofatild a criterion or criteria, along with
those of the noise variables, using a probabiktgeasment method discussed previously.
A probability is estimated for each set of valuésh@ control variables along with the
corresponding distributions and ranges.

The objective of reliability design is to find tket of nominal values of the control
variables that makes the probability of violatingraerion or criteria less than the target
value as well as maximizes or minimizes some perémice measures such as $/RPM
and weight, by adjusting the nominal values of ttumtrol variables. Figure 2-16
illustrates the difference between a reliabilitysiga solution and a deterministic design
solution.

Some reliability design methods are a simplifiedsien of the above process. In
these simplified methods, a control variable isespnted by a distribution and a range,
and the designer assigns only one value to a dordr@able based on these distribution
and range, instead of a nominal value and its spoeding distribution and range; and a

probability is estimated with the distributions amaghges of all control variables, instead
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of for each set of values of the control variabl8emetimes the control variables are

even treated as deterministic ones, and the vamigicaused only by the noise variables.
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Figure 2-16: Difference between a Reliability DesigSolution and a Deterministic Design Solution

A note is that the reliability design methods aseally referred to as probabilistic
design methods, which in this case do not inclu®ist design methods. In addition,
although the reliability design methods are orifjndeveloped to solve the structure
reliability problems, those methods are now extendeother problems, such as viability
of a product over its life cycle.

There are many realizations of the reliability desmethods in different areas,
including mechanical systems considering materradettainties [87], aircraft concept
and preliminary design [8], mechanical systems idems g manufacturing and
operational uncertainties [88], aircraft impact dymcs design optimization [89], to name

a few. One such example is shown in Figure 2-17.
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Figure 2-17: Example Implementing the Simplified Ré&ability Design [8]

2.6 Multi-Objective and Multidisciplinary Optimizat ion Methods

In this section, the basic concepts and methods muiiti-objective and
multidisciplinary design optimization are summadze
2.6.1 Multi-Objective Optimization Methods

Often, in a multi-objective optimization problemnethriteria are conflicting in such
a way that optimization of a single criterion résuin poor performance for another
criterion. In this case, there is no optimal sanutthat simultaneously optimizes all the
objective functions; instead, the concepts of &fdrontier and weak Pareto frontier are
employed. Assuming all the objective functions @r®e minimized, in the design space

the definitions of a PF point (or solution) and &®/point are given as follows [14]:
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« Pareto frontier point: A poinX" is a Pareto frontier point if and only if thereedo
not exist another poinK*, such thatF (X*) < F(X"” )andF,(X*) < F (X" )for at
least one objective function, wheFe(X) = f,(X (9ee Equation ().

« Weak Pareto frontier point: A poirX"” is a weak Pareto frontier point if and only

if there does not exist another pot , such thatF (X*) < F(X" )

Correspondingly, in the objective space the ve&(X") defines a frontier point,

either a Pareto frontier point, or a weak Pareatatfer point.

In this research, two kinds of Pareto frontier oeak Pareto frontier are
differentiated, i.e. deterministic frontier and pabilistic frontier. The deterministic
frontier satisfies all the deterministic constrajnvhile the probabilistic frontier satisfies
all the probabilistic constraints that requiretfgsatisfying the deterministic constraints. If
there are no special notes, a Pareto or weak Plaoatter means a probabilistic frontier.

According to the above definitions, a point is a RVjpoint if there is no another
point that improvesll of the objective functions simultaneously, whilgaint is a PF
point if there is no another point that improvedeatst one objective function without
degrading any other objective functions. TherefatePF points are WPF points, but not
vice versa. Because of relaxation by definitiore WPF solutions are more useful for
practical applications than the PF ones. Figur® 2Hows the difference between PF and
WPF points in the two dimensional objective spdoethis figure, the PF points are
points b, e, and g, while the WPF points are pomtb, c, d, e, f, g, and h. The Figure
2-19 shows the difference in the three dimensiobgctive space. It can be seen that the
difference is very obvious in this case that the PAiircludes more points that form a

different section of the edge beside the commotigeof the PF and WPF points.
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Figure 2-18: Example to Show the Difference betwedPF and WPF in the 2D Objective Space

50

e grid points of the objective space
0 e true WPF points of grid points
true PF points of grid points

O

3

-1600 -300

Figure 2-19: Example to Show the difference betwedPF and WPF in the 3D Objective Space
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It can be shown that the methods to obtain PF isolsitcan easily be modified to
obtain WPF solutions. Therefore, no difference edmfor the methods to obtain PF or
WPF solutions. Many methods have been developdithdathe optimal solution(s) of a
multi-objective optimization problem in the send$d>& or WPF. Reference [14] provides
a good survey of these methods.

These methods can be divided into two groups, tia¢ meeds articulation of
preferences, and one that does not. The first gusually uses a preference parameter,
such as a weight for an objective function to shbevpreferences of the decision-maker
either explicitly or implicitly. With the help ofne preference parameter, the objective
functions can be combined to form a single (obyegtutility function, such as the most
common one, weighted overall evaluation criterioetimd, or a single utility function
without direct information of the objective funati® such as the Goal Attainment
method [90]. After forming the single utility funoh, a single-objective optimizer is used
to find a multi-objective optimal solution. By vang the preference parameter
systematically, a set of MOO solutions, i.e. the ®#FWPF solutions, can be found.
Usually the constraints are treated directly bygimgle-objective optimizer, i.e. without
using a penalty approach that further increasesdheplexity of the utility function.

The standard form of the Goal Attainment optimizatproblem is as follows:

Minimize: A
Subiject to: (2.57)
F(X)-wA<b i=le
w =0

where
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A a scalar variable

W weights
b goals for the objective functions

Figure 2-20 shows the basic idea of the Goal Attant method, in whichV and
B are the vectors of weights and objective goalspeetively. From this figure, the
vector of the objective goals is better to be ale&spf the objective spade, and the

Pareto frontier of the objective space can be eitbavex or concave.

FZ
B+ AW
P2 S F
B+ AW
b, B
W
o} F F

Figure 2-20: lllustration of the Basic Idea of theGoal Attainment Method (adapted from [90])

A very important conclusion that one can draw fritvis figure is that the weights
vectorW is not used to put different weights or preferenoa different objectives;
instead, it is just a means to define the seandttion. Therefore, the Goal Attainment

method is actually a non-preference method in thtbaa’'s opinion, and it should not be

classified as a method with preferences.
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The second group does not need the preferencamafmm to find the PF or WPF
solutions. In contrast to the first group of methadeating the objective functions
indirectly and finding one PF or WPF solution diirae, this group treats the objective
functions directly without forming a single utilijunction and provides a set of PF or
WPF solutions as a whole. The most popular mettiddi® group is the Genetic Multi-
objective Algorithm. One disadvantage of the Genbtulti-objective Algorithm is that
the constraints are not addressed directly andllysaug@enalty approach has to be used.
In this research, a new Monte Carlo simulation Basethod is formed to find the WPF
solutions.

These methods can also be divided into anothemgteops, one that finds a single
PF or WPF solution at a time, and one that diregiyerates a set of solutions. An
example of the first group is the Goal Attainmen¢thod discussed above. Special
procedures are required to find a set of PF salatwith the first group methods, since it
is desirable that such a method has practicalbates: a) it should generate evenly
distributed PF points in the objective space; Bhituld explore the entire objective space
and not neglect any region [91]. To generate aketenly distributed PF points of the
whole objective space, one approach is to systealgtichange the parameters in a
single solution MOO method, such as the weightshan OEC method. However, this
approach does not always result in an even distoibuof PF points even though the
weights are evenly varied [91]. Another approactoidirectly generate such a set of PF
points, such as the modified Normal Constraint N@thod [92], and the new method
that will be provided later in this research. Thaimreason not to use the modified NC

method and instead to develop a new method inrdsearch is that the modified NC
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method needs non-trivial optimization effort to geate initial search points, whereas the
new method does not.
2.6.2 Multidisciplinary Optimization Methods

As mentioned previously, a multidisciplinary desigptimization problem features
coupling variables, and these variables and th@ueonstraints make the design very
complicated. First, design freedom is reduced aisgbidted consistent design zones
result in the system level design space. Secongetinethods entail equality constraints
for the coupling variables in the multidisciplinaagalysis process and thus require many
iterations of multidisciplinary analysis in ordey find every single consistent design
point. Third, special solving procedures are reglito untangle or decompose the
complex interactions introduced by coupling vamgbland to find consistent design
points. Last, the design constraints further redingedesign freedom and entail more
effort to find final feasible design solutions.

Figure 2-21 shows the design structure matrix (D®a transportation aircraft
multidisciplinary design problem (see APPENDIX Hat will be solved later. The boxes
D, A, W, and P represent the disciplinary analgdigero-lift drag contributing analysis
(CA), aerodynamics CA, weights CA, and performa@@g respectively. In this DSM,

there are two coupling variables, i\, andW,

landing *

V,, is one input of the D CA and

also one output of the A CA),

*landing

is one input of the A CA and one output of the W

CA. The design variables akg |, S, W, andT..
Depending on availability of optimization ability ithe disciplinary contributing
analyses, different approaches are developed tb tfie optimal solutions from the

consistent design zones. If there is not optimiragbility in the disciplinary CA’s, the
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common approaches are optimization with (relaxaggd-Point Iteration method (FPI)
and optimizer based decomposition method (OBD) ;[98] all the disciplinary
optimization ability is turned off and combinedar single system-level optimizer, the
approach used is called All-at-Once method (AAQ)]{¥ the disciplinary optimization
ability is to be kept (only part of it in fact), ntdlevel MDO methods are used, such as
the Collaborative Optimization method (CO) [18],otMfied Collaborative Optimization

method (MCO) [95], and Bi-Level Integrated SysteymtBesis method (BLISS) [17].

_______________________________________________

. bl.S b, S, W, W, T SW,T

| ¢ ® ¢ ® !

i d,Cyo o i

| D CdO_c ( L j :

! — |

| Vbr D takeoff i fand g's
1 _._’
| D . D ). |

1 V. opt_cruise landing| .

. e A ® ®

: VVIanding i

i \Nlanding W Rfr ’ Rfa i

| P|

_______________________________________________

Figure 2-21: Example of the DSM of a Multidisciplirary Aircraft Design Problem

As discussed previously, the new framework to stieeJPMOMDO problem that
represents a realistic conceptual design probleedsido be a loosely coupled or

completely decoupled architecture in order to reduceliminate the nesting loops. Of all

93



the MDO approaches above, OBD can completely ddedbp problem and the resulted
alternative problem is easier to understand thanadthers. This approach should be

considered by the new framework.
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3 RESEARCH QUESTIONS AND HYPOTHESES

In Chapter 1, a need is established to formulateea framework for realistic
conceptual design problems of design alternativeeggion and selection. In Chapter 2,
the state-of-the-art enabling techniques for the frmmework were reviewed, which
included methods of surrogate modeling, joint pholistic assessment, probabilistic
design, multi-objective optimization, Pareto fremtifinding, and multidisciplinary
optimization. Based on the desired elements fon#we framework discussed in Chapter
1 and state-of-the-art enabling techniques and oastheviewed in Chapter 2, research
guestions are raised for the formation of the neamé&work and three hypotheses are
proposed.

3.1 About Formulation of the New Framework

One idea proposed about the formulation of the fiamework is to combine some
of the presented methods together. Since eachaosktimethods is good at solving a
specific problem, a hybrid approach might be abledandle a more general set/category
of problems.

However, when making use of the advantages of thusbods, the disadvantages
also need to be overcome. For example, each ah#tbods available for consideration
of MDO, JPA, MOO, and PF implies considerable cotaponal load and run time since
those methods usually find a solution by iteratibar a MOO method, it is difficult to
find a PF point in the objective space, and it isicm more difficult to find a

corresponding PF solution in the design space siustally the design space is not
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involved when finding a PF point in the objectiygase; a probabilistic design method
faces similarly serious difficulty when finding @reesponding solution in the design
space.

Therefore, when combining the methods of MDO, JRK)O, and PF finding
together, the nesting loop approach cat be adopted, which gives a loop to each of
those methods, because this approach will entatesptable computational load and
time. Those methods need to be combined in a débupay. In addition to this
decoupling requirement, the weak Pareto frontieintgsoin the objective space and
corresponding design solutions in the design sghoeld be found at the same time, Iin
order to avoid the difficulties that the currenttheals are suffering.

The observation on current practice shows thatcttmbination of the above four
kinds of methods has not been achieved yet, althaame of those methods are
combined, such as the TIES, RDS, component ralabdssessment method [80]
combining MDO and joint probability assessment (JPthe fuzzy Pareto Frontier
method [96] combining MDO, MOO, and finding PF; anbe aero-propulsion
component design method [97] combining MDO, MOOgd an separate probabilistic
assessment.

One obvious reason for this combination not beimpedis that no existing
approaches can combine those four kinds of methmgisther but in a decoupled way,
and also enable finding the weak Pareto frontientpoin the objective space and
corresponding design solutions in the design spadkee same time, although the above
examples show some approaches can combine somall,noft those methods. Another

possible reason is that those methods may not wetk with each other since those
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methods are developed separately. For exampl&]B@ methods usually are developed
to solve a single objective problem and thus dowatk well with MOO methods, and
vice versa; the analytical probabilistic assessnmathods do not perform well with
complex multidisciplinary models as shown by exgeces of the author and many other
people; the Monte Carlo probabilistic assessmerthogecan work well with complex
models, but the computational load may be hugesfdirectly combined with a MDO or
MOO method.

As discussed in Chapter 1, accurate approximatiethoas are desired for the new
framework in order to perform rapid assessmentraakle use of accurate or high fidelity
knowledge. There are more reasons for accurateorippation methods. Since the
conceptual design decisions have very importardgceffon final performance, quality,
and 70 to 80 percent of the cost [1], and the ibistic assessment and design results
are sensitive to the accuracy of the surrogate mmptlgese surrogate models must be
accurate enough [9, 15, 81] in order to obtaintivagthy probabilities of the PC's and
subsequent WPF.

Considering the fact that different high fidelitytdime consuming tools are used to
create the training samples for construction ofrcgate models when a design is
revolutionary, there should be a surrogate modetethod to be accurate for many types
of problems with a small training sample. This noetldoes not need to be the most
accurate one all the time, but it really needs @avehbroad adaptability with a small
training sample. Although one can try several ggate-modeling methods at the same

time and pick the best one, it is possible thatenohthese methods are good. Therefore,
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to avoid this situation, there is a need to hasareogate-modeling method that is known
to be accurate for many types of problems with alktraining sample.

The previous comparison of major surrogate modeatieghods in Chapter 2 shows
that all those methods have advantages and distzd)es) and there is no single method
that is superior to the others in all circumstandéesther words, none of those methods
has the desired broad adaptability, needless tchiggy accuracy with a small training
sample. Instead of creating a brand new methdd,hbped some existing methods can
be combined to keep the advantages and overconmdighdvantages of those methods,
so that the resulting hybrid method is accuratenfany types of problems with a small
training sample.

In fact, hybrid surrogate-modeling is not a newaid Ref. [98], RSM and ANN
has been combined together to achieve better appation capability. In this
combination, RSM is used to capture the global ¢eng, and ANN is used to capture
(local) high non-linear behavior. However, becaot¢he disadvantages of ANN, this
hybrid surrogate-modeling method has not been widetepted, although RSM itself
has been widely applied to many engineering problem

Inspired by the hybrid method of RSM and ANN, RSMI&VR are considered to
construct a new hybrid method. Second order RSMbleas accepted by engineers and
has been widely applied to various engineering lprob. It is very easy to use, very
transparent, very fast, and very accurate for l@mnmlinear problems. With the form of
polynomial functions obtained by second order RSMe contributions of different
design variables and the interaction terms of thvasmbles can be easily identified. This

kind of information provides more insights into thgstem behavior and can be used to
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improve reliability and robust designs. Therefosgcond order RSM is strongly
recommended that it should be executed first toifsaereasonable fit can be obtained
[60]. However, second order RSM is not accuraténfgh nonlinear problems, or in these
cases only accurate in a small neighborhood beadafuge mathematical foundation of
Taylor series expansion. For multi-objective opgation, the region of interest will
rarely be reduced to a small neighborhood by ogttion [84]. It suffers the problem of
“curse of dimensionality”. Improvement to the aamy of the response surface models
goes slowly, if at all, with increase of the siZetlte sampling data, because if the order
of the polynomial is selected, the number of caefhits is known; then if the sample size
is larger than the number of coefficients, the @xtata will help little with the accuracy.

SVR, although it is a new method, has been shovire tawbust, accurate with good
computational efficiency, and have good functioemplicitness comparable to that of
second order RSM as discussed in Chapter 2. S\&Ragrate for many high nonlinear
engineering problems [35], and does not suffemptfodlem of “curse of dimensionality”
because of its solid theoretical foundations usthg SRM principle as the risk
minimization principle.

The other three surrogate modeling methods disdusse Kriging, Gaussian
Process, and Neural Network, are not selectedefegral reasons. Kriging and Gaussian
Process are particular surrogate-modeling methatsking assumptions directly or
implicitly about the distribution of the error imggation 2.14, i.e. Kriging needs to select
proper correlation functions and Gaussian Proces=ds to assume that the error
distributions are independent normal distributiohhen the error distributions assumed

are quite different from the real ones, the acquvaiti be low. Those methods also suffer
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the problem of “curse of dimensionality” inheritécbm the particular or parametric
inference method. And for Kriging only, it has theblem of low construction speed.
For Neural Network, although it is a general suategmodeling method and does not
have the problem of “curse of dimensionality”, &shproblems with the training process,
i.e. it is difficult to select a proper training topization algorithm for all kinds of
problems. An improper training optimization algbrit will result in a local minimum
solution, or overfitting because of the ERM prireias the risk minimization principle.
The last reason is that the accuracy level of tmsthods is not better than that of SVR
according to the comparison provided in Chapter 2.

Therefore, it is believed by this author that a riylsurrogate-modeling method
with the combination of second order RSM and SVB$RR) will be accurate for many
types of problems with a small training sample.sThew method is needed by the
engineering practice and will make improvementddsigns with surrogate models.

The second order RSM will be referred to as RSMdikeer.

A good SM for a given problem should be both aceusad simple. In other words,
if the accuracy level of two SM’s constructed bytdifferent SM methods is similar, the
simpler one should be used; or if the complexitieleof two SM methods is similar, the
more accurate SM should be used. Since the modataxy can be measured by model
fitting error and model predicting error, this régs a good model selection advisor to
balance the model fitting error, model predictimgpg and model complexity.

Unfortunately, all existing model assessment mettether do not use all of model

fitting error, model predicting error, and modehgaexity, or have other shortcomings.

For example, the coefficient of determinatioR*j measures the model fitting error or
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goodness-of-fit, it almost invariably increases amver decreases with the number of

parameters, and thus can not be used as a moeetiselcriterion [65]; instead, the

adjustedR? corrects this problem with an adjustment to thexber of parameters, and is
widely used as a model selection criterion [68]e Hypothesis testing procedure needs
subjective judgment on the levels of significaniterefore there are ambiguities in this
method, and it can not be used as a model selest&thod [63]. There are also other
criteria developed during the past based on theemis similar to model fitting error,

such asC criterion andS, criterion, but those criteria were not widely atéap Cross

validation and bootstrap methods estimate the m@detlicting error. When those
methods are used for model selection, one addltisadvantage is that those methods
are time consuming. The information criteria AlICdaBIC balance model fitting error
and model complexity, and this is a great improwam@lthough AIC and BIC have
been successfully used to select the best modeh&my surrogate-modeling methods, it
has been reported that those criteria have diffesilto select models for the neural
network method, i.e. those criteria fail to reliabkelect the best model [68, 99]. The main
reason is that there are typically a large numbg@acameters to be estimated in an ANN
model such that an ANN model can have very low rhéitteng error but high model
predicting error, i.e. the problem of overfittinghis observation confirms that it is not
enough to include just the model fitting error anddel complexity, instead, inclusion of
the model predicting error is also needed. Theegfamew model selection advisor needs
to be created that make use of and balance matiebferror, model predicting error,

and model complexity.

101



Additionally, since the current methods to estimidite model predicting error is
time consuming, such as cross validation and begst new method may need to be
formulated to estimate the model predicting errormamuch faster speed than cross
validation and bootstrap.

3.2 Research Questions

Based on the considerations of the new framewdneet top-level questions are
first asked, and then detailed questions are listextder to develop this framework into
a specific method.

Research Question A: Since RSM is good at captihegylobal tendency and SVR
is good at capturing (local) high non-linear belbayis it possible to combine these two
methods to make a new hybrid method that can beratecfor many types of problems
with a small training sample?

Various factors affect the success of a surrogatdaing method. These factors
include the nonlinearity of the model, the dimensay number of the design variables,
data sampling techniques, size of the sampling, @aiz pre-specified parameter settings
of the surrogate-modeling method. In order to famew hybrid surrogate-modeling
method of RSM and SVR, the following questionsasked:

1. Although it has many advantages and good clarsiits, can SVR be used
directly in engineering problems like RSM has b&apressively demonstrated in the
past? Or what means should be taken to make #idef

2. How can RSM and SVR be combined to form a nelaridysurrogate-modeling

method that is accurate for many types of problestis a small training sample?
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3. Using the previous five criteria for comparison Chapter 2, is this hybrid
method of RSM and SVR better than RSM or SVR fagieeering problems? Or under
what situation is it better?

4. Is it possible to quantify the five criteria,cbuthat the above comparison in
Question 3 can be reliably made?

5. Is it possible to create and formulate a prodesswhich all pre-specified
parameters of SVR can be determined automaticaith ghat this hybrid surrogate-
modeling method is as simple to use as RSM?

6. Is there a kernel function for SVR that can wavkll for all engineering
problems? If not, how to select a kernel funcfiondifferent problems?

7. What is the best data sampling technique fas thybrid surrogate-modeling
method?

The Question 6 above is important to make this otetbractical to the average
engineers.

Research Question B: Since none of the currenbgate model selection methods
balances model accuracy and complexity, where mac®lracy is measured by model
fitting error or model predicting error, is it pdde to make a new method that will
achieve this kind of balance?

There are many quantitative measures of model acgwand complexity. Selecting
proper quantitative measures of model accuracycantplexity and properly combining
these two kinds of measures together are the kéytheo selection advisor of the
surrogate-modeling methods. In order to form a sedection advisor, the following

guestions are asked:
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8. What quantitative measures of model accuracycamdplexity are appropriate
for the purpose of selection of surrogate-modetreihods?

9. What is the proper way to combine the measufesnadel accuracy and
complexity together so that a balance is achiewtaden these two kinds of measures?

10. When the accuracy is at the same level, carselextion criterion select the
surrogate model constructed with the simpler sat®gnodeling method?

Research Question C: Since current multidisciplir@gptimization methods, multi-
objective optimization methods, and joint probabpihssessment methods are developed
in parallel, is it possible to form a new framewdokcombine those methods all together
but in a decoupled way to solve a joint probabdistonstraint, multi-objective,
multidisciplinary optimization problem, and at th@me time find the WPF solutions?

The feasibility of a new framework depends on salviactors, such as how to find
consistent designs, how to find WPF points, howdiax the thresholds in the PC'’s
because of the errors introduced by the surrogatgets, et al. In order to form a new
framework for determination of the WPF design sohg under probabilistic constraints,
the following questions are asked:

11. At which level is the surrogate model consedci.e. at disciplinary or system
level?

12. How can a consistent design solution be fourtl this framework?

13. Can the optimal consistent design solutionhefsingle-objective optimization
problems with deterministic constraints be foundp@ar solutions be found?

14. How can the WPF of each disjointed consistestgh zone be found?
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15. How can the number of search starting pointssekected such that an
appropriate number of WPF points can be found?

16. How can evenly distributed WPF points be fofordoractical usefulness?

17. Because of the errors introduced by the suteogaodels, how can the
thresholds in the PC’s be relaxed such that trisfambabilities can be obtained?

18. What is the best scheme for this new framewotkrms of ability to find WPF
solutions and computational time?

3.2 Hypotheses

Based on the considerations about the formulatiothe® new framework and the
research questions, the hypotheses of this resaegghroposed as follows:

Hypothesis A A hybrid surrogate-modeling method based on algpation of
RSM and SVR is not only feasible for complex phgddased models, but also makes
improvement over either RSM or SVR where either chRSM and SVR can not obtain
satisfactory results, and can obtain high accufacymany types of problems with a
small training sample

The assessment criteria to support the above hgpistiA are as follows:

1. Accuracy for different complexity (order of novgarity) of test problems, under
different sample sizes (scale of the sample data);

2. Robustness in terms of variance of error vafoeslifferent samples generated
by different sampling methods;

3. Efficiency in terms of time used for surrogat®dal construction and new
predictions;

4. Transparency in terms of function relationsmg &ctor contributions;
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5. Simplicity in terms of the number of parameteesded to be specified by a user;

6. Vulnerability to the problem of “curse of dimemsality”.

Hypothesis B A surrogate model selection method based on aifiedd
information criterion can select the best surrogateleling method for a given problem
in terms of balance between accuracy and complewityere accuracy is measured by
both the model fitting error and model predictimgoe Specifically, in this research the
candidate surrogate-modeling methods are the semale RSM, SVR, and the hybrid
method of these two.

The assessment criteria to support the above hgpistB are as follows:

1. A guantitative measure or measures of model racgufor comparison of
surrogate models constructed by different surregaideling methods;

2. A measure or measures of model complexity fongarison of surrogate models
constructed by different surrogate-modeling methods

3. A combined measure of model accuracy and contpléhat achieves a balance
between accuracy and complexity for comparisonufogate models constructed by
different surrogate-modeling methods.

One thought is that, it may be very difficult, if @l, to develop a method advisor
that can select the best one from all known sutesgsdeling methods. For this reason,
in this research the method advisor to be develapedly required to select the best one
from RSM, SVR, and the hybrid method of RSM and Sidbe formulated later in this
research. Whether it can be extended to selectfnone methods can be future work.

Hypothesis C A Monte Carlo simulation based method can be us#donly to

obtain probabilities of satisfying the PC’s, bug@to find the weak Pareto frontier in the
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objective space that jointly satisfies the PC regaients and the compatibility constraints
for the coupling variables among the disciplinanalgses. Thus a new framework that is
based on the Monte Carlo simulation method canrhéte in a decoupled way the WPF
design solutions under probabilistic constraints domulti-objective, multidisciplinary
design optimization problem.

The assessment criteria to support the above hgpistic are as follows:

1. Ability to find consistent design solutions;

2. Ability to find the optimal consistent designlweons for single-objective
optimization problems with deterministic constrainbr solutions very close to these
optimal single-objective ones;

3. Ability to find the weak Pareto frontier;

4. Ability to find an appropriate number of weakr€ta frontier points;

5. Ability to find evenly distributed weak Paretomtier points.
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4 FRAMEWORK FORMULATION

Now that the relevant background literature hasbregiewed, a new Monte Carlo
simulation based framework is devised to deterntimeeWPF solutions under PC’s for
multi-objective and multidisciplinary design optiation problems for design alternative
generation and selection.

This framework starts with constructing fast andusate surrogate models of
different disciplinary analyses in order to redtive computational time and expense to a
manageable level and obtain trustworthy probaéditof the PC’s and the WPF. The
surrogate modeling methods are limited in thisaeseto RSM, SVR, and a new hybrid
method that consists of the second order RSM and. SWie parameters of SVR to be
pre-specified are selected using practical metha$ a new modified information
criterion that makes use of model fitting erroregicting error, and model complexity
information. The best surrogate modeling methodafagiven problem is also selected
using this modified information criterion. Then ewmneighborhood search method based
on Monte Carlo simulation is used to find valid ides that are consistent for the
coupling variables featured in a multidisciplinaggsign problem and satisfy all the
deterministic constraints. Two schemes have beeelaged. One scheme finds the WPF
by finding a large enough number of valid desiglutons such that some WPF solutions
are included in those valid solutions. Another sebdinds the WPF by directly finding
the deterministic WPF of each consistent desigre zbat is made up of consistent design
solutions. Then the probabilities of the PC’'s amtineated, and the WPF and

corresponding design solutions are found.

108



4.1 Surrogate Modeling and Model Selection

This section introduces space filling sampling rdgused in this research, some
considerations about surrogate modeling, the rand@ss validation method for model
predicting error, the modified information criterthe hybrid surrogate-modeling method
RSSVR, and last the flowchart of the new hybridegate-modeling method and model
selection advisor.

4.1.1 The Space Filling Sampling Methods

Latin Hypercube sampling, Hammersley sequence sag)pand Monte Carlo
Sample are selected for this research for thresoresa The first reason is that the user
can freely decide the number of sample points. 3émond is that the uniformity and
randomness of the sampling points are satisfaclidrg. last but not the least is that the
sampling points can be generated very fast.

Comparing the Latin hypercube sampling and Hamregrskequence sampling
methods, the latter has two advantages. One adyamahat the correlation among the
design variables of the sampling points is very,lavhich helps generate surrogate
models with high predicting accuracy. The Latin éngube sampling method can not
guarantee low correlation. The other advantaghasthe generation of sampling points
is repeatable because Hammersley sampling doeaseoa random number generator,
which helps comparison of results and data managemg). there is not need to save the
sampling points and instead the sampling pointsbeagenerated whenever needed.

Based on the above observation, the Hammersleyesequsampling method is

used to generate training sampling points for coebn of surrogate models, and the
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Latin hypercube sampling method is used to geneat@pling points for assessment of
the model predicting error.
4.1.2 The Ranges of the Design Variables

The construction of accurate surrogate models regjwareful selection of ranges
of the design variables. These ranges form theydesgpace. The infeasible regions in the
selected design space will result in failed casesutliers. Although the failed cases and
outliers can be identified and excluded, too maailedl cases and outliers will decrease
the fitting accuracy of the surrogate model ovex ¢fiven design space. This problem
makes the prediction by this surrogate model delibsleemingly good predictions can
be obtained for the points in the infeasible regidn such cases, the design space has to
be changed by trial and error to avoid most, ifaibtof the infeasible regions.

In probabilistic design, the designers are handiregnominal values (such as mean
values, and the most probable value) of the desgiables, and thus the design space is
the ranges of the nominal values of the desigrabées. Therefore before construction of
surrogate models for probabilistic design, there tavo kinds of design spaces to be
differentiated. The first design space is the desjgace for the probabilistic designer, i.e.
the ranges of the nominal values of the desigrabées. The second design space is the
extended design space (EDS) over which the sueagatels are constructed. Since the
design variables are randomly distributed aboutyememinal value, the extended design
space must be larger than the design space to atadate the distributions of the design
variables. Figure 4-1 illustrates the concept deeded design space of a two-variable
design problem. As a rule of thumb, for example,dmormally distributed variable, the

lower limit of this variable in the extended desgpace should be at led&t less than
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that in the design space, while the upper limitusthdoe at leasBo greater than that in

the design space.

Extended desic

X, / space
A

| __— Design space

|

[
»

X1

Figure 4-1: lllustration of the Difference betweerthe Design Space and Extended Design Space

With surrogate models constructed over the exted@styn space, the designers of
probabilistic design problems can reduce most ef éltrapolation and obtain more
accurate results. The extended design space adsidsbe adjusted by trial and error to
avoid infeasible regions.

4.1.3 Normalization of Values of Both Design Variales and Responses

It is @ common practice to normalize the valuesdes$ign variables for several
reasons. First reason is to avoid the problem efghasizing the small-valued variables
by the large-valued ones. In an engineering problemmally there are small-valued
variables and large-valued ones, for example, @ doafficient is less than 0.1, while the
wing span can be at the magnitude of 100 ft forrangport aircraft. Without

normalization, the coefficients of the small-valuatiables in the surrogate model can
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be very small so that these design variables haveffiects on the fitted response. The
second reason is that the coexistence of smallarge values may make it difficult to
inverse a matrix, an operation often needed byreogate-modeling method. The last
reason is that large values can cause numerichlgmoif exponential functions are used
in the surrogate-modeling methods. One exampleeis3RBF in the SVR.

In this research, the response values are alsoafigad. The main reason is to
establish a standard process to select the thespecified parameters of SVR: the
regularization factorC, the deviations, and the parameter of the GRBF kernel.
Without normalization of the response values, iteésy hard to determine the criteria for
selecting these three parameters because theiacrgbould change with different
magnitudes of response values.

The values of the design variables will be nornelizo [0, 1], and the values of
responses will be normalized to [0, 100]. The feilty equations are used for

normalization:

Design variablesX = (X - X ) /(X = X&) @1

ResponsesY =100(Y =Y, ) /(Yo = Yain)

where X and X are the lower limit and upper limit of the exteddaesign

space, respectively; ang,, andY, ., are the minimum and maximum values of the

response of the training sample, respectively.
To denormalize the responses and RMSE’s, use Hosvfog equations:
V(Y Ymin) (42)

max

ResponsesY =Y, +
10C
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RI\/ISE(Ymax B Ymin ) (43)
10C

RMSE: RMSE =

WhereY is the predicted response by the surrogate moofestaicted with the

normalized sample, andRMSE is the error calculated with such a surrogate rhode
4.1.4 The Random Cross validation Method

When surrogate models are used to facilitate tisegdeorocess, it is very important
to obtain the accuracy information of the surrogatalels in terms of model fitting error
and model predicting error. While the model fittirgror is calculated easily by
comparing the true response values and the valeeicped by the surrogate model, the
model predicting error can be estimated by eithrer of the following two ways: using
an additional random sample, or using re-samplinggthods without an additional
random sample. Using a random sample is the mbableway to estimate the model
predicting error, but the expense of this approachery high because one has to run
costly physics-based models to obtain the randanpka On the other hand, one would
prefer using the costly random sample to constarctmprove the surrogate model
instead of holding it just for the purpose of erestimation. Therefore, the re-sampling
methods are highly preferred. However, the compariat expense of the conventional
re-sampling methods such as cross validation antstrap is still substantial. A new re-
sampling method, called random cross validation\(R@ formed in this research. The
scheme of this random cross validation method esvsin Figure 4-2. Note again that in

this research the surrogate models are limited3MRSVR and the hybrid RSSVR.
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In this scheme, the surrogate modi#V ., is the surrogate model used for design,
and the intermediate surrogate mot\ .., is constructed using the same method and

pre-specified parametersidM ., for SVR or the new hybrid method RSSVR.

» Generate training sampling poin¥$;,,
« Obtaintrue response’,,

« Construct surrogate mod&IM ;

A 4

Generate random sampling point;c,

A 4

Obtainpredicted responseé?RCV of Xgey With MM

Final

A 4

Construct surrogate mod&M .., with X, and Yge,

A 4

Obtainpredicted responseé?Tm of X4, with MM 4,

A 4

Compute RMSE ofY;,, and Y~Tm , and denoted aBRMSE,,

\ 4
Use RMSE,, as the model
predicting error ofMM

Final

Figure 4-2: Scheme of Random Cross Validation for &imation of Model Predicting Error

This random cross validation method is computatlgprdneap comparing with the
conventional re-sampling methods because it justi®i¢o execute once. It is found to be

able to provide a reasonable estimation of the iinpasglicting errors for the surrogate
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models constructed by SVR and the new hybrid sateogmodeling method.
Unfortunately, it does not always perform well garrrogate models constructed by RSM.
4.1.5 The Modified AIC and BIC Information Criteria

As discussed previously, a new model selectiormoih is needed that makes use
of the model fitting error, model predicting err@and model complexity. The original
information criteria make use of two kinds of infaation, i.e. the model fitting error and
model complexity measured by the number of parametethe surrogate model. Since
the model predicting error of the surrogate models can be inexpensively estimated
by the random cross validation method, it can lwdugted into the information criteria
such that all three kinds of information, i.e. miofiing error, model complexity, and
model predicting error, are used. Then those medlifnformation criteria can be used as
the desired new model selection criterion.

For RSM or SVR individually, the modified AIC and@® denoted as AICC1 and

BICC1, are as follows:

AlCC1= %(|n(&;LE)+|n(RMSEZRCV))+ZTm (4.4)

o]

BICCIZ%(In(ﬁ,jLE)+ In(RMSEZ,, )+ m|2(s) (4.5)

wherem is the number of parameters in the modeis the sample size, anif, .
denotes the maximum likelihood estimation of thaarece of the residual term. It can be

shown thatd;, . = RMSE;,,.

62 =RMSE (4.6)
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For the hybrid surrogate-modeling of RSM and SVR¢e the same sample are

used twice as shown later, the modified AIC and,Blénoted as AICC2 and BICC2, are

as follows:
AlCC2 = %(m(a“—;LE )+In(RMSE, )+ 2(mRSM2: M) (4.7)
BI1CC2= (67 ) (RIS, ) + (s * Mon) (29 4.8)

where m,, is the number of parameters in the RSM metimg,, is the number

of parameters in the SVR method.
Just for the purpose of comparison, for the hybtidogate-modeling of RSM and

SVR, the original AIC and BIC, Equations 2.36 an8& respectively, are adapted as

follows:
AIC = |n(&2 )+ 2(mRSM + nEVR) (4.9)
MLE 25
BIC =In(52,c )+ (M H;VR)M(ZS) (4.10)

4.1.6 Model Selection and the Model Selection Advs

In this research, the task of model selection hetu3 folds: the selection kernel
function of SVR, selection of parameters of theregate model, and selection of
surrogate model structures. These three folds afieinselection are executed using
different methods.

The kernel function of SVR is pre-selected as tlaigSian radial basis function.
The GRBF has received significant attention becafists good performance for various
complex problems [35]. This characteristic is vanportant since usually one does not

know the complex relationship between the respansithe design variables, and thus it
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is very hard to select the best kernel functioragdvance. For this reason, GRBF is
selected as the only kernel function for SVR irs ttesearch, although it may not be the
best one for a specific problem.

After selecting the kernel function of SVR as thauSsian radial basis function, it
is still very hard to use SVR because there areraégeneral parameters that have to be
pre-selected by a user, such as the regulatiororf&t, the deviationg if the e-
insensitive loss function is used, and the paramztef the GRBF kernel. After these
parameters are selected by the user, the methddautibmatically select the other
parameters. For a user who does not know the geththe SVR method, this parameter
selection work is difficult. Therefore, selectiofl these general parameters has to be
automated.

The first two general parameters of SVR to be seteare the regularization factor
C and the deviatiore . These two can be selected by the practical msthmihg
Equations 2.40 and 2.41, respectively. The thinchp@tero has to be selected by the
user according to some criterion. Theoretically #teuctural risk function can be a
criterion for selection of the parametgr. However, because in general it is very hard to
calculate the VC dimension, the structural riskclion can not be used for this purpose.
Instead, either one of the new modified informatasiteria AICC and BICC is used to
select the best parameter by minimizing the modified information criteriorsed, with
the aid of an optimizer.

Since all the values of the design variables argpaeses are normalized, the
process to select parameters of SVR is standardizedor any different problems the

computer codes are the same.
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The two new modified information criteria are alsged to select the best model
structure among RSM, SVR, and the hybrid RSSVR.damh response, three candidate
surrogate models are constructed using RSM, SVR ttae hybrid method, and the one
with minimum value of the information criterion usés chosen as the final surrogate
model for design. This model structure selectiorthoe is called the model selection
advisor.

4.1.7 The Scheme for Hybrid Surrogate-Modeling withRSM and SVR and the

Model Selection Advisor

As a solution to the first hypothesis about formadpybrid method of RSM and
SVR, a scheme is provided in Figure 4-3 and Figudebased on the new techniques and
considerations in the previous sub-sections. Ttheme includes not only the process to
construct a surrogate model using the hybrid metifodSM and SVR, but also model
selection from the surrogate models constructe®®8i¥, SVR, and the hybrid method
RSSVR by the model selection advisor discussedabov

For the hybrid method RSSVR, the scheme first i&8M to fit the model, then
uses SVR to fit the errors or residuals betweerrtleeresponses and the predicted values
by the surrogate model just constructed by RSM. fiied surrogate model is then the

sum of the RSM part and the SVR part.
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- Determine the set of design variablXs
» Determine the design space of the design variab
» Determine the distributions of the design variable
» Determine the extended design space

A 4

« Generate sampling poin¥;,,, by Hammersley sequence
sampling method over the extended design space

+ Generate sampling point¥ ;,, by Latin hypercube
sampling method over the extended design space

A 4

Obtain response¥;,, of X,

through physics-based analyses

A 4

Normalization of X

Trn

Y,

X

Y,

T Xerev: Xims Ym s Xrev

v

Construct metamoddVIM svr
« Using sampleS, (X, +Ys,,)
« Practical selection of SVR general
parameterC and &

« Select optimal paramete? by
minimizing AICC1 or BICC1

« The RMSErcv in AICC1 or BICC1
is obtained by random cross

validation with X, and §

v

Construct metamoddWiM rswm
- Using sampleS, ( Xy, + Y )

A 4

« CalculateRMSEgrcvgrsm by random

cross validation withX 5., and §

A 4

« Calculate RMSErcvsvr by random
cross validation withX o, and §

« Calculate the erro€qgy = Y =

« Calculate Yy, rsu

|>

Trn,RSM

Figure 4-3: Scheme for Hybrid Surrogate-Modeling wih RSM and SVR and Model Selection

Advisor - T
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Construct metamodeVIM &,
» Using sampleS; (X, + Eggy)
» Using SVR method

- Practical selection of SVR general paramdieand &
« Select optimal paramete¥ by minimizing AICC1 or BICC1

« The RMSErcv in AICC1 or BICCL1 is obtained by random
cross validation WithXRCV and S;
RSM

A 4

Construct surrogate mod&M ybria
* MM wybria = MM rsm + MM g,

A 4

Calculate RMSErcv Hybria by random

cross validation withX ;. and §

A 4

Calculate the AICC’s or BICC's oMM rsm, MM svr, and MM wybria
« Using RMSErcvrsm, RMSEgrcvsvr, RMSEgrcy nywrid , respectivel

A 4

 Determine the minimum AICC or BICC
« Select the corresponding normalized surrogate hasde

M M Final

A 4

Gonstruct the surrogate mods1M FD

Figure 4-4: Scheme for Hybrid Surrogate-Modeling wih RSM and SVR and Model Selection
Advisor - II

4.1.8 The Levels of Surrogate Models
The surrogate models for design can be construattegther disciplinary level or

system level. Disciplinary-level surrogate modets @ecommended if possible. First, for
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MDO it is preferred to use surrogate models focigignary models than a single global
surrogate model for the whole multidisciplinary sé or simulation. This is because
disciplinary surrogate models may lead to less remub analyses or simulations [16].
Second, the relationships among the disciplinaspoases and design variables in the
resulted disciplinary surrogate models have physiggeanings, whereas those
relationships may not make sense in the monolgstem-level surrogate models. Third,
when there are coupling variables among differdaastiplines, disciplinary surrogate
models are better used or have to be used to assusestence of coupling variables.

However, sometimes one has to construct systenh-devegate models if there are
only monolithic legacy codes available. The moiaditiegacy codes, such as FLOPS
[100], integrate different disciplines together,datihus can not be used to construct
disciplinary surrogate models. In this case, thesiency of coupling variables is
assumed to be attained inside the codes.
4.2 Determination of the WPF Solutions under PC’s

The realistic conceptual design of complex systewguires solving a joint
probabilistic, multi-objective, multidisciplinary ptimization problem and finding the
WPF solutions for design alternative generation aetbction. With the aid of the
accurate surrogate models that captures the eseépbgsics-based models and reduces
the computational expense to a manageable levewaMonte Carlo simulation based
method is formed to address this need. This sediishintroduces the new techniques
that are the foundation of this new method; themes@onsiderations about solving the
JPMOMDO problem are given; and last the flowchéathe new Monte Carlo simulation

based method is provided.
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4.2.1 Defining the Neighborhoods for Searching Corstent Designs

As mentioned previously, the multidisciplinary dgsiusually features coupling
variables, which result in disjointed consistensige zones in the design space and
makes it difficult to find the feasible solutionstaWPF. Therefore, the first task of this
new Monte Carlo simulation based method is to &ndapproach to address the problem
of disjointed consistent design zones.

As mentioned in Chapter 3 Research Questions ambtHgses, considering what
is needed for a method to solve a JPMOMDO probledhfimd WPF, this method should:

1) Find a MDO solution under deterministic consttaivery fast and at low cost,
which is consistent for all coupling variables asatisfies all deterministic constraints,
denoted as valid solution;

2) Explore the entire design space without missing disjointed consistent design
zones;

3) On top of requirement 2), be able to find theFAAder deterministic constraints
over each disjointed consistent design zone,dalldeterministic WPF, if any;

4) Find enough and evenly distributed points fahelacal deterministic WPF;

5) On top of all above, find the global WPF undeolabilistic constraints, i.e.
global probabilistic WPF over the whole design spac

6) Find enough and evenly distributed points fer global probabilistic WPF.

The current methods can combine together some dDMOO, and JPA, but not
all of the three. Usually those methods adopt aimgeéoop approach with each loop to

handle either MDO, or MOO, or JPA. Although thispepach has been successfully
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applied to many problems and the computational ame cost are acceptable since there
are at most two loops nested together, it will kesuunacceptable long computational
time and high cost if solving a JPMOMDO problem &nding the WPF since there will
be three loops nested together and both compughtibme and cost increase
exponentially with the number of loops.

One may consider using domain spanning search methach as grid search and
random search methods since those methods do wettha problem of nesting loops.
The grid search method establishes a grid netwotke design space and uses the grid
knots as search points. This method can guarantegf@m distribution of the search
points over the design space, but the difficultynes from choosing the appropriate
fineness of the grid. With a coarse grid networke anay not obtain any consistent
designs in some consistent design zones; anotlodigon is that one may not obtain
enough consistent design points to find the WP itcertain confidence. These two
problems are illustrated with a two design variag@mple in Figure 4-5. On the other
hand, with a fine grid network, the computationaled may be unacceptable, especially
for high dimensional design problems.

The random search method generates random seasigr(fipoints and checks the
convergence criteria for the coupling variableserehare two main problems with this
random search method. First, because the searcisparie randomly generated, it is
possible that only a very few of those points, at mone, are found to be consistent
designs. Second, one does not know when to stopetlreh, because it is hard, if at all,

to make randomly generated search points uniforidyribute over the whole design
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space since one should not control the random nugdreerator. For these reasons, the

domain spanning search methods are not adopté&dsinesearch.

Consistent Grid line
design zones
X4 ——  Gridline
° Consistent
design point

ZERIFY,

Design space

\Va

&

»
»

S

Figure 4-5: Example to Show the Problems with Gridsearch

However, combining the ideas of grid search andleen search together and
making modifications, a new neighborhood searcthotkts formed to efficiently search
for consistent design points. The basic idea &f thethod is to search the neighborhoods
of search starting points using an optimizer. Tidea is inspired by the fact that most
optimizers require a starting point and low andardmunds of the design variables. One
can imagine that the low and upper bounds defingparcube in an dimensional space.
This approach starts with a set of initial searomis that are generated over the design
space by uniform Monte Carlo sampling, thus thasatp are randomly distributed while
cover the whole design space uniformly at the same. This set of sampling points is

denoted as sampling poing& . Then a hypercube is defined to which each stagimint
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is centered. The hypercube of each starting psinailed the neighborhood of this point.
The sizes of the neighborhoods should be defined that the neighborhoods can cover
the entire design space, although there may bdapgeng among those neighborhoods.
Then an optimizer is used to search for a congistesign point within this hypercube.

As long as the neighborhood of a starting pointriays with a consistent design zone,
the optimizer usually can find a consistent desegther on the boundary of this

consistent design zone or inside it, dependinghenperformance of the optimizer used.
Figure 4-6 illustrates the idea of this approachisTapproach is called Monte Carlo

simulation based neighborhood search method.

° Search

Consistent starting point

design zones
XaA 9 @  Consistent

design point
|:| Neighborhood
N\

P =N I

hoE
G &K @

—~——

Design space

O+

»
»

X1

Figure 4-6: lllustration of the Neighborhood SearchMethod

Whether the neighborhoods of the sampling pojtgan cover the entire design

space depends on two factors: the volumes of tperbybes and the distribution of the
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sampling points. If the sampling points are unifyriistributed within the design space,

then each hypercube can occu%ytimes the total volume of the design space, wisgre
S,

is the size ofS,; and the length of'iside of the hypercube can b%A)g , whereAx;
VS

is the range of"l design variable. However, in order to allow somen-mniform
distribution of the starting points, a larger lemgtf i side of the hypercube for

overlapping is given as

(4.12)

a = 2 Ax ,i=1...,n
Vs
wherea, is the length of'f side of the hypercubdx, is the range of"f design

variable.

Denotes a starting point as,, then the lower and upper bounds Bf design
variable in a neighborhood search problem is gagn

A

5 X <X+ i=1..,n (4.12)

%o 2
One note is that if a part of a neighborhood iswititin the design space, this part
should be cut off.
This neighborhood search method has many advantBget unlike the modified
Normal Constraint method, no optimization efforuged to generate initial search points.
Second, like the modified NC, this method also gotees evenly distributed global
PF points over the whole design space. This mettmdbines the flexibility of the

random search method and uniformity of the griddeanethod. Since this set of initial

search points is generated over the design spaaaifoym Monte Carlo sampling, those
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points are randomly distributed while covering tire design space uniformly at the
same time. Since the initial search points areoumfy distributed, under this mechanism
no disjointed consistent design zone will be misasdong as the neighborhoods will
cover the entire design space. Usually an optimvzdlr reach a different consistent
design if starting from a different initial searpbint. Since the initial search points are
randomly distributed, under this mechanism the ist@ist design solutions will be
randomly distributed and some of those solutiondl Wwe on or near the local
deterministic WPF's. Since each neighborhood islisntais almost impossible for a
neighborhood to contain more than one local detastic optimal design. Therefore, if
the optimizer is used to directly search for a latsterministic WPF point of the part of a
consistent design zone within a neighborhood, It &most surely find such a point.
Therefore, the global (probabilistic) WPF can bani by either indirectly or directly
searching for local deterministic WPF'’s, and theresenting discrete points of the global
WPF will be evenly distributed. One note is tha tdoupling variables are included into
the design variables of the optimizer, as can ben dater, and by doing so the
multidisciplinary problem is decoupled. From thevad description one can see that this
neighborhood search method solves a MDO problema way almost the same as the
OBD method in the sense of decoupling based orpamizer.

The third advantage of is that the required nundfenitial search points can be
estimated since it is based on Monte Carlo simutatif one thinks the instance of
obtaining a global WPF is probabilistic, then tleguired number of initial search points

can be estimated based on Equation 2.44. The fateimb equation will be given later.
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In summary, this new Monte Carlo simulation Basedyhborhood search method
can satisfy the requirements to solve a JPMOMD®lpro and find the WPF because of
the characteristics and advantages described above.

Undeniably, this neighborhood search method reguerdarge number of initial
search points since it is based on Monte Carlo Isition. However, this large number of
initial search points is necessary for finding abgll WPF under probabilistic constraints.
On the other hand, one may suspect this methodresgunacceptable computational
time since there are such a large number of nenfjoools to be searched by an
optimizer. However, since each neighborhood is keuadl usually contains one local
optimal design, the optimization process is fast meighborhood. Therefore, the overall
computational time is not long but manageable.

4.2.2 Two Schemes for the Neighborhood Search Mettho

Although the neighborhoods are defined and usesk&wch for consistent design
points, it needs some special schemes to wiselythiseconcept to find the consistent
designs because the number of consistent designsnite and not all consistent design
solutions are feasible, satisfying both ttheterministic and probabilistic constraints.
The goals of such a scheme are to find valid degfgaints), and the valid designs it has
found include some designs being the WPF pointdesigns near to the WPF points.
Some valid designs are also the (probabilistic) VWBhts; some ones are close to the
WPF points and are denoted as near WPF designas@ufwo Monte Carlo simulation
based schemes are formed for the above goals.

First of all, there is one fundamental requiremfamta satisfactory scheme: the

scheme must be able to find the optimal valid desglutions for single-objective
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optimization problems with deterministic constrainbr design solutions very near to
these optimal single-objective ones. This is beedhs design solutions for these single-
objective optimization problems can be fair easilynd by an existing single-objective

optimizer. If one scheme can not find such desmuat®ns or near ones, obviously it is

not suitable.

Since the two schemes are based on Monte Carlolagiony the instance of
obtaining a useful WPF is probabilistic, and thus size ofS, can be estimated based on
Equation 2.44.

Denote the number of sampling points estimated bguakon 2.44 ass, the
number of coupling variables as, , and the number of objective functionsras, then
as a rule of thumb, the size 8f is given as

S, =2n.:S, (4.13)
Ne = Mmax(ge, Ney) (4.14)

The first scheme uses the deterministic constraints sets errors of the coupling
variables as objective functions to be minimizeddent uses the a multi-objective
optimizer, such as the Goal Attainment optimizeo4lattain” in Matla, to search one

valid design solution for each search starting pafnany. Figure 4-7 shows the first

scheme.
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« EstimatesS,
« Obtain sample pointS, by
uniform Monte Carlo Sampling

« Define neighborhoods
«Seti =0

A 4
|

+
[EEN

A 4

Solve a multi-objective optimization problem:

« Include coupling variables into design variables
- SetGoals= [0 - 0] and Weights=[1/e - 1/¢]

« Set the errors of the coupling variables as ohjest

» Use the deterministic constraints
» Use a multi-objective optimizer to find a desigiusion

in a neighborhood, if any
Valid solution?

True

False

« A valid design solution is

found
«» Save all valid design solutions « Save this solution
» Denote asS,

Figure 4-7: First Scheme for the Neighborhood SeahctMethod

The second scheme directly finds the determini&tiRF of the part of a consistent
design zone in a neighborhood for each searchrgggobint, if any. This scheme first
searches for the optimal valid design solutions eokingle-objective optimization
problems, if any. The objective function of eadahgie-objective optimization problem is
one of thee original objectives. The constraints of each o€ thingle-objective

optimization problem include all the deterministonstraints andi., convergence

conditions for the coupling variables. Then theabe objective function values are set
as the goals for a multi-objective optimization ldeom. The objective functions of this

multi-objective optimization problem are tleeoriginal objectives, and the constraints
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are all the deterministic constraints and the coyemce conditions for the coupling
variables. Note that the optimal valid design dohg of the single-objective
optimization problems are also deterministic WPHutsans. By this way, the
deterministic WPF of the part of a consistent des@pne in a neighborhood is
represented bye+ 1points, if any. A single-objective optimizer, suak “fmincon” in

Matlab®, is used for the single-objective optimization fgems, and another optimizer
such as “fgoalattain” is used for the multi-objeetioptimization problem. Figure 4-8

shows the basic idea and Figure 4-9 shows the Hawof the second search scheme.

XoA Consistent design zones o Search

starting point

° Neighborhood
/ deterministic

/ l/\\\ WPF point
O/. C . |:| Neighborhood

\
\
\

' }5 /

Design space

foA

Figure 4-8: Idea of the Second Search Scheme
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« Estimates,
« Obtain sample pointS, by
uniform Monte Carlo Sampling

« Define neighborhoods
«Seti =0

A 4
|

+
[EEN

Solve € single-objective optimization problems:

« Include coupling variables into design variables

« Set one of the originat objectives as the objective

« Use the deterministic constraints and convergence
conditions for the coupling variables as the caists

 Use a single-objective optimizer to find a dessgiution
in a neighborhood, if any

A4

Solve a multi-objective optimization problem:
« Include coupling variables into design variables

« Set the abov& optimal objective values as the goals,

and Weights= [1/e - 1/¢]

« Use the originak objective functions

« Use the deterministic constraints and convergence
conditions for the coupling variables as the caists

» Use a multi-objective optimizer to find a desigiusion
in a neighborhood, if any

False

Valid solution?

« A valid design solution is
found

« Save all valid design solutions « Save this solution
« Denote asS,

Figure 4-9: Second Scheme for the Neighborhood Se&rMethod
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There are two reasons to form these two schemest, Fithe WPF found by the
two schemes argimilar, one can safely say that the true or nearly trd@F\Ws found,

since the two schemes are following different apph@s. This is very important because



usually an engineering problem is so complicateat tine can not determine the true
WPF, or one can not afford to use the original nodde CA’s) to find the true WPF.
Second, the design solutions found by the two selsesme different. Thus more solutions
can be found by using the two schemes at the samee t
4.2.3 Relaxation of Converging Conditions for Couphg Variables and Thresholds

in PC’s

Because of the errors inherent in the surrogateetspthe convergence conditions
for the coupling variables and the thresholds & BC’s should be relaxed with some
tolerances. These tolerances have to be carekli¢ted in order to neither exclude too
many or even all true valid designs, nor include neany designs that are not true valid
designs.

The tolerances can be selected based on the RM®IE afodel predicting errors of
the surrogate models, whereas the model fittingrerare not appropriate for this purpose.
Since the random cross validation method is ableréeide a reasonable estimation of
the model predicting errors for the surrogate medmnstructed by the new hybrid
surrogate-modeling method, as a rule of thumbtdlezance is given as

tolerance= 2 RMSE. 1y 1ig (4.15)

The pseudo programs for relaxation are shown inr€ig¢-10 and Figure 4-11.

If error_of _CX > tolerance
convergence_condition = error_of CX - tolemnc
Else
convergence_condition = 0
End

Figure 4-10: Pseudo Program for Relaxation of Conwgence Conditions of Coupling Variables
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If g;(X) =th; +tolerance

constraint_condition g; (X) —th; —tolerance

Else
constraint_condition = 0
End

If absolutg¢h, (X)—th,) = tolerance

constraint_condition absolutéh, (X) —th, ) — tolerance

Else
constraint_condition =0
End

Figure 4-11: Pseudo Programs for Relaxation of Cotimint Conditions in PC'’s

4.2.4 The Flowchart for Determination of the WPF Shutions of a JPMOMDO
Problem
One basic assumption for this new framework of meteation of the WPF

solutions of a JPMOMDO in this research is: if thearch starting point§, are
randomly uniformly generated (uniform Monte Carlangpling) and the size d§, is

large enough, e.g. the sample size estimation diyekquation 4.13, the valid designs
found by the neighborhood search method can inchaee WPF design solutions or
near WPF design solutions. This is because whemuh&er of sample points &, is
large, the neighborhoods are small, and the vabdiebe responses of the consistent
designs in a neighborhood, if any, are approximatehstant. Under this assumption, if
there is a local WPF design solution in a neighbodj the other valid designs in this
neighborhood are very close to this design solution

This part of flowchart starts with obtaining thdigiadesign solutionsS;. For each
design ofS;, the values of the design variables are treatedoasinal values (such as

mean values), and a Monte Carlo sampling is exdcateording to the distributions of
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the design variables about this point f. The sample size estimation is given by
Equation 2.44. The resulted sample points are e@eragsS, .
Each design point 08, is checked to see if it is a valid design, andptubabilities

of satisfying each PC (probability of success, P@®) calculated for all valid design

points of S, using the counting Equation 2.56. Then probaéditof the valid design
points of S, are used to check if those points satisfy the fdirgly. If the all the PC’s
are satisfied jointly, the corresponding designusoh of S; is saved as a candidate

design, which is a feasible design. A candidategdesolution is a valid design solution

of S, of which random sample poin, result in satisfaction of all PC’s jointly. The
resulting candidate points are denotedsas

Then the multiple objective values of the candigaimts S, are evaluated, and are
used to discover the points on the WPF in the dbgspace.

As the last step, the design solutionsSpfcorresponding to these WPF points are
located accordingly, and are denoted collectivelg...

The flowchart is shown in Figure 4-12.
A final note is that the thresholds ‘0’ in the duafion of the WPF point can be

relaxed with a positive value such that more ne&FR/joints can be obtained.
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Qstruct surrogate models with sample p@

A 4

Uniform Monte Carlo sampling of design variablesmple pointsS,

A 4

Define the neighborhoods of the sample pointSof

A 4

A 4

Search for one valid design in each neighborhdahy:
« Use either the first search scheme or the secesmdis scheme

A 4

Find valid design pointsS,

A 4

For each sample point ¢, , take Monte Carlo sampling
according to the distributions of the design vdeab
sample pointsS,

A 4

A 4

« Check each sample point &, to see if it is a valid design

« Calculate the POS of each PC
» Check if all the PC'’s are satisfied jointly

A 4

Find out candidate point§;
« All PC’s are satisfied jointly

A 4

Evaluate objective values for all candidate poaftsS,

A 4
Find the weak Pareto frontier points

y
@ the design solutions of the WPF poilgpr

Figure 4-12: Flowchart for Determination of the WPF Solutions under PC’s
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5 IMPLEMENTATION AND RESULTS

Three pure mathematical examples are used to deératnshe capacity of SVR
and the new hybrid surrogate-modeling method tgifien models. The qualities of the
surrogate models of the three methods RSM, SVRhghdd method are also compared
guantitatively and visually. The hybrid method iscacompared with the Neural Network
method for those three examples. Three two-objectand one three-objective
deterministic optimization problems are used to destrate that this framework can
surely find the true weak Pareto frontier, althowgly the second search scheme is used
since the first search scheme can not be used wtitmpling variables. A simple yet
typical aircraft design problem and a simple yqtidgl reusable launch vehicle design
problem are solved to demonstrate the feasibilify tlis new framework for
determination of the WPF solutions under PC’s. Haraple’ just means the disciplinary
analyses are formulated with explicit equationsjciwhdo not exist in a real design
process.

5.1 Pure Mathematical Examples of Surrogate Modelig

The three pure mathematical examples given heretteehemisphere, wave
function, and Rastrigin function. Those examples selected in this research because
those examples have different orders of nonlingariimbers of local extremes, and
global behaviors. All these three examples have tesign variables and can be
visualized. For each example, the three differamogate-modeling methods RSM, SVR,

and the hybrid method are used to construct theogate models, and the results are
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compared. The Neural Network method is also contpangh the hybrid method with
the three examples above.
5.1.1 The Upper Hemisphere Example

For this example of upper hemisphere, three casesoasidered:

Case 1, the values of the design variables andeipponses are not normalized, the
kernel is exponential radial basis function (ERB#f)¢ the general parameters of SER
& ando are given by trial and error;

Case 2, the values of the design variables andmnssg are not normalized, the
kernel is GRBF, the paramete@and £ are estimated by the practical estimation
method, and the parameteris given by trial and error;

Case 3, the values of the design variables areal@®d while the response values
are not, the kernel is GRBF, the parameterand £ are estimated by the practical
estimation method, and the parameteris selected by minimizing the modified
information criterion BICC.

For each case, all the three surrogate-modelinghadst are used to construct
surrogate models. For each case, the training safoplsurrogate model construction
includes 100 points by HS sampling, the sample dstimation of the true model
predicting error (MPE) includes 200 points by LH&rpling, and the sample for RCV

includes 200 points by LHC sampling. The upper lspimere is given as:

y=4100-x-x, x,X,0[-10,10]

Figure 5-1 shows the upper hemisphere over thenglesign space.
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The Upper Hemisphere

-10 .10

Figure 5-1: lllustration of the Upper Hemisphere

The values of the general parameters and goodrid¢gsace listed in Table 4, and

the visualization of the resulted surrogate modeshown in Figure 5-2 — Figure 5-8.

Table 4: Values of General Parameters and Goodnese§ Fit for the Upper Hemisphere

Case | Method Parameters of SVR R2 RMSE,, RMSEge, | RMSEpe
RSM 0.96083 | 0.49266 0.33693 0.45627
1 | SVR C=200:£=0.01;0 =2 1.00000 | 0.00995 0.34065 0.47713
Hybrid | C=200;:£=0.01;0=2 0.99999 | 0.00981 0.22215 0.31217

RSM 0.96083 | 0.49266 0.34768 80033

2 | SVR C=14.05:£=00158:0=1.5 | 0.99998 | 0.01584 0.29786 0.39346

Hybrid | C=1.487;:£=0.0198:0 =1.5 0.99723 0.13895 0.20400 0.29038

RSM 0.96083 0.49266 0.20382 0.49182

3 SVR C=14.05: £ = 0.0158;0 =0.081 | 0.99998 0.01568 0.11946 0.41626

Hybrid | C=1.487:£=0.0198;0 =0.027 | 0.99990 | 0.02525 0.35913 0.42541
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RSM - Upper Hemisphere

e  Training points

Figure 5-2: Surrogate Model for the Upper Hemisphee by RSM — Case 1, 2, 3

SVR - Upper Hemisphere

’ e  Training points

Figure 5-3: Surrogate Model for the Upper Hemisphee by SVR — Case 1
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Hybrid - Upper Hemisphere
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Figure 5-4: Surrogate Model for the Upper Hemisphee by Hybrid — Case 1

SVR - Upper Hemisphere

‘ e  Training points

Figure 5-5: Surrogate Model for the Upper Hemisphee by SVR — Case 2
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Hybrid - Upper Hemisphere

Training points

10 -10

Figure 5-6: Surrogate Model for the Upper Hemisphee by Hybrid — Case 2

SVR - Upper Hemisphere

Training points

Figure 5-7: Surrogate Model for the Upper Hemisphee by SVR — Case 3
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Figure 5-8: Surrogate Model for the Upper Hemisphee by Hybrid — Case 3

5.1.2 The Wave Function Example

For this example of wave function, three casesansidered:

Case 1, the values of the design variables andeponses are not normalized, the

kernel is ERBF, and the general parameters of &/R ando are given by trial and

error;

Case 2, the values of the design variables ancdmnssg are not normalized, the

kernel is GRBF, the paramete@and £ are estimated by the practical estimation

method, and the parameteris given by trial and error;

Case 3, the values of the design variables are ai®d while the response values
are not, the kernel is GRBF, the parameterand ¢ are estimated by the practical

estimation method, and the parameteris selected by minimizing the modified

information criterion BICC.
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For each case, all the three surrogate-modelinghadst are used to construct
surrogate models. For each case, the training safoplsurrogate model construction
includes 120 points by HS sampling, the sampleeftimation of true MPE includes 200
points by LHC sampling, and the sample for RCVudels 200 points by LHC sampling.

The wave function is given as:

y=(% —x5)sin(x/2), x,x,0[-10,10]

Figure 5-9 shows the wave function over the givesigh space.

The Wave Function

—~
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50

-50

-100
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Figure 5-9: lllustration of the Wave Function

The values of the general parameters and goodridgsace listed in Table 5, and

the visualization of the resulted surrogate moaethown in Figure 5-10 — Figure 5-16.
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Table 5: Values of General Parameters and Goodnes$§ Fit for the Wave Function

Case| Method Parameters of SVR R? RMSE;,, | RMSE,., | RMSEpe
RSM 0.39492 | 25.27269 21.12868 26.73301
1 | SVR C=200;£=0.01;0=1.5 1.00000 | 0.01000 6.89083 6.38921
Hybrid | C=200:£=0.01;0=15 1.00000 | 0.01000 6.83087 6.03544
RSM 0.39492 | 25.27269 25.39322 28.41188

2 |SVR | C=098.01:£=0.0088:0=15 |0.99997 | 0.17855 3.82165 4.79405

Hybrid | C=76.14;:£=0.0116:0 =1.5 0.99998 0.14097 3.40355 4.21043

RSM 0.39492 25.27269 25.02884 26.9539(
3 SVR C=98.01: £ =0.0088;0 =0.069 | 1.00000 0.00875 2.84765 6.38358

Hybrid | C=76.14:£=0.0116;0 =0.069 | 1.00000 | 0.01155 4.81235 4.73529

RSM - Wave Function

100 e  Training points

-10 -10

Figure 5-10: Surrogate Model for the Wave Functiorby RSM — Case 1, 2, 3
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Figure 5-11: Surrogate Model for the Wave Functiorby SVR — Case 1

Hybrid - Wave Function
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Figure 5-12: Surrogate Model for the Wave Functiorby Hybrid — Case 1
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Figure 5-13: Surrogate Model for the Wave Functiorby SVR — Case 2

Hybrid - Wave Function

e  Training points
100

10 -10

Figure 5-14: Surrogate Model for the Wave Functiorby Hybrid — Case 2
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Figure 5-15: Surrogate Model for the Wave Functiorby SVR — Case 3

Hybrid - Wave Function
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Figure 5-16: Surrogate Model for the Wave Functiorby Hybrid — Case 3
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5.1.3 The Rastrigin Function with 36 Peaks Example

For this example of the Rastrigin function with 3&aks, three cases are considered:

Case 1, the values of the design variables andeipponses are not normalized, the
kernel is ERBF, and the general parameters of &/R ando are given by trial and
error;

Case 2, the values of the design variables ancdmnssg are not normalized, the
kernel is GRBF, the paramete@and £ are estimated by the practical estimation
method, and the parameteris given by trial and error;

Case 3, the values of the design variables are ala@a while the response values
are not, the kernel is GRBF, the parameterand ¢ are estimated by the practical
estimation method, and the parameteris selected by minimizing the modified
information criterion BICC.

For each case, all the three surrogate-modelinghadst are used to construct
surrogate models. For each case, the training gafoplsurrogate model construction
includes 120 points by HS sampling, the sampleeftimation of true MPE includes 200
points by LHC sampling, and the sample for RCVues 200 points by LHC sampling.

The Rastrigin function with 36 peaks and consedu@ troughs is given as:

y=AMh+) x*-> Altos@lx)
i=1 i=1
n=2, A=10 w=, x J[-512,512
Figure 5-17 shows the Rastrigin function with 3&lme and 25 troughs over the

given design space.
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The Rastrigin Function with 36 Peaks

—~

Figure 5-17: lllustration of the Rastrigin Function with 36 Peaks

The values of the general parameters and goodhdgsace listed in Table 6, and

the visualization of the resulted surrogate modethown in Figure 5-18 — Figure 5-24.

Table 6: Values of General Parameters and Goodnes§ Fit for the Rastrigin Function with 36 Peaks

Case | Method Parameters of SVR R2 RMSE,, RMSEge, | RMSEpe
RSM 0.5783 10.66359 5.70557 10.50619
1 SVR C=200:£=0.01:0=0.7 1.0000 0.01000 12.76412 11.32161
Hybrid | C=200; £=0.01;0=0.7 1.0000 0.01000 7.38529 8.07982
RSM 0.5783 10.66359 7.64147 10.42822
2 SVR C=87.45.£=0.0166;0 =0.7 0.99811 | 0.71784 5.01745 8.38019
Hybrid | C=32.12:£=0.0307:0 =0.7 0.98210 2.24653 3.97741 6.15362
RSM 0.5783 10.66359 7.60002 9.58444
3 SVR C=87.45:£=0.0166;0 =0.057 | 0.99999 0.06214 9.04092 12.14723
Hybrid | C=32.12;:£=0.0307;0 =0.050 | 1.00000 0.03055 4.34022 5.35881
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RSM - Rastrigin Function with 36 Peaks
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Figure 5-18: Surrogate Model for the Rastrigin Funt¢ion by RSM — Case 1, 2, 3

SVR - Rastrigin Function with 36 Peaks
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Figure 5-19: Surrogate Model for the Rastrigin Fun¢ion by SVR — Case 1
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Hybrid - Rastrigin Function with 36 Peaks
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Figure 5-20: Surrogate Model for the Rastrigin Funtion by Hybrid — Case 1
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Figure 5-21: Surrogate Model for the Rastrigin Funt¢ion by SVR — Case 2
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Figure 5-22: Surrogate Model for the Rastrigin Funtion by Hybrid — Case 2

SVR - Rastrigin Function with 36 Peaks

100 e  Training points

10 -10

Figure 5-23: Surrogate Model for the Rastrigin Funtion by SVR — Case 3
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Figure 5-24: Surrogate Model for the Rastrigin Funtion by Hybrid — Case 3

5.1.4 Comparison with Neural Network

In Ref. [35], SVR is compared with RSM, MARS, RBind KG, but ANN is not
compared with. Now that an integrated Neural Nekngmftware package BRAINN [101]
is available that can automatically determine thenber of hidden layer nodes and
prevent overfitting in many cases, the hybrid mdtlsocompared with ANN.

To have a fair comparison, the following setup basn established. First, the same
training sample is fed into the hybrid method andNA For the hybrid method, the
whole sample is used for model construction, wialeANN, 80% of the sample points
are used for model construction, and the other pO%éts are used as validation cases to
determine the best number of hidden layer nodeghnis also a part of the surrogate
model. Second, the same random sample is used fE Malculation. Third, the

algorithm to choose the best value @f the third pre-specified parameter of SVR, is
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changed to minimizing the following combined erfoomb_error’ in Equation 5.1,
instead of minimizing a modified information crit@n. This is because the ANN model
obtained with the BRAINN package minimizes both MREEBd MPE, instead of a
modified information criterion. By minimizing ‘comlerror’, a hybrid method model can
also minimize both MFE and MPE.
comb_error= In(05062, + 050RMSEZ,, ) (5.9

The Upper Hemisphere, Wave function, and Rasttignttion with 36 peaks are
used again. For the Upper Hemisphere example, a0(pleng points are used; for the
other two examples, 120 points are used. The vabfiethe general parameters and

goodness of fit are listed in Table 7. In this ¢althe colummRMSE,,, is the model
fitting error, andRMSE,,.. is the true model predicting error calculated wiémdom

samples. The visualization of the resulted sur@gabdels is shown in Figure 5-25 —

Figure 5-30.

Table 7: Goodness of Fit of RSSVR and NN for ThreBure Mathematical Examples

Example Method Number of hidden layer nodes R2 RMSE;,, | RMSEe
Parameters of SVR

Upper ANN 55 0.99375 | 0.16737 | 0.34982
Hemisphere i g C=1.487: £ = 0.020: 0 =0.106 | 0.99522 | 0.17708 | 0.31499
Wave ANN 15 0.99988 | 0.27333 | 0.88934
function 1\ brid C=76.14: € = 0.012: 0 =0.097 | 0.99968 | 0.61234 | 2.99815
Rastrigin | ANN 20 0.70044 | 6.97226 | 11.32308
function 1\ brid C=32.12:£=0.031: 0 =0.057 | 0.99934 | 0.42737 | 6.05625
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ANN - Upper Hemisphere
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Figure 5-25: Surrogate Model for the Upper Hemisphee by ANN — Comparison

Hybrid - Upper Hemisphere

’ e  Training points

-10 10

Figure 5-26: Surrogate Model for the Upper Hemisphee by Hybrid — Comparison
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ANN - Wave Fuction

e  Training points
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Figure 5-27: Surrogate Model for the Wave Functiorby ANN — Comparison

Hybrid - Wawve Function

100 e  Training points

10 .10

Figure 5-28: Surrogate Model for the Wave Functiorby Hybrid — Comparison
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ANN - Rastrigin Function with 36 Peaks

‘ e  Training points

120

-10 10

Figure 5-29: Surrogate Model for the Rastrigin Funt¢ion by ANN — Comparison

Hybrid - Rastrigin Function with 36 Peaks

e  Training points ‘

100

Figure 5-30: Surrogate Model for the Rastrigin Funtion by Hybrid — Comparison
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5.1.5 Discussion

In Table 4 — Table 7, the colunRMSE,,, is the model fitting errorRMSE,.,, is

the estimated model predicting error using the RendCross Validation method, and
RMSE,.; is the true model predicting error calculated wahdom samples. Observing
and analyzing the model fitting results of the &gure mathematical examples, the
following conclusions can be drawn:

1. Being used individually, RSM is good for low tioear problems such as the
example of upper hemisphere, while SVR and hybrahad are good for both low and
high nonlinear problems such as the examples oévi@vction and Rastrigin function.

2. The surrogate models constructed by the hybathad almost always have the
best accuracy in terms of both MFE and MPE, witfiedent kernel functions and
methods to select the parameters of SVR. This tause RSM can well capture the
global behavior of the problem, while SVR can weelpture the local nonlinear behavior.

3. With increase of complexity of the problems, ttidferences of accuracy
between the surrogate models constructed by thadhygiethod and the others become
more substantial, especially when the paramefers, ando of SVR are automatically
selected. This can be seen in the Case 3 of the@&aof the Rastrigin function. In this
case, the hybrid method recovers two more pealteinpper middle part than SVR.

4. The ERBF kernel is very good for MFE, i.e. th&BMof the surrogate models
constructed with it is very small, but not for MRE&n the other hand, the GRBF kernel is
good for both MFE and MPE, and works well for adeples.

Remember that for SVR and the hybrid method, Casses ERBF kernel, and

Cases 2 and 3 use GRBF kernel. In Table 4 — Tabtme can see that the MFE’s of
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Case 1 are always the smallest in the three chaes most cases the MPE'’s of Case 1
are the greatest; the MFE’s of Cases 2 and 3 aadl,ssithough not as good as those of
Case 1, the MPE’s of Cases 2 and 3 are small amllydetter than those of Case 1.

5. The random cross validation method can proveesaonable estimation for the
MPE, especially for the surrogate models constduddy the hybrid method. The

RMSE,., is quite close to thRMSE,,,. as can be seen in all examples.

6. The automatic process for selection of parammaeteEVR works very well, since
the MFE’s and MPE’s of all the automatically fitt&¥/R and hybrid models are small.
This includes normalization of the values of thesige variables, selection of the
parameterC and £ by the practical method, selection of the kernslametero by
minimizing a modified information criterion. Thulset users do not need to select the pre-
specified parameters now and can obtain good sekkdt an expert of SVR.

7. With a small sample size, i.e. 120, the SVR aydrid methods obtained
satisfactory results for the complex examples ofavunction and Rastrigin function.
The MFE’s are less than 1% and MPE’s less than G%er examples that are not
provided here show that the accuracy of the suteogaodels constructed by RSM
increases little or does not with the sample sizeecothe order of the polynomials is
selected, while for SVR and hybrid it steadily ases with the sample size. All of these
confirm that the mathematical foundation of SVR roeenes the problem of “curse of
dimensionality”.

8. With a small sample size of 100 or 120, the llybrethod can obtain accurate
models for many types of complex problems, while &NN method can not. From

Table 7 and Figure 5-25 — Figure 5-30, one cartlsastethe hybrid method obtains high
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accuracy for all the three examples in terms of M#fie MPE; the ANN obtains high
accuracy for the examples of Upper Hemisphere aadé/function, but low accuracy for
the example of Rastrigin function. Especially, oalfew peaks and troughs are recovered
with ANN, and this makes the error MPE is very high
5.2 Pure Mathematical Examples of Finding the WealPareto Frontier

Three two-objective and one three-objective deteistic optimization problems
are used to demonstrate that this framework carlysdind the exact weak Pareto
frontier. Those examples are selected in this reBebecause those examples have
different features, such as multiple-to-one mapgiom the design space to the objective
space, frontier of disjointed segments, and moaa ttwwo objectives with a constraint.
Table 8 lists the objective functions and featweshese four examples. All these four
examples have no more than three objectives ansl ¢thn be visualized. For each
example, only the second search scheme is useel thiadirst search scheme can not be

used without coupling variables.

Table 8: Objective Functions and Features of the M&iematical Examples of Finding WPF

Functions Feature
f,=x Uniform sampling in the design
space corresponds to nonuniform
f,=alx distribution in the objective space
P1 2 2

X, — 0.2 X, — 0.6

a=2-ex (%, )" |- 038 (%, )
008 04

0.002< x, < 02
O<x,=<1
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P2

f, =cos@)Lb
f, =sin(@) b

a= 1_7870(45+ 40sin(27x,) + 25sin(27%,))
b=1+05cos@rx,)

O<x =<1
O<x,=<1

Compound frontier of convex and

concave segments;

Multiple-to-one mapping from the

design space to the objective spag

P3

=%
f,=allb
a=1+10x,

(X)) xg
b=1 (aj aS|n(877<1)

Frontier of disjointed segments

O<sx <1
0<x,<1
32+ x. +x )+ 3+ High dimensional example: three
f, =25- X+ ( 210 ) X X objectives;
3 3 ) 3 Nonsolid objective space:
f =35 X, 2%+ X5 2+ X + X +X3) intertwined  three  dimensional
2 10 surface;
P4 S +3AC+X2(3+ X + X Uniform sampling in the design
f3 =50- X 2 3 3( X 2) space corresponds to nonuniform
10 distribution in the objective space;
—_ 2 2 2
0, =12-Xx7 +X%, +X3 <0 One constraint
0<x <10
0<x,<10
0<%, <10

5.2.1 First Mathematical Example of Finding WPF

same asS; =

For this example, the size &, or the number of search starting points is given t

495@vith 99% probability and 2% error, since this gesb is simple and

thus less search starting points are needed. Tjeetole functions and the feature are

given as following:

162



Functions

Feature

P1

0.002< x, < 0.2
O<x,<1

Uniform sampling in the desig
space corresponds to nonunifo
distribution in the objective space

m

The shape of the objective space is designatedgurd-5-31 by the area enclosed

by the blue curves. The true weak Pareto fronsethe curve closer to the origin,

including a vertical segment and an almost ho

rialosggment.

800
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0.1
fl

o i +
0 0.02 0.04 0.06 0.08

0.12 0.14 016 0.18 0.2

Figure 5-31: Objective Space of the First Mathematial Example of Find WPF

The results are given in Figure 5-32. From thisifilg one can see the WPF points

obtained by the second search scheme distribubed #he true WPF. Comparing the left
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side with the right side of this figure, one cae #eat because the magnitude level of the
second objective function is quite greater thart tifathe first objective function, the
uniform sampling in the design space corresponda®imniform distribution of points in
the objective space. Even though, many WPF porgtsohtained along the left vertical

segment of the true WPF and the distribution o$é¢hgoints is roughly even.

: points by the second scheme
600 O WPF points by the second scheme i

boundary of the objective space

f2

Figure 5-32: Results of the First Mathematical Examle of Finding WPF

5.2.2 Second Mathematical Example of Finding WPF

For this example, the size &, or the number of search starting points is given t
same asS, = 495With 99% probability and 2% error, since this gewb is simple and

thus less search starting points are needed. Tjeetole functions and the feature are

given as following:
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Functions Feature

f, =cos@)Cb Compound frontier of convex and
. concave segments;
f, =sin(@) b

Multiple-to-one mapping from the
design space to the objective spage

po = ﬁ)(45+ 40sin(27x,) + 255|n(27'5(2))

b=1+ 05cos@rx,)

O<sx <1
0<x,<1

The shape of the objective space is designatedigard- 5-33 by the shape
represented by the blue points. The true weak ®drentier is the edges closer to the
origin, including one concave segment and two cersegments. Also one can find that
in some areas the blue points are much denserpheisomenon means that the mapping

from the design space to the objective space isipfetto-one.

f2

0.4 02 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
fl

Figure 5-33: Objective Space of the Second Matheniaal Example of Find WPF
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The results are given in Figure 5-34. From thisifilg one can see the WPF points
obtained by the second search scheme evenly distdbalong the true WPF, and the

number of WPF points is plentiful.

1.6 T T T T T

e  grid points of the objective space

+  points by the second scheme

O WPF points by the second scheme

1.4+

1.2+

0.8

f2

0.6

0.4

0.2

-0.4
04 -0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

Figure 5-34: Results of the Second Mathematical Exaple of Finding WPF

5.2.3 Third Mathematical Example of Finding WPF

For this example, the size &, or the number of search starting points is given t
same asS, = 495With 99% probability and 2% error, since this gewb is simple and

thus less search starting points are needed. Tjeetole functions and the feature are

given as following:
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Functions Feature

=Y Frontier of disjointed segments
f,=alb
a=1+10x,

P3 X, 2 X
b=1-| 2| -—sin@
(aj asm( 7K, )

O<x =<1
O<x,<1

The shape of the objective space is designatedgurd-5-35 by the area enclosed
by the blue curves. Because of the wavelike cutwbebottom of the objective space,
the true weak Pareto frontier consists of spatiiiyointed segments, including a vertical

segment at the left of the objective space.

”w

10+ .

f2

oL ! ! ! ! ! ! ! ! !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fl

Figure 5-35: Objective Space of the Third Mathematial Example of Find WPF
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The results are given in Figure 5-36. From thisifilg one can see the WPF points
obtained by the second search scheme evenly ditgdlalong the true WPF consisting

of spatially disjointed segments, and the numba&WBF points is plentiful.

12

10
8 +  points by the second scheme
Fi O WPF points by the second scheme
boundary of the objective space
6
o ior
4 ="
Et N
2 L
0
_2 1 1 1 | | | 1 L L L
0 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9 1

fl

Figure 5-36: Results of the Third Mathematical Exanple of Finding WPF

5.2.4 Fourth Mathematical Example of Finding WPF

This example is close to a real engineering probt@mause it has three design
variables, three objectives, and one constrairthoagh a real engineering problem
usually has more design variables, objectives,camdtraints.

For this example, the size &, or the number of search starting points is given t

same asS, = 495With 99% probability and 2% error, since this gewb is simple and
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thus less search starting points are needed. Tjeetole functions and the feature are
given in the table below.

The shape of the objective space is designatedigard- 5-37 by the shape
represented by the blue points. Actually, the shafpebjective space is not easy to
imagine, but it is not solid but includes interteththree dimensional surfaces. The true

weak Pareto frontier is also not easy to see,thsita three dimensional curve.

Functions Feature
32+ x. +x )+ 3+ High dimensional example: three
f, =25- X+ ( 210 ) X X objectives;
3 3 ) 3 Nonsolid objective space: intertwined
f =35 X, +2X; X5 (24 X + X, +X3) three dimensional surfaces;
, =
10 One constraint
PA g XX B +%,)
: 10

g, =12-x’+x2+x5<0
0<x <10
0<x, <10
0<x, <10
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3

-1600 -300

Figure 5-37: Objective Space of the Fourth Mathematal Example of Find WPF

The results are given in Figure 5-38. From thisifilg one can see the WPF points
obtained by the second search scheme evenly distdbalong the true WPF, and the
number of WPF points is plentiful. Also one can slee true PF and WPF are quite

different, and as mentioned previously, the WPF imse solutions besides the PF

solutions.
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grid points of the objective space
-100 e true WPF points of grid points
O true PF points of grid points

points by the second scheme

-150 O WPF points by the second scheme

-200

3

-250

-300

-350

-400

-450
200

-1600 -300

Figure 5-38: Results of the Fourth Mathematical Exanple of Finding WPF

5.2.5 Discussion

Although only the second search scheme is useédonh example since the first
search scheme can not be used without couplinghMasg, observing and analyzing the
results of finding WPF for the four pure mathemati@xamples, the following
conclusions can be drawn:

1. The second search scheme for finding WPF is reerge for many types of
problems, i.e. whatever the features and the coatplef the problems are, and it can

surely find the true WPF with exactly the same prhoes.
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2. The second search scheme for finding WPF cahrfat only the local WPF, but
also the global WPF. It will be not be trapped bg tocal WPF. This can be seen in the
third example of which the WPF comprises 4 dispindegments (local WPF segments).

3. The second search scheme for finding WPF cah ditarge number of WPF
points even with smaller number of search starpogts than that estimated with the
rule-of-thumb equation given in this research. Tdas be seen in all four examples.

4. The WPF points found by the second search sclaeeneearly evenly distributed
over the complete frontier, or nearly evenly dmited over each of the segments of the
complete frontier even if uniform sampling in thees@yn space corresponds to
nonuniform distribution in the objective space.Sban be seen in all four examples.

5.3 A Transport Aircraft Design Example

A simple yet typical aircraft design problem is dide show the feasibility of the
new framework of determination of the WPF solutiamsgler probabilistic constraints.
Here ‘simple’ just means the disciplinary analyass formulated with explicit equations,
which do not exist in a real design process. Thiblem has

1) 4 disciplinary analyses;

2) 7 system level design variables including 2 diogpvariables that are assumed
to be normally distributed about the mean valueth 8 symmetrical truncation (see
APPENDIX G for a summary of the doubly-truncatedmal distribution);

3) 7 PC’s all with required POS of 0.85; and

4) 2 design objectives. See APPENDIX H for detail@@rmation. Figure 2-21 is

repeated here to show the DSM of this problem.
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Figure 2-21: Example of the DSM of a Multidisciplirary Aircraft Design Problem

The surrogate models are first constructed, and these models are used to find
the WPF and its design solutions. For the purpdsealidation, the original CA’s are
also used to find the WPF, and the two kinds of V§Ribtained with the surrogate
models and original CA’'s are compared. The exanjlstobjective deterministic optimal
solutions and objective values over the given desigace are obtained and given in

Table 9. Here ‘exact’ implicates the original CAlie used.

Table 9: Exact Single-Objective Deterministic Optinal Results of the Aircraft Design Example

Objective| Objective Valug b | S W, T

PI 151.11 111.76 130.43 1429.31 163567.1 27746.8

T 20765.66 139.37 135.36 1850.00 160108.8 20765.6
|
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5.3.1 Surrogate Models

For this example, discipline-level surrogate modmie constructed. A surrogate
model is constructed for each of the responseshefdiscipline analyses. For each
response, the training sample for surrogate mantedteuction includes 150 points by HS
sampling, the sample for estimation of true MPHudes 300 points by LHC sampling,
and the sample for RCV includes 200 points by LH@gling. The values of both the
design variables and the response are normalizekernel is GRBF, the paramet&s
and ¢ are estimated by the practical estimation methioel,parameteu is selected by
minimizing the modified information criterion BICGnd the best surrogate model is
selected by minimizing the modified informationterion BICC as well.

The selected surrogate modeling methods and gosdridg for the responses are

listed in Table 10 — Table 13, wheRMSEm, is the normalized model fitting error,

RMSErcvhyoia IS the normalized estimation of model predgterror using Random
Cross Validation RMSEvee is the normalized true model predicting error gkted
with random samples, af@MSE,., is the (real) estimated model predicting eafber

de-normalization. The normalized values are agtugércentage values since all
responses are normalized to [0, 100]. The accurhtlye surrogate models is satisfactory,

since the maximum normalized model predicting eisdess than 3%, and most of errors

are less than 1%. The results once again showRNEErcvHyia Can provide reasonable

estimation forRMSEwee, i.e. the RCV method can provide reasonable esbmé#or the

model predicting error.
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Table 10: Values of General Parameters and Goodnes$Fit for the D CA

Response Method RMSErm RMSEwpe RMSERcv Hybrid RMSEgzcy
d RSM 0.0443 0.0457 0.0321 5.619E-4
Cao. Hybrid | 0.0076 0.2094 0.1983 5.758E-6
Cao ¢ Hybrid 0.0074 0.2030 0.1874 5.802E-6

Table 11: Values of General Parameters and Goodnes§Fit for the A CA

Response Method | RMSEm RMSEwpe RMSERcv Hybrid RMSEgzcy
L
B RSM 0.1250 0.1525 0.1250 0.01282
takeoff
5
D Jianding RSM 0.7373 1.0671 0.7373 0.10379
)
D Jopt_crise RSM 0.0774 0.1295 0.0774 0.00838
Vor RSM 0.1454 0.1773 0.1454 0.30913
Table 12: Values of General Parameters and Goodnes§Fit for the W CA
Response Method mfﬂn WSEMPE WSERCV,Hybrid RMSERCV
Wianding Hybrid 0.0226 0.3842 0.3516 187.671
Ry Hybrid 0.0205 0.4921 0.4614 0.00112
Rea RSM 0.0321 0.0342 0.0201 0.00001
U Hybrid 0.0201 0.4510 0.4225 0.00112
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Table 13: Values of General Parameters and Goodnes§Fit for the P CA

Response Method RMSEmm RMSEwpe RMSERrcv ybrid RMSEgqy,
S, Hybrid 0.0267 0.5663 0.3707 22.9246
S Hybrid 0.0184 0.2960 0.1794 5.65700
%o Hybrid 0.0213 1.8260 1.2634 0.00201
4 Hybrid 0.0154 0.9421 0.5842 0.00148
ﬁf SVR 0.1667 2.5723 1.9700 0.03808

5.3.2 Design Results

For this design example, the new framework is imm@eted with the two
neighborhood search schemes. For each search sehiéimine surrogate models, two
cases are considered: the first case uses sampkedS, as 9900, and the second case
uses 19800. The number 19800 is the estimationngbye Equation 4.13 with 99%
probability and 2% error. For each valid solutidnSy, the sample size d§, is given as
792 estimated by Equation 2.44 with 99% probabditg 5% error.

With the first search scheme and surrogate mo@8k8 and 4699 valid solutions
S, are obtained, respectively. Then 549 and 2891 idated points ofS, are obtained,
respectively. Finally, 14 and 41 WPF points areaot&d, respectively. The figures of the

WPF's in the objective space are shown in Figu8® Bnd Figure 5-40.
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Figure 5-39: WPF Found by the First Search Schemeitkh 9900 points of S, and Surrogate Models
for the Aircraft Design Example
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Figure 5-40: WPF Found by the First Search Schemeith 19800 points of S, and Surrogate Models
for the Aircraft Design Example
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With the first search scheme and surrogate modedsfollowing valid solutions
that are the closest to the single-objective detestic optimal solutions are found and
listed in Table 14. The distance used here to sdéecclosest solution is the relative

Euclidean distance.

Table 14: Valid Solutions Closest to Single-Objeate Deterministic Optimal Solutions with the First
Search Scheme and Surrogate Models for the Aircrafbesign Example

Case| Objective Objective Value b | S W, T
PI 151.28* 151.06 | 112.07 132.17 1457.06 159870.06 27463.25
1 T, 20750.27* 139.12 129.67 1758.82 162128.87 20750.27
PI 151.60%, 151.34 | 110.66 131.08 1438.78 163948.09 27886.68
2 T, 20697.02% 138.86 132.20 1834.88 161679.12  20697.02

Note: *Predicted by the surrogate models;
“Predicted by the original CA'’s.

With the second search scheme and surrogate modie’, and 7235 valid

solutions S, are obtained, respectively. Then 133 and 280 datelipoints ofS, are

obtained, respectively. Finally, 11 and 10 WPF tsiare obtained, respectively. The

figures of the WPF's are shown in Figure 5-41 amgife 5-42.
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Figure 5-41: WPF Found by the Second Search Schemdth 9900 points of S, and Surrogate
Models for the Aircraft Design Example
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Figure 5-42: WPF Found by the Second Search Scheméth 19800 points of S, and Surrogate
Models for the Aircraft Design Example
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With the second search scheme and surrogate malgel&llowing valid solutions
that are the closest to the single-objective detestic optimal solutions are found and
listed in Table 15. The distance used here to sdéecclosest solution is the relative

Euclidean distance.

Table 15: Valid Solutions Closest to Single-Objeate Deterministic Optimal Solutions with the
Second Search Scheme and Surrogate models for thekaft Design Example

Case| Objective Objective Value b I S W, T,
PI 151.40%,151.14 | 111.96 129.51 1429.25 163465.15 27457.10
1 T, 20431.33% 139.10 138.05 1837.30 160187.87 20431.33
PI 150.50%, 150.23 | 112.45 130.70 1438.69 164450.23 27865.69
2 T, 20671.82% 138.91 135.35 1832.20 161634.81 20671.82

Note: *Predicted by the surrogate models;

*Predicted by the original CA'’s.

The two WPF'’s found by the first search scheme @880 and 19800 points &,
respectively and surrogate models are comparedjurd-5-43; the two WPF’s found by
the second search scheme with 9900 and 19800 pafir8s respectively and surrogate
models are compared in Figure 5-44; and the two WRéund by the two search

schemes with 19800 points & and surrogate models are compared in Figure 5-45.

180



X 104
4,

320 O 9900 points, first scheme - SM o) 4
19800 points, first scheme - SM g g

2.6+ B

2.4+ o B

A
@)

221 B

2
135 140 145 150 155 160 165
Pl

Figure 5-43: Comparison between the Two WPF’s Founby the First Search Schemes with 9900 and
19800 Points ofS, and Surrogate Models for the Aircraft Design Examjte
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Figure 5-44: Comparison between the Two WPF’s Foundy the Second Search Schemes with 9900
and 19800 Points ofS, and Surrogate Models for the Aircraft Design Examjte
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Figure 5-45: Comparison between the Two WPF's Foundy the Two Search Schemes with 19800
Points of S, and Surrogate Models for the Aircraft Design Examjte

For the purpose of validation, the original CA’e aiso used to find the WPF. Both

search schemes are executed with 19800 poin§.oThen two WPF's are obtained.

These two new WPF's are compared with each othsd, @also compared with the

corresponding one found with the surrogate modekpectively. These comparisons are

given in Figure 5-46 — Figure 5-48.
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Figure 5-46: Comparison between the Two WPF's Foundy the Two Search Schemes with 19800
Points of S, and Original CA’s for the Aircraft Design Example
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Figure 5-47: Comparison between the Two WPF’s Founby the First Search Schemes with 19800
Points of S,, Surrogate Models, and Original CA'’s for the Aircraft Design Example
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Figure 5-48: Comparison between the Two WPF's Founty the Second Search Schemes with 19800
Points of S,, Surrogate Models, and Original CA’s for the Aircraft Design Example

5.3.3 Discussion
Observing and analyzing the design results of tineradt design example, the
following conclusions can be drawn:

1. It is important to choose an appropriate size¢hef search starting poin€ .
With the small sizes, of 9900, the deterministic optimization problemtiwT; as the
single objective can not find a solution closelte known exact result (compare Table 9
with Case 1 in Table 14 and Table 15). With thstfsearch scheme, the valueslofre
very close to that of the exact solutions, butuwaleies of the design variabl& andW,,

are far away from those of the exact solutionshwhe second search scheme, the values

of T. are a little far from that of the exact solutioAslditionally, the WPF’s found with

the small sizes, of 9900 are not the correct ones, referring taufégs-43 and Figure

5-44.
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2. The estimation of the size & given by Equation 4.13 is adequate for a good
result. With the sizes, of 19800 given by Equation 4.13, solutions venselto the exact

solutions are found for both single-objective ogtirproblems, comparing the results of
Case 2 with the exact solutions (compare Tablet® @ase 2 in Table 14 and Table 15);
the WPF’'s found by two search schemes are veryainmeferring to Figure 5-45; and

the WPF points are uniformly distributed and thenber of WPF points is enough for

practical use. These justify the assumption madeeation 4.2.4 that if the size db, is

large enough, the WPF or near WPF can be found.

3. Relaxation of the constraints and the convergesrderia is necessary. From
other experiments (not recorded in this thesis}tiar aircraft example, it has been found
that no solutions satisfying all the constraintsl @onvergence criteria can be obtained
with the surrogate models and zero tolerance, veseq@denty solutions have been
obtained with the original CA’s and zero tolerance.

One note is that the relaxation tolerance is smdh respect to the magnitude of

the response, usually less than 1%. For exanRMSE,., ofV,, is 0.30913, then the

relaxation tolerance is 0.61826 for this coupliregiable; considering the magnitude of

V,, is more than 500, one can this relaxation is gengll.

4. With a small sample size, i.e. 150, the hybrethod can achieve accurate result
for many responses. The MFE’s of the hybrid modetsless than 0.2%, and the MPE’s
less than 2% (see the results of hybrid modelsainlel 10 — Table 13).

5. The model selection advisor works very well. Tinedel selection advisor selects
different methods for different responses, all MieE’s are less than 1%, the maximum

MPE less than 3%, and most MPE’s less than 1%Tabke 10 — Table 13).
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6. The Random Cross Validation method can providedgestimation for model

predicting error. Comparing the estimatiBMSEgcvybia With true erroRMSEvee in

Table 10 — Table 13, one can see the values ase,aspecially for the models of SVR
and the hybrid method.

7. The best objective values of Pl ahdound by the two search scheme with the

surrogate models are better than those of the esauotions, comparing Table 9 with
Table 14 and Table 15, and referring to Figure 5a#d Figure 5-48. The maximum

difference for Pl and’ is about 7%.

The reason is that the errors of the surrogate teoaled the relaxation of the
constraints and convergence criteria for the cogpliariables lead to solutions that are
inferior to the exact solutions in terms of satisfythe constraints and the convergence
criteria. However, the errors of the surrogate rhaden not be eliminated; and as
mentioned previously, the relaxation has to be matterwise too many or even all true
valid design solutions may be excluded. From othgreriments (not recorded in this
thesis) with smaller and zero tolerance for thisrait design example, it has been found
that the errors of the surrogate models are then meason for this difference, since
smaller and zero tolerances do reduce this difterebut not always.

8. It can be concluded that the correct WPF is dowith either search scheme for
three reasons. The first is that the WPF’s foundheytwo different search schemes with
either surrogate models or original CA’s are vdrmilsr. The second is that the WPF's
found with the surrogate models are close to amé kamilar tendency as those with the
original CA’s, referring to Figure 5-45 — Figure4B- The last is that the best values of PI

found with both schemes and the original CA’'s acemmore than 151.5 and almost
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vertical lines are found in Figure 5-47 and Figtré8. This phenomenon is the same as
the results obtained with a conventional optimeared original CA’s with many different
search starting points. Thus this aircraft deiganeple shows the feasibility of this new
framework.

5.4 A Reusable Launch Vehicle Design Example

Another simple yet typical reusable launch veh{&&V) design problem is used to
show the feasibility of the new framework of deteration of the WPF solutions under
probabilistic constraints. This design problem iy@ical multimodal problem; there are
many local extremes for each objective. With this/Rlesign problem, the framework is
shown to be able to handle multimodal problemss Pinoblem has

1) 5 disciplinary analyses;

2) 9 system level design variables including 4 diogpvariables that are assumed
to be normally distributed about the mean valudh Wi5o symmetrical truncation (see
APPENDIX G for a summary of the doubly-truncatedmal distribution);

3) 1 PC’s with required POS of 0.30, and

4) 2 design objectives. See APPENDIX | for detail@drmation.

The reason that the required POS is so small isusecthis design problem is quite
sensitive to the perturbation around the converdedign solutions, i.e. a small
perturbation to a converged design solution wiBlilgaresult in a non-converged design
combination. Although there is only one probabtistonstraint, this RLV design
problem still can demonstrate the feasibility af ffroposed framework since the number
of probabilistic constraints makes no differencetlb@ operation of the probability

counting Equation 2.55. Figure 5-49 shows the DS3khis problem.
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Figure 5-49: Example of the DSM of a Multidisciplirary RLV Design Problem

The surrogate models are first constructed, and these models are used to find
the WPF and its design solutions. For the purpdsealidation, the original CA’s are
also used to find the WPF, the two kinds of WPH$amed with the surrogate models
and original CA’s are compared. One set of exawnjlsiobjective deterministic (local)
optimal solutions and objective values over theegidesign space are obtained and given
in Table 16. Here ‘exact’ implicates the originad’€ are used. Since this RLV design
problem is a multimodal problem, the solutions s ttable should be used with the

search starting point with which the solutions &yend. With the OBD method, the
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search starting point used &= 40 _W, =13, r=6, W_S=40, AV, = 05,
S = 4,500, Wgross =2,000000, W, =1750000, andW,_, =200, 000

Table 16: Exact Single-Objective Deterministic Optinal Results of the RLV Design Example
Objective| Objective Value & T_W, r W_S AV,

W, 055 651693.6 55.1 1.49 7.06 50.0 0.40
IS¢ 431.7 10.0 1.20 5.32 25.54 0.74

5.4.1 Surrogate Models

For this example, discipline-level surrogate moaetks constructed. Except for the
Wu CA that has only one simple response, a sureogetdel is constructed for each of
the responses of the discipline analyses. For easponse, the training sample for
surrogate model construction includes 150 pointsH& sampling, the sample for
estimation of true MPE includes 300 points by LHE&ngpling, and the sample for RCV
includes 200 points by LHC sampling. The valuedbath the design variables and the
response are normalized, the kernel is GRBF, thanpetersC and £ are estimated by
the practical estimation method, the parametdas selected by minimizing the modified
information criterion BICC, and the best surrogatedel is selected by minimizing the
modified information criterion BICC as well.

The selected methods and goodness of fit for thgoreses are listed in Table 17 —
Table 20, wherdRMSE is the normalized model fitting erroRMSErcvybia IS the
normalized estimation of model predicting error ngsiRandom Cross Validation,

RMSEuwee is the normalized true model predicting error aldted with random samples,

189



and RMSE,., is the (real) estimated model predicting eafter de-normalization. The

normalized values are actually percentage value sll responses are normalized to [0,
100]. The accuracy of the selected surrogate madedatisfactory, since the maximum

normalized model predicting error is less than 8%g most of errors are less than 1%.

The results once again show tHRWMSErcviybia Can provide reasonable estimation for

RMSEwee , i.e. the RCV method can provide reasonable estmaor the model

predicting error.

Table 17: Values of General Parameters and Goodnes§Fit for the P CA

Response Method RMSEmm RMSEwpe RMSERrcv ybrid RMSEgqy,
A Hybrid 0.0506 0.0748 0.0718 2.794
Toac RSM 0.1667 0.1737 0.0000 591.290
ISP, ac RSM 0.0000 0.0000 0.0000 0.000
Ty _W, RSM 0.0000 0.0000 0.0000 0.000
P. RSM 0.0000 0.0000 0.0000 0.000

Table 18: Values of General Parameters and Goodnes§Fit for the T CA

Response Method RMSErmn RMSEwmpe RMSERcv Hybrid RMSEgzcy
MR, RSM 2.6124 4.9476 0.0000 0.1640
MR pper Hybrid 0.0208 0.2749 0.2526 0.0061
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Table 19: Values of General Parameters and Goodnes§Fit for the Wb CA

Response Method WSETm WSEMPE WSERCV,Hybrid RMSEgcy

Wiy booster Hybrid 0.0190 0.3816 0.2679 470.933
Table 20: Values of General Parameters and Goodnes§Fit for the S CA

Response Method mETrn WSEMPE WSERCV,Hybrid RMSERCV
Woss RSM 0.0126 0.0233 0.0258 818.953
Seet Hybrid 0.0762 1.2993 1.1994 118.439
Worop RSM 0.0129 0.0264 0.0277 795.409
Wena RSM 0.0033 0.0035 0.0033 6.271

5.4.2 Design Results

For this design example, the new framework is imm@eted with the two
neighborhood search schemes. For each search sctiensample sizes @&, is 39600.
The number 39600 is the estimation given by Equaid3 with 99% probability and

2% error. For each valid solution &, the sample size d§, is given as 172 estimated

by Equation 2.44 with 30% probability and 1% error.

With the first search scheme, 10040 valid solutiSpsare obtained. Then 6628
candidate points o0&, are obtained. Finally, 46 WPF points are obtaifée figure of

the WPF's in the objective space is shown in Figi&®.
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Figure 5-50: WPF Found by the First Search Schemeith 39600 points of S, and Surrogate Models
for the RLV Design Example

With the first search scheme and surrogate modkedsfollowing valid solutions
that are the closest to the single-objective ddtestic optimal solutions from the given
starting point are found and listed in Table 21e @istance used here to select the closest

solution is the relative Euclidean distance.

Table 21: Valid Solutions Closest to Single-Objecte Deterministic Optimal Solutions with the First
Search Scheme and Surrogate Models for the RLV Degi Example

Objective | Objective Value £ T_W, r W_S Avsplit

W05 610,276.78* 51.88 1.50 6.92 47.62 0.39
649,855.84

ISP,.c 431.23*%,431.23 | 10.00 1.20 5.48 27.48 0.72

Note: *Predicted by the surrogate models;

*Predicted by the original CA’s.
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With the second search scheme and surrogate mdd@&81 valid solutionss, are

obtained. Then 9698 candidate pointsSyfare obtained. Finally, 67 WPF points are

obtained. The figure of the WPF's is shown in FegGf51.
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Isp_vac

Figure 5-51: WPF Found by the Second Search Scheméth 39600 points of S, and Surrogate
Models for the RLV Design Example

With the second search scheme, the following vediditions that are the closest to
the single-objective deterministic optimal solusaare found and listed in Table 22. The

distance used here to select the closest solgitheirelative Euclidean distance.

Table 22: Valid Solutions Closest to Single-Objeate Deterministic Optimal Solutions with the
Second Search Scheme and Surrogate Models for thé.YR Design Example

Objective| Objective Value £ T_W, r W_S AVspIit

W0 620,753.09* 57.44 1.43 7.49 45.75 0.41
651,971.82

ISP,ac 431.07*, 431.07 | 10.00 1.20 5.53 27.23 0.68
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Note: *Predicted by the surrogate models;

*Predicted by the original CA's.

The two WPF’'s found by the two search schemes B&B00 points ofS, and
surrogate models are compared in Figure 5-52.
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Figure 5-52: Comparison between the Two WPF's Foundy the Two Search Schemes with 39600
Points of S, and Surrogate Models for the RLV Design Example

For the purpose of validation, the original CA’e also used to find the WPF. Both
search schemes are executed with 39600 point§.oThen two WPF's are obtained.

These two new WPF's are compared with each othsd, also compared with the
corresponding one found with the surrogate modepectively. These comparisons are

given in Figure 5-53 — Figure 5-55.
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Figure 5-53: Comparison between the Two WPF's Foundy the Two Search Schemes with 39600
Points of S, and Original CA'’s for the RLV Design Example
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Figure 5-54: Comparison between the Two WPF’s Founby the First Search Schemes with 39600
Points of S,, Surrogate Models, and Original CA’s for the RLV Design Example

195



4455 w w
© Second scheme - SM
) Second scheme - CA
440+ B
4351 @ B
&
< 1
ol
(] Q
wsp 2 |
420+ E
415 \‘/ IRAA KRG AL il L‘M IR RALLERILANILY rh‘n_,, AL RARLAAATTTRALLA LA ‘ ‘\
0.6 0.8 1 1.2 1.4 1.6 1.8
W_gross X 106

Figure 5-55: Comparison between the Two WPF's Founty the Second Search Schemes with 39600
Points of S,, Surrogate Models, and Original CA’s for the RLV Design Example

5.4.3 Discussion
Observing and analyzing the design results of éwesable launch vehicle design
example, the following conclusions can be drawn:

1. The estimation of the size & given by Equation 4.13 is adequate for good

results. With the sizes, of 39600 given by Equation 4.13, solutions vergsel to the
exact solutions are found for both single-objectoimal problems, comparing the
results with the exact solutions; the WPF’s fougdvo search schemes are very similar,
referring to Figure 5-52; and the WPF points ardoamly distributed and the number of
WPF points is enough for practical use. These agstify the assumption made in
section 4.2.4 that if the size d§, is large enough, the WPF or near WPF can be found.
2. The WPF’s found with both search schemes andgate models are almost the

same as those found with both search schemes adabICA’s, respectively, referring
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to Figure 5-54 and Figure 5-55. The reason is ttaterrors of many surrogate models

are very small, for example, the errorisp,,. is zero.

3. Relaxation of the constraints and the convergesrderia is necessary. From
other experiments (not recorded in this thesis)thiog RLV example, it has been found
that much less solutions satisfying all the comstsaand convergence criteria can be
obtained with the surrogate models and zero toterawhereas plenty solutions have
been obtained with the original CA’s and zero tatee.

One note is that the relaxation tolerance is smah respect to the magnitude of

the response, usually less than 1%. For exanifldSE,., ofW, . is 819, then the

gross
relaxation tolerance is 1,638 for this couplingiable; considering the magnitude of

W,_ . is more than 200,000, one can this relaxatiorery gmall.

gross
4. With a small sample size, i.e. 150, the hybrethod can achieve accurate result
for many responses. The MFE’s of the hybrid modetsless than 0.1%, and the MPE’s
less than 2% (see the results of hybrid modelsainld 17 — Table 20).
5. The model selection advisor works very well. Tinedel selection advisor selects
different methods for different responses, all MHeE’s are less than 1%, the maximum
MPE less than 3%, and most MPE’s less than 1%Tabke 17 — Table 20).

The results ofisp,,., T, _W,, andP, can best show this. From APPENDIX |, the
responsedsp,.., Ty _W,, and P, are explicitly constructed by RSM. The selected

surrogate modeling methods for these three respargejust RSM and the errors of the
surrogate models are zero, as shown in Table 1&.slikecess of model selection also
means the success of the modified information reaitend the random cross validation

method for model predicting error estimation.
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6. The Random Cross Validation method can providedgestimation for model

predicting error. Comparing the estimatiBMSEgcvyia With true erroRMSEvee in

Table 17 — Table 20, one can see the values ase,aspecially for the models of SVR
and the hybrid method.

7. The WPF’s found with the second scheme have porgs and the points are
more evenly distributed than those found with tinst scheme for this RLV example.
This phenomenon shows that for different probleingsé two schemes may have
different performance. Since one can not knowef¢his such a difference, it is better to
use both schemes to solve the same problem anéigmsbtain more solutions.

8. It can be concluded that the correct WPF is dowith either search scheme,
since the WPF’s found by the two different searciesnes with either surrogate models
or original CA’s are very similar, and the WPF'aufa with the surrogate models are
very similar as those with the original CA’s, refeg to Figure 5-52 — Figure 5-55. Thus
this RLV deign example again shows the feasibdityhis new framework.

9. The WPF figure can provide additional usefubimniation to guide the design
process besides helping the user choose desigmadites according to his/her

preferences. For example, the WPF figures showitica¢asingisp,,. will not help much

reducew,

gross 1

and there is a lower limit fokp,,. in order to satisfy the constraint. This

kind of information can help the designer choosertght scope and direction to explore

the design space, and thus reduce design time.
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6 CONCLUSIONS AND RECOMMENDATIONS

The realistic conceptual design problem of compgstems is characterized by
multiple disciplines, multiple objectives, uncentis, and a short period for decision
making. Because of the complexity of this desigobpgm and the limitations of solving
techniques available, this design problem tradailynwas simplified to a problem of a
combination of only some of the first three feajr@nd also by simplification the design
could be finished in a short period of time. To r@$d this deficiency, a novel systematic
framework has been formulated to consider all tingt three features of a realistic
conceptual design problem and solve this problermaishort period of time. This
framework has been successfully implemented foraasportation airplane design
problem and a reusable launch vehicle design pmobEesides, lower level problems
have been solved in order to demonstrate the aaganotf or validate some new
techniques developed for this new framework, suckha hybrid surrogate modeling of
RSM and SVR, the model selection advisor, and #@ve meighborhood search method.

In this section, the implementation results of gessf complex systems and other
exercises are surveyed to answer the driving relBeguestions, emphasize the
significance of the new framework, and make recomuagons for future work and
applications.

6.1 Research Questions

The research questions posed in Chapter 3 are llgctused to guide the

development of the framework. Now those questiaesravisited and answered, based

on the results obtained in this research.
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1. Although it has many advantages and good clarsiits, can SVR be used
directly in engineering problems like RSM has b&apressively demonstrated in the
past? Or what means should be taken to make #idef

Answer: If the kernel function is the Gaussian ahdiasis function, it has been
found by the author that SVR may have the numepcablem when the values of a
design variable are large. This is because the GREFnegative exponential function.
When values of a design variable are large or tgoment is small, the computer
program may underflow. Except this, SVR can diseb® used in engineering problems.
One way to eliminate this limitation is to normalithe values of the design variables, as
done in this research.

2. How can RSM and SVR be combined to form a nelaridysurrogate-modeling
method that is accurate for many types of problesitis a small training sample?

Answer: The way that the two methods are combimethis research is that first
RSM is used to fit the model, and the RSM partiadel is obtained; then the errors of
the RSM partial model are fitted by the SVR, anel VR partial model is obtained; last,
the combination of the RSM partial model and theRQyartial model is the new hybrid
model of RSM and SVR. The results in this resealaw this hybrid method is accurate
for many different responses that are constructgd small training samples (sample
size is no more than 150). The reason is that tBkl Ran capture the global tendency
very well and the SVR can capture the local no@lirehavior very well.

3. Using the previous five criteria for comparison Chapter 2, is this hybrid
method of RSM and SVR better than RSM or SVR fagieeering problems? Or under

what situation is it better?
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Answer: The five criteria used to assess the meatheffectiveness are accuracy,
efficiency, transparency, simplicity, and vulnefdypito the problem of “curse of
dimensionality”. In terms of accuracy, the hybriétivod can be better, especially when
the responses have high nonlinear behaviors asrshothe Rastrigin example. For the
other four criteria, the hybrid method is almosgasd as RSM or SVR.

4. Is it possible to quantify the five criteria,cbuthat the above comparison in
Question 3 can be reliably made?

Answer: Accuracy, efficiency, and simplicity can beantified. However, only
accuracy and simplicity are quantified in this ses@ and used for the comparison in
Question 3 above.

5. Is it possible to create and formulate a prodesswhich all pre-specified
parameters of SVR can be determined automaticaith ghat this hybrid surrogate-
modeling method is simple to use as RSM?

Answer: A process has been created and formulatadtbmatically determine the
three parameters of SVR, and the results are veog,gas shown in this research. The
process includes normalization of values of designables and responses, practical
selection of two parameters, and optimal seleatibthe third parameter by minimizing
the modified information criterion.

6. Is there a kernel function for SVR that can wavkll for all engineering
problems? If not, how to select a kernel funcfiendifferent problems?

Answer: It has been found by other researcherscantirmed by the results in this

research that the Gaussian radial basis functiosuch a kernel function for SVR.
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However, as shown in this research, a normalizasi@p is required for this kernel
function to be applied to all engineering problemerder to avoid numerical difficulties.

7. What is the best data sampling technique fas ttybrid surrogate-modeling
method?

Answer: the Hammersley Sequence sampling techngobosen as the sampling
technique for the surrogate modeling methods is tleisearch, including the hybrid
method. The HS is chosen because the user caly fleelde the number of sample
points, the correlation is very low, and the sanguets can be repeated for the purpose
of comparison. The results in this research shaogh laccuracy is obtained with the
Hammersley Sequence sampling technique.

8. What quantitative measures of model accuracycamiplexity are appropriate
for the purpose of selection of surrogate-model@upniques?

Answer: The model accuracy can be measured by tltefitting error and model
predicting error, and the model complexity can beasured by the number of the
parameters to be estimated. The model fitting eaod model predicting error are
guantitatively measured by the root mean squage ertthis research.

9. What is the proper way to combine the measufesnadel accuracy and
complexity together so that a balance is achiewtaden these two kinds of measures?

Answer: In this research, the modified informatwiteria are used to combine the
measures of model accuracy and complexity toge#imer balance these two model
measures. The results obtained in this researctv shat this way of combination is

feasible and works very well.

202



10. When the accuracy is at the same level, carselextion criterion select the
surrogate model constructed with a simpler suregaddeling method?

Answer: as shown in the RLV example, the seleatiaterion, such as the modified
information criterion BICC, does select the simptegthod, like RSM versus SVR or the
hybrid, and SVR versus the hybrid. One can seetligahybrid models are very accurate
when the hybrid method is selected for some resgsons

11. At which level is the surrogate model consedci.e. at disciplinary or system
level?

Answer: In this research, it is suggested that sheogate models should be
constructed at the disciplinary level in order tha relationships between the design
variables and the responses have physical meanings.

12. How can a consistent design solution be fourtl this framework?

Answer: In this research, a new Monte Carlo sinmebased neighborhood search
method executed with optimizers is used to findststent designs. Two search schemes
are formulated.

13. Can the optimal consistent design solutionthefsingle-objective optimization
problems with deterministic constraints be foundp@ar solutions be found?

Answer: The examples of the transport airplanegieand the RLV design show
that at least the near solutions can be found.dBssithe mathematical examples of
finding WPF show that the exact solutions of thegka-objective optimization problems
can be found, although there are no coupling vlesain these examples.

14. How can the WPF of each disjointed consistesigh zone be found?
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Answer: As long as the number of the search stagints is large enough, some
WPF points of each disjointed consistent designbmafound with the new Monte Carlo
simulation based neighborhood search method. Afenpling points in the objective
space are obtained, the WPF points are picked out.

15. How can the number of search starting pointsselected such that an
appropriate number of WPF points can be found?

Answer: A rule-of-thumb equation is given to estiemdhe required number of
sampling points for the new Monte Carlo simulatb@sed neighborhood search method.
This equation is based on an equation of MontecCzampling for statistical inference.
The design examples in this research show thatdhgber of sampling points estimated
with this equation is adequate to find approprratmber of WPF points.

16. How can evenly distributed WPF points be fotordoractical usefulness?

Answer: From a uniform sample of search startingsp the new neighborhood
search method will lead to evenly or almost eveh$gributed WPF points, as shown in
the pure mathematical examples of finding WPF dreld tvo complex system design
examples.

17. Because of the errors introduced by the suteogaodels, how can the
thresholds in the PC’s be relaxed such that trisfaobabilities can be obtained?

Answer: The thresholds can relaxed based on theehmedicting errors of the
surrogate models. A rule-of-thumb equation of tilerince for relaxation is given in this
research.

18. What is the best scheme for this new framewotkrms of ability to find WPF

solutions and computational time?
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Answer: Two search schemes are formulated for #ve Monte Carlo simulation
based neighborhood search method. Both schemefindatihe WPF and corresponding
solutions, but usually the first scheme is fasteant the second one, because the
optimization problems of the first one are simptean those of the second one.
Therefore, in terms of computational time, thetfose is better. However, both schemes
should be used since these two schemes will fifferdnt WPF solutions; and on the
other hand, theoretically the second scheme witl & probabilistic WPF that is closer to
the true probabilistc WPF, since it directly sdws the deterministic WPF
corresponding to a neighborhood.

6.2 Summary of Contributions

The main contribution of this research is the depelent of a suitable framework
to determine WPF solutions under probabilistic ¢@nsts for realistic conceptual
designs of complex systems. Additionally, seveml capabilities are created in order to
formulate the framework. Those contributions aresisammarized.

1. A systematic framework for determination of W&dtutions under probabilistic
constraints for realistic conceptual design of clamsystems. This framework is very
unique as a whole because it enables solving sstieatonceptual design problem of a
complex system in the context of multiple discipbnwith coupling variables, multiple
conflicting objectives, and uncertainties. This alaipty, to the best knowledge of the
author, is the first of the kind.

2. A new Monte Carlo simulation based neighborhsearch method. The new way
of defining the neighborhoods around the seardttirsgiapoints generated by the Monte

Carlo sampling method is one key to the succeslseoheighborhood search method and
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the framework. Based on this, the new neighborhsearch method can handle the
situation of spatially disjointed consistent desagmes, and decouple the process to find
WPF in the objective space and corresponding swistithat satisfy the probabilistic
constraints. Besides, it can be executed in pa@ilelifferent computers. In other words,
this method is a new approach of integration araddination of complex system design.

3. Automation of SVR. SVR is a state-of-the-artregate modeling method. It has
very good performance for many types of problerhfiak not been widely used in the
aerospace industry because there are three parartetee pre-selected and traditionally
only the experts of SVR are capable of doing thaskwNow all the three parameters can
be automatically determined using the method deeslan this research based on the
information extracted from the sample. Since maagigh methods rely on surrogate
models and SVR can provide accurate models in gertbe automation of SVR enables
more and more non-experts to use this advancedgaie modeling method to improve
the design results.

4. A new hybrid surrogate modeling method of RSM &VR. Although SVR is
very good, it has been found sometimes it is stdk accurate enough for some
engineering problems. By combing RSM and SVR togethith RSM capturing the
global tendency and SVR capturing the local highlinear behavior, the new hybrid
surrogate modeling method of RSM and SVR can fuarithgrove the accuracy for
problems of which SVR individually can not obtaiatisfactory results with a small
training sample.

5. A new approach for model predicting error estioma There are mainly two

ways to estimate the model predicting error of @ogate model, i.e. using new random
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cases obtained with the complex physical modelwsily a re-sampling method such as
cross-validation or bootstrapping. Since it is ioo@msuming to run the complex physical
model, the second way of re-sampling method isepredl. However, the traditional re-
sampling methods still need a non-trivial periodiwfe to run, and thus it can not be used
for the purposes of selection of one parameten®f3VR and surrogate model selection.
A new method, called random cross validation, igettgoed in this research to estimate
the model predicting error very quickly. Althoudfete is no theoretical proof yet, the
results show that this new method can give verydgesiimation of the model predicting
error. In this research, this method is investidadaed limited to the models of RSM,
SVR, and the hybrid method of RSM and SVR, butah de investigated with other
surrogate modeling methods in the future to extendsage.

6. A model selection advisor based on modified rmiation criteria. For a given
problem, if the accuracy obtained by different egate modeling methods is similar (not
necessary to be the same), the simpler surrogatkelnshould be selected. Since the
accuracy of a surrogate model is measured by théehfdting and model predicting
error and the simplicity of the model can be meaduay the number of parameters to be
estimated, two conventional information criteria arodified in this research to achieve a
balance among the model fitting error, model prigalicerror, and model simplicity, such
that the simpler surrogate model will be selectednfthe models with similar accuracy.
Thus a model selection advisor is created in tegearch based on the new modified
information criteria. The results in this reseastiow that the model selection advisor

works very well.
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6.3 Recommendations

The framework for the first time enables solvingealistic conceptual design
problem of complex systems. Strictly speaking, flaenework can indeed solve a much
more realistic problem than those which the tradal methods are solving, for example,
surrogate models are used instead of the origidas.CTherefore, this framework still
needs to be improved. Although the surrogate mobeise to be used in the future
because the complexity computer models keeps patte the development of the
computer speed, several areas are identified wihgseovements and continued focus
should be made in the future. These areas inclup@daptive sampling; 2) modeling
temporal randomness; 3) multidimensional data Vizsaton.

1. Adaptive sampling. In order to obtain a goodrespntation of the WPF with
enough and evenly distributed points, a large nurobsearch starting points are used in
this research and a rule-of-thumb equation is gieeestimate this number. However, a
phenomenon is noticed that the uniform distributmnsearch starting points in the
design space may correspond to the nonuniformildigion of sampling points in the
objective space. This phenomenon can result insiiae parts of the WPF have crowded
points while the other parts have much less poiasscan be seen in the first pure
mathematical example of finding WPF-. It is possibiat in some problems some parts of
the WPF have too less points to be practicallywls@fdaptive sampling is recommended
to solve this problem. By identifying the clusterinones in the objective space, one can
identify the less dense zones in the objective espien go back to the corresponding
zones in the design space and add more pointsesethones. By doing this kind of

adaptive sampling, not only the above problem ofresparse parts of WPF can be
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solved, but also less search starting points canseed so that the total computational
time can be reduced. This is because a small nuofletditional search starting points

in certain identified zones in the objective spatlebe needed instead of a much greater
number of additional points otherwise scatteringeér the whole design space.

2. Modeling temporal randomness. The framework waloa probabilistic
distribution is assigned around a nominal valuesth has the capability to model the
spatial randomness. However, in a real conceptesigd problem, some uncertainties
may exhibit both spatial and temporal randomnegglé¢ting such temporal behavior
may result in overestimating the possibility ofisiging the probabilistic constraints and
consequent design solutions that still can not moeodate to the uncertainties. In order
to keep the total computational cost at a managekvel, one way to consider the
temporal randomness may be scenario analysis. ifldtestep can be selection of several
critical scenarios; then find the WPF solutions éach of those scenarios; and finally
pick out the solutions that satisfy all the reqoests under any of those scenarios.

3. Multidimensional data visualization to aid thectsion making process. The
capability to find the WPF and corresponding solusi provides the decision maker the
opportunity to make more educated decision. Howetle® much more information
contained in the WPF and its solutions also makesdecision making process more
difficult, i.e. facing more information, it is hagd to make a tradeoff, needless to say a
good tradeoff. Multi-attribute decision-making (MAD techniques such as the
Technique for Order Preference by Similarity todd8olution (TOPSIS) [102] can be
used to aid the decision making process to selectlest’ solution according to the

preference order of the decision maker, but thosethods are not good for
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communication among the decision makers or betwbendecision makers and the
designers since how to determine the preferencer aréleds a big discussion. Besides,
those MADM techniques are not convenient to helplyae the rich information
contained in the WPF and its solutions to makettebdecision and reduce the time and
cost of the design process. Multidimensional dasaatization (MDDV) techniques are
better ways for this kind of communication and datalysis. One of the most popular
methods is the scatter plot matrix, which is a skttwo dimensional scatter plots
projected from high dimensional data. However, nafsthe MDDV techniques have
various limitations, such as some of those teclesgare difficult to understand, or
computationally expensive, or not intuitive [108ecently a new MDDV technique,
named hyper-space diagonal counting (HSDC) [1(Cgl|developed to overcome the
above limitations. It intuitively visualize highrdensional (more than three) data with a
two or three dimensional figure without loss of theaning of the data and the concept
of neighborhood, for example, one can display tiiermation of two objectives on one
axis, the information of two design variables oa #econd axis, and the information of
the other three design variables on the third akigss HSDC is recommended to be

introduced and used with the framework to aid theision making process.
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APPENDIX A: SAMPLING METHODS OVERVIEW AND SOME
MODERN METHODS

A.1 Overview of Sampling Methods

One important step to construct a surrogate magled iobtain the sample data.
Because the computer model is like a black boxugithe only way to obtain knowledge
about the computer model is through the sample. ddétavever, with limited time and
computational resources one can not explore theeedésign space of the computer
model for this purpose. Therefore, which point ® thosen needs wise decisions.
Sampling methods or designs of experiments arelojgse to wisely choose the sample
points. Although the research on sampling methadssdback to the early tQCotentury
and has made abundant achievements, there isrgjing research in this field focusing
on modern sampling methods, such as Ref. [20],, [2H], [105], [106], [107], [108],
and [109], to name a few.

An experimental design can be defined as “a tessasites of tests in which
purposeful changes are made to the input variaiflagprocess or system so that we may
observe and identify the reasons for change irothiput responses” [110]. The methods
to arrange or plan those “purposeful changes” aedatively known as sampling
methods or Design of Experiments. The input vaesbio be changed during the
experiment are also called design variables orofactand often represented byna
dimensional vector. Tha dimensional space defined by the lower and uppantls of
the n design variables is the design space, which aftemly the region of interest. A
design point is a specific instance of thalesign variables within the design space, and

is also called a point, or a sample point. Theefa sampling method or Design of

211



Experiment is in other words a procedure to cha@set of sample points in the design
space.

A response is a measured or evaluated quantityhef dystem or process
corresponding to a specific sample point. A sanpalie is the combination of a sample
point and its response, and a sample is the cafecf the sample pairs. The sampling
procedure is formulated such that maximum trendrmétion is gained from a limited
number of sample pairs. This trend information lwt the relationship between a
response and the vector of the design variablegsponse surface is any function that
represents the “true” relationship over the desigace. Sometimes a “response surface”
refers in particular to a low-order polynomial ftioa. Strictly speaking, such a
polynomial function should be called a responséaserapproximation, which means any
user-defined function as an approximation to thgallg unknown true relationship. A
response surface approximation is often called@gate model (or metamodel).

A sampling method is different from another in W&y or pattern the sample points
are distributed over the design space. The sample distribution pattern determines
the number of sample points for an experimentaigdeand largely affects the ability of
an experimental design to reveal the true respmuostace and the accuracy of the
consequent surrogate model. Montgomery has idedtiBleven criteria for a good
experimental design [110]. The two most imporiaiteria are identified in [23]. One is
minimum design variable correlation. In fact, tlogrelation is a kind of measures of both
uniformity and randomness of the distribution oé teampling points throughout the
design space, and the more uniformly and randohdysampling points are distributed,

the better the space filling effect is. Anothethat the sampling points should distribute
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over the design space without “clustering” of sanmgplpoints or large regions of
unexplored design space, as shown in Figure A-Erevithe richness of sample space
means the distribution pattern of the sampling {oilm practice, the characteristics of a
specific surrogate-modeling method should alsodsesiclered in order to select a proper
sampling method such that a minimum number of segpboints are required, for

example, a D-optimal design is often chosen forRB&.

Unexplored design spaeei

Design space >

Response surface—— 1 §° )
X2

[ X :

Clustering of sample points—
-1

-1 X, +1
Figure A-1: Example of Richness of Sample Space [P3

The sampling methods nowadays can be divided wmtogroups, classical DoE’s
and modern DoE’s. The classical DoE’'s were develofm laboratory and field
experiments, such as biological and agriculturgdeexments. The modern DoE’s were
specifically developed for deterministic computgperiments or simulations. The main
differences between the classical and modern DaEssummarized in Ref. [20]. The
fundamental difference is that classical DoE’s assithere are random errors to be
handled with, whereas modern DoE’s assume no ranelors. Therefore, classical
DoE’s generally put sample points at the extrenfeth® design space to minimize the
effects of the random errors, whereas modern Da€serally put sample points

throughout the design space (space filling). Oteehniques used by classical DoE’s to
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minimize the effects of random errors are experiaetlocking, replication, and
randomization, whereas modern DoE’s do not needethechniques. Another main
difference is that classical DoE’s typically assuthe possible values of a design
variable are uniformly distributed between a lovaed upper bound, whereas modern
DoE’s assume both uniform and non-uniform (suclGGasissian, Weibull, exponential)
distributions. A common attribute between classid anodern DoE’s is that the sample
points are independently generated and can be aedliconcurrently using a parallel
computing technique.

While most of the sampling methods generate thepkapoints all at once (one-
stage sampling methods), one sampling strategynderudeveloping to add in new
sampling points sequentially based on the inforomagathered from the earlier created
surrogate model [21, 111]. This sampling strategygalled sequential sampling. There
are two main advantages for sequential samplinghoakst First, those methods can
improve the accuracy of a surrogate model in aomad, interested, design region
without the waste of sampling points outside tlagion. This is useful for surrogate-
model-based optimization with searching strated@esause only part of the design space
will be identified and explored during the searchiprocess. If one-stage sampling
methods for the entire design space are used atnelgg points outside the interested
region are wasted. Second, the user can monitadbteracy of the surrogate model and
decide when to stop the sampling process, andrddisce the possibility of generating
more sampling points than necessary. One disadyaraé this strategy is that extra
computational costs are needed to decide which sewpling point to be selected or

evaluate the accuracy of the intermediate surrogaidels. Besides, there is no guarantee
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that a sequential sampling method can improve tiearacy of global surrogate models
compared to one-stage methods [111], becauseftiven@tion from the surrogate models
created previously can be misleading dependinchersample points and the surrogate-
modeling methods. However, for early design stagjebal surrogate models are often
used, thus one-stage sampling methods are usedmakimum affordable sampling
points for simplicity, instead of the sequentiahgding methods.
A.2 Overview of Classical DoE’s

The classical DoE’s were first developed in thdye2®™ century for laboratory and
field experiments, such as biological experimentsagricultural yield experiments. A
common attribute among these experiments is thaettexperiments all have random
error sources within the measured response. Tonmzai the effects of random errors,
classical DoE'’s typically put sample points at eanthe boundaries of the design space
because by doing so, more reliable trend informatian be extracted in the presence of
random errors. A theoretical explanation for dosagis given in Ref. [41] and a simpler
one in Ref. [20]. However, this leaves the intenbthe design space largely unexplored.

The most often used classical DoE’s are full aadtfonal factorial designs, central
composite design, Box-Behnken design, and alphaetiptimal designs such as D-

optimal design. The following Figure A-2 shows exd@s of some classical DoE’s.
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Figure A-2: lllustrations of Some Classical DoE’s

Despite the originally intended use of those Dolds laboratory and field
experiments, classical DoE’s can also be useddopeiter experiments — after removing
the unnecessary blockings and replications. In fi&torder RSM is often used with the
classical central composite design or D-optimaligiesbecause these designs are
efficient for this surrogate-modeling method. “Eféint” here means there are few, if any,
unnecessary sampling points.

A.3 Orthogonal Array Sampling

Orthogonal array sampling is a space filling samplinethod that makes use of the

orthogonal property of an orthogonal array to umifty distribute the sampling points

throughout the design space [112]. Its algorithmsigollows.

i = m(A')+U/
» q

, 1<isn/l<js<s (A.1)

where x, is the ir design variable that is normalized to [01] frota original
interval [x', x" ], n is the number of design variablesjs the number of sample points,

A is an orthogonal array (matrix)7 (A’ denotes the(i, j)" element inA, U is a

uniform random value on [0]1], arglis the number of bins or levels for each design
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variable (@ is the same for all design variables). The supgrs¢ denotes the sample
point number.

An orthogonal array (OA)A of strengtht (t <n) is a matrix ofs rows andn
columns with every element being onegphumbers:0}],...,g— 1such that in angxt
sub-matrix each of thg' possible rows occurs the same numbeof times, which is
actually the definition of “orthogonal” herd. is the index of the OA. Thus an OA is
denoted byOA(s,n,q,t )with s=Aq'. The following matrix is an example of OA with
s=4,n=3,q=2, andt= 2(thus A = 1), and Figure A-3 shows the four sample

points in a 3 dimensional design space generateli®pA(4,3,2,2).

P =, O O
P o r o

X3

v

X1

Figure A-3: Example of Three Dimensional OrthogonalArray Sampling

The OA sampling has two significant advantagesstFbbecause of the orthogonal
property of an OA, the sample points are uniformigtributed in anyt dimensional

projection of an dimensional design space, see Figure A-3 for elangecond, unlike
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LHC sampling and HS sampling, OA sampling may hsasaple points near the corners
and/or boundaries of the design space. The OA sagphs two main disadvantages.
First, the user can not freely decide the numbesaaiple points ift > Irecall s= Aq').
Second, the OA generation is not trivial and thus nhot convenient to generate an OA
sample instantly. Usually frequently used OA’s puélished in tabular form and the user
has to pick a proper OA table and input it into tbenputer for sample generation.

The Equation A.1 gives only the algorithm for desigariables with uniform
distributions, but similar to LHC sampling, the Gsampling can be used for design
variables with non-uniform distributions.

A.4 Uniform Designs

Since the uniformity of the sample point distriloutiis important to the accuracy of
the surrogate model, why does one not try to tisteé the sample points uniformly
throughout the design space directly? Uniform desgy such a sampling method to
scatter the sample points uniformly in the firstqd, and has been popularly used since
1980 [108, 113, 114].

The algorithm of UD begins with the measure of amifity of the sample point
distribution. SupposeC" denotes the design space of tine design variables,

Ps={xl,x2,...,xs} denotes the set of the sample points, &dP, depotes the
discrepancy of the empirical joint CO,(X of P, from a joint uniform CDFF(X )on

C". Then the uniform design of sample points is alediby finding the ones that have

the minimum discrepanci(P, 9Qver all possibles points onC".

The empirical joint CDA(X )is defined as:
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Fs(><)=§il{xi < X} (A.2)

where I{}is the indicator function, giving 1 if the conditi in the parenthesis is
satisfied or O otherwise.
The most commonly used discrepancy function isngefias:
D(R) = sugF,(X) = F(X)| (A.3)
xrc
Obviously it is not trivial to find the uniform digg sample points given the sample

size s and the design spadc®", therefore, like the OA’s, the UD’s are publishied

tabular form for use. However, for= , the UD is easily given as

ps={i,i,...,25-1} (A.4)
2s 2s 2s

with D(F’S):Zi. Forn>1, an approximate UD can be given, and is called a
S

unique UD (UUD). The UUD can be shown to be the es@® the lattice sampling (see
Equation 2.7).

The UD sampling method has two significant advaegag.e. uniformity of the
sample point distribution and the freedom of therus choose the number of sample
points. It should be noted that the informatiortha distributions of the design variables

are intentionally ignored in UD in order to getfanmly distributed sample points.
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APPENDIX B: SURROGATE-MODELING PRELIMINARIES AND
THREE MODERN METHODS

B.1 Statistical Inferences

Statistical inference can be defined as the sciaricdeducing properties of an
underlying (probability) distribution function of @ndom variable from a sample of a
population, where the population is all possiblesasliations available from this
probability distribution and a sample is a partadubset of the population [115].

There are two main approaches to statistical infeze

1. The parametric or particular inference;

2. The non-parametric or general inference.

The parametric inference is the approach of skedisinference based upon a
distributional assumption for the population, white non-parametric inference does not
make any such assumptions. Thus the non-parametference is also called
“distribution-independent” inference.

The parametric inference is developed from the rg@see statistics that shows
many events of reality can be well described byesmple distribution functions. For
example, the dimensions of a product are in genecamally distributed and the
expected life of an electronic device is in genesglonentially distributed. The creation
of parametric inference is based on the followietd:

One knows the problem to be analyzed very well ead find some (specific)
simple distribution functions or the combination thfose distribution funcations to

describe the problem very well.
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Then the task of parametric inference is to esentia¢ parameters of these assumed
distribution functions, e.g. the mean and variant@ normal distribution, and/or the
coefficients (parameters) in the combination fumctof those assumed functions, e.g. the
coefficients in a polynomial function.

Although the parametric inference has been suadéssfised to solve many
problems in different areas, its results dependttmn validity of the distributional
assumption on which it is based. If a normal disttion is made, whereas the unknown
true distribution is skewed, then the inferencalltes misleading. This fact leads to the
creation of non-parametric inference based ondhewing belief:

One does not have reliable a priori information wibthe distribution function
underlying the problem to be analyzed or the probile so different or complicated that
it can not be described by only known simple dusttion functions or combinations of
those simple distributions, so it is necessaryind &n approximation to the true one of
the problem.

Then the task of non-parametric inference is td anmethod for any problem that
can infer an approximation function to the truetrthsition function from the given
sample, without making assumptions about the distion function.

One straightforvard method of non-parametric infese is the empirical
cumulative distribution function (CDF) method. Téepirical CDF will converge to the
true CDF with increasing sample size, and thisiésresult of the classical Law of Large
Numbers. Another method is to establish a princgdea decision criterion to find a
function or a combination of functions from a giv&at of functions (including the simple

distributions and polynomials) that best approxesathe unknown true distribution
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function with increasing sample size. One such gpie is the Empirical Risk
Minimization (ERM) principle, which will be discued later.

The non-parametric inference is developed becadséhe limitations of the
parametric inference and is widely adopted in esgjimg and other sciences because of
its general validity as a result of the weak dmttional assumptions. However, it has to
be indicated that the parametric inference shoaeldd®ed if the distributional assumption
is valid for a real life problem, because it wilopide a more precise or more powerful
analysis than the corresponding non-parametricenfee.

B.2 The Problem of “Curse of Dimensionality” of theParametric Inference

The problem of “Curse of Dimensionality” is a sloaring of parametric inference
that was discovered in the 1960s when computergedtéo be widely used to analyze
complex models that have a large number of desagiaies (factors) or obtain more
accurate approximation. It was observed that thapsa size and the computational
resources are required to increase exponentialtiy tne increase of the number of
factors to be considered. This phenomenon is cdiled?. Bellman as the “curse of
dimensionality” [44].

For example, the Weierstrass theorem states thatcantinuous function oh
design variables can be approximated on a finteral by polynomials with any degree

of accuracy. However, this polynomial approximatman only guarantee the accuracy
O(N~'") [44], whereN is the number of terms of the polynomial ands the number

of derivatives of the function to be approximatéderefore, even it is a small number,
in order to obtain the desired level of accuragynomber of polynomial termd has to

be increased exponentially with the number of desigriablesn. Thus the sample size
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and computer resources also have to increase extmlhe in order to obtain the
parameters in the polynomial approximation. Ortimeo words, the accuracy level of the
parametric inference increases slowly with the ease of the number of polynomial
terms and increase of the required sample sized&ssif the number of polynomial
terms is fixed, the increase of sample size canl@asl to trivial or even no increase of
the accuracy level.

Therefore, this problem of “curse of dimensiondlitgeans that for the real life
multivariate problems with dozens of or even huddref design variables, to obtain a
good approximation one needs a large set of funstand a large required sample size,
and one can not rely on increasing sample sizeda@ase the accuracy level because the
accuracy level increases slowly with increase ef stample size. This is a considerable
limitation of the parametric inference and thereforany researchers now do not use it to
do statistical inference.

B.3 Problem of Regression Estimation and Related Bision Principles

In this section the problem of regression estinmatgodescribed and the principles

used to select the optimal regression functionrdareduced.
B.3.1 Problem of Regression Estimation
Regression is a method to obtain a mathematicaioakhip (function) between the

mean or expected value of a response varigbéand a vectoiX of predictor variables

(X, %,,...,X,) based on a sample or a set of observed pairs [116]

S{(¥ X0, (V20 X), o (e X}
where X, is called a sample point, arfg, X, i) called a sample pair. The values

X, of X are deterministic because the predictor variadtescontrollable, and values of
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y have a random component and follow an unknownilligton because usually those
values are observed results of real life phenomEa.
The above sample is generated like this: let tlutove X,'s appear randomly and

independently according to a known or unknown fidestribution f, (X), then for each

X, a value ofy is selected according to a conditional distrihmtib(y|X) . In this case,
there exists a joint distribution functioh(y, X) = f(y|X)fx(X), which is unknown
because at least the conditional distributib(ry|X) is unknown.

This conditional distributionf(y|X) actually describes the relationship between

the response variabjeand the predictor variable vectdr. However, it is very difficult

to estimate this conditional distribution basedtbe sample data. On the other hand,

people are more interested in the expected or regnfor the purpose of prediction:

r(X) = [ yf(y{X)dy (B.1)
This functionr(X )is called the regression function, and the problemits
estimation based on the given sample data is cilke@droblem of regression estimation.

Because of the unknown conditional distributib(1y|X), it is still impossible to

obtain the regression functiarfX . Pne can hope to obtain an approximation to the

regression function by the following method [44]:
According to the characteristics of the problemdsd, assume a family of

functions g(X,8 ), in which 8 is called the parameter and is a scalar or a weito

scalars to be determined; Then under conditions

[[y2f(y, X)dydX < oo, [[r2(X)f (y, X)dydX <oo
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the problem of regression estimation is reducedht® problem of minimizing the
following risk R(8) based on the given sample data:
R(6) = [[(y-g(X,8)* f (y, X)dydX (B.2)
If the (real) regression function(X is in the function familyg(X,8 ) the
minimum of risk R(@ ) is attained at the regression functiofX ; Ij the regression
function r(X ) is not in the familyg(X, 8 ) the minimum of riskR(6 )is attained at the

function g(X,8") that is closest to the regression functigX in yhe metricL, (P):

PUL(X), £5(X) = [ (1,00 = F,(X)? f (X)X
To prove this, first denote:
Ag(X,6) = g(X,8) —r(X)

Then the Equation B.2 can be written as

R(9) = [[(y=r(X))* f (y, X)dydX + [[ (Ag(X, 6)) f (y, X )dydX
=2[[Ag(X, O)(y ~r (X)) f (y, X)dydX

The third summand above is zero, because accomliBguation B.1

[Jag(X,6)(y =1 (X)) f (y, X)dydX
= | Ag(x,e)[[nyX)fx(X)dy- [ r(X)f(y,X)dy]dx
= Ag(x,e)[fxooj yE () X)dy = r(X)] f (y,X)dy]dx
= [Bg(X,0) f, (X)r(X) =r(X)f (X)]dx =0

Thus we get that
R(O) = [[(y=r(X))* f(y, X)dydX+ [ (g(X,8) =r(X))* f, (X)dx  (B-3)
Since the first summand is independent of param&tehe functiong(X, 8" )that

minimizes the riskR(6 )s the regression function(@ if) r(6) is in the function family
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g(X,8); or itis the closest function tio(@ i the function family in the metrit., (P) if
r(6) is not in the function familyg(X, & .)
The loss function family is defined as
L(Z,6) = (y-9(X,8))* (B.4)
where the vectoZ consists of the variablg and the vectorX , and thus has
(n+1) elements.

The following Figure B-1 shows the simple univariibear regression model, in

which the sample points are shown as the black dwtsalh the conditional distributions
F(y|x) are assumed to follow the samd(0,0° distribution. In Figure B-1 the
regression line passes the expected values or noeéathe normal distributions of the
corresponding response valugs vy,, ..., Y, and the sample points scatter around this

regression line.

y 4 Conditional Conditional Conditional
distribution of y, distribution of Y, distribution of Yy,

\ )

ﬂo + ﬂlxk """"""

Regression Iing

ﬂO +ﬁ1X2 ____________________________ y:ﬁo +ﬂlx
,Bo + 181)(1 """""" :’ _____

v

X X

X
2
x

Figure B-1: Simple Univariate Linear Regression Moel (Based on [115])
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B.3.2 The Empirical Risk Minimization Principle
In section B.3.1, it has been shown that the regnegzoblem can be reduced to

the problem of selection of the best function ia #ssumed function familg(X,& By
minimization of the riskR(€ ) However, since the joint distributidr{y, X i3 unknown,
the risk R(6) in Equation B.2 still can not be minimized dirgctThen, what other

options are available? The answer is to minimizeetheirical risk R, (6 )

Using the concept of loss functidi(Z,8 (note that the loss function is not limited
to the form in Equation B.4, the Equation B.2 carrdwritten as
R(6) = j L(Z,6)f(Z)dZ (B.5)

Then the empirical risiR,, (¢ )s defined as

Rul8) =22 L(Z.6) (8.6)
i=1
The minimization solution of the empirical risR, (6 i3 considered as an

approximation to that of the true ri$R(@ , and the principle of solving the empirical risk

function as an approximation to the solution of thee risk function is called the
Empirical Risk Minimization principle. Obviously, ith principle is distribution
independent. Therefore, it can be applied to mgpgd of problems.

This ERM principle is possibly from the idea thia¢ tempirical CDF will converge
to the true CDF with increasing sample size, althotlglh empirical risk does not
necessarily converge to the true risk with increpsgample size. However, it can be

proved that some assumed function familigX,6 arg necessary and sufficient for the

empirical risk function to converge to the truekrfanction, and the rate of convergence

depends on both the property of the assumed funeta the sample size. Besides, this
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principle does have its foundation: it was propoveded on summarization of the
methods used in learning machines (computer prag)ramnce the 1960’s that can do
more or less generalized regression (regressiomoutittnowing the distribution), and the
success of these learning machines shows the g#aess of this principle [44].
B.3.3 Model Selection and the Principle of “Occam’&®azor”

By minimizing the empirical risk function, the valwf the parametef can be
determined. This process is called parameter sa@tedd question is raised, how do we

select the best function familg(X,8 7 This question is raised because of the

observations: a more complex model usually has moweerful representational capacity
and can typically fit the sample data better, itndt necessary to provide better
prediction for further/future data (the data outsaf the sample data). This process of
function family selection is called model selection

A general philosophical principle known as “Occamézar” is used for model
selection.

Entities should not be multiplied beyond necessity.

— “Occam’s razor” principle attributed to William Oguogc. 1285 — 1349).

The exact interpretation of Occam’s razor is undscussion. The most common
one for model selection is: the unnecessarily cemphodels should not be preferred to
simpler ones. It has to be pointed out that thierpretation does not always prefer
simpler models; in fact it just does not like thenhecessarily” complex ones, in other
words, if the simpler model can providinilar level of accuracy, the complex one is not

preferred; otherwise, if the accuracy of the simglee is much worse than that of the
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complex one, the complex one is preferred. Theeefthis principle needs to be used
with other principles or methods that can balanoeia@cy and model complexity.

At the first look, one may think the principle of @ea’s razor can not be proved
mathematically, and thus its justification can ordly on two facts: first, people prefer a
simpler model if the simpler one can fit the samgéga as well as the complex one;
second, this principle has been successfully aggbepractice in the past. However, it
can be shown that the Bayesian probability theoppstis this principle quantitatively
[117].

Suppose that two model, and M, can fit a given sample dafa to the same
level of “goodness”, and!, is simpler thanM,. Now we want to know which model is
the more probable one based on the sample datapidilem is equivalent to comparing

two conditional probabilitiesP(M, | D) and P(M, | D).

According to the Bayes’ theoremP(M,|D)=P(M,)P(D|M,)/P(D) , and
P(M, |D)=P(M,)P(D|M,)/P(D), whereP(M, )is the prior probability oM, and
it reflects a person’s subjective preferenB¢D | M, is dhe probability that the data set a
model is based on happens to be the saplethe model isM,, and it is also called
the evidence foM,; and P(D )is the probability that the sampl@ is selected. This

gives the following probability ratio:

P(M, D) _ P(M)P(D|M,) 6.7)
P(M, D)  P(M,)P(D|M,)

As shown in Figure B-2, the complex moddl, by its nature can fit a greater

variety of data than the simpler o, , thereforeP(D |M,) > P(D|M,). Suppose one
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does not have preference for any of the two modeiss P(M,) = P(M,) . Therefore,
according to Equation B.7°(M,|D) >P(M, | D), i.e. the simpler modeM, is the

more probable one.

Evidencea
P(C|M,)
P(C[M,)
e >
D Data rangeC

Figure B-2: Occam’s Razor Is Supported by Bayes’ Téorem [117]

One simple example to demonstrate Occam'’s razbeisdlection between a model

of ax+b (a first order polynomial) and a model ok’ +dx+e (a second order
polynomial). Obviously, the second model can acelydit not only samples generated
by a first order polynomial but also samples geteerdby a second order polynomial,
while the first model can accurately fit only sansplgenerated by a first order
polynomial. However, if both models can fit a givemgple well, then the model of the
first order polynomial is preferred.

B.3.4 The Structural Risk Minimization Principle

Although the ERM principle has been successfully liadpto generalized

regressions, it causes the problem of overfittieganise of its implication to minimize

the empirical risk functiorR, (6 nt any cost, e.g. the traditional ANN adopting this

principle suffers this problem. Essentially the lgemn of overfitting is the consequence
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of an unnecessarily complex model being selectbéerdfore the principle of Occam’s
razor can be used to overcome this problem.

The combination of the ERM and Occam’s razor prilesiped to a new principle,
i.e. the Structural Risk Minimization (SRM) prin&p In contrast to the ERM principle,
this SRM principle minimizes an upper bound on (pirical) risk function and thus
finds the optimal compromise between the informatomount of sample data, and the
complexity (or accuracy, assuming the greater tmepdexity, the higher the accuracy) of
the approximation of the sample data by the fumctibosen from the assumed function

family g(X,8) . This compromise is achieved by capacity contmehich is the
embodiment of the Occam’s razor principle. The “catyahere can be considered as the

capability of a function to make the empirical riskction R, (6) converge to the true

risk R(d), and is not necessarily the number of parametérthe function family
g(X,0) [44].

The SRM principle has been first realized in thehod of Support Vector Machine
by V. Vapnik in late 1970’s [45], and has been shownbé superior to the ERM
principle. As the application of SVM to regressiohe tSupport Vector Regression is
gaining popularity due to many attractive featusied promising empirical performance
inherited from the SRM principle. SVR is one focustlus research work and will be
introduced later.

B.4 Neural Network

The (artificial) neural network (ANN or simply NN) sogate-modeling method is

inspired by the way that biological neural netwofisy. the brain) function that enables

those networks to cognize and process new data fraside [61, 118]. To emulate the
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functions of the biological neural networks, the gibgl structures are abstracted in a

ANN as three kinds of layers: the input, the hidderd he output layers, and each layer

generally consists of a large number of simple @semg units, which are called nodes

corresponding to the neurons (Greek: nerve cella)bmlogical neural network.

There is only one input layer and one output lagat,the number of hidden layers

can be greater than one. Each node in one lagemisected to nodes in other layers in a

specific way, and there is no interconnection betwa®y two nodes in the same layer in

a non-recurrent ANN, as in the example shown in Fi@i8 Therefore, the structure of

a non-recurrent ANN is just a much simplified versioihthe real biological neural

network. Although a recurrent ANN mimics a biological Nietter with connections

among all nodes, it is too complicated and not jepas a non-recurrent ANN.

Input 1

Input Z

Input &

Hidden laye
—— =7
Input laye | -
’ n utput laye
_.> y
‘04" ‘ ——  Output !
X =3
— Ly ’A i “’d
LR <2 .
——>» Output :
—>

Figure B-3: Example of Multi-Layer Feed-Forward Non-Recurrent NN

Like a biological neuron, a node receives inputadabm outside, processes the

data, and sends out an output datum. The workingepsoof a generic node is shown in

Figure B-4. This node has 2 inputs=1 and x, = 2; the inputs are weighted by the

weight factorsw, =1 and w, =2, respectively; in addition, it has a biass afid a
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corresponding weight factos, = ; Bince the sum of the weighted values including the
bias term, i.ew,b+wx +W,X, = 6is greater than the threshold val@e= , which has

to be reached or exceeded for the node to produsacion (the neuron “fires”), a
reactionR = 6 is obtained; then the reactidhis processed by a transfer functién
which is a hard limiter function in this examplendlly, this node produce an output

o=1.

Inputs

Figure B-4: Working Process of a Generic Node [119]

The nodes in different layers perform differentqasses. The nodes in the input
layer directly pass the inputs to the nodes inhikdelen layer, and each node has only one
input with a unit weight factor. These nodes havebias, threshold value, or transfer
function. The nodes in the hidden layer usuallyfqren the whole process shown in
Figure B-4, except that usually the threshold vakienot used (i.e. set to negative

infinity). The nodes in the output layer have npl#iinputs, and outputs of these output
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layer nodes are the weighted sums of the inputssélhedes have no threshold value, or
transfer function.

One popular transfer function is the logistic sigthdiinction as below, which
always outputs a value between 0 and 1.

1

S(R) = 1+eR

The number of nodes in the input layer is the samethe number of design
variables, and the number of nodes in the outpyerias the same as the number of
responses. It has been shown in Ref. [120] that an A&Napproximate any continuous
function arbitrarily well as long as there are erfougpdes in the hidden layer(s).
Therefore, usually only one hidden layer is used @@ number of nodes in this layer
can be determined by the required accuracy levektwer criteria that will be discussed
later.

If only one hidden layer is used and the transtsrcfion is the above sigmoid

function, the output of a node in the hidden lagamn be given as

H; =S(Rj):3(bj +iZ:1:V\4;><ij

whereH, is the output of the™j hidden nodeR; is the reaction of the"jhidden
node;b; is the bias term for th& jhidden nodew; is the weight factor for thd'i design

variable; x is the ' design variable; and is the number of design variables.

Then the output of a node in the output layer,a.eesponse of this ANN can be

given as
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A NH
Y, =c +> dyH,
=

whereY, is the K’ responser;, is the bias term for the"kresponsed,, is the

weight factor for the] hidden nodeH ; is the output of the"j hidden node; andN,, is

the number of hidden nodes.
Combine the above three equations together, a mespof this ANN with the

sigmoid function as the transfer function is gien

” Ny n 1
Y, =c, +Zdj{1+ex;{—bj > w Xiﬂ (B.8)
j=1 i=1

The process is called training or learning thainestes the weight factors and bias
terms in Equation B.8. The two most common kindgahing processes are supervised
and unsupervised training. If the ANN is trained tatch the known values of the
responses (target responses) for a given set gblegmoints, this is supervised training.
Supervised training is used for surrogate-modellhghere are no target responses to
match, the weight factors and bias terms are adjustording to certain given
guidelines, this is unsupervised training. Unsuadi training is used for pattern
recognition, classification, and control.

The training process itself is actually an optinima process. The optimization
objective for supervised training is to minimizestmodel fitting errors between the
target and predicted responses. There are manyiaption algorithms that can be used
for ANN training, such as gradient-based methodsu&ited Annealing, and Boltzmann
machine [119]. The Matl&bNN toolbox has a variety of optimization algorithrits

selection.
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The main disadvantage is that ANN needs a large m@gisample, in terms of
thousands, in order to obtain good accuracy. Adukiy, there are two issues have to be
considered when selecting an optimization algoritRirst, there is the probability that an
algorithm becomes trapped in the local minima. Hé tproblem is known to be
multimodal, it is better to select a global algomt, such as Simulated Annealing or
Genetic Algorithm. Second, if the number of nodeghe hidden layer is also to be
determined during the training process, a tradsbffuld be carefully made between
overfitting and underfitting. An overfitted ANN surragamodel usually will have good
model fitting accuracy but bad model predictinguaacy. An underfitted ANN surrogate
model is the opposite: bad model fitting accuraay better predicting accuracy. The
early stopping and regularization methods can led €@ this tradeoff [37].

B.5 Gaussian Process

Gaussian Process has been applied to various preldeanlarge number of fields.
It is a type of surrogate-modeling method that assithat the (joint) distribution of the
predicted values of the surrogate model at anytpois a multivariate Gaussian
distribution [121]. Two good summaries of the GP tigesire provided in Ref. [40] and
[122], and a realization of the GP theory is givemRef. [37]. The GP realization given in
Ref. [37] is as follows.

Given a samples, :{(yl, X)), (Vor X5)5e s (Vs XS)}, assume a GP surrogate model is
constructed based on this samflesuch that the error term in Equation 2.14 follows a

identical independent normal distributiofi(z,0” . Then the probabilityP(Y, | S,,© )

follows a (joint) Gaussian distribution and is giusn
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P(Y,|S.,0) =

)—;ex;{—l(vs—ufc:(vs—m}
Jemie| L 2
whereY, =[y,, ¥,,...,¥.]", C. is the covariance matrix for the sam{@g, 4 is the

mean, andd is the set of parameters in the covariance funciiod will be given later.

Then, when a new paify,,,,X.,, B included, the probabilityP(Y,, |S,, )s

similarly given by

P s+l s+1’ e e~ 1 s+1 Cs+1 s+l
(Ve | S (277)5+1|Cs+1 x{ - 1)" Coi(Y. ,U)}

C., M
Where Cs+1 :{MS :| ' M =[C(X1'Xs+1)!"'lC(Xs’xs+l)]T ’ K :C(Xs+1lxs+l) 1
K

T

You =1V Yoo Yer Yol T @nA Sesy i { (Ve X0 (Vs X5 )see s (Vs X (Vorrs X))

The probability of obtaining a single respongg is given by

—3 )2
P(You | S5 X0, 0) = = ex{_ Ve zysﬂ) }

(el

where §.., =MTCY,, ando; =x-MTC;'M, i.e. the predicted response for the

s 's?

Ysu1

new point X,, and its variance.

The popular covariance function is given by

kl

C(Xi,Xj)=6§exr{— 3O~ X) ’k)}+6?2+5ijt93

wheree:{Hl,ez,es,rk:lwn} are the parameters to be estimated based onrtiesa

andg; = Lif i = j; otherwise 0.
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The posterior probability of the parameter 8ebased on the known sampe is

obtained by Bayes’ theorem

POIS) = P(YSF!(%'?S) 5’(@)

Usually the parameter s@ is estimated by maximizing the natural logarithmic

likelihood of its posterior probability.

L=InP(©]|S)=InP(Y,|S,,0)+InP(®)-InP(Y, | S,)
=InP(Y, | S,,0) +In P(®) +const

= —%In|CS| —%(YS ~U)"C,(Y, ~) = SIn 27+ (In P(©) + cons)

where P(© )is the prior knowledge about the probability®f which can be either
assumed to be a specific function®for just ignored [123]; the termons comes from
the fact thatP(Y, | S, )is independent 0® although its is unknown and thus can also be
ignored; andu is assumed to be zero. Then, by maximizingvith respect ta® for the
sampleS,, the estimation 0B is obtained. Thery,,, =M "C_'Y, is used to predict the
response for the new poiixt,,, .
B.6 Kriging

Kriging is a widely applied surrogate-modeling negtloriginated from the mining
and geostatistical fields [111, 60, 21, 124-12He Kriging model has two parts:

y(X) = f(X)+Z(X) (B.9)
where y(X ) is the surrogate model function of intere$t(X is)a function

signifying the global behavior or tendency of tksponse, usually a polynomial function

k
f(X)= Zﬂj f,(X) of design variables with unknown yet coefficieflss and known
j=1
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monomials f,(X )'s (for example, f(X) =5, + X + 5,X, +B.x2), and Z(X ) is a

function that signifies the local variations comest with, but not limited to, the

immediate neighborhood, and is assumed to be eagah of a stochastic process with
mean zero, variance”, and nonzero covariance. The covarianc& (X betyeen any
two of the sample pointX; and X, is given by:
Cov[Z(X,),Z(X)] = a?R(X;, X;) (B.10)
where R(X;, X, )is the correlation function between the two sanmalts X; and
X;. The correlation function is assumed by the uaed the most popular one is the

Gaussian correlation function:

R(X;, X)) = eXp[_in(xik - Xjk)z] (B.11)

k=1

where g, ’s are the unknown parameters used to fit the mogebnd x;, are the
k™ components of the sample poiXs and X, respectively.

Let Y, =[Y,,V,,....Y.]' as the responses of the sample pdiXs X,,..., X, , thén
the linear prediction equation is used for a nemtpX :
9(X) =CT(X)Y, (B.12)
where C(X ) is a sx 1vector to be estimated through the sam@ge X)) ,
(Y5, X,), ..oy (Vs Xg). Actually, once the values of the coefficienfs’s and the
parameterd)’s are estimated through the sample, the estimaifd@(X) is obtained.

However, the actual form d€(X does not need to be known as shown below.
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Usually an optimizer such as Simulated Annealingsed withg,’s as its design

variables, and the objective of the optimizer ismiinimize the Akaike information

criterion [124] (which will be discussed later) maximize the likelihood function (see
Ref. [115] for the definition) ifZ(X,; ) are normally and independently distributed with
mean zero and variane® [128]. Of course, ifg,’s are given a priori as many practices
do (such as many examples in Ref. [124]), thisnoer is not needed.

For each set of values & 's given by the optimizer during the optimization
process, the values ¢ 's are solved by minimizing the mean square erfd8E) as
follows [21]:

MSHE (X)] = E[C" (X)Y, - Y(X)]*
subject to the unbiasedness constraint:
E[CT(X)Y,] = E[Y(X)]
Let ff (X) =[£,(X),.... f (KX)o B=1Bor- s Bl » REIRX, X )]s, 1Si<s,

ff (X,)
l<j<s, F= : , and r(X) =[R(X,, X),...,R(X,,X)]x , then without
ff (Xs) | oo

knowing the actual form o€(X Jdhe estimations are obtained as [21]:
B=(FTR*F)FTRYY,, and §(X) = ff (X)B+r(X)RY(Y,-FB)  (B.19
Alternatively, instead of the two-step method abhmléthe §,’s and S,’s can be

estimated by maximizing the likelihood function wrinimizing the model predicting

error using the cross validation method [125].
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One major disadvantage of Kriging method is thatdtirrogate model construction
can be very time-consuming if the sample sizergel§60]. This is because the inverse of
a large matrixR is by no means non-trivial andradimensional optimization problem
has to be solved. Besides, the correlation ma&rigan be singular if some sample points
are close to each other.

Since the Kriging surrogate model has two pares, & polynomial for global
behavior and a realization of a stochastic prot@skecal variations, the Kriging method
can be thought of a hybrid method of RSM and GBné expands the neighborhood for
the second part to include all sample points okierentire design space [37]. However,
Kriging does not make complete use of the Bayesieps that the GP does.

If one focuses mainly on the first part, such a@egukigh order polynomials for the
first part, it could be argued that Kriging is amgenented RSM; on the other hand, if one
focuses mainly on the second part, such as usmg drder polynomials or even a
constant term as the first part, then Kriging immethod dominated by local behaviors.

Therefore, Kriging can be tailored to resembleeagithf RSM and GP.
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APPENDIX C: USING KARUSH-KUHN-TUCKER CONDITIONS TO
CALCULATE b IN SVR
The Karush-Kuhn-Tucker (KKT) conditions [129] arecessary conditions for a
point of a constrained optimization problem to e dptimal solution. See section 2.1 for
the standard form of a constrained optimizatiorbfgm, and see Equations 2.25 for the
optimization problem for SVR. These conditions ased to calculate the intercept term

b in SVR as follows.

Minimize %||\/V||2 +CZS:(L(E[ +&)+L(& +¢))

e (2.25)
Y, —(W,®(X))-b<se+&"

subjectto (W, ®(X,))+b-y, < £+&
& =0

Denote
Z=[W,b,&,&1,i=1...,s
F(Z)= %|[vv||2 +c§(ug; +e)+L(E +£))
9'(2) =y, ~(W, (X)) -b-g-¢&
g (2) = -y, +(W,o(X)) +b-e- ¢
m(2) ==&
m(Z) =-¢

Then we get the first gradients
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0, F | W
a.F 0

0.F| |CoL (& +2)]

~o(xX,) (X,)
w@= | |\0g@=| |
0 -1

0 0

@)= om@=| |

0 -1

The second KKT condition states that the produ@ béagrangian multiplier and an

inequality constraint has to vanish. From this,geé

ai (e+& -y, +(W,D(X;))+b) =0 (C.1)
a (e+& +y, —(W, (X)) -b) =0 (C.2)
n'é& =0
n¢ =0

The third KKT condition states that the grand sufmthe first gradient of the
objective function, the sum of the products of laaggian multiplier and first gradients of
the inequality constraints, and the sum of the pctsl of Lagrangian multiplier and first

gradients of the equality constraints has to varksbm this, we get:
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W ~d(X;) D(X,) 0 0
0
P S |1 S J 0w, 0|_4 (C3
CoL,. (& +¢) +iZ:1:ai 1 +iz:1:ai 0 +iZ:1:/7i 1 +iz=1:,7i 0 =0
CoL, (& +¢) 0 -1 0 -1

Subtract Equation C.2 from Equation C.1, and taka sf the differences over the

indexi , we get

€Y (a7 ~a)+ (e E ~arE) - Y yi(a +ay)+
S|=1 i=1 S i=1 (C.4)
Z(ai+ _ai_)<W’cD(xi)> + bZ(ai+ +a7)=0

i=1 i=1

From Equation C.3 we get

W_Z(ai+ —-a;)®(X;)=0
i=1

_Z(ai+ -a;)=0

i=

CoL,.(& +&)-Y a7 =>n =0
' i=1 i=1

oL, (& +&)-Y a7 =D =0
' i=1 i=1

Thus we get

W = Z a’ —a;)®(X)

i=1

. (C.5)
Z(aiJr -a7)=0

We can see that Equations C.5 are the same asi@tuat28 and 2.29.

Substitute Equations C.5 into Equation C.4, andestdr b, we get
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b = ;(Z (@ +a7) =Y (@ ~a YW, D(X)) - Y (@& —aff;)j

Z(ai+ +ai_) i=1 i=1 (C6)
= i;[i y(a +a7)- ZS:(ai+ —a;)a; —a;)k(X,, Xj)—i(afgﬁ* —a{f{)}
(ai+ +a’) = L= =

Substituting the results from Table 1 into Equati©6, we get the results of for
different loss functions.

For quadratic loss function,

b = ;(z V(@ +a)- 3@ —ap )] - k(X X,) —Zii((af)z - Wf)z)}
S(ar+an)\ o

For Laplace loss function,

b = s;(i yi(a7 +a7) - ZS:(W —a;)(ay —apk(X, Xi)J

For ¢-insensitive loss function,

b :s;(iyi(a: ta;)- i(a: _ai_)(a;r —a;k(X;, XJ)]
a2
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APPENDIX D: ERROR MEASURES AND TWO MODEL

ASSESSMENT AND SELECTION METHODS

D.1 Model fitting Error and Predicting Error

The model fitting error is measured by the diffeenbetween the predicted
response values by the surrogate model and thedspense values of the sample points,
while the model predicting error is measured by difeerence between the predicted
response values by the surrogate model and thedspense values of the out-of-sample
points. The predicting error is sometimes called detorepresenting error or
generalization error. Because the surrogate medmnstructed from a given sample, the
out-of-sample points are unknown to the surrogateleh and thus are called “new”
points to the surrogate model.

A good surrogate model should have both low moittehd error and low model
predicting error, since the model fitting errorailsout the known sample and the model
predicting error is about the (future) new poitdewever, there is no direct relationship
between the model fitting error and model predgimror, i.e. a low model fitting error
can not guarantee a low model predicting error.[68 model predicting error has to be
approximated since the number of out-of-sample tpasinfinite. Randomly generated
new points can be used to reliably approximate rtioglel predicting error, but this
increases the cost to run the time-consuming psysased models. The re-sampling
methods can be used to approximate the model pirgglerror without using new points.

Of all the existing error measures the root meanaws® error (RMSE) and

maximum absolute error (MAE) are most popular, show Equations D.1 and D.2,
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respectively. Those error measures can be usece&sure both the model fitting error
and model predicting error. RMSE measures the dwagsproximation error, while MAE

measures the local approximation error revealirggoreal areas of poor approximation
[35]. Obviously, RMSE and MAE are non-parametri¢ireations of the error, since

calculation of these two measures does not nekdaw the distribution of the errors.

(D.1)

MAE =maxy, - ¥, i=1...n (D.2)

<=1 error

wheren,,,, is the number of points used to calculate theremeluding sample

points and/or new points.

In this research, only the RMSE is used becauseveeall accuracy is of more
concern in surrogate-modeling for engineering poid.
D.2 Fundamental of the Re-Sampling Methods: the J&&nife Method

The jackknife method and the re-sampling methoa$ sas cross validation and
bootstrap are originally statistical inference noelh to estimate statistics (statistical
parameters). Later on the re-sampling methods ppiea to model assessment and
model selection problems. Before introducing theampling methods, the theory of the
jackknife is introduced since it is the foundatafrthe re-sampling methods.

Suppose a single random variab¥e with an unknown distributior- , and a

iid
sampleS:{X,,X,,..., X} of sizes. Thus X,, X,,..., X, ~ F. It has been well known

that the expectatiofieX of this random variableX can be estimated by the sample
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averagex from the observed samp{&, = x, X, = x,,..., X, = x} according to the Law

S

of Large Number:

)_(:ZS‘éxi :éixi (D.3)

In a general sens& is the estimation of the statistEX as a function of the
sample{X,, X,,..., X}, i.e. x = (X, X,,..., X.) . However, the Equation D.3 can not be
extended in any obvious way to a general stat@tmther thanEX , e.g. the sample
median and RMSE, to estimate its expectatigh Instead, the jackknife method can be
used to make this extension [130].

Denoted as the estimation of the expectatigd, and@ as the estimation of the

statistic@ from the samplgX,, X,.,..., X.}. Thus@=6(X,, X,...., X,). Further, denote

5’(,() as an estimation of from a sub-sample deleting th® &ample pointX,, i.e.

A

H(k) :é(xl, Xz,...,Xk_l,Xkﬂ,---uxs) (D-4)

Then the estimation of the expectatiB# is given as
R 1
HZZEHM =_Z6’<k) (B.5)

It can be seen that re-sampling methods, suchoas egalidation and bootstrap, are
similar to the above jackknife method. In fact, teesampling methods and the jackknife
method are closely connected in theory [130], dredtheory of the jackknife method
provides the foundation for all the re-sampling Inoels.

Given an error measure such as RMSE, the problemaafel selection with the
jackknife method can be stated as: select the mwadklthe minimum expected error

measure, where the expected error measure is éstirbg Equation D.5, because the
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error measure is one statistic In this case, the meaning of Equation D.4 isdicuate

the error measure from a surrogate model that t®dfi from the sub-sample
S {0 X0 Vo Xo)s oo Vit Xiee)s Vit Xt (Yo X,)} . Since the expected error
measure considers future points, i.e. the poyts that are left out, it is a measure of

the model predicting error.
D.3 The Cross Validation Method

The cross validation method is used to estimatentbdel predicting error. When
applied to model selection, cross validation i-@ampling method for model selection
according to the predicting error of the candidataogate models [131]. The surrogate
model with the minimum expected predicting errofl We selected. The RMSE is a
popular measure of the predicting error. The bateea is to split the sample of size

into two parts; the first part with sizg is used to construct the surrogate model; the
second part with sizg, = s—s, is used to assess the predicting error of the h{auzdel

validation); a new splitting of the sample is execi) and the aforementioned process is
repeated; this process is repeated many timesthanexpectation of the predicting error
is estimated as the average of the predicting ®rartained with different sample
splitting. Figure D-1 shows the general scheme waisg validation. From these
procedures one can see that the cross validatitmoohés similar to the jackknife method
with respect to estimation of the expectation @& fnedicting error and creation of the
two sub-samples during iteration.

Several approaches of the cross validation meth@gr@posed with different ways

to split the sample into two parts. Four of thoppraaches are summarized below.
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The basic cross validation [130, 132] first randoesi the original sample; then
splits the sample into two halves; the first haltused to construct the surrogate model,
and the other half is used to assess the predietirng; then switch the two halves; and
repeat the process.

The k -fold cross validation [131, 133] first randomiziée original sample; then
splits the randomized original sample irKesub-samples of approximately equal size;
then a model is constructed frofk— dlb-samples and the remaining one sub-sample
is used to assess the model; this process is ezpkeaimes, each time leaving out one
different sub-sample.

The leavek -out cross validation [132] first drawls sample pairs out of the

original sample; then the remainifg—k sample pairs are used to construct the model,

and the left ouk sample pairs are used to assess the model; theegw is repeated for

all [Ej ways of drawing k sample pairs. This approach is more computatipnall

expensive than thk-fold cross validation.
The leave-one-out cross validation [132] is a sgecase of leavek-out cross
validation withk = 1 Obviously, its computational expense is much teas that of the

leavek -out cross validation fok > 1
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Stage 1:
« Obtain sampleS

+ Chooses,
+Seti =0

ci=i+l
« Draw S, sample pairs from sampi®

A 4

A 4

« Construct modeli() with the S, sample pairs
« Predict at remaining, = S— S, sample points
« Compute and save predicting errors

False I = maximum numbe
of repeat

Stage 2:
« Compute theaveragepredicting error,

Figure D-1: General Scheme of Cross Validation foModel Selection

D.4 The Bootstrap Method
The bootstrap method is another method to estittetemodel predicting error.

When applied to model selection, bootstrap is oaesampling method for model
selection according to the predicting errors of ¢hadidate surrogate models. There are
many approaches of the bootstrap method with gliiterent procedures, such as Monte
Carlo bootstrap [130, 134] and fast bootstrap [1B&} the general procedures consist of
drawing sample pairs with replacement within thigioal sample to obtain a bootstrap
sample. Thus the size of the bootstrap sampleeisdéime as that of the original sample.

Since the sample pairs are draw with replacema&messample pairs of the original
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sample may appear in the bootstrap sample man twigdle some may not at all. Then
this bootstrap sample is used to construct a sateoghodel and an estimated error
measure (such as the model fitting error) is caled for this bootstrap sample. This
process is repeatel times. Then the average of the estimated errosunea is used as
the estimation of the expectation of the error rasas

From the above procedure of the bootstrap meth@dcan see that the bootstrap
method is similar to the cross validation methother® are three main differences
between those two methods: the way to draw samgals, ghe size of the samples to
construct the intermediate models, and the wayaloutate the error measure. Two
advantages of bootstrap are that its computatimaal is reduced from thk-fold cross

validation and it results in lower variance for gstimated error measures [135].
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APPENDIX E: THE CONCEPTS OF MPP AND LSF OF FPI

Let Z = Z(X) being the response function of random variabfesX,,..., X, and
9(X) = Z(X) -z, being the limit state function (LSF), whegg is the critical value, and
g >0 is undesirable (failure).

The fast probability integration (FPI) methods ardamily of methods used to
estimate the probability?; of achieving response values above the critichlevg,, i.e.

g >0. This family includes the first order reliabilitmethod (FORM), second order

reliability method (SORM), advanced FORM (AFORMglvanced mean value method
(AMV), etc, and there are good descriptions ofERe family methods in [83].

According to the Equation 2.53, the probabilitygpf 0 can be calculated as
P =P(g>0) :I.R.g.j (X X1 X, )X, . X,

where R, is the region over whiclg(X) > ,@nd f, (x,X,,..., X, )is the joint PDF
of random variablesX,, X,,..., X,,. Therefore, the LSK(X) = Ocut-off” a section of
the joint PDF of the random variablég, X, ,..., X,,.

The FPI method uses the concept of most probakiyt (MPP) to estimate this
probability P, of violating the LSF. The MPP is the point at whithe function

g(X) =0 circumscribes a contour line of the joint PDF,sk®wn at the left side of

Figure B-1 of a bivariate example. The MPP can dsenfl most conveniently in the
transformed U-space in which all random variablee #&dependently normally

distributed. In the U-space, the MPP is the pomtee transformed functiog(U)= 0

that is closest to the origin, as shown at thetrgitle of Figure B-1. The transformation
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can be done using the Rosenblatt transformatiohadetand the distance of the MPP to

the origin 8 is used to estimat®;, asP, = ®(-L)[83], where® [)is the CDF of the

standard univariate normal distribution.

For the example shown in Figure E®(—-£ is)the probability defined by the
region at the hatched side of the straigdtt line, and this estimation of the probability

P, can be easily seen to be smaller than the redapility P, . In general, the

estimation ®(—-£ )can be greater or smaller than the real probgbit, and the

difference between these two can be substantial.

Joint Distribution Space Normalized Joint Distribution Space

4

gX)=0,
giX)=0 LL

gX)=0

% T~ MPP U’

£(x)
MPP LT

u
| N
/ ‘F’: l']1 \J\l\j\
fu) \
o, .
Z-function

(=
L

Figure E-1: Most Probable Point Location [136]
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APPENDIX F: THE MULTI-VARIATE MONTE CARLO SAMPLING

Let Y =Y(Xx,X,,...,X,) a function of the random variable§ , X, ,..., X,,, and then
Y is a random variable as well. Now one wants tcegaie sample points &f through
the sample points oK, X,,..., X,,.

If the random variableX,, X,,..., X,, are mutually independent and the marginal
PDF's of these variables are known, then the sampgpiets of each random variabk
can be generated as

x =F™(U) (2.11)
where F* () is the inverse function of (x ,)F (x) is the marginal CDF oK,

andU is a uniform random variable of which values aenayated by a (pseudo-)
random number generator in computer experimentur€i2-4 shows the process to

generate a sample point by univariate MC sampling.

U 4
(1) SR .
R |
oy
F(U)[= X |

0 v i >

% X,

Figure 2-4: Univariate Monte Carlo Sampling Process
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If the random variableX,, X,,..., X, are dependent, suppose one knows the joint

PDF f,(X,%,...,X,) random variablesX, , X, ,..., X, . First obtain the joint CDF

Fy (X, %,,...,X,) . Generate the sample points(of- rdnhdom variables using Equation
2.11. Substitute the sample points of {me- rd)dom variables into the joint CDF
Fy (X, %,,...,%,), and obtain the sample point of the last one randariable using

Equation 2.11 and the joint CDIF (X, X,,..., X, - )

If the random variables are dependent, it is veffjcdlt to generate the sample
points since the generation of the joint PDF and=GPnot easy. Fortunately, for most

engineering problems the (random) design variadnlesndependent.
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APPENDIX G: TRUNCATED NORMAL DISTRIBUTION

The (univariate) normal distribution has wide apafions in various fields. It is
used to describe bell-shaped distributions of simghdom variable, or the approximately
bell-shaped distribution of a (random) responselted from a large number of random
variables via the Central Limit Theorem. Howevége theory of the normal distribution
assumes the range of the random variable is fronto +o, which is not the case for
most real-world applications and thus may leacatgd errors. Therefore, the truncated
normal distribution should be used for the situagion which the range is finite of the
random variable or a response of multiple randomalkkes. Here the theory of the
doubly truncated, univariate normal distributiorsisnmarized as follows [137].

First define the PDH (X df a normally-distributed random variab} as:

1 E(MJ (G.1)
e @ —0< X <+ .
N 2mo? '

f(X)= < X<
Then the PDFf (X )pf doubly-truncated, normally-distributed randoarigble

X is given as:

f(X)
forn (X) = ijf (X)dX ! L - (G.2)

XL

0, Xg< X<+
where f (X )is defined in Equation G.1X, and X are the left and right limits of

random variableX , respectively, see Figure G-1.
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Figure G-1: Doubly-Truncated Normal Distribution (adapted from [137])

Denotes the CDF of (X asF(X ), then the CDF off . (X ) Fyry (X), is given

as.
0, —osX<X,

F(X)-F(X,) (-3)
F(XR)_F(XL), -

Fory (X) = < X < X

0, Xgs X<+,

258



APPENDIX H: A TRANSPORT AIRCRAFT DESIGN OPTIMIZATION
PROBLEM

This problem is based on the transport aircrafticistiplinary design optimization
problem in the class notes of Advanced Design Might, spring 2003, School of
Aerospace Engineering, Georgia Institute of Tecbgwl and is extended to a two-
objective optimization problem under probabilistanstraints.

H1. Problem Description

The design of a transport aircraft is a complex,ltisigciplinary process.
Traditionally, the process is decomposed into geros engineering disciplines, such as
aerodynamics, weights, performance, etc, in oralendke the problem easier to manage.
The closely coupled relationships and natural ik@nabetween the various contributing
analyses (CA’s) provides an opportunity to use MM@Déghniques to improve the
efficiency with which the design can be optimizeldwever, because of the uncertainties
inevitably existing in the early stages of desitire design solutions can not be taken
deterministically, but should be subject to probsatic constraints.

Assume that the aircraft design team is decompipgéedour disciplinary CA'’s:

CA Discipline
D Zero-lift Drag CA
A Aerodynamics CA

wW Weights CA

P Performance CA
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The team’s objective is to design a mid-range pagsejet transport so that the

productivity index (Pl) is maximized and the in&dl total engine thrust T ) is

minimized. Pl is a measure of the speed and caagrying capability of an aircraft

normalized by the sum of its empty and fuel weigfiitds considered to be a measure of

both purchase price and operational cost. Theréer@rimary design variables:

Variable Name Range of Mear Distribution

b wing span (ft) [95 145] 30 symmetrically truncated

normal, g =range 2000

j®N

I fuselage length (ft) [120 140] 30 symmetrically truncate

normal, g =range 2000

S wing area (fi) [1300 1850] 30 symmetrically truncated

normal, g =range 2000

W, takeoff gross weight (Ib)| [155000 180000Bo symmetrically truncated
normal, g =range 2000
T installed total enging [20000 35000] | 30 symmetrically truncated

thrust (Ib) normal, g =range 2000

And there are two coupling variables:

Variable Name Range*
Vi, best range cruise speed (ft/sec) [550 800]
Wanding landing gross weight (Ib) [75000 150000]
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* For the purpose of surrogate model construction

The optimization problem under probabilistic coastts can be stated as follows:

Vberay
(1_ Rfa + Rfr )Vvto _Wpay _Wf

Maximize: Pl =

Minimize: T,
Subject to seven inequality probabilistic constisin
P(S, <6000 = 085 takeoff field length (ft)
P(S <4000 = 085 landing field length (ft)
PU = 0.3) > 085 useful load fraction

P(q, = 2.7%) = 085 takeoff climb gradient (one engine out)
P(q = 24%) = 085 aborted landing climb gradient (one engine out)

P(R, =1)> 085 overall mission fuel balance (available/required)

P(AR<105) = 085 wing aspect ratio

H2. The Models of CA’s
The models of CA’s are given as some equations toerepresent the real complex

computer programs used by CA'’s.

Required Definitions and Constants

Variable Value Description

N, 188 number of passengers
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N 3 number of engines
o) 1.944E-4 set engine specific fuel consumption
R 1.7632E7 ft required range (approximately 2900 nmi)
Neruise 35000 ft cruise altitude
W, 30000 Ib payload (passengers and cargo)
W, 1100 1b fixed equipment weight
Oy 2.378E-3 slugsfit | sea-level density
Vy 1.56E-4 ft/sec sea-level kinematic viscosity
Voo_i 220 ft/sec takeoff and landing speed
£, 7.37 E-4 slugs/ft | cruise altitude density
v, 4.06E-4 ff/sec cruise altitude kinematic viscosity
t/c 0.12 airfoil thickness-to-chord ratio
G max 2.6 aircraft maximum lift coefficient (takeoff amahding)
o S/b mean aerodynamic wing chord (ft)
Vi, TBD best range cruise speed (ft/sec)
L/D Varies lift-to-drag ratio at various flight cornidins
D — Zero-Lift Drag Contributing Analysis
Spet =2 wing wetted surface ratio

N
d =183(4325- > +1)

fuselage diameter (to ho
passengers) (ft)
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body wetted surface ratio

body skin friction coefficient at se

level

a

= 0.455 log,,

Cf _wing_sl

- v I -258
Ct body_si = 0453 |0910( it H

wing skin friction coefficient at se

level

a

r | -258
Ct boay ¢ = 0459 log,,| —= H

body skin friction coefficient at

cruise

Cf _wing_c

r -258
— VbrC
= 0455 log,,

wing skin friction coefficient a

cruise

[

AC,, = 0.005

incremental drag coefficient

I
(Cdo)body_sl = Cf _body_sl 1+ OOOZ{EJ +

body drag contribution at sea leve

(CdO)wing_sI = 11Cf _wing _sl

it

wing drag contribution at sea leve

I
(CdO)body_c = Cf _body_c 1+ OOOZE{EJ +

d

60

(&)

S,

body drag contribution at cruise

(CdO)wing_c = 11Cf _Wing_c|:1+ 12[%} +10<

tY o
Ej :|SNet

wing drag contribution at cruise

CdO_sI = (CdO)wing_sI + (CdO)body_sI + ACdO

zero lift drag coefficient at sea lev,
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Coo = (c, 0)ng_c +(c dO)bo &y T ACy zero lift drag coefficient at cruise

A — Aerodynamics Contributing Analysis

AR = b?z wing aspect ratio
o= 0.9{1_@)2} Oswald span efficiency factor
b
k = eniAl? guadratic drag polar
k8 takeoff lift coefficient

G takeoff — m

_ MWManding landing lift coefficient

CI _landing — ,05|Vt§_| S

(L - G _takeot lift-to-drag ratio at takeoff
D

- 2
takeoff Cd 0_sl + kq _ takeoff

(L _ G _tanding lift-to-drag ration at landing
D

- 2
landing CdO_sI + kCI _landing

(L _1 1 optimum lift-to-drag ratio for cruise
D

opt_ cruise 2 \[ deO_c

best range cruise speed (ft/sec)
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W — Weights Contributing Analysis

= ex ~RhR

Vbr (Lj
D opt_ cruise

ratio of final to initial weight for cruise leg

W,
R, =11 1- 095
W,

required fuel fraction (with margin)

Wanding -1-R ratio of landing weight to takeoff weight
Vvto fr

Worpy _ 0.9592 0 381_.09881 ratio of empty weight to takeoff weight
W 0.0638 :

to to to

R = 1_Wpay _ Wi Werpy available fuel fraction
W, W, W,

U=-" 1R useful load fraction

P — Performance Contributing Analysis

1T N-1 1

% =100 w. N [LJ
takeoff

D

takeoff climb gradient (one engine out)

g L|TN-1 1
' 1000W, N [LJ
D takeoff

aborted landing climb gradient (one engine out)

5, =209 o Vo , g7 | Wo
SQ_maX Tl Sq_max

takeoff field length (ft)
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Vvlanding
S = 118? +400

landing field length (ft)

P

Pl
I
Py

=

overall mission fuel balance
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APPENDIX I: A REUSABLE LAUNCH VEHICLE DESIGN
OPTIMIZATION PROBLEM

This problem is based on the reusable launch \ehiRLV) multidisciplinary
design optimization problem in the class notes diaced Design Methods Il, spring
2006, School of Aerospace Engineering, Georgiaititet of Technology, and is
extended to a two-objective optimization problendemprobabilistic constraints.

I1. Problem Description:
Assume that the RLV design team has been decompasefive disciplinary CA’s

as follows:

CA Discipline

P Propulsion

T Trajectory optimization

Wu Weight estimation — upper stage

Wb Dry weight estimation — booster stage

S Sizing and scaling

The team’s objective is to design a RLV and propelsipper stage so that the
gross mass of the RLV and the upper stagg,, and the vacuum specific pul$ep,,.
are minimized. The RLV booster stage will carry thpper stage to some staging point,
where the upper stage will separate and contineebiv. The booster then coasts back to

a landing siteW, . is a measure of the purchase pritsp,,. is considered to be a

gross
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measure of operational cost since the propellargsn&the major portion of the gross

weight and lower vacuum Isp means cheaper gl and Isp,,. are conflicting with
each other because minimizikg, ., requires maximizingsp,,. in order to carry less

propellant. There are five primary design variables

Variable Name Range of Mean Distribution

£ Expansion ratio of the engine[10 100] 050 symmetrically truncated
nozzle normal, g =range 2000

T_W, |Ratio of takeoff thrust and[1.2 1.5] 050 symmetrically truncated
gross takeoff weight normal, g =range 2000

r Engine oxidizer/fuel ratio [4.0 7.8] 050 symmetrically truncated
(by weight) normal, g =range 2000

W_S Landed weight divided by[20 50] 050 symmetrically truncated
wing planform area normal, g =range 2000

AV Percentage of totalAV | [0.250.75] 050 symmetrically truncated
allocated to the booster stage normal, g =range 2000

And there are four coupling variables:

Variable Name Range*

W, The gross takeoff weight including thg200000 2200000]

gross

booster and upper stage

S, Booster wing planform area jt [1300 7500]
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W, Booster main ascent propellant weight (60000 2000000]

prop

W,

land

Booster landed weight (Ib) [60000 240000]

* For the purpose of surrogate model construction

The optimization problem under probabilistic coastts can be stated as follows:
Minimize: W,

Minimize: Isp,,.

Subject to one inequality probabilistic constraint:
P(p, =5psi) = 030* Limit on nozzle exit pressure to avoid flow
separation

* The reason that the required probability is s@lims because this design problem
IS quite sensitive to the perturbation around tbeverged design solutions, i.e. a small
perturbation to a converged design solution wiBilgaresult in a non-converged design
combination. Although there is only one probahtistonstraint, this RLV design
problem still can demonstrate the feasibility af iroposed framework since the number
of probabilistic constraints makes no differencetih@ operation of the probability

counting Equation 2.55.

12. The Models of CA’s
The models of CA’s are given as some equations toerepresent the real complex

computer programs used by CA'’s.
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Required Definitions and Constants

nd

Variable Value Description

W,y 32.174 ft/$ Earth surface gravity constant

n 5 Number engines on booster

W, 30000 Ib Payload to orbit

Py 2116 psf Sea-level ambient pressure

P, 446400 psf Rocket engine chamber pressure

AV i 25000 ft/s Actual flight AV to be provided by RLV booster ai
upper stage

k_wing 6 Ib/ft? Wing weight per unit planform area

k tank 0.7 b/t Tank weight per unit volume

k_body 0.05 Body structural weight as fraction of landezigit

k_TPS 0.04 Thermal protection system (TPS) weight astifvacof
landed weight

k_gear 0.03 Landing gear

k_subsys | 30000 Ib Fixed subsystems weight

K_margin | 0.15 RLV dry weight margin

ox_density| 71.2 Ib/ ft Density of liquid oxygen

h2_density 4.41 Ib/ff Density of liquid hydrogen

k_residual | 0.005 Residual propellant as fraction of ascenpgitant

| oo vac 420 s Isp of upper stage engine

Aupper 0.15 Structural mass fraction of upper stage
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P — Propulsion Contributing Analysis

C; o =1.5467+ 250107 e + 36601107 [

+1610* Og Or —1.481(10°° Oe® — 14810 Or?

Vacuum thrust coefficien
(RSE — by Tim Kokan)

Isp,,. = 401864+ 0.4729C & +12.0959Lr
+1.896[110°? e Or — 241[10°° Oe* -1.41333r ?

Vacuum Isp (RSE)

p, =8.5535-0.19880¢ + 0.754600r — 89810~ (e Or
+137[1107° Og® + 2.815[110°* Or ?

Nozzle exit pressure (ps
(RSE)

)

J—\;' = 62.1329- 0.25510)s - 0.944600r — 402(10° Oe Or | Engine sea-level thrust to
€ weight ratio (RSE)
+ 70010 Oe? +0.183190r
To = Wyross T _Wo Total engine sea-level
thrust (all engines) (Ib)
A = Ts Total engine throat area (all
C - P& .
Pt vac ™ Ps engines) (fi)
A = A Il

Total engine exit area (&
engines) (ff)

Tvac = Tsl + A% psl

Total engine vacuum thru

(all engines) (Ib)

Note: Propulsion calculations are all for the eegion the booster stage only.
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T — Trajectory Optimization Contributing Analysis

AV, =5073-13.7390A, - 2410 T,
+ 377M07° OW, . + 0.25590S
- 4390110°° DA, [, . + 245010° OA, DW, .,
- 1470107 OA, OS,; - 205010°° 0T, DWW
+ 403(10° 0T, 0S,; — 843M10° W, 0S
+ 748110°° OA? + 100[107° (0T 2

gross ref
+ 81910 W2, + 18010 OS?

gross ref

Ascent velocity losses fq
booster stage (ft/s) (RSE
by Tim Kokan)

-

AV, AV g DAV, + AV,

ooster — split loss Total AV required for
booster stage (ft/s)
MR, = ex;{ AVpgoster } Required booster mas
dc |:”Spvac ratio
AV ypper = BV jigne DA~ AVi) Total AV required for,

upper stage (ft/s)

M AVupper
=eXp—m
Rupper dc DISpupper

Required upper-stage ma

ratio

5S

SS

Note: Assuming no losses for the upper stage.

Wu — Weight Estimation (Upper Stage) Contributinggdysis

w

— pay

V\/upper =
' ( . J( \ J
Mi zupper 1 Aupper

Gross weight of uppe

stage (Ib)

=

Note: In a more detailed design, this simple egmatiould be replaced by a series

of more detailed performance and sizing relations.
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Wb — Dry Weight Estimation (Booster Stage) Contrithgi Analysis

r+1
r 4 1
ox_density h2_density

Propellant
(Ib/ft3)

Weing = k_wingS,,

Wing weight (Ib)

W
W, = k_tank 0—"=% + k _body[W,
d

and

Body weight (Ib)

WTPS = k—TPSB/VIand

TPS weight (Ib)

W ross
=T _W0 Dg_

)

W,

engines

Engines weight (all) (Ib)

Wgear = k — gear D/\/Iand

Landing gear weight (Ib)

W,,...= K _subsys

subsys —

Fixed subsystems weight

bulk  density

(Ib)
Wargin = K_margink (Wi, +Wioa, +Wrps +Wepgines Dry weight margin (Ib)
+Wgear +Wsubsy9
Wdry_booster :Wwing +Wbody +WTPS +Wengines TOtal dry Welght - bOOStEf
+Wgear +Wsubsys+Wmargin Stage (Ib)
S — Sizing and Scaling Contributing Analysis
W = Woper FWay booster Booster weight just prior to
%%¢ 11—k _residuald(MR,..,—1) staging (includes gross
weight of upper stage) (Ib)
Wiross = Whtage IMR gosier Booster gross  takeoff
weight (includes weight of

upper stage) (Ib)
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it

eresidual :Wstage _Wupper _Wdry_booster Booster reSiduaI mai
propellant weight (Ib)
Woroo = Woroes = Waiage = Wogper Booster main ascer
propellant weight (Ib)
Woang = Waage = Wopper Booster landed weight (Ib)
S, = W, Booster wing planforn
ef W_S

area (ff)

Note: Assuming that the landed booster weight is etpuéthe booster weight just

after staging (neglecting small propellant usagéndwcoast back to ground).
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