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Abstract

We present an experimental study of parallel algorithms for solving the single source
shortest path problem with non-negative edge weights (NSSP) on large-scale graphs.
We implement Meyer and Sander’s ∆-stepping algorithm and report performance re-
sults on the Cray MTA-2, a multithreaded parallel architecture. The MTA-2 is a
high-end shared memory system offering two unique features that aid the efficient im-
plementation of irregular parallel graph algorithms: the ability to exploit fine-grained
parallelism, and low-overhead synchronization primitives. Our implementation exhibits
remarkable parallel speedup when compared with a competitive sequential algorithm,
for low-diameter sparse graphs. For instance, ∆-stepping on a directed scale-free graph
of 100 million vertices and 1 billion edges takes less than ten seconds on 40 processors
of the MTA-2, with a relative speedup of close to 30. To our knowledge, these are the
first performance results of a parallel NSSP problem on realistic graph instances in the
order of billions of vertices and edges.

1 Introduction

This paper primarily discusses parallel algorithms and implementations for solving the sin-
gle source shortest path problem on large-scale graph instances. In addition to applica-
tions in combinatorial optimization problems, shortest path algorithms are finding increas-
ing relevance in the domain of complex network analysis. Popular graph theoretic analysis
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metrics such as betweenness centrality [27, 9, 41, 43, 34] are based on shortest path al-
gorithms. Our parallel implementations target the scale-free graph family, a well-studied
model [7, 24, 12, 53, 52] for real-world large-scale graphs that captures features such as a
low diameter, heavy-tailed degree distributions modeled by power laws, and self similarity.
We also conduct an experimental study of performance on several other graph families, and
this work is our submission to the 9th DIMACS Implementation Challenge [18] on Shortest
Paths.

Sequential algorithms for the single source shortest path problem with non-negative edge
weights (NSSP) are studied extensively, both theoretically [22, 20, 25, 26, 56, 58, 35, 32, 48]
and experimentally [21, 30, 29, 15, 61, 31]. Let m and n denote the number of edges and
vertices in the graph respectively. Nearly all NSSP algorithms are based on the classical
Dijkstra’s [22] algorithm. Using Fibonacci heaps [25], Dijkstra’s algorithm can be imple-
mented in O(m + n log n) time. Thorup [58] presents an O(m + n) RAM algorithm for
undirected graphs that differs significantly different from Dijkstra’s approach. Instead of
visiting vertices in the order of increasing distance, it traverses a component tree. Meyer
[49] and Goldberg [31] propose simple algorithms with linear average time for uniformly
distributed edge weights.

In this paper, we primarily focus on parallel implementations of NSSP. Prior parallel
NSSP algorithms have been reviewed in detail by Meyer and Sanders [48, 51]. There are
no known PRAM algorithms that run in sub-linear time and O(m + n log n) work. Parallel
priority queues [23, 11] for implementing Dijkstra’s algorithm have been developed, but these
linear work algorithms have a worst-case time bound of Ω(n), as they only perform edge
relaxations in parallel. Several matrix-multiplication based algorithms [36, 28], proposed
for the parallel All-Pairs Shortest Paths (APSP), involve running time and efficiency trade-
offs. Parallel approximate NSSP algorithms [42, 16, 57] based on the randomized Breadth-
First search algorithm of Ullman and Yannakakis [60] run in sub-linear time. However,
it is not known how to use the Ullman-Yannakakis randomized approach for exact NSSP
computations in sub-linear time.

Meyer and Sanders give the ∆-stepping [51] NSSP algorithm that divides Dijkstra’s
algorithm into a number of phases, each of which could be executed in parallel. For random
graphs with uniformly distributed edge weights, this algorithm runs in sub-linear time with
linear average case work. Several theoretical improvements [50, 46, 47] are given for ∆-
stepping.

The literature contains few experimental studies on parallel NSSP algorithms [37, 54,
39, 59]. Prior implementation results on distributed memory machines resorted to graph
partitioning [14, 1, 33], and then running a sequential NSSP algorithm on the sub-graph.
Heuristics are used for load balancing and termination detection [38, 40]. The implemen-
tations perform well for certain graph families and problem sizes, but no speedup may be
possible in the worst case.

Implementations of PRAM graph algorithms for arbitrary sparse graphs are typically
memory intensive, and the memory accesses are fine-grained and highly irregular. This
often leads to poor performance on cache-based systems. On distributed memory clusters,
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few parallel graph algorithms outperform the best sequential implementations due to long
memory latencies and high synchronization costs [4, 3]. Parallel shared memory systems are
a more supportive platform. They offer higher memory bandwidth and lower latency than
clusters, and the global shared memory greatly improves developer productivity. However,
parallelism is dependent on the cache performance of the algorithm and scalability is limited
in most cases. While it may be possible to improve the cache performance to a certain degree
for some classes of graphs [55], there are no known general techniques for cache optimization
because the memory access pattern is largely dependent on the structure of the graph.

We present our shortest path implementation results on the Cray MTA-2, a massively
multithreaded parallel architecture. The MTA-2 is a high-end shared memory system offering
two unique features that aid considerably in the design of irregular algorithms: fine-grained
parallelism and low-overhead synchronization. The MTA-2 has no data cache; rather than
using a memory hierarchy to reduce latency, the MTA-2 processors use hardware multi-
threading to tolerate the latency. The low-overhead synchronization support complements
multithreading and makes performance primarily a function of parallelism. Since graph algo-
rithms often have an abundance of parallelism, these architectural features lead to superior
performance and scalability. Our recent results highlight the exceptional performance of the
MTA-2 for implementations of key combinatorial optimization and graph theoretic problems
such as list ranking [3], connected components and subgraph isomorphism [8], Breadth-First
Search and st-connectivity [5].

Our main contributions in this paper are as follows:

• We conduct an experimental study of parallel shortest path algorithms designed for
shared memory architectures. Prior studies have predominantly focused on running
sequential SSSP algorithms on graph families that can be easily partitioned, whereas
we also consider several arbitrary, sparse graph instances.

• We present parallel performance results of the ∆-stepping algorithm on the Cray MTA-
2, a multithreaded architecture. We attain impressive performance on low-diameter
graphs. We also analyze performance using machine-independent algorithmic operation
counts.

• On the MTA-2, we are able to solve NSSP for large-scale realistic graph instances in the
order of billions of edges. For instance, ∆-stepping on a synthetic directed scale-free
graph of 100 million vertices and 1 billion edges takes 9.73 seconds on 40 processors
of the MTA-2, with a relative speedup of approximately 31. Also, the sequential per-
formance of our implementation is comparable to competitive NSSP implementations
(such as the DIMACS reference solver).

• We also have a parallel implementations of Thorup’s algorithm for NSSP, and the
Bellman-Ford algorithm for solving the single-source shortest paths allowing negative
edge weights. For All-pairs computations using the component hierarchy, we expect
the Thorup implementation to outperform ∆-stepping.
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This paper is organized as follows. Section 2 provides a brief overview of ∆-stepping.
Our parallel implementation of ∆-stepping is discussed in Section 3. Section 4 and 5 describe
our experimental setup, performance results and analysis. We conclude with a discussion
on implementation improvements and future plans in Section 6. Applendix A describes the
MTA-2 architecture.

2 Review of the ∆-stepping Algorithm

2.1 Preliminaries

Let G = (V, E) be a graph with n vertices and m edges. Let s ∈ V denote the source vertex.
Each edge e ∈ E is assigned a non-negative real weight by the length function l : E → R.
Define the weight of a path as the sum of the weights of its edges. The single source shortest
paths problem with non-negative edge weights (NSSP) computes δ(v), the weight of the
shortest (minimum-weighted) path from s to v. δ(v) =∞ if v is unreachable from s. We set
δ(s) = 0.

Shortest path algorithms maintain a tentative distance value for each vertex, which are
updated by edge relaxations. Let d(v) denote the tentative distance of a vertex v. d(v) is
initially set to ∞, and is an upper bound on δ(v). Relaxing an edge 〈v, w〉 ∈ E sets d(w)
to the minimum of d(w) and d(v) + l(v, w). Based on the manner in which the tentative
distance values are updated, most shortest path algorithms can be classified into two types:
label-setting or label-correcting. Label-setting algorithms (for instance, Dijkstra’s algorithm)
perform relaxations only from settled (d(v) = δ(v)) vertices, and compute the shortest path
from s to all vertices in exactly m edge relaxations. Based on the values of d(v) and δ(v), at
each iteration of a shortest path algorithm, vertices can be classified into unreached (d(v) =
∞), queued (d(v) is finite, but v is not settled) or settled. Label-correcting algorithms
(e.g., Bellman-Ford) relax edges from unsettled vertices also, and may perform more than m
relaxations. Also, all vertices remain in a queued state until the final step of the algorithm.
∆-stepping belongs to the label-correcting type of shortest path algorithms.

2.2 Algorithmic Details

The ∆-stepping algorithm (see Alg. 1) is an “approximate bucket implementation of Dijk-
stra’s algorithm” [51]. It maintains an array of buckets B such that B[i] stores the set of
vertices {v ∈ V : v is queued and d(v) ∈ [i∆, (i + 1)∆]}. ∆ is a positive real number that
denotes the “bucket width”.

In each phase of the algorithm (the inner while loop in Alg. 1, lines 9–13, when bucket
B[i] is not empty), all vertices are removed from the current bucket, added to the set S,
and light edges (l(e) ≤ ∆, e ∈ E) adjacent to these vertices are relaxed (see Alg. 2). This
may result in new vertices being added to the current bucket, which are deleted in the next
phase. It is also possible that vertices previously deleted from the current bucket may be
reinserted, if their tentative distance is improved. Heavy edges (l(e) > ∆, e ∈ E) are not

4



Input: G(V, E), source vertex s, length function l : E → R
Output: δ(v), v ∈ V , the weight of the shortest path from s to v

foreach v ∈ V do1

heavy(v) ← {〈v, w〉 ∈ E : l(v, w) > ∆};2

light(v) ← {〈v, w〉 ∈ E : l(v, w) ≤ ∆};3

d(v)←∞;4

relax(s, 0);5

i← 0;6

while B is not empty do7

S ← φ;8

while B[i] 6= φ do9

Req ← {(w, d(v) + l(v, w)) : v ∈ B[i] ∧ 〈v, w〉 ∈ light(v)};10

S ← S ∪B[i];11

foreach (v, x) ∈ Req do12

relax(v, x);13

Req ← {(w, d(v) + l(v, w)) : v ∈ S ∧ 〈v, w〉 ∈ heavy(v)};14

foreach (v, x) ∈ Req do15

relax(v, x);16

i← i + 1;17

δ(v)← d(v);18

Algorithm 1: ∆-stepping algorithm

Input: v, weight request x
Output: Assignment of v to appropriate bucket

if x < d(v) then1

B [⌊d(v)/∆⌋]← B [⌊d(v)/∆⌋] \{v};2

B [⌊x/∆⌋]← B [⌊x/∆⌋] ∪ {v};3

d(v)← x;4

Algorithm 2: The relax routine in the ∆-stepping algorithm
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relaxed in a phase, as they result in tentative values outside the current bucket. Once the
current bucket remains empty after relaxations, all heavy edges out of the vertices in S are
relaxed at once (lines 14–16 in Alg. 1). The algorithm continues until all the buckets are
empty.

Observe that edge relaxations in each phase can be done in parallel, as long as individual
tentative distance values are updated atomically. The number of phases bounds the parallel
running time, and the number of reinsertions (insertions of vertices previously deleted)
and rerelaxations (relaxation of their out-going edges) costs an overhead over Dijkstra’s
algorithm. The performance of the algorithm also depends on the value of the bucket-width
∆. For ∆ =∞, the algorithm is similar to the Belman-Ford algorithm. It has a high degree
of parallelism, but is inefficient compared to Dijkstra’s algorithm. ∆-stepping tries to find
a good compromise between the number of parallel phases and the number of re-insertions.
Theoretical bounds on the number of phases and re-insertions, and the average case analysis
of the parallel algorithm are presented in [51]. We summarize the salient results.

Let dc denote the maximum shortest path weight, and P∆ denote the set of paths with
weight at most ∆. Define a parameter lmax, an upper bound on the maximum number of
edges in any path in P∆. The following results hold true for any graph family.

• The number of buckets in B is ⌈dc/∆⌉.

• The total number of reinsertions is bounded by |P∆|, and the total number of rerelax-
ations is bounded by |P2∆|.

• The number of phases is bounded by dc

∆
lmax, i.e., no bucket is expanded more than lmax

times.

For graph families with random edge weights and a maximum degree of d, Meyer and
Sanders [51] theoretically show that ∆ = θ(1/d) is a good compromise between work ef-
ficiency and parallelism. The sequential algorithm performs O(dn) expected work divided
between O(dc

∆
· log n

log log n
) phases with high probability. In practice, in case of graph families

for which dc is O(log n) or O(1), the parallel implementation of ∆-stepping yields sufficient
parallelism for our parallel system.

3 Parallel Implementation of ∆-stepping

See Appendix A for details of the MTA-2 architecture and parallelization primitives.
The bucket array B is the primary data structure used by the parallel ∆-stepping algo-

rithm. We implement individual buckets as dynamic arrays that can be resized when needed
and iterated over easily. To support constant time insertions and deletions, we maintain two
auxiliary arrays of size n: a mapping of the vertex ID to its current bucket, and a mapping
from the vertex ID to the position of the vertex in the current bucket. All new vertices are
added to the end of the array, and deletions of vertices are done by setting the corresponding
locations in the bucket and the mapping arrays to −1. Note that once bucket i is finally
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empty after a light edge relaxation phase, there will be no more insertions into the bucket
in subsequent phases. Thus, the memory can be reused once we are done relaxing the light
edges in the current bucket. Also observe that all the insertions are done in the relax routine,
which is called once in each phase, and once for relaxing the heavy edges.

We implement a timed pre-processing step to semi-sort the edges based on the value of
∆. All the light edges adjacent to a vertex are identified in parallel and stored in contiguous
locations, and so we visit only light edges in a phase. The O(n) work pre-processing step
scales well in parallel on the MTA-2.

We also support fast parallel insertions into the request set R. R stores 〈v, x〉 pairs,
where v ∈ V and x is the requested tentative distance for v. We only add a vertex v to R
if it satisfies the condition x < d(v). We do not store duplicates in R. We use a sparse set
representation similar to one used by Briggs and Torczon [10] for storing vertices in R. This
sparse data structure uses two arrays of size n: a dense array that contiguously stores the
elements of the set, and a sparse array that indicates whether the vertex is a member of the
set. Thus, it is easy to iterate over the request set, and membership queries and insertions
are constant time. Unlike other Dijkstra-based algorithms, we do not relax edges in one
step. Instead, we inspect adjacencies (light edges) in each phase, construct a request set of
vertices, and then relax vertices in the relax step.

All vertices in the request set R are relaxed in parallel in the relax routine. In this step,
we first delete a vertex from the old bucket, and then insert it into the new bucket. Instead
of performing individual insertions, we first determine the expansion factor of each bucket,
expand the buckets, and add then all vertices into their new buckets in one step. Since there
are no duplicates in the request set, no synchronization is involved for updating the tentative
distance values.

On the MTA-2, accessing the same memory location concurrently by several threads
incurs a performance penalty. We call these high-contention memory locations hot spots,
and need to minimize these to ensure good scalability. For instance, in the relax routine, the
bucket size counter may become a hot spot if a significant number of vertices in the current
request set are inserted into the same bucket. This is particularly true for low-diameter
graph families such as random and scale-free graphs. However, this leads to a performance
penalty only in the case of very large problem instances (random graphs with 500 million to
2 billion edges) using over 30 processors.

To saturate the MTA-2 processors with work and to attain high system utilization, we
need to minimize the number of phases and non-empty buckets, and maximize the request
set sizes. Entering and exiting a parallel phase involves a negligible running time overhead
in practice. However, if the number of phases is O(n), this overhead dominates the actual
running time of the implementation. Also, we enter the relax routine once every phase.
There are several implicit barrier synchronizations in the algorithm that are proportional to
the number of phases. Our implementation reduces the number of barriers. Our source code
for the ∆-stepping implementation, along with the MTA-2 graph generator ports, is freely
available online [44].
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4 Experimental Setup

4.1 Platforms

We report parallel performance results on a 40-processor Cray MTA-2 system with 160 GB
uniform shared memory. Each processor has a clock speed of 220 MHz and support for 128
hardware threads. The ∆-stepping code is written in C with MTA-2 specific pragmas and
directives for parallelization. We compile it using the MTA-2 C compiler (Cray Programming
Environment (PE) 2.0.3) with -O3 and -par flags.

The MTA-2 code also compiles and runs on sequential processors without any modi-
fications. Our test platform for the sequential performance results is one processor of a
dual-core 3.2 GHz 64-bit Intel Xeon machine with 6GB memory, 1MB cache and running
RedHat Enterprise Linux 4 (linux kernel 2.6.9). We compare the sequential performance of
our implementation with the DIMACS reference solver [19]. Both the codes are compiled
with the Intel C compiler (icc) Version 9.0, with the flags -O3. The source code is freely
available online [44].

4.2 Problem Instances

We evaluate the sequential and parallel performance on the core graph families provided
in the DIMACS benchmark package [19]. The core package includes the following graph
families:

• Random graphs : Random graphs are generated by first constructing a Hamiltonian
cycle, and then adding m − n edges to the graph at random. The generator may
produce parallel edges as well as self-loops. Two random graph families are defined:
Random4-n (n grows, and the maximum weight is set to n. m is set to 4n) and
Random4-C (n is fixed, and C grows).

• Grid graphs: This synthetic generator produces grid-like graphs. The grid contains
x ·y vertices, (i, j) for 0 ≤ i < x and 0 ≤ j < y. A vertex (i, j) is connected to adjacent
vertices in the same layer. If i < x−1, each vertex (i, j) is also connected to the vertex
(i + 1, j). Long (x = n

16
, y = 16) and Square grid (x = y =

√
n) families are defined,

similar to random graphs.

• Road graphs : Road graph families with transit time (USA-road-t) and distance (USA-
road-t) as the length function.

In addition to the core families, we study graph instances from the scale-free graph
family (denoted by ScaleFree4-n). These are low-diameter graphs with an unbalanced degree
distribution, and the structural properties modeled by these graphs are been observed in
several real-world complex networks [7, 2, 24]. We use the R-MAT graph model [13] to
generate Scalefree4-n graph instances. The R-MAT scale-free generator is included in our
GTgraph [45] synthetic graph generator package.
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All the synthetic core graph generators assume randomly distributed edge weights. We
report results for an additional log-uniform distribution also. The generated integer edge
weights are of the form 2i, where i is chosen from the uniform random distribution [1, log C]
(C denotes the maximum integer edge weight). We define Random4logUnif-n and ScaleFree4
logUnif-n families for this weight distribution.

4.3 Methodology

For sequential runs, we report the execution time of the reference DIMACS NSSP solver and
the baseline Breadth-First Search (BFS) on every core graph family. The BFS running time
is a natural lower bound for NSSP codes and is a good indicator of how optimized the shortest
path implementations are. It is reasonable to directly compare the execution times of the
reference code and our implementation: both use a similar adjacency array representation
for the graph, written in C, and compiled and run in identical experimental settings. Note
that our implementation is optimized for the MTA-2 and we make no modifications to
the code before running on a sequential machine. The time taken for semi-sorting and
mechanisms to reduce memory contention on the MTA-2 both constitute overhead on a
sequential processor. Also, our implementation assumes real-weighted edges, and we cannot
use fast bitwise operations. Unless otherwise specified, assume that the value of ∆ is set to
n

m
for all graph instances. We will show that this choice of ∆ may not be optimal for all

graph classes and weight distributions.
On the MTA-2, it would be meaningless to compare the performance of our optimized

parallel implementation with the sequential DIMACS solver. Parallelizing the reference
solver to run on a massively multithreaded machine such as the MTA-2 is a non-trivial task.
So, we report the execution time of a multithreaded level-synchronized breadth-first search
[5], optimized for low-diameter graphs. The multithreaded BFS scales as well as δ-stepping
for the core graph families, and the execution time serves as a lower bound for the shortest
path running time.

On a sequential processor, we execute the BFS and shortest path codes on all the core
graph families, for the recommended problem sizes. However, for parallel runs, we only
report results for sufficiently large graph instances in case of the synthetic graph families.
We parallelize the synthetic core graph generators and port them to run on the MTA-2.

Our implementations accept both directed and undirected graphs. For all the synthetic
graph instances, we report execution times on directed graphs in this paper. The road
networks are undirected graphs. We also assume the edge weights to be distributed in [0, 1]
in the ∆-stepping implementation. So we have a pre-processing step to scale the integer
edge weights in the core problem families to the interval [0, 1], dividing the integer weights
by the maximum edge weight.

The first run on the MTA-2 is usually slower than subsequent ones (by about 10% for a
typical ∆-stepping run). So we report the average running time for 10 successive runs. We
run the code from three randomly chosen source vertices and average the running time. We
found that using three sources consistently gave us execution time results with little variation
on both the MTA-2 and the reference sequential platform. We tabulate the sequential and
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parallel performance metrics in Appendix B, and report execution time in seconds. If the
execution time is less than 10−3 seconds, we round the time to four decimal digits. If it is
less than 10−2 seconds, we round it to three digits. In all other cases, the reported running
time is rounded to two decimal digits.

5 Results and Analysis

5.1 Sequential Performance

First we present the performance results of our implementation on the reference sequential
platform for the core graph families. The BFS, ∆-stepping, and reference DIMACS imple-
mentation execution times on the recommended core graph instances are given in Section B.1.
We observe that the ratio of the ∆-stepping execution time to the Breadth-First Search time
varies between 3 and 10 across different problem instances. Also, the DIMACS reference
code is about 1.5 to 2 times faster than our implementation for large problem instances in
each family.

Table 1 summarizes the performance for random graph instances. For the Random4-n
family, n is varied from 211 to 221, the maximum edge weight is set to n, and the graph
density is constant. For the largest instance, ∆-stepping execution time is 1.7 times slower
than the reference implementation and 5.4 times the BFS execution time. For the Random4-
C family, we normalize the weights to the maximum integer weight. We do not observe any
trend similar to the reference implementation, where the execution time gradually rises as
the maximum weight increases.

The sequential performance of ∆-stepping on Long grid graphs (Table 2) is similar to
that on Random graphs. However, the reference implementation is slightly faster on long
grids. For square grids and road networks, the ∆-stepping to BFS ratio is comparatively
higher (for e.g., BFS to ∆-stepping ratio is 4.71 for the largest Square-n graph, and 3.74 for
the largest Random4-n graph) than the Random and Long grid families.

Figs. 1 and 2 summarize the key observations from the tables in Section B.1. Comparing
execution time across graphs of the same size in Fig. 1, we find that the ∆-stepping running
time for the Random4-n graph instance is slightly higher than the rest of the families.
The ∆-stepping running time is also comparable to the execution time of the reference
implementation for all graph families. Fig. 2 plots the execution time normalized to the
problem size (or the running time per edge) for Random4-n and Long-n families. Observe
that the ∆-stepping implementation execution time scales with problem size at a faster rate
compared to BFS or the DIMACS reference implementation.

5.2 ∆-stepping analysis

To better understand the algorithm performance across graph families, we study machine-
independent algorithm operation counts. The parallel performance is dependent on the value
of ∆, the number of phases, the size of the request set in each phase. Fig. 3 plots the size of
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Figure 1: Sequential performance of our ∆-stepping implementation, on the core graph
families. All the synthetic graphs are directed, with 220 vertices and m

n
≈ 4. FLA(d) and

FLA(t) are road networks corresponding to Florida, with 1070376 vertices and 2712768 edges
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(a) Random4-n family. Problem instance i denotes a directed graph of 2i

vertices, m = 4n edges, and maximum weight C = n

(b) Long-n family. Problem instance i denotes a grid with x = 2i and
y = 16. n = xy and m

n
≃ 4

Figure 2: ∆-stepping sequential execution time as a function of problem size
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(a) Random4-n family, n = 220. (b) Long-n family, n = 220.

(c) Square-n family, n = 220. (d) USA-road-d family, Northeast USA (NE). n =
1524452, m = 3897634.

Figure 3: ∆-stepping algorithm: Size of the light request set at the end of each phase, for
the core graph families. Request set sizes less than 10 are not plotted.
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the light request set in each phase, for each core graph family. ∆ is set to 0.25 for all runs.
If the request set size is less than 10, it is not plotted. Consider the random graph family
(Fig. 3(a)). It executes in 84 phases, and the request set sizes vary from 0 to 27,000. Observe
the recurring pattern of three bars stacked together in the plot. This indicates that all the
light edges in a bucket are relaxed in roughly three phases, and the bucket then becomes
empty. The size of the relax set is relatively high for several phases, which provides scope for
exploiting multithreaded parallelism. The relax set size plot of a similar problem instance
from the Long grid family (Fig. 3(b)) stands in stark contrast to the random graph plot. It
takes about 200,000 phases to execute, and the maximum request size is only 15. Both of
these values indicate that our implementation would fare poorly on long grid graphs. On
square grids (Fig. 3(c)), ∆-stepping takes fewer phases, and the request set sizes go up to
500. For a road network instance (NE USA-road-d, Fig. 3(d)), the algorithm takes 23,000
phases to execute, and only a few phases (about 30) have request set counts greater than
1000.

Fig. 4 plots several key ∆-stepping operation counts for various graph classes. Along with
the core graph families, we include ScaleFree4-n, RandomlogUnif4-n, and LonglogUnif4-n
graph classes. All synthetic graphs are roughly of the same size. Fig. 4(a) plots the average
shortest path weight for various graph classes. Scale-free and Long grid graphs are on the
two extremes. A log-uniform edge weight distribution also results in low average edge weight.
The number of phases (see Fig. 4(b)) is highest for Long grid graphs. The number of buckets
shows a similar trend as the average shortest path weight. Fig. 4(d) plots the total number
of insertions for each graph family. The number of vertices is 220 for all graph families
(slightly higher for the road network), and so ∆-stepping results in roughly 20% overhead in
insertions for all the graph families with random edge weights. Note the number of insertions
for graphs with log-uniform weight distributions. ∆-stepping performs a lot of excess work
for these families, because the value of ∆ is quite high for this particular distribution.

We next evaluate the performance of the algorithm as ∆ is varied (tables in Section
B.2). Fig. 5 plots the execution time of various graph instances on a sequential machine,
and one processor of the MTA-2. ∆ is varied from 0.1 to 10 in each case. We find that the
absolute running times on a 3.2 GHz Xeon processor and the MTA-2 are comparable for
random, square grid and road network instances. However, on long grid graphs (Fig. 5(b)),
the MTA-2 execution time is two orders of magnitude greater than the sequential time. The
number of phases and the total number of relaxations vary as ∆ is varied (Tables 5 and 6).
On the MTA-2, the running time is not only dependent on the work done, but also on the
number of phases and the average number of relax requests in a phase. For instance, in the
case of long grids (see Fig. 5(b), with execution time plotted on a log scale), the running
time decreases significantly as the value of ∆ is decreased, as the number of phases reduce.
On a sequential processor, however, the running time is only dependent on the work done
(number of insertions). If the value of ∆ is greater than the average shortest path weight,
we perform excess work and the running time noticeably increases (observe the execution
time for ∆ = 5, 10 on the random graph and the road network). The optimal value of ∆
(and the execution time on the MTA-2) is also dependent on the number of processors. For
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(a) Average shortest path weight ( 1

n
∗∑

v∈V
δ(v)) (b) No. of phases

(c) Last non-empty bucket (d) Number of relax requests

Figure 4: ∆-stepping algorithm performance statistics for various graph classes. All synthetic
graph instances have n set to 220 and m ≈ 4n. Rand-rnd: Random graph with random edge
weights, Rand-logU: Random graphs with log-uniform edge weights, Scale-free: Scale-free
graph with random edge weights, Lgrid: Long grid, SqGrid: Square grid, USA NE: 1524452
vertices, 3897634 edges. Plots (a), (b) and (c) are on a log scale, while (d) uses a linear scale.
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a particular ∆, it may be possible to saturate a single processor of the MTA-2 with the right
balance of work and phases. The execution time on a 40-processor run may not be minimal
with this value of ∆.

(a) Random4-n family. 220 vertices (b) Long-n family. 220 vertices

(c) Square-n family. 220 vertices (d) USA-road-d family, Florida (FLA). 1070376 ver-
tices, 2712798 edges

Figure 5: A comparison of the execution time on the reference sequential platform and a
single MTA-2 processor, as the bucket-width ∆ is varied.

5.3 Parallel Performance

We present the parallel scaling of the ∆-stepping algorithm in detail (see Section B.3). We
ran ∆-stepping and the level-synchronous parallel BFS on graph instances from the core
families, scale-free graphs and graphs with log-uniform edge weight distributions. Define the
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(a) Execution time and Relative Speedup (linear scale)

(b) Execution time vs. No. of processors (log-log scale)

Figure 6: ∆-stepping execution time and relative speedup on the MTA-2 for a Random4-n
graph instance (directed graph, n=228 vertices and m = 4n edges, random edge weights).
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(a) Execution time and Relative Speedup (linear scale)

(b) Execution time vs. No. of processors (log-log scale)

Figure 7: ∆-stepping execution time and relative speedup on the MTA-2 for a ScaleFree4-n
graph instance (directed graph, n=228 vertices and m = 4n edges, random edge weights).
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speedup on p processors of the MTA-2 as the ratio of the execution time on 1 processor to
the execution time on p processors. Since the computation on the MTA-2 is thread-centric
rather than processor-centric, note that the single processor run is also parallel. In all graph
classes except long grids, there is sufficient parallelism to saturate a single processor of the
MTA-2 for reasonably large problem instances.

As expected from the discussion in the previous section, ∆-stepping performs best for low-
diameter random and scale-free graphs with randomly distributed edge weights (see Fig. 6
and 7). We attain a speedup of approximately 31 on 40 processors for a directed random
graph of nearly a billion edges, and the ratio of the BFS and ∆-stepping execution time
is a constant factor (about 3-5) throughout. The implementation performs equally well for
scale-free graphs, that are more difficult to handle due to the irregular degree distribution.
The execution time on 40 processors of the MTA-2 for the scale-free graph instance is only 1
second slower than the running time for a random graph and the speedup is approximately
30 on 40 processors. We have already shown that the execution time for smaller graph
instances on a sequential machine is comparable to the DIMACS reference implementation,
a competitive NSSP algorithm. Thus, attaining a speedup of 30 for a realistic scale-free
graph instance of one billion edges (Fig. 7) is a remarkable result.

Table 7 gives the execution time of ∆-stepping on the Random4-n family, as the number
of vertices is increased from 221 to 228, and the number of processors is varied from 1 to 40.
Observe that the relative speedup increases as the problem size is increased (for e.g., on 40
processors, the speedup for n = 221 is just 3.96, whereas it is 31.04 for 228 vertices). This
is because there is insufficient parallelism in a problem instance of size 221 to saturate 40
processors of the MTA-2. As the problem size increases, the ratio of ∆-stepping execution
time to multithreaded BFS running time decreases. On an average, ∆-stepping is 5 times
slower than BFS for this graph family.

Table 8 gives the execution time for random graphs with a log-uniform weight distri-
bution. With ∆ set to n

m
, we do a lot of additional work. The ∆-stepping to BFS ratio

is typically 40 in this case, about 8 times higher than the corresponding ratio for random
graphs with random edge weights. However, the execution time scales well with the number
of processors for large problem sizes.

Table 9 summarizes the execution time for the Random4-C family. The maximum edge
weight is varied from 40 to 415 while keeping m and n constant. We do not notice any trend
in the execution time in this case, as we normalize the edge weights to fall in the interval [0,
1]. Similarly, there is no noticeable trend in case of the Long-C family (Table 11).

Tables 10 and 12 give the execution time for ∆-stepping for the long and square grid
graphs respectively, as the problem size and number of processors are varied. For Long-n
graphs with ∆ set to n

m
, there is insufficient parallelism to fully utilize even a single processor

of the MTA-2. The execution time of the level-synchronous BFS also does not scale with
the number of processors. In fact, the running time goes up in case of multiprocessor
runs, as the parallelization overhead becomes significant. Note that the execution time
on a single processor of the MTA-2 is two orders of magnitude slower than the reference
sequential processor (Fig. 5(b)). In case of square grid graphs, there is sufficient parallelism
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to utilize up to 4 processors for a graph instance of 224 vertices. For all other instances,
the running time does not scale for multiprocessor runs. The ratio of the running time to
BFS is about 5 in this case, and the ∆-stepping MTA-2 single processor time is comparable
to the sequential reference platform running time for smaller instances. Tables 13 and 14
summarize the running times on the USA road networks. The execution time does not scale
well with problem size, as the problem instances are small. We observe better performance
(lower execution time, better speedup) on USA-road-d graphs than on USA-road-t graphs.

6 Conclusions and Future Work

In this paper, we experimentally evaluate the parallel ∆-stepping NSSP algorithm for the
9th DIMACS Shortest Paths Challenge. We study the algorithm performance for core chal-
lenge graph instances on the Cray MTA-2, and observe that our implementation execution
time scales impressively with number of processors for low-diameter sparse graphs. We also
analyze the performance using platform-independent ∆-stepping algorithm operation counts
such as the number of phases, and the request set sizes, to explain performance across graph
families.

We would like to further study the dependence of the bucket-width ∆ on the parallel
performance of the algorithm. For high diameter graphs, there is a trade-off between the
number of phases and the amount of work done (proportional to the number of bucket
insertions). The execution time is dependent on the value of ∆ as well as the number of
processors. We need to reduce the number of phases for parallel runs and increase the system
utilization by choosing an appropriate value of ∆.

We are currently optimizing parallel implementations of Thorup’s algorithm for NSSP,
and the Bellman-Ford algorithm for solving the single-source shortest paths allowing negative
edge weights. For all-pairs shortest path computations, we expect our optimized Thorup
implementation to outperform ∆-stepping. We intend to repeat this NSSP experimental
study on the MTA-2 with Thorup’s implementation in the near future.

Our parallel performance studies have been restricted to the Cray MTA-2 in this paper.
We have a preliminary implementation of ∆-stepping designed for multi-core processors and
symmetric multiprocessors (SMPs) that we wish to add to this study. We expect the SMP
implementation would also perform well on low-diameter graphs.
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A The Cray MTA-2

This section is excepted from [6].

A.1 Architecture

The Cray MTA-2 [17] is a novel multithreaded architecture with no data cache, and hardware
support for synchronization. The computational model for the MTA-2 is thread-centric, not
processor-centric. A thread is a logical entity comprised of a sequence of instructions that are
issued in order. An MTA-2 processor consists of 128 hardware streams and one instruction
pipeline. A stream is a physical resource (a set of 32 registers, a status word, and space
in the instruction cache) that hold the state of one thread. An instruction is three-wide: a
memory operation, a fused multiply-add, and a floating point add or control operation. Each
stream can have up to 8 outstanding memory operations. Threads from the same or different
programs are mapped to the streams by the runtime system. A processor switches among
its streams every cycle, executing instructions from non-blocked streams. As long as one
stream has a ready instruction, the processor remains fully utilized. No thread is bound to
any particular processor. System memory size and the inherent degree of parallelism within
the program are the only limits on the number of threads used by a program.

The interconnection network is a partially connected 3-D torus capable of delivering one
word per processor per cycle. The system has 4 GBytes of memory per processor. Logical
memory addresses are hashed across physical memory to avoid stride-induced hot spots.
Each memory word is 68 bits: 64 data bits and 4 tag bits. One tag bit (the full-empty
bit) is used to implement synchronous load and store operations. A thread that issues a
synchronous load or store remains blocked until the operation completes; but the processor
that issued the operation continues to issue instructions from non-blocked streams.

The MTA-2 is closer to a theoretical PRAM machine than a shared memory symmetric
multiprocessor system. Since the MTA-2 uses parallelism to tolerate latency, algorithms
must often be parallelized at very fine levels to expose sufficient parallelism. However, it
is not necessary that all parallelism in the program be expressed such that the system can
exploit it; the goal is simply to saturate the processors. The programs that make the most
effective use of the MTA-2 are those which express the parallelism of the problem in a way
that allows the compiler to best exploit it.

A.2 Expressing Parallelism on the MTA-2

The MTA-2 compiler automatically parallelizes inductive loops of three types: parallel loops,
linear recurrences and reductions. A loop is inductive if it is controlled by a variable that is
incremented by a loop-invariant stride during each iteration, and the loop-exit test compares
this variable with a loop-invariant expression. An inductive loop has only one exit test and
can only be entered from the top. If each iteration of an inductive loop can be executed
completely independently of the others, then the loop is termed parallel. To attain the best
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performance, we need to write code (and thus design algorithms) such that most of the loops
are implicitly parallelized.

There are several compiler directives that can be used to parallelize various sections of a
program. The three major types of parallelization schemes available are

• single-processor (fray) parallelism: The code is parallelized in such a way that just the
128 streams on the processor are utilized.

• multi-processor (crew) parallelism: This has higher overhead than single-processor
parallelism. However, the number of streams available is much larger, bounded by the
size of the whole machine rather than the size of a single processor. Iterations can be
statically or dynamically scheduled.

• future parallelism: The future construct (detailed below) is used in this form of par-
allelism. This does not require that all processor resources used during the loop be
available at the beginning of the loop. The runtime growth manager increases the
number of physical processors as needed. Iterations are always dynamically scheduled.

A future is a powerful construct to express user-specified explicit parallelism. It packages
a sequence of code that can be executed by a newly created thread running concurrently with
other threads in the program. Futures include efficient mechanisms for delaying the execution
of code that depends on the computation within the future, until the future completes. The
thread that spawns the future can pass information to the thread that executes the future via
parameters. Futures are best used to implement task-level parallelism and the parallelism
in recursive computations.

A.3 Synchronization support on the MTA-2

Synchronization is a major limiting factor to scalability in the case of practical shared mem-
ory implementations. The software mechanisms commonly available on conventional archi-
tectures for achieving synchronization are often inefficient. However, the MTA-2 provides
hardware support for fine-grained synchronization through the full-empty bit associated with
every memory word. The compiler provides a number of generic routines that operate atom-
ically on scalar variables. We list a few useful constructs that appear in the algorithm
pseudo-codes in subsequent sections.

• The int_fetch_add routine (int_fetch_add(&v, i)) atomically adds integer i to the
value at address v, stores the sum at v, and returns the original value at v (setting the
full-empty bit to full). If v is an empty sync or future variable, the operation blocks
until v becomes full.

• readfe(&v) returns the value of variable v when v is full and sets v empty. This allows
threads waiting for v to become empty to resume execution. If v is empty, the read
blocks until v becomes full.
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• writeef(&v, i) writes the value i to v when v is empty, and sets v back to full. The
thread waits until v is set empty.

• purge(&v) sets the state of the full-empty bit of v to empty.

B Tables

B.1 Sequential performance of ∆-stepping implementation on the

reference platform

(a) Random4-n core family. Problem instance denotes the log of the number of vertices. A directed random
graph of n vertices, m = 4n edges, and maximum weight C = n.

Problem Instance 11 12 13 14 15 16 17 18 19 20 21

BFS .0001 .0003 .0006 .001 .004 .02 .05 .14 .32 .69 1.45

∆-stepping .0007 .002 .004 .01 .03 .09 .23 .52 1.12 2.54 5.42
Normalized to BFS 7.00 6.67 6.67 10.00 7.50 4.50 4.60 3.71 3.50 3.68 3.74

DIMACS Reference .0003 .0008 .002 .008 .02 .06 .13 .30 0.65 1.39 3.19
Normalized to BFS 3.00 2.67 3.33 8.00 5.00 3.00 2.60 2.14 2.03 2.01 2.20

(b) Random4-C core family. Problem instance denotes the log of the maximum edge
weight. n = 220 vertices and m = 4n edges.

Problem Instance 0 1 2 3 4 5 6 7

BFS 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

∆-stepping 2.31 2.55 2.53 2.55 2.54 2.54 2.54 2.54
Normalized to BFS 3.35 3.70 3.67 3.70 3.68 3.67 3.67 3.67

DIMACS Reference 0.87 0.89 0.92 1.21 1.26 1.31 1.38 1.36
Normalized to BFS 1.26 1.29 1.33 1.75 1.83 1.90 2.00 1.97

Problem Instance 8 9 10 11 12 13 14 15

BFS 0.69 0.69 0.69 0.69 0.69 0.69 0.69 0.69

∆-stepping 2.55 2.54 2.54 2.55 2.54 2.54 2.54 2.54
Normalized to BFS 3.70 3.68 3.68 3.70 3.68 3.68 3.68 3.68

DIMACS Reference 1.37 1.37 1.38 1.37 1.37 1.38 1.37 1.38
Normalized to BFS 1.98 1.98 2.00 1.98 1.98 2.00 1.98 2.00

Table 1: Sequential performance (execution time in seconds, and normalized performance
with reference to the baseline BFS) of our implementation for the core random graph families.
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(a) Long-n core family. Problem instance i denotes a grid with x = 2i and y = 16. n = xy and m

n
≃ 4.

Problem Instance 6 7 8 9 10 11 12 13 14 15 16

BFS .0001 .0002 .0003 .0007 .001 .004 .02 .04 .09 .19 .41

∆-stepping .0005 .001 .002 .005 .01 .03 .07 .17 .35 .76 1.54
Normalized to BFS 5.00 5.00 6.67 7.14 10.00 7.50 3.50 4.25 3.89 4.00 3.76

DIMACS Reference .0002 .0003 .0007 .002 .006 0.01 .03 0.06 .13 .27 .60
Normalized to BFS 2.00 1.50 2.33 2.86 6.00 2.50 1.50 1.50 1.44 1.42 1.46

(b) Long-C core family. Problem instance denotes the log of the maximum edge
weight. The grid dimensions are set to x = 216 and y = 16.

Problem Instance 0 1 2 3 4 5 6 7

BFS 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

∆-stepping 0.68 0.75 0.78 0.88 1.02 1.07 1.09 1.09
Normalized to BFS 2.75 3.00 3.12 3.52 4.08 4.28 4.36 4.36

DIMACS Reference 0.50 0.54 0.57 0.59 0.57 0.58 0.60 0.60
Normalized to BFS 2.00 2.16 2.28 2.36 2.28 2.32 2.40 2.40

Problem Instance 8 9 10 11 12 13 14 15

BFS 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

∆-stepping 1.08 1.09 1.09 1.09 1.08 1.09 1.08 1.09
Normalized to BFS 4.32 4.36 4.36 4.36 4.32 4.36 4.32 4.36

DIMACS Reference 0.59 0.60 0.61 0.59 0.61 0.60 0.60 0.60
Normalized to BFS 2.36 2.40 2.44 2.36 2.44 2.40 2.40 2.40

Table 2: Sequential performance (execution time in seconds, and normalized performance
with reference to the baseline BFS) of our implementation for the core long grid graph
families.
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(a) Square-n core family. Problem instance denotes the log of the grid x dimension. x = y and m

n
≃ 4.

Problem Instance 11 12 13 14 15 16 17 18 19 20 21

BFS .0001 .0003 .0007 .001 .003 .01 .04 .08 .20 .42 .93

∆-stepping .0008 .002 .004 .008 .03 .07 .20 .36 .81 2.05 4.38
Normalized to BFS 8.00 6.67 5.71 8.00 10.00 7.00 5.00 4.00 4.05 4.88 4.71

DIMACS Reference .0003 .0007 .002 .006 .01 .03 .06 0.14 .36 .84 2.01
Normalized to BFS 3.00 2.33 2.86 6.00 3.33 3.00 1.50 1.75 1.80 2.00 2.16

(b) Square-C core family. Problem instance denotes the log of the edge weight. The
grid dimensions are set to x = y = 210, and n = xy.

Problem Instance 0 1 2 3 4 5 6 7

BFS 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

∆-stepping 1.99 2.06 2.03 2.09 2.05 2.07 2.06 2.01
Normalized to BFS 4.74 4.90 4.83 4.89 4.88 4.93 4.90 4.79

DIMACS Reference 0.56 0.68 0.71 0.79 0.78 0.76 0.81 0.80
Normalized to BFS 1.33 1.62 1.69 1.88 1.86 1.81 1.93 1.90

Problem Instance 8 9 10 11 12 13 14 15

BFS 0.42 0.42 0.42 0.42 0.42 0.42 0.42 0.42

∆-stepping 2.04 2.09 2.05 2.06 2.01 2.08 2.09 2.08
Normalized to BFS 4.86 4.98 4.88 4.90 4.78 4.95 4.98 4.95

DIMACS Reference 0.82 0.80 0.83 0.79 0.77 0.79 0.78 0.77
Normalized to BFS 1.95 1.90 1.98 1.88 1.83 1.88 1.86 1.83

Table 3: Sequential performance (execution time in seconds, and normalized performance
with reference to the baseline BFS) of our implementation for the core square grid graph
families.
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(a) Core graphs from the USA road network, with the transit time as the length function.

Problem Instance CTR W E LKS CAL NE NW FLA COL BAY NY

BFS 4.16 1.49 .65 .39 .26 .17 .16 .13 .04 0.03 .02

∆-stepping 25.24 9.87 4.97 2.52 1.95 1.43 .89 .97 .30 .21 .15
Normalized to BFS 6.07 6.63 7.65 6.46 7.50 8.41 5.56 7.46 7.5 7.00 7.50

DIMACS Reference 9.06 3.12 1.65 1.14 .72 .58 .45 .36 .13 .09 .07
Normalized to BFS 2.18 2.09 2.54 2.92 2.77 3.41 2.81 2.77 3.25 3.00 3.50

(b) Core graphs from the USA road network, with the distance as the length function.

Problem Instance CTR W E LKS CAL NE NW FLA COL BAY NY

BFS 4.32 1.89 1.05 .80 .54 .34 .31 .28 .05 .03 .02

∆-stepping 21.63 10.34 7.02 3.52 3.67 1.06 1.26 1.17 0.15 0.11 0.08
Normalized to BFS 5.01 5.47 6.69 4.40 6.80 3.11 4.06 4.18 3.00 3.67 4.00

DIMACS Reference 15.52 4.91 3.12 2.24 1.41 0.86 0.71 0.55 0.13 0.08 0.07
Normalized to BFS 3.59 2.60 2.97 2.80 2.61 2.53 2.29 1.96 2.60 2.67 3.50

Table 4: Sequential performance (execution time in seconds, and normalized performance
with reference to the baseline BFS) of our implementation for the core road networks.
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B.2 Algorithm performance as a function of ∆

(a) Random4-n graph instance (n = C = 228, m = 4n).

∆ 0.1 0.5 1 5 10

No. of phases 328 122 89 58 50
Last non-empty bucket 93 19 9 1 0
Average distance 4.94 4.94 4.94 4.94 4.94
Avg. no. of light relax requests per phase 161K 1.84M 4.43M 8.28M 20.00M
Avg. no. of heavy relax requests per bucket 3.12M 5.46M 0 0 0
Total number of relaxations 343.20M 328.70M 394.30M 480.30M 1.00B
Execution Time (40 processors MTA-2, seconds) 14.03 11.64 13.57 16.15 27.14

(b) ScaleFree4-n graph instance (n = C = 225, m = 4n).

∆ 0.1 0.5 1 5 10

No. of phases 312 117 83 51 39
Last non-empty bucket 131 26 13 2 1
Average distance 1.68 1.68 1.68 1.68 1.68
Avg. no. of light relax requests per phase 22.40K 267.00K 667.00K 2.40M 3.15M
Avg. no. of heavy relax requests per bucket 278.00K 455.80K 0 0 0
Total number of relaxations 43.78M 43.63M 55.40M 122.68M 122.76M
Execution Time (40 processors MTA-2, seconds) 4.23 2.55 2.79 5.48 6.38

(c) RandomLogUnif4-n instance (n = C = 220, m = 4n).

∆ 0.001 0.05 0.1 0.5 1

No. of phases 460 115 93 77 71
Last non-empty bucket 134 17 8 4 2
Average distance 0.04 0.04 0.04 0.04 0.04
Avg. no. of light relax requests per phase 1.50K 50.80K 84.80K 132.00K 150.01K
Avg. no. of heavy relax requests per bucket 6.50K 3.47K 3.97K 2.18K 1.42K
Total number of relaxations 1.59M 5.91M 7.92M 10.17M 10.74M
Execution Time (40 processors MTA-2, seconds) 2.15 1.18 0.96 0.80 0.75

Table 5: Performance of the ∆-stepping algorithm as a function of the bucket width ∆. K
denotes 103, M denotes 106 and B denotes 109.
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(a) Long grid instance (n = C = 220).

∆ 0.1 0.5 1 5 10

No. of phases 295.27K 151.43K 124.76K 97.38K 92.70K
Last non-empty bucket 216.38K 43.28K 21.64K 4.33K 2.16K
Average distance 10805 10805 10805 10805 10805
Avg. no. of light relax requests per phase 0.65 5.49 11.29 22.99 37.22
Avg. no. of heavy relax requests per bucket 5.21 9.65 0 0 0
Total number of relaxations 1.32M 1.25M 1.40M 2.23M 3.45M
Execution Time (40 processors MTA-2, seconds) 858.75 465.14 443.05 369.57 274.23

(b) Square grid instance (n = C = 220).

∆ 0.1 0.5 1 5 10

No. of phases 12795 5489 4188 2769 2504
Last non-empty bucket 4691 938 469 93 46
Average distance 251.86 251.86 251.86 251.86 251.86
Avg. no. of light relax requests per phase 15.51 155.11 340.50 785.18 1248.72
Avg. no. of heavy relax requests per bucket 242.22 437.44 0 0 0
Total number of relaxations 1.33M 1.26M 1.43M 2.17M 3.13M
Execution Time (40 processors MTA-2, seconds) 48.77 20.04 13.92 9.17 8.32

(c) Central USA road instance (distance).

∆ 0.1 0.5 1 5

No. of phases 3129 2017 1669 1300
Last non-empty bucket 105 21 10 2
Average distance 3.93 3.93 3.93 3.93
Avg. no. of light relax requests per phase 6.34K 26.04K 57.89K 82.60K
Avg. no. of heavy relax requests per bucket 320.60 1.27 0 0
Total number of relaxations 19.87M 52.50M 96.60M 107.00M
Execution Time (40 processors MTA-2, seconds) 7.83 5.84 5.62 8.88

(d) NE USA road instance (transit time).

∆ 0.1 0.5 1 5

No. of phases 437 3542 3126 2220
Last non-empty bucket 315 63 31 6
Average distance 14.06 14.06 14.06 14.06
Avg. no. of light relax requests per phase 369.90 783.80 1.38K 8.66K
Avg. no. of heavy relax requests per bucket 168.40 1.85 0 0
Total number of relaxations 1.76M 2.78M 4.31M 19.21M
Execution Time (40 processors MTA-2, seconds) 12.92 9.25 8.39 6.84

Table 6: Performance of the ∆-stepping algorithm as a function of the bucket width ∆. K
denotes 103, M denotes 106 and B denotes 109.
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B.3 Parallel Performance on the Cray MTA-2

p Problem Instance 21 22 23 24 25 26 27 28

1 BFS time (sec) 0.62 1.24 3.39 4.91 9.70 18.90 37.30 73.94
∆-stepping time (sec) 3.21 6.34 12.05 23.61 46.63 93.77 187.84 371.27
Ratio to BFS 5.18 5.11 3.55 4.81 4.81 4.96 5.04 5.02

2 BFS time (sec) 0.31 0.61 1.19 2.34 4.65 9.29 18.66 37.06
∆-stepping time (sec) 1.92 3.44 6.57 12.72 24.88 48.40 96.15 187.99
Ratio to BFS 6.25 5.66 5.52 5.43 5.35 5.21 5.15 5.07
Relative Speedup 1.67 1.84 1.83 1.86 1.87 1.94 1.95 1.99

4 BFS time (sec) 0.16 0.31 0.61 1.19 2.37 4.71 9.38 19.59
∆-stepping time (sec) 1.23 2.07 3.77 7.07 13.63 25.40 50.08 96.89
Ratio to BFS 7.69 6.68 6.18 5.94 5.75 5.39 5.34 4.95
Relative Speedup 2.61 3.06 3.20 3.34 3.42 3.69 3.75 3.83

8 BFS time (sec) 0.09 0.16 0.31 0.60 1.18 2.35 4.73 9.37
∆-stepping time (sec) 0.96 1.40 2.39 4.28 8.04 13.81 27.29 49.18
Ratio to BFS 10.67 8.48 7.74 7.13 6.81 6.88 5.77 5.25
Relative Speedup 3.34 4.53 5.04 5.52 5.80 6.79 6.88 7.55

16 BFS time (sec) 0.06 0.10 0.17 0.32 0.62 1.20 2.39 4.73
∆-stepping time (sec) 0.84 1.24 1.84 3.06 5.45 8.34 15.91 25.47
Ratio to BFS 7.55 12.40 10.60 9.22 8.83 6.95 6.66 5.38
Relative Speedup 3.82 5.11 6.55 7.71 8.55 11.24 11.81 14.58

32 BFS time (sec) 0.05 0.07 0.11 0.19 0.36 0.69 1.36 2.68
∆-stepping time (sec) 0.78 1.047 1.52 2.42 4.12 5.70 10.31 13.90
Ratio to BFS 15.60 15.00 13.81 12.74 11.44 15.83 7.58 5.19
Relative Speedup 4.12 6.04 7.93 9.76 11.32 16.45 18.22 26.71

40 BFS time (sec) 0.04 0.06 0.10 0.17 0.32 0.61 1.20 2.37
∆-stepping time (sec) 0.81 1.05 1.53 2.35 3.98 5.15 9.51 11.96
Ratio to BFS 18.41 16.41 15.30 13.82 12.44 8.44 7.92 5.04
Relative Speedup 3.96 6.04 7.88 10.05 11.72 11.11 19.75 31.04

Table 7: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS, relative speedup) of our implementation on Random4-n graphs.
Problem instance denotes log of the number of vertices. p denotes the number of processors.
m = 4n edges, and maximum weight C = n.

29



p Problem Instance 21 22 23 24 25 26 27

1 BFS time (sec) 0.62 1.24 3.39 4.91 9.70 18.90 37.30
∆-stepping time (sec) 20.43 41.72 85.10 173.96 378.80 878.86 1687.59
Ratio to BFS 32.95 33.64 25.10 35.43 39.05 46.50 45.24

4 BFS time (sec) 0.16 0.31 0.61 1.19 2.37 4.71 9.38
∆-stepping time (sec) 6.03 11.17 22.90 45.38 97.63 224.46 426.02
Ratio to BFS 37.69 36.03 37.54 38.13 41.19 47.65 45.52
Relative Speedup 3.38 3.73 3.72 3.83 3.88 3.91 3.96

16 BFS time (sec) 0.06 0.10 0.17 0.32 0.62 1.20 2.39
∆-stepping time (sec) 2.47 3.94 7.43 13.96 26.50 60.82 113.12
Ratio to BFS 41.17 39.40 43.70 43.62 42.74 50.68 47.33
Relative Speedup 8.27 10.59 11.45 12.46 14.29 14.45 14.92

40 BFS time (sec) 0.04 0.06 0.10 0.17 0.32 0.61 1.20
∆-stepping time (sec) 1.99 2.61 4.27 7.23 12.86 29.58 51.89
Ratio to BFS 49.17 43.50 42.70 42.53 40.19 48.49 43.24
Relative Speedup 10.27 15.98 19.93 24.06 29.46 29.71 32.52

Table 8: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS, relative speedup) of our implementation for RandomLogUnif4-
n graphs. Problem instance denotes the log of the number of vertices. p denotes the number
of processors. m = 4n edges and maximum weight C = n.
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p Problem Instance 0 3 6 9 12 15

1 BFS time (sec) 19.07 19.07 19.07 19.07 19.07 19.07
∆-stepping time (sec) 93.66 93.74 94.34 93.22 95.76 94.11
Ratio to BFS 4.91 4.91 4.89 4.89 5.01 4.83

2 BFS time (sec) 9.38 9.38 9.38 9.38 9.38 9.38
∆-stepping time (sec) 48.24 48.15 48.78 48.5 49.25 48.63
Ratio to BFS 5.14 5.13 5.20 5.17 5.25 5.18
Relative Speedup 1.94 1.95 1.91 1.92 1.94 1.93

4 BFS time (sec) 4.73 4.73 4.73 4.73 4.73 4.73
∆-stepping time (sec) 25.81 25.43 25.47 25.81 25.39 25.35
Ratio to BFS 5.46 5.38 5.38 5.46 5.37 5.36
Relative Speedup 3.63 3.69 3.66 3.61 3.77 3.71

8 BFS time (sec) 2.36 2.36 2.36 2.36 2.36 2.36
∆-stepping time (sec) 14.06 13.67 13.86 13.85 14.07 13.85
Ratio to BFS 5.96 5.79 5.87 5.87 5.96 5.87
Relative Speedup 6.66 6.86 6.73 6.73 6.80 6.79

16 BFS time (sec) 1.21 1.21 1.21 1.21 1.21 1.21
∆-stepping time (sec) 8.37 8.38 8.4 8.37 8.42 8.38
Ratio to BFS 6.92 6.92 6.94 6.92 6.96 6.92
Relative Speedup 11.19 11.19 11.11 11.14 11.37 11.23

32 BFS time (sec) 0.69 0.69 0.69 0.69 0.69 0.69
∆-stepping time (sec) 5.66 5.65 5.66 5.68 5.66 5.67
Ratio to BFS 8.20 8.19 8.20 8.23 8.20 8.21
Relative Speedup 11.42 11.45 11.38 11.32 11.67 11.45

40 BFS time (sec) 0.61 0.61 0.61 0.61 0.61 0.61
∆-stepping time (sec) 5.23 5.27 5.22 5.23 5.21 5.26
Ratio to BFS 8.52 8.58 8.50 8.52 8.48 8.57
Relative Speedup 17.91 17.79 17.88 17.82 18.38 17.89

Table 9: MTA-2 performance (execution time in seconds, normalized performance with ref-
erence to the baseline BFS, relative speedup) of our implementation on Random4-C graphs.
Problem instance denotes the log of the maximum edge weight. p denotes the number of
processors. n = 226 vertices, m = 4n edges.

31



p Problem Instance 10 11 12 13 14 15 16 17

1 BFS time (sec) 0.54 1.22 1.54 4.19 7.60 14.30 34.90 55.62
∆-stepping time (sec) 3.99 8.57 13.77 32.11 57.16 123.73 243.53 404.91
Ratio to BFS 7.39 7.02 8.94 7.66 7.52 8.65 6.97 7.28

4 BFS time (sec) 0.74 1.43 2.12 4.52 9.27 19.80 39.48 71.49
∆-stepping time (sec) 5.36 11.20 17.92 42.06 73.93 158.72 306.69 567.63
Ratio to BFS 7.24 7.83 8.45 9.30 7.97 8.01 7.77 7.94

16 BFS time (sec) 1.04 1.85 3.09 6.72 13.56 25.44 57.71 107.00
∆-stepping time (sec) 7.10 15.07 23.50 56.08 97.99 212.51 503.33 967.70
Ratio to BFS 6.83 8.14 7.60 8.34 7.23 8.35 8.72 9.04

40 BFS time (sec) 1.31 2.43 4.00 8.29 18.14 32.33 72.99 132.36
∆-stepping time (sec) 12.53 23.64 40.02 90.59 171.13 330.72 812.02 1534.05
Ratio to BFS 9.56 9.73 10.00 10.97 9.43 10.23 11.12 11.59

Table 10: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS) of our implementation on Long-n graphs. Problem instance
denotes the log of the rectangular grid x dimension. p denotes the number of processors,
y = 16, n = xy, m ≃ 4n edges, and maximum weight C = n.

p Problem Instance 0 3 6 9 12 15

1 BFS time (sec) 7.60 7.60 7.60 7.60 7.60 7.60
∆-stepping time (sec) 57.24 56.88 57.13 57.89 58.11 56.97
Ratio to BFS 7.53 7.48 7.52 7.62 7.65 7.50

4 BFS time (sec) 9.27 9.27 9.27 9.27 9.27 9.27
∆-stepping time (sec) 74.02 73.88 73.92 74.68 75.17 75.49
Ratio to BFS 7.98 7.97 7.97 8.06 8.10 8.14

16 BFS time (sec) 13.56 13.56 13.56 13.56 13.56 13.56
∆-stepping time (sec) 96.76 97.11 97.45 98.82 98.30 98.61
Ratio to BFS 7.14 7.16 7.19 7.24 7.25 7.27

40 BFS time (sec) 18.14 18.14 18.14 18.14 18.14 18.14
∆-stepping time (sec) 172.00 171.34 173.43 172.84 172.49 173.19
Ratio to BFS 9.48 9.44 9.56 9.53 9.51 9.55

Table 11: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS) of our implementation on Long-C graphs. Problem instance
denotes the log of the maximum edge weight. p denotes the number of processors. The grid
dimensions are given by x = 214 and y = 16.
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p Problem Instance 6 7 8 9 10 11 12

1 BFS time (sec) 0.05 0.12 0.24 0.57 1.32 3.22 8.55
∆-stepping time (sec) 0.20 0.52 1.28 2.80 7.84 20.56 68.33
Ratio to BFS 4.00 4.33 5.33 4.91 5.94 6.38 7.99

4 BFS time (sec) 0.09 0.16 0.33 0.72 1.51 3.19 6.59
∆-stepping time (sec) 0.23 0.60 1.41 2.84 6.85 14.29 38.62
Ratio to BFS 2.55 3.75 4.27 3.94 4.54 4.48 5.86

16 BFS time (sec) 0.11 0.22 0.41 0.95 1.99 3.93 7.68
∆-stepping time (sec) 0.28 0.73 1.64 3.3 7.83 14.93 35.51
Ratio to BFS 2.54 3.32 4.00 3.47 3.93 3.80 4.62

40 BFS time (sec) 0.12 0.23 0.44 1.00 2.05 4.01 7.90
∆-stepping time (sec) 0.35 0.84 1.91 3.59 8.35 15.29 35.46
Ratio to BFS 2.92 3.65 4.34 3.59 4.07 3.81 4.49

Table 12: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS) of our implementation on Square-n graphs. Problem instance
denotes the log of the number of the grid dimension x. p denotes the number of processors.
x = y, n = xy, m ≃ 4n edges, and maximum weight C = n.

p Instance CTR W E LKS CAL NE NW FLA COL BAY NY

1 BFS time 3.58 2.05 1.30 1.14 0.80 0.96 0.84 0.83 1.40 0.70 0.70
∆-stepping time 19.89 12.91 7.12 5.08 3.09 4.33 3.80 2.76 6.52 3.16 2.70
Ratio to BFS 5.56 6.30 5.48 4.46 3.86 4.51 4.52 3.32 4.66 4.51 3.86

4 BFS time 1.61 1.21 0.83 0.79 0.56 0.79 0.76 0.73 1.61 0.77 0.80
∆-stepping time 8.58 7.12 3.29 3.59 1.92 4.21 3.41 2.28 7.90 3.70 3.39
Ratio to BFS 5.33 5.88 3.96 4.54 3.43 5.33 4.49 3.12 4.91 4.80 4.24

16 BFS time 1.28 1.16 0.84 0.84 0.56 0.87 0.85 0.81 1.91 0.95 0.89
∆-stepping time 6.83 6.74 2.91 3.94 1.96 5.03 4.06 5.28 9.81 4.62 4.08
Ratio to BFS 5.34 5.81 3.46 4.69 3.50 5.78 4.78 6.52 5.14 4.86 4.58

40 BFS time 1.30 1.21 0.86 0.93 0.68 0.95 0.98 0.91 2.19 1.06 1.00
∆-stepping time 6.75 7.07 2.86 4.33 2.14 5.92 5.01 3.13 12.99 5.63 5.06
Ratio to BFS 5.19 5.84 3.32 4.66 3.15 6.23 5.11 3.44 5.93 5.31 5.06

Table 13: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS) of our implementation on USA core road graphs (distance is
the length function). p denotes the number of processors.
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p Instance CTR W E LKS CAL NE NW FLA COL BAY NY

1 BFS time 7.69 5.19 3.95 3.38 2.39 2.01 1.52 1.98 1.51 0.72 0.67
∆-stepping time 37.06 24.01 15.12 14.51 11.32 6.66 7.06 9.22 5.03 2.34 1.69
Ratio to BFS 4.82 4.63 3.83 4.29 4.74 3.31 4.64 4.66 3.33 3.24 2.52

4 BFS time 6.48 4.95 4.09 3.6 2.53 2.14 1.57 2.15 1.76 0.83 0.76
∆-stepping time 34.38 23.75 15.73 15.36 12.03 7.18 8.07 10.45 5.95 2.73 1.91
Ratio to BFS 5.31 4.80 3.84 4.27 4.75 3.31 5.14 4.86 3.38 3.29 2.51

16 BFS time 7.26 5.85 4.94 4.32 3.02 2.53 1.86 2.56 2.13 1.01 0.94
∆-stepping time 39.95 27.86 18.53 18.21 14.25 8.54 9.64 12.41 7.14 3.25 2.31
Ratio to BFS 5.50 4.76 3.75 4.21 4.72 3.75 5.18 4.85 3.35 3.33 2.46

40 BFS time 7.50 6.56 5.47 4.43 3.37 2.92 2.18 2.95 2.19 1.05 0.95
∆-stepping time 42.94 30.24 21.15 20.09 16.29 9.96 12.05 14.54 9.09 3.95 2.82
Ratio to BFS 5.72 4.61 3.87 4.53 4.83 3.41 5.53 4.93 7.64 3.76 2.97

Table 14: MTA-2 performance (execution time in seconds, normalized performance with
reference to the baseline BFS) of our implementation on USA core road graphs (transit time
is the length function).
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