
An Empirical Analysis of Parallel Random Permutation
Algorithms on SMPs

Guojing Cong
IBM T.J. Watson Research Center

David A. Bader�

College of Computing
Georgia Institute of Technology

February 25, 2006

Abstract
We compare parallel algorithms for random permutation generation on symmetric multi-

processors (SMPs). Algorithms considered are the sorting-based algorithm, Anderson’s shuf-
fling algorithm, the dart-throwing algorithm, and Sanders’ algorithm. We investigate the im-
pact of synchronization method, memory access pattern, cost of generating random numbers
and other parameters on the performance of the algorithms. Within the range of inputs used and
processors employed, Anderson’s algorithm is preferable due to its simplicity when random
number generation is relatively costly, while Sanders’ algorithm has superior performance due
to good cache performance when a fast random number generator is available. There is no def-
inite winner across all settings. In fact we predict our new dart-throwing algorithm performs
best when synchronization among processors becomes costly and memory access is relatively
fast.

We also compare the performance of our parallel implementations with the sequential im-
plementation. It is unclear without extensive experimental studies whether fast parallel algo-
rithms beat efficient sequential algorithms due to mismatch between model and architecture.
Our implementations achieve speedups up to 6 with 12 processors on the Sun E4500.

1 Introduction

Random permutation generation is a fundamental problem in computer science. It is particularly

useful in designing randomized algorithms. One popular usage is to perturb the input so that worst-

�This work was supported in part by NSF Grants CAREER ACI-00-93039, NSF DBI-0420513, ITR ACI-00-
81404, DEB-99-10123, ITR EIA-01-21377, Biocomplexity DEB-01-20709, and ITR EF/BIO 03-31654; and DARPA
Contract NBCH30390004.

1

case scenarios occur with minuscule probability. Formally, the random permutation problem is to

generate permutations on 1; : : : ;n and each permutation has probability1
n! of being generated.

The classic sequential shuffling algorithm by Knuth [9] runs in linear time with a very small

constant factor. There are several fast parallel algorithms in the literature. Reif [17] presents a

randomized work-time optimal CRCW PRAM algorithm based on integer sorting. Dart-throwing

is another popular technique for random permutation on CRCW PRAM [12, 16, 14, 7, 5]. Czmuaj

et al. [4] present anO(loglogn) time algorithm on EREW PRAM that usesO(n1+o(n)) processors.

In addition to PRAM algorithms, researchers also study the problem on more realistic models.

Anderson [1] proposed an algorithm similar to the sequential algorithm for small shared-memory

parallel computers. Withp processors the algorithm achieves a theoretic speedup of almostp.

Sanders [18] considered the problem on distributed, hierarchical, and external memory settings,

and his algorithm runs in timeO(n=p+Tcomm(n=p; p)+Tprefix(p)) on p processors w.h.p, where

Tcomm(k; p) is the time for randomly sending or receivingk elements on each processor and

Tprefix(p) is the time for computing a prefix sum. Lassous and Thierry [10] present algorithms for

the CGM model with a small number of supersteps and low communication cost.

In spite of fast theoretic algorithms, there have been few studies that investigate various imple-

mentation choices when adapting the algorithms designed for theoretic models to current architec-

tures. Bridging the gap between models and real architectures to bring maximum performance is

not a trivial matter. The few prior experimental studies either argue in favor of a specific model

[5] or focus on the performance of one certain algorithm [18]. No extensive results are available

for comparing the performance of the algorithms. These algorithms have different features regard-

ing parallel algorithmic overhead, memory access behavior, synchronization, and scalability. It is

2

hard to predict the performance of the algorithms solely from complexity analysis, and experimen-

tal studies should bring deeper insight into the comparison of the algorithms. More importantly,

prior studies (both theoretic and experimental) largely ignore the impact of pseudo-random number

generators on the performance. In our study we find that the choice of random number generator

affects our decision on which permutation algorithm gives highest performance.

We implement four parallel algorithms. They are the sorting-based algorithm [17] (denoted

asRandSort), the dart-throwing algorithm [5, 6] (denoted asRandDart), the shuffling algorithm

[1] (denoted asRandShuffle), and Sanders’ algorithm for the distributed-memory setting [18] (de-

noted asRandDist). When implementing these algorithms, we evaluate different design choices,

e.g., mutex-lock vs. spin-lock synchronization, the trade-off between cache-friendly design and

design that requires fewer random numbers. Three parallel pseudo-random number generators are

used to study their impact: the Scalable Parallel Random Number Generator (SPRNG) [13], a lin-

ear congruential generator (LCG) [11], and TWISTER– a fast generator that is frequently used in

Monte Carlo simulations [15].

Our target architecture is symmetric multiprocessor (SMP). We test our implementations on

Sun E4500, a uniform-memory-access (UMA) shared memory parallel machine with 14 Ultra-

SPARC II 400MHz processors and 14 GB of memory. Each processor has 16 Kbytes of direct-

mapped data (L1) cache and 4 Mbytes of external (L2) cache. We implement the algorithms using

POSIX threads and software-based barriers [2].

The rest of the paper is organized as follows. Section 2 introduces the algorithms and presents

in detail the tuning of the algorithms for performance optimization; Section 3 gives the perfor-

mance results and analysis; Section 4 is our conclusion and future work.

3

2 Algorithms and Implementations

Of the four random permutation algorithms,RandSort and RandDart are PRAM algorithms,

while RandShuffleandRandDist are based on more realistic models that acknowledge the fact

that for most parallel architectures only a limited number of processors are available.RandShuffle

andRandDist are closely related to the sequential shuffling algorithm in that shuffling is employed

to generate permutations. The design ofRandSortandRandDart are very different from the se-

quential approaches. The four algorithms have different performance properties regarding parallel

overhead, memory access pattern, synchronization cost, and the number of random bits needed

(as random bits can be a costly resource). Oftentimes optimizations for these aspects are mutually

exclusive to each other, e.g., reducing the number of random bits needed may be in direct conflict

of reducing the amount of synchronization. Experimental studies bring deeper understanding of

the algorithms and their relationship to each other so that combined with asymptotic analysis we

can extrapolate with confidence for inputs that are not tested. The insight gained from experimen-

tal studies also helps the design of new efficient algorithms. We next introduce the algorithms

and discuss the pros and cons of different design choices. Section 2.1 briefly introduces the im-

plementation ofRandSort; section 2.2 gives our new “dart-throw” algorithm that is twice as fast

as the popular “dart-throw” algorithm in the literature; section 2.3 presents the implementation

of RandShuffleusing spinlocks for synchronization; and section 2.4 presents our cache-friendly

implementation ofRandDist.

4

2.1 Rand Sort

RandSortstarts by generating for each element a random number between 1 andO(n). The gener-

ated sequence is then sorted.RandSortproduces a random permutation by moving each element

to its corresponding sorted location. ImplementingRandSort on SMPs is simple if fast sorting

routines are available. Sorting may be too heavy a machinery to use for the random permuta-

tion problem. In addition to moving elements, sorting may incur overhead of multiple rounds

of comparisons. Because of that overhead, it is unlikely thatRandSortbeats other algorithms we

consider. However, as sorting is arguably one of the most studied problems in computer science, on

architectures with hardware dedicated to sorting,RandSortcan have superior performance. In our

implementations, we use Helman and J´aJá’s cache-friendly parallel sample sort implementation

[8].

2.2 Rand Dart

The generic “dart-throwing” algorithm has two steps. Firstn elements are placed at random into

an array with size linear inn. Then the array is compacted and the relative order of the elements

gives an implicit random permutation.

There are several flavors of the“dart-throwing” algorithm. They differ slightly in the way darts

are thrown and how the array is compacted. In this paper we consider the algorithm described in

[5] that is adapted from a randomized CRCW “processor allocation” algorithm by Gil [6]. For

clog logn (c� 1) rounds, each unplaced element selects a random slot from a contiguous region of

an array A. If a collision occurs (i.e., multiple elements try to claim the same slot), the placement

fails and waits for the next round. The size of the region isd �n (d is a constant) in the first round,

5

and decreases by half at each round. The algorithm is re-run if afterclog logn rounds there are still

unplaced elements. The algorithm runs w.h.p. inO(logn) time with linear work on both CRCW

and QRQW PRAM [5]. This “dart-throwing” algorithm is denoted asRandDart G in this paper.

RandDart G requires the detection of collision among processors for dart-throwing. This

usually involves two phases. First the processors trying to claim a certain slot write theirids into

a tag associated with the cell. After synchronization, the processors then check to see if there

was a collision in cells that they tried to claim by comparing the tag with theirids. If the values

are different, then a collision is detected. Collision detection can be costly especially when the

input is large, due to the added cost of more memory accesses. We propose a new “dart-throwing”

algorithm (RandDart CB) that obviates the need for collision detection. In fact, the algorithm

uses mutual exclusion to prevent collision. The basic idea of the algorithm is as follows. When

an element is to be placed at a certain slots, the processor first gains ownership ofs through

some mutual exclusion scheme. The element is placed ats if no other processor has claimed it,

otherwise the processor chooses another random slot until it finds an empty slot. Next we show

that upon termination the algorithm generates each possible permutation with probability1
n! . First

we consider throwingn darts (elements) intom= αn (α > 1) slots sequentially.

Lemma 1 Letπ= π1;π2; � � � ;πn be any permutation off1;2; : : : ;ng. Consider placingπ1;π2; : : : ;πn

one by one at random into an array A of m slots. In case of a collision, the element is placed again

at a random slot of A until it lands in an empty slot. After all elements are placed, the relative

order of the elements defines a random permutation. Also each permutation is generated with

probability.

Proof: We define theidentity permutationas 1;2; : : : ;n. We define aconfigurationto be the

6

mapping of then elements, with at most one element per slot, are placed into arrayA. With a

configurationwe do not differentiate between elements. We first show that for anyconfiguration

κ, each possible permutation is generated with probability 1=n!. That is, we showPr(π̂ = π0jκ) =

1=n!, whereπ̂ is the resulting permutation, andπ0= π01;π
0

2; : : : ;π
0

n is any possible permutation of the

identity permutation. Let i1; i2; : : : ; in be the indices for elementsπ1;π2; : : : ;πn in π0, respectively.

Pr(π̂i1 = π0i1jκ) = Pr(π̂i1 = π1jκ)

=
Pr(π̂i1 = π1^κ)

Pr(κ)

=
1
n

Using the above equation as the base case, we prove by induction that

Pr(π̂ = π0jκ) =
1
n!
:

As the induction step, assume

Pr

k̂

j=1

π̂i j = π j

�����κ
!
=

1
n(n�1) � � �(n�k+1)

; k� 1:

Fork+1, letε be the event
Vk

j=1(π̂i j = π j), η be the event(π̂k+1 = πk+1),

Pr

k+1̂

j=1

(π̂i j = π j)

�����κ
!

= Pr(ε^ηjκ)

=
Pr(ηjε^κ)Pr(ε^κ)

Pr(κ)

7

= Pr(ηjε^κ)Pr(εjκ)

=
1

n�k
1

n(n�1) � � �(n�k+1)

=
1

n(n�1) � � �(n� (k+1)+1)

So Pr(π̂ = π0jκ) = 1
n! . It follows that each random permutation is generated with probability

1
n! . 2

Theorem 1 The parallel algorithm with p processors generates each possible random permuta-

tion with probability 1
n! . Furthermore, the expected number of dart-throws used by our algorithm

is α
α�1n.

Proof: We can impose an imaginary serialized order on the throws from different processors.

The throws that do not cause collisions can be serialized arbitrarily with regard to each other. For

throws that collide, we arbitrate and impose an order by using atomic operations for claiming the

slots, so that the “dart-throws” from the parallel algorithm can be viewed thrown by a sequential

algorithm. Note that throws from different processors are independent. By lemma 1 the parallel

algorithm generates each random permutation with probability1
n! .

Let random variableX be the number of throws needed to generate a permutation. LetXi be

the number of throws it takes to get the(i+1)th new slot after we get theith new slot.

E(X) = E

n�1

∑
i=1

Xi

!
= 1+

m
m�1

+
m

m�2
+ � � �+

m
m�n+1

8

Note that m
m�k <

m
m�n+1 for 1� k< n�1, and the above simplifies into:

E(X)< n
m

m�n+1
�

α
α�1

n

As theXi ’s are independent, using Chernoff bound we can further show that

Pr(X > (1+δE(X)))< e�
nδ2
4 = o(1), 0< δ� 2e�1:

2

Fig. 1 compares the performance of the two “dart-throwing” algorithms we implemented.

RandDart G implements the algorithm described in [5], whileRandDart CB is our algorithm

using atomic operations (in this case,compare&swap) to claim slots. For the input size of 20M

integers,RandDart CB is roughly twice as fast asRandDart G with different number of proces-

sors. Similar results are also observed for input sizes that fit in cache, e.g., 1M integers.

The function α
α�1 (α > 1) decreases asα increases. Largerα reduces the expected number of

“throws”, hence reduces the cost of generating random numbers. Whenα gets large enough, there

is essentially no conflict among processors. Yet the performance advantage of increasingα is very

likely to be offset by poor memory access behavior that comes with the larger array size.

For the remainder of this paper, we useRandDart CB as ourRandDart implementation.

9

Figure 1: Comparison of the performance ofRandDart G andRandDart CBwith different num-
ber of processors. The input size is 20M integers. For the left plot, SPRNG is used. LCG is used
in the algorithms in the right plot.RandDart CB usesα = 2.

2.3 Rand Shuffle

RandShufflesolves the random permutation problem on “small” parallel computers, i.e., the num-

ber of the processors is much smaller than the problem size.RandShuffleis similar to Knuth’s

sequential algorithm. The sequential algorithm conducts a sequence of swapping operations be-

tween elementj and a random elements with j � s� n, 1� j � n�1. Anderson [1] proves that

the order in which the swapping operations occur does not affect the distribution of the permuta-

tions. Assuming no conflicts among processors, i.e., no two processors attempt to shuffle the same

element simultaneously, with Anderson’s theorem, we can divide the swapping operations among

processors arbitrarily. Intuitively,RandShufflerunsp copies of Knuth’s algorithm in parallel.

ImplementingRandShuffleon SMPs is straightforward. Anderson suggests using locks to

resolve conflicts among processors. System mutex locks incur large overhead and are not scal-

able for large data sets. Instead we use spinlocks implemented through atomic operations (e.g.,

compare&swap, and load-link, store-conditional). Our prior studies [3] with spanning tree and

10

minimum spanning tree algorithms show that when the work inside a critical section can be per-

formed relatively fast (that is, as quickly as the time it takes other processors to spin a few times)

such as in the cases of incrementing a shared location or of setting a flag, we can use spinlocks that

are much simpler than system mutex locks and avoid large overhead.

Figure 2: Performance comparison ofRandShufflespinandRandShufflemutexfor different in-
put sizes. The random number generator used is SPRNG.

Fig. 2 shows the performance comparison between two implementations of the shuffling al-

gorithm. RandShufflemutexuses system mutex locks, whileRandShufflespin uses spinlocks.

RandShufflespin is much faster thanRandShufflemutex. The random number generator used is

SPRNG. Similar results are observed for implementations with other random number generators.

Hence, we useRandShufflespinas our implementation forRandShufflein the remainder of this

paper.

The performance advantage ofRandShuffleis obvious for shared-memory parallel computers

with a moderate number of processors due to its simplicity.RandShuffleis much simpler than

RandSort. It is interesting to compareRandShufflewith RandDart. Both algorithms employ

some kind of atomic operations to resolve conflicts among processors, and have random memory

11

access patterns.RandDart generates expectedαα�1n random numbers whileRandShufflegener-

ates exactlyn�1 random numbers. It seemsRandDart has larger overhead for reasonable choices

of α andRandShuffleshould perform better thanRandDart. While this is generally true, the dis-

advantage ofRandShuffleoverRandDart, however, is that the number of conflicts increase with

the number of processors. For each element,RandShuffle“locks” the element itself and some

other element in order to swap. Synchronization causes more overhead when more processors

compete for locks. In the extreme case withn processors available, for each swap operation there

is a conflict forRandShuffle.

2.4 Rand Dist

RandDist considers the problem in the distributed, external and hierarchical memory settings.

The algorithm starts withp processors with each one containingn=p elements. Each proces-

sor randomly chooses a destination processor for each element, and sends the element to that

processor. After receiving the incoming elements, each processor computes a local random per-

mutation. The last step is to concatenate the local permutations into a global one. Sanders [18]

shows that the algorithm runs in timeO(n=p+Tcomm(n=p; p)+Tpre f ix(p)) on p processors w.h.p,

whereTcomm(k; p) is the time for randomly sending or receivingk elements on each processor and

Tpre f ix(p) is the time for computing a prefix sum. This algorithm can be classified as using the

divide-and-conquer approach according to Hagerup [7]. Actually one flavor of the sorting-based

PRAM algorithm [17] has similar design: each of the elements 1; � � � ;n chooses a randomkeyand

the elements are grouped (sorted) according to thekey; each group is then sequentially permuted.

Sanders [18] is the first to study the impact of memory hierarchy on permutation algorithms with

12

modern architectures.

Sanders implemented the algorithm on the MasPar MP-1, and observed that the algorithm runs

faster than the QRQW dart-throwing algorithm. The main motivation ofRandDist, however, was

that a faster sequential algorithm on machines with a hierarchical memory system can be derived

by simulatingp processors with a single processor.

We adaptRandDist to run on SMPs, and give a parallel implementation that coordinates

“send” and “receive” for better cache performance. Alg. 1 describes our detailed implementa-

tion of RandDist so that we can analyze the cache performance of the algorithm. In Alg. 1, a

random destination processor is first generated for each element. Each processor then computes

the number of elements to send to and receive from other processors. Each processor copies its

elements to appropriate destination locations, and permutes its received elements. The simulated

“send” and “receive” on an SMP take place in a coordinated manner, i.e., our implementation

guarantees that elements “sent” from one processor to the same destination be stored in consec-

utive locations, which may not be the case in the distributed-memory setting. The coordinated

“send” and “receive” do not skew the distribution of the random permutations. To see this, note

that the distribution of elements sent to each processor is not changed, and only the ordering of the

received elements is affected. As these elements are then locally randomly permuted, the proba-

bility of generating any certain sequence is the same no matter how the initial sequence is ordered.

The coordinated “send” and “receive”, however, do make a difference in the memory access pattern

of the implementation.

In Alg. 1, steps 1 and 2 incur only contiguous memory accesses. Step 3 computes values for

several small auxiliary data structures. As these data structures are of sizeO(p2) that fit in cache

13

Input : 1) Shared arrayA with n elements
2) ProcessorPi (0� i � p�1)

Output : Array B that is a random permutation ofA
1. generate a random destination processorPj for each element;

for in
p � k� (i+1)n

p �1 do
dest[k] rand(0,p�1) ;

2. computesndcnt (sharedp� p array), the number of elements to send to each processor;
for in

p � k� (i+1)n
p �1 do

sndcnt[i][dest[k]] ++;
3. with sndcnt, compute the following:
the number of elements to receive from each processor, the total number of elements re-
ceived, and finally the starting location (start offset) for elements that are routed to each
processor.;
4. copy elements to appropriate locations;local[i] is temporary storage for processori and
cntr is a one dimension array with sizep;
for in

p � k� (i+1)n
p �1 do

offset start offset[dest[k]][i];
local[dest[k]][cntr[dest[k]]+offset] A[k];
cntr[dest[k]]++;

5. run sequential algorithm onlocal[i] and concatenate them to getB;

Algorithm 1: Algorithm for processorPi (0� i � p�1) for generating a random permutation
usingRandDist. sndcnt andcntr are initialized to 0. The functionrand(i, j) generates an
integer uniformly at random betweeni and j inclusive.

and the computation is simple, step 3 does not have significant impact on the overall performance

of the algorithm, and hence we do not show the details. In step 4 each processor copies its local

elements into appropriate destination locations. As consecutive elements may be routed to different

processors (hence locations far away from each other in memory), at first glance, step 4 seems to

incur a lot of cache misses. However, as our implementation decrees that elements sent to the same

processor from the same source be copied to consecutive locations, there are only a few choices

(in fact, p choices) with regard to where an element may end up. Furthermore, if elementsAj

andAk are sent to the same destination processor by one source processor in successive order,Aj

will be stored right next toAk. As long as the cache on each processor is able to hold thep cache

14

lines without conflicts, most cache misses incurred in step 4 are compulsory misses. Step 5 runs

p copies of Knuth’s algorithm on smaller scales. As the two elements in each swap operation are

from an array segment (i.e., the elements received by a certain processor) that is much smaller than

the whole range of the array, a larger portion of the memory accesses are cache hits compared with

Knuth’s algorithm.

We can further reduce cache misses in step 5 by simulatingp0 > p virtual processors withp

physical processors until eachlocal fits in cache. Largerp0 generally means smallerslot size,

however, the choice ofp0 is not without restriction. To achieve good load balance, we wantp to

evenly dividep0 so that each physical processor is assigned relatively same amount of work.

3 Performance Results and Analysis

This section summarizes the experimental results of our implementation. Figs. 3 and 4 show

the performance comparison ofRandShuffle, RandDart, RandSort andRandDist with differ-

ent random number generators for various input sizes. In our implementation, we setα = 2 for

RandDart, and the number of virtual processors adapts with the problem size and the number of

physical processors available so that the expected size of slot for each processor fits in cache.

First notice that in all plots,RandSort is inferior to other algorithms in performance. For dif-

ferent input sizes,RandSortis about 2-4 times slower than the fastest implementation. The perfor-

mance ofRandShuffleis best if LCG is used as the random number generator. LCG with a small

period is normally very fast. As we are dealing with large input sizes, the LCG we use is much

slower than other random number generators as it generates random numbers with large enough

periods. Among all algorithms,RandShufflerequires the fewest random bits. When randomness

15

becomes an expensive resource,RandShuffleis usually the better choice.RandDist performs best

if fast pseudo-random number generators, e.g., SPRNG and TWISTER, are used. Compared with

RandDart andRandShuffle, RandDist is more cache-aware. The disadvantage ofRandDist is

the need to generate more random numbers than bothRandShuffleandRandDart. RandDist

requires 2n random numbers whileRandDart and RandShufflerequire α
α�1n (expected) and

n�1 random numbers, respectively. The cost of generating random numbers, in addition to cache

scheme, is a significant factor in determining the performance ranking of algorithms and the tuning

of parameters. When randomness is a costly resource, it dominates performance and overshadows

the importance of cache performance. Another important factor to performance is synchroniza-

tion cost. If an algorithm requires frequent synchronization among processors, it is not likely to

scale well. Although within the range of processors available,RandShuffleconsistently beats

RandDart, we predict a cross point in the performance curve when more processors are available.

In Fig. 3 we can see the trend. With more processors, the performance ofRandDart gets closer to

that ofRandShuffle.

Figs. 3 and 4 also show the performance of the sequential random permutation algorithm. Here

we implement Knuth’s shuffling algorithm. Sanders [18] reported that the simulation ofRandDist

for multiple processors with one physical processor actually runs faster than Knuth’s sequential

algorithm due to better cache performance ofRandDist. The speedup is up to 2 on UltraSparc

processor and 4 on MIPS 10000. We reproduced his results with his code on UltraSparc, however,

our own implementation ofRandDist on one processor (that simulates multiple processors) does

not run faster than Knuth’s algorithm. This is largely due to the difference in the cost of generating

random numbers. Sanders’ own simple random number generator is much faster than that we use

16

and may have a smaller period. A pseudo-random number generator with a small period works rea-

sonably well withRandShuffle, RandSortandRandDist (they generate a permutation although

the distribution may be highly skewed), but poses serious problem forRandDart. RandDart falls

into an infinite loop as darts start to fall consistently into claimed slots when the random numbers

generated wrap around. If choices of random number generators are limited and only generators

with small periods are available,RandSort, RandShuffleand RandDist are preferable. With

our random number generators and our target architecture, the shuffling algorithm is the fastest.

While the sequential shuffling algorithm is faster than simulatingRandDist with one processor,

the parallel version of the shuffling algorithm (RandShuffle) is slower thanRandDist when fast

parallel random number generators (SPRNG and TWISTER) are used. This is because of the par-

allel overhead incurred byRandShuffleover the sequential algorithm. In addition to synchroniza-

tion, RandShuffleuses at least twice as much memory usage (array of locks) and thrice as many

memory accesses (locking and unlocking) as that of the sequential algorithm. Our fastest parallel

implementation (RandShuffleor RandDist) achieve speedups around 5-6 with 12 processors.

4 Conclusions and Future Work

We compare parallel random permutation algorithms on SMPs. We give fast implementations

of four algorithms, i.e., the sorting-based algorithm, Anderson’s shuffling algorithm, the dart-

throwing algorithm, and Sanders’ algorithm for distributed-memory environments. The perfor-

mance ranking of the four algorithms depend on the input size, cost of random number generators,

cost of synchronization, and memory hierarchy. Within the range of input sizes used,RandShuffle

is superior in performance when LCG is used for random number generation, whileRandDist

17

is fastest when SPRNG and TWISTER are used as random number generators. Our parallel im-

plementation achieves speedups up to 6 with 12 processors. For future work, we would like to

compare the performance of the algorithms on other architectures, e.g., the multi-threaded archi-

tecture. We expect a different performance ranking from the one on architectures with deep cache

organization.

18

Figure 3: Comparison of the performance ofRandShuffle, RandDart, RandSortandRandDist
for input size 1M and 5M integer elements. The suffix shows which random number generator is
used. SPRNG, LCG, and TWISTER are used in the top, middle, and bottom rows, respectively.
RandShuffleuses spinlocks for synchronization.RandDart implements our algorithm withα= 2.
“Sequential” is the time taken for Knuth’s algorithm for the same problem instance.

19

Figure 4: Comparison of the performance ofRandShuffle, RandDart, RandSortandRandDist
for input size 10M and 20M integer elements. The suffix shows which random number generator
is used. SPRNG, LCG, and TWISTER are used in the top, middle, and bottom rows, respectively.
RandShuffleuses spinlocks for synchronization.RandDart implements our algorithm withα =
2.“Sequential” is the time taken for Knuth’s algorithm for the same problem instance.

20

References

[1] R.J. Anderson. Parallel algorithms for generating random permutations on a shared memory
machine. InProc. 2nd Ann. Symp. Parallel Algorithms and Architectures (SPAA-90), pages
95–102, Island of Crete, Greece, 1990. ACM.

[2] D.A. Bader and J. J´aJá. SIMPLE: A methodology for programming high performance algo-
rithms on clusters of symmetric multiprocessors (SMPs).J. Parallel & Distributed Comput.,
58(1):92–108, 1999.

[3] G. Cong and D. A. Bader. Lock-free parallel algorithms: an experimental study. InProc.
Int’l Conf. on High-performance Computing (HiPC 200 4), Banglore, India, December 2004.

[4] A. Czumaj, P. Kanarek, M. Kutylowski, and K. Lor´ys. Fast generation of random permuations
via networks simulation.Algorithmica, 21(1):2–20, 1998.

[5] P.B. Gibbons, Y. Matias, and V.L. Ramachandran. Efficient low-contention parallel algo-
rithms. J. of Computer and System Sciences, 53:417–442, Dec 1996.

[6] J. Gil. Fast load balancing on a PRAM. InProc. 3rd IEE Symp. on Parallel and Distributed
Computing, pages 10–17, December 1991.

[7] T. Hagerup. Fast parallel generation of random permutations. InProc. 18th Int’l Colloquium
on Automata Languages and Programming, volume 510 ofLecture Notes in Computer Sci-
ence, pages 405–416. Springer-Verlag, 1991.

[8] D. R. Helman and J. J´aJá. Designing practical efficient algorithms for symmetric multiproces-
sors. InAlgorithm Engineering and Experimentation (ALENEX’99), volume 1619 ofLecture
Notes in Computer Science, pages 37–56, Baltimore, MD, January 1999. Springer-Verlag.

[9] D.E. Knuth. The Art of Computer Programming: Seminumerical Algorithms, volume 2.
Addison-Wesley Publishing Company, 1981.

[10] I.G. Lassous and E. Thierry. Generating random permutations in the framework of coarse
grained models. InProc. Int’l. Conf. on Principles of Distributed Systems, volume 2, pages
1–16, 2000.

[11] D.H. Lehmer. Mathematical methods in large-scale computing units. InProc. 2nd Symp. on
Large-Scale Digital Calculating machinery, pages 141–146, Cambridge, MA, May 1951.

[12] M. Manohar and H. K. Ramapriyan. Connected component labeling of binary images on a
mesh connected massively parallel processor.Computer Vision, Graphics, & Image Process-
ing, 45(2):133–149, 1989.

[13] M. Mascagni, A. Srinivasan, S.M. Ceperley, and F. Saied.Scalable Parallel Random Number
Generators (SPRNG) Library. Florida State University, 2.0 edition, 1995.sprng.cs.fsu.
edu .

21

[14] Y. Matias and U. Vishkin. Converting high probability into nearly-constant time – with ap-
plications to parallel hashing. InProc. 23rd Ann. ACM Symp. on Theory of Computing, pages
307–316. ACM, May 1991.

[15] M. Matsumoto and Y. Kurita. Twisted GFSR generators.ACM Transactions on Modeling
and Computer Simulation, 2(3):179–194, 1992.

[16] S. Rajasekaran and J.H. Reif. Optimal and sublogarithmic time randomized parallel sorting
algorithms.SIAM J. Computing, pages 594–607, 1989.

[17] J.H. Reif. An optimal parallel algorithm for integer sorting. InProc. 26th Ann. IEEE Symp.
Foundations of Computer Science, pages 496–503. IEEE Press, 1985.

[18] P. Sanders. Random permutations on distributed, external and hierarchical memory.Infor-
mation Processing Letters, 67(6):305–309, 1998.

22

