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ABSTRACT 
Public-key based certificates provide a standard way to prove 
one's identity, as certified by some certificate authority (CA).  
However, standard certificates provide a binary identification: 
either the whole identity of the subject is known, or nothing is 
known.  We propose using a Merkle hash tree structure, whereby 
it is possible for a single certificate to certify many separate claims 
or attributes, each of which may be proved independently, without 
revealing the others.  Additionally, we demonstrate how trees from 
multiple sources can be combined together by modifying the tree 
structure slightly.  This allows claims by different authorities, such 
as an employer or professional organization, to be combined 
under a single certificate, without the CA needing to know (let 
alone verify) all of the claims.  In addition to describing the hash 
tree structure and protocols for constructing and verifying our 
proposed credential, we formally prove that it provides 
unforgeability and privacy and we present initial performance 
results demonstrating its efficiency. 

Categories and Subject Descriptors 
K.6.5 [Security and Protection]: Authentication 

General Terms 
Algorithms, Management, Performance, Design, Security, 
Verification. 

Keywords 
Identity management, identity assertion, credential, hash-tree, 
Merkle tree, PKI, privacy 

1. INTRODUCTION 
Personal information is increasingly used to establish identity and 
authorize transactions in the digital world.  At the same time, 
identity theft and fraud, based on unauthorized disclosure and 
misuse of personal information, are rampant [14], and individuals 
are increasingly concerned about providing personal information 
to every digital entity with which they establish a relationship.  
The research described in this paper is based on several key 
principles of identity management: 

� first and foremost, users should have the maximum 
control possible over what personal information of 
theirs is disclosed in any given on-line interaction,  

� next, more reliance can be placed on personal 
information that is verified by trusted third parties than 
in self-reported information, and 

� last, if verified personal information is to be used, 
mechanisms to prevent that information from being 
copied and misused by unauthorized parties are 
essential. 

We assume an architecture in which there are identity providers 
that verify users’ personal information and supply credentials that 
the users can give to service providers [17]. Credentials are a 
common mechanism for verifying personal information in 
everyday life.  Most people carry multiple physical credentials 
with them, from drivers’ licenses to insurance cards to credit 
cards.  A credential describes some set of attributes about the 
holder.  For the obvious example, a driver’s license states that the 
holder is licensed to drive a vehicle in the licensing state.  
However, due to drivers’ licenses being all but universal, they are 
used as a general credential.  As such, driver’s licenses often 
include unnecessary information, such as the holder's date of 
birth, address, height, organ-donor status, and social-security 
number.  Electronic credentials can be simple, like a user-name 
and password, or more complex, like a public key infrastructure 
(PKI) certificate.  A PKI certificate is an electronic document that 
holds an identity and a public key, and that is signed by a 
certificate authority (called the issuer).  The user holds the 
associated private key to prove that they are the legitimate holder 
of the certificate.  The user-name and password combination is the 
most widely used scheme, because of its simplicity.  However, 
this scheme also provides no direct information about the user.  A 
user-name must be attached to a previously made account, and 
some other form of credential must be used to tie an identity to the 
account. Such accounts are very seldom shared between different 
domains, leading users to accumulate many different accounts, 
often with different user-names and passwords.  PKI certificates 
for users are less common, but can solve the problem of needing 
to keep track of many different user-names and passwords. 

Minimum information disclosure in any given interaction is 
desirable from a user’s perspective, and may even be necessary for 
a given technology to be widely adopted[9].  Clearly, if a user 
wants to release the minimum amount of personal information on 
a given interaction, this rules out a single credential approach, in 
which each user maintains one credential containing all of their 
personal information and uses that credential for every interaction. 
As in [9], we say that a user makes a claim about herself when she 
gives information about one or more personal attributes to a 
digital entity.  Due to the wide variety of personal information that 



is used in digital interactions, the number of different possible 
claims is extremely large. The problem to be solved is, therefore, 
to provide an efficient and reliable mechanism that allows users to 
assert arbitrarily many (or at least a large number of) verifiable 
claims over a sequence of interactions with different digital 
entities. 

As an example of minimum information disclosure, consider the 
problem of verifying that a user is at least 18 years of age.  
Clearly, verifying the user’s date of birth is sufficient but not 
necessary, and would reveal a very sensitive piece of personal 
information that could assist an identity thief in masquerading as 
that user.   We refer to the claim that a user “is at least 18 years of 
age” as a micro-claim, with the (macro-)claim in this case being 
“the user’s date of birth is xx/xx/xxxx”.  Many different micro-
claims can be derived from a single claim, e.g. the user is “at least 
18”, “at least 21”, “at least 35”, “at least 65”, etc.  One possible 
approach could be to maintain credentials for a relatively small 
number of claims and use those to dynamically generate micro-
claim credentials as needed for a given interaction.  However, 
securely generating a large variety of micro-claims from a given 
set of claims is an open problem, not to mention how the micro-
claims can be verified without revealing the information in the 
verifiable claims from which they are derived.   

Instead, we adopt an approach where a large set of micro-claims is 
enumerated statically, and updated dynamically as needed.  
Instead of generating and maintaining a single credential per 
micro-claim, which is extremely inefficient from the standpoints 
of storage space, bandwidth, and computation time, we propose a 
method wherein a single credential can be maintained that allows 
the user to dynamically specify an arbitrary subset of micro-claims 
for a given interaction without revealing the other micro-claims.  
We also include in this credential, and the protocols that use it, 
mechanisms to make it very difficult for an attacker to make a 
copy of the credential and use it to masquerade as the user.  In 
addition to allowing the user to update her set of microclaims as 
certified by one authority, the credential allows information that is 
verified by different identity providers to be combined in one 
structure.  This allows users to spread out their personal 
information across different identity providers, thereby lowering 
their risk when one of their identity providers experiences a 
security breach.  The details of this new credential mechanism and 
its associated protocols are provided in the remainder of this 
paper. 

Defining the level of privacy needed by users is a subtle and hotly 
debated issue .   One attempt to quantify privacy is the idea of 
linkability.   Two things – events, transactions, credentials, claims, 
or users – are linkable if they are known to have an underlying 
connection.  It is necessary for some things to be linked; for 
example, if a claim is not linked to any user or evidence, it is 
meaningless.  But more often the focus is on unlinkability – when 
things can’t be recognized or shown to be connected, even when 
they are.  For example, consider buying an item with cash versus 
buying an item with a credit card.  When using cash, there is 
usually no record of who bought the item.  If several items are 
bought in separate transactions, it usually cannot be determined 
that they were bought by the same person.  When using a credit 
card, there is a clear record of who bought the item.  Items 
purchased at different times and even at different places may be 
identified as having been bought by the same person.  

Additionally, the real name/identity of that person is known and 
usually printed right on the receipt.  This is a clear invasion of 
privacy, and yet credit cards are still extremely popular.  Credit 
cards are popular because they are convenient, and this invasion 
of privacy is accepted because it is necessary to reduce fraud and 
abuse in the system. 

Our goal here is to design systems that preserve the user’s privacy 
as much as possible, while remaining auditable from the point of 
the of the service providers.  That is, a user should have control 
over which claims are presented, but repeated use of the user’s 
credential should be linkable.  This concession to social 
practicality gives a strong engineering advantage compared to the 
other credential systems discussed in the related work section:  we 
are trying to solve a somewhat easier problem.  As such, we can 
focus on making the system faster and more efficient.  While 
complete anonymity, e.g. in the form of unlinkable transactions, is 
a noble goal, it is our belief that many types of service providers 
will not accept it as a practical solution.  Our approach, by 
contrast, tries to improve on the current practice by allowing users 
to minimize the amount of personal information they entrust to 
service providers while recognizing that release of some personal 
information may be inevitable. 

2. BACKGROUND 
2.1 Expected Scenario 
We consider a scenario with three types of parties:  identity 
providers, service providers, and users.  An identity provider is an 
entity in a position to make authoritative statements about a user.  
An identity provider can be a third party certificate authority, a 
government office, an employer, a professional organization, etc.  
A service provider is an entity that wants or needs to check the 
identity of users.  A service provider can be any organization, 
government office, or individual with an on-line presence.  The 
user is the holder of the credential, and is always an individual 
person in our scenario.   

We acknowledge that it is notoriously difficult to deploy a usable 
and secure PKI to bind keys to users, but it seems necessary 
without an online third party to attest to a user’s claims. The 
functionality provided by verified claims will hopefully serve as 
intuitive and strong motivation for users. 

2.2 Requirements 
The design of our electronic credential was driven by several 
requirements.  

1. The credential must not simply hold a single 
identifier.  Identity is a complex matter, and often a 
name or serial number is not what is important in one's 
identity. 

2. The user of the credential -- the one whose identity is 
being proven -- must have as much control over the 
process as possible.  Considering the first requirement, 
the user should be able to select which attributes of their 
identity are released to a particular entity. 

3. The credential must have some form of copy 
protection.  Using the credential should not place it at 
risk of being copied. 



4. Neither the user nor the service provider should have 
to contact the identity provider to verify the credential. 

5. The credential must be memory and computationally 
efficient to store and use. 

2.3 Related Work 
Digital credentials have been proposed before in various forms. 
More in depth comparisons between our system and these systems 
can be found later, in Section 3.4. 

David Chaum is credited with proposing the first digital credential 
system[11]. Chaum's system is a pseudonym system, whereby a 
user can present a different pseudonym to each service provider.  
The pseudonyms are linked cryptographically such that even 
colluding service providers cannot link together two pseudonyms 
belonging to a user, but the user can use a credential assigned to 
one pseudonym with another pseudonym.  Chaum's original 
proposal did not describe how to implement such a system.  A 
method for implementing the system was later described by 
Chaum and Evertse based on the RSA crypto-system and a semi-
trusted third party [12]. 

Stefan Brands developed a different form of digital credential, in 
which a user has a single public credential, but that credential is 
pseudo-anonymous, even to the issuer [4].  The credential holds 
attributes that the user can selectively prove to a service provider. 
Repeated showings of the same credential are linkable, both if 
shown to the same or different service providers.  However, since 
the credential is issued blind by the identity provider, the effect is 
that a user has one global pseudonym.  The credential can be 
reissued easily, allowing the user to change the global 
pseudonym, as permitted by the identity provider.  Brands 
emphasizes that showing a credential is done by zero-knowledge 
proof, but that has no impact on the comparisons in this paper.  
Credentica’s U-Prove Software Development Kit is based on 
Brands’ work [3]. 

Camenisch, et al., have proposed and implemented yet another 
form of digital credential, or more precisely, yet more forms [6-8].  
While they describe a system for implementing a Chaum-like 
pseudonym system, their system is much more flexible, and can 
be used without pseudonyms.  While having significantly better 
anonymity properties, the algorithms are also significantly slower 
than Brands' credentials.  IBM’s idemix system is based on 
Camenish, et al.’s work [6]. 

While their aim is very different, the closest design to our 
credential system is the redactable signature scheme described by 
Johnson et al in their paper on homomorphic signature schemes 
[15].  A comparison between our credential and their signature 
scheme is given later in Section 3.4. 

3. DESIGN 
3.1 Merkle Hash Trees 
The proposed credential is based on Merkle hash trees [16] and 
standard public-key infrastructure (PKI) certificates.  A Merkle 
hash tree is essentially a binary tree where each internal node 
holds the hash of the concatenated values of its two children 
nodes.  The leaf nodes hold the data of interest.  In this way, a 
large number of separate data can be tied to a single hash value.  
In addition, by storing the internal node values (or a subset 
thereof), it is possible to verify that any of the leaf nodes is part of 

the tree without revealing any of the other data.  Ralph Merkle 
first introduced this structure as a way to efficiently handle a large 
number of Lamport one-time signatures.  It has since been 
adapted for uses such as the large-scale time-stamping of 
documents [2] and tracking data in peer-to-peer networks [10]. 

A basic Merkle tree is shown in Figure 1.  Figure 2 shows the 
same tree with the nodes and claims labeled for easy reference.  
Consider verifying claim A in the tree.  Starting at the claim and 
going up the tree, node 4 contains the hash of the claim.  Node 3 
contains the hash of the concatenation of nodes 4 and 5.  Node 2 
contains the hash of the concatenation of nodes 3 and 6.  And, 
finally, node 1, the root of the tree, contains the hash of the 
concatenation of nodes 2 and 9.  Therefore, verifying claim A 
requires the values of nodes 5, 6, and 9, as shown in Equation 1, 
below.  A similar verification path can be made for any of the 
claims.  For example, Equation 2 shows the path for verifying 
claim F, which requires the values of nodes 2, 11, and 13.  As per 
the nature of the binary tree, the number of nodes and hashes 
needed for a verification scales with the log of the number of 
claims. 

 

3.2 Credential Overview 
The credential consists of two parts: a public part and a private 
part.  The public part of the credential is a certificate.  The 
certificate holds information about the issuer, the certification 
chain for the issuer, the type of certificate, the date range over 
which the certificate is valid, the user's public key, and a signature 
of the root node of a Merkle hash tree.  The certificate should not 

Figure 1. Merkle hash tree with leaf nodes holding hashes of claims. 

 

Figure 2.  Merkle hash tree with labeled nodes. 



in general hold any data about the user directly, even data as 
common as a name.  As per standard operation, the certificate will 
be signed by some certificate authority, which is an identity 
provider in this system.  The private part of the credential consists 
of a private key and a Merkle hash tree whereby all of the leaf 
nodes are attributes of, or micro-claims about, the identity of the 
user, who is the credential holder.  The Merkle tree structure 
allows the credential holder to prove any subset of the claims in 
the tree, with only the single signature on the certificate. 

As an additional improvement, a slight modification to the 
structure will allow the use of a single credential containing 
claims from a variety of identity providers, without requiring one 
identity provider to verify all of the claims.  Consider again the 
Merkle tree of claims, but with subtrees coming from different 
identity providers.  For example, one subtree could contain claims 
certified by a government registry, while another subtree could 
contain claims certified by an employer.  In the basic structure, 
the identity provider must either see all of the claims or trust the 
providers of all of the subtrees that they only contain claims 
relevant to their topic.  Neither solution is ideal.  To provide a 
third option, consider adding an optional third branch to some 
internal nodes of the full tree.  (These nodes correspond to root 
nodes of the subtrees.)  The third branch contains a certificate for 
all of the claims in the subtree rooted in the parent node.  When 
verifying a claim which is in such a subtree, the form is different -
- three hashes are concatenated in a node instead of two -- so the 
verifier knows that this claim is under a different certificate than 
the credential as a whole.  For example, in Figure 3 the left hand 
subtree contains claims certified by the overall identity provider.  
The overall identity provider is referred to as the certificate 
authority (CA).  The right hand subtree contains claims certified 
by some other party, which do not have to be verified by the top 
level CA.  From here on, the term “subtree” is used to refer to a 
branch containing nodes from a different identity provider, rooted 
in one of these sub-roots. 

 

We would like to identify a node as being a leaf node without 
seeing the associated claim.  The reason for this is described.  This 
discrimination is achieved by simply appending a bit to the end of 
the hash, either a one if the node is an inner node, or a zero if the 
node is a leaf node.  For efficiency, our implementation simply 
overwrites the least significant bit of the hash value, instead of 
appending another bit.  This is equivalent to truncating the output 
of the hash function used by a single bit (with a negligible 
decrease in security), and then appending the indicator bit.  In 

order to keep the system secure while still only needing to check 
the signature on a single certificate, nested subtrees are forbidden.  
If a service provider encounters a claim in a nested subtree, it 
should reject the credential. 

A tree might have no claims outside of subtrees.  In this case, the 
top level CA is signing that it has verified that the form of tree is 
correct, that all certificates for subtrees are valid, and that the user 
possess the private key(s) matching the subtree certificates and the 
top level certificate.  The CA could be fully automated in this 
situation, allowing users to easily update their credentials when 
subtrees are added or modified. 

3.3 Protocols for the Credential 
Creating a credential is both conceptually and computationally 
easy.  In the case where there is a single identity provider for the 
credential, there are roughly four steps required: 

 1.  Agree on a list of claims. 

 2. Generate the hash tree for the claims. 

 3.  Verify that the user possesses the private key. 

 4.  Produce and sign the public certificate. 

First, the user and identity provider agree on a list of claims.  The 
logistics involved in an identity provider verifying the user claims 
may be rather complicated, and are beyond the scope of this 
paper.  Second, either the user or the identity provider generates 
the hash tree for the claims.   Random padding must be added to 
the claims before they are hashed, as discussed in more detail 
later.  With a single identity provider, the tree will always be 
balanced, bounding the number of interior nodes to the number of 
claims.  The number of hashes needed to generate the tree is 
therefore bounded to twice the number of claims -- generally a 
negligible amount of computation time.  Third, the identity 
provider must verify that the user holds the private key matching 
the public key of the credential.  The user can reuse an already 
generated key pair or generate a new key pair for the credential.  
The identity provider does not need to ever know the private key.  
Finally, the identity provider creates and signs the public 
certificate for the credential.  

Random padding must be added to the claims before they are 
hashed in order to prevent dictionary attacks against parts of the 
tree.  The random padding can be generated and stored in a 
number of different ways.  For example, Johnson, et al. [15], 
describe a method credited to Goldreich, Goldwasser, and Micali 
[13] that uses a pseudo-random function whose output is twice the 
length of its input.  A single seed value at the root node is 
expanded as per the tree branching structure using the pseudo-
random function.  Each node therefore has a pseudo-random value 
associated with it that can be used to generate the pseudo-random 
values for all of its children nodes.  A computationally easier 
method is to use a seed value and the claim index with a pseudo-
random function to generate the padding for each claim.  Neither 
of these methods will work well for our system, unfortunately, due 
to the inclusion of different subtrees within a larger tree.  In the 
most general case, simply storing the random padding for each 
claim is probably the easiest solution.  The overhead is small, just 
10-16 bytes per claim.  Alternative approaches are possible, but 
all require the user to have a global secret, keep the private keys 

Figure 3. Modified Merkle hash tree with subtree. 



for all certificates, or store extra private information with each 
credential. 

Creating a credential with claims from multiple identity providers 
is done by integrating credentials as subtrees.  One identity 
provider will be the final one, referred to as the certificate 
authority (CA).  The user creates credentials with all of the 
identity providers, except for the final one, by the procedure 
described above.  Then, the user creates a credential with the CA.  
For this final credential, the hash trees from the other credentials 
are incorporated into the final hash tree.  The root nodes for the 
incorporated subtrees will have a third branch added, each 
containing the certificate from the original identity provider of 
that subtree, as shown in Figure 3. (The root hash values in the 
subtree certificates will no longer match, but that doesn't matter.)  
All subtrees in the credentials being added must be removed from 
their trees and added separately to the top level tree.  This 
prevents nested subtrees.  The CA verifies the structure of the tree, 
including the top two leaf nodes of each subtree (as they are 
needed to calculate the sub-root’s hash), as well as the public part 
of the sub-credentials, and the associated public/private key pairs.  
In general, the public/private key pairs may be the same as or 
different from each other and the top level key pair.  All that 
matters is that the user holds the corresponding private keys at the 
time that the credential is assembled.  In a more restricted setting, 
the public/private key pair may be required to be the same for all 
subtrees.  The CA does not need to see the claims from subtrees. 

To provide an example of combining credentials, imagine a user, 
Alice, who already has a credential containing claims from four 
different identity providers.  Now, Alice is then issued a credential 
from her employer.  The two credentials are shown in Figure 4.  
Alice’s employee credential already has a number of subtrees, 
containing separate credentials from the engineering department, 
human resources department, and her own lab.  The credential 
also has a top level claim of her employee ID.  Alice goes to a 
certificate authority to create a new credential from these two 
credentials.  She submits no claims to be verified by the CA and 
eight sub-credentials to be included in the final credential – four 
of these are from her previous credential, three were embedded in 
her employee credential, and the last is the credential claiming her 
employee ID.  The CA will verify the eight certificates, verify that 
Alice possesses the appropriate private key(s), generate a new 
tree, and provide Alice with the new certificate. 

The protocol for using the credential follows conventional PKI 
certificate usage.  The user connects to a service provider, either 
over a wide or local area network, and requests some service, 
sending the public part of the credential.  The service provider 
requests the appropriate identity attributes from the user.  The user 

provides the claims that match the requested attributes and the 
intermediate node values and path information necessary for the 
service provider to verify each of the claims.  If any of the claims 
are in a subtree certified by a different identity provider, the 
accompanying certificates must be included with the set of claims.  
The service provider verifies that the claims are in the hash tree 
specified (via the root hash) in the certificate part of the 
credential.  The service provider also verifies the signature on the 
certificate part of the credential.  In order to verify that the user is 
the holder of the credential, the service provider also verifies that 
the user possesses the private key which matches the public key 
claimed by the credential.  This can be done by standard methods, 
such as challenge/response or as part of a secret key agreement 
operation, as long as the key verification is tied to the specific 
claims being asserted by the user.  This can be done, for example, 
by hashing all of the claims asserted by the user as part of the 
challenge field.  In addition to the cryptographic verifications, the 
service provider must of course confirm that it trusts the identity 
providers to assert the claims in the credential.  For example, a 
claim of an individual’s address asserted by the Bar Association 
would be out of place.  Similarly, an assertion by the Department 
of Motor Vehicles that an individual was a licensed lawyer should 
not be trusted. 

The procedures for creating and using credentials given herein are 
purposely generic.  We prefer to constrain the structure and 
properties of the credential and leave some flexibility in the 
procedures for generating and verifying it.  As a proof of concept, 
we have developed specific implementations of these procedures, 
and initial performance results based on these implementations are 
reported in Section 5. 

3.4 Comparisons to Related Systems 
Johnson, et al., define and construct redactable signatures using a 
Merkle hash tree to allow the signature verification of a message 
even when parts of the message have been deleted [15].  In their 
example, a body of text is signed such that it can be redacted at 
some level of granularity (sentence, word, or character making the 
most sense).  They do not appear to have considered using the 
construct in the context of a credential.  While both systems share 
a core idea – using a Merkle hash tree to hide signed elements – 
the two systems have significant differences.  Both systems use 
slightly different hash functions (constructs) for the leaf and inner 
nodes.  In their signature scheme, the input to the hash function is 
specified to match a certain form, which is important to their 
proof of security.  In our credential system, the output of the hash 
function is specified to match a certain form, which is sufficient 
meet the requirements of the security proof, while provided the 
property of being able to identity a leaf node from its hash value 

Figure 4.  Combining a generic credential with an employee credential. 



alone.  Subtrees of the type used in the credential system are not 
used at all in the signature scheme.  To the best of our knowledge, 
the idea of combining trees by modifying the tree structure as we 
do is novel, and introduces extra complications.  The three-child 
inner nodes (shown in Figure 3) and modified hashing scheme 
(discussed in Section 3.2) both result from the idea of combining 
subtrees from different identity providers.  Combining subtrees 
allows claims from many different sources to be in a single 
credential, under a single certificate. 

Brands mentions in his book the idea of using Merkle hash trees 
to store claims, but dismisses it because it does not provide the 
properties desired in his system [4]. 

3.5 Copy Resistance 
The credential is strongly copy resistant under normal operations, 
due to the incorporated public/private key pair.  Whenever the 
credential is used, the private key is used to prove that the user is 
the authorized credential holder.  Since the private key never 
leaves the user's machine, it can't be copied by the service 
provider or any third party listening to the exchange.  (The private 
key can of course be copied if the user's machine is compromised, 
but that is beyond the scope of this paper.) 

This copy resistance property extends to preventing standard man-
in-the-middle attacks.  For example, consider how a phishing site 
handles conventional one-time passwords or other two-factor 
authentication methods.  A user logs in to what they believe is the 
legitimate site of their bank, broker, or other service provider, but 
which is really a phishing site.  The user enters their user-name 
and password and then, either in the same step or in a second step, 
enters a one-time password from a sheet of paper or electronic 
device. The phishing site simply passes all the information from 
the user on to the site being spoofed, and returns the responses 
from the legitimate site to the user.  After the user has successfully 
logged into the legitimate site, through the phishing site, then the 
phishing site is logged in as the user and can perform whatever 
actions it wants. 

The standard protection against this type of man-in-the-middle 
attack is the use of server-side certificates with SSL/TLS.  When 
the user initiates a secure connection to a service provider, the 
service provider replies with a PKI certificate.  The user's client 
(web browser) usually handles checking the validity of the 
certificate automatically, interrupting the user only when a 
problem is detected and simply showing a non-intrusive indicator 
when the secure connection is setup without problems.  Phishing 
sites have used a variety of techniques to get around server-side 
certificates, including simply not using SSL/TLS, making the 
browser look like it is using SSL/TLS when it is not, and 
obtaining valid certificates for different domains, which can be 
mistaken for the legitimate domain by an unwary user.  All of 
these tricks are possible because of the disconnect between the 
authentication system (SSL/TLS), and the thing being 
authenticated (the service provider).  The certificates authenticate 
the domains used, instead of the actual service providers. 

In contrast to the server-side certificates, our credentialing scheme 
intimately ties the authentication system (the private/public key 
pair and the certificate as a whole) to what is being authenticated 
(the credential as a whole).  Consider again the phishing site, but 
with the credential in place of the user-name, password, and one-
time password.  When the user connects to the phishing site, the 

phishing site can relay requests to the legitimate service provider 
and replies back to the user as before.  However, when the service 
provider sets up a secure connection, it will use the user's 
certificate to setup the session.  The phishing site can substitute its 
own certificate, but then it is no longer impersonating the user.  
Alternatively, the phishing site can pass on the user's certificate, 
but then the phishing site loses control of the session.  The service 
provider can setup an authenticated tunnel to the user, so that the 
phishing site can no longer modify the traffic without being 
detected.  

4. SECURITY 
In this section we discuss some potential attacks against 
implementations and then provide a formal analysis of the 
underlying cryptographic construction.   

4.1 General Security Discussion 
The basic attacks that the credential must resist are forgery, theft, 
privacy compromise, man-in-the-middle, and collusion. 

Forgery – a malicious user should not be able to forge a valid 
credential containing invalid claims. 

Theft – the credential should be resistant to theft under standard 
usage. 

Privacy compromise – an attacker should not be able to learn 
more about the user of a credential than the user chooses to 
reveal. 

Man-in-the-middle – a user should not have to worry excessively 
about hostile service providers.  

Collusion – two or more users working together should not be 
able to make a claim that no single user in the group can make 
alone. 

During the design process, several specific attacks against earlier 
versions of our system were discovered.  They include dictionary 
attacks against neighbor nodes, combined replay/man-in-the-
middle, hidden subtrees, and the broken hash attack. 

Dictionary attacks against neighbor nodes come from the fact that 
when a credential is used, the hash values of unreleased claims 
must be provided.  Assuming a secure hash function is used, an 
attacker cannot determine the value of the unreleased claim via 
cryptanalytic attack.  However, since most claims are likely to be 
in a standard form, a dictionary attack should often be successful.  
We protect against this type of attack by padding the claims with 
random or pseudo-random data. 

A combined replay/man-in-the-middle attack may be possible 
when the verification that a user holds the private key for a 
credential is completely unrelated to the showing of the tree for 
the credential.  In this situation, an attack can perform a replay 
attack against the showing of the tree, and then a man-in-the-
middle attack against the user proving possession of the private 
key.  While this attack either does not apply or would be 
meaningless to many uses of the credential, it is still a possible 
attack.  We protect against this type of attack by requiring that the 
verification of the private key be linked to the specific claims 
being shown. 



To maximize the efficiency of showing a credential, we would like 
to minimize the number of slow, public-key operations performed.  
The best that we can do is to have only a single certificate 
verification and a single public/private key verification, regardless 
of the number of claims and how many different subtrees the 
claims may be in.  As described previously, an identity provider 
will check the certificates for all subtrees within the tree.  
Therefore, when the credential is shown, the service provider does 
not need to recheck those certificates, as long as it trusts the 
higher level CA.  However, consider the case of a nested subtree.  
An identity provider shouldn’t be able to see the claims in 
subtrees, due to privacy requirements.  But this means that a 
subtree can hide another subtree.  In particular, a subtree issued by 
a bad (but untrusted) identity provider could hide a subtree 
apparently issued by a trusted identity provider, but in actuality 
was forged and has a bad signature.  This could be prevented by 
several different protocol changes.  The most efficient of these is 
by preventing the inclusion of a hidden subtree in the first place.    
Our current recommendation is simply to ban nested subtrees 
altogether, and have the service providers ensure that credentials 
which have nested subtrees are rejected. 

An alternative solution to the hidden subtree problem allows 
nested subtrees, but prevents them from being hidden.  As 
described previously, the final bit of the hash is set or cleared to 
indicate an inner node or leaf node, respectively.  When a user 
wishes for a subtree to be present in a credential, the entire tree 
down to the leaf nodes must be presented to the identity 
provider/CA.  The claims of the subtrees remain private.  As the 
node type is evident from its hash value, subtrees cannot be 
hidden during this process.  Service providers must make sure this 
standard is followed by verifying that no inner nodes have hash 
values appropriate to leaf nodes.  In our prototype, this is trivially 
accomplished by having different methods called to compute the 
hash value, depending on the node type.  Compared to our 
recommended method, this solution to the hidden subtree problem 
(trivially) increases the computation and communications cost of 
issuing a credential. 

Another structural attack that was encountered is implementation 
specific.  In our prototype implementation, plain X.509 
certificates are used.  X.509 certificates are designed to match a 
directory entry for a particular subject, and their structure is fairly 
rigid around that purpose.  Therefore, our implementation didn’t 
specify any extra details about the hash tree – such as the hash 
algorithm used – in the certificate itself, but instead stored that 
information with the tree.  This can lead to an attack if a hash 
algorithm trusted for use in creating the tree is broken.  Given the 
right conditions, an attack could create a tree using the broken 
algorithm, which could then collide against the root hash stored in 
a valid certificate, even if the valid certificate was for a tree using 
a different (and hopefully more secure) hash algorithm.  We 
consider this attack to be fairly minor, because it requires a 
primitive of the system to be broken badly – in order to find a 
collision from one hash function to another should effectively 
require a preimage attack, and not a simple collision.  As version 
3 of X.509 certificates allows arbitrary extensions, the hash 
algorithm can be specified in the certificate, anyway.  

4.2 Formal Analysis of Security 
We provide a rigorous analysis of our credential system.  We first 
formally define the new notions of unforgeability and privacy for 
a credential system and show that our system achieves these under 
standard cryptographic assumptions. 

Unforgeability states that a user cannot convince a service 
provider that a set of claims is true unless those claims were 
actually approved by an identity provider.  We formalize this in a 
strong way: we allow adversaries to adaptively obtain an 
unbounded polynomial number of credentials on sets of claims, 
and then require that the adversary can not generate a credential 
on a set that was not contained in one of the valid credentials.  
Furthermore, the adversary may request that credential trees be 
combined.  The adversary is also considered to have won if it can 
fool a service provider into accepting a valid claim from one 
identity provider as a claim from another identity provider which 
did not approve the claim.  For simplicity, we analyze the cases 
where the claim tree contains no subtrees or is composed entirely 
of subtrees.  The analysis can easily be extended to the case where 
claims are mixed with subtrees. 

Privacy states that no partial information about unrevealed claims 
is leaked.  We will allow adversaries to adaptively obtain 
credentials and then submit two sets of “challenge” claims of 
equal size.  One of the challenge claim sets is selected at random 
and then a credential is generated on that set and returned to the 
adversary.  The adversary can ask that parts of the challenge 
credential be revealed before outputting a guess.  Of course, we 
must restrict the adversary to revealing only claims on which the 
sets match (otherwise distinguishing is trivial). 

We leverage two properties in our analysis that were not 
considered in the redactable signature scheme of Johnson, et al., 
which used a similar technique of constructing a Merkle tree and 
then signing the root [15]. 

First, we consider the privacy of unrevealed claims, a notion that 
did not apply to the context of redactable signatures. If we 
translate Johnson, et al.’s terminology to our context, it was 
assumed that the adversary knew all of the claims in a given tree, 
and after the user revealed some claims, the adversary would 
attempt to convince an identity provider that some of the 
remaining unrevealed claims were in the tree.  The security 
theorem given by Johnson, et al., stated that the adversary could 
not succeed, despite knowing all of the claims.  For 
unforgeability, we need only a weaker version of this security that 
prevents an adversary from inserting new claims, and for privacy  
we must defend against adversaries who do not know all of the 
user's claims and wish to learn something about the unrevealed 
claims. 

Second, combining trees did not apply in their context and was 
not considered.  For this work, combining trees allows us to save 
the computation involved in verifying many signatures if the key 
used to sign the root node is trusted. 

In the following definitions, we treat a credential system as a pair 
of algorithms (KeyGen, SignCred).  KeyGen takes as input a 
security parameter and outputs a unique ID for the identity 
provider and a public/secret key pair to be used in generating and 
verifying credentials.  SignCred takes as input an identity 
provider's secret key and a set of claims, and outputs a credential 



on the set of claims.  Each claim is either an arbitrary string s or a 
tuple ),,( σsid , where id is an identity provider’s unique ID, s is 
an arbitrary string, and σ  is a signature.  The second type of 
claim corresponds to a request to combine a subtree with root s 
from the identity provider with unique ID id, and σ  is the 
signature on s. 

For the following definition we define to two oracles, CreateIDP 
and RetrieveCred.  CreateIDP runs KeyGen and returns the id and 
public key, and RetrieveCred takes as input a claim set and an 
identity provider’s unique ID and runs SignCred with the 
corresponding secret key, and then returns the credential. 

   Definition 1. (Unforgeability )  Let (KeyGen, SignCred) be a 
credential system.  Then a probabilistic, poly-time adversary 

trieveCredCreateIDP,A Re is said to forge a credential if it outputs a 

tuple { }{ })( **
ii n,c,σ,pk ∗∗ , where ∗pk is a public key output by 

GenIDP, ∗
σ is a valid signature under ∗pk , { }ic*  is a set of 

claims not signed by their respective identity providers, and { }in*  
is a valid set of intermediate nodes for revealing the claims in a 

hash tree corresponding to ∗σ . 

   Definition 2. (Privacy)  Let (KeyGen, SignCred) be a credential 
system, let Chal be an oracle that when given two claim sets and a 
identity provider's ID, chooses one of the sets at random and 
generates a credential on that set, and let Reveal be an oracle that 
takes as input a claim set and reveals those claims (Reveal may 
only be called after Chal has been called).  Then an adversary 

RevealChal,KeyGen,CreateIDP,A  is said to violate the privacy of the 
credential system if it guesses the set chosen by Chal with 
probability non-negligibly greater than ½. 

   THEOREM 1. If H is a collision resistant hash function and the 
underlying signature scheme is existentially unforgeable, then the 
scheme described above is unforgeable except with negligible 
probability. 

   PROOF SKETCH.  Above we assumed that a tree is valid only if 
all of its claims are contained in subtrees or if none of its claims 
are in subtrees.  We will deal with these two cases separately. 

Case 1: A outputs no subtree claims.  Here *σ  must be a 
signature output by the underlying signature scheme under a key 
output by CreateIDP, because otherwise A could be used to break 
the underlying signature scheme.  Moreover, the nodes revealed 
by A must be a subtree of the tree from that query.  Otherwise A 
has found a collision in the hash function:  either a tree node's 
input was changed, or if an internal node was used as a leaf, then 
the appended bit is different, forcing a collision. 

Case 2: A outputs a tree containing subtrees.  Here again the 
signature at the root provided by A must have been output by 
SignCred.  A must reveal the intermediate nodes leading up to the 
root, and since every claim is contained in a subtree, A must 
reveal a preimage of the trinary node (the root of the subtree).  By 
the collision resistance of H, A must reveal the same public key as 
part of the preimage of the trinary node.  By the same reasoning, 
the revealed tree must be contained in the honestly generated tree, 
so the claims must have been signed before and the matching 

trinary node preimage guarantees that the claim is under the 
original identity provider.   This completes the proof sketch. 

We note that the random padding is not needed for unforgeability, 
but it is necessary for privacy, as discussed below. 

Next we argue that the scheme does not leak information about 
unrevealed claims.  Below we will need that the hash function is a 
pseudorandom function when the random padding is viewed as a 
key. 

   THEOREM 2. If ( ) ( )xk,H=xH k  is a pseudorandom function 

(keyed with the padding k), then the scheme described above is 
private. 

   PROOF SKETCH.  Consider an adversary A attempting to violate 
the privacy of the credential system, as defined above.  A will 
obtain credentials on sets until it outputs two challenge sets, 
which define a symmetric difference of claims which it cannot ask 
to be revealed. 

We define a sequence of “hybrid” versions of the game played by 
A, where in each hybrid we hash one more claim in the symmetric 
difference with an independent random function instead of 
with kH .    Since kH  is a pseudorandom function that is only 

queried once for each randomly chosen k, A cannot detect the 
difference between adjacent hybrids.  Then A cannot detect the 
difference between the extreme hybrids, where either all claims in 
the symmetric difference are hashed with kH  or all are 

independent random values.  But in the latter case, the distribution 
seen by A is the same no matter which of the two challenge claim 
sets is chosen, meaning that A has advantage 0 in that hybrid.  
Thus A has negligible advantage in distinguishing the two claim 
sets, completing the proof sketch. 

5. PERFORMANCE 
As per its conception as a practical system, performance has 
always been a consideration in the design of our credential.  Our 
design focuses on conventional operations (one-way hashes) and 
minimizes the number of asymmetric/public key operations.  In 
general benchmarking of comparable hash functions (the SHA 
family) versus public key algorithms (RSA and DSA), done using 
both OpenSSL and the default Sun Java cryptography provider, 
the hash functions were more than two orders of magnitude faster 
than the public key algorithms.  This allows our system to be 
much faster than the digital credential schemes by Brands and 
Camenisch, et al., which require many more of these expensive 
public key operations. 

The actual implementation of the credential system is of course 
more complicated than the primitive operations alone.  Based on 
our proof of concept implementation, Table 1 shows timing for 
the whole operations of verifying a hash tree versus verifying a 
public key certificate (not including verifying the user’s private 
key).  The hash tree used contains 2048 claims.  In the first case, 
all but a single claim is masked, leading to both a very fast 
execution time (a little over a millisecond) and a very small file 
size on disk (just a few hundred bytes).  In the second case, all 
2048 claims are present, requiring 10 times as long to verify.  (The 
time difference is not greater, because the checking algorithm is 
very general, performing the same setup for checking a full tree as 
a tree with only a single claim).  The tree file for the full 2048 



claims is about 31 kilobytes, but most of that (25 kB) is taken up 
by the claims themselves plus a 32 bit length field for each claim.  
The tree sizes do not include separate random padding for each 
claim. 

To see the performance advantage of our method, consider a 
system where a separate certificate is provided for each claim.  In 
the situation of checking 2048 claims, such a system would take 
about 7.5 seconds just to verify the certificates.  Our system can 
perform the same verification in less than 16 milliseconds.  As 
another example, using Brands’ credential is O(n) in 
exponentiations with respect to the number of claims [5].  
Showing 2048 claims would require more than 2048 
exponentiations.  At a conservative 0.6 milliseconds per 
exponentiation, showing this credential would take about a second 
and a quarter – more than 80 times slower than our system.  Of 
course, as mentioned earlier, Brands’ credentials also provide 
stronger properties than we require, which necessitates their 
higher complexity. 

Tests were performed on an Intel Core 2 Duo E6600 running at 
2.4 GHz. 

Operation Time (µ-seconds) File size (bytes) 

Verify Tree (SHA-256)   

          1 claim of 2048 1129 438 

          All 2048 claims 11789 31687 

Verify Certificate   

          RSA 1536 bit 3694 1074 

Table 1.  Time and space efficiency of hash tree and certificate. 

6. CONCLUSION 
Privacy is important both as a protective principle and as a 
security measure.  Identity theft is a serious and widespread crime.  
The Federal Trade Commission reports that over a quarter of a 
million identity theft complaints were received in 2005, in 
addition to over 430,000 other fraud complaints.  Internet-related 
complaints accounted for almost half of those [1].  Protecting 
personal information is vital to reducing identity theft.  Limiting 
information disclosure does not require that accesses to service 
providers be completely anonymized.  A user may repeatedly 
present the same credential or service provider specific claims to a 
service provider.  This could facilitate many useful applications 
such as user-controlled services for monitoring usage of their 
credentials.  In addition, for security sensitive applications and 
with appropriate safeguards in place, accumulated user 
information could be sent to the identity providers to enable 
auditing of credential use. 
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