Minimum Information Disclosure with Efficiently Verifiable
Credentials

David Bauer
Georgia Institute of Technology
777 Atlantic Drive NW
Atlanta, GA 30332-0250
gte810u@mail.gatech.edu

ABSTRACT

Public-key based certificates provide a standarg teaprove
one's identity, as certified by some certificatahatity (CA).
However, standard certificates provide a binaryniidieation:
either the whole identity of the subject is knovam, nothing is
known. We propose using a Merkle hash tree stracihereby
it is possible for a single certificate to certifiany separate claims
or attributes, each of which may be proved indepatig, without
revealing the others. Additionally, we demonsttat®s trees from
multiple sources can be combined together by muodjfthe tree
structure slightly. This allows claims by diffeteauthorities, such
as an employer or professional organization, tocbebined
under a single certificate, without the CA needtogknow (let
alone verify) all of the claims. In addition tos#eibing the hash
tree structure and protocols for constructing aedfying our
proposed credential, we formally prove that it [deg
unforgeability and privacy and we present initi@rfprmance
results demonstrating its efficiency.

Categories and Subject Descriptors
K.6.5 [Security and Protectiori: Authentication

General Terms
Algorithms, Management,
Verification.

Performance, Design, Sscuri

Keywords
Identity management, identity assertion, credenti@sh-tree,
Merkle tree, PKI, privacy

1. INTRODUCTION

Personal information is increasingly used to e@hhitentity and
authorize transactions in the digital world. Aetkame time,
identity theft and fraud, based on unauthorizectld&ire and
misuse of personal information, are rampant [144 mdividuals
are increasingly concerned about providing persorfaimation
to every digital entity with which they establishrelationship.
The research described in this paper is based wveradekey
principles of identity management:

® first and foremost, users should have the maximum

control possible over what personal information of
theirs is disclosed in any given on-line interagtio

Douglas M. Blough
Georgia Institute of Technology
KACB, Room 3356
Atlanta, GA 30332-0765
doug.blough@ece.gatech.edu

David Cash
Georgia Institute of Technology
801 Atlantic Drive
Atlanta, GA 30332-0280
cdc@cc.gatech.edu

® next, more reliance can be placed on personal
information that is verified by trusted third padithan
in self-reported information, and

® |last, if verified personal information is to be dse
mechanisms to prevent that information from being
copied and misused by unauthorized parties are
essential.

We assume an architecture in which there are igjeptoviders
that verify users’ personal information and supplgdentials that
the users can give to service providers [17]. Qn&dis are a
common mechanism for verifying personal informatiom
everyday life. Most people carry multiple physicakdentials
with them, from drivers’ licenses to insurance satd credit
cards. A credential describes some set of atg#hatbout the
holder. For the obvious example, a driver’s lieestates that the
holder is licensed to drive a vehicle in the lidags state.
However, due to drivers’ licenses being all butversal, they are
used as a general credential. As such, drivecanfies often
include unnecessary information, such as the hgsld#ate of
birth, address, height, organ-donor status, andalssecurity
number. Electronic credentials can be simple, &kaser-name
and password, or more complex, like a public kdyastructure
(PKI) certificate. A PKI certificate is an electic document that
holds an identity and a public key, and that isns@) by a
certificate authority (called the issuer). The rusmlds the
associated private key to prove that they aredpgimate holder
of the certificate. The user-name and passwordauation is the
most widely used scheme, because of its simplicijowever,
this scheme also provides no direct informationualtioe user. A
user-name must be attached to a previously madeuat,cand
some other form of credential must be used tortielantity to the
account. Such accounts are very seldom shared &etdifferent
domains, leading users to accumulate many diffea&ebunts,
often with different user-names and passwords. ¢edflificates
for users are less common, but can solve the probfeneeding
to keep track of many different user-names andvpass.

Minimum information disclosure in any given intetiaa is
desirable from a user’s perspective, and may eeamebessary for
a given technology to be widely adopted[9]. Clgail a user
wants to release the minimum amount of personakimftion on
a given interaction, this rules out a single cre@dempproach, in
which each user maintains one credential contaialh@f their
personal information and uses that credential feryeinteraction.
As in [9], we say that a user makedam about herself when she
gives information about one or more personal attéb to a
digital entity. Due to the wide variety of persbimdormation that

is used in digital interactions, the number of eli#int possible
claims is extremely large. The problem to be soligedherefore,
to provide an efficient and reliable mechanism #ibtws users to
assert arbitrarily many (or at least a large nurdferverifiable

claims over a sequence of interactions with difierdigital

entities.

As an example of minimum information disclosurensider the
problem of verifying that a user is at least 18rgeaf age.
Clearly, verifying the user’s date of birth is scint but not
necessary, and would reveal a very sensitive piécpersonal
information that could assist an identity thiefrirasquerading as
that user. We refer to the claim that a usentieast 18 years of
age” as a micro-claim, with the (macro-)claim instlease being
“the user’s date of birth is xx/xx/xxxx”. Many @#rent micro-
claims can be derived from a single claim, e.g.uber is “at least
18", “at least 21", “at least 35”, “at least 65'tce One possible
approach could be to maintain credentials for atiredly small
number of claims and use those to dynamically ggaemicro-
claim credentials as needed for a given interactidgtowever,
securely generating a large variety of micro-clafmesn a given
set of claims is an open problem, not to mentiow ke micro-
claims can be verified without revealing the infation in the
verifiable claims from which they are derived.

Instead, we adopt an approach where a large seicad-claims is
enumerated statically, and updated dynamically asded.
Instead of generating and maintaining a single emédl per
micro-claim, which is extremely inefficient fromedhstandpoints
of storage space, bandwidth, and computation timeepropose a
method wherein a single credential can be maindaihat allows
the user to dynamically specify an arbitrary suloehicro-claims
for a given interaction without revealing the ottmicro-claims.
We also include in this credential, and the prot®dbat use it,
mechanisms to make it very difficult for an attacke make a
copy of the credential and use it to masqueradénasiser. In
addition to allowing the user to update her semafroclaims as
certified by one authority, the credential allowformation that is
verified by different identity providers to be coiméd in one
structure. This allows users to spread out thesrsgnal
information across different identity providersetéby lowering
their risk when one of their identity providers expnces a
security breach. The details of this new credémg&chanism and
its associated protocols are provided in the redwirof this
paper.

Defining the level of privacy needed by users sibtle and hotly
debated issue . One attempt to quantify privacthe idea of
linkability. Two things — events, transactionedentials, claims,
or users — are linkable if they are known to hameuaderlying

connection. It is necessary for some things tolibeed; for

example, if a claim is not linked to any user oidewce, it is
meaningless. But more often the focus is on ualiilky — when

things can’t be recognized or shown to be conneaeen when
they are. For example, consider buying an iterh wésh versus
buying an item with a credit card. When using caslere is
usually no record of who bought the item. If sevétems are
bought in separate transactions, it usually cameotletermined
that they were bought by the same person. Whergwsicredit
card, there is a clear record of who bought then.iteltems

purchased at different times and even at diffepdates may be
identified as having been bought

by the same person

Additionally, the real name/identity of that persisnknown and
usually printed right on the receipt. This is aatl invasion of
privacy, and yet credit cards are still extremebpylar. Credit
cards are popular because they are convenientthaméhvasion
of privacy is accepted because it is necessargdoce fraud and
abuse in the system.

Our goal here is to design systems that preseevaghr’s privacy
as much as possible, while remaining auditable filoenpoint of
the of the service providers. That is, a user Ehbave control
over which claims are presented, but repeated tiskeouser’s
credential should be linkable. This concession sucial
practicality gives a strong engineering advantagepared to the
other credential systems discussed in the related section: we
are trying to solve a somewhat easier problem.suah, we can
focus on making the system faster and more efficieWhile
complete anonymity, e.g. in the form of unlinkatrtknsactions, is
a noble goal, it is our belief that many types @fvice providers
will not accept it as a practical solution. Ourpegach, by
contrast, tries to improve on the current pradbigeallowing users
to minimize the amount of personal information thentrust to
service providers while recognizing that releassahe personal
information may be inevitable.

2. BACKGROUND

2.1Expected Scenario

We consider a scenario with three types of partiédentity

providers, service providers, and users. An idgptiovider is an
entity in a position to make authoritative stateteeabout a user.
An identity provider can be a third party certifiesauthority, a
government office, an employer, a professional wizgion, etc.

A service provider is an entity that wants or neemgheck the
identity of users. A service provider can be amgaaization,

government office, or individual with an on-lineegence. The
user is the holder of the credential, and is alwaysndividual

person in our scenario.

We acknowledge that it is notoriously difficult deploy a usable
and secure PKI to bind keys to users, but it seeatessary
without an online third party to attest to a useslaims. The
functionality provided by verified claims will hop#ly serve as
intuitive and strong motivation for users.

2.2Requirements
The design of our electronic credential was dril®n several
requirements.

1.The credential must not simply hold a single
identifier. Ildentity is a complex matter, and ofta
name or serial number is not what is importantrie's
identity.

2. The user of the credential -- the one whose ideigtit

being proven -- must have as much control over the

process as possible. Considering the first remerg,
the user should be able to select which attriboteiseir
identity are released to a particular entity.

3.The credential
protection. Using the credential should not placat
risk of being copied.

must have some form of copy

4. Neither the user nor the service provider shoulkkha
to contact the identity provider to verify the ceadial.

5. The credential must be memory and computationally

efficient to store and use.

2.3 Related Work

Digital credentials have been proposed before ioua forms.
More in depth comparisons between our system aggbthystems
can be found later, in Section 3.4.

David Chaum is credited with proposing the firglitil credential

system[11]. Chaum's system is a pseudonym systérarely a

user can present a different pseudonym to eaclicegpvovider.

The pseudonyms are linked cryptographically sucat teven

colluding service providers cannot link togetheo tpseudonyms
belonging to a user, but the user can use a crieti@ssigned to
one pseudonym with another pseudonym. Chaum'snatig
proposal did not describe how to implement suclystesn. A

method for implementing the system was later dbedriby

Chaum and Evertse based on the RSA crypto-systena &emi-

trusted third party [12].

Stefan Brands developed a different form of digttadential, in
which a user has a single public credential, bat tedential is
pseudo-anonymous, even to the issuer [4]. Theeatead holds
attributes that the user can selectively prove $eraice provider.
Repeated showings of the same credential are liekdwoth if
shown to the same or different service provideidswever, since
the credential is issued blind by the identity pdev, the effect is
that a user has one global pseudonym. The credles#th be
reissued easily, allowing the user to change theball
pseudonym, as permitted by the identity provideBrands
emphasizes that showing a credential is done hy-k@owledge
proof, but that has no impact on the comparisonghis paper.
Credentica’'s U-Prove Software Development Kit issdgh on
Brands’ work [3].

Camenisch, et al., have proposed and implementeéna@her
form of digital credential, or more precisely, yetre forms [6-8].
While they describe a system for implementing a Whdike
pseudonym system, their system is much more flexiahd can
be used without pseudonyms. While having signifisabetter
anonymity properties, the algorithms are also §icamtly slower
than Brands' credentials. IBM’s idemix system igsdd on
Camenish, et al.’s work [6].

While their aim is very different, the closest dgsito our
credential system is the redactable signature setdascribed by
Johnson et al in their paper on homomorphic sigeaschemes
[15]. A comparison between our credential andrtis@nature
scheme is given later in Section 3.4.

3. DESIGN

3.1Merkle Hash Trees

The proposed credential is based on Merkle hass §i£6] and
standard public-key infrastructure (PKI) certifieat A Merkle

hash tree is essentially a binary tree where eatdrnal node
holds the hash of the concatenated values of its ¢hildren

nodes. The leaf nodes hold the data of interéstthis way, a
large number of separate data can be tied to deshash value.
In addition, by storing the internal node values éo subset
thereof), it is possible to verify that any of tleaf nodes is part of

the tree without revealing any of the other daRalph Merkle
first introduced this structure as a way to effitig handle a large
number of Lamport one-time signatures. It has esifbeen
adapted for uses such as the large-scale time-stgmef

documents [2] and tracking data in peer-to-pearoeks [10].

A basic Merkle tree is shown in Figure 1. Figurstbws the
same tree with the nodes and claims labeled foy esfsrence.
Consider verifying claim A in the tree. Startingthe claim and
going up the tree, node 4 contains the hash ofldim. Node 3
contains the hash of the concatenation of nodewl46a Node 2
contains the hash of the concatenation of nodesd36a And,
finally, node 1, the root of the tree, contains tiesh of the
concatenation of nodes 2 and 9. Therefore, vegfiélaim A

requires the values of nodes 5, 6, and 9, as sli\guation 1,
below. A similar verification path can be made &ty of the
claims. For example, Equation 2 shows the pathvégifying

claim F, which requires the values of nodes 2,aht], 13. As per
the nature of the binary tree, the number of noale$ hashes
needed for a verification scales with the log of thumber of
claims.

|Claim| |Claim| |Claim| |Claim| |Claim| |Claim| |Claim | |Claim|

Figure 1. Merkle hash tree with leaf nodes holdindpashes of claims.

Figure 2. Merkle hash tree with labeled nodes.

3.2Credential Overview

The credential consists of two parts: a public gerd a private
part. The public part of the credential is a fedte. The
certificate holds information about the issuer, testification
chain for the issuer, the type of certificate, thete range over
which the certificate is valid, the user's publeykand a signature
of the root node of a Merkle hash tree. The dedi€ should not

in general hold any data about the user directignedata as
common as a name. As per standard operation ettiéaate will
be signed by some certificate authority, which is identity
provider in this system. The private part of thedential consists
of a private key and a Merkle hash tree wherebyflhe leaf
nodes are attributes of, or micro-claims about,itleatity of the
user, who is the credential holder. The Merklee tetructure
allows the credential holder to prove any subsehefclaims in
the tree, with only the single signature on théifteate.

As an additional improvement, a slight modificatiaza the
structure will allow the use of a single credenttantaining
claims from a variety of identity providers, withtoiequiring one
identity provider to verify all of the claims. Csider again the
Merkle tree of claims, but with subtrees comingniralifferent
identity providers. For example, one subtree caolatain claims
certified by a government registry, while anothabtsee could
contain claims certified by an employer. In thesibastructure,
the identity provider must either see all of thairs or trust the
providers of all of the subtrees that they only tegm claims
relevant to their topic. Neither solution is idealo provide a
third option, consider adding an optional third rimia to some
internal nodes of the full tree. (These nodesespond to root
nodes of the subtrees.) The third branch conticertificate for
all of the claims in the subtree rooted in the parede. When
verifying a claim which is in such a subtree, thenf is different -
- three hashes are concatenated in a node insteaw o- so the
verifier knows that this claim is under a differexgrtificate than
the credential as a whole. For example, in Figutke left hand
subtree contains claims certified by the overadintity provider.
The overall identity provider is referred to as thertificate
authority (CA). The right hand subtree contairgimk certified
by some other party, which do not have to be \estifdy the top
level CA. From here on, the term “subtree” is usedefer to a
branch containing nodes from a different identitgyider, rooted
in one of these sub-roots.

| Claim | | Claim | [Claim | | Claim | |Claim | [Claim| |Claim | [Claim |

Figure 3. Modified Merkle hash tree with subtree.

We would like to identify a node as being a leafi@mavithout
seeing the associated claim. The reason forghdsscribed. This
discrimination is achieved by simply appending tatdithe end of
the hash, either a one if the node is an inner noda zero if the
node is a leaf node. For efficiency, our impleraginh simply
overwrites the least significant bit of the hashuea instead of
appending another bit. This is equivalent to tatimg the output
of the hash function used by a single bit (with egligible
decrease in security), and then appending the ataticoit. In

order to keep the system secure while still onlgdireg to check
the signature on a single certificate, nested sabtare forbidden.
If a service provider encounters a claim in a restabtree, it
should reject the credential.

A tree might have no claims outside of subtreesthis case, the
top level CA is signing that it has verified thaetform of tree is
correct, that all certificates for subtrees aredyalnd that the user
possess the private key(s) matching the subtréicages and the
top level certificate. The CA could be fully autated in this

situation, allowing users to easily update thegdentials when
subtrees are added or modified.

3.3Protocols for the Credential

Creating a credential is both conceptually and agatpnally
easy. In the case where there is a single ideptidyider for the
credential, there are roughly four steps required:

1. Agree on a list of claims.

2. Generate the hash tree for the claims.

3. Verify that the user possesses the private key
4. Produce and sign the public certificate.

First, the user and identity provider agree orstdf claims. The
logistics involved in an identity provider verifigrthe user claims
may be rather complicated, and are beyond the sobpdis

paper. Second, either the user or the identityides generates
the hash tree for the claims. Random padding imeistdded to
the claims before they are hashed, as discussedoie detail

later. With a single identity provider, the tredllvalways be

balanced, bounding the number of interior nodeteonumber of
claims. The number of hashes needed to generatdrdh is
therefore bounded to twice the number of claimgenerally a
negligible amount of computation time. Third, thdentity

provider must verify that the user holds the peviaey matching
the public key of the credential. The user carseean already
generated key pair or generate a new key pairhferctedential.
The identity provider does not need to ever knosvghivate key.
Finally, the identity provider creates and sign® thublic

certificate for the credential.

Random padding must be added to the claims befarg are
hashed in order to prevent dictionary attacks aggarts of the
tree. The random padding can be generated anddsiar a
number of different ways. For example, Johnsonalet{15],

describe a method credited to Goldreich, Goldwasset Micali

[13] that uses a pseudo-random function whose oiggwice the
length of its input. A single seed value at thetrmode is
expanded as per the tree branching structure ubmgseudo-
random function. Each node therefore has a pseartiitom value
associated with it that can be used to generatpgbedo-random
values for all of its children nodes. A computatdly easier
method is to use a seed value and the claim indéxaypseudo-
random function to generate the padding for eaahmcl Neither
of these methods will work well for our system, emtdinately, due
to the inclusion of different subtrees within ager tree. In the
most general case, simply storing the random padtiin each
claim is probably the easiest solution. The ovaghis small, just
10-16 bytes per claim. Alternative approachespargsible, but
all require the user to have a global secret, kbepprivate keys

for all certificates, or store extra private infation with each
credential.

Creating a credential with claims from multiple idi¢y providers
is done by integrating credentials as subtrees. e @entity
provider will be the final one, referred to as thertificate
authority (CA). The user creates credentials with of the

identity providers, except for the final one, bye tiprocedure
described above. Then, the user creates a crabedits the CA.
For this final credential, the hash trees from abieer credentials
are incorporated into the final hash tree. Thed rammles for the
incorporated subtrees will have a third branch dddeach
containing the certificate from the original idéntprovider of
that subtree, as shown in Figure 3. (The root hadhes in the
subtree certificates will no longer match, but ttlaesn't matter.)
All subtrees in the credentials being added museb®ved from
their trees and added separately to the top lenedd. t This
prevents nested subtrees. The CA verifies thetstrel of the tree,
including the top two leaf nodes of each subtree tteey are
needed to calculate the sub-root’s hash), as wehe public part
of the sub-credentials, and the associated pubiiate key pairs.
In general, the public/private key pairs may be shene as or
different from each other and the top level keyr.padll that

matters is that the user holds the correspondiivgterkeys at the
time that the credential is assembled. In a mes&icted setting,
the public/private key pair may be required to e $ame for all
subtrees. The CA does not need to see the claimmsdubtrees.

To provide an example of combining credentials,gima a user,
Alice, who already has a credential containingrofaifrom four

different identity providers. Now, Alice is thessued a credential
from her employer. The two credentials are showifrigure 4.

Alice’'s employee credential already has a numbesuditrees,

containing separate credentials from the engingetpartment,
human resources department, and her own lab. Tédemtial

also has a top level claim of her employee ID. célgoes to a
certificate authority to create a new credentianfrthese two
credentials. She submits no claims to be verifigdhe CA and

eight sub-credentials to be included in the finr@dential — four

of these are from her previous credential, threeeveenbedded in
her employee credential, and the last is the cté&deraiming her

employee ID. The CA will verify the eight certifites, verify that
Alice possesses the appropriate private key(s)ergém a new
tree, and provide Alice with the new certificate.

The protocol for using the credential follows contienal PKI
certificate usage. The user connects to a sepriceider, either
over a wide or local area network, and requestseseetvice,
sending the public part of the credential. Theviser provider
requests the appropriate identity attributes froenuser. The user

Employer Issued Credential

Previous Credential

Employee ID|

provides the claims that match the requested atgfhand the
intermediate node values and path information rescgsfor the

service provider to verify each of the claims.afy of the claims
are in a subtree certified by a different identitsovider, the

accompanying certificates must be included withgéieof claims.
The service provider verifies that the claims ardhe hash tree
specified (via the root hash) in the certificatertpaf the

credential. The service provider also verifies slgnature on the
certificate part of the credential. In order taifyethat the user is
the holder of the credential, the service provigsp verifies that
the user possesses the private key which matcleepublic key

claimed by the credential. This can be done hydsted methods,
such as challenge/response or as part of a seeyeadceement
operation, as long as the key verification is tiedthe specific
claims being asserted by the user. This can be,donexample,
by hashing all of the claims asserted by the usepat of the
challenge field. In addition to the cryptographérifications, the

service provider must of course confirm that isteuthe identity
providers to assert the claims in the credentiahr example, a
claim of an individual's address asserted by the Bssociation

would be out of place. Similarly, an assertiontlsy Department
of Motor Vehicles that an individual was a licensagyer should

not be trusted.

The procedures for creating and using credentigéngherein are
purposely generic. We prefer to constrain the cttine and
properties of the credential and leave some flé&ibin the
procedures for generating and verifying it. Asragb of concept,
we have developed specific implementations of theeeedures,
and initial performance results based on theseemehtations are
reported in Section 5.

3.4Comparisons to Related Systems

Johnson, et al., define and constmetiactable signatures using a
Merkle hash tree to allow the signature verificatmf a message
even when parts of the message have been deldgd Ifi their
example, a body of text is signed such that it lsarredacted at
some level of granularity (sentence, word, or ctteramaking the
most sense). They do not appear to have considesied the
construct in the context of a credential. Whiléhbsystems share
a core idea — using a Merkle hash tree to hideesigglements —
the two systems have significant differences. Bmthtems use
slightly different hash functions (constructs) fbe leaf and inner
nodes. In their signature scheme, the input tdésh function is
specified to match a certain form, which is impottéo their
proof of security. In our credential system, theepait of the hash
function is specified to match a certain form, whis sufficient
meet the requirements of the security proof, whpilevided the
property of being able to identity a leaf node frasmhash value

Combined Credential

Figure 4. Combining a generic credential with an mployee credential.

alone. Subtrees of the type used in the credesystbm are not
used at all in the signature scheme. To the Hemtroknowledge,
the idea of combining trees by modifying the treecture as we
do is novel, and introduces extra complication$ie Three-child
inner nodes (shown in Figure 3) and modified hagtinheme
(discussed in Section 3.2) both result from the&idEcombining
subtrees from different identity providers. Conibn subtrees
allows claims from many different sources to beainsingle
credential, under a single certificate.

Brands mentions in his book the idea of using Metihsh trees
to store claims, but dismisses it because it dagsprovide the
properties desired in his system [4].

3.5Copy Resistance

The credential is strongly copy resistant undemabroperations,
due to the incorporated public/private key pair. haiever the
credential is used, the private key is used to @tbat the user is
the authorized credential holder. Since the peiviaty never

leaves the user's machine, it can't be copied ey sérvice

provider or any third party listening to the excpan (The private
key can of course be copied if the user's macimeinpromised,
but that is beyond the scope of this paper.)

This copy resistance property extends to preversfagdard man-
in-the-middle attacks. For example, consider hguhizhing site
handles conventional one-time passwords or other-fastor
authentication methods. A user logs in to whay theieve is the
legitimate site of their bank, broker, or othervéer provider, but
which is really a phishing site. The user entéebrtuser-name
and password and then, either in the same stepasé&cond step,
enters a one-time password from a sheet of pape&lectronic
device. The phishing site simply passes all therintion from
the user on to the site being spoofed, and rettiragesponses
from the legitimate site to the user. After themsas successfully
logged into the legitimate site, through the phighsite, then the
phishing site is logged in as the user and canoparfvhatever
actions it wants.

The standard protection against this type of mathémiddle
attack is the use of server-side certificates B8L/TLS. When
the user initiates a secure connection to a semwiogider, the
service provider replies with a PKI certificate.heTuser's client
(web browser) usually handles checking the validity the
certificate automatically, interrupting the userlyorwhen a
problem is detected and simply showing a non-inteugdicator
when the secure connection is setup without proflehishing
sites have used a variety of techniques to getnakr@erver-side
certificates, including simply not using SSL/TLSaking the
browser look like it is using SSL/TLS when it is thand
obtaining valid certificates for different domainshich can be
mistaken for the legitimate domain by an unwaryrusdll of
these tricks are possible because of the discorbeteteen the
authentication system (SSL/TLS), and the thing dein
authenticated (the service provider). The cedifis authenticate
the domains used, instead of the actual servicagers.

In contrast to the server-side certificates, oedentialing scheme
intimately ties the authentication system (the gé¥public key
pair and the certificate as a whole) to what is)\geiuthenticated
(the credential as a whole). Consider again thshpig site, but
with the credential in place of the user-name, wass, and one-
time password. When the user connects to the ipigigite, the

phishing site can relay requests to the legitinsaterice provider
and replies back to the user as before. Howeusenvthe service
provider sets up a secure connection, it will uke user's
certificate to setup the session. The phishirgain substitute its
own certificate, but then it is no longer impersima the user.

Alternatively, the phishing site can pass on ther'sscertificate,

but then the phishing site loses control of thesises The service
provider can setup an authenticated tunnel to see, 50 that the
phishing site can no longer modify the traffic with being

detected.

4. SECURITY

In this section we discuss some potential attacksinat
implementations and then provide a formal analysisthe
underlying cryptographic construction.

4.1 General Security Discussion
The basic attacks that the credential must reséstaagery, theft,
privacy compromise, man-in-the-middle, and collasio

Forgery — a malicious user should not be able to forgealad v
credential containing invalid claims.

Theft — the credential should be resistant to theft ustendard
usage.

Privacy compromise — an attacker should not be able to learn
more about the user of a credential than the ubepses to
reveal.

Man-in-the-middle — a user should not have to worry excessively

about hostile service providers.

Collusion — two or more users working together should not be

able to make a claim that no single user in theigroan make
alone.

During the design process, several specific attagesnst earlier
versions of our system were discovered. They deldictionary
attacks against neighbor nodes, combined replayim#me-

middle, hidden subtrees, and the broken hash attack

Dictionary attacks against neighbor nodes come fitmarfact that
when a credential is used, the hash values of essetl claims
must be provided. Assuming a secure hash fundsiarsed, an
attacker cannot determine the value of the unretbataim via
cryptanalytic attack. However, since most claimes likely to be
in a standard form, a dictionary attack shouldrofte successful.
We protect against this type of attack by paddhey dlaims with
random or pseudo-random data.

A combined replay/man-in-the-middle attack may besgible
when the verification that a user holds the privkéy for a
credential is completely unrelated to the showihghe tree for
the credential. In this situation, an attack canfgrm a replay
attack against the showing of the tree, and themaa-in-the-
middle attack against the user proving possessiaheoprivate
key. While this attack either does not apply oruido be
meaningless to many uses of the credential, itilisaspossible
attack. We protect against this type of attackdguiring that the
verification of the private key be linked to theesific claims
being shown.

To maximize the efficiency of showing a credentied, would like
to minimize the number of slow, public-key operasgerformed.
The best that we can do is to have only a singhtificate
verification and a single public/private key verétion, regardless
of the number of claims and how many different sedgs the
claims may be in. As described previously, an fidgmprovider
will check the certificates for all subtrees withithe tree.
Therefore, when the credential is shown, the semprovider does
not need to recheck those certificates, as londgt asists the
higher level CA. However, consider the case oésted subtree.
An identity provider shouldn’t be able to see thHaims in
subtrees, due to privacy requirements. But thignmeethat a
subtree can hide another subtree. In particulsmptree issued by
a bad (but untrusted) identity provider could hidesubtree
apparently issued by a trusted identity providet, in actuality
was forged and has a bad signature. This couldr&eented by
several different protocol changes. The mostiefiicof these is
by preventing the inclusion of a hidden subtre¢him first place.
Our current recommendation is simply to ban nestedtrees
altogether, and have the service providers enfatecredentials
which have nested subtrees are rejected.

An alternative solution to the hidden subtree peablallows

nested subtrees, but prevents them from being hiddés

described previously, the final bit of the haslsés or cleared to
indicate an inner node or leaf node, respectivalyhen a user
wishes for a subtree to be present in a credeittialentire tree
down to the leaf nodes must be presented to thatiige
provider/CA. The claims of the subtrees remaivaig. As the
node type is evident from its hash value, subtremsnot be
hidden during this process. Service providers muadte sure this
standard is followed by verifying that no inner rechave hash
values appropriate to leaf nodes. In our protatyfpis is trivially

accomplished by having different methods calle¢dampute the
hash value, depending on the node type. Comparedut

recommended method, this solution to the hiddetrsealproblem
(trivially) increases the computation and commutidces cost of
issuing a credential.

Another structural attack that was encounterednjgémentation
specific. In our prototype implementation, plain.589

certificates are used. X.509 certificates aregiexi to match a
directory entry for a particular subject, and theiucture is fairly
rigid around that purpose. Therefore, our impletagon didn’t

specify any extra details about the hash tree - sscthe hash
algorithm used — in the certificate itself, butteed stored that
information with the tree. This can lead to araektif a hash
algorithm trusted for use in creating the treeriskbn. Given the
right conditions, an attack could create a treegighe broken
algorithm, which could then collide against thetrbash stored in
a valid certificate, even if the valid certificate@s for a tree using
a different (and hopefully more secure) hash algori We

consider this attack to be fairly minor, becauseeiuires a
primitive of the system to be broken badly — inerdo find a

collision from one hash function to another shoaftectively

require a preimage attack, and not a simple colfiisiAs version
3 of X.509 certificates allows arbitrary extensipriee hash
algorithm can be specified in the certificate, aayw

4.2 Formal Analysis of Security

We provide a rigorous analysis of our credentiatay. We first
formally define the new notions ahforgeability and privacy for

a credential system and show that our system achieves these under
standard cryptographic assumptions.

Unforgeability states that a user cannot convince a service
provider that a set of claims is true unless tholséms were
actually approved by an identity provider. We falize this in a
strong way: we allow adversaries to adaptively obtan
unbounded polynomial number of credentials on eétslaims,
and then require that the adversary can not generaredential
on a set that was not contained in one of the val@tentials.
Furthermore, the adversary may request that criedleéntes be
combined. The adversary is also considered to hawveif it can
fool a service provider into accepting a valid lafrom one
identity provider as a claim from another idenpitypvider which
did not approve the claim. For simplicity, we azal the cases
where the claim tree contains no subtrees or iposed entirely
of subtrees. The analysis can easily be exteral#dtketcase where
claims are mixed with subtrees.

Privacy states that no partial information about unrewalaims

is leaked. We will allow adversaries to adaptivaiptain

credentials and then submit two sets of “challeng&ims of

equal size. One of the challenge claim sets iscssd at random
and then a credential is generated on that setetnched to the
adversary. The adversary can ask that parts ofcttaienge
credential be revealed before outputting a guedt.course, we
must restrict the adversary to revealing only ctamn which the
sets match (otherwise distinguishing is trivial).

We leverage two properties in our analysis that eweiot
considered in the redactable signature schemehofsdm, et al.,
which used a similar technique of constructing aliéetree and
then signing the root [15].

First, we consider the privacy of unrevealed claimmgotion that
did not apply to the context of redactable sigregurlf we
translate Johnson, et al.’s terminology to our erntit was
assumed that the adversénew all of the claims in a given tree,
and after the user revealed some claims, the aatyergould
attempt to convince an identity provider that sowie the
remaining unrevealed claims were in the tree. Fkeurity
theorem given by Johnson, et al., stated that dveraary could
not succeed, despite knowing all of the claims. r Fo
unforgeability, we need only a weaker version @ gecurity that
prevents an adversary from inserting new claims, fan privacy
we must defend against adversaries who do not lalbwf the
user's claims and wish to learn something aboututirevealed
claims.

Second, combining trees did not apply in their emhtand was
not considered. For this work, combining treesvadl us to save
the computation involved in verifying many signasiif the key
used to sign the root node is trusted.

In the following definitions, we treat a credentigistem as a pair
of algorithms (KeyGen, SignCred). KeyGen takesirgait a
security parameter and outputs a unique ID for idhentity
provider and a public/secret key pair to be usegeinerating and
verifying credentials. SignCred takes as input identity
provider's secret key and a set of claims, andutsitp credential

on the set of claims. Each claim is either anteaty string s or a
tuple(id, s,0) , where id is an identity provider’s unique ID,ss i
an arbitrary string, andr is a signature.
claim corresponds to a request to combine a subtitheroot s
from the identity provider with unique ID id, and is the
signature on s.

For the following definition we define to two orasl| CreatelDP
and RetrieveCred. CreatelDP runs KeyGen and retinanid and
public key, and RetrieveCred takes as input a clsémnand an
identity provider's unique ID and runs SignCred hwithe

corresponding secret key, and then returns theeotid.

Definition 1. (Unforgeability) Let (KeyGen, SignCred) be a
credential system. Then a probabilistic, poly-tiradversary

aCreatelDPRetrieveCred i aiq 1o forge a credential if it outputs a
tuple (ka,aD,{c*i},{n*i}) , where ka is a public key output by
GenlDP, sUis a valid signature unde ka, {c*i} is a set of
claims not signed by their respective identity pdevs, anc{n*i}
is a valid set of intermediate nodes for revealing claims in a

hash tree corresponding o

Definition 2. (Privacy) Let (KeyGen, SignCred) be a credential

system, let Chal be an oracle that when given taioncsets and a
identity provider's ID, chooses one of the setgamdom and
generates a credential on that set, and let Réeeah oracle that
takes as input a claim set and reveals those cl@gRaseal may
only be called after Chal has been called). Theradversary

ACreatelDPKeyGenChal Reveal o saiq to violate the privacy of the
credential system if it guesses the set chosen bgl @ith
probability non-negligibly greater than %.

THEOREM 1. If H is a collision resistant hash function and the
underlying signature scheme is existentially unforgeable, then the
scheme described above is unforgeable except with negligible
probability.

PROOF SKETCH Above we assumed that a tree is valid only if

all of its claims are contained in subtrees orahe of its claims
are in subtrees. We will deal with these two casgmrately.

Case 1. A outputs no subtree claims. Here o must be a
signature output by the underlying signature schenger a key
output by CreatelDP, because otherwAseould be used to break
the underlying signature scheme. Moreover, theeaaévealed
by A must be a subtree of the tree from that queryhe@tiseA
has found a collision in the hash function: eithetree node's
input was changed, or if an internal node was @sed leaf, then
the appended bit is different, forcing a collision.

Case 2: A outputs a tree containing subtrees. Here again the
signature at the root provided By must have been output by
SignCred. A must reveal the intermediate nodes leading updo t
root, and since every claim is contained in a &ftA must
reveal a preimage of the trinary node (the rodhefsubtree). By

the collision resistance of A must reveal the same public key as

part of the preimage of the trinary node. By thms reasoning,
the revealed tree must be contained in the hongstigrated tree,
so the claims must have been signed before andnttehing

The second type of

trinary node preimage guarantees that the clainunder the
original identity provider. This completes the@gpf sketch.

We note that the random padding is not neededrffargeability,
but it is necessary for privacy, as discussed below

Next we argue that the scheme does not leak infismabout
unrevealed claims. Below we will need that thehhasiction is a
pseudorandom function when the random padding is viewed as a
key.

THEOREM 2. If Hk(x)= H(k,x) is a pseudorandom function

(keyed with the padding k), then the scheme described above is
private.

PROOF SKETCH Consider an adversafyattempting to violate
the privacy of the credential system, as definedvab A will
obtain credentials on sets until it outputs two lieimge sets,
which define a symmetric difference of claims whichannot ask
to be revealed.

We define a sequence of “hybrid” versions of thengalayed by
A, where in each hybrid we hash one more claiménsgmmetric
difference with an independent random function eadt of
withH, . SinceH, is a pseudorandom function that is only

queried once for each randomly chosenAkcannot detect the
difference between adjacent hybrids. Thercannot detect the
difference between the extreme hybrids, where e#lielaims in
the symmetric difference are hashed wity, or all are

independent random values. But in the latter dhasedistribution
seen byA is the same no matter which of the two challerginc
sets is chosen, meaning thathas advantage O in that hybrid.
ThusA has negligible advantage in distinguishing the tlkgm
sets, completing the proof sketch.

5. PERFORMANCE

As per its conception as a practical system, perwdioce has
always been a consideration in the design of oedemtial. Our
design focuses on conventional operations (onetveanes) and
minimizes the number of asymmetric/public key ofierss. In

general benchmarking of comparable hash functishe SHA

family) versus public key algorithms (RSA and DSAdpne using
both OpenSSL and the default Sun Java cryptograpbyider,

the hash functions were more than two orders ofnihade faster
than the public key algorithms. This allows ousteyn to be
much faster than the digital credential schemeBiands and
Camenisch, et al., which require many more of thegeensive
public key operations.

The actual implementation of the credential systerof course
more complicated than the primitive operations aloiBased on
our proof of concept implementation, Table 1 shdingng for

the whole operations of verifying a hash tree vergerifying a
public key certificate (not including verifying theser’s private
key). The hash tree used contains 2048 claimghdrfirst case,
all but a single claim is masked, leading to bottveay fast
execution time (a little over a millisecond) andiexy small file
size on disk (just a few hundred bytes). In theosd case, all
2048 claims are present, requiring 10 times as tongerify. (The
time difference is not greater, because the chgchlgorithm is
very general, performing the same setup for checkifull tree as
a tree with only a single claim). The tree fileg the full 2048

claims is about 31 kilobytes, but most of that KB is taken up
by the claims themselves plus a 32 bit length ffeldeach claim.
The tree sizes do not include separate random paddr each
claim.

To see the performance advantage of our methodsidema
system where a separate certificate is provideedoh claim. In
the situation of checking 2048 claims, such a syswuld take
about 7.5 seconds just to verify the certificat€ur system can
perform the same verification in less than 16 s®tionds. As
another example, using Brands’ credential @(n) in

exponentiations with respect to the number of caif].

Showing 2048 claims would require more
exponentiations. At a conservative 0.6 millisecongder

exponentiation, showing this credential would takeut a second
and a quarter — more than 80 times slower thansgstem. Of
course, as mentioned earlier, Brands’ credentitde provide
stronger properties than we require, which necassit their
higher complexity.

Tests were performed on an Intel Core 2 Duo E6&6Ming at
2.4 GHz.

Operation Time (p-seconds) File size (bytes)

Verify Tree (SHA-256)

1 claim of 2048 1129 43

All 2048 claims 11789 3168
Verify Certificate

RSA 1536 bit 3694 107

Table 1. Time and space efficiency of hash tree @wertificate.

6. CONCLUSION

Privacy is important both as a protective princigled as a
security measure. Identity theft is a seriousaittspread crime.
The Federal Trade Commission reports that over ateuof a
million identity theft complaints were received 2005, in
addition to over 430,000 other fraud complaintstetnet-related
complaints accounted for almost half of those [IRrotecting
personal information is vital to reducing identtheft. Limiting
information disclosure does not require that aceede service
providers be completely anonymized. A user mayeaggdly
present the same credential or service providesifipelaims to a
service provider. This could facilitate many us$edpplications
such as user-controlled services for monitoringgasaf their
credentials. In addition, for security sensitiyepkcations and
with appropriate safeguards in place, accumulateser u
information could be sent to the identity providecs enable
auditing of credential use.

7. ACKNOWLEDGMENTS

The authors wish to thank Nortel Networks and ttetes of
Georgia for their support, Alexandra Boldyreva fbelpful
discussions, and Ralph Merkle for inspiration.

than 2048

~N

8. REFERENCES

[1] Consumer Fraud and Identity Theft Complaint &dtederal
Trade Commission, 2006.

[2] Bayer, D., Haber, S. and Stornetta, W.S., "loyimmg the
Efficiency and Reliability of Digital Time-Stampifg in
Sequences 1I: Methods in Communication, Security, and
Computer Science, (1993), Springer-Verlag, 329-334.

[3] Brands, S. Credentica - U-Prove SDK, Credeniica, 2007.

[4] Brands, SRethinking Public Key Infrastructures and Digital
Certificates; Building in Privacy. MIT Press, Cambridge, MA,
2000.

[5] Brands, S., Demuynck, L. and Decker, B.D. A d®ical
System for Globally Revoking the Unlinkable Pseudos of
Unknown UserqAccepted to) 12th Australasian Conference
on Information Security and Privacy, Townsuville,
Queensland, Australia, 2007.

[6] Camenisch, J. and Herreweghen, E.V. Design and
implementation of the idemix anonymous credentiatesm
Proceedings of the 9th ACM conference on Computer and
communications security, ACM Press, Washington, DC, USA,

2002.

[7] Camenisch, J., Hohenberger, S. and Lysyanskay@ompact
E-CashCryptology ePrint Archive, 2005.

[8] Camenisch, J. and Lysyanskaya, A. An Effici@ystem for
Non-transferable Anonymous Credentials with Optiona
Anonymity Revocation Proceedings of the International
Conference on the Theory and Application of Cryptographic
Techniques: Advancesin Cryptology, Springer-Verlag, 2001.

[9] Cameron, K. The Laws of IdentitWlicrosoft \Web Services
Technical Articles, 2005.

[10] Cates, J. Robust and Efficient Data Managenfent a
Distributed Hash Table, Massachusetts Institute
Technology, 2003.

of

[11] Chaum, D. Security without identification: fisaction
systems to make big brother obsol€€emmunications of the
ACM, 28 (10).

[12] Chaum, D. and Evertse, J.-H., A secure and/apyi-
protecting protocol for transmitting personal infation
between organizations. idvances in cryptology, (Santa
Barbara, California, 1987), Springer-Verlag, 11§16

[13] Goldreich, O., Goldwasser, S. and Micali, SovH to
construct random functiond. ACM, 33 (4). 792-807.

[14] Hardt, D. Identity 2.0, OSCON 2005, 2005.

[15] Johnson, R., Molnar, D., Song, D.X. and Wagier Homo-
morphic sighature schemes.Tiopics in Cryptology -- CTRSA
2002, (Berlin, Germany, 2002), Springer-Verlag, 244-262

[16] Merkle, R., A Certified Digital Signature. iAdvances in
Cryptography, (Santa Barbara, California, United States,
1989), Springer-Verlag New York, Inc., 218 - 238.

[17] Microsoft. Microsoft's Vision for an Identitietasystem,
2005.

