
Minimum Information Disclosure with Efficiently Verifiable
Credentials

David Bauer
Georgia Institute of Technology

777 Atlantic Drive NW
Atlanta, GA 30332-0250

gte810u@mail.gatech.edu

Douglas M. Blough
Georgia Institute of Technology

KACB, Room 3356
Atlanta, GA 30332-0765

doug.blough@ece.gatech.edu

David Cash
Georgia Institute of Technology

801 Atlantic Drive
Atlanta, GA 30332-0280
cdc@cc.gatech.edu

ABSTRACT
Public-key based certificates provide a standard way to prove
one's identity, as certified by some certificate authority (CA).
However, standard certificates provide a binary identification:
either the whole identity of the subject is known, or nothing is
known. We propose using a Merkle hash tree structure, whereby
it is possible for a single certificate to certify many separate claims
or attributes, each of which may be proved independently, without
revealing the others. Additionally, we demonstrate how trees from
multiple sources can be combined together by modifying the tree
structure slightly. This allows claims by different authorities, such
as an employer or professional organization, to be combined
under a single certificate, without the CA needing to know (let
alone verify) all of the claims. In addition to describing the hash
tree structure and protocols for constructing and verifying our
proposed credential, we formally prove that it provides
unforgeability and privacy and we present initial performance
results demonstrating its efficiency.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Authentication

General Terms
Algorithms, Management, Performance, Design, Security,
Verification.

Keywords
Identity management, identity assertion, credential, hash-tree,
Merkle tree, PKI, privacy

1. INTRODUCTION
Personal information is increasingly used to establish identity and
authorize transactions in the digital world. At the same time,
identity theft and fraud, based on unauthorized disclosure and
misuse of personal information, are rampant [14], and individuals
are increasingly concerned about providing personal information
to every digital entity with which they establish a relationship.
The research described in this paper is based on several key
principles of identity management:

� first and foremost, users should have the maximum
control possible over what personal information of
theirs is disclosed in any given on-line interaction,

� next, more reliance can be placed on personal
information that is verified by trusted third parties than
in self-reported information, and

� last, if verified personal information is to be used,
mechanisms to prevent that information from being
copied and misused by unauthorized parties are
essential.

We assume an architecture in which there are identity providers
that verify users’ personal information and supply credentials that
the users can give to service providers [17]. Credentials are a
common mechanism for verifying personal information in
everyday life. Most people carry multiple physical credentials
with them, from drivers’ licenses to insurance cards to credit
cards. A credential describes some set of attributes about the
holder. For the obvious example, a driver’s license states that the
holder is licensed to drive a vehicle in the licensing state.
However, due to drivers’ licenses being all but universal, they are
used as a general credential. As such, driver’s licenses often
include unnecessary information, such as the holder's date of
birth, address, height, organ-donor status, and social-security
number. Electronic credentials can be simple, like a user-name
and password, or more complex, like a public key infrastructure
(PKI) certificate. A PKI certificate is an electronic document that
holds an identity and a public key, and that is signed by a
certificate authority (called the issuer). The user holds the
associated private key to prove that they are the legitimate holder
of the certificate. The user-name and password combination is the
most widely used scheme, because of its simplicity. However,
this scheme also provides no direct information about the user. A
user-name must be attached to a previously made account, and
some other form of credential must be used to tie an identity to the
account. Such accounts are very seldom shared between different
domains, leading users to accumulate many different accounts,
often with different user-names and passwords. PKI certificates
for users are less common, but can solve the problem of needing
to keep track of many different user-names and passwords.

Minimum information disclosure in any given interaction is
desirable from a user’s perspective, and may even be necessary for
a given technology to be widely adopted[9]. Clearly, if a user
wants to release the minimum amount of personal information on
a given interaction, this rules out a single credential approach, in
which each user maintains one credential containing all of their
personal information and uses that credential for every interaction.
As in [9], we say that a user makes a claim about herself when she
gives information about one or more personal attributes to a
digital entity. Due to the wide variety of personal information that

is used in digital interactions, the number of different possible
claims is extremely large. The problem to be solved is, therefore,
to provide an efficient and reliable mechanism that allows users to
assert arbitrarily many (or at least a large number of) verifiable
claims over a sequence of interactions with different digital
entities.

As an example of minimum information disclosure, consider the
problem of verifying that a user is at least 18 years of age.
Clearly, verifying the user’s date of birth is sufficient but not
necessary, and would reveal a very sensitive piece of personal
information that could assist an identity thief in masquerading as
that user. We refer to the claim that a user “is at least 18 years of
age” as a micro-claim, with the (macro-)claim in this case being
“the user’s date of birth is xx/xx/xxxx”. Many different micro-
claims can be derived from a single claim, e.g. the user is “at least
18”, “at least 21”, “at least 35”, “at least 65”, etc. One possible
approach could be to maintain credentials for a relatively small
number of claims and use those to dynamically generate micro-
claim credentials as needed for a given interaction. However,
securely generating a large variety of micro-claims from a given
set of claims is an open problem, not to mention how the micro-
claims can be verified without revealing the information in the
verifiable claims from which they are derived.

Instead, we adopt an approach where a large set of micro-claims is
enumerated statically, and updated dynamically as needed.
Instead of generating and maintaining a single credential per
micro-claim, which is extremely inefficient from the standpoints
of storage space, bandwidth, and computation time, we propose a
method wherein a single credential can be maintained that allows
the user to dynamically specify an arbitrary subset of micro-claims
for a given interaction without revealing the other micro-claims.
We also include in this credential, and the protocols that use it,
mechanisms to make it very difficult for an attacker to make a
copy of the credential and use it to masquerade as the user. In
addition to allowing the user to update her set of microclaims as
certified by one authority, the credential allows information that is
verified by different identity providers to be combined in one
structure. This allows users to spread out their personal
information across different identity providers, thereby lowering
their risk when one of their identity providers experiences a
security breach. The details of this new credential mechanism and
its associated protocols are provided in the remainder of this
paper.

Defining the level of privacy needed by users is a subtle and hotly
debated issue . One attempt to quantify privacy is the idea of
linkability. Two things – events, transactions, credentials, claims,
or users – are linkable if they are known to have an underlying
connection. It is necessary for some things to be linked; for
example, if a claim is not linked to any user or evidence, it is
meaningless. But more often the focus is on unlinkability – when
things can’t be recognized or shown to be connected, even when
they are. For example, consider buying an item with cash versus
buying an item with a credit card. When using cash, there is
usually no record of who bought the item. If several items are
bought in separate transactions, it usually cannot be determined
that they were bought by the same person. When using a credit
card, there is a clear record of who bought the item. Items
purchased at different times and even at different places may be
identified as having been bought by the same person.

Additionally, the real name/identity of that person is known and
usually printed right on the receipt. This is a clear invasion of
privacy, and yet credit cards are still extremely popular. Credit
cards are popular because they are convenient, and this invasion
of privacy is accepted because it is necessary to reduce fraud and
abuse in the system.

Our goal here is to design systems that preserve the user’s privacy
as much as possible, while remaining auditable from the point of
the of the service providers. That is, a user should have control
over which claims are presented, but repeated use of the user’s
credential should be linkable. This concession to social
practicality gives a strong engineering advantage compared to the
other credential systems discussed in the related work section: we
are trying to solve a somewhat easier problem. As such, we can
focus on making the system faster and more efficient. While
complete anonymity, e.g. in the form of unlinkable transactions, is
a noble goal, it is our belief that many types of service providers
will not accept it as a practical solution. Our approach, by
contrast, tries to improve on the current practice by allowing users
to minimize the amount of personal information they entrust to
service providers while recognizing that release of some personal
information may be inevitable.

2. BACKGROUND
2.1 Expected Scenario
We consider a scenario with three types of parties: identity
providers, service providers, and users. An identity provider is an
entity in a position to make authoritative statements about a user.
An identity provider can be a third party certificate authority, a
government office, an employer, a professional organization, etc.
A service provider is an entity that wants or needs to check the
identity of users. A service provider can be any organization,
government office, or individual with an on-line presence. The
user is the holder of the credential, and is always an individual
person in our scenario.

We acknowledge that it is notoriously difficult to deploy a usable
and secure PKI to bind keys to users, but it seems necessary
without an online third party to attest to a user’s claims. The
functionality provided by verified claims will hopefully serve as
intuitive and strong motivation for users.

2.2 Requirements
The design of our electronic credential was driven by several
requirements.

1. The credential must not simply hold a single
identifier. Identity is a complex matter, and often a
name or serial number is not what is important in one's
identity.

2. The user of the credential -- the one whose identity is
being proven -- must have as much control over the
process as possible. Considering the first requirement,
the user should be able to select which attributes of their
identity are released to a particular entity.

3. The credential must have some form of copy
protection. Using the credential should not place it at
risk of being copied.

4. Neither the user nor the service provider should have
to contact the identity provider to verify the credential.

5. The credential must be memory and computationally
efficient to store and use.

2.3 Related Work
Digital credentials have been proposed before in various forms.
More in depth comparisons between our system and these systems
can be found later, in Section 3.4.

David Chaum is credited with proposing the first digital credential
system[11]. Chaum's system is a pseudonym system, whereby a
user can present a different pseudonym to each service provider.
The pseudonyms are linked cryptographically such that even
colluding service providers cannot link together two pseudonyms
belonging to a user, but the user can use a credential assigned to
one pseudonym with another pseudonym. Chaum's original
proposal did not describe how to implement such a system. A
method for implementing the system was later described by
Chaum and Evertse based on the RSA crypto-system and a semi-
trusted third party [12].

Stefan Brands developed a different form of digital credential, in
which a user has a single public credential, but that credential is
pseudo-anonymous, even to the issuer [4]. The credential holds
attributes that the user can selectively prove to a service provider.
Repeated showings of the same credential are linkable, both if
shown to the same or different service providers. However, since
the credential is issued blind by the identity provider, the effect is
that a user has one global pseudonym. The credential can be
reissued easily, allowing the user to change the global
pseudonym, as permitted by the identity provider. Brands
emphasizes that showing a credential is done by zero-knowledge
proof, but that has no impact on the comparisons in this paper.
Credentica’s U-Prove Software Development Kit is based on
Brands’ work [3].

Camenisch, et al., have proposed and implemented yet another
form of digital credential, or more precisely, yet more forms [6-8].
While they describe a system for implementing a Chaum-like
pseudonym system, their system is much more flexible, and can
be used without pseudonyms. While having significantly better
anonymity properties, the algorithms are also significantly slower
than Brands' credentials. IBM’s idemix system is based on
Camenish, et al.’s work [6].

While their aim is very different, the closest design to our
credential system is the redactable signature scheme described by
Johnson et al in their paper on homomorphic signature schemes
[15]. A comparison between our credential and their signature
scheme is given later in Section 3.4.

3. DESIGN
3.1 Merkle Hash Trees
The proposed credential is based on Merkle hash trees [16] and
standard public-key infrastructure (PKI) certificates. A Merkle
hash tree is essentially a binary tree where each internal node
holds the hash of the concatenated values of its two children
nodes. The leaf nodes hold the data of interest. In this way, a
large number of separate data can be tied to a single hash value.
In addition, by storing the internal node values (or a subset
thereof), it is possible to verify that any of the leaf nodes is part of

the tree without revealing any of the other data. Ralph Merkle
first introduced this structure as a way to efficiently handle a large
number of Lamport one-time signatures. It has since been
adapted for uses such as the large-scale time-stamping of
documents [2] and tracking data in peer-to-peer networks [10].

A basic Merkle tree is shown in Figure 1. Figure 2 shows the
same tree with the nodes and claims labeled for easy reference.
Consider verifying claim A in the tree. Starting at the claim and
going up the tree, node 4 contains the hash of the claim. Node 3
contains the hash of the concatenation of nodes 4 and 5. Node 2
contains the hash of the concatenation of nodes 3 and 6. And,
finally, node 1, the root of the tree, contains the hash of the
concatenation of nodes 2 and 9. Therefore, verifying claim A
requires the values of nodes 5, 6, and 9, as shown in Equation 1,
below. A similar verification path can be made for any of the
claims. For example, Equation 2 shows the path for verifying
claim F, which requires the values of nodes 2, 11, and 13. As per
the nature of the binary tree, the number of nodes and hashes
needed for a verification scales with the log of the number of
claims.

3.2 Credential Overview
The credential consists of two parts: a public part and a private
part. The public part of the credential is a certificate. The
certificate holds information about the issuer, the certification
chain for the issuer, the type of certificate, the date range over
which the certificate is valid, the user's public key, and a signature
of the root node of a Merkle hash tree. The certificate should not

Figure 1. Merkle hash tree with leaf nodes holding hashes of claims.

Figure 2. Merkle hash tree with labeled nodes.

in general hold any data about the user directly, even data as
common as a name. As per standard operation, the certificate will
be signed by some certificate authority, which is an identity
provider in this system. The private part of the credential consists
of a private key and a Merkle hash tree whereby all of the leaf
nodes are attributes of, or micro-claims about, the identity of the
user, who is the credential holder. The Merkle tree structure
allows the credential holder to prove any subset of the claims in
the tree, with only the single signature on the certificate.

As an additional improvement, a slight modification to the
structure will allow the use of a single credential containing
claims from a variety of identity providers, without requiring one
identity provider to verify all of the claims. Consider again the
Merkle tree of claims, but with subtrees coming from different
identity providers. For example, one subtree could contain claims
certified by a government registry, while another subtree could
contain claims certified by an employer. In the basic structure,
the identity provider must either see all of the claims or trust the
providers of all of the subtrees that they only contain claims
relevant to their topic. Neither solution is ideal. To provide a
third option, consider adding an optional third branch to some
internal nodes of the full tree. (These nodes correspond to root
nodes of the subtrees.) The third branch contains a certificate for
all of the claims in the subtree rooted in the parent node. When
verifying a claim which is in such a subtree, the form is different -
- three hashes are concatenated in a node instead of two -- so the
verifier knows that this claim is under a different certificate than
the credential as a whole. For example, in Figure 3 the left hand
subtree contains claims certified by the overall identity provider.
The overall identity provider is referred to as the certificate
authority (CA). The right hand subtree contains claims certified
by some other party, which do not have to be verified by the top
level CA. From here on, the term “subtree” is used to refer to a
branch containing nodes from a different identity provider, rooted
in one of these sub-roots.

We would like to identify a node as being a leaf node without
seeing the associated claim. The reason for this is described. This
discrimination is achieved by simply appending a bit to the end of
the hash, either a one if the node is an inner node, or a zero if the
node is a leaf node. For efficiency, our implementation simply
overwrites the least significant bit of the hash value, instead of
appending another bit. This is equivalent to truncating the output
of the hash function used by a single bit (with a negligible
decrease in security), and then appending the indicator bit. In

order to keep the system secure while still only needing to check
the signature on a single certificate, nested subtrees are forbidden.
If a service provider encounters a claim in a nested subtree, it
should reject the credential.

A tree might have no claims outside of subtrees. In this case, the
top level CA is signing that it has verified that the form of tree is
correct, that all certificates for subtrees are valid, and that the user
possess the private key(s) matching the subtree certificates and the
top level certificate. The CA could be fully automated in this
situation, allowing users to easily update their credentials when
subtrees are added or modified.

3.3 Protocols for the Credential
Creating a credential is both conceptually and computationally
easy. In the case where there is a single identity provider for the
credential, there are roughly four steps required:

 1. Agree on a list of claims.

 2. Generate the hash tree for the claims.

 3. Verify that the user possesses the private key.

 4. Produce and sign the public certificate.

First, the user and identity provider agree on a list of claims. The
logistics involved in an identity provider verifying the user claims
may be rather complicated, and are beyond the scope of this
paper. Second, either the user or the identity provider generates
the hash tree for the claims. Random padding must be added to
the claims before they are hashed, as discussed in more detail
later. With a single identity provider, the tree will always be
balanced, bounding the number of interior nodes to the number of
claims. The number of hashes needed to generate the tree is
therefore bounded to twice the number of claims -- generally a
negligible amount of computation time. Third, the identity
provider must verify that the user holds the private key matching
the public key of the credential. The user can reuse an already
generated key pair or generate a new key pair for the credential.
The identity provider does not need to ever know the private key.
Finally, the identity provider creates and signs the public
certificate for the credential.

Random padding must be added to the claims before they are
hashed in order to prevent dictionary attacks against parts of the
tree. The random padding can be generated and stored in a
number of different ways. For example, Johnson, et al. [15],
describe a method credited to Goldreich, Goldwasser, and Micali
[13] that uses a pseudo-random function whose output is twice the
length of its input. A single seed value at the root node is
expanded as per the tree branching structure using the pseudo-
random function. Each node therefore has a pseudo-random value
associated with it that can be used to generate the pseudo-random
values for all of its children nodes. A computationally easier
method is to use a seed value and the claim index with a pseudo-
random function to generate the padding for each claim. Neither
of these methods will work well for our system, unfortunately, due
to the inclusion of different subtrees within a larger tree. In the
most general case, simply storing the random padding for each
claim is probably the easiest solution. The overhead is small, just
10-16 bytes per claim. Alternative approaches are possible, but
all require the user to have a global secret, keep the private keys

Figure 3. Modified Merkle hash tree with subtree.

for all certificates, or store extra private information with each
credential.

Creating a credential with claims from multiple identity providers
is done by integrating credentials as subtrees. One identity
provider will be the final one, referred to as the certificate
authority (CA). The user creates credentials with all of the
identity providers, except for the final one, by the procedure
described above. Then, the user creates a credential with the CA.
For this final credential, the hash trees from the other credentials
are incorporated into the final hash tree. The root nodes for the
incorporated subtrees will have a third branch added, each
containing the certificate from the original identity provider of
that subtree, as shown in Figure 3. (The root hash values in the
subtree certificates will no longer match, but that doesn't matter.)
All subtrees in the credentials being added must be removed from
their trees and added separately to the top level tree. This
prevents nested subtrees. The CA verifies the structure of the tree,
including the top two leaf nodes of each subtree (as they are
needed to calculate the sub-root’s hash), as well as the public part
of the sub-credentials, and the associated public/private key pairs.
In general, the public/private key pairs may be the same as or
different from each other and the top level key pair. All that
matters is that the user holds the corresponding private keys at the
time that the credential is assembled. In a more restricted setting,
the public/private key pair may be required to be the same for all
subtrees. The CA does not need to see the claims from subtrees.

To provide an example of combining credentials, imagine a user,
Alice, who already has a credential containing claims from four
different identity providers. Now, Alice is then issued a credential
from her employer. The two credentials are shown in Figure 4.
Alice’s employee credential already has a number of subtrees,
containing separate credentials from the engineering department,
human resources department, and her own lab. The credential
also has a top level claim of her employee ID. Alice goes to a
certificate authority to create a new credential from these two
credentials. She submits no claims to be verified by the CA and
eight sub-credentials to be included in the final credential – four
of these are from her previous credential, three were embedded in
her employee credential, and the last is the credential claiming her
employee ID. The CA will verify the eight certificates, verify that
Alice possesses the appropriate private key(s), generate a new
tree, and provide Alice with the new certificate.

The protocol for using the credential follows conventional PKI
certificate usage. The user connects to a service provider, either
over a wide or local area network, and requests some service,
sending the public part of the credential. The service provider
requests the appropriate identity attributes from the user. The user

provides the claims that match the requested attributes and the
intermediate node values and path information necessary for the
service provider to verify each of the claims. If any of the claims
are in a subtree certified by a different identity provider, the
accompanying certificates must be included with the set of claims.
The service provider verifies that the claims are in the hash tree
specified (via the root hash) in the certificate part of the
credential. The service provider also verifies the signature on the
certificate part of the credential. In order to verify that the user is
the holder of the credential, the service provider also verifies that
the user possesses the private key which matches the public key
claimed by the credential. This can be done by standard methods,
such as challenge/response or as part of a secret key agreement
operation, as long as the key verification is tied to the specific
claims being asserted by the user. This can be done, for example,
by hashing all of the claims asserted by the user as part of the
challenge field. In addition to the cryptographic verifications, the
service provider must of course confirm that it trusts the identity
providers to assert the claims in the credential. For example, a
claim of an individual’s address asserted by the Bar Association
would be out of place. Similarly, an assertion by the Department
of Motor Vehicles that an individual was a licensed lawyer should
not be trusted.

The procedures for creating and using credentials given herein are
purposely generic. We prefer to constrain the structure and
properties of the credential and leave some flexibility in the
procedures for generating and verifying it. As a proof of concept,
we have developed specific implementations of these procedures,
and initial performance results based on these implementations are
reported in Section 5.

3.4 Comparisons to Related Systems
Johnson, et al., define and construct redactable signatures using a
Merkle hash tree to allow the signature verification of a message
even when parts of the message have been deleted [15]. In their
example, a body of text is signed such that it can be redacted at
some level of granularity (sentence, word, or character making the
most sense). They do not appear to have considered using the
construct in the context of a credential. While both systems share
a core idea – using a Merkle hash tree to hide signed elements –
the two systems have significant differences. Both systems use
slightly different hash functions (constructs) for the leaf and inner
nodes. In their signature scheme, the input to the hash function is
specified to match a certain form, which is important to their
proof of security. In our credential system, the output of the hash
function is specified to match a certain form, which is sufficient
meet the requirements of the security proof, while provided the
property of being able to identity a leaf node from its hash value

Figure 4. Combining a generic credential with an employee credential.

alone. Subtrees of the type used in the credential system are not
used at all in the signature scheme. To the best of our knowledge,
the idea of combining trees by modifying the tree structure as we
do is novel, and introduces extra complications. The three-child
inner nodes (shown in Figure 3) and modified hashing scheme
(discussed in Section 3.2) both result from the idea of combining
subtrees from different identity providers. Combining subtrees
allows claims from many different sources to be in a single
credential, under a single certificate.

Brands mentions in his book the idea of using Merkle hash trees
to store claims, but dismisses it because it does not provide the
properties desired in his system [4].

3.5 Copy Resistance
The credential is strongly copy resistant under normal operations,
due to the incorporated public/private key pair. Whenever the
credential is used, the private key is used to prove that the user is
the authorized credential holder. Since the private key never
leaves the user's machine, it can't be copied by the service
provider or any third party listening to the exchange. (The private
key can of course be copied if the user's machine is compromised,
but that is beyond the scope of this paper.)

This copy resistance property extends to preventing standard man-
in-the-middle attacks. For example, consider how a phishing site
handles conventional one-time passwords or other two-factor
authentication methods. A user logs in to what they believe is the
legitimate site of their bank, broker, or other service provider, but
which is really a phishing site. The user enters their user-name
and password and then, either in the same step or in a second step,
enters a one-time password from a sheet of paper or electronic
device. The phishing site simply passes all the information from
the user on to the site being spoofed, and returns the responses
from the legitimate site to the user. After the user has successfully
logged into the legitimate site, through the phishing site, then the
phishing site is logged in as the user and can perform whatever
actions it wants.

The standard protection against this type of man-in-the-middle
attack is the use of server-side certificates with SSL/TLS. When
the user initiates a secure connection to a service provider, the
service provider replies with a PKI certificate. The user's client
(web browser) usually handles checking the validity of the
certificate automatically, interrupting the user only when a
problem is detected and simply showing a non-intrusive indicator
when the secure connection is setup without problems. Phishing
sites have used a variety of techniques to get around server-side
certificates, including simply not using SSL/TLS, making the
browser look like it is using SSL/TLS when it is not, and
obtaining valid certificates for different domains, which can be
mistaken for the legitimate domain by an unwary user. All of
these tricks are possible because of the disconnect between the
authentication system (SSL/TLS), and the thing being
authenticated (the service provider). The certificates authenticate
the domains used, instead of the actual service providers.

In contrast to the server-side certificates, our credentialing scheme
intimately ties the authentication system (the private/public key
pair and the certificate as a whole) to what is being authenticated
(the credential as a whole). Consider again the phishing site, but
with the credential in place of the user-name, password, and one-
time password. When the user connects to the phishing site, the

phishing site can relay requests to the legitimate service provider
and replies back to the user as before. However, when the service
provider sets up a secure connection, it will use the user's
certificate to setup the session. The phishing site can substitute its
own certificate, but then it is no longer impersonating the user.
Alternatively, the phishing site can pass on the user's certificate,
but then the phishing site loses control of the session. The service
provider can setup an authenticated tunnel to the user, so that the
phishing site can no longer modify the traffic without being
detected.

4. SECURITY
In this section we discuss some potential attacks against
implementations and then provide a formal analysis of the
underlying cryptographic construction.

4.1 General Security Discussion
The basic attacks that the credential must resist are forgery, theft,
privacy compromise, man-in-the-middle, and collusion.

Forgery – a malicious user should not be able to forge a valid
credential containing invalid claims.

Theft – the credential should be resistant to theft under standard
usage.

Privacy compromise – an attacker should not be able to learn
more about the user of a credential than the user chooses to
reveal.

Man-in-the-middle – a user should not have to worry excessively
about hostile service providers.

Collusion – two or more users working together should not be
able to make a claim that no single user in the group can make
alone.

During the design process, several specific attacks against earlier
versions of our system were discovered. They include dictionary
attacks against neighbor nodes, combined replay/man-in-the-
middle, hidden subtrees, and the broken hash attack.

Dictionary attacks against neighbor nodes come from the fact that
when a credential is used, the hash values of unreleased claims
must be provided. Assuming a secure hash function is used, an
attacker cannot determine the value of the unreleased claim via
cryptanalytic attack. However, since most claims are likely to be
in a standard form, a dictionary attack should often be successful.
We protect against this type of attack by padding the claims with
random or pseudo-random data.

A combined replay/man-in-the-middle attack may be possible
when the verification that a user holds the private key for a
credential is completely unrelated to the showing of the tree for
the credential. In this situation, an attack can perform a replay
attack against the showing of the tree, and then a man-in-the-
middle attack against the user proving possession of the private
key. While this attack either does not apply or would be
meaningless to many uses of the credential, it is still a possible
attack. We protect against this type of attack by requiring that the
verification of the private key be linked to the specific claims
being shown.

To maximize the efficiency of showing a credential, we would like
to minimize the number of slow, public-key operations performed.
The best that we can do is to have only a single certificate
verification and a single public/private key verification, regardless
of the number of claims and how many different subtrees the
claims may be in. As described previously, an identity provider
will check the certificates for all subtrees within the tree.
Therefore, when the credential is shown, the service provider does
not need to recheck those certificates, as long as it trusts the
higher level CA. However, consider the case of a nested subtree.
An identity provider shouldn’t be able to see the claims in
subtrees, due to privacy requirements. But this means that a
subtree can hide another subtree. In particular, a subtree issued by
a bad (but untrusted) identity provider could hide a subtree
apparently issued by a trusted identity provider, but in actuality
was forged and has a bad signature. This could be prevented by
several different protocol changes. The most efficient of these is
by preventing the inclusion of a hidden subtree in the first place.
Our current recommendation is simply to ban nested subtrees
altogether, and have the service providers ensure that credentials
which have nested subtrees are rejected.

An alternative solution to the hidden subtree problem allows
nested subtrees, but prevents them from being hidden. As
described previously, the final bit of the hash is set or cleared to
indicate an inner node or leaf node, respectively. When a user
wishes for a subtree to be present in a credential, the entire tree
down to the leaf nodes must be presented to the identity
provider/CA. The claims of the subtrees remain private. As the
node type is evident from its hash value, subtrees cannot be
hidden during this process. Service providers must make sure this
standard is followed by verifying that no inner nodes have hash
values appropriate to leaf nodes. In our prototype, this is trivially
accomplished by having different methods called to compute the
hash value, depending on the node type. Compared to our
recommended method, this solution to the hidden subtree problem
(trivially) increases the computation and communications cost of
issuing a credential.

Another structural attack that was encountered is implementation
specific. In our prototype implementation, plain X.509
certificates are used. X.509 certificates are designed to match a
directory entry for a particular subject, and their structure is fairly
rigid around that purpose. Therefore, our implementation didn’t
specify any extra details about the hash tree – such as the hash
algorithm used – in the certificate itself, but instead stored that
information with the tree. This can lead to an attack if a hash
algorithm trusted for use in creating the tree is broken. Given the
right conditions, an attack could create a tree using the broken
algorithm, which could then collide against the root hash stored in
a valid certificate, even if the valid certificate was for a tree using
a different (and hopefully more secure) hash algorithm. We
consider this attack to be fairly minor, because it requires a
primitive of the system to be broken badly – in order to find a
collision from one hash function to another should effectively
require a preimage attack, and not a simple collision. As version
3 of X.509 certificates allows arbitrary extensions, the hash
algorithm can be specified in the certificate, anyway.

4.2 Formal Analysis of Security
We provide a rigorous analysis of our credential system. We first
formally define the new notions of unforgeability and privacy for
a credential system and show that our system achieves these under
standard cryptographic assumptions.

Unforgeability states that a user cannot convince a service
provider that a set of claims is true unless those claims were
actually approved by an identity provider. We formalize this in a
strong way: we allow adversaries to adaptively obtain an
unbounded polynomial number of credentials on sets of claims,
and then require that the adversary can not generate a credential
on a set that was not contained in one of the valid credentials.
Furthermore, the adversary may request that credential trees be
combined. The adversary is also considered to have won if it can
fool a service provider into accepting a valid claim from one
identity provider as a claim from another identity provider which
did not approve the claim. For simplicity, we analyze the cases
where the claim tree contains no subtrees or is composed entirely
of subtrees. The analysis can easily be extended to the case where
claims are mixed with subtrees.

Privacy states that no partial information about unrevealed claims
is leaked. We will allow adversaries to adaptively obtain
credentials and then submit two sets of “challenge” claims of
equal size. One of the challenge claim sets is selected at random
and then a credential is generated on that set and returned to the
adversary. The adversary can ask that parts of the challenge
credential be revealed before outputting a guess. Of course, we
must restrict the adversary to revealing only claims on which the
sets match (otherwise distinguishing is trivial).

We leverage two properties in our analysis that were not
considered in the redactable signature scheme of Johnson, et al.,
which used a similar technique of constructing a Merkle tree and
then signing the root [15].

First, we consider the privacy of unrevealed claims, a notion that
did not apply to the context of redactable signatures. If we
translate Johnson, et al.’s terminology to our context, it was
assumed that the adversary knew all of the claims in a given tree,
and after the user revealed some claims, the adversary would
attempt to convince an identity provider that some of the
remaining unrevealed claims were in the tree. The security
theorem given by Johnson, et al., stated that the adversary could
not succeed, despite knowing all of the claims. For
unforgeability, we need only a weaker version of this security that
prevents an adversary from inserting new claims, and for privacy
we must defend against adversaries who do not know all of the
user's claims and wish to learn something about the unrevealed
claims.

Second, combining trees did not apply in their context and was
not considered. For this work, combining trees allows us to save
the computation involved in verifying many signatures if the key
used to sign the root node is trusted.

In the following definitions, we treat a credential system as a pair
of algorithms (KeyGen, SignCred). KeyGen takes as input a
security parameter and outputs a unique ID for the identity
provider and a public/secret key pair to be used in generating and
verifying credentials. SignCred takes as input an identity
provider's secret key and a set of claims, and outputs a credential

on the set of claims. Each claim is either an arbitrary string s or a
tuple),,(σsid , where id is an identity provider’s unique ID, s is
an arbitrary string, and σ is a signature. The second type of
claim corresponds to a request to combine a subtree with root s
from the identity provider with unique ID id, and σ is the
signature on s.

For the following definition we define to two oracles, CreateIDP
and RetrieveCred. CreateIDP runs KeyGen and returns the id and
public key, and RetrieveCred takes as input a claim set and an
identity provider’s unique ID and runs SignCred with the
corresponding secret key, and then returns the credential.

 Definition 1. (Unforgeability) Let (KeyGen, SignCred) be a
credential system. Then a probabilistic, poly-time adversary

trieveCredCreateIDP,A Re is said to forge a credential if it outputs a

tuple { }{ })(**
ii n,c,σ,pk ∗∗ , where ∗pk is a public key output by

GenIDP, ∗
σ is a valid signature under ∗pk , { }ic* is a set of

claims not signed by their respective identity providers, and { }in*
is a valid set of intermediate nodes for revealing the claims in a

hash tree corresponding to ∗σ .

 Definition 2. (Privacy) Let (KeyGen, SignCred) be a credential
system, let Chal be an oracle that when given two claim sets and a
identity provider's ID, chooses one of the sets at random and
generates a credential on that set, and let Reveal be an oracle that
takes as input a claim set and reveals those claims (Reveal may
only be called after Chal has been called). Then an adversary

RevealChal,KeyGen,CreateIDP,A is said to violate the privacy of the
credential system if it guesses the set chosen by Chal with
probability non-negligibly greater than ½.

 THEOREM 1. If H is a collision resistant hash function and the
underlying signature scheme is existentially unforgeable, then the
scheme described above is unforgeable except with negligible
probability.

 PROOF SKETCH. Above we assumed that a tree is valid only if
all of its claims are contained in subtrees or if none of its claims
are in subtrees. We will deal with these two cases separately.

Case 1: A outputs no subtree claims. Here *σ must be a
signature output by the underlying signature scheme under a key
output by CreateIDP, because otherwise A could be used to break
the underlying signature scheme. Moreover, the nodes revealed
by A must be a subtree of the tree from that query. Otherwise A
has found a collision in the hash function: either a tree node's
input was changed, or if an internal node was used as a leaf, then
the appended bit is different, forcing a collision.

Case 2: A outputs a tree containing subtrees. Here again the
signature at the root provided by A must have been output by
SignCred. A must reveal the intermediate nodes leading up to the
root, and since every claim is contained in a subtree, A must
reveal a preimage of the trinary node (the root of the subtree). By
the collision resistance of H, A must reveal the same public key as
part of the preimage of the trinary node. By the same reasoning,
the revealed tree must be contained in the honestly generated tree,
so the claims must have been signed before and the matching

trinary node preimage guarantees that the claim is under the
original identity provider. This completes the proof sketch.

We note that the random padding is not needed for unforgeability,
but it is necessary for privacy, as discussed below.

Next we argue that the scheme does not leak information about
unrevealed claims. Below we will need that the hash function is a
pseudorandom function when the random padding is viewed as a
key.

 THEOREM 2. If () ()xk,H=xH k is a pseudorandom function

(keyed with the padding k), then the scheme described above is
private.

 PROOF SKETCH. Consider an adversary A attempting to violate
the privacy of the credential system, as defined above. A will
obtain credentials on sets until it outputs two challenge sets,
which define a symmetric difference of claims which it cannot ask
to be revealed.

We define a sequence of “hybrid” versions of the game played by
A, where in each hybrid we hash one more claim in the symmetric
difference with an independent random function instead of
with kH . Since kH is a pseudorandom function that is only

queried once for each randomly chosen k, A cannot detect the
difference between adjacent hybrids. Then A cannot detect the
difference between the extreme hybrids, where either all claims in
the symmetric difference are hashed with kH or all are

independent random values. But in the latter case, the distribution
seen by A is the same no matter which of the two challenge claim
sets is chosen, meaning that A has advantage 0 in that hybrid.
Thus A has negligible advantage in distinguishing the two claim
sets, completing the proof sketch.

5. PERFORMANCE
As per its conception as a practical system, performance has
always been a consideration in the design of our credential. Our
design focuses on conventional operations (one-way hashes) and
minimizes the number of asymmetric/public key operations. In
general benchmarking of comparable hash functions (the SHA
family) versus public key algorithms (RSA and DSA), done using
both OpenSSL and the default Sun Java cryptography provider,
the hash functions were more than two orders of magnitude faster
than the public key algorithms. This allows our system to be
much faster than the digital credential schemes by Brands and
Camenisch, et al., which require many more of these expensive
public key operations.

The actual implementation of the credential system is of course
more complicated than the primitive operations alone. Based on
our proof of concept implementation, Table 1 shows timing for
the whole operations of verifying a hash tree versus verifying a
public key certificate (not including verifying the user’s private
key). The hash tree used contains 2048 claims. In the first case,
all but a single claim is masked, leading to both a very fast
execution time (a little over a millisecond) and a very small file
size on disk (just a few hundred bytes). In the second case, all
2048 claims are present, requiring 10 times as long to verify. (The
time difference is not greater, because the checking algorithm is
very general, performing the same setup for checking a full tree as
a tree with only a single claim). The tree file for the full 2048

claims is about 31 kilobytes, but most of that (25 kB) is taken up
by the claims themselves plus a 32 bit length field for each claim.
The tree sizes do not include separate random padding for each
claim.

To see the performance advantage of our method, consider a
system where a separate certificate is provided for each claim. In
the situation of checking 2048 claims, such a system would take
about 7.5 seconds just to verify the certificates. Our system can
perform the same verification in less than 16 milliseconds. As
another example, using Brands’ credential is O(n) in
exponentiations with respect to the number of claims [5].
Showing 2048 claims would require more than 2048
exponentiations. At a conservative 0.6 milliseconds per
exponentiation, showing this credential would take about a second
and a quarter – more than 80 times slower than our system. Of
course, as mentioned earlier, Brands’ credentials also provide
stronger properties than we require, which necessitates their
higher complexity.

Tests were performed on an Intel Core 2 Duo E6600 running at
2.4 GHz.

Operation Time (µ-seconds) File size (bytes)

Verify Tree (SHA-256)

 1 claim of 2048 1129 438

 All 2048 claims 11789 31687

Verify Certificate

 RSA 1536 bit 3694 1074

Table 1. Time and space efficiency of hash tree and certificate.

6. CONCLUSION
Privacy is important both as a protective principle and as a
security measure. Identity theft is a serious and widespread crime.
The Federal Trade Commission reports that over a quarter of a
million identity theft complaints were received in 2005, in
addition to over 430,000 other fraud complaints. Internet-related
complaints accounted for almost half of those [1]. Protecting
personal information is vital to reducing identity theft. Limiting
information disclosure does not require that accesses to service
providers be completely anonymized. A user may repeatedly
present the same credential or service provider specific claims to a
service provider. This could facilitate many useful applications
such as user-controlled services for monitoring usage of their
credentials. In addition, for security sensitive applications and
with appropriate safeguards in place, accumulated user
information could be sent to the identity providers to enable
auditing of credential use.

7. ACKNOWLEDGMENTS
The authors wish to thank Nortel Networks and the state of
Georgia for their support, Alexandra Boldyreva for helpful
discussions, and Ralph Merkle for inspiration.

8. REFERENCES
[1] Consumer Fraud and Identity Theft Complaint Data, Federal

Trade Commission, 2006.

[2] Bayer, D., Haber, S. and Stornetta, W.S., "Improving the
Efficiency and Reliability of Digital Time-Stamping". in
Sequences II: Methods in Communication, Security, and
Computer Science, (1993), Springer-Verlag, 329-334.

[3] Brands, S. Credentica - U-Prove SDK, Credentica Inc., 2007.

[4] Brands, S. Rethinking Public Key Infrastructures and Digital
Certificates; Building in Privacy. MIT Press, Cambridge, MA,
2000.

[5] Brands, S., Demuynck, L. and Decker, B.D. A Practical
System for Globally Revoking the Unlinkable Pseudonyms of
Unknown Users (Accepted to) 12th Australasian Conference
on Information Security and Privacy, Townsville,
Queensland, Australia, 2007.

[6] Camenisch, J. and Herreweghen, E.V. Design and
implementation of the idemix anonymous credential system
Proceedings of the 9th ACM conference on Computer and
communications security, ACM Press, Washington, DC, USA,
2002.

[7] Camenisch, J., Hohenberger, S. and Lysyanskaya, A. Compact
E-Cash Cryptology ePrint Archive, 2005.

[8] Camenisch, J. and Lysyanskaya, A. An Efficient System for
Non-transferable Anonymous Credentials with Optional
Anonymity Revocation Proceedings of the International
Conference on the Theory and Application of Cryptographic
Techniques: Advances in Cryptology, Springer-Verlag, 2001.

[9] Cameron, K. The Laws of Identity Microsoft Web Services
Technical Articles, 2005.

[10] Cates, J. Robust and Efficient Data Management for a
Distributed Hash Table, Massachusetts Institute of
Technology, 2003.

[11] Chaum, D. Security without identification: transaction
systems to make big brother obsolete. Communications of the
ACM, 28 (10).

[12] Chaum, D. and Evertse, J.-H., A secure and privacy-
protecting protocol for transmitting personal information
between organizations. in Advances in cryptology, (Santa
Barbara, California, 1987), Springer-Verlag, 118-167.

[13] Goldreich, O., Goldwasser, S. and Micali, S. How to
construct random functions. J. ACM, 33 (4). 792-807.

[14] Hardt, D. Identity 2.0, OSCON 2005, 2005.

[15] Johnson, R., Molnar, D., Song, D.X. and Wagner, D., Homo-
morphic signature schemes. in Topics in Cryptology -- CTRSA
2002, (Berlin, Germany, 2002), Springer-Verlag, 244-262.

[16] Merkle, R., A Certified Digital Signature. in Advances in
Cryptography, (Santa Barbara, California, United States,
1989), Springer-Verlag New York, Inc., 218 - 238.

[17] Microsoft. Microsoft's Vision for an Identity Metasystem,
2005.

