
Overlay network assignment in PlanetLab with
NetFinder

Yong Zhu and Mostafa Ammar
Networking and Telecommunications Group

Georgia Institute of Technology, Atlanta, Georgia
Email: {yongzhu,ammar}@cc.gatech.edu

Abstract— PlanetLab has been widely used in the networking
community to test and deploy user-defined overlays. Serving as
a meta testbed to support multiple overlay networks, PlanetLab
has significantly lowered the barriers to build new overlays.
However, PlanetLab users always face the problem of selecting
a set of nodes and interconnecting them to form the desired
overlay network. Unfortunately, such a task is usually carried out
manually by individual users and sometimes in an ad-hoc manner.
In this paper, we develop NetFinder, an automatic overlay net-
work configuration tool to efficiently allocate PlanetLab resources
to individual overlays. NetFinder continuously monitors the re-
source utilization of PlanetLab and accepts a user-defined overlay
topology as input and selects the set of PlanetLab nodes and
their interconnection for the user overlay. Experimental results
indicate that overlay networks constructed by NetFinder have
more stable and significantly higher bandwidth than alternative
schemes and near optimal available CPU.

I. I NTRODUCTION

PlanetLab has been widely used in the networking com-
munity to test and deploy new network technologies [1]. It
can serve as a testbed for overlay networks. Research groups
are able to request a PlanetLab slice in which they can
experiment with a variety of wide-area networks and services,
such as file sharing, content distribution networks, routing and
multicast overlays, QoS overlays, and network measurement
tools. One problem faced by PlanetLab users is selecting a
set of PlanetLab nodes and interconnecting them to form the
desired overlay network.

PlanetLab also serves as a meta testbed on which multiple,
more narrowly-defined virtual testbeds can be deployed. For
example, the “Internet-in-a-Slice”(IIAS) service aims at recre-
ating the Internet’s data plane and control plane in a PlanetLab
slice [2]. Network researchers can use this infrastructure to
experiment with modifications and extensions to the Internet’s
protocol suite. Currently, IIAS does not provide resource
discovery and overlay assignment services and the overlay
configuration has to be given explicitly.

Having an automated overlay network assignment service
for PlanetLab is important for two reasons. From the PlanetLab
operator’s perspective, efficient assignments would result in
better resource utilization so that the PlanetLab could accom-
modate more user overlays with limited resources and avoid
hot spots or congestion. From the overlay user’s perspective,
having good assignment service would provide overlay users
better choices in building their overlays by avoiding congested
links/nodes.

Unfortunately, such a task is usually carried out manually by
individual users and sometimes in an ad-hoc manner. Manual
configuration is time consuming (especially for networks)
and prone to human error. It is not efficient even for small
overlay networks since the underlying PlanetLab network has
hundreds of nodes and its state fluctuates over time due to
failures, congestion and load variation. In this work, we are
motivated by the above considerations and focus on the on-
demand overlay network assignment problem: Upon the arrival
of a user-defined overlay topology and associated overlay
resource requirements, find the set of PlanetLab nodes and
their interconnections to satisfy the user request.

The set of physical resources provided by PlanetLab to
support multiple overlays can be divided into two categories:
node resources and link/path resources. Node resources such
as memory, disk space, number of active slices, and available
CPU are all related to a particular PlanetLab node. They enable
individual overlays to compute, modify and store their data. In
contrast, link/path resources enable an overlay network to send
data from one node to another. Common metrics for link/path
resources include available bandwidth, delay and loss rate,
which indicate how well the user can send data within its
overlay.

A recent study reported that available resources vary sig-
nificantly in PlanetLab, suggesting that wise placement of
application instances can be beneficial [3]. Among different
node resource metrics, available CPU is the most important
one since most users will suffer if the CPU resources are
poorly utilized. Unlike the link performance metrics such
as delay, loss rate or TCP throughput, available bandwidth
directly indicates the extra amount of traffic that can be carried
by the link before it becomes congested. Based on these
considerations, we focus on the CPU usage and available
bandwidth. However, our service model can be easily extended
to support other metrics.

There are two challenges in providing an automatic overlay
network assignment service: the lack of PlanetLab bandwidth
monitoring services and the difficulties in developing a good
overlay network assignment algorithm. Despite the growing
literature and tools for end-to-end bandwidth measurement,
many tools have practical limitations and do not work well
in PlanetLab. Even for tools that work within PlanetLab such
as Pathload [4] and Iperf [5], running pair-wise measurements
between hundreds of Planetlab nodes is a challenging task.

Another challenge comes from the dual objective of the
overlay assignment. Specifically, upon the arrival of a overlay
request, we want to achieve load balancing on both PlanetLab
nodes and links. A special case of the this problem can be
formulated as an unsplittable flow problem which is NP-hard.
Therefore, the overlay assignment problem is intrinsically
difficult and heuristics will be used to solve the problem.

In this paper, we develop NetFinder, an automatic overlay
network configuration tool in PlanetLab. This tool continu-
ously collects information about the resource utilization of
PlanetLab and accepts a user-defined overlay topology as
input. NetFinder then performs overlay network assignment by
selecting the set of PlanetLab nodes and their interconnection
for the desired user overlay.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III gives the network model
and presents the detailed methodology used in NetFinder. The
implementation is described in Section IV. Performance eval-
uation is presented in Section V and the paper is summarized
in Section VI.

II. RELATED WORK

Our overlay network configuration tool is motivated by the
findings in [3], which examines PlanetLab resource utilization
data from the perspective of the designer of a resource
discovery system. The authors find that, for some resources,
the quantity available at a fixed time differs significantly
across nodes, suggesting a potential benefit to using a resource
discovery system to wisely place application instances.

NetFinder is based on two technical foundations: end-to-
end bandwidth/throughput measurement results and overlay
network assignment algorithms. Leeet al. assess the capa-
bilities of several existing bandwidth measurement tools and
describe the difficulties in choosing suitable tools as well as
using them on PlanetLab [6]. Specifically, the authors report
that pathchar [7], pchar [8], pathChirp [9] do not work with
the current PlanetLab. bprobe, cprobe [10] and SProbe [11]
can partially run on PlanetLab.

There are a number of existing tools for node selection
in PlanetLab. SWORD is a scalable resource discovery tool
for wide-area distributed systems [12]. The particular type
of resource that SWORD is intended to discover is the set
of nodes on which to deploy a service. However, SWORD
focuses on selecting the set of nodes that satisfy user re-
quirement without considering the effects of the selection on
the overall PlanetLab performance. Furthermore, SWORD has
little support on the inter-node performance and currently does
not support available-bandwidth performance between nodes.

Our work is based a number of PlanetLab performance
monitoring services. Specifically, CoMon provides a moni-
toring statistics for PlanetLab at both a node level and a
slice level [13]. The data gathered by CoMon can be di-
rectly accessed through CoMon daemon on port 3121 at each
PlanetLab node. Our link performance results are currently
obtained from theS3 project [14], which periodically provides

end-to-end latency, bottleneck bandwidth capacity, and end-
to-end available bandwidth between 400+ PlanetLab nodes.
We should note that the contribution of this work is to the
NetFinder tool that configure the user-defined overlay network
in a efficient and on-demand manner. Instead of developing
new measurement schemes for PlanetLab, we rely on existing
services to collect measurement data. Although the current
service using the measurement results form CoMon andS3,
our service is not restricted by these services and it can easily
adopt new monitoring services and measurement results when
they are available.

The overlay assignment problem is challenge since we
are trying to optimize both the node performance and link
performance. The algorithm used in NetFinder is based on our
previous work on the virtual network assignment [15], which
developed theoretical algorithms for virtual network assign-
ment aiming at reducing the stress among substrate nodes and
links [15]. The abstract definition of stress can not be easily
mapped to realistic network performance metrics such as the
CPU usage and available bandwidth. Therefore, modifications
and extensions need to be made for the algorithm to work in
our scenario.

The output of NetFinder could be used directly as IIAS
inputs [2]. Which in turn would start an overlay data plane
for PlanetLab following the calculated results.

III. N ETWORK ARCHITECTURE

PlanetLab is composed of a number of nodes connected to
the Internet at different locations. Therefore, there is an end-
to-end native Internet path connecting each pair of PlanetLab
nodes. From the view point of PlanetLab users, the only
resources available are those at individual Planetlab nodes and
along paths between PlanetLab nodes. Network situation on
all other links and nodes are transparent to PlanetLab users.
Therefore, the PlanetLab network itself can be viewed as a
full-mesh overlay on top of the native Internet.

The PlanetLab network in turn serves as a shared substrate
to support multiple user-defined overlays. Each user would
treat the underlying PlanetLab network just like any physical
network.

Overlay 1 Overlay 2 Overlay N…

PlanetLab netework

Internet

Overlay networs

Substrate network

Native network

Fig. 1. PlanetLab network layered architecture

Based on the above consideration, we model the PlanetLab
overlay network configuration using three layers of network: a
native Internet, a PlanetLab substrate network and a number of
user-defined overlay networks. The lowest layer is the native
Internet composed of native routers and links. On top of that,
there is a common PlanetLab substrate network, composed

of PlanetLab nodes and the interconnection between them.
Finally, a number of user-defined overlays are built on top
of the PlanetLab substrate such that each overlay node is a
substrate node and each overlay link is a substrate path, which
could, in turn, be a concatenation of a set of Internet paths.
In this work, we assume that all PlanetLab nodes are already
deployed and their interconnection are determined by native
IP routing mechanisms, and focus only on issues between the
substrate layer and user overlays.

The flowchart of NetFinder is illustrated in Figure 2. In
the background, the system periodically collects the Planet-
Lab resource utilization information including both available
bandwidth data and available CPU data from external sources.
NetFinder then accepts user-defined overlay requests. When
the user requests include constraints such as the minimum
CPU or minimum bandwidth requirements, infeasible parts
of the PlanetLab network are removed through preprocessing.
Finally, the overlay assignment algorithm is used to calculate
the overlay configuration.

Preprocessing Overlay
assignment

Overlay
request

PlanetLab
avail-BW

PlanetLab
avail-CPU

Overlay
configuration

Fig. 2. System diagram

The rest of this section discusses each component of the
system in detail.

A. Overlay network request format

To setup an overlay network in the PlanetLab, a user submits
a request specifies the topology of the overlay network and a
set of resource constraints. An example to setup a4 node
8 link overlay network is shown in Table I. The request
also indicates that each overlay link should have minimum
available bandwidth of10Mbps and each selected PlanetLab
node should have at least20% free available CPU resource.

TABLE I

OVERLAY REQUEST FORMAT

NUM NODES, MIN BW MIN CPU
4, 10 20

LINKS: SRC DEST
0 1
1 0
0 2
2 0
0 3
3 0
1 2
2 1

B. PlanetLab substrate performance monitoring

NetFinder collects measurement results from other reporting
services. It then preprocesses and stores the resulting data
into its own database. The current version of NetFinder
obtains node CPU usage information by periodically polling
the CoMon daemon on each PlanetLab node. This probing
also serves as a failure detection mechanism, where NetFinder
determines that a node is down if the probe times out.

The bandwidth measurement in PlanetLab is a challeng-
ing problem due to the scale of the network and practical
limitations of various tools. NetFinder uses the bandwidth
measurement result from theS3 project, which reports the
all-pair available bandwidth measurement results of400+

PlanetLab nodes every four hours. NetFinder then processes
the raw measurement results by removing all inactive nodes
and links and keeping only relevant bandwidth and CPU data.

Although NetFinder relies on the PlanetLab measurement
results, it is not restricted by any specific tools or reporting
services. We chooseS3 results since it is the only all-pair
bandwidth measurement service available for the large scale
PlanetLab network. However, NetFinder has the flexibility to
adapt to measurement results of new techniques when they
become available in the future. The only thing that needs to
be done is to convert the format from the raw measurement
data to NetFinder’s internal data format.

C. Overlay network assignment

NetFinder’s overlay network assignment is based on our
recent work on network virtualization. The problem of assign-
ing PlanetLab nodes/paths to the overlay network is similar to
the virtual network (VN) assignment problem [15]. However,
to be able to work with PlanetLab, we need the following
modifications and enhancements:

• Using bandwidth as the Link-state metrics instead of sub-
strate link stress: Unlike the scenario of VN assignment
in [15], where stress is used to model the utilization of the
substrate node and substrate link, the meaning of stress
in the PlanetLab context is not obvious.

• Constraints in overlay network assignment: The overlay
assignment algorithm should consider a number of con-
straints in making the assignment decision. Basic con-
straints include bandwidth constraints (e.g., the available
bandwidth of the overlay link should exceed 10Mbps)
and CPU constraints.

Based on the above consideration, we modify our original
VN assignment algorithm as follows:

1) Preprocessing:After obtaining the measurement results,
given an overlay request with bandwidth or CPU constraints.
The algorithm first removes all nodes and links that do not
have enough resources.

2) Cluster center localization:In the PlanetLab overlay
configuration, we use the more realistic metrics such as CPU
usage and available bandwidth instead of the abstract ideas
of node/link stress to represent the resource availability in the
substrate network.

50

30

0

20%

10
10

10 30

20%

(a)

50

30

0

20%

10
10

10 30

20%

(b)

Fig. 3. Neighborhood resource availability, numbers beside links and nodes
represent the available bandwidth and CPU respectively

Specifically, we modify the definition of neighborhood
resource availability (NR) in [15] as follows:

NR(t, v) = C(t, v) ·
X

e∈L(v)

B(t, e) (1)

whereC(t, v) is the available CPU at substrate nodev, B(t, e)
is the available bandwidth on substrate linke, andL(v) is the
set of substrate links directly connected to substrate nodev.

The above definition of NR captures both the node resources
and neighboring link resources in the sense that a substrate
node with a high NR means that both the node itself and some
of its directly connected links are lightly loaded. The cluster
center, which is the first selected substrate node, is, therefore,
identified as the substrate node with the highest NR value. In
the example shown in Figure 3, the NR for the substrate node
in Figure 3(a) and 3(b) are16 and12 respectively. Therefore,
the former substrate node is preferred even though it has a
lower node degree.

3) Substrate node selection:After identifying the cluster
center, the next step is to select the rest of the substrate nodes
for the overlay request. We redefine the distance of a single
substrate pathp at time t as follows:

d(t, p) =
X

e∈p

1

B(t, e) + δL
(2)

where δL is a small positive constant to avoid dividing by
zero in computing the distance. And the distance between two
substrate nodesu and v is defined as the minimum distance
of all paths between them,i.e.,

D(t, (u, v)) = min
p∈PS(u,v)

d(t, p) (3)

Since the overlay topology could be arbitrary, there could be
an overlay link between any pair of overlay nodes. Therefore,
to minimize the overall distance, the weight of an overlay
node is set to be the summation of distances to all previously
assigned overlay nodes. Combining the distance and node
stress, we use the followingnode potentialas the criteria for
substrate node selection:

π(t, v) =

X

u∈VA

D(t, (v, u))

C(t, v) + δN
(4)

whereVA is the set of selected substrate nodes for the same
overlay andδN is a small positive constant to avoid dividing
by zero. The set of substrate nodes with the minimum potential
are then selected.

After all substrate nodes are determined, we need to map
the overlay nodes into the selected substrate nodes such that
overlay nodes with higher degree are mapped to substrate
nodes with higher NR. The intuition behind this is that overlay
nodes with higher degree will setup more overlay links. All
of these overlay links will go through some of the substrate
link in the neighborhood of the corresponding substrate node.
Therefore,the above matching tends to reduce the congestion
and balance the link load.

4) Substrate path selection:The last step of the overlay
assignment scheme is to connect the selected substrate nodes
based on the overlay topology. This is a standard routing
problem and we use the shortest-distance path algorithm [16]
again to select the path with minimum distance (defined in
Eq. (2)) between corresponding substrate nodes. Therefore, it
is consistent with Eq. (3) in our node selection process. The
detailed overlay assignment algorithm is given in Algorithm 1.

Algorithm 1 Overlay assignment algorithm (Upon thei’th
overlay arrival at timeai)

INPUTS:
Gs = (VS , ES): substrate topology;
C(a−i , v),∀v ∈ VS : current available CPU;
B(a−i , e),∀e ∈ ES : current available bandwidth;
Gi

v = (V i
V , Ei

V): Overlay topology;
OUTPUTS:

f i
N (v̂),∀v̂ ∈ V i

V andf i
L(ê),∀ê ∈ Ei

V

VA = ∅ {Note: VA is the set of selected substrate nodes}
VA = VA ∪ {arg maxv∈VS

NR(a−i , v)}
for i = 2, . . . , |V i

V | do
VA = VA ∪ {arg minv∈VS−VA

π(a−i , v)}
end for
Assign nodes inVA to overlay nodes such that
NR(f i

n(û)) ≥ NR(f i
n(v̂)), iff Degree(û) ≥ Degree(v̂)

Find the shortest-distance path for all overlay links

IV. I MPLEMENTATION

We implement the above service to include all412 nodes
in theS3 data base. Latest NetFinder results detects352 alive
nodes and68, 966 substrate links with bandwidth measurement
results.

The high level service model of NetFinder is shown in
Figure 4, which is composed of three entities: a PlanetLab net-
work (composed of nodes and paths connecting them) served
as the substrate for all user-defined overlays, a central database
responsible for collecting measurement data of PlanetLab and
answering overlay setup requests, and users submitting their
requests to setup overlay networks. Events in the centralized
model evolve as follows: 1) Each PlanetLab node perform

periodic performance measurement of its own as well as paths
leading to the neighboring PlanetLab nodes, this information
is stored at each PlanetLab node as local data1. 2) The
centralized database periodically contacts each PlanetLab node
to get a copy of the local measurement data and merge them
into a global view of the current PlanetLab network status. 3)
The software at PlanetLab user sends a request for the current
substrate states. 4) Central database returns the data to the user
software. 5) The user software calculates the assignment and
generates suitable outputs. 6) IIAS script is launched to start
the overlay network based on the output from step 5)2.

Central
Database `

(1) (6)

(3)

(4)(2)
(5)

Substrate
Network

PlanetLab
User

Fig. 4. Centralized NetFinder service model

V. PERFORMANCE EVALUATION

To evaluate the performance of NetFinder from its user’s
perspective, we use the following metrics: 1) average overlay
node available CPU, defined as the average available CPU
of the selected PlanetLab nodes, and 2) average overlay
link available bandwidth, defined as the available bandwidth
along the path connecting the corresponding PlanetLab nodes.
Since each overlay node is assigned to a PlanetLab node,
the available CPU on the selected PlanetLab node represents
the available computational resources for the corresponding
overlay node. Therefore, these metrics are more relevant to
individual user.

In the first experiment, we took a snapshot of the PlanetLab
network and run NetFinder to assign 5,000 randomly generated
overlay networks (with evenly distributed size from 2 to 40 and
average link probability0.5). Each overlay network is assumed
to be given the identical PlanetLab snapshot. Therefore, this
experiment evaluates the average performance of NetFinder
on different overlay topologies. For comparison purposes, we
also show the results for two alternative overlay assignment
schemes: 1) Least load scheme and 2) random selection.
The least-load scheme represents the scenario where node
selection tools such as CoMon or SWORD is used to find
the set of nodes with maximum available CPU. The selected
nodes are then connected to form the overlay network. The
random selection scheme represents the case where a user
totally ignores the performance of PlanetLab and selects nodes
randomly.

1This step is not needed when NetFinder obtains performance data from
third-party sources, such asS3.

2This step is needed when we use IIAS to directly startup the overlay.

Figure 5 shows the cumulative distribution function (CDF)
of single hop overlay path available bandwidth (i.e., the direct
overlay link available bandwidht). Comparing the results of
NetFinder with least-load and random selection heuristics, we
can clearly see that NetFinder significantly improves the avail-
able bandwidth. Specifically, more than90% of the overlay
links have the available bandwidth higher than60Mbps. In
contrast, more than50% overlay links assigned by the least-
load scheme have available bandwidth lower than60Mbps.
The random selection scheme performs slightly better than
the least-load scheme since it spreads the load among all
PlanetLab nodes. However, it is still significantly worse than
NetFinder.

A potential use of the overlay network is bandwidth based
overlay routing, where data are sent from the source to
the destination through the overlay path with the maximum
available bandwidth. To show how assigned overlay networks
perform under this scenario, we collected the widest overlay
path between each pair of overlay nodes and show their CDF
in Figure 6. The result has a similar pattern as the direct
overlay link available bandwidth. But the different between
these schemes are even more significant.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Available Bandwidth

C
D

F

NetFinder
Random
Least Load

Fig. 5. CDF of single hop overlay path available bandwidth

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Available Bandwidth

C
D

F

NetFinder
Random
Least Load

Fig. 6. CDF of widest overlay path available bandwidth

Figure 7 shows the CDF of available CPU on overlay nodes.
As expected, the least-load scheme has the best node CPU
performance since it performs node selection exclusively on
the node performance optimization [15]. However, the differ-
ence between NetFinder and the optimal least-load scheme is
small. This indicates that NetFinder can achieve near optimal
available CPU performance.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Available CPU

C
D

F

NetFinder
Random
Least Load

Fig. 7. CDF of overlay node available CPU

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Time instance

A
ve

ra
ge

 1
ho

p
bw

NetFinder
Random
Least load

Fig. 8. Average available bandwidth of single hop overlay path

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Time instance

A
ve

ra
ge

 2
ho

p
bw

NetFinder
Random
Least load

Fig. 9. Average available bandwidth of 2-hop overlay path

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Time instance

A
ve

ra
ge

 w
id

es
t p

at
h

bw

NetFinder
Random
Least load

Fig. 10. Average available bandwidth of the widest overlay path

The second experiment studies the performance of assigning
a single overlay network at different time instances. We collect
the PlanetLab measurement data during the week of February
13-17, 2006 and plot the results of assigning the same 20 node
176 link overlay network. Figure 8, 9 and 10 show the average

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Time instance

A
ve

ra
ge

 a
va

ila
bl

e
C

P
U

NetFinder
Random
Least load

Fig. 11. Average available CPU of overlay nodes

available bandwidth of all 1-hop overlay paths (i.e., direct
overlay path without going through any intermediate overlay
node), 2-hop overlay paths (i.e., indirect overlay paths that go
through exactly one intermediate overlay node), and widest
overlay paths (i.e., overlay paths with the highest available
bandwidth) respectively. All these results show that NetFinder
can allocate significantly higher available bandwidth than the
other two schemes. Furthermore, the performance improve-
ments are consistent throughout all time instances. Another
interesting observation is that selecting the PlanetLab nodes at
random and totally ignoring the network states, performs better
than the least-load scheme in terms of available bandwidth.
The reason is that the low loaded areas in the substrate network
tend to be isolated, and therefore, they may be separated by
some heavily loaded links. In terms of available CPU, the
Least load scheme which is optimal outperforms NetFinder.
However, the difference is marginal.

Another observation in this experiment is that the per-
formance curves of NerFinder are much smoother than the
other two schemes. This indicates that NetFinder is capable
of achieving consistent performances in dynamic network sit-
uations. As a summary of this experiment, the results indicate
that the NetFinder service can achieve significantly higher
available bandwidth than the both least-load and random
schemes.

VI. CONCLUSIONS

PlanetLab has been widely used in the networking com-
munity to test and deploy user-defined overlays. One problem
always faced by PlanetLab users is how to select a set of
PlanetLab nodes to form a user-defined overlay. In this chapter,
we develop NetFinder, an automatic overlay network con-
figuration tool for PlanetLab. This tool continuously collects
information about the resource utilization of PlanetLab and ac-
cepts a user-defined overlay topology as input. NetFinder then
selects the set of PlanetLab nodes and their interconnection
for the user overlay. Performance evaluation using realistic
PlanetLab data demonstrates the advantage of NetFinder by
comparing it with alternative heuristics or existing tools. The
results indicate that NetFinder is highly effective in locating
the available PlanetLab resources and avoiding overloaded
nodes and links.

REFERENCES

[1] PlanetLab, https://www.planet-lab.org/.
[2] IIAS, “Internet In a Slice,” https://wiki.planet-

lab.org/twiki/bin/view/PlanetLab/InternetInASlice.
[3] D. Oppenheimer, D. A. Patterson, and A. Vahdat, “A case for informed

service placement on planetlab,” PlanetLab Consortium, Tech. Rep.
PDN–04–025, December 2004.

[4] M. Jain and C. Dovrolis, “End-to-end available bandwidth: measurement
methodology, dynamics, and relation with tcp throughput,”IEEE/ACM
Transaction on Networking, vol. 11, no. 4, pp. 537–549, 2003.

[5] “Iperf,” http://dast.nlanr.net/Projects/Iperf/.
[6] S.-J. Lee, P. Sharma, S. Banerjee, S. Basu, and R. Fonseca, “Measuring

bandwidth between planetlab nodes,” inProc. PAM 2005, 2005.
[7] V. Jacobson, “pathchar: A tool to infer characteristics of Internet paths,”

ftp://ftp.ee.lbl.gov/pathchar/.
[8] B. A. Mah, “pchar: A tool for measuring Internet path characteristics,”

http://www.kitchenlab.org/www/bmah/Software/pchar/.
[9] V. Ribeiro, R. Riedi, R. Baraniuk, J. Navratil, and L. Cottrell,

“pathChirp: Efficient available bandwidth estimation for network paths,”
in Passive and Active Measurement Workshop, 2003.

[10] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” inProc. IEEE Infocom, 1997.

[11] S. Saroiu, P. K. Gummadi, and S. D. Gribble, “SProbe: A fast technique
for measuring bottleneck bandwidth in uncooperative environments,” in
Proc. IEEE Infocom, 2002.

[12] SWORD, http://www.cs.berkeley.edu/ davidopp/sword/.
[13] CoMon, http://comon.cs.princeton.edu/.
[14] P. Yalagandula, P. Sharma, S. Banerjee, S.-J. Lee, and S. Basu, “S3:

Scalable sensing service for planetlab,” http://networking.hpl.hp.com/s-
cube/PL/.

[15] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” inProc. IEEE INFOCOM,
2006.

[16] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” inProc. IEEE ICNP, 1997, pp. 191–202.

