
ENHANCING THE MULTIMEDIA EXPERIENCE

IN EMERGING NETWORKS

A Thesis
Presented to

The Academic Faculty

by

Ali C. Begen

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology
December 2006

Copyright c© 2006 by Ali C. Begen

ENHANCING THE MULTIMEDIA EXPERIENCE

IN EMERGING NETWORKS

Approved by:

Professor Yucel Altunbasak, Advisor
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Biing Hwang (Fred) Juang
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Russell M. Mersereau
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Professor Ozlem Ergun
School of Industrial and Systems
Engineering
Georgia Institute of Technology

Professor Ghassan AlRegib
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: November 10, 2006

To my family,

Cevdet, Sündüz, and Mehmet Atilla.

iii

ACKNOWLEDGEMENTS

This thesis would not have been what it is without the encouragement and generous support

from many individuals. I am grateful to every person who has offered help to me and

contributed in some way to the process leading to my dissertation.

It is difficult to overstate my gratitude to my advisor, Prof. Yucel Altunbasak. With

his enthusiasm, his inspiration, his guidance, and his great efforts to explain things clearly

and simply, he has been a great mentor throughout my Ph.D. study. I would like to thank

him for all of the advice he has passed along. I have also been fortunate enough to have a

great thesis committee: Prof. Russell M. Mersereau, Prof. Ghassan AlRegib, Prof. Biing

Hwang (Fred) Juang and Prof. Ozlem Ergun. I thank them for being very supportive of

my research and for their constructive critiques that have greatly contributed to my thesis.

Since I first came to Georgia Tech in 2001, the campus and its tenants offered me a

pleasant, friendly and motivating work environment. Every communications, networking

and signal processing course I have taken was interesting, informative and inspirational. I

want to thank the faculty of School of Electrical and Computer Engineering and College of

Computing for these courses. I am also grateful to all my colleagues and friends at Georgia

Tech. Particularly, I would like to thank the members of the Multimedia Computing and

Communications Lab, as well as the members of the Center for Signal and Image Processing

for the five wonderful years I spent in Atlanta.

Throughout my undergraduate years at Bilkent University and graduate years at Georgia

Tech, I have greatly benefited from numerous insightful discussions, whether it was research

related or not, with Mehmet Umut Demircin. I thank him for our 16-year friendship, his

always constructive and timely advice, and continued moral support.

During Summer and Fall 2004, I interned with the Standards Engineering Group at

Qualcomm Inc. in San Diego, CA. I would like to thank my managers, and particularly my

mentor, Hector Vayanos, for giving me the opportunity to work in an exceptional industrial

iv

environment. This internship exposed me to the cutting-edge developments in the wireless

communications technology and helped me gain practical skills in solving real-life problems.

It was a rewarding experience for me.

On a different note, I would like to thank the computer game developers for creating

the FPS games, the hardware engineers for making it possible for us to play those games,

and my friends who played those games with me. I cannot imagine how difficult it would

be to restore myself and refocus on my thesis without first relaxing with those games.

Last but not least, I want to thank my dad, mom and brother. I am forever indebted

for their understanding, endless patience and encouragement when it was most required. It

is to them that I dedicate this work.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . x

LIST OF FIGURES . xi

SUMMARY . xv

I INTRODUCTION . 1

1.1 Background on Multimedia Networking 2

1.2 Illustrative Examples . 5

1.2.1 Packet Interdependencies . 5

1.2.2 Early/Late Transmissions . 6

1.2.3 Inferring Delay and Loss Characteristics 8

1.3 Relation to the State-of-the-Art . 9

1.4 Contribution of the Thesis . 11

1.5 Organization of the Thesis . 12

II OPTIMIZED MULTIPLE DESCRIPTION VIDEO COMMUNICATION
OVER OVERLAY NETWORKS . 14

2.1 Introduction . 14

2.2 Multiple Description Coding . 17

2.3 Envisioned Network Model . 20

2.3.1 Overlay Model . 21

2.3.2 Definitions . 22

2.3.3 Link Parameters . 23

2.4 Multi-Path Selection . 23

2.4.1 Bandwidth - Distortion Relation 24

2.4.2 Computation of Success Probabilities 27

2.4.3 End-to-End Multi-Path Model . 34

2.5 Simulation Results . 36

2.5.1 Methodology . 36

vi

2.5.2 Single-Hop Topology Simulations 37

2.5.3 Internet Topology Simulations . 38

2.5.4 Discussion . 42

2.6 Conclusions . 46

III HIGH-RESOLUTION VIDEO STREAMING TECHNIQUES
IN MESH-NETWORKED HOMES . 48

3.1 Introduction . 48

3.2 Residential Applications . 50

3.2.1 HDTV Video Transmission . 51

3.2.2 Methodology . 51

3.3 Single-Path Streaming . 52

3.4 Multi-Hop Multi-Path Streaming . 55

3.5 Conclusions . 58

IV IMPROVING VIDEO-ON-DEMAND OVER IP EXPERIENCE
IN MULTI-SOURCE NETWORKS . 59

4.1 Introduction . 59

4.2 Multi-Server Single Description Video Streaming 62

4.2.1 The Problem and Definitions . 62

4.2.2 Scheduling Algorithm for a Single Video Packet 65

4.2.3 Scheduling Algorithm for a Group of Video Packets 68

4.2.4 Simulations and Results . 70

4.3 Multi-Server Multiple Description Video Streaming 71

4.3.1 System Overview . 71

4.3.2 Scheduling Algorithm for a Single Set of Descriptions 74

4.3.3 Scheduling Algorithm for Multiple Sets of Descriptions 77

4.3.4 Simulations and Results . 78

4.4 Conclusions . 80

V IN-NETWORK SOLUTIONS FOR INTERACTIVE VIDEO SERVICES . . . 82

5.1 Introduction . 82

5.2 Intermediate-Proxy Approach . 85

5.2.1 Enabling Retransmission-Based Error-Control Methods 86

vii

5.2.2 Fast Intra-Frame Updates . 88

5.3 Detection of Lost Packets . 88

5.3.1 Preliminaries . 88

5.3.2 Timeout Mechanism . 91

5.3.3 Methodology . 93

5.4 Impact of the I-Proxy on the ARQ Performance 99

5.5 Implementation Details . 101

5.6 Internet Experiments . 103

5.6.1 Direct Video Transmission between CUS and CTR 104

5.6.2 Video Transmission from CUS to CTR via I-Proxy 105

5.6.3 Video Transmission from CTR to CUS via I-Proxy 106

5.7 Conclusions . 106

VI DELAY AND DELAY-BOUNDARY PREDICTION
FOR PACKET VIDEO . 108

6.1 Introduction . 108

6.2 Overview of RTO Estimators . 113

6.2.1 TCP-Like RTO Estimators . 113

6.2.2 Recursive Weighted Median Filtering 114

6.2.3 Percentile-Based RTO Estimators 114

6.3 Autoregressive Models for Packet Delay 115

6.3.1 System Overview . 115

6.3.2 Adaptive Linear Delay Prediction 116

6.3.3 Model Selection . 118

6.3.4 Practical Considerations . 120

6.3.5 Performance Analysis . 123

6.4 Media-Unaware Timeout Estimation . 125

6.5 Simulation Results . 128

6.6 Conclusions . 131

VII MEDIA-AWARE RETRANSMISSION TIMEOUT ESTIMATION
FOR LOW-DELAY VIDEO APPLICATIONS 134

7.1 Introduction . 134

viii

7.2 Problem Formulation . 137

7.3 Solution Approach and Implementation Issues 142

7.4 Simulation Results . 144

7.5 Internet Experiments . 145

7.5.1 Experimental Setup . 146

7.5.2 Results . 147

7.6 Conclusions . 150

VIII CONCLUSIONS AND FUTURE WORK . 152

8.1 Contributions . 152

8.2 Future Research Directions . 152

APPENDIX A FAST HEURISTICS FOR OPTIMAL MULTI-PATH SELECTION 155

A.1 Brute-Force Approach . 155

A.2 Rapid Path Generation . 156

A.3 Performance Analysis . 157

A.4 Conclusions . 160

APPENDIX B MULTIPLE DESCRIPTION VS. SCALABLE VIDEO
STREAMING WITH OPTIMAL DIVERSE ROUTING 161

B.1 Multi-Path Selection for Scalable Video Streaming 162

B.2 Simulation Results . 163

B.3 Discussion . 164

B.4 Conclusions . 167

APPENDIX C PROXY SELECTION METHODS FOR INTERACTIVE VIDEO 168

C.1 Effects of the Location of the I-Proxy . 168

C.2 Model-Based I-Proxy Selection . 169

C.3 Practical I-Proxy Selection . 173

C.4 Simulation Results and Performance Analysis 174

C.5 Conclusions . 176

REFERENCES . 177

VITA . 187

ix

LIST OF TABLES

1 List of the notation and model parameters. 35

2 Simulation results for the Table Tennis sequence. 43

3 Simulation results for the Football sequence. 43

4 Simulation results for the Paris sequence. 44

5 Comparison of different RTO estimators for the non-bursty video traffic. . . 98

6 Comparison of different RTO estimators for the bursty video traffic. 98

7 Experimental results for the Foreman sequence. 106

8 Comparison of the prediction-error standard deviations produced by different
delay predictors. 123

9 Performance analysis of RTORWM(1,5). 129

10 List of the notation for the optimization problem. 139

11 Experimental results for the Foreman sequence. 149

12 Experimental results for the Suzie sequence. 150

13 Comparison of the BF and RPG approaches when k = 1. 158

14 Comparison of the BF and RPG approaches when k = 2. 158

15 Comparison of the BF and RPG approaches when k = 3. 159

x

LIST OF FIGURES

1 Rate variation in TCP. 2

2 Illustration of error propagation in case of streaming over UDP with no re-
transmissions. 6

3 Illustration of redundant and late retransmissions. A retransmission can be
redundant if it is too early, or ineffective if it is too late. 7

4 Transmitting more important packets at earlier stages and inferring path
conditions allow us to improve the error-control performance. 9

5 A typical MD codec with two descriptions. 18

6 Actual and estimated rate-distortion curves for the Table Tennis, Foot-

ball, Miss America and Foreman sequences. 20

7 State-transition diagram for the Gilbert-Elliott model. 28

8 A sketch describing the path segregation method. 29

9 A typical density function for the forward-trip times of the successfully-
received packets. 33

10 End-to-end multi-path model. 3-link model can be used to approximate any
given two paths in a network. 36

11 Single-hop topology with identical delays. 38

12 Variation of PSNR with the packet loss rate for the single-hop topology shown
in Figure 11 for the Table Tennis, Football and Paris sequences. . . . 39

13 An Internet topology with four transit domains. Only a subset of the stub
domains are shown for the demonstration purposes. 40

14 Enhanced path-diversity capability when the server is located in a multi-
homed stub domain. 42

15 Average PSNRs for different streaming methods for the Table Tennis se-
quence. 45

16 Average PSNRs for different streaming methods for the Football sequence. 45

17 Average PSNRs for different streaming methods for the Paris sequence. . . 46

18 Variation of the frame PSNRs for the shortest-path and optimal multi-path
streaming methods for the Table Tennis sequence. 46

19 Variation of the frame PSNRs for the maximally link-disjoint path and opti-
mal multi-path streaming methods for the Table Tennis sequence. 47

20 Variation of the frame PSNRs for the redundant-path and optimal multi-path
streaming methods for the Table Tennis sequence. 47

xi

21 A wireless mesh home network. 51

22 Experimental 802.11a mesh topology. 52

23 Delay distributions for the packets transmitted over multi-hop and single-hop
paths. 53

24 Packet delays observed from two different paths. 54

25 Delay distributions for the packets transmitted over single and multiple paths. 56

26 Average PSNR variation with the playout delay. 57

27 An illustration of a multi-server VoD streaming system. 63

28 Delay distributions for states NC and C of the forward path. 64

29 Decision tree for the MDP for two-server streaming system. Final states are
indicated with filled circles. Infeasible actions, observations and states are
gray-colored. 66

30 Normalized rate-distortion plots for the single and two-server streaming sys-
tems. 69

31 Comparison of the single and two-server streaming systems for the Table

Tennis and Flower Garden sequences when the forward paths are totally
link-disjoint. 72

32 An illustration of a two-server multiple description video streaming system. 74

33 Decision tree for the MDP for two descriptions. Final states are indicated
with filled circles. Infeasible actions, observations and states are gray-colored. 76

34 Comparison of the non-optimized and rate-distortion optimized MD stream-
ing systems for the Foreman and Football sequences when the forward
paths do not share the PoC. 79

35 Comparison of the non-optimized and rate-distortion optimized MD stream-
ing systems for the Foreman and Football sequences when the forward
paths share the PoC. 80

36 Illustration of the I-Proxy approach. 84

37 Early retransmission by the I-Proxy. 87

38 Fast retransmission by the I-Proxy. 87

39 Error propagation is suppressed at an earlier stage when the I-Proxy is en-
abled compared to when it is disabled. 89

40 The variation of the intertransmission times at the server side. 91

41 Timeout mechanism. 92

42 Variation of the forward-trip times and interarrival times for the non-bursty
video traffic. 94

xii

43 Variation of the forward-trip times and interarrival times for the bursty video
traffic. 94

44 Distributions of the forward-trip and interarrival times for the non-bursty
video traffic and bursty video traffic. 95

45 Correlation of the forward-trip times for the non-bursty video traffic and
bursty video traffic. 96

46 Illustration of Timerlate−packet. 97

47 Actual and estimated arrival times for the non-bursty video traffic. 98

48 Actual and estimated arrival times for the bursty video traffic. 99

49 Delay distributions of the packets that failed in the first transmission attempt.100

50 Delay distributions of all packets. 101

51 Experimental setup. 104

52 Flowchart for the percentile-based RTO estimators. 115

53 Variation of the mean prediction-error power with the order of prediction. . 120

54 PACFs for all three delay traces. 120

55 Variation of the AICC score with the order of prediction for ∆T = 40 ms. . 121

56 Phase diagrams for ∆T = 10 ms, ∆T = 20 ms and ∆T = 40 ms. 122

57 ACFs of the prediction errors produced by Wiener and AR(2) predictors for
∆T = 10 ms, ∆T = 20 ms and ∆T = 40 ms. 124

58 Time-domain comparison of different predictors for ∆T = 40 ms. 125

59 Prediction-error distributions for ∆T = 10 ms, ∆T = 20 ms and ∆T = 40 ms.
Plots do not include the lost packets. 127

60 Performance analysis of RTOE−TCP(k). 129

61 Performance analysis of RTOPRC(p). 130

62 Performance analysis of RTOAR(2). 130

63 Comparison of different RTO estimators for ∆T = 10 ms, ∆T = 20 ms and
∆T = 40 ms. 132

64 Architecture of the client-driven media-aware RTO estimation. 136

65 Relation between the packet delay and packet loss probability for ∆T = 40 ms.140

66 Variation of the prediction-error standard deviation with r. 143

67 Variation of the frame on-time performance with the optimization horizon
when the playout buffer is 500 ms. 145

68 Variation of the frame on-time performance with the optimization horizon
when the playout buffer is 600 ms. 145

xiii

69 Total-delay distributions for different RTO estimators. 147

70 Variation of the video quality with the playout buffer size for the Foreman

sequence. 148

71 Rate-quality performance of different RTO estimators for the Foreman se-
quence. 150

72 Rate-quality performance of different RTO estimators for the Suzie sequence.151

73 An Internet topology with four transit domains. Reproduced from Section 2.5.3.156

74 The PSNR comparisons of the BF and RPG approaches when k = 1, M = 4
and N = 8. 159

75 The PSNR comparisons of the BF and RPG approaches when k = 2, M = 4
and N = 8. 160

76 The PSNR comparisons of the BF and RPG approaches when k = 3, M = 4
and N = 8. 160

77 Average PSNRs for different streaming methods for the Table Tennis se-
quence. 165

78 Average PSNRs for different streaming methods for the Flower Garden

sequence. 166

79 Fast retransmission by the I-Proxy. 169

80 Early retransmission by the I-Proxy. 169

81 Sample network topology with three I-Proxies. 170

82 Flowchart for the binary-search based I-Proxy selection method. ρNk
denotes

the retransmission request rate of the current I-Proxy. 174

83 Comparison of different I-Proxy selection methods. 175

84 Performance variation of the random I-Proxy selection method. 175

xiv

SUMMARY

As multimedia processing and networking technologies, products and services evolve,

the number of users communicating, collaborating and entertaining over the IP networks

is growing rapidly. With the emergence of pervasive and ubiquitous multimedia services,

this proliferation creates an abundant increase in the amount of the Internet backbone

traffic. This brings the problem of efficient transmission of real-time and time-sensitive

media content to the fore. Effective multimedia services demand appropriate application-

specific and media-aware solutions, without which the full benefits of such services will

not be realized. Poor approaches often lead to system performance degradations such as

unacceptable presentation quality perceived by the users, possible network collapses due to

the high-bandwidth nature of the multimedia applications, and poor performance observed

by other data-oriented applications due to the unresponsiveness of multimedia flows.

From a networking perspective, traditional approaches consider the application data as

“sacred” and do not differentiate any part of it from the rest. While this keeps the data-

delivery mechanisms, namely, the transport-layer protocols, as plain as possible, it also

precludes these mechanisms from interpreting the media content and tailoring their actions

according to the importance of the content. Given that this naive approach cannot satisfy

the specific needs of each and every one of the today’s emerging applications ranging from

videotelephony to video-on-demand, from distance education to telemedicine, from remote

surveillance to online video gaming, the study of Multimedia Transport Protocols (MMTP)

is overdue.

An MMTP solution basically integrates the multimedia content information into the re-

sponsible data-delivery mechanisms along with the requirements of the invoking application

and network characteristics to deliver the highest level of service quality. In other words,

an MMTP solution offers a unified environment where all cooperating protocol components

interact with each other and make the best use of this collaboration to fulfill their respective

xv

duties.

The focus of this thesis is on the design and evaluation of a set of end-to-end and

system-level MMTP solutions for scalable, reliable, and high quality multimedia services in

ever-changing, complex and heterogeneous computing and communication environments.

The main contributions of this thesis are:

• To develop an optimal overlay-based multi-path transmission framework for streaming

error-resilient videos in low-delay video applications,

• To analyze the performance of single/multi-hop and single/multi-path transmission

methods for streaming high-resolution videos in mesh networks,

• To formulate a mathematical framework that models on-demand video delivery from

multiple content servers, and to develop a rate-distortion optimal packet scheduling

algorithm for a multi-server streaming system,

• To investigate proxy-based solutions to overcome the problems associated with packet

loss, large delay and delay jitter in interactive video applications,

• To characterize the packet dynamics in networked-video applications, to propose mod-

els for packet delay, to develop accurate delay and delay-boundary prediction methods,

and to interpret the correlation between the packet delay and packet loss events,

• To engineer media-aware and network-adaptive error-control methods, and to lay out

a framework that computes the optimal actions for error control.

In addition to providing the mathematics behind these solutions, a considerable emphasis

is also given to the real-time implementation issues.

We envision a future that will involve richer and more demanding multimedia services,

which will be available anywhere and anytime, and accessible from a variety of devices. We

anticipate that this thesis will play an enabling role and help establish a solid foundation

for the next generation multimedia services, which will doubtlessly have a great influence

on how we communicate and collaborate, teach and learn, conduct business and entertain.

xvi

CHAPTER I

INTRODUCTION

The growth in the number of users that communicate, collaborate and entertain over the

Internet is largely due to two main factors: On one end, the emerging technologies in media-

creation, coding and processing techniques are continually driving new engaging multimedia

services into the market. On the other end, the proliferation of pervasive and ubiqui-

tous computing platforms is fueling the demand for inter-connectivity and enabling new

users equipped with different bandwidth and processing-power capabilities to connect to

the Internet every day. Together with the assorted multimedia applications, this creates a

tremendous diversity. Not surprisingly, tackling this diversity and satisfying the particular

requirements of each and every one of these applications with existing tools and protocols is

difficult. Timely delivery of real-time media being a critical task, it is well understood that

new application-specific, media-aware and network-adaptive solutions have to be developed

to enhance the multimedia experience for the users.

In this interdisciplinary thesis, we make use of the synergy between multimedia signal

processing and networking, and propose several solutions that we refer to as Multimedia

Transport Protocols (MMTP). Before we get into the details of MMTP, we first give an in-

troduction to multimedia networking along with its motivation, applications, and problems

in Section 1.11. We present illustrative examples and discuss the key ideas in the develop-

ment of MMTP solutions in Section 1.2. In Sections 1.3 and 1.4, we briefly summarize the

state-of-the-art in multimedia networking and the contributions of this thesis, respectively.

Finally, in Section 1.5, we provide the thesis outline and list the problems studied in the

remaining chapters.

1In general, “multimedia data” refers to audio, speech, still pictures, video, animation and graphics data.

Within the context of this thesis, because of our focus on networked video, we often use it to refer to visual

data. However, in most instances, the proposed solutions are also applicable to other media types as well.

1

1.1 Background on Multimedia Networking

In the last decade, multimedia services over the IP networks have achieved significant suc-

cess, however, this success has remained limited for many end-users due to the pitfalls of the

best-effort Internet. Unlike the conventional data services such as file transfer, e-mail and

Web browsing, multimedia services demand almost-constant bandwidth, and rigid bounds

on packet loss and delay to maintain an acceptable level of service quality. To this effect,

traditional transport protocols and error-control methods that are primarily designed for

delay-insensitive services often fall short to satisfy such requirements. For example, Trans-

mission Control Protocol (TCP) transmits the packets in order, regardless of their delivery

deadlines, and employs a rigorous window-based congestion control mechanism [1]. This

behavior often causes many packets to be obsolete by the time they are received at the

client. Furthermore, when a packet is lost, TCP cannot advance its congestion window and

reduces its rate. A possible timeout and subsequent slow-start phase with retransmissions,

as depicted in Figure 1, further delay the transmission of future packets, forcing the client

to stop playing out the video and to re-buffer some data. These stop-and-buffer periods

limit the client’s ability to experience a continuous video. A TCP-driven real-time video

application may avoid these annoying interruptions by pre-buffering a large amount of video

content before starting to play out the video [2, 3].

time

20

TCP Rate

(packets/s)

1

Slow start

Desired

Rate

Figure 1: Rate variation in TCP.

Fortunately, real-time video applications are loss tolerant in the sense that full reliability

is generally not essential. Packet losses at acceptable levels usually result in small glitches

2

that are not highly visible to the clients. For this reason, application developers often prefer

User Datagram Protocol (UDP) [4] over TCP. UDP is a lightweight transport protocol

with a minimalist service model that provides an unreliable data transfer service. However,

similar to TCP, UDP neither offers any timely-delivery guarantees nor has a concern with

the packet deadlines. Hence, the UDP service model is also not the best solution for delay-

sensitive applications. More importantly, the lack of a congestion control mechanism in

UDP is a serious threat to the stability and scalability of multimedia delivery over the

Internet [5]. Bandwidth-hungry video applications employing a transmission policy that

is solely based on the UDP service model may easily take up a considerable share of the

available bandwidth, leaving a little space for other network-friendly multimedia and data

flows.

Naturally, delivering all packets to the client on time produces the highest quality of

video. However, because of the stringent delay constraints, most real-time video applications

have limited error-recovery capabilities against lost packets. Neither missing the delivery

deadlines caused by the rate fluctuations as in TCP nor omitting the retransmissions as in

UDP suits these applications well. With this in mind, it is of paramount importance to

develop protocol suites that take into account the unique features of media content. We

classify these features into five categories:

• Time Sensitivity: Needless to say, the biggest advantage of multimedia streaming ap-

plications is that the clients can download and play the media concurrently. However,

this makes streaming applications highly sensitive to delay and delay variation. De-

pending on the nature of the application, the packets that incur a sender-to-receiver

delay of more than a certain threshold are essentially useless. Likewise, in conversa-

tional applications such as voice over IP (VoIP) and videotelephony, one-way delays

have to be strictly smaller than a few hundred milliseconds. For example, in a VoIP

session, one-way delays smaller than 100 ms are not perceived by human listeners.

Delays between 100 and 250 ms can be tolerated, however, larger delays usually result

in unintelligible voice conversations.

3

• Dependency Structure: Unfortunately, timely reception of a media packet, say a video

packet, is not sufficient for the client to play the content of this packet when it is

the time to do so. This is because of the highly-efficient predictive-coding techniques

that are used in popular video coding standards, e.g., MPEG-x and H.26x. As a

result of predictive coding, a dependency is created among the video frames, and

this dependency determines the order in which the packets have to be decoded. For

example, before decoding a predicted frame, the decoder has to receive and decode

all the frames to which this particular predicted frame is referenced (called ancestor

frames). In other words, if the decoder fails to decode a frame, the decoder will also

fail to decode all the frames that are dependent on it (called descendant frames).

Note that the dependency can be introduced in the spatial, temporal or frequency

domain. For example, in scalable video coding, a base layer and several enhancement

layers are encoded in a hierarchical way. The base layer produces a bare-minimum

quality of video. With each additional enhancement layer, the quality is further

improved. However, the decoder cannot decode any of the enhancement layers without

first decoding the base layer.

• Unequal Importance: Intuitively, packets belonging to the ancestor frames or the base

layer should be prioritized over the ones belonging to the descendant frames or the en-

hancement layers. However, the dependency structure is inadequate by itself to solve

the problem of prioritization among the sibling packets, e.g., the packets belonging to

the same frame/layer. A powerful approach to address this problem in an analytical

framework is to quantify the contribution of each packet to the achieved quality as its

importance. However, quantification of the packet importance is challenging in prac-

tice as it requires the knowledge of per-packet distortion information, which can only

be extracted during the encoding process. Furthermore, the importance of a packet

is also a function of time. For example, an ancestor packet becomes more important

as a larger number of its descendant packets are delivered to the client, because its

successful delivery will now enable the decoding of several packets.

4

• Loss Tolerance: As discussed above, the presentation quality suffers from missing

important packets. However, multimedia applications can tolerate losses or delays

experienced by less important packets. The effects of such erasures can usually be

repaired by the help of advanced error-concealment techniques.

• Scalability: While there can only exist a unique representation of the conventional

data, one can represent media content at different rates and qualities. The scalability

feature allows us to adapt the content according to the bandwidth and processing-

power capabilities of the clients.

It is the purpose of this thesis to develop a set of application-specific, media-aware and

network-adaptive solutions. We refer to these solutions as Multimedia Transport Protocols

(MMTP). In the next section, we present illustrative scenarios to demonstrate what actions

MMTP takes against lost and late packets in contrast to the ones that TCP/UDP would

take under the same circumstances.

1.2 Illustrative Examples

Let us consider a server-driven streaming system where the client streams real-time video

from the server, and the server is the sole decision point for taking the necessary actions

to ensure the timely delivery of the video packets. Assume that the raw video is encoded

with a standard MPEG-like source coder at 20 frames per second. We assume a simple

group-of-pictures (GOP) structure of IPPPPPPPPP, in which decoding a P-frame requires

the decoding of previous frames in the same GOP. For the sake of illustration, each frame

is assumed to be transmitted in a single video packet. We label each packet with the

frame type (written inside the rectangular boxes representing the packets) and its deadline

(written above the packets at the client side and below at the server side). The client sends

an acknowledgement (ACK) packet to the server for each packet it receives.

1.2.1 Packet Interdependencies

For the GOP structure above, we observe a strict dependency among the packets. Conse-

quently, any lost or late packet impedes the decoding the rest of the frames in the same

5

GOP. Recall that in case of streaming over TCP, a video packet might be delayed because

of the TCP’s rate control algorithm, while under the regime of an unreliable UDP-based

service model, it never finds a chance to be retransmitted, if it gets lost. Now, consider

the lost I-frame in Figure 2, whose absence halts the decoding process until the decoder

receives the subsequent I-frame, and hence, causes a severe quality degradation. One naive

way to overcome this problem is to suspiciously transmit this I-frame multiple times at

the beginning. Although it is clear that more and preferably earlier transmission attempts

would increase the chance of on-time delivery of this packet, from the networking point of

view, it is not practical to transmit the same packet several times. A better approach would

be to do a timely retransmission for the lost I-frame before its decoding deadline passes.

P

400

P

450

P

500

I

550

P

600

P

650

P

700

P

750

P

800

P

850

P

400

P

450

P

500

P

550

I

600

P

650

P

700

P

750

P

800

P

350

400 450 500 550 600 650 700 750350250 300200

Client

Server

time

(ms)

Figure 2: Illustration of error propagation in case of streaming over UDP with no retrans-
missions.

1.2.2 Early/Late Transmissions

Determining the retransmission time of a packet is difficult yet extremely important. It

is never a clear-cut decision whether to transmit a new packet or retransmit an already-

transmitted packet since it is impossible to determine whether the missing packet has been

lost. Retransmitting a packet at an early stage can be redundant, as it may generate

duplicate packets, whereas a late attempt may fail to deliver the packet on time, even if it was

successful. On the other hand, a well-timed retransmission increases the chance of timely

delivery of the packet, and consequently, decreases the expected distortion experienced at

the client side. Naturally, there exists a rate-distortion trade-off that depends on when the

video packets are (re)transmitted.

6

To elaborate more on this point, let us consider an I-frame packet with a delivery

deadline of 550 ms. Assume that the server transmits this packet for the first time at

t = 250 ms and for the second time at t = 400 ms as shown in Figure 3-(a). Such a greedy

policy for an I-frame might be justified by the importance of this particular packet. However,

if the first transmission is successful, the server will have wasted a transmission opportunity,

which could have been used for another packet. Now, consider the opposite scenario where

the server wants to reduce the chance of wasting bandwidth and waits for a long time before

doing the retransmission. As depicted in Figure 3-(b), if the first transmission attempt fails

to deliver the packet, the second transmission will likely be too late.

I

550

I

550

400 450 500 550 600 650 700 750350250 300200

I

550

I

550

Packet

Deadline

Redundant

Retransmission

Client

Server

time

(ms)

(a)

I

550

I

550

400 450 500 550 600 650 700 750350250 300200

I

550

I

550

Packet

Deadline

Late

Retransmission

Client

Server

time

(ms)

(b)

Figure 3: Illustration of redundant and late retransmissions. A retransmission can be
redundant if it is too early (a), or ineffective if it is too late (b).

Recall that the loss of an I-frame renders the rest of the frames in the same GOP totally

useless. In this case, the client must freeze the last-displayed frame for the duration of the

entire GOP. To prevent such an impairment, the server has to ensure the successful delivery

of this frame to the client. Therefore, against a possible loss event the server should have

7

an extra transmission opportunity for the I-frame. To this effect, the server can transmit

the I-frame at an earlier time. For example, in Figure 4-(a), the I-frame with a deadline

of 550 ms is transmitted at t = 250 ms before the frames with sooner deadlines. Although

the first transmission attempt for the I-frame fails, the server retransmits it at t = 450 ms,

and the I-frame is successfully delivered to the client before its deadline. The remaining

packets are also received by the client before their deadlines despite the packet reordering.

As a result, the client does not experience any quality degradation.

1.2.3 Inferring Delay and Loss Characteristics

The recent experimental studies on both Internet data [6] and video [7] traffic show that

packet loss events occur in bursts rather than in isolation. Particularly, when packets are

transmitted at high bitrates, i.e., when the inter-packet spacing is short, loss events on

consecutive packets are highly correlated. Hence, when there is congestion, it is likely that

several packets will be lost. In practice, flows experiencing loss reduce their transmission

rates to help the network mitigate the congestion. However, this rate reduction prohibits

the streaming server not only from transmitting new packets but also from retransmitting

the lost ones. Even if the server does not decrease its rate and keeps transmitting, these

packets may be dropped or excessively delayed during a long-lasting congestion. To obviate

such situations, the server has to take not only reactive but also proactive actions.

Consider Figure 4-(b) where the successive packets start experiencing longer delays. At

t = 320 ms, the server receives a late ACK for the P-frame with a deadline of 300 ms, and

cautiously identifies the incipient congestion. Consequently, it immediately transmits the

I-frame with a deadline of 550 ms, skipping the P-frame with a deadline of 500 ms. This is

because the congestion may get worse, and delaying the I-frame until the next transmission

opportunity may render its transmission useless. At the end, the I-frame is delivered before

its decoding deadline, as are the succeeding frames. With this proactive approach, the

server avoids a severe drop in the video quality at the expense of only skipping the least

important P-frame in the previous GOP.

It is evident from Figure 4-(b) that if the network congestion lasts for a longer duration,

8

I

550

P

400

P

450

P

500

I

550

P

600

P

650

P

700

P

750

P

800

P

550

I

400

P

450

P

500

P

550

I

600

P

650

P

700

P

750

P

350

400 450 500 550 600 650 700 750350250 300200

Client

Server

time

(ms)

(a)

300 350 400 450 500 550 600 650250150 200100

P

300

P

350

P

400

P

450

P P P

350

I

400

P

450

P

550

P

600

P

650 700 750

P

300

P

250

I

550

P

600

P

650

Client

Server

time

(ms)

(b)

Figure 4: Transmitting more important packets at earlier stages (a) and inferring path
conditions (b) allow us to improve the error-control performance.

the server may not be successful in delivering the I-frame on time no matter in which order

it schedules the (re)transmissions. In other words, clever design has its limitations when the

network performs very poorly. However, even for such circumstances we challenge ourselves

in developing novel methods that are capable of coping with the poor network performance

to the greatest extent possible. We will study some of these techniques in Chapter 5.

1.3 Relation to the State-of-the-Art

In the last decade, there has been a tremendous interest in multimedia communications from

both media-processing and networking research communities. While our goal in this section

is to provide an overview of the prior work on different topics in multimedia networking,

we can only give a glimpse of it. However, in the subsequent chapters, we will survey the

related work about the problems under discussion in detail.

We can classify the prior art on handling errors and losses in multimedia communica-

tions into two main categories, namely transport-level and application-level approaches [8].

9

Error control at the transport level is essential to maintain a certain quality-of-service

(QoS) level for multimedia applications. Forward error correction (FEC) and automatic

repeat request (ARQ) are the two basic error-control methods. Studies using FEC focus

on optimizing the redundancy level according to the channel and media-source parame-

ters [9]. Channel-adaptive FEC is widely used in wireless networks, which are characterized

by high bit-error rates [10–12]. Unequal importance of the media packets is effectively han-

dled by the incorporation of unequal error protection (UEP) techniques into FEC [13–20].

Delay-constrained ARQ-based error recovery attempts to meet the real-time requirements of

multimedia [21–24]. Hybrid combinations of FEC and ARQ schemes have also been demon-

strated to improve the performance of media applications over wireless networks [25, 26].

Robustness to transmission errors can further be improved by application-level tech-

niques. These approaches are effective for those communication scenarios where the error-

control mechanisms deployed in the underlying system cannot be optimized for media.

Encoder-side optimizations focus on providing spatial and temporal error-resiliency fea-

tures, which can be accomplished by the use of error isolation, robust binary encoding and

error-resilient prediction methods [27–33]. At the client side, the decoder may also per-

form error concealment to predict the missing parts of the video or audio from the intact

parts [29, 34–39]. The use of layered coding with UEP [14, 40, 41] and multiple description

coding with diversity techniques [42–46] have been shown to be other effective application-

level error-resiliency methods.

Streaming scalable video with optimized packet scheduling drew attention from re-

searchers because of the hierarchical dependency among the layers. First, Podolsky et

al. [47] used an offline Markov chain analysis to estimate the expected distortion of each

candidate transmission policy. An online and efficient solution algorithm to a similar prob-

lem was later proposed by Miao and Ortega [48–50]. They presented an algorithm called

expected run-time distortion to estimate the time-varying importance of media packets ac-

cording to the feedback. Cuetos and Ross also presented an infinite-horizon Markov decision

process (MDP)-based joint scheduling and error-concealment algorithm for MPEG-4 FGS

video [51]. Motivated by [47], Chou and Miao proposed a generic rate-distortion optimized

10

packet scheduling framework for ARQ-based loss recovery in [52], followed by [53–57]. The

best packet to (re)transmit was decided by an MDP analysis that was based on the prior

transmission history, channel statistics and source characteristics. Kalman et al. used the

same framework with adaptive playout and multiple deadlines [58, 59]. Chakareski and

Girod investigated diversity schemes within a similar framework [60, 61]. Finally, Kang and

Zakhor proposed a different packet scheduling technique for wireless video that determined

the importance of a frame by its relative position within the GOP and a motion-texture

discriminator [62].

1.4 Contribution of the Thesis

The theme of this thesis is to develop a collection of end-to-end and system-level MMTP

solutions for a variety of multimedia applications, and conduct a comparative performance

analysis against the state-of-the-art methods. Considering that today’s multimedia services

offer an assortment of applications that can run over different types of networks, it is

exceedingly difficult to look into every possible scenario. Instead, in the remainder of the

thesis, we delve into the most fundamental scenarios. Nonetheless, the lessons we learn

from these studies should also shed light on more specific scenarios.

We make the following contributions in this thesis:

• We develop an optimal multi-path transmission framework for streaming error-resilient

videos over overlay networks in low-delay video applications,

• We experiment with and analyze the performance of the single/multi-hop and single/multi-

path transmission methods for streaming high-resolution videos in mesh networks,

• We formulate a mathematical framework that models on-demand video delivery from

multiple content servers, and develop a packet scheduling algorithm that achieves the

rate-distortion optimal performance within a multi-server streaming system,

• We investigate the use of proxies to overcome the problems associated with packet

loss, large delay and delay jitter in interactive video applications,

11

• We characterize the packet dynamics in networked-video applications, propose models

for packet delay, develop accurate delay and delay-boundary prediction methods, and

interpret the correlation between the packet delay and packet loss events,

• We engineer media-aware and network-adaptive error-control methods, and lay out a

framework that computes the optimal actions for error control.

In addition, we discuss several issues from an implementation point of view, and summarize

our own experiences.

1.5 Organization of the Thesis

The rest of this thesis is organized as a series of chapters, where we study a separate research

problem in each chapter. At the beginning of every chapter, we motivate the problem and

examine the related work in detail. We provide experimental and/or simulation results

along with a thorough discussion to support the proposed solutions. We conclude each

chapter with a summary of the main findings.

The outline of the thesis is as follows:

Chapter 2 studies optimal streaming of multiple description video over multiple paths.

Models for multi-path streaming and methods for optimal multi-path selection are discussed.

Several simulation results are provided to show the effectiveness of the proposed approaches.

Chapter 3 explores the potential benefits of wireless mesh networks for residential video

applications that require high bandwidth and low latency. Results from experiments that

involve single-hop, multi-hop, single-path and multi-path transmission methods are pre-

sented.

Chapter 4 studies streaming on-demand video from multiple servers. A mathematical

framework is laid out, and a client-driven rate-distortion optimal packet scheduling algo-

rithm is developed. Simulation results are presented to show the advantages of multi-server

streaming over single-server streaming.

Chapter 5 tackles the problem of communicating interactively over large distances and

proposes a proxy-based solution to deliver sub-second latency to users faraway from each

12

other. Results from Internet experiments between the U.S. and Europe are presented to

demonstrate the effectiveness and potential benefits of the proposed approach.

Chapter 6 investigates the packet delay characteristics in networked-video applications

and studies autoregression-based delay and delay-boundary prediction methods. Several

simulation results and a detailed comparative analysis of different prediction methods are

provided.

Chapter 7 investigates the correlation between the packet delay and packet loss events,

and presents a mathematical framework that optimizes the error-control actions based on

the urgency and importance of the media packets.

Chapter 8 summarizes the contributions of this thesis and provides a brief discussion on

future research directions.

13

CHAPTER II

OPTIMIZED MULTIPLE DESCRIPTION VIDEO COMMUNICATION

OVER OVERLAY NETWORKS

Real-time video communication over the Internet poses several challenging problems due

to its stringent delay/loss requirements and complex network dynamics. A promising ap-

proach to alleviate the severe impacts of these dynamics is to transmit the video over

diverse paths. For such an environment, multiple description (MD) coding has been previ-

ously proposed to produce multiple independently-decodable streams that are routed over

partially link-disjoint (non-shared) paths for combatting bursty packet losses and error

propagation. However, selecting these paths appropriately is fundamental to the success

of MD streaming and path diversity. Hence, in this chapter we develop models for MD

streaming over multiple paths, and based on these models we propose a multi-path selec-

tion method that chooses a set of paths maximizing the overall quality at the client under

various constraints. The simulation results with MPEG-2 videos show that sizeable av-

erage peak signal-to-noise ratio (PSNR) improvements can be achieved when the source

video is streamed over intelligently-selected multiple paths as opposed to over the shortest

path or maximally link-disjoint paths. In addition to the PSNR improvement, end-users

experience a less-interrupted streaming quality. Our work also considers the architecture

and mechanisms by which multi-path streaming can be accomplished in a conventional IP

network.

2.1 Introduction†

An elusive goal has been to find effective solutions for low-delay video communication

applications over the IP networks with time-varying conditions. The timeliness requirements

in this definition can only be satisfied through an adaptive time-sensitive approach in the

†Parts of this chapter were previously published in [63–66].

14

best-effort networks. Specifically, real-time video communication demands uninterrupted

bandwidth, and rigid bounds on the packet loss and delay to achieve a minimally-acceptable

quality. As discussed in Chapter 1, the predominant transport protocols of the Internet are

inadequate to provide such guarantees.

To address this problem, a number of error-resilient streaming techniques have been

proposed to date. These techniques mainly focus on the source-coding level solutions.

One such popular approach is scalable video (SV) coding, where a base layer and several

enhancement layers are encoded in a hierarchical way. The base layer provides a low but

acceptable level of quality, while each additional enhancement layer refines the quality.

Despite its high redundancy rate, SV coding can be employed when there are several clients

with different bandwidth and processing-power capabilities streaming from a single source.

For instance, while a desktop client with a broadband Internet connection subscribes to all

layers, a relatively lower-bandwidth wireless client may subscribe to only the base layer.

As its connection speed improves later, it may also receive the enhancement layers as well.

This scalability feature makes SV coding a practical solution to support video multicasting

in heterogeneous environments [67–69]. However, any erasure in the base layer reception

still interrupts the decoding process and renders other layers completely useless, resulting

in the underutilization of the network resources.

A specific approach to SV coding is multiple description (MD) coding. Similar to SV

coding, MD coding also generates several substreams, which are called descriptions. What

differentiates MD coding from SV coding is that MD coding does not impose any depen-

dency among its descriptions so that each extra successfully-received description improves

the quality further regardless of what has been received so far1. This self-reliance of the de-

scriptions provides MD streaming highly-efficient error-resiliency features. However, to fully

utilize these features, one should ensure that the description erasures are not concurrent.

A conceptually-straightforward way to achieve this is to stream the descriptions over di-

verse paths. The resulting weak correlation between the packet loss probabilities on diverse

1In Appendix B, we provide a detailed comparative analysis of MD and SV streaming.

15

paths makes MD streaming a good choice for streaming applications that cannot support

the well-known error-control/protection methods, such as automatic repeat request (ARQ),

forward error correction (FEC) and packet interleaving. For this reason, MD streaming

is envisioned as a promising solution for multimedia applications that demand interactiv-

ity such as videotelephony, videoconferencing, virtual environments and VoIP over lossy

networks [42].

With this motivation, Apostolopoulos studied path diversity along with MD coding to

improve the reliability of the streamed video [43]. In this work, he showed how an erasure

in a description could be recovered by other descriptions as long as the errors did not

occur simultaneously. He further analyzed the effects of bursty loss behavior on the video

quality and concluded that minimizing the dependency between the paths resulted in a

better quality of video [70]. Several other studies have also been proposed recently [71–78].

As a common goal, these studies attempt to alleviate the severe effects of the congested

links or link failures. With the exception of [70, 76] and [77], these studies mainly focus on

transmitting the substreams over multiple statistically-independent paths between two end-

hosts. However, as we demonstrate in Section 2.5, these paths or the default Internet paths

do not necessarily make the best use of the error-resiliency features of MD streaming. In

other words, avoiding joint links does not guarantee the best quality of video. “Good” joint

links should not be sacrificed - one should try to make the best possible use of them. More

importantly, totally link-disjoint paths are rarely available in today’s Internet2. Hence,

using joint links is inevitable in many cases. Consequently, the following question arises:

“How should one select the multiple paths for MD streaming?”

In the literature, there are only few studies that have attempted to answer this question.

Apostolopoulos et al. present path diversity models and path selection methods based on

only the packet loss characteristics of the paths in point-to-point [70] and multipoint-to-

point networks [76]. Liang et al. study video streaming using rate-distortion optimized

reference picture selection and path diversity. Given two paths, the proposed path selection

2Streaming over link-disjoint paths might be achievable in ad hoc networks (See [71, 72, 79, 80] for

details). However, we consider only the Internet in this study.

16

approach is to send the packet over the path from which the most recent acknowledgement

is received [74]. In a work by Nguyen and Zakhor [77], a practical approach is used to select

a redundant path in addition to the default Internet path such that the number of joint

links between these paths is minimized. If more than one such paths are found, the one

with the minimum latency is selected. Despite the fact that these studies propose reason-

able path selection methods, they do not consider several important aspects of the media

characteristics, network conditions (e.g., bandwidth, packet loss rate, burst length, delay

and jitter) and application requirements. All these aspects should be jointly taken into

account in the multi-path selection along with the network-connectivity information. To

address this point, we first develop a framework that models MD streaming over multiple

paths and then use this framework to select the optimal set of paths in a given network such

that the streaming quality at the client is maximized, or equivalently, the distortion is min-

imized3. The simulation results with the optimal multi-path selection clearly demonstrate

the quality improvements over previously-proposed path selection methods. In addition,

optimal multi-path MD streaming is shown to perform better than the best single-path

single description streaming in most cases, as is discussed in Section 2.5.2.

The rest of the chapter is organized as follows: In Section 2.2, we provide an overview of

MD coding. Section 2.3 introduces the network model envisioned in our work. Multi-path

selection is discussed in detail in Section 2.4. Simulation results are presented in Section 2.5.

Finally, Section 2.6 concludes the chapter.

2.2 Multiple Description Coding

Multiple description (MD) coding is a source-coding technique that generates several de-

scriptions such that different levels of reconstruction qualities can be obtained from different

subsets of these descriptions. In contrast to scalable coding, there is no hierarchy among

the descriptions so that each description may be independently decoded. This property

makes MD coding highly suitable for packet networks where no prioritization exists among

3It should be mentioned that the proposed multi-path selection method is optimal within the context of

the network models and objective functions that are considered in this study.

17

the packets. MD coding provides this robustness at the expense of some reduction in the

compression efficiency.

A typical MD coding system is shown in Figure 5. A sequence of source symbols

{Xi}
N
i=1 is input to the MD encoder. This encoder produces two descriptions, which are

then transmitted over possibly different channels. If both descriptions are received intact

at the client, the central decoder is used to produce the highest quality of signal. However,

if only one description is received free of errors, the corresponding side decoder is used to

produce a signal of acceptable quality. The reconstructed signal and distortion at the kth

decoder are represented by {X̂
(k)
i }N

i=1 and Dk, respectively. rk denotes the rate in terms of

the number of bits per source sample on the kth channel.

Source Encoder

Decoder 2

Decoder 1

Decoder 0

Channel 1

Channel 2

{ }iX

(){ }1ˆ
iX

(){ }0ˆ
i

X

(){ }2ˆ
i

X

Figure 5: A typical MD codec with two descriptions.

Our objective is to estimate the end-to-end video quality in terms of the path parameters.

We start our derivation by relating the rates of the descriptions to the reconstructed signal

quality, or equivalently, to the distortion. Let us consider two descriptions generated at the

source. We define the average distortion at the kth decoder as

Dk = E





1

N

N∑

i=1

d

(
Xi, X̂

(k)
i

)
 k = 0, 1 and 2, (1)

where d(.) can be any distortion measure. Because of its popularity, we take d(.) as the

squared euclidian norm. To develop analytic expressions for the average distortion, we need

to choose a media type and source model. For that purpose, we assume that the source

is a compressed-video stream. However, the methodology presented here can be applied

to other media sources, e.g., voice and 3-D graphics, with their representative distortion

models.

18

For compressed-video applications, several models (e.g., [81–84]) have been developed

to estimate the distortion for a given source rate. Naturally, incorporating these models

into our framework would allow us to make more accurate distortion estimates. However,

we seek an easy-to-implement, yet representative model since the ones introduced in [81–84]

are computationally expensive, thereby reducing the practicality of the proposed multi-path

selection method.

Let us consider the illustrative rate-distortion curves in Figure 6. These figures are

produced by encoding various test sequences by a standard MPEG-2 encoder (TM5 [85])

with default settings. For distortion estimation, we use the following equation, where κ is

a model parameter:

D(rk) ≈
κ

rk
. (2)

For offline-encoded video sequences, the value of κ can be pre-computed. However, for

real-time encoding, an initial value is assumed for κ, and this value is refined as more frames

are encoded.

We note that the expression in (2) is the first-degree approximation of the distortion

model proposed by Chiang and Zhang [86]. Based on the empirical results of 10 video

test sequences, we observe that (2) fits the actual rate-distortion curves quite well, and its

accuracy is sufficient for our purposes. In Section 2.4, we derive a relation between the

source rate (rk) and end-to-end bandwidth on a path. Subsequently, by using (2) we will

estimate the distortion when the video is streamed over a given path.

There are various techniques for generating multiple descriptions. One of the more

straightforward methods is time-domain partitioning [43], which separates the even and

odd-numbered frames of a video sequence into two groups, and encodes them individually

to produce two descriptions. Likewise, the sequence may also be partitioned in the spa-

tial and frequency domain [87]. Other popular approaches are multiple description scalar

quantization (MDSQ) [88, 89] and multiple description transform coding (MDTC) [90]. In

MDSQ, multiple quantizers are used to generate descriptions, whereas correlating trans-

forms are used in MDTC. For brevity, we do not go into the further details of MD coding.

For an excellent survey, interested readers are referred to [42].

19

500 1000 1500 2000 2500
10

20

30

40

50

60

70

80

Rate (Kbps)

M
e

a
n

−
S

q
u

a
re

d
 E

rr
o

r

Actual

Estimated

(a)

500 1000 1500 2000 2500
10

20

30

40

50

60

70

Rate (Kbps)

M
e

a
n

−
S

q
u

a
re

d
 E

rr
o

r

Actual

Estimated

(b)

0 500 1000 1500
0

2

4

6

8

10

12

Rate (Kbps)

M
e

a
n

−
S

q
u

a
re

d
 E

rr
o

r

Actual

Estimated

(c)

0 500 1000 1500
0

10

20

30

40

50

60

70

Rate (Kbps)

M
e

a
n

−
S

q
u

a
re

d
 E

rr
o

r

Actual

Estimated

(d)

Figure 6: Actual and estimated rate-distortion curves for the Table Tennis (a), Foot-

ball (b), Miss America (c) and Foreman (d) sequences.

2.3 Envisioned Network Model

Achieving MD streaming over a conventional network involves two main issues: First, we

require a mechanism to continually monitor the network conditions. The collected infor-

mation is then evaluated to compute the application-specific routes. Second, we need an

infrastructure to transmit the descriptions over these routes, which would necessitate an

advanced routing mechanism in today’s Internet. Fundamentally, constraint-based routing

can only be achieved by going beyond the conventional destination-based routing algorithms

and providing mechanisms to explicitly manage the traffic inside the network. Because of

the current structure of the Internet, it is not easy to deploy such routing mechanisms at a

large scale. However, by abstracting the underlying network, one can emulate the desired

20

routing algorithm at higher layers. A popular way to achieve this is the overlay model. Over-

lays are emerging rapidly and envisioned to be an effective solution for futuristic streaming

applications [91]. With the overlay model, a virtual network is built over the real physical

topology, and the nodes in these virtual networks are connected with logical links. In this

section, we give an overview of our envisioned network model and briefly discuss how we

implement MD streaming within this model.

2.3.1 Overlay Model

A large number of emerging Internet applications are not able to utilize the network re-

sources at their full potential because of the fact that the underlying network does not

support many of the functionalities required by these applications. While the knowledge

of the physical topology and network status is essential for such applications to perform

well, this kind of information is generally not available to the end-hosts. To overcome these

difficulties, we consider an overlay infrastructure in this study. While there exist several

overlay studies such as Resilient Overlay Networks (RONs) [92] and X-Bone [93], a good

example for our case is Narada [94], which was proposed to support end-system multicast.

Narada is a protocol that constructs an overlay structure among participating nodes in

a self-organizing and fully-distributed manner. It has been shown that Narada is robust to

changes in group membership and node failures. Participating overlay nodes, which we call

O-nodes, start building the network without the knowledge of the physical topology. Using

constant probe messages, Narada continually refines the overlay structure in a controlled

fashion.

In building the overlay, Narada is mainly interested in the latency, whereas our goal is

to fully characterize the physical topology, and use this information to identify the joint

and disjoint links for a given set of paths and measure the link characteristics. This can be

achieved by assigning additional functionalities to the Narada protocol. Armed with these

capabilities, the O-nodes can identify the joint and disjoint links, measure the bandwidth,

packet loss rate, delay and jitter statistics, and exchange this information among themselves

with a routing protocol to construct and maintain the overlay network. Since the O-nodes

21

periodically probe each other, any change in this information is reflected to the end-hosts

so that they can take the necessary actions in the multi-path selection process. The details

of implementing such protocols can be found in [92, 95].

Given an overlay network, we first find the optimal set of paths from the server to the

client4. Then, we encode the path information, i.e., the addresses of the O-nodes to be

traversed, into the packet payload. This information is used by the O-nodes to forward

the incoming packets to the next O-node on the path. Note that we leverage the already-

deployed algorithms for routing the data and probe packets between the O-nodes. Hence,

the overall procedure is transparent to the physical network.

An advantage of using an overlay infrastructure is the savings in the path-computation

time. The number of O-nodes is typically a small percentage of the number of nodes in

the entire network. Hence, the processing power and computation time required for path

selection decreases dramatically. However, deploying a larger number of O-nodes might

produce alternative paths. This, in turn, can result in a better streaming quality at the

expense of increased computational complexity.

In this section, we briefly outlined the envisioned network model. The further design

and performance issues are beyond the scope of this study. Given that our primary focus

is selecting multiple paths, henceforth, we assume the availability of an infrastructure that

runs the required protocols.

2.3.2 Definitions

An overlay network is characterized by a set of nodes N = {N1,N2, ...,Nn} and a set of

links, L. We denote the directed link between nodes Nu and Nv by lu,v. A path PS→C is

defined by a set of nodes and links connecting nodes NS and NC . The set of the nodes on

this path is denoted by NS→C , and the set of the links on this path is denoted by LS→C .

Let P1
S→C and P2

S→C be any two paths. These paths are said to be totally link-disjoint

if and only if L1
S→C and L2

S→C do not have any common elements. If the sets L1
S→C and

4In a video communication application, both end-users send and receive video packets. However, for

the sake of clarity, in the rest of the chapter, we consider video transmission in one direction, i.e., from the

server to the client.

22

L2
S→C intersect, the links belonging to both paths are referred to as joint links, whereas the

remaining links are referred to as the disjoint links.

2.3.3 Link Parameters

The parameters for link lu,v are defined as follows:

• bu,v denotes the bandwidth between nodes Nu and Nv.

• pu,v denotes the observed packet loss probability between nodes Nu and Nv. pu,v values

for different links are assumed to be independent since the corresponding observations

are autonomous.

• tu,v denotes the minimum delay between nodes Nu and Nv. This includes processing,

transmission and propagation delays, but not varying queuing delays.

• ju,v denotes the jitter between nodes Nu and Nv. It is defined as the difference between

the longest delay experienced within a pre-defined time period and tu,v. The collection

of several ju,v values defines the variation in the forward-trip times.

Note that since the links are directed, even though links lu,v and lv,u have the same

bandwidth and delay, their packet loss rate and jitter values may differ depending on the

amount of traffic flowing in each direction.

2.4 Multi-Path Selection

In this section, we introduce our multi-path selection method. Let us consider two paths,

P1
S→C and P2

S→C , between nodes NS and NC , which are referred to as a path pair. We

do not require the paths to be different, i.e., P1
S→C may be the same as P2

S→C . Our goal

is to estimate the expected end-user quality in terms of the link parameters making up

these paths. In other words, we want to derive a function F that estimates the expected

distortion at the client, E{D}, based on the link parameters. That is,

E{D} = F
(
bu,v, pu,v, tu,v, ju,v

)
for ∀lu,v ∈ Lk

S→C , k = 1, 2. (3)

In this study, we consider only the two-description case due to its efficacy. Although (3)

can be generalized to a larger number of descriptions in a straightforward manner, finding

23

more than two good diverse paths in the Internet is not practical. Moreover, generating

more than two descriptions increases the overhead of MD coding, and the gained diversity

is usually insufficient to justify this overhead.

Recall that our ultimate goal is to find the path pair that minimizes the cost function,

F. For two descriptions, we have four possible cases determined by the description on-time

arrivals. Let D1,1 (D0,0) denote the achieved distortion when both descriptions arrive intact

on time (are lost or delayed). Similarly, let D1,0 (D0,1) denote the achieved distortion when

the first (second) description arrives intact on time, but the other one is lost or delayed. In

this case, the missing description is concealed from the received description. Given these

distortions, we can write the expected distortion at the client as

E{D} =

P1,1︷ ︸︸ ︷
P{Both received on time}×D1,1 (4)

+

P1,0︷ ︸︸ ︷
P{1st received on time & 2nd lost or delayed}×D1,0

+ P{1st lost or delayed& 2nd received on time}︸ ︷︷ ︸
P0,1

×D0,1

+ P{Both lost or delayed}︸ ︷︷ ︸
P0,0

×D0,0.

The success probabilities, P1,1, P1,0, P0,1 and P0,0, are derived later in this section.

The shared parameters due to the joint links play a critical role in the multi-path

selection process. Therefore, the selection process must consider all possible path pairs.

One cannot evaluate the paths individually, rank them, and then choose the best two; this

does not necessarily select the optimal pair because of the dependencies between the paths.

For the sake of clarity, throughout the section we use k to denote the kth path and its

parameters, where k ∈ {1, 2}. We start our derivations with distortion.

2.4.1 Bandwidth - Distortion Relation

In this study, we adopt the time-domain partitioning method with two descriptions to illus-

trate the relation between the distortion terms (D1,1 −D0,0) and link bandwidths. Although

the presented distortion models are developed for this particular MD coding scheme, (4)

can be applied to any MD coding scheme by incorporating its respective distortion model,

24

i.e., by replacing the distortion terms (D1,1 −D0,0) with the respective ones.

Let Bk denote the end-to-end bandwidth on path Pk. Naturally, Bk is the minimum

bandwidth over all the links on Pk. That is,

Bk = min
{
bu,v : ∀lu,v ∈ Lk

}
. (5)

In Section 2.2, we provided an equation to estimate the distortion at a given source

rate for a compressed-video source. Now, we give the relation between rk in (2) and Bk.

Assuming that the kth description is encoded with a rate of rk bits per pixel (bpp) at a frame

rate of F (frames/second), and the source video has a resolution of W ×H (pixels/frame),

we have

rk =
Bk

W ×H × F × c
(bpp), (6)

where c is a known constant that depends on the chroma sub-sampling format. Given this

relation, we first compute D1,1, i.e., the distortion rendered at the client when both descrip-

tions are received intact on time, as the average of the individual description distortions.

That is,

D1,1 =
1

2
×
κ′

B1
+

1

2
×
κ′

B2
, (7)

where κ′ is a constant that represents the constant terms in (2) and (6). Note that in (7) we

assume that the bandwidth of the bottleneck joint link, say B∗, can support the description

rates of B1 and B2 simultaneously. If this is not the case, the bandwidth of the bottleneck

joint link should be shared by the descriptions in such a way that B∗ = B1 +B2.

Second, to derive the expression for D1,0 we need to consider the error concealment

at the client. Recall that the time-domain partitioning method separates the even and

odd-numbered frames, and encodes them individually to produce two descriptions. When

only the first description (even-numbered frames) is received successfully, the missing odd-

numbered frames can be reconstructed at the client by using the even-numbered frames. A

common technique used for this purpose is motion-compensated temporal interpolation [27].

As expected, the quality of the reconstructed odd-numbered frames increases with the rate

at which the even-numbered frames are encoded. However, because of the imperfections

in the reconstruction, their qualities will be lower compared to the even-numbered frames.

25

To incorporate this increase in the distortion of the reconstructed frames, we use a scaling

factor γ and express D1,0 as follows:

D1,0 =
1

2
×
κ′

B1
+

1

2
×

(
γ ×

κ′

B1

)
. (8)

Our experiments indicate that this expression provides a good approximation to the re-

alized distortion. For the test sequences we use in the simulations in Section 2.5, we quantify

the value of γ for different rates. We observe that although its value varies depending on

the test sequence, γ is fairly robust against the rate variations. In our case, γ numerically

equals 2.3, 3.4 and 1.5 for the Table Tennis, Football and Paris sequences, respec-

tively. For non-interactive applications, the value of γ can be pre-computed. For interactive

applications, a default γ value, reflecting the application characteristics (e.g., a value of 1.5

for videotelephony applications) can be used. Note that D0,1 is also expressed in a similar

way by replacing B1 with B2 in (8).

Recall that in this study we employ the time-domain partitioning method to generate

two descriptions. Naturally, this method is suitable for the balanced mode of MD coding,

where the rates of the descriptions are likely to be equal or close to each other in order

to avoid flickering [96]. However, in some cases the candidate paths may have unequal

bandwidths, and if the γ is sufficiently low, reconstructing the low-quality description from

the high-quality description may result in lower distortion in terms of the mean-squared

error than decoding the original low-quality description. In such cases, one can argue that

transmitting the low-quality description is useless. However, transmitting both descriptions,

regardless of their rates, is still essential in our system because of two reasons: First,

decoding the video from only the high-quality description causes drift error and disturbs

the perceptual video quality. Our quality-assessment tests show that the video produced

from both descriptions is usually preferred over the video decoded from only the high-quality

description since the former one gives a more natural, continuous, and hence, more pleasant

video. Second, the low-quality description enables us to decode and display the video when

the high-quality description is lost or late for decoding. If it is not transmitted at all, the

error-resiliency features of MD streaming cannot be exploited, and the system becomes a

26

pure single description streaming system.

The final distortion term in (4) is D0,0, which is the distortion incurred when none of

the descriptions are decoded at the client. To compute D0,0, we assume an average value

for each pixel and compute the corresponding expected error. The resulting large value

motivates our method to reduce the number of simultaneous description losses.

2.4.2 Computation of Success Probabilities

The next step in the computation of (4) is to find the success probabilities (P1,1 − P0,0).

Each of these probabilities is composed of two components: The first component computes

the probability that the description arrives at the client in a finite duration, i.e., the de-

scription is not lost during the transmission. We refer to this component as the arrival

probability. On the other hand, for the second component we are interested in computing

the probability that the description arrival occurs before a pre-specified deadline. This

component is referred to as the on-time delivery probability. While in a typical streaming

application, the deadline constraint may be relaxed by pre-buffering a large amount of data,

this ability is often limited in interactive applications. Consequently, large variations in the

packet arrival times pose impediments to the timely delivery, rendering the on-time delivery

probability as important as the arrival probability. A detailed discussion about the impact

of end-to-end path delay on the streaming quality is presented in [7, 97].

2.4.2.1 Arrival Probability

We adopt the well-known two-state Markovian Gilbert-Elliott (GE) model [98, 99] to de-

scribe the temporal behavior of packet losses on a link [6, 7]. The pertaining state-transition

diagram is given in Figure 7. In this figure, NC (non-congested) and C (congested) represent

the packet arrival and loss states, whose steady-state probabilities are given by πNC = β
α+β

and πC = α
α+β , respectively. For the link lu,v, we compute the transition probabilities from

αu,v =
pu,v × βu,v

1 − pu,v
and βu,v =

1

Lu,v
, (9)

where Lu,v is the average burst length depending on the inter-packet spacing [7]. We note

that if the dependency between the loss events on a link was ignored, the optimal solution

27

would be to send all descriptions over the best single path (assuming that the bandwidth

on this path could support both descriptions simultaneously). The GE model provides a

simple expression for the characterization of individual links. However, the derivation of

the end-to-end arrival probabilities on partially link-disjoint paths is not trivial. Next, we

focus on this derivation.

NC C1 α−

α

β

1 β−

Figure 7: State-transition diagram for the Gilbert-Elliott model.

Preliminaries:

Consider the generic topology depicted in Figure 8, where two candidate paths split at node

NZ , and later merge again at node NQ. The joint links between the server and segregation

point (NZ) form a sub-network denoted by Networkjoint. Beyond node NZ , the disjoint

links traversed by each path until node NQ are also grouped to form the corresponding

sub-networks denoted by Networkk
disjoint. Suppose that the server generates two correlated

descriptions at every ∆t units of time, and the descriptions produced at the time instant ti

are denoted by Xti
1 and Xti

2 .

In (4), we consider the loss dependency between the correlated descriptions Xti
1 and Xti

2 ,

but not the dependency between the descriptions transmitted at successive time instants

(e.g., Xti
1 and Xti+∆t

1). A direct implication of this is that we do not take into account the

temporal error propagation in the cost function. However, this assumption is well justified

in our scenario since modeling the temporal error propagation does not affect the path-

selection results. Recall that our goal is to minimize the average distortion rather than the

absolute distortion. Consideration of the absolute distortion and temporal error propagation

would only be necessary if the path-selection decision was given on a per-packet basis (See

Chapter 4 for details). However, in our case, until a new selection is made upon receiving

new feedback from the O-nodes, the selected paths are used to transmit all packets in each

28

description regardless of the packet content.

Client

Z Q

Networkjoint

Network
2

disjoint

Network
1

disjoint

Server

5

1

t
X 4

1

t
X

5

2

t
X 4

2

t
X

t∆
�����

3

2

t
X

3

1

t
X 2

1

t
X

1

1

t
X 0

1

t
X

2

2

t
X 1

2

t
X

0

2

t
X

Figure 8: A sketch describing the path segregation method.

After descriptions Xti
1 and Xti

2 are generated, they are transmitted back-to-back in

packets over Networkjoint. If no loss occurs, these packets arrive at node NZ back-to-back

approximately at the same time. In this period, it is likely that these packets are in the same

burst period. Hence, we employ a GE model for Networkjoint. However, once the paths

split at node NZ , these two packets are routed over different paths. In [70], Apostolopoulos

et al. have shown that the bursty packet losses experienced by a description have the same

impact as those of the random losses, provided that the descriptions are not concurrently

lost. Considering that the probability of simultaneous loss on Networkk
disjoint is small, we

model the loss behavior on disjoint links with a Bernoulli distribution, where the loss events

are independent of each other.

Path Segregation:

When traversing Networkk
disjoint, descriptions Xti

1 and Xti
2 experience uneven delay and

jitter. Thus, they are likely to arrive at node NQ at different times. The critical question is

whether or not these descriptions will meet at node NQ within the same burst period. This

is important to our modeling since their loss probabilities will remain independent of each

other if there exists a sufficient time gap between them, even though they are traversing the

same links beyond node NQ. In fact, providing a time gap between the descriptions in such

a way that they are not within the same burst period is the essence of packet interleaving

techniques for MD streaming [100].

To quantify this point, we conduct simulations on several topologies with various link

29

delay and jitter attributes. The simulation setup is given in detail in Section 2.5. Our

goal is to determine the percentage of the correlated descriptions that fall into the same

burst period at node NQ. The results show that (i) only 7% of the descriptions fall into

the same burst period at node NQ, (ii) 3% fall into the same burst period between node

NQ and the client, although they were not in the same burst period at node NQ, and (iii)

90% do not fall in the same burst anywhere between node NZ and the client. The reason

behind this result is that the proposed multi-path selection method naturally chooses good

links with low packet loss rates. These links tend to have short burst periods (See [6, 7]

for details). Hence, the delay difference experienced over Networkk
disjoint is sufficient for

the correlated descriptions to arrive in different burst periods. Based on this observation,

we deduce that once the paths split, the loss events on the rest of the paths should be

considered independent despite a possible merging at a later node. Hence, we replicate

any joint link beyond the segregation point in each Networkk
disjoint and employ individual

Bernoulli models for Networkk
disjoint. In fact, modeling these loss events by a GE model

(rather than Bernoulli models) would have underestimated the arrival probabilities. We

refer to this method as path segregation.

In the simulations, an ill-posed scenario, when path segregation overestimates the arrival

probability, is the case when there is a long-lasting congestion on the access link of the client,

i.e., on the last link of the path. If the client is not multi-homed, i.e., it is connected to

the Internet over a single interface, path diversity is unfortunately not adequate by itself

to successfully deliver the packets on time during this congestion. However, we anticipate

that with the increasing popularity of emerging broadband technologies, the performance

of access links will improve considerably.

Link Aggregation:

Generally, the joint sub-path in Networkjoint is a combination of several Markovian links

in series. Although it is straightforward to compute the arrival probabilities by considering

each of these links individually, this computation would be largely simplified if the combi-

nation of these links could be approximated by a single Markovian link. To do so, one has

30

to find the joint GE parameters for the approximated link, namely αjoint and βjoint. Recall

that the packet loss rates of consecutive links are independent. Hence, we can directly

compute the packet loss rate for Networkjoint from

pjoint = 1 −
∏

∀lu,v∈Networkjoint

(
1 − pu,v

)
. (10)

However, estimating the joint average burst length, Ljoint, is not as trivial. This is because

the bursty periods in a stream accumulate as the stream goes over more links, i.e., the

effective average burst length increases. Although there are several approaches to handle

this problem [98, 99], they usually require a higher-order state analysis. To estimate Ljoint

empirically, we have conducted simulations on various topologies with different loss charac-

teristics. From studying these simulations, we came up with the following approximation:

Ljoint ≈
1

pjoint
×

∑

∀lu,v∈Networkjoint

(
pu,v × Lu,v

)
. (11)

Once we have pjoint and Ljoint, we compute αjoint and βjoint by plugging pjoint and

Ljoint into (9). This method is called link aggregation since it combines several Markovian

links into a single one. The simulation results show that (11) successfully estimates Ljoint.

For a wide range of link parameters, the difference between the measured and estimated

burst lengths was observed to be between 0.1% and 4.1%. On the other hand, since the

disjoint sub-paths in Networkk
disjoint are modeled as Bernoulli, we can directly convert these

links into a single Bernoulli link whose loss probability is given by

pk
disjoint = 1 −

∏

∀lu,v∈Networkk
disjoint

(
1 − pu,v

)
. (12)

Finally, the arrival probability for a path is the product of the arrival probabilities on

its joint and disjoint sub-paths.

2.4.2.2 On-Time Delivery Probability

The second step in computing the success probabilities is to derive the on-time delivery

probabilities. Let Tk denote the minimum end-to-end delay for path Pk. We can write Tk

as

Tk =
∑

∀lu,v∈Lk

tu,v. (13)

31

We require Tk to be smaller than a value that is required by the application. Otherwise,

it means that all packets transmitted over this path will be late by the time they are

received. For many two-way interactive applications, a forward-trip time less than 200 ms

can be considered as the tolerance limit. A recent empirical study [97] reports that modem

users can experience a jitter of 200 ms, or more, with a probability of 50%. That is, in half

of the communication session the interactivity is hindered. For the high speed connections

such as DSL and LAN, this probability reduces to 20%, but has still a high value. This

variation in the delay adversely affects the on-time delivery probability.

Let Jk denote the end-to-end jitter on path Pk. We divide Jk into two components, jjoint

and jk
disjoint, for the jitters experienced in Networkjoint and Networkk

disjoint, respectively.

Assuming that jitters on the consecutive links are independent, we compute Jk as follows:

Jk =
∑

∀lu,v∈Networkjoint

ju,v

︸ ︷︷ ︸
jjoint

+
∑

∀lu,v∈Networkk
disjoint

ju,v

︸ ︷︷ ︸
jk
disjoint

. (14)

To visualize the importance of Jk, consider Figure 9, where a typical probability density

function for the forward-trip times (FTT) of the successfully-received packets is plotted as

a function of time (τ) [101]. By definition, Tk is the minimum value that FTT can take on

path Pk. In our model, we do not assume any particular density function for FTT. However,

for the simulations in Section 2.5, we model this density by a shifted Gamma distribution

with parameters nk and λk [101], which is given by

pFTT (τ) =





0, τ ≤ Tk;

λk
−nk

Γ(nk) (τ − Tk)
nk−1e−(τ−Tk)/λk , τ > Tk.

(15)

In (15), nk and λk denote the number of the links and the average link jitter on path

Pk, respectively. Thus, we have λk = Jk/nk. (15) can also be viewed as the distribution

of a random variable that is equal to a constant Tk plus the sum of nk independent and

identically-distributed exponential random variables each with mean λk [101]. Note that,

in our framework nk, Tk and Jk are known parameters, hence, (15) is completely defined.

Let Tmax in Figure 9 represent the maximum tolerable delay for the target application.

It follows that the on-time delivery probability is equal to the area of the shaded region.

32

τ

kT
maxTk

max
j← →

()FTTp τ

Figure 9: A typical density function for the forward-trip times of the successfully-received
packets.

Often, different paths have different end-to-end delays, and hence, different tolerances for

jitter. We define jk
max as the maximum jitter that can be tolerated on path Pk. By definition,

jk
max = Tmax − Tk. Then, it can be seen that the on-time delivery probability can also be

given as the probability of Jk being smaller than jk
max.

Finally, we have all the information required to write the success probabilities in terms of

the path parameters. Recall that in (4), P1,1 computes the probability that both descriptions

arrive at the client intact and on time. To find its value, we first compute the arrival

probability of transmitting both descriptions intact over Networkjoint and individual arrival

probabilities of transmitting each description intact over Networkk
disjoint. Since these events

are independent, we multiply them to find the arrival probability of both descriptions.

Second, we compute the probability that the descriptions will arrive at the client before the

pre-specified deadline. Finally, we multiply this value with the arrival probability to get

P1,1.

P1,0 considers the cases where the first description is received intact on time and the

second description is (i) lost in Networkjoint or in Network2
disjoint, or (ii) delayed beyond

the decoding deadline despite being transmitted intact. Hence, we separately compute the

corresponding probabilities of these three events and add them up to get P1,0. P0,1 can

also be computed in the same manner. Finally, P0,0 is the complement of the sum of P1,1,

P1,0 and P0,1. The corresponding equations are given in (16) - (19), where we denote the

joint GE parameters by α and β instead of αjoint and βjoint, respectively. The list of our

33

notation is given in Table 1.

P1,1 =
(
(πNC(1 − α)2 + πCβ(1 − α)) × (1 − p1

disjoint) × (1 − p2
disjoint)

)
(16)

×Prob(jjoint + j1disjoint ≤ j1max and jjoint + j2disjoint ≤ j2max)

P1,0 =
(
(πNC(1 − α)α+ πCβα) × (1 − p1

disjoint)
)

(17)

×Prob(jjoint + j1disjoint ≤ j1max)

+
(
(πNC(1 − α)2 + πCβ(1 − α)) × (1 − p1

disjoint) × p2
disjoint

)

×Prob(jjoint + j1disjoint ≤ j1max)

+
(
(πNC(1 − α)2 + πCβ(1 − α)) × (1 − p1

disjoint) × (1 − p2
disjoint)

)

×Prob(jjoint + j1disjoint ≤ j1max and jjoint + j2disjoint > j2max)

P0,1 =
(
(πNCαβ + πC(1 − β)β) × (1 − p2

disjoint)
)

(18)

×Prob(jjoint + j2disjoint ≤ j2max)

+
(
(πNC(1 − α)2 + πCβ(1 − α)) × p1

disjoint × (1 − p2
disjoint)

)

×Prob(jjoint + j2disjoint ≤ j2max)

+
(
(πNC(1 − α)2 + πCβ(1 − α)) × (1 − p1

disjoint) × (1 − p2
disjoint)

)

×Prob(jjoint + j1disjoint > j1max and jjoint + j2disjoint ≤ j2max)

P0,0 = 1 − P1,1 − P1,0 − P0,1 (19)

2.4.3 End-to-End Multi-Path Model

At the beginning of this section, we defined the average distortion function at the client in

(4). Subsequently, we derived each component in this equation step by step in terms of the

path parameters. In doing so, we proposed two methods, namely path segregation and link

aggregation. Together these two methods enable us to analyze any given two paths by a

3-link model as depicted in Figure 10. This model reduces the computation time required

by the multi-path selection process.

34

Table 1: List of the notation and model parameters.

Nk Node k

lu,v Link between nodes Nu and Nv

bu,v Bandwidth on link lu,v

pu,v Packet loss rate on link lu,v

tu,v Minimum delay on link lu,v

ju,v Jitter on link lu,v

Pk Path k

Dm,n Distortion. m and n denote the arrivals of the 1st

and 2nd descriptions, respectively

1 → arrived on time, 0 → lost or excessively delayed

Pm,n Probability corresponding to Dm,n

Bk End-to-end bandwidth on path Pk

πNC Steady-state prob. for state NC (non-congested). πNC = β
α+β

πC Steady-state prob. for state C (congested). πC = α
α+β

α Transition probability from state NC to state C

β Transition probability from state C to state NC

Lu,v Average burst length on link lu,v

pjoint Packet loss rate on Networkjoint

Ljoint Average burst length on Networkjoint

pk
disjoint Packet loss rate on Networkk

disjoint

jjoint Jitter on Networkjoint.

jjoint =
∑

∀lu,v∈Networkjoint
ju,v

jk
disjont Jitter on Networkk

disjoint.

jk
disjoint =

∑
∀lu,v∈Networkk

disjoint
ju,v

Tk Minimum end-to-end delay on path Pk.

Tk =
∑

∀lu,v∈Lk
tu,v

Jk End-to-end jitter on path Pk.

Jk = jjoint + jk
disjoint

Tmax Maximum tolerable delay

jk
max Maximum tolerable jitter on path Pk.

jk
max = Tmax − Tk

35

Client

Z

Server

linkjoint

link
1

disjoint

link
2

disjoint

Figure 10: End-to-end multi-path model. 3-link model can be used to approximate any
given two paths in a network.

In developing our multi-path model, we considered the packet loss probability indepen-

dent from the delay jitter. In fact, both the jitter and packet loss experienced by a flow

depend on the states of the queues encountered along the path. This implies a correlation

between the delay jitter and packet loss probability (See Chapter 7 for details). However,

in this study we used the time-averaged statistics for the packet loss probability. That is,

we were interested in the average packet loss probability, not in the individual packet loss

probabilities. Thus, we considered the delay jitter and packet loss probability on a link

independent of each other.

2.5 Simulation Results

We have conducted two sets of simulations to demonstrate the efficacy of the proposed

multi-path selection method in a real-time application. To this end, we first compared

the performances of single description (SD) and multiple description (MD) encoded video

streaming over a one-hop topology. This simple topology shed light on the unique features

of MD coding and multi-path routing. Second, we generated a random Internet topology

to compare different streaming methods in terms of their performances.

2.5.1 Methodology

We used three standard test sequences Table Tennis (352× 240), Football (352× 240)

and Paris (352 × 288) in our simulations to stream from a server to a client with a delay

tolerance of 200 ms. The Table Tennis and Football sequences exhibited large temporal

variations and were comprised of 150 frames. In contrast, the Paris sequence contained

1050 frames, which possessed a relatively less temporal variation. To obtain statistically-

reliable results, we streamed 10 minutes of video by concatenating each sequence several

36

times. To make quantitative comparisons, we used the peak signal-to-noise ratio (PSNR)

measure on the luminance (Y) channel, given by PSNR = 10 × log10(
2552

MSE), where MSE

stands for the mean-squared error between the original and decoded luminance frames.

Among various multiple description video encoders, we chose the time-domain partitioning

method with two descriptions.

The SD and MD encoded streams were produced with a standard MPEG-2 encoder

(TM5 [85]) with default parameters, and a GOP structure consisting of an I-frame and

nine P-frames. The video format was 4:2:0, and the frame rate was 30 frames per second.

During the transmission of each video stream, the server created 576-byte Real-time Trans-

port Protocol (RTP) packets [102, 103]. Note that we were not interested in sophisticated

concealment techniques that could be applied to increase the streaming quality. In case

of a bursty loss, we merely concealed the missing slices with the corresponding ones in

the previously-decoded frame, whereas for the isolated losses, we used motion-compensated

temporal interpolation to conceal the errors. Naturally, more sophisticated encoding and

concealment techniques would have resulted in higher streaming qualities for both the SD

and MD encoded streams.

In the simulations, we considered two types of links, namely “good” and “bad” links.

We adopted consecutive NC (non-congested) and C (congested) states for each of these

links to describe the bursty loss behavior as discussed in Section 2.4. While the duration

of the non-congested states lasted for a random duration between 21 and 27 seconds for all

links [7], we varied the durations of the congested states on different scales to characterize

the good and bad links. In particular, this duration was chosen randomly between 20 and

200 ms for the good links, and between 0.5 and 4 seconds for the bad links [7]. These values,

in conjunction with the inter-packet spacing, are then used to compute the corresponding

GE parameters.

2.5.2 Single-Hop Topology Simulations

Let us consider the topology in Figure 11, where there are two 750 Kbps links (l1, l2) and

one 1.5 Mbps link (l0) between the server and client each with a delay of 50 ms. Suppose

37

that the SD encoded video is streamed over the link l0, and the MD encoded video is

streamed over the links l1 and l2. When all the links are lossless, the average SD encoded

stream (MD encoded stream) qualities are 33.02 dB (32.12 dB), 35.25 dB (34.19 dB) and

34.16 dB (33.32 dB) for the Table Tennis, Football and Paris sequences, respectively.

The 0.9 dB, 1.06 dB and 0.84 dB reductions in the respective PSNRs stem from the fact that

the correlation between every other frame in the MD encoded video is less than that between

every frame in the SD encoded video. However, this disadvantage is quickly compensated

when the link loss rates are larger than 2% in case of the Table Tennis and Football

sequences, and 3% in case of the Paris sequence. Recall that the Paris sequence does not

exhibit a large temporal variation, which makes it more robust to longer bursts since its

concealment is easier. For a 10% link loss rate, the respective average PSNR differences

become around 2.06 dB, 1.40 dB and 0.9 dB in favor of the MD encoded video. Several

average PSNR values versus different loss rates are given in Figure 12. We observe that

if losing or delaying 2 - 3% or more of the packets is inevitable, MD streaming evidently

outperforms SD streaming even when the best path is selected for SD streaming.

Server Client750 Kbps, 50 ms

750 Kbps, 50 ms

1.5 Mbps, 50 ms

Figure 11: Single-hop topology with identical delays.

2.5.3 Internet Topology Simulations

In the second set of simulations, we use a random Internet topology generated by the

Georgia Tech Internetwork Topology Models (GT-ITM) [104]. The topology consists of

192 nodes with four mesh-connected transit domains, eight nodes per transit domain, one

stub per transit-domain node and five nodes in a stub domain. An overlay node (O-node)

is associated with each transit and stub-domain node to enable multi-path routing. A

simplified topology with four transit domains and two selected paths are shown in Figure 13.

38

0 5 10 15 20
25

26

27

28

29

30

31

32

33

34

Packet Loss Rate (%)

P
S

N
R

 (
d
B

)

MD Streaming

SD Streaming

(a)

0 5 10 15 20
26

28

30

32

34

36

Packet Loss Rate (%)

P
S

N
R

 (
d
B

)

MD Streaming

SD Streaming

(b)

0 5 10 15 20
28

29

30

31

32

33

34

35

Packet Loss Rate (%)

P
S

N
R

 (
d
B

)

MD Streaming

SD Streaming

(c)

Figure 12: Variation of PSNR with the packet loss rate for the single-hop topology shown
in Figure 11 for the Table Tennis (a), Football (b) and Paris (c) sequences.

39

Client

Stub Domain

Stub Domain

Stub Domain

Stub Domain
Stub Domain

Stub Domain

Transit Domain

Server

Stub Domain

Stub Domain

Transit Domain

Transit Domain

Transit Domain

Figure 13: An Internet topology with four transit domains. Only a subset of the stub
domains are shown for the demonstration purposes.

In this topology, the transit-domain links have a capacity of 10 Gbps and a delay be-

tween 10 - 30 ms, whereas the transit-to-transit and transit-to-stub edges have capacities of

1.0 Gbps and 100 Mbps, respectively, with a delay between 5 - 10 ms. On the other hand,

stub-domain links are assigned 2 or 5 Mbps for the link capacity. For these links, the delay

values are chosen between 5 - 10 ms.

To simulate a realistic Internet environment, we associate a random amount of back-

ground traffic with each link depending on its location in the range of 20% - 80% of its

capacity. Because of the hierarchy in the Internet infrastructure, traffic flowing through

different domains is aggregated on the inter-domain links (e.g., transit-to-transit edges and

transit-to-stub edges). Consequently, some of these links carry more traffic and experience

congestion more often. Hence, we characterize these links as bad, whereas we consider the

rest as good links. The loss parameters of each link are then determined as discussed in

Section 2.5.1. Similarly, jitter values are assigned between 0 - 10 ms and 10 - 30 ms for the

good and bad links, respectively.

On this topology, we select a server-client pair such that the server and client are sepa-

rated by two transit domains. We compare four different streaming methods: (i) shortest-

path, (ii) maximally link-disjoint path, (iii) redundant-path, and (iv) optimal multi-path

streaming. For shortest-path streaming, we choose the path with the minimum number of

40

hops; if this metric is equal for two or more paths, we select the one with the minimum

end-to-end delay. For maximally link-disjoint path streaming, we first generate all possi-

ble path pairs. Then, we search for the pairs with the minimum number of overlapping

links to minimize the statistical dependency between the paths and select the pair with

the minimum total end-to-end delay. Note that in doing so, we not only approximate a

totally link-disjoint path pair, but also select a shorter one to avoid the unnecessary quality

degradation due to the excessively-delayed packets. The third streaming method is adopted

from [77], where a redundant path is selected to minimize the number of joint links with the

default Internet path. For simulations, we assume that the default Internet path is identical

to the shortest path used in the first method. Finally, for optimal multi-path streaming,

we select the pair among all possible ones that minimizes (4). We stream the MD encoded

video in all methods except the first one, where we use the SD encoded video.

Finding the optimal path pair that minimizes (4) is computationally intensive. The full-

enumeration approach we use in the simulations clearly does not scale well as the number

of O-nodes, and hence, the number of possible paths increases. However, it is important

to note that the contribution of this chapter is to provide a framework on modeling MD

streaming over an overlay network and prove the concept of multi-path selection with the

simulations. Yet, in Appendix A, we develop a fast heuristics-based solution for the optimal

multi-path selection problem. This heuristic, although still runs in exponential time in the

number of transit domains, is much more efficient for real systems where the number of the

nodes in each transit domain is substantially larger than the number of transit domains.

For each test sequence, we run 10 simulations over the same topology with a new set of

link attributes at each run. However, these attributes are not altered during a particular

run. Recall that the O-nodes periodically probe each other and the server is notified about

the changes in link attributes. Hence, the effect of these changes in our results is expected

to be small. In the last two simulations (runs #9 and #10), we convert the stub domain to

which the server is connected, into a multi-homed stub domain in order to enhance the path-

diversity capability, as depicted in Figure 14. This allows us to observe the performances of

different streaming methods with varying network conditions. Note that we keep the total

41

rate equal for both the SD and MD encoded videos, although multi-path routing might be

exploited to increase the bandwidth available to the user [105]. To make a fair comparison,

at each run, the total rate for all streaming methods is set to the rate of shortest-path

streaming5.

Client

Stub Domain

Stub Domain

Stub Domain

Stub Domain
Stub Domain

Stub Domain

Transit Domain

Server

Transit Domain

Stub Domain

Transit Domain

Stub Domain

Transit Domain

Figure 14: Enhanced path-diversity capability when the server is located in a multi-homed
stub domain.

The results of all three test sequences are tabulated in Tables 2 - 4, respectively. In each

row, we present the total rate and average PSNR of the streamed video for a different run.

The results are also plotted in Figures 15 - 17. Optimal multi-path streaming outperforms

shortest-path, maximally link-disjoint path and redundant-path streaming in all of these

independent runs. There are prominent conclusions that can be drawn from these results.

We elaborate on them next.

2.5.4 Discussion

When we examine the results, we observe that shortest-path streaming often degrades the

quality to an unacceptable level. This occurs when a link on the shortest path is heav-

ily congested. Naturally, maximally link-disjoint path and redundant-path streaming are

5The actual rate of streaming is kept lower than the available end-to-end bandwidth in order not to

overwhelm the bottleneck link(s).

42

Table 2: Simulation results for the Table Tennis sequence.

Total Rate Shortest-path Max. Link-dis. Path Redundant-path Opt. Multi-path

Run # (Mbps) PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

1 1.60 31.50 30.74 31.45 31.66

2 1.25 25.70 28.01 27.62 28.53

3 1.45 30.50 29.52 30.63 31.60

4 1.60 30.23 30.35 29.89 32.02

5 1.40 25.70 29.30 28.65 31.32

6 1.35 29.30 30.10 30.03 30.93

7 1.50 30.60 29.95 29.77 31.29

8 1.45 25.77 30.20 29.11 31.44

9 1.50 30.12 31.11 30.88 31.39

10 1.40 26.23 29.05 28.94 30.89

Avg. 1.45 28.57 29.83 29.70 31.11

Max 1.60 31.50 31.11 31.45 32.02

Min 1.25 25.70 28.01 27.62 28.53

Table 3: Simulation results for the Football sequence.

Total Rate Shortest-path Max. Link-dis. Path Redundant-path Opt. Multi-path

Run # (Mbps) PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

1 1.60 33.60 32.65 33.32 33.97

2 1.25 27.09 29.66 28.88 30.33

3 1.45 32.42 31.55 32.73 33.48

4 1.60 31.98 32.22 31.45 33.92

5 1.40 27.22 31.60 30.79 33.29

6 1.35 31.26 32.13 32.27 32.76

7 1.50 32.93 31.84 31.66 33.45

8 1.45 27.56 31.96 31.32 33.46

9 1.50 31.96 33.09 32.97 33.33

10 1.40 27.49 30.86 30.22 32.67

Avg. 1.45 30.35 31.76 31.56 33.07

Max 1.60 33.60 33.09 33.32 33.97

Min 1.25 27.09 29.66 28.88 30.33

43

Table 4: Simulation results for the Paris sequence.

Total Rate Shortest-path Max. Link-dis. Path Redundant-path Opt. Multi-path

Run # (Mbps) PSNR (dB) PSNR (dB) PSNR (dB) PSNR (dB)

1 1.60 32.70 31.32 32.42 33.10

2 1.25 29.03 29.42 29.23 29.76

3 1.45 31.55 31.63 30.67 32.56

4 1.60 30.76 31.17 30.33 32.95

5 1.40 29.29 30.44 29.88 32.43

6 1.35 30.46 31.21 30.59 31.98

7 1.50 31.37 30.96 30.43 32.26

8 1.45 29.62 31.09 30.66 32.20

9 1.50 31.02 32.15 31.74 32.34

10 1.40 29.52 30.01 29.88 31.82

Avg. 1.45 30.53 30.94 30.58 32.14

Max 1.60 32.70 32.15 32.42 33.10

Min 1.25 29.03 29.42 29.23 29.76

expected to reduce the adverse effects of the congested links by exploiting the path diver-

sity and improve the average quality over shortest-path streaming. However, despite the

enhanced path-diversity capability in runs #9 and #10, maximally link-disjoint path and

redundant-path streaming are still not able to provide the steady performance of optimal

multi-path streaming. Hence, we conclude that minimizing the dependency between the

paths without considering their characteristics does not necessarily result in the maximal

streaming quality.

Based on our simulations, we cannot conclude whether maximally link-disjoint path

streaming is superior to redundant-path streaming, or not. Generally speaking, redundant-

path streaming performs better when the shortest path is not heavily congested. If the short-

est path is exposed to bursty losses or long delays, maximally link-disjoint path streaming

delivers a better quality of video.

Interestingly, in run #2 for all three test sequences, it is observed that the video quality

suffers in all four streaming methods. By examining the link attributes, we identify the cause

as being a heavy congestion on the link over which the server’s stub domain is connected

44

1 2 3 4 5 6 7 8 9 10
22

24

26

28

30

32

34

36

Run #

P
S

N
R

 (
d

B
)

Shortest−path

Maximally Link−disjoint Path

Redundant−path

Optimal Multi−path

Figure 15: Average PSNRs for different streaming methods for the Table Tennis se-
quence.

1 2 3 4 5 6 7 8 9 10
22

24

26

28

30

32

34

36

Run #

P
S

N
R

 (
d

B
)

Shortest−path

Maximally Link−disjoint Path

Redundant−path

Optimal Multi−path

Figure 16: Average PSNRs for different streaming methods for the Football sequence.

to its transit domain. The poor video quality is inevitable since all streams have no choice

other than to be routed over the same congested link. Obviously, path diversity becomes

less effective when the congestion causes simultaneous losses on both descriptions.

Another interesting result is the variation of the individual frame PSNRs. The plots in

Figures 18 - 20 compare the PSNR values for a set of 150 frames for the videos obtained

from different streaming methods. These illustrative plots are extracted from run #3 for the

Table Tennis sequence. Figure 18 shows that the quality of the SD encoded video suffers

from bursty losses and the subsequent error propagation. The resulting wide fluctuations

further degrade the perceptual quality. Similarly, the maximally link-disjoint path and

redundant-path streaming methods also degrade the quality because of the late and lost

packets, but to a lesser extent, as depicted in Figures 19 and 20, respectively. However, the

video quality slightly deviates from its average value for optimal multi-path streaming unless

45

1 2 3 4 5 6 7 8 9 10
22

24

26

28

30

32

34

36

Run #

P
S

N
R

 (
d

B
)

Shortest−path

Maximally Link−disjoint Path

Redundant−path

Optimal Multi−path

Figure 17: Average PSNRs for different streaming methods for the Paris sequence.

both descriptions are lost simultaneously. This feature delivers a more stable streaming

quality to the client.

0 50 100 150
10

15

20

25

30

35

40

Frame Number

P
S

N
R

 (
d

B
)

Shortest−path Streaming

Optimal Multi−path Streaming

Figure 18: Variation of the frame PSNRs for the shortest-path and optimal multi-path
streaming methods for the Table Tennis sequence.

As a final remark, we observed the tendency of multi-path routing to load balancing

throughout the simulations. Although we did not analyze the resource usage quantitatively

in this study, we observed that multi-path routing helps load balancing, which in turn

results in better resource utilization. Rather than overloading the shortest path, the total

load is shared between different paths.

2.6 Conclusions

In this study, we first developed models for multi-path streaming and verified the validity of

these models through extensive simulations based on Internet topologies and traffic charac-

teristics. Second, we proposed an optimal multi-path selection method for MD streaming.

46

0 50 100 150
10

15

20

25

30

35

40

Frame Number

P
S

N
R

 (
d

B
)

Maximally Link−disjoint Path Streaming

Optimal Multi−path Streaming

Figure 19: Variation of the frame PSNRs for the maximally link-disjoint path and optimal
multi-path streaming methods for the Table Tennis sequence.

0 50 100 150
10

15

20

25

30

35

40

Frame Number

P
S

N
R

 (
d

B
)

Redundant−path Streaming

Optimal Multi−path Streaming

Figure 20: Variation of the frame PSNRs for the redundant-path and optimal multi-path
streaming methods for the Table Tennis sequence.

This application-aware method yields the maximal video quality at the client by evaluating

the application requirements and network conditions. The simulations with several test se-

quences show that the optimal multi-path selection attains a considerable amount of quality

improvement over the previously-proposed path selection methods. On the implementation

side, we carry out MD streaming with the use of an overlay infrastructure. Hence, we do

not advocate any particular routing mechanism in the underlying physical network.

In this study, we paid attention to the two-path case due to its simplicity and efficacy,

however, it is straightforward to generalize the proposed method to more than two paths

at the expense of increased computational complexity. Moreover, the framework can be

adapted to other streaming media such as audio and 3-D graphics by incorporating their

respective distortion models.

47

CHAPTER III

HIGH-RESOLUTION VIDEO STREAMING TECHNIQUES

IN MESH-NETWORKED HOMES

Wireless mesh systems offer several advantages for emerging high-bandwidth networks be-

cause of their cooperative routing capabilities. In this study, we consider the potential

benefits of using wireless meshes within residential networks for applications that require

high bandwidth and low latency. In particular, we consider high-bitrate video transmis-

sion inside a mesh-networked home. To quantify our findings, we present experimental

results obtained from a high-resolution video streaming application. Our experiments in-

volve single-hop, multi-hop, single-path and multi-path transmission methods, and two

types of video-encoding techniques, namely single description coding and multiple descrip-

tion coding. In the light of our results, we discuss the pros and cons of each streaming

method.

3.1 Introduction†

Wireless mesh networks (WMNs) are ad hoc networks in the general form of a full or

partial mesh topology. A fundamental feature of a WMN is that the mesh nodes can relay

a connection to any other node within their ranges. In other words, a mesh node operates

not only as an end-point but also as a router that forwards packets belonging to other

nodes that cannot directly transmit their packets to their destinations. Generally speaking,

there are two types of nodes in a WMN: mesh routers and mesh clients. Mesh routers

have minimal mobility and form the backbone of the network. In addition to routing,

these nodes provide network access for both mesh and conventional clients, e.g., desktops,

laptops, PDAs and PocketPCs, by bridging connections over multiple wireless interfaces. In

contrary, mesh clients do not possess bridging and gateway functionalities, although they

†Parts of this chapter were previously published in [106].

48

may still perform routing.

A WMN is dynamically self-organized and self-configured, with the nodes in the network

automatically establishing and maintaining mesh connectivity among themselves. Similar

to the overlay networks in the Internet, a mesh network offers multiple redundant communi-

cation paths throughout the topology. If one link fails for any reason such as node failure or

strong RF interference, messages are routed through alternative paths. If there are mobile

nodes inside a WMN, they can change their positions over time to improve the connectivity

of the network. In this sense, WMNs are self-forming and self-healing networks. Another

important feature is that WMNs are decentralized, i.e., there is no central control unit.

Advantages of WMNs include rapid deployment due to simplified installation and con-

figuration, flexibility, fault tolerance, low upfront costs due to minimal cabling needs, easy

network maintenance, and adaptability. These advantages enable many new application

areas in broadband home networks, community and neighborhood networks, enterprise net-

works, and metropolitan area networks. In this study, we particularly focus on the WMNs

deployed inside homes. As our target application, we consider high-resolution video trans-

mission over wireless links, which, from a consumer point of view, will be one of the most

influential developments in the home entertainment market. We can presumably expect

that the proliferation of high-quality video systems such as the high-definition television

(HDTV) and next generation DVDs, will be further boosted by a technology that will en-

able the consumers to transmit these videos to anywhere inside their homes over the air.

Not far in the future, the range of high-bandwidth WMNs will be beyond residential areas.

For a discussion on the experiences from a pilot metropolitan mesh network, see [107].

With various physical-layer technologies, and medium access control (MAC) and routing

protocols available today, deploying a WMN is not too difficult. However, it is quite chal-

lenging to make all the mesh components cooperate together and work seamlessly. Without

taking into account the unique characteristics of mesh networking and developing specific

protocols, the success of WMNs will be limited. Ongoing research efforts indicate that all

existing protocols from the application layer to the physical layer require enhancements, if

not a total re-engineering from scratch [108]. Cross-layer integration is also an important

49

issue for WMNs. Given that multiple data and media flows coexist in a WMN with different

QoS requirements, it is a difficult task to allocate the available resources to the individual

connections. Transport-layer protocols such as TCP and UDP, and routing protocols such

as dynamic source routing (DSR) [109] have to adapt themselves to topology and link-

quality changes. Topology/link monitoring and coordination among the mesh nodes can be

accomplished by using Jini [110], universal plug and play (UPnP) [111] and other link-level

schemes [108, 112]1.

Having given a brief introduction to WMNs, we continue our discussion with the details

of the application scenario and methodology adopted in this study in Section 3.2. In Sec-

tions 3.3 and 3.4, we present several results obtained from single-path and multi-path video

streaming experiments, respectively. We conclude the chapter in Section 3.5.

3.2 Residential Applications

A promising application of WMNs is wireless broadband home networking. Currently, ma-

jority of the broadband home networks are realized through IEEE 802.11x WLANs, where

802.11x-capable clients are interconnected by the help of a single router, which also functions

as a gateway to the Internet. Since there exists only one communication path between any

client pair and each of these paths goes through the same router, the scalability is severely

limited. The interference at the physical layer and the contention at the MAC layer limit

the maximum throughput achievable by a single flow. Hence, bandwidth-intensive applica-

tions can be hardly supported. In contrast, if all network-capable devices are interconnected

with each other through multiple mesh routers, the resulting mesh network provides more

flexible and robust paths between the clients, and increases the end-to-end throughput. An

example of a wireless mesh home network is shown in Figure 21.

1Universal plug and play (UPnP) is a set of protocols developed for allowing devices to connect seamlessly

and simplifying the implementation of data sharing, communications, and entertainment in home networks

and corporate environments.

50

`

Figure 21: A wireless mesh home network.

3.2.1 HDTV Video Transmission

HDTV is a digital television standard that offers high-resolution, superior video and sound

distribution via satellite, terrestrial and cable TV systems. Although there are several

different recommendations for HDTV video signal format, transmission of a single HDTV

stream often requires a bandwidth larger than 10 Mbps. This high-bandwidth requirement

renders HDTV streaming applications almost impractical over existing Internet links, how-

ever, it is not as difficult over mesh-networked homes as we today have the technologies

that can physically accommodate such demanding applications. Note that in addition to

broadcast HDTV, end-users can also stream high-resolution videos from other sources such

as DVD players, PVRs and computers, and play them on an HDTV-capable display.

3.2.2 Methodology

In order to conduct a performance analysis of different streaming methods in wireless mesh

networks, we generated a six-node mesh topology inside an office of 1,800 sq. ft. Each node

was fixed during the experiments and located such that it sustained a good channel quality

over 802.11a links with at least two other nodes in the network. A sketch of our topology

is given in Figure 22, where we have a video source node, a destination (e.g., display) node

and four intermediate relay nodes.

We developed a server/client application suite for streaming high-resolution pre-encoded

video sequences over UDP. We encoded the test sequence Soccer (4CIF, 704× 576 pixels)

51

with a standard MPEG-2 encoder (TM5 [85]) at a bitrate of 10 Mbps and a frame rate of

30 frames per second. Each GOP consisted of one I-frame, four P-frames and 10 B-frames.

The encoded stream had an average frame quality of 38.9 dB. The test sequence consisted

of 300 frames, however, we played the same sequence 10 times to get a 100-second video

that corresponded to over 85,000 IP packets. Note that at the physical layer, 802.11a has

a peak rate of 54 Mbps, however, this rate can degrade significantly due to the potential

interference from other sources operating at the same frequency. In addition, the bursty

nature of many video sources can further degrade the channel utilization. Hence, although

the network can theoretically sustain higher transmission rates, we are still challenged to

transmit video sequences at 10 Mbps.

Video

Source

Display

1
N

2
N

3
N

4
N

Figure 22: Experimental 802.11a mesh topology.

3.3 Single-Path Streaming

In this section, we study video transmission over a single path. Due to their mesh structure,

mesh nodes potentially offer several different paths between a node pair. For example, in

Figure 22, a path between the video source and display can be established via nodes N1

and N2. Another one can be established via nodes N3 and N4. We will refer to these

paths as Path-1 and Path-2, respectively. The performance of each path depends on the

quality of the channels between the nodes making up the path. In Figure 23, the delay

distributions of the packets that are transmitted over each path are plotted. In addition,

we also plot the delay distribution corresponding to the single-hop path between the video

source and display. That is, the source transmits the video packets directly to the display

52

node without relaying over any other node. Although this might initially seem a better

transmission scheme, as it actually avoids relaying delays, the results in Figure 23 suggest

that the single-hop path is subject to a larger amount of channel interruptions due to

its increased range. The resulting increased packet delays inevitably disturb the video

quality under small playout-delay requirements. This experiment is an example where using

multi-hop transmission performs better than single-hop transmission. In fact, wireless mesh

nodes exploit this feature to enable higher throughput and reduced latency for bandwidth-

demanding applications [108].

Due to the interference at the physical layer, some packets will not go through in their

first transmission attempt at the MAC layer. Fortunately, 802.11a MAC recovers most

of these packets by doing retransmissions. Although this behavior reduces the effective

packet loss rate as seen from the application layer, recovered packets may experience large

delays (up to several hundreds of milliseconds) since the transmitter backs off exponentially

after each retransmission. If the application cannot tolerate such late packets, they will be

considered as lost. Note that despite the retransmissions at the MAC layer, some packets

may still not be delivered to the other end, if the maximum retransmission limit is reached.

In our experiments, we observed that less than 1% of the packets failed after 16 transmission

attempts. If desired, higher-layer error-control/protection methods can be used to recover

these packets at the expense of increased delay.

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

Packet Delay (ms)

C
D

F

Path−1 (Multi−hop)

Path−2 (Multi−hop)

Single−hop Path

Figure 23: Delay distributions for the packets transmitted over multi-hop and single-hop
paths.

53

An interesting observation in Figure 23 is that Path-2 performs significantly better than

Path-1, when the video application adopts a playout delay of 200 ms or less, since Path-1

goes through a larger number of obstacles. This disparity brings the following question

to the fore: “How can we determine the path that will deliver the highest video quality?”

Given the highly dynamic nature of wireless channels, it is often difficult to determine which

path will perform better at a given time.

Two common approaches to base the path selection/switching decision are to (i) ac-

tively probe the channels, and (ii) passively collect channel statistics via monitoring. After

evaluating the information gathered from the measurements, a proper path selection and

switching (if necessary) can be made. For example, consider Figure 24 where we plot the

packet delay traces for Path-1 and Path-2. Suppose that we seek the path that delivers

the most packets within 200 ms. Since Path-2 statistically delivers more packets on time

compared to Path-1, we easily decide to stream the video packets over Path-2. However,

Figure 24 shows that Path-1 delivered some packets, e.g., packets #3235, #3238 and #3293,

within 200 ms, which actually could not be delivered on time by Path-2. In other words,

Path-2 has a higher on-time delivery rate on the average, but Path-1 may still deliver some

packets on time that are not delivered by Path-2.

2900 3000 3100 3200 3300 3400 3500 3600 3700
0

100

200

300

400

500

Sequence Number

P
a
c
k
e
t
D

e
la

y
 (

m
s
)

Path−1

Path−2

Figure 24: Packet delays observed from two different paths.

Although channel interruptions of long durations can be easily identified via channel

probing or passive measurements, detecting the short ones is not as trivial. By the time the

54

feedback/status information is received, the validity of this information may have already

expired, and it would be unprofitable to take an action, e.g., switch to another path. A

particularly useful technique to overcome the shortfalls of single-path streaming is to utilize

multiple paths between the end-points. In the next section, we study multi-path video

transmission in two different scenarios.

3.4 Multi-Hop Multi-Path Streaming

As we discussed in Chapter 2, exploiting path diversity can be an effective technique to

provide robustness and improved reliability against the network congestions in the Internet.

In low-delay favoring applications, the availability of a secondary path becomes particularly

useful for maintaining a continuous video, when the primary path fails or performs poorly.

With the same motivation, multi-path video transmission can be applied to wireless mesh

networks. Actually, the existence of a mesh topology and the ability of source routing are

two enabling factors for the multi-path transmission in mesh networks.

Based on Figure 23, we quantify that under the requirement of a playout delay of 200 ms,

Path-1 and Path-2 have an on-time delivery rate of 93.5% and 97.0%, respectively. Majority

of the remaining packets are late for decoding. These packets cause a buffer underrun at

the receiver, and consequently, the decoder freezes the video. Moreover, Figure 24 shows

that some packets are delivered on time only by Path-1 and some others only by Path-

2. Thus, if we simultaneously send each packet over both paths, the number of on-time

packets can be increased. In doing so, we actually achieve an on-time delivery rate of 98.0%,

which corresponds to 4.5% and 1% improvement over streaming over only Path-1 and only

Path-2, respectively, as shown in Figure 25. Although duplicate-packet transmission leads

to a bandwidth waste and potentially harms other flows in the network, its use can be

still justified in mesh-networked homes because of the following two reasons: First, home

networks are private networks. The residents have the full ownership and control over all

network resources. These resources can be exploited to the maximum extent to satisfy the

QoS requirements of the users. Second, with the introduction of recent advances in wireless

technologies such as the ultra wideband systems, the bandwidth will be less of an issue,

55

and mesh-networked homes will soon offer large bandwidths that can sustain multiple video

flows along with several other data flows.

0 100 200 300 400 500
0.5

0.6

0.7

0.8

0.9

1

Packet Delay (ms)

C
D

F

Path−1 Only

Path−2 Only

Path−1 + Path−2

Figure 25: Delay distributions for the packets transmitted over single and multiple paths.

Nevertheless, in some legacy mesh networks where the bandwidth is a scarce resource,

duplicate-packet transmission capability can be limited. In that case, we can exploit the

advantages of multi-path transmission by distributing the video packets among different

paths while keeping the total transmission rate unchanged with respect to the single-path

transmission. To this effect, an elegant approach is to encode the source video with a

multiple description (MD) encoder [42] and generate multiple independently-decodable de-

scriptions. Each of these descriptions individually produces a basic quality of video. With

additional description(s), the quality is refined via joint decoding. An important feature

of MD decoders is that the successful reception of at least one description suffices for a

continual decoding operation.

As discussed in Section 2.2, there are several ways for generating multiple descriptions.

A straightforward method is time-domain partitioning [43], which separates the even and

odd-numbered video frames into two groups, and encodes them individually to produce two

descriptions. This method is naturally suitable for balanced mode of MD coding (B-MD),

where each description is encoded at the same bitrate. However, if there is a substantial

performance difference between the paths, the sender may opt to encode the descriptions at

unequal bitrates. This is called unbalanced mode of MD coding (UB-MD). Recall that the

56

single description (SD) encoded Soccer sequence had an average frame quality of 38.9 dB.

The average frame quality drops to 37.8 dB in case of a B-MD encoder. The 1.1 dB

reduction stems from the fact that the Soccer sequence exhibits large temporal variation,

and the correlation between every other frame in the MD encoded video is less than that

between every frame in the SD encoded video. We present our experimental results for SD

and MD video transmission in Figure 26, where we plot the average video quality in terms

of the peak signal-to-noise ratio (PSNR) measure on the luminance (Y) channel against the

playout delay. We elaborate on the results next.

100 200 300 400 500
10

15

20

25

30

35

40

Playout Delay (ms)

P
S

N
R

 (
d
B

)

Path−1, SD@10 Mbps

Path−2, SD@10 Mbps

Path−1 + Path−2, SD@2x10 Mbps

Path−1 + Path−2, B−MD@10 Mbps

Path−1 + Path−2, UB−MD@10 Mbps

Figure 26: Average PSNR variation with the playout delay.

Our first observation is the rapid increase in the number of late packets when a playout

delay shorter than 200 ms is required. Under a delay requirement of 100 ms, both UB-MD

and B-MD encoded videos achieve a higher (but still not pleasing) video quality than all

three SD encoded videos because of the better error-concealment capability of the multiple

descriptions. In addition, UB-MD encoded video outperforms its B-MD counterpart by

2.2 dB as the latter one is disturbed by the inferior performance of Path-1 to a larger

extent. In case of playout delays of 150 and 200 ms, both Path-1 and Path-2 deliver more

packets on time. Yet, existing shortfall of Path-1 causes the B-MD encoded video to produce

0.6 - 2.0 dB lower quality than the SD encoded video streamed over Path-2, although the

UB-MD encoded video still outperforms the SD encoded videos streamed over Path-1 and

Path-2 by 5.0 - 13.8 dB and 0.2 - 0.8 dB, respectively. When we increase the playout delay

57

beyond 250 ms, both paths perform sufficiently well. Consequently, UB-MD coding loses

its advantage over SD coding. At the same time, B-MD encoded video closes the gap with

the SD encoded video and produces an equal quality of video.

Not surprisingly, duplicate-packet transmission delivers the highest quality of video at

the expense of doubling the consumed bandwidth. In all cases except when the playout

delay is shorter than 200 ms, duplicate-packet transmission offers a decent video quality

(within 2 dB of the original video quality), without employing any high-layer error con-

trol/protection method.

3.5 Conclusions

In this study, we explored different methods for transmitting high-resolution video streams

inside a mesh-networked home. By building a six-node network, we investigated the poten-

tial of each method. Namely, we compared single-path streaming with multi-path streaming,

and single description coding with multiple description coding. Generally speaking, exploit-

ing path diversity with either single or multiple description coding provides higher quality

and more reliable video. Our experiments showed that the achieved video quality heavily

depended on the path(s) over which the video packets were streamed. In parallel to the

results presented in Chapter 2, it is clear that a proper path selection/switching is critical

to the success of video transmission in mesh networks.

58

CHAPTER IV

IMPROVING VIDEO-ON-DEMAND OVER IP EXPERIENCE

IN MULTI-SOURCE NETWORKS

In this chapter, we study the simultaneous streaming of packetized video from multiple

servers to a single client over an IP network. We explore the problem of multi-server

streaming in two parts:

• In the first part, we do not limit ourselves to a particular video-encoding scheme.

We derive a generalized framework and develop a client-driven rate-distortion opti-

mal packet scheduling algorithm that decides which packets to be requested from

which servers at a given request opportunity such that the rendered video quality

at the client is maximized while the rate constraints dictated by the flow, window

and congestion control mechanisms are satisfied for each server. With simulation re-

sults, we demonstrate the advantages of multi-server streaming and show that our

packet scheduling algorithm achieves a higher video quality compared to optimized

single-server streaming.

• In the second part, we discuss how the problem of rate-distortion optimized multi-

server streaming evolves with the choice of a special video-encoding scheme and illus-

trate how this new problem can be solved by using media-processing methods.

4.1 Introduction†

True video-on-demand (VoD) has long been thought of as the ultimate consumer video

application. Currently deployed technologies, such as near video-on-demand (n-VoD), have

left consumers with few content choices and without the interactivity necessary to allow the

content providers to exploit all the potential in this market1. Similarly, VoD over IP and IP

†Parts of this chapter were previously published in [113, 114].
1n-VoD allows the clients to select and view a movie scheduled for a given time. It enables operators to

increase their revenue while keeping the bandwidth requirements low.

59

television (IPTV) could not scale to a point to be of interest to consumers because of the

perpetual lack of a stable bandwidth. Unavoidably, the fluctuating bandwidths resulting

from network congestions in IP networks disturb the continuity of the delivered video. This

problem restricts the content providers to low encoding rates, which are not high enough

to support the picture quality they want to deliver. Moreover, these low rates also do not

fully utilize the capacity of broadband subscribers.

As a design feature, VoD networks are generally equipped with several video servers at

a location, each of which is synchronized with the same content. This ensures that if a

primary server fails, a secondary backup server automatically substitutes for the primary

one. A more practical approach, on the other hand, is to deploy content servers at different

locations inside the network. In addition to being a failure-recovery solution, this type of

content replication can be an efficient and effective method to reduce the adverse impact

of network congestion. For example, content delivery networks (CDNs) are used to deliver

the content on behalf of the origin content servers by utilizing caches at points close to end-

users. In doing so, CDNs increase the robustness and reliability of the service. However,

clients are still served by a single server within the CDN. Unfortunately, in a streaming

scenario, no matter how well it is optimized, the service of a single server may still suffer

from inevitable intermittent congestions, and server or link failures. One way to maintain

a good level of service quality is to exploit the potential benefits of using multiple servers

concurrently. Multi-server support virtually eliminates the large buffering delays, allows

instant-on/always-on playback and instantaneous channel changes, and reduces the number

and duration of the interruptions. Since the required infrastructure and the content servers

are already deployed, we believe that this solution will be readily applicable in supporting

the desired QoS for VoD services.

To deal with the scalability and fairness issues, multi-server streaming requires a protocol

that manages the servers simultaneously. Let us crystalize this point on a VoD system with

one client and two servers, where the client explicitly sends request packets to the servers

asking them to send particular video packets. Note that VoD systems require minimal pre-

buffering at the client side to support full interactivity between the client and VoD servers,

60

and enable the VCR-like functionalities such as fast forwarding and rewinding. In the most

straightforward case, the client may request every packet from each server. Subsequently,

two copies of each packet are introduced into the network, making an inefficient use of the

available resources. This approach explicitly attempts to improve the expected streaming

quality at the expense of an increased rate. A more conservative approach would be to

distribute the packets evenly among the servers to keep the total consumed rate equal to

that of a single-server streaming system. In this case, the achieved quality depends on the

loss and delay characteristics of the paths between the servers and the client. Yet, another

approach might be to request the packets whose decoding deadlines are approximately

within one round-trip time duration from both servers to maximize their chances of being

received on time, to request those packets whose decoding deadlines are in the distant future

from only one server, and not to send any request at all for the packets whose decoding

deadlines have almost passed. These scenarios plainly present a rate-distortion trade-off,

and this trade-off has to managed optimally by the client. Generally speaking, with multi-

server support one can achieve high aggregated streaming rates. However, it is imperative

to comply with the imposed rate constraints so that multi-server streaming does not impair

other network-friendly flows.

Although the use of multiple servers has long been studied and exploited for data appli-

cations [115, 116], it has only found interest recently in real-time video streaming. To this

end, the most closely related works are [62, 117]. These studies propose network-friendly

algorithms for distributed video streaming. In [117], an MD-FEC (multiple description cod-

ing through forward error correction codes) encoding framework is used to achieve a target

quality with the minimum bandwidth usage. In [62], the authors apply a rate allocation

algorithm to determine the rate for each server, and a packet partition algorithm to ensure

that no packet is sent by more than one server. These algorithms, in conjunction with FEC,

try to minimize the probability of lost and late packets. Although both [62, 117] use the

idea of utilizing multiple servers for video streaming, our work substantially furthers these

studies in several aspects.

The rest of the chapter consists of two main sections. In Section 4.2, we develop a

61

generalized rate-distortion optimal packet scheduling algorithm for single description video

streaming in a multi-server environment and analyze its performance. With simulation re-

sults, we show that multi-server single description streaming achieves a higher video quality

compared to optimized single-server streaming. In Section 4.3, we illustrate how a special

video-encoding scheme can be incorporated into the rate-distortion optimization. In partic-

ular, we consider rate-distortion optimized multiple description video streaming where each

description is streamed from a different server. We compare the performance of optimized

multi-server multiple description streaming to that of its non-optimized counterpart. Our

analysis shows that the former can still deliver a good quality of video, while the latter

cannot, when the network paths leading to the client share the same bottleneck link. We

conclude the chapter in Section 4.4.

4.2 Multi-Server Single Description Video Streaming

4.2.1 The Problem and Definitions

Consider the streaming system sketched in Figure 27, where there are one client and two

servers, which are denoted by S1 and S2. Suppose that the encoded video is packetized into

video packets, and these packets are replicated at both servers. In this system, the client

determines the order in which it will request the video packets from the servers at given

request opportunities. The servers are completely passive in this scheduling process, and

they merely respond to the client’s requests. In doing so, no extra burden is imposed on

the servers.

We refer to the paths from each server to the client and the paths from the client to the

servers as forward and backward paths, respectively. Experimental studies on the Internet

video traffic [7, 99] show that the packet loss events occur in bursts. To capture this temporal

dependency between the packet losses, we adopt the well-known two-state Markovian loss

model [98, 99], where states NC and C represent the non-congested and congested states,

respectively. The delay that a packet experiences is also correlated to the congestion level

on the path. The more congested the network becomes, the longer the delays experienced

by the packets. Illustrative sketches of the delay characteristics for states NC and C of

62

Server S1

Server S2

Internet

Client

Backward channel

Forward channel

C
o
n
te
n
t
S
e
rv
e
r

Figure 27: An illustration of a multi-server VoD streaming system.

the forward path are shown in Figure 28 [7]. Since a loss event might be perceived as the

packet is delayed infinitely, it is convenient to indicate the packet loss rates, denoted by ǫNC

and ǫC, as impulses at the infinity on the density functions. For the sake of the simplicity,

we assume that the path does not change its state once the transmission starts. Hence, it

follows that the cumulative distribution of the forward-trip time (FTT) for any path state

can be given by

P{FTT ≤ τ} =

∫ τ

0

(
1 − ǫ{NC,C}

)
p{NC,C}(t)dt, (20)

and its complement can be given by

P{FTT > τ} = ǫ{NC,C} +

∫ ∞

τ

(
1 − ǫ{NC,C}

)
p{NC,C}(t)dt. (21)

Similar expressions can also be derived for the backward-trip time (BTT), and the distri-

bution of the round-trip time (RTT) can be computed by convolving the distributions of

FTT and BTT. Throughout our presentation, we use k as a superscript to indicate the

path parameters associated with server Sk. Although there have been studies that modeled

the packet delay distributions [7, 101], we will not assume a specific distribution during our

analysis. However, we will use some of these models in our simulations.

63

τ

()NC
p τ

∞

NC
ε

(a)

τ

()C
p τ

∞

C
ε

(b)

Figure 28: Delay distributions for states NC (a) and C (b) of the forward path.

We start our analysis by introducing three properties associated with each video packet.

For video packet l, we denote the packet size (in bytes), importance and decoding deadline

by Bl, ∆dl and tD,l, respectively. ∆dl is a measure of the amount by which the distortion

decreases when the client decodes packet l by its decoding deadline. Generally, in a client-

driven system, Bl and ∆dl are unknown to the client. Nonetheless, the servers can convey

this information to the client by using the Session Initiation Protocol (SIP) [118] before the

streaming session starts.

Before we get into the details, let us first define the terms of rate and distortion. Rate

is the expected cost of streaming the entire video, which equals the sum of the costs of

all video packets transmitted2. Distortion refers to the expected distortion incurred in the

entire video stream. As mentioned above, this distortion decreases by ∆dl when video

packet l is decoded by its decoding deadline.

Consider a single video packet. Under the request policy π, the cost per byte for this

packet is denoted by ρ(π), and ǫ(π) is the measure of the distortion incurred if this packet

cannot be decoded on time. Our goal is to identify the request policy that minimizes

the Lagrangian ǫ(π) + λρ(π). In this minimization, by adjusting λ, we find the request

policy that achieves the minimum distortion for a given ρ. In practice, the rate is generally

given as a constraint for each server. Hence, we seek the particular request policy for each

2There is also a cost associated with sending the request packets. Although this cost does not directly

count towards the streaming rate, we have to ensure that it conforms with the rate constraints, if any, on

the backward paths.

64

server under the set of such constraints. Before focusing on streaming the entire video, we

first study the transmission of a single packet to understand the dynamics involved in our

problem.

4.2.2 Scheduling Algorithm for a Single Video Packet

Let t0, t1, ..., tN−1 be N discrete request opportunities at which the client can send request

packet(s), and let tD be the decoding deadline for the target video packet. Suppose that

ak
0, a

k
1, ..., a

k
N−1 represents a request pattern, where ak

i = 1 if a request packet is sent to

server Sk at time ti, and ak
i = 0 otherwise. Any set of ak

i defines a request policy. Since this

is a client-driven system, the server (re)transmits the same video packet as a result of each

successfully-received request. Hence, assuming that the client cancels any further request

upon receiving the video packet, for any request policy π, the expected cost (per byte) for

server Sk is given by

ρk =
∑

i:ak
i =1

φ(i) × P
{

BTTk <∞
}
, (22)

where φ(i) is the probability that the requested video packet has not been received by time

ti. One can compute φ(i) from

φ(i) =
∏

j≤i

∏

k:ak
j =1

P
{

RTTk > ti − tj

}
. (23)

Subsequently, the probability of not receiving packet l before its decoding deadline equals

θ = φ
(
i : ti = tD

)
. (24)

Finally, the expected distortion can be expressed as

ǫ = θ × ∆d. (25)

It is straightforward to compute (22) and (25) for any request policy π, and select the

request policy that minimizes (25) for the given constraints on ρk. However, for large

N , evaluating the expected cost and distortion of every possible policy can be intractable.

Hence, at this point we use a Markov decision process (MDP) framework [119]. In Figure 29,

we show the decision tree for the MDP used in our problem. On this tree, a request policy

65

(π) represents the set of actions taken at each state. At the initial state (q0), the client

has four possible action choices, e.g., requesting or not requesting from either of the two

servers. We denote the actions taken by the client at time ti by ai = [a1
i a

2
i]. Just before

taking a new action at the next request opportunity, say ti+1, the client may or may not

have received the requested packet. This observation is represented by oi. oi = 1 indicates

the reception of the video packet, and consequently, the process enters a final state. In

contrast, if the video packet is not received by time ti+1, oi = 0 in this case, the client again

chooses one of the four possible actions.

rcv
: 1

0

rcv:
 1

0

[1
 1
]

Initial

state

[0 1
]

[1 0]

[0 0]

rcv:
 1

rcv
: 1

0

0

[1
 1
]

[0 1
]

[1 0]

[0 0]

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

[1
1]

[0 1]

[1 0]

[0 0]

[1
1]

[0 1]

[1 0]

[0 0]

������������������������������

0
t

1
t

1N
t
− D

t
0

a
1

a
1N−

a
0

o
1N−

o

Figure 29: Decision tree for the MDP for two-server streaming system. Final states are
indicated with filled circles. Infeasible actions, observations and states are gray-colored.

Let us denote the state at time ti by qi. The sequence of the visited states under a request

policy forms a path in the tree, and state qi+1 is totally characterized by the actions and

observations up to time ti+1. Consequently, we can give the state transition probabilities

as

P
(
qi+1|qi,ai

)
=





ψ, if oi = 0;

1 − ψ, if oi = 1,

(26)

66

where ψ is the probability that no video packet will be received by time ti+1 given that no

video packet has arrived by time ti. Hence, we have

ψ =
∏

j≤i

∏

k:ak
j =1

P
{

RTTk > ti+1 − tj |RTTk > ti − tj

}
. (27)

Indeed, following the request policy π forms a Markov chain whose state transition proba-

bilities are given by

Pπ

(
qi+1|qi

)
≡ P

(
qi+1|qi,ai

)
. (28)

There can be several feasible outcomes of this particular request policy through the Markov

chain. Let q = (q0, q1, ..., qF−1) be one of the feasible paths with length F . Note that, we

have oi = 0 for i < F − 1 on q. By the Markovian property, it is straightforward to show

Pπ(q) =
F−1∏

i=0

Pπ

(
qi+1|qi

)
. (29)

The corresponding cost of transmitting the video packets for server Sk on path q is given

by

ρk
π(q) =

F−1∑

i:ak
i =1

P
{

BTTk <∞
}
. (30)

Finally, if the video packet is received on path q, i.e., if oF−1 = 1, the distortion becomes

zero. Otherwise, the distortion is equal to ∆d. That is,

ǫπ(q) =





0, if oF−1 = 1;

∆d, ow.

(31)

Given ρk
π(q) and ǫπ(q), we can compute the expected cost (per byte) and distortion over

all realizations of q for request policy π as follows:

ρk(π) ≡
∑

q

Pπ(q)ρk
π(q) and ǫ(π) ≡

∑

q

Pπ(q) ǫπ(q). (32)

One can compute ρk(π) and ǫ(π) for any request policy by using (32). However, it would

not be feasible to enumerate the pairs of
{
ρk(π), ǫ(π)

}
for all policies and select the one

that minimizes the Lagrangian j(π) = ǫ(π) +
∑

k λ
kρk(π). Instead, we can express j(π) as

j(π) =
∑

q

Pπ(q)jπ(q), (33)

67

where jπ(q) ≡ ǫπ(q) +
∑

k λ
kρk

π(q), and minimize it with dynamic programming. To do so,

we need to define jπ(q) for the incomplete paths as well. The expected Lagrangian for all

paths through qi can be written as

jπ(qi) =





ǫπ(q) +
∑

k λ
kρk

π(q), if qi is final in q, i.e., i = F ;

∑
qi+1

P
(
qi+1|qi,ai

)
jπ(qi+1), ow.

(34)

By induction, one can show that j∗(qi) ≤ jπ(qi) for all qi and π, where

π∗(qi) = arg min
a

∑

qi+1

P
(
qi+1|qi,a

)
j∗(qi+1), (35)

for all non-final states qi. With (34) and (35), it is straightforward to minimize (33) under

the rate constraint given for each server.

To compare the rate-distortion performance of the single and two-server streaming sys-

tems, we plot the normalized distortion, i.e., θ, against the expected cost in Figure 30 for

every possible request policy that can be adopted for a single video packet. In producing

these plots, we used 100 ms, 100 ms and 350 ms for the mean FTT, mean BTT and playout

delay, respectively. The client had six request opportunities at every 50 ms. The packet

loss rate was set to 10% for each path. When we examine the achievable points on the

rate-distortion plots in Figure 30, we see that the convex hull for the two-server streaming

system is closer to the origin, and the two-server system can attain smaller distortion at the

same cost compared to the single-server streaming system. In other words, the two-server

streaming system can achieve a higher streaming quality under the same rate constraints

provided that the optimal request policy is selected for each server.

4.2.3 Scheduling Algorithm for a Group of Video Packets

In this section, we generalize the same idea to a group of packets. Let G denote this group,

and assume that the client adopts a request policy πl for packet l ∈ G. It follows that the

expected cost for server Sk is computed by

Rk(π) =
∑

l∈G

Blρ
k(πl), (36)

68

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 D

is
to

rt
io

n
 (

θ
)

Expected Cost (ρ)

Single−server Streaming

(a)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

N
o
rm

a
liz

e
d
 D

is
to

rt
io

n
 (

θ
)

Expected Cost (ρ)

Two−server Streaming

(b)

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

N
o
rm

a
liz

e
d
 D

is
to

rt
io

n
 (

θ
)

Expected Cost (ρ)

Single−server Streaming

Two−server Streaming

(c)

Figure 30: Normalized rate-distortion plots for the single (a) and two-server streaming
systems (b). The comparison is given in (c).

69

where π = (π1, π2, ..., πL) represents the request policy vector for group G. On the other

hand, to express the expected distortion we have to consider the packet interdependencies.

Recall from Section 1.1 that packet l can only be decoded successfully provided that all

video packets to which packet l is referenced are already received and decoded. We use the

notation Al to indicate the ancestors of packet l. Hence, (1− θ(πl))
∏

l′∈Al
(1− θ(πl′)) gives

the probability of being decodable for packet l. If we deduct the distortions of all decodable

packets from the sum of the distortions of all packets in group G, denoted by D0, we get

the expected distortion for group G. That is,

D(π) = D0 −
∑

l∈G

∆dl ×
(
1 − θ(πl)

) ∏

l′∈Al

(
1 − θ(πl′)

)
. (37)

Having specified Rk(π) and D(π), we seek the optimal group request policy vector by

minimizing the Lagrangian

J(π) = D(π) +
∑

k

λkRk(π). (38)

This minimization problem can be solved by using iterative techniques. Interested readers

are referred to [52, 57] for further details.

4.2.4 Simulations and Results

We present 30-minute simulation results to demonstrate the performance bounds of the

single and two-server streaming systems. We used two standard test sequences Table

Tennis (352×240) and Flower Garden (352×240) in our simulations. These sequences

were encoded with a standard MPEG-2 encoder (TM5 [85]), and a GOP structure consisting

of an I-frame and nine P-frames at 30 frames per second. During the simulations, the

frames were displayed after an initial buffering of 500 ms to smooth out the delay jitter.

The frames missing their display deadlines were concealed by the last successfully-displayed

frame. However, the packets arriving after their decoding deadlines were still used to decode

the subsequent predictively-coded frames. For comparison purposes, we provide our results

in terms of the peak signal-to-noise ratio (PSNR) measure on the luminance (Y) channel.

The PSNR value for each simulation was computed by averaging the PSNR values of 54000

individual frames.

70

Figure 31 shows that the achievable video quality improves for both systems as the

rate increases. However, the two-server streaming system achieves up to 1.4 dB superior

performance over the single-server streaming system. It is important to note that while the

single-server streaming system has to suffer in the case of heavy congestion, the two-server

streaming system can exploit server diversity and use the less-congested path to maintain

a more stable quality. This way, the two-server streaming system is able to endure long-

lasting congestions. This feature makes multi-server streaming more robust and a good

choice particularly for the low-delay favoring applications.

An important point here is that in producing the results given in Figure 31, we used

two servers such that the resulting forward paths were totally link-disjoint, and the packet

loss events observed on each path were uncorrelated. Not surprisingly, when we tried to

use a set of servers that shared the same bottleneck link on their forward paths, multi-

server streaming lost its edge and performed barely better than single-server streaming. In

the next section, we study multiple description streaming in multi-server environments and

demonstrate its benefits when the forward paths have a common bottleneck link.

4.3 Multi-Server Multiple Description Video Streaming

In the previous section, we introduced the concept of multi-server streaming and showed its

advantages over single-server streaming by simulations. In the theoretical analysis, we have

not limited ourselves to any particular video-encoding scheme, we merely assumed a general

dependency structure among the encoded video packets. In this section, we illustrate how a

special video-encoding scheme can be incorporated into the rate-distortion optimization. In

particular, we consider rate-distortion optimized multiple description video streaming where

each description is streamed from a different server. We start our discussion with a brief

introduction to the error-resiliency features of multiple description streaming in multi-server

environments.

4.3.1 System Overview

The self-reliance of the descriptions provides multiple description (MD) streaming highly-

efficient error-resiliency features. The descriptions deliver a basic quality of video when they

71

500 1000 1500
29

30

31

32

33

34

35

Rate (Kbps)

P
S

N
R

 (
d

B
)

Single−server Streaming

Two−server Streaming

(a)

500 1000 1500
20

21

22

23

24

25

26

Rate (Kbps)

P
S

N
R

 (
d

B
)

Single−server Streaming

Two−server Streaming

(b)

Figure 31: Comparison of the single and two-server streaming systems for the Table

Tennis (a) and Flower Garden (b) sequences when the forward paths are totally link-
disjoint.

are individually decoded, and each additional description further refines the quality. Hence,

as long as packet losses do not occur simultaneously in multiple descriptions, the client is

guaranteed a continuous video. A conceptually-straightforward way to reduce the chance

of concurrent description losses is to stream the descriptions over diverse paths. With

the path diversity approach, MD streaming has been shown to be effective in combatting

bursty packet losses and the subsequent error propagation among the video frames [43,

75]. However, unless the underlying routing protocol supports some sort of source-routing

functionality, achieving path diversity over a conventional network such as the Internet

requires an additional infrastructure for transmitting the descriptions over diverse routes3.

3See Chapter 2 for further details on MD coding and MD streaming with path diversity.

72

A more practical end-to-end approach to imitate path diversity without requiring the

physical network support is to stream the video from different servers. This approach

is referred to as server diversity. As long as the servers are not co-located, streaming

from different servers can offer the advantages of path diversity to the clients. With this

motivation, Apostolopoulos et al. studied MD streaming from multiple servers within a

CDN [76]. The authors investigated the performance of MD streaming for different CDN

topologies and compared it with the performance of single description streaming. Besides

proving the superior performance of MD streaming, their results also showed that the

streaming quality could be improved as a larger number of servers were deployed inside the

network. Intuitively, as more servers became available, the chance of finding diverse servers

increased for the clients.

Clearly, streaming MD video from multiple servers is an effective approach. Nonetheless,

the performance of this approach can be further improved by transmitting the video packets

in a time-sensitive and network-adaptive manner. For this reason, we propose a client-driven

packet scheduling algorithm, which is particularly designed for MD streaming in multi-server

environments. The primary goal of this algorithm is to maximize the streaming quality by

jointly considering the timeliness requirements of the application, dependency structure of

the streamed video, network conditions and error-resiliency features of MD coding.

Suppose that the source video is encoded offline by an MD encoder to produce two

descriptions. The descriptions are packetized into video packets. The packets corresponding

to the first (denoted by l1) and second descriptions (denoted by l2) are served by the servers

S1 and S2, respectively, as depicted in Figure 32. From a networking point of view, there

exists a limit on the transmission rate to keep the consumed bandwidth at a desired level.

For a set of given rate constraints, the intriguing problem is to find the optimal request

policy for each server such that the expected quality rendered at the client is maximized.

We develop an expression to evaluate the expected distortion that will be incurred for a

given request policy. This expression takes into account the packet decoding deadlines and

interdependencies as well as the unique error-resiliency features of the MD encoded video.

For example, if the client receives one of the descriptions corresponding to a video frame,

73

Server S1

Server S2

Internet

Client

Backward channel

Forward channel

Description 1

Description 2

Figure 32: An illustration of a two-server multiple description video streaming system.

the client’s tendency to request the other description reduces since its contribution to the

video quality would be less. Instead, the client might prefer requesting a description that

belongs to another video frame.

In the rest of the section, following a similar analysis presented in Section 4.2, we first

solve the problem for a single set of descriptions, and then, formulate the case of multiple

sets of descriptions.

4.3.2 Scheduling Algorithm for a Single Set of Descriptions

Let t0, t1, ..., tN−1 be N discrete request opportunities at which the client can send request

packet(s), and let π = (a0,a1, ...,aN−1) represent a request pattern, where ak
i = 1 if a

request is sent to server Sk asking the kth description at time ti, and ak
i = 0, otherwise.

Suppose that the client adopts the request policy π. Since any further request for a descrip-

tion will be cancelled upon its reception, the expected cost (per byte) for server Sk is given

by

ρk =
∑

i:ak
i =1

φ(i, k) × P
{

BTTk <∞
}
, (39)

where φ(i, k) is the probability that the kth description has not been received by time ti,

and it is given by

φ(i, k) =
∏

j:j≤i;ak
j =1

P
{

RTTk > ti − tj

}
. (40)

74

The expected distortion rendered at the client can be computed by considering all pos-

sible cases of the description on-time arrivals. Following a similar approach presented in

Section 2.4, we can write the expected distortion at the client as

ǫ = θ1θ2D0,0 + θ1
(
1 − θ2

)
D0,1 +

(
1 − θ1

)
θ2D1,0 +

(
1 − θ1

)(
1 − θ2

)
D1,1, (41)

where θk is the probability of not receiving the kth description before its decoding deadline,

which is denoted by tkD. θk is given by

θk =
∏

i:ak
i =1

P
{

RTTk > tkD − ti

}
. (42)

The values of the distortion terms, D1,1, D1,0, D0,1 and D0,0, depend on the specific MD

codec used to produce the descriptions. In the sequel, we adopt the time-domain partitioning

method with two descriptions, and borrow the distortion terms derived in Chapter 2.

To evaluate the expected cost and distortion of any request policy, we use a Markov

decision process (MDP) framework similar to the one discussed in Section 4.2.2. The cor-

responding decision tree is built as shown in Figure 33. Starting with the initial state, the

client has four possible action choices at every request opportunity. The actions taken by

the client at time ti are denoted by ai = [a1
i a

2
i]. Before taking a new action at time ti+1, the

client may or may not have received the requested packet(s). We represent this observation

by oi. oi = [1 1] indicates the reception of both descriptions, and consequently, the process

enters a final state. In contrast, if only one or none of the descriptions are received, the

client again chooses an action.

Let qi denote the state at time ti. Noting that state qi+1 is totally characterized by the

actions and observations up to time ti+1, one can express the state transition probabilities

as

P
(
qi+1|qi,ai

)
=





(1 − ψ1) × (1 − ψ2), if oi = [1 1];

ψ1 × (1 − ψ2), if oi = [0 1];

(1 − ψ1) × ψ2, if oi = [1 0];

ψ1 × ψ2, if oi = [0 0],

(43)

75

[1
 1
]

Initial

state

[0
1]

[1 0]

[0 0]

[1 1]

[0 1]

[1 0]

[0 0]

[1 1]

[0 1]

[1 0]

[0 0]

[1 1]

[0 1]

[1 0]

[0 0]

[1 1]

[0 1]

[1 0]

[0 0]

[1
1]

[0 1]

[1 0]

[0 0]

[1
1]

[0 1]

[1 0]

[0 0]

[1
 1
]

[0
1]

[1 0]

[0 0]

������������������������������

0
t

1
t

1N
t
− D

t
0

a
1

a
1N−

a
0

o 1N−
o

Figure 33: Decision tree for the MDP for two descriptions. Final states are indicated with
filled circles. Infeasible actions, observations and states are gray-colored.

where ψk is the probability that the kth description will not be received by time ti+1 given

that it has not arrived by time ti. That is,

ψk =
∏

j:j≤i;ak
j =1

P
{

RTTk > ti+1 − tj |RTTk > ti − tj

}
. (44)

Recall that following a particular request policy π forms a Markov chain whose state tran-

sition probabilities are given by

Pπ

(
qi+1|qi

)
≡ P

(
qi+1|qi,ai

)
. (45)

Now, let q = (q0, q1, ..., qF−1) be one of the feasible paths, concluding at a final state, with

length F through this Markov chain. By the Markovian property, it is straightforward to

show that the probability of traversing this path equals

Pπ(q) =
F−1∏

i=0

Pπ

(
qi+1|qi

)
. (46)

The cost for server Sk and the distortion associated with q are given by

ρk
π(q) =

F−1∑

i:ak
i =1

P
{

BTTk <∞
}

(47)

76

and

ǫπ(q) =





D1,1, if oF−1 = [1 1];

D0,1, if oF−1 = [0 1];

D1,0, if oF−1 = [1 0];

D0,0, if oF−1 = [0 0],

(48)

respectively. Given ρk
π(q) and ǫπ(q), the expected cost (per byte) and distortion are com-

puted over all realizations of q for request policy π as follows:

ρk(π) ≡
∑

q

Pπ(q) ρk
π(q) and ǫ(π) ≡

∑

q

Pπ(q) ǫπ(q). (49)

With ρk(π) and ǫ(π), we form the Lagrangian j(π) = ǫ(π) +
∑

k λ
kρk(π) and seek the

optimal request policy by minimizing j(π) for the given rate constraints.

4.3.3 Scheduling Algorithm for Multiple Sets of Descriptions

Let us consider a group of frames, denoted by G, to be scheduled by the client. Suppose that

the client adopts a request policy πl for the description set l ∈ G, and let π = (π1, π2, ..., πL)

represent the group request policy for group G. Following a similar analysis presented

in 4.2.3, we compute the expected cost for server Sk from

Rk(π) =
∑

l∈G

Bk
l ρ

k(πl), (50)

and the expected distortion from

D(π) =
∑

l∈G

Pd(l
1)Pd(l

2)D1,1(l) (51)

+
∑

l∈G

(
1 − Pd(l

1)
)
Pd(l

2)D0,1(l)

+
∑

l∈G

Pd(l
1)
(
1 − Pd(l

2)
)
D1,0(l)

+
∑

l∈G

(
1 − Pd(l

1)
)(

1 − Pd(l
2)
)
D0,0(l),

where Pd(l
k) represents the decodability probability of description lk. This probability is

given by

Pd(l
k) =

(
1 − θk(l)

) ∏

l′∈Al


1 −

∏

k

θk(l′)


 . (52)

77

Finally, the optimal group request policy is found by minimizing the Lagrangian

J(π) = D(π) +
∑

k

λkRk(π). (53)

4.3.4 Simulations and Results

In this section, we present simulation results to evaluate the performance of the rate-

distortion optimized packet scheduling algorithm. We compare optimized MD streaming

with non-optimized MD streaming, where the descriptions on different servers are requested

sequentially. That is, at each request opportunity the client requests the subsequent packet

for the corresponding description from each server. To this end, we conducted our simula-

tions on two different setups: (i) when the forward paths were totally link-disjoint, hence,

the packet loss events for different descriptions were uncorrelated, and (ii) when the forward

paths shared the point-of-congestion (PoC), hence, the packet loss events were correlated.

This analysis was important for understanding the potential impact of a shared congestion

on the performance of multi-server streaming.

We used two standard test sequences Foreman (352×288) and Football (352×240)

in our simulations. The descriptions were produced by the time-domain partitioning method

with a standard H.264 encoder [120], and a GOP structure consisting of an I-frame and

nine P-frames at 30 frames per second. The rest of the simulation settings were adopted

from Section 4.2.4 except that the interval between the request opportunities was set to

33 ms for the simulations discussed below.

First, consider the PSNR plots given in Figure 34. Naturally, the video quality improves

as the rate increases. However, the rate-distortion optimized MD streaming scheme achieves

up to 0.53 and 0.44 dB superior performance compared to non-optimized MD streaming

for the Foreman and Football sequences, respectively. When we examine the packet

traces, we deduce that the PSNR gain largely stems from the fact that the rate-distortion

optimized packet scheduling algorithm does not request the descriptions belonging to the

same video frame at the same opportunity, rather it requests the ones belonging to different

video frames. This helps the client maintain a good video quality even in the event of a

concurrent description loss.

78

0 500 1000 1500
31

32

33

34

35

36

37

38

Rate (Kbps)

P
S

N
R

 (
d

B
)

Non−optimized

Rate−distortion Optimized

(a)

0 500 1000 1500
24

25

26

27

28

29

Rate (Kbps)

P
S

N
R

 (
d

B
)

Non−optimized

Rate−distortion Optimized

(b)

Figure 34: Comparison of the non-optimized and rate-distortion optimized MD streaming
systems for the Foreman (a) and Football (b) sequences when the forward paths do not
share the PoC.

Next, consider the plots in Figure 35 that correspond to the case when the forward paths

share the PoC. As shown in [43] and in Chapter 2, MD streaming becomes less error-resilient

when the description losses become more correlated. That is, if both descriptions are

simultaneously lost, the video quality degrades because of the poor picture reconstruction

and the subsequent error propagation. This is also clearly seen when the plots in Figures 34

and 35 are compared. However, it is important that the performance gap between the

optimized and non-optimized streaming schemes increased in Figure 35. Specifically, rate-

distortion optimized MD streaming incurs a relatively smaller performance degradation

(ranging from 0.2 to 0.3 dB) compared to non-optimized MD streaming (ranging from 0.3

to 0.6 dB). The reason is two-fold: First, as discussed above, rate-distortion optimization

refrains from requesting correlated descriptions at the same opportunity. This naturally

79

reduces the probability of simultaneous description losses. Second, when a description

belonging to an important frame is inferred to be lost, the rate-distortion optimized packet

scheduling algorithm requests it again instead of requesting a description that belongs to

a less important frame. This way, the number of decodable frames is still kept as large as

possible in spite of the shared PoC. On the other hand, the non-optimized MD streaming

scheme is bound to lose correlated descriptions every time a congestion occurs at the PoC.

This inevitably causes a larger quality degradation at the client.

0 500 1000 1500
31

32

33

34

35

36

37

38

Rate (Kbps)

P
S

N
R

 (
d

B
)

Non−optimized

Rate−distortion Optimized

(a)

0 500 1000 1500
24

25

26

27

28

29

Rate (Kbps)

P
S

N
R

 (
d

B
)

Non−optimized

Rate−distortion Optimized

(b)

Figure 35: Comparison of the non-optimized and rate-distortion optimized MD streaming
systems for the Foreman (a) and Football (b) sequences when the forward paths share
the PoC.

4.4 Conclusions

In this chapter, we presented a generalized packet scheduling algorithm for streaming

on-demand video from multiple servers. This algorithm achieved rate-distortion optimal

80

streaming at the client by evaluating the video characteristics, network conditions and

application requirements. Our simulations showed that the clients experienced a more con-

tinuous and higher streaming quality by exploiting the error-resiliency features of server

diversity. We also demonstrated how multiple description coding and multi-server stream-

ing could be combined together and used to deliver a reliable video even when the network

paths leading to the client had their bottleneck links in common.

The algorithms developed in this chapter can also be adapted for the cases where the

client can connect to a single server over multiple networks. For example, a multi-homed

client may have two or more network interfaces connected to different networks in order

to increase its bandwidth and improve the connection reliability. By exploiting multiple

simultaneous connections (each through a different network interface) to a single video

server, this multi-homed client may enjoy the benefits of multi-server streaming and enhance

its video-on-demand experience.

81

CHAPTER V

IN-NETWORK SOLUTIONS FOR INTERACTIVE VIDEO SERVICES

While emerging broadband access technologies such as DSL and cable are making multi-

media services feasible and economically attractive for end-users, there still exist several

hurdles in terms of service sustainability and reliability. Unfortunately, without the desired

QoS support, tackling these hurdles with traditional solutions is an insuperably difficult

task. Yet, novel designs that are proven to be useful in various scenarios may easily fail

when the underlying network experiences severe packet loss or delay. Such circumstances

are unavoidable in today’s best-effort Internet and will likely prevail in the near future

as well. A promising approach in satisfying the stringent requirements of delay-intolerant

video applications is to benefit from configurable proxies. In this study, we introduce a ver-

satile proxy-based solution to enhance the performance of such applications running over

networks with large delays. We first propose a methodology that accurately identifies lost

packets in real time. This methodology is then used by the proxy and end-users to improve

the error-control/protection capability of the video applications. By Internet experiments

between the U.S. and Europe, we demonstrate the effectiveness and potential benefits of

the proposed approach.

5.1 Introduction†

The primary role of ubiquitous networking, in particular of the Internet, is to disseminate

information in a timely manner and provide an inexpensive communication platform to its

users. As the access technologies provide high bandwidths at economically-attractive prices

and by the help of the advances in audiovisual signal processing, a larger number of people

are communicating interactively through networks every day. However, despite all the ad-

vances, these technologies have so far not been able to provide the desired reliability. The

†Parts of this chapter were previously published in [121–125].

82

reason behind this shortfall is that the service requirements of the emerging conversational

interactive applications differ significantly from those of the conventional data-oriented ap-

plications. Recent studies focused on designing new solutions that were specifically tailored

for the unique features of real-time media. However, without the essential QoS provision-

ing, even these media-aware approaches may struggle, if the network becomes physically

incapable or performs poorly for a prolonged amount of time. In other words, clever design

has its limitations. Such circumstances are unavoidable in today’s best-effort Internet and

will likely prevail in the near future as well.

A particularly useful method to improve the reliability of delay-intolerant video appli-

cations is to utilize proxies. Depending on their types and functionalities, proxies can be

used in different contexts. In this work, we investigate the potential benefits of proxies in

an interactive application for which packet delivery deadlines are stringent. In this class

of applications, dealing with large delay variations for the end-users that are geographi-

cally distant from each other is arduous. Large round-trip delays hinder feedback-based

error-control/protection methods since the validity of the feedback messages are mostly de-

preciated, if not totally useless, by the time they are received. As a result, end-users can

be ineffective in taking the necessary actions against missing packets. In addition, due to

the late feedback reports, end-users will also fail to adapt to the network conditions in a

timely manner, if the network conditions change rapidly.

The network delay between two end-users is determined by the underlying IP routing

mechanisms, over which the end-users do not have any control. If the Internet path between

two end-users has many hops, the end-to-end delay as well as the delay jitter will likely be

large on this path. Consequently, conversational applications may incur interruptions and

perform poorly. A practical way to alleviate these problems is to divide the large network

between the end-users into two or more smaller sub-networks by introducing intermediate

proxies (I-Proxy), as sketched in Figure 36. This partitioning provides two main advantages:

First, each sub-network now includes fewer hops, and hence, has a smaller end-to-end delay

and jitter. This enables the end-users to receive more recent and accurate feedback about the

network conditions, and perform better error control and protection. Second, we can benefit

83

from the error-control capabilities of the I-Proxy. Depending on the network configuration,

the potential improvement in the end-to-end video quality can be substantial.

Client A

I-Proxy

Client B

WAN

WAN

Client A Client B

WAN

Figure 36: Illustration of the I-Proxy approach.

Proxies have been around since the early days of the Internet. The main purpose

behind their deployment has been to cache popular files, data or multimedia, at locations

close to the end-users, and reduce the load on the network and content servers. In this

context, several content caching and distribution, server scheduling, and proxy-placement

algorithms have been proposed [126–132]. In their work [130], Hartanto et al. studied

proxy-caching strategies for continuous media in interactive streaming applications. In

particular, they developed caching strategies based on the request patterns for the proxies

connected to the clients via LAN. In [131], the authors studied the problem of minimizing

the bandwidth consumption by jointly optimizing server scheduling and caching strategies.

All these studies utilized proxies for caching and reducing the network load. However, none

of these studies considered using proxies for providing better error control for time-critical

media content. On the other hand, some of the existing messenger services employ systems

similar to the I-Proxy approach. Next, we summarize the similarities and differences1.

Currently, there are several free messenger services offered by different service providers.

Among the popular ones, MSN Messenger requires two clients to talk to each other over

1As these services are proprietary, the following discussion is based on the information collected from

discussion groups and user experiences on the Internet. For more information on these services, visit

http://messenger.msn.com, http://messenger.yahoo.com and http://www.skype.com.

84

a direct connection. In Yahoo Messenger, the clients connect to an audio server before

making a call unless a direct connection can be established. Teleconferencing between

multiple parties is also available, where a central audio server hosts the session. Likewise,

Skype relays the calls between two clients over a super node, which is a Skype client with

a public IP address, if the clients cannot connect to each other directly.

In terms of the system configuration, relaying packets over external nodes, e.g., the cen-

tral audio servers in Yahoo Messenger and the super nodes in Skype, has similarities with

relaying packets over an I-Proxy. However, for Yahoo Messenger and Skype, the main moti-

vation in relaying is to enable the voice service for the clients who reside behind non-UPnP-

capable firewalls or NAT devices2,3. For the clients those are behind UPnP-capable devices,

a direct connection can be established through the UDP hole punching technique [133], thus

relaying is not required. In contrast, an I-Proxy offers not only a firewall-traversal solution

but also customizable error-control capabilities that lead to superior audiovisual quality.

The rest of the chapter is organized as follows: In Section 5.2, we provide an overview

of the I-Proxy approach. Sections 5.3 through 5.5 discuss the proposed methods and imple-

mentation issues in detail. Experimental results are presented in Section 5.6. Finally, we

conclude the chapter in Section 5.7.

5.2 Intermediate-Proxy Approach

In this section, we provide two example cases to demonstrate the potential benefits of using

proxies in interactive video applications. Because of its popularity, we choose videotelephony

as our target application. However, it is straightforward to generalize the I-Proxy approach

to other applications such as videoconferencing and distance learning.

Consider a videotelephony session between two end-users that are network-wise far away

from each other, e.g., one resides in U.S. and the other one resides in Europe. Both clients

capture and encode video in real time. After packetizing the video, they transmit the

2UPnP: Universal plug and play. Refer to 3.1 for a detailed description.
3NAT: Network address translation, also known as network masquerading or IP-masquerading. A NAT

device rewrites the source and/or destination addresses of IP packets as they pass through. The goal is to

enable multiple hosts on a private network to access the Internet using a single public IP address.

85

video packets to an I-Proxy, and the I-Proxy forwards them to the other end. Mean-

while, the I-Proxy also caches any forwarded packet for a short amount of time. Since the

round-trip delay between such a client pair averages a few hundred milliseconds, the error-

control/protection capability is limited. For the sake of clarity, in the rest of the chapter,

we consider video transmission in one direction, i.e., from the server to the client.

5.2.1 Enabling Retransmission-Based Error-Control Methods

Automatic repeat request (ARQ) is a fundamental error-control method that has been

widely used for reliable data transfer protocols such as TCP. Compared to forward error

correction (FEC), ARQ has a simpler design and generally achieves higher throughput as

long as the channel error rate or packet loss rate is not very high. On the other hand,

ARQ-based error control can be impractical for networks where the extra delay introduced

by the retransmissions is prohibitively large. However, by the help of an I-Proxy, ARQ

may become a feasible approach for error recovery as the application runs over two small

sub-networks rather a single large network.

In packet-switched IP networks, packets experience inevitably variable delay due to

queuing, route changes, packet reordering, etc. To this effect, a client can never be sure, if

a missing packet has been lost or merely delayed. Basically, a packet is assumed to be lost,

if it is not received within an expected time. In that case, as shown in Figure 37, the client

sends a retransmission request to the server. However, the I-Proxy intercepts this request

and immediately retransmits the requested packet to the client, provided that the packet

is available in the cache. The explicit advantage of this early retransmission is the savings

in the recovery time for the missing packet; it avoids unnecessary delays that would be

incurred in case of a retransmission by the server. Less explicitly, the I-Proxy also reduces

the amount of network resources consumed during the retransmission. This approach is

particularly useful when the packets often get lost between the I-Proxy and client, and the

round-trip delay between the I-Proxy and client is relatively smaller. On the other hand,

if the packet is not available in the cache, the retransmission request is conveyed to the

server. The server can do an end-to-end retransmission, if sufficient time exists.

86

I-ProxyServer Client

2

3

4

1

Figure 37: Early retransmission by the I-Proxy.

There might be some packets that get lost between the server and I-Proxy as well.

Eventually, the client will observe these lost packets and request a retransmission. However,

the I-Proxy can infer any missing packet earlier than the client and subsequently request

a retransmission from the server. The server then retransmits the requested packet and

the I-Proxy forwards it to the client. This proactive approach, called fast retransmission,

avoids unnecessary waiting for the client to identify the missing packets (See Figure 38). In

other words, by the help of the I-Proxy, the server is informed about the missing packets at

an earlier stage, which allows us to take the necessary actions on time. Note that without

an I-Proxy we would have to wait for the client to report the missing packet, and by that

time, it might have been too late for a retransmission attempt because of the insufficient

remaining time to the decoding deadline.

I-ProxyServer Client

1

2

3

4

Figure 38: Fast retransmission by the I-Proxy.

It is worth emphasizing that the early/fast retransmission performed by the I-Proxy

is a strategy between doing a retransmission on an end-to-end and a hop-by-hop basis.

While the I-Proxy cannot deliver the advantages of the latter approach, e.g., faster error

recovery and minimal use of network bandwidth, the chances are it will recover the pack-

ets faster compared to the end-to-end retransmissions, provided that an intelligent proxy

placement/selection is made.

87

5.2.2 Fast Intra-Frame Updates

In the research community, there has been a great interest in developing error-resilient video

coding techniques that are useful in reducing the impact of the Internet’s imperfections. Al-

though such techniques provide visual improvements, the reconstruction quality is generally

limited because of the mismatches between the encoder and decoder states. A quick way

to suppress the resulting temporal error propagation is to insert an intra-coded picture,

which can be decoded independently of other pictures. This is particularly useful in video

streams that are encoded without a strict GOP structure. Of course, a swifter insertion of

an intra-coded picture upon the detection of a packet loss, terminates the error propagation

at an earlier time. As discussed above, the I-Proxy can infer missing packets earlier than

the client, and when it does, the server is warned to intra-code the next picture. In doing so,

the delay between the detection of the packet loss and insertion of the intra-coded picture

shortens, which consequently reduces the amount of error propagation. This is illustrated

in Figure 39.

Note that some of the error-control/protection methods that can be employed by the

video applications are not necessarily retransmission-based. However, as a common task,

any of these methods should identify the lost packets as early as possible in order to improve

its performance. In the next section, we investigate this issue and propose a method that

accurately identifies the late/lost packets in real time. In two-way video applications, this

method runs on the end-users and I-Proxy, as all of these entities function both as a server

and client. However, to keep the discussion concrete and focused, we shall refer to one of

the end-users as the server and the other one as the client.

5.3 Detection of Lost Packets

5.3.1 Preliminaries

The Internet is a shared medium; any packet injected into the Internet has to wait for some

time before it is serviced. It therefore experiences a random delay. Because of the finite

buffering capabilities of the intermediate routers and switching devices, it is safe to assume

that a packet is lost if it has not been received or acknowledged within some time after

88

Server

I-Proxy

P P P P P I P P P P

Client
P P P P P I P PP P

Intra

Update

P

(a)

Server

I-Proxy

P P P P P P P P I P

Client
P P P P P P P PP P I

Intra

Update

(b)

Figure 39: Error propagation is suppressed at an earlier stage when the I-Proxy is en-
abled (a) compared to when it is disabled (b).

its transmission. In TCP jargon, this duration is referred to as the retransmission timeout

(RTO). It is vital that the value of the RTO is chosen large enough so that the packets

experiencing long queueing delays do not trigger spurious timeouts. However, adopting an

arbitrarily large RTO is impractical for delay-sensitive multimedia applications. A delayed

retransmission attempt eventually recovers a missing media packet. Yet, the chances are

that the retransmitted packet will be late and useless for decoding at the client side. There-

fore, an RTO estimation method that quickly detects lost packets is imperative for such

applications. Only then can well-timed actions be taken for error control.

89

In low-delay video applications, it is a common practice to transmit the video frames

as soon as they are packetized in order to avoid unnecessary delays. However, because of

the efficient predictive-coding techniques that are used in popular video coding standards,

encoded video frames vary in size and potentially produce a different number of packets.

Furthermore, at high bitrates even the smallest video frame may not fit into one packet. If

all the packets belonging to a single frame are transmitted back-to-back, the video traffic

inevitably becomes bursty. Combined with the delay jitter experienced along the path, the

varying nature of the transmission times causes the video packets arrive at the client at

less-predictable times. In this section, we address this problem and propose a burst-aware

RTO estimation method.

The transmission times of the video packets depend on several factors. Namely, the

number of frames in a GOP, the GOP structure, encoding bitrate, video frame rate and IP

packet size are the main parameters that vary the transmission times of the packets in a

GOP4. As an illustrative example, consider Figure 40, where we denote the transmission

time at the server of packet n by tT [n]. Suppose that the GOP consists of one I-frame

(producing seven IP packets) and nine P-frames (each producing two IP packets), and the

frame rate is 20 frames per second. Let ∆tT [n] represent the intertransmission time of

packet n, which is defined as

∆tT [n] = tT [n] − tT [n− 1]. (54)

The mean intertransmission time can be computed from

∆T =
GOP duration

of packets in a GOP
, (55)

which is 20 ms in our example. However, as shown in Figure 40, ∆tT can be as small as a

few milliseconds, and as large as 50 ms. It is clear that ∆T is largely inadequate to define

the transmission regime at the server.

4Note that some video applications encode the video without a strict GOP structure. Instead, a small

percentage of the macroblocks are intra-coded in every frame, producing almost equal-sized frames, and

hence, less-bursty video traffic. In such cases, (55) can be computed over packet groups whose transmission

regime exhibits a periodicity.

90

Server

Time (ms)
[] 50Tt n +[] 100Tt n + []Tt n

n+1 nn+2n+3n+4n+5n+6

I-frame

n+7n+8

P-frame

n+9n+10

P-frame

������������������� �������

[]7Tt n∆ +[]9Tt n∆ +

… …

Figure 40: The variation of the intertransmission times at the server side.

As mentioned above, the variation in the intertransmission times depends on many

factors. Fortunately, our tests with a standard H.264 video codec [120] show that this

variation follows a similar pattern for successive GOPs, provided that the encoder and

video-specific parameters are kept the same. However, in some configurations, the pattern

breaks because of a sudden scene change. Nevertheless, without loss of generality we can

safely assume that the pattern for the first GOP is also valid for the subsequent GOPs, and

the server conveys any new pattern information to the client when there is a change in the

encoding/packetization process.

5.3.2 Timeout Mechanism

Similar to intertransmission times, we define interarrival times at the client. The interarrival

time of packet n is equal to the amount of the time passed since the last arrival. The

interarrival time for packet n is given by

∆t[n] = tA[n] − tA[n∗], (56)

where tA[n] denotes the arrival time for packet n, and n∗ is the last successfully-received

packet before packet n. The main idea behind our RTO estimation method is to estimate

the subsequent interarrival time and project the corresponding arrival time after each packet

arrival.

We use the notation of ∆̃t[.] and t̃A[.] to denote the estimated interarrival and projected

arrival times, respectively. The estimation is based on the last-observed interarrival time

and ∆tT . That is,

∆̃t[n] = F
(
∆t[n− 1],∆tT [n]

)
, (57)

91

for some function F. For example, in Figure 41 packet n is expected to arrive by t̃A[n],

which is given by

t̃A[n] = tA[n− 1] + ∆̃t[n]. (58)

In case of packet n does not arrive within the estimated time frame, the client presumes

that this packet is lost and times out.

n-2
Client

Time

�������������

[]1At n−[]2A
t n−

� []t n∆
Timeout

� []At n

[]1t n∆ −
���������������

n-1

Figure 41: Timeout mechanism.

We benchmark the performance of our RTO estimator with two metrics. First, we define

pf as the estimation failure probability, i.e., the probability of identifying a non-lost packet

as it is lost, which can be computed from

pf = P
{
t̃A < tA and tA <∞

}
. (59)

The second metric is the average overwaiting time. For a non-lost packet n, the overwaiting

time is defined as

o[n] =





t̃A[n] − tA[n], if tA[n] < t̃A[n] <∞;

0, if t̃A[n] ≤ tA[n] <∞.

(60)

On the other hand, the overwaiting time spent for a lost packet can be computed by using

a hypothetical arrival time extrapolated from the last packet arrival time. That is,

o[n] = t̃A[n] −


tA[n∗] +

∑

n∗<n′≤n

∆tT [n′]


 , if tA[n] = ∞, (61)

where n∗ is the last successfully-received packet. Naturally, there is a trade-off between the

estimation failure probability and the average overwaiting time. Estimation failures can be

largely avoided, if the client can tolerate a prolonged amount of time before timing out.

As this ability diminishes, the client starts giving wrong decisions and may identify late

packets as they are lost.

92

5.3.3 Methodology

Let us start our discussion with the analysis of two packet traces. We produced these traces

by simulating a moderate-sized Internet topology [104] in ns-2 network simulator [134].

The first trace corresponds to a video sequence (176× 144) encoded with a standard H.264

codec [120] at 300 Kbps and a frame rate of 25 frames per second. The GOP structure

was one I-frame plus nine P-frames. With an IP packet size of 1500 bytes, each video

frame fitted exactly into one IP packet. This resulted in a regular, i.e., non-bursty, video

traffic with equal intertransmission times of 40 ms. On the other hand, the second trace

corresponds to a bursty video traffic. Specifically, the second video sequence (352 × 288)

was encoded at 600 Kbps and a frame rate of 20 frames per second. The GOP structure

was one I-frame plus nine P-frames, where each I-frame and P-frame was packed into seven

and two IP packets, respectively.

The forward-trip times and interarrival times extracted from a small segment of the

traces are presented in Figures 42 and 43 for both traces. The corresponding distributions

are also given in Figure 44. Note that for the lost packets, arrival times and interarrival

times are equal to infinity and are not shown. Although an identical network topology was

used in producing both traces, the loss rates experienced by the non-bursty and bursty

video traffics were not equal, and measured as 2.2% and 3.9%, respectively.

A first look on the distributions shows that forward-trip times have larger variations

compared to the interarrival times. The amount of variation further increases with the

burstiness of the video traffic. Yet, the autocorrelation plots for the forward-trip times

in Figure 45 suggest that the consecutive samples are highly correlated. Despite that the

bursty video traffic has a variable intertransmission time, the forward-trip time samples

corresponding to this trace have a higher correlation. This is mainly because the bursty

video traffic has a smaller mean intertransmission time (∆T = 20 ms), and hence, more

samples are collected in a unit time period compared to the non-bursty video traffic, which

has a mean intertransmission time of 40 ms. On the other hand, the interarrival times

exhibit a different behavior. Although interarrival time samples are mostly confined within

a small region, their correlation is relatively smaller due to the noisy behavior caused by

93

the other background TCP/UDP flows.

100 200 300 400 500
0

50

100

150

200

250

300

350

400

Sequence Number

F
o

rw
a

rd
−

T
ri
p

 T
im

e
s
 (

m
s
)

Non−bursty Video (300 Kbps)

(a)

100 200 300 400 500
0

50

100

150

200

250

300

350

400

Sequence Number

In
te

ra
rr

iv
a

l
T

im
e

s
 (

m
s
)

Non−bursty Video (300 Kbps)

(b)

Figure 42: Variation of the forward-trip times (a) and interarrival times (b) for the non-
bursty video traffic.

3600 3700 3800 3900 4000 4100
0

50

100

150

200

250

300

350

400

Sequence Number

F
o

rw
a

rd
−

T
ri
p

 T
im

e
s
 (

m
s
)

Bursty Video (600 Kbps)

(a)

3600 3700 3800 3900 4000 4100
0

50

100

150

200

250

300

350

400

Sequence Number

In
te

ra
rr

iv
a

l
T

im
e

s
 (

m
s
)

Bursty Video (600 Kbps)

(b)

Figure 43: Variation of the forward-trip times (a) and interarrival times (b) for the bursty
video traffic.

In continuous-media applications, the client successively receives packets. Upon receiv-

ing a packet, the client can estimate the interarrival time of the subsequent packet and

compute its projected arrival time by using (58). In this study, we propose the following

estimator for the interarrival times:

∆̃t[n] = max
(
∆tT [n], α× ∆t[n− 1] + β × ∆tT [n]

)
, (62)

94

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

Forward−trip Times

Interarrival Times

(a)

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

Forward−trip Times

Interarrival Times

(b)

Figure 44: Distributions of the forward-trip and interarrival times for the non-bursty video
traffic (a) and bursty video traffic (b).

where α and β are some constants that determine the responsiveness of the estimator5.

For example, with α = 0 and β = 1 we get an extremely aggressive estimator, which

achieves a small average overwaiting time but potentially a very high failure rate. Using

a larger β value may lower the estimation failure probability, however, inevitably increases

the average overwaiting time. As shown in Figures 42 and 43, the interarrival time samples

are bounded except some impulsive points. If we ignore these impulsive points for the time

being, a particularly successful estimator can be achieved with α = 7/8 and β = 3/8 for

the non-bursty video traffic and with α = β = 7/8 for the bursty video traffic. We observe

that (62) can closely track the actual arrival times and achieve a small average overwaiting

time with these parameters. However, it is highly susceptible to sudden delay increases. In

particular, for the non-bursty and bursty video simulations, the observed failure probability

is 20.8% and 24.0%, respectively. We address this problem next.

Because of the bursty behavior of the TCP flows in the background, it is possible to

observe some abrupt increases in the packet interarrival times, e.g., see packets #108 and

#383 in Figure 42, and packets #3872 and #3935 in Figure 43. For a successful RTO

5Note that the estimator in (62) requires a packet arrival to compute the subsequent arrival time.

Hence, in case of a bursty packet loss or an excessively-delayed packet, this estimator may halt. To avoid

such interruptions, the interarrival time estimate for packet n is initialized to ∆tT [n]. When a new packet

arrives, the estimate for the subsequent packet is updated accordingly.

95

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Lags

F
o

rw
a

rd
−

T
ri
p

 T
im

e
 A

u
to

c
o

rr
e

la
ti
o

n

Non−bursty Video (300 Kbps)

(a)

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Lags

F
o

rw
a

rd
−

T
ri
p

 T
im

e
 A

u
to

c
o

rr
e

la
ti
o

n

Bursty Video (600 Kbps)

(b)

Figure 45: Correlation of the forward-trip times for the non-bursty video traffic (a) and
bursty video traffic (b).

estimation, these impulsive points must be caught. Since these sudden increases occur

rarely in the interarrival times, rather than modifying (62), e.g., increasing the value of α

and/or β, we introduce a new concept, called Timerlate−packet. As depicted in Figure 46,

this is basically a supplementary timer that absorbs large delay spikes. The client starts

Timerlate−packet when the expected packet does not arrive by the initial projected arrival

time. If the expected packet does not arrive until Timerlate−packet expires, the client registers

the packet as lost and times out. When a new packet (either the expected one or another

packet) is received, the client updates the duration of Timerlate−packet, denoted by δ, as

well as the projected arrival times of the subsequent packets, if necessary. It is important

to note that since the proposed RTO estimator operates on the interarrival times rather

than the arrival times, Timerlate−packet defers the estimated arrival time not only for the

expected packet but also for all subsequent packets. Also note that once Timerlate−packet

is started, the client does not start a second one until a new packet arrives. As opposed to

exponentially backing off [135], this strategy allows us to keep overwaiting time considerably

shorter without sacrificing the accuracy.

With the introduction of Timerlate−packet, the RTO estimation failure probability for

the non-bursty and bursty video simulations reduces to 0.1% and 0.3%, respectively. The

respective incurred costs are a small increase from 18 to 26 ms and from 19 to 26 ms in the

96

Client

Time

[]1At n−

� []t n∆

Initial

Timeout

� []At n

���������������

n-1

. . .δ

Updated

Timeout

�������������

� []At n � []1A
t n+

� []1t n∆ +
�����������

Figure 46: Illustration of Timerlate−packet.

average overwaiting time. The substantial gain at the expense of a negligible cost clearly

proves the benefit of employing Timerlate−packet in the RTO estimation.

In the implementation of Timerlate−packet, the initial value of δ can be set to an arbitrary

value since it is revised every time the timer is used. Its value is updated only if the

received packet is not the expected packet, or it is the expected packet but it arrived after

its estimated arrival time. Let ni and nj be the last packet received before Timerlate−packet

is started and the first packet received after Timerlate−packet is started, respectively. We set

the value of δ as follows:

δ =





min
(
δmax, tA[nj] − tA[ni]

)
, if nj > ni + 1 or tA[nj] > t̃A[nj];

δ, ow,

(63)

where δmax represents the upper limit for δ. In this study, we observed that 3 × ∆T was a

good choice for δmax.

We examine the performance of the RTO estimator given in (62) by varying the values

of α and β. In Tables 5 and 6, we tabulate the results for several {α, β} pairs as well

as the performance of an enhanced TCP-like RTO estimator6. A subset of these estima-

tors are also compared in Figures 47 and 48. The results show that the RTO estimation

performance varies substantially depending on the values of α and β. Evidently, poorly

selected parameters result in a large number of redundant timeouts, which may potentially

lead to a significant performance degradation. Another important observation is that RTO

estimation becomes more difficult as the burstiness of the video traffic increases. It is clear

that depending on the intertransmission time variation, a fine tuning may be required for α

6We study this RTO estimator in detail in Chapter 6.

97

and β in order to get the best RTO performance. However, finding the optimal {α, β} pair

is beyond the scope of this chapter. For the remainder of this chapter, we will use a good

pair of α and β based on the results given in Tables 5 and 6. In Chapter 6, we will further

address this issue and study an adaptive RTO estimation method.

Table 5: Comparison of different RTO estimators for the non-bursty video traffic.

Enhanced α = 0 α = 0 α = 1 α = 2 α = 7/8 α = 7/8, β = 3/8

TCP-like β = 1 β = 2 β = 0 β = 0 β = 3/8 w/ Timerlate−packet

pf 0.9% 40.7% 1.1% 31.6% 5.6% 20.8% 0.1%

Mean o 109 ms 9 ms 41 ms 14 ms 46 ms 18 ms 26 ms

725 730 735
2.94

2.945

2.95

2.955

2.96

2.965

2.97

2.975

2.98
x 10

4

Sequence Number

A
rr

iv
a
l
T

im
e
s
 (

m
s
)

Actual

TCP−like

α=0, β=2

α=7/8, β=3/8 w/ Timer
late−packet

Figure 47: Actual and estimated arrival times for the non-bursty video traffic.

Table 6: Comparison of different RTO estimators for the bursty video traffic.

Enhanced α = 0 α = 0 α = 2 α = 4 α = 7/8 α = 7/8, β = 7/8

TCP-like β = 2 β = 4 β = 0 β = 0 β = 7/8 w/ Timerlate−packet

pf 1.1% 18.6% 3.0% 24.2% 16.1% 24.0% 0.3%

Mean o 118 ms 27 ms 64 ms 35 ms 69 ms 19 ms 26 ms

Having introduced our RTO estimator, we next combine it with a retransmission-based

error-control method. With simulations, we investigate the impact of using an I-Proxy on

the performance of error control. Later in Section 5.6, we conduct a similar analysis with

Internet experiments.

98

2252 2254 2256 2258 2260 2262
4.535

4.54

4.545

4.55

4.555

4.56

4.565

4.57

4.575
x 10

4

Sequence Number

A
rr

iv
a
l
T

im
e
s
 (

m
s
)

Actual

TCP−like

α=0, β=4

α=7/8, β=7/8 w/ Timer
late−packet

Figure 48: Actual and estimated arrival times for the bursty video traffic.

5.4 Impact of the I-Proxy on the ARQ Performance

In this section, we analyze the ARQ performance for the non-bursty video traffic when an

I-Proxy is setup between the server and client, and when there is no I-Proxy available, and

retransmissions are done on an end-to-end basis. In both scenarios, retransmissions are

decided by the RTO estimator given in (62). For RTO estimation, we use parameters α =

0.875 and β = 0.375, and enable Timerlate−packet. First, we provide the delay distribution

of the packets that failed in the first transmission attempt, (i) when no I-Proxy is used,

and retransmissions decisions are solely given by the client (end-to-end retransmission), (ii)

when an I-Proxy is used, and retransmission decisions are solely given by the I-Proxy (fast

retransmission), (iii) when an I-Proxy is used, and retransmission decisions are solely given

by the client (early retransmission), and (iv) when an I-Proxy is used, and retransmission

decisions are given by both the client and I-Proxy (both fast and early retransmission). In

doing so, our goal is to quantify the amount of individual improvements that are contributed

by fast and early retransmissions. Second, we compare the distribution of all packet delays

observed when an I-Proxy is available, and performs both early and fast retransmission

with the case when an I-Proxy is not available.

As the effective packet loss rate after one retransmission opportunity is negligibly small,

we limit the number of retransmissions per packet to one. Figure 49 shows the delay

distributions in different scenarios for the packets that could not make it in their first

99

transmission attempts. Not surprisingly, packets retransmitted on an end-to-end basis

experience considerably larger delays than the ones recovered by the help of the I-Proxy.

We also observe that fast retransmission delivers the retransmitted packets slightly faster

than early retransmission, although fast retransmission can only recover almost half of the

lost packets7. This is mainly because that in case of fast retransmission, retransmission

decisions are given by the I-Proxy, which naturally observes a smaller amount of jitter,

and hence, does a more accurate RTO estimation compared to its client-based counterpart.

However, fast retransmission cannot recover the packets that get lost between the I-Proxy

and client. In contrast, any lost packet can be detected by the client, and the ones that

get lost between the I-Proxy and client can be recovered by early retransmission. For

the remaining packets, however, early retransmission performs exactly as an end-to-end

retransmission, which inevitably increases the total recovery time.

300 400 500 600 700 800 900
0

0.2

0.4

0.6

0.8

1

Delay of the Packets that Failed in the First Attempt (ms)

C
D

F

End−to−end Retransmission

Fast Retransmission

Early Retransmission

Fast and Early Retransmission

Figure 49: Delay distributions of the packets that failed in the first transmission attempt.

Now, we enable both early and fast retransmission on the I-Proxy. In Figure 50, we

compare the delay distribution of all packets that correspond to the cases when an I-Proxy

is used and when one is not used. In Figure 50, our focus is particularly on the delay

performance of the retransmitted packets since the packets that go through in the first

transmission attempt experience the same amount of delay in both cases8. The main result

7Note that the comparison between fast and early retransmission is dependent on the location of the

I-Proxy, and the path characteristics between the I-Proxy and other ends. In our simulations, the location of

the I-Proxy was selected in a way such that each sub-network had similar delay and packet loss characteristics.
8In reality, transmission through an I-Proxy can cause extra delays compared to a direct transmission

100

here is that early and fast retransmission are complementary of each other, and we can

achieve large reductions in the error-recovery time by using an I-Proxy. For example, if

the playout delay is set to 500 ms for a real-time application, the I-Proxy delivers 99% of

the packets on time, whereas only 97% of the packets can be delivered on time without

the I-Proxy. Likewise, to achieve a packet success rate of 99%, the playout delay should be

set to 700 ms if no I-Proxy is used, which is 200 ms larger than the sufficient amount of

the buffer required by the I-Proxy approach. The impact of delivering 2% more packets or

the ability of reducing the playout delay without sacrificing the quality can be substantial

in video applications. Our simulations also show that the amount of the performance gap

between the cases when an I-Proxy is used and not used increases further as the network

conditions deteriorate.

100 200 300 400 500 600 700 800 900
0.9

0.92

0.94

0.96

0.98

1

Packet Delay (ms)

C
D

F

w/o I−Proxy

w/ I−Proxy

Figure 50: Delay distributions of all packets.

Another important observation from our simulations is that the location of the I-Proxy

plays an important role on the ARQ performance of the I-Proxy system. In Appendix C,

we investigate this issue further, and study mathematical and practical I-Proxy selection

methods.

5.5 Implementation Details

In order to conduct Internet experiments, we developed a prototype streaming system,

which consisted of a server, a client and an I-Proxy. Our RTO estimation method was

from the server to the client. See Section 5.5 for details.

101

implemented as an application-layer protocol and ran on top of UDP. In this section, we

briefly summarize the system components and discuss basic design issues.

Our system has three main components:

• Video Server: This is a Win32 application programmed in Java. It captures live video

from a source such as a webcam or camcorder. After encoding and packetizing the

video, it transmits the packets to the I-Proxy.

• Proxy: This is a simple console application programmed in Java, which runs the RTO

estimator studied in Section 5.3. It sends feedback to the server application, and has

the functionalities of forwarding, caching, early and fast retransmission.

• Streaming Client: This is a Win32 application programmed in Java. It receives video

packets, decodes and then displays them. The RTO estimation method is also imple-

mented at the client.

During the development, the following two issues were important in accomplishing the

desired functionality out of our proxy server:

• Caching Strategies: To perform a retransmission-based error-control method, the I-

Proxy needs to cache any received packet for a possible retransmission (See Sec-

tion 5.2.1). However, if we consider the practicability of the system, it is clear that

caching each received packet severely limits the scalability of the system. To over-

come this problem, the cached packets should be replaced by the new ones without

disturbing the functionality of the I-Proxy. Fortunately, our target applications are

interactive video applications, in which packets have short lifetimes. Any packet be-

comes essentially obsolete and can be removed from the cache when the display time of

the last frame that depends on this packet (usually the last frame in a GOP) passes9.

For example, if the transmitted video has a GOP size of 10 frames and the frame rate

is 20 frames per second, the critical time to hold the packets in the cache is at most

9The GOP structure or packet deadline information is conveyed to the I-Proxy either before the session

starts or during the session with packet header updates.

102

500 ms. Thus, the storage requirement for one-way transmission can be computed by

0.5 ×R (Kbits), where R is the video rate in Kbps. Considering that the typical rate

for a videotelephony application varies between 40 - 512 Kbps, we can calculate the

storage cost for a single session (two-way video transmission) as 5 - 64 KB. Since these

storage requirements are far smaller compared to the storage capacity of a commercial

(or even a personal) proxy server, several sessions can be run concurrently through a

single I-Proxy.

• Switching Overhead: Another issue regarding the scalability of the I-Proxy is the

increased path delay and switching overhead. As the video packets are routed to the

other end-user via the I-Proxy, an extra delay is inevitably introduced. However, with

a proper I-Proxy selection, this overhead can be reduced to an acceptable level. On

the other hand, switching overhead is directly related to the processing power and

connectivity of the I-Proxy. For example, the I-Proxy we used in our experiments

was a Linux-based system with an Intel Pentium-III 1.0 GHz processor, and had a

connection of 100 Mbps. We observed that even for a non-optimized implementation,

the switching delay per video flow was less than 2 ms. Provided that a commercial

proxy with more processing power and higher connection speed is used for caching and

forwarding purposes, this overhead may get smaller. Based on these measurements,

we can safely assume that the I-Proxy approach scales well to a medium number of

simultaneous video sessions without disturbing the individual flows.

5.6 Internet Experiments

In this section, we present experimental results to evaluate the performance improvements

gained in a delay-sensitive application by employing an I-Proxy. For this purpose, we setup

a videotelephony session of 30 minutes between a client connected to Georgia Tech network

and a broadband client connected to an ISP in Ankara, Turkey. The I-Proxy was located

at Bilkent University in Ankara, Turkey. The corresponding configuration is depicted in

Figure 51. In the rest of the section, we refer to the clients as CUS and CTR, respectively.

Before running the sessions, we first conducted initial experiments to measure the path

103

CUS

Atlanta, GA USA

I-Proxy

Ankara, Turkey
CTR

Ankara, Turkey

≈
≈

RTT 200 ms

PLR 1%

≈
≈

RTT 50 ms

PLR 4%

Figure 51: Experimental setup.

characteristics such as packet loss rate, delay and jitter. These experiments were run be-

tween each client and the I-Proxy. We measured a low one-way packet loss rate (around

1%) and stable round-trip time (RTT), averaging 200 ms, between CUS and the I-Proxy,

whereas we observed a higher one-way packet loss rate (around 4%) and more variable RTT

between CTR and the I-Proxy, although CTR was both physically and network-wise closer

to the I-Proxy (mean RTT was 50 ms). We suspect that this result is mainly because of

the better connectivity of both the Georgia Tech and Bilkent campuses.

In the experiments, the video encoding rate was set to 120 Kbps. We used a standard

H.264 codec [120] to encode the test sequence Foreman (176 × 144) at a frame rate of

10 frames per second. As each frame fitted into one packet, the clients transmitted 1500-byte

video packets with a fixed intertransmission time of 100 ms. During the transmission, the

packets that could not be delivered in 200 ms were not displayed and counted as unsuccessful

packets. However, the packets arriving after their decoding deadlines were still used to

decode the subsequent predictively-coded frames and reduce the error propagation. In

order to quantify our findings, we present our results in terms of both the percentage of

successful packets and average video quality. For the latter, we use the peak signal-to-noise

ratio (PSNR) measure on the luminance (Y) channel.

5.6.1 Direct Video Transmission between CUS and CTR

In this experiment, both clients transmitted the video packets directly to each other. Al-

though this method avoids the extra delays incurred when relaying over the I-Proxy, the

observed delay statistics did not differ much on the end-to-end basis; we measured the

mean RTT as 240 ms. Since this high RTT value rendered any end-to-end retransmission

attempt impractical, each packet had only one transmission opportunity. By the end of the

104

30-minute videotelephony session, we determined the percentage of successful packets as

around 91% for both clients, which actually produced a choppy video. 59% of the unsuc-

cessful packets were lost, and remaining 41% were late and missed their decoding deadlines.

In terms of video quality, both clients achieved merely around 31 dB, i.e., 7 dB lower than

the original quality.

The main result of this experiment is that lost packets are inevitable when there

is only one transmission opportunity in the best-effort Internet, and without an error-

control/protection method the video quality suffers. However, note that some packets will

be excessively delayed without being lost due to provisioning of the underlying physical

network. In such cases, doing a retransmission, either from the server or I-Proxy, is not

a solution as it is highly unlikely that a retransmission will be received earlier than the

previous transmission(s).

5.6.2 Video Transmission from CUS to CTR via I-Proxy

In our initial measurements, we observed more favorable characteristics between CUS and

the I-Proxy compared to the those between CTR and the I-Proxy, e.g., packets mostly got

lost between the I-Proxy and CTR. Considering the short mean RTT (≈ 50 ms) in this sub-

network, the lost packets can be recovered by early retransmissions from the I-Proxy before

their decoding deadlines pass. To do so, we enable RTO estimation at CTR by adopting the

estimator given in (62) with α = 7/8, β = 3/8 and Timerlate−packet. With these parameters,

the successful packet rate increases from 91.1% to 95.1%, which improves the average video

quality rendered at CTR from 31.2 dB to 33.9 dB.

Because of the potential failure of the RTO estimation, there may be some redundant

retransmissions that increase the rate consumed by the application. A retransmission re-

quest is counted as redundant, if any previous transmission attempt becomes a success. In

this experiment, we observed that 5.6% of the requests caused spurious retransmissions.

In other words, our estimator failed in estimating the arrival time for 0.3% of the total

transmitted packets.

105

5.6.3 Video Transmission from CTR to CUS via I-Proxy

Next, let us focus on the video transmission from CTR to CUS . As mentioned above, because

of the uneven path characteristics, the majority of the packet losses are experienced between

CTR and the I-Proxy. If the I-Proxy does not monitor the packets coming from CTR and

does not take the necessary actions for the lost ones, CUS will eventually have to detect

these lost packets and ask for a retransmission. However, because of the large delay between

CUS and CTR, these retransmission attempts will be essentially useless. To overcome this

problem, the I-Proxy should identify the lost packets and send a retransmission request to

CTR. As a result of enabling fast retransmission on the I-Proxy, the successful packet rate

increases from 91.3% to 95.5%, which improves the average video quality rendered at CUS

from 31.4 dB to 34.4 dB. Overall, 2.4% of the retransmission requests made by the I-Proxy

were redundant, i.e., RTO estimation failed in 0.1% of the total transmitted packets.

We summarize our results in Table 7. The results clearly demonstrate that we can

maintain a more stable video experience by the help of the improved error control provided

by the I-Proxy.

Table 7: Experimental results for the Foreman sequence.

% of Successful Average % of Redundant Mean Total

Packets Quality Ret. Requests Transmission Rate

Without I-Proxy

CUS → CTR 91.1% 31.2 dB N/A 120 Kbps

CTR → CUS 91.3% 31.4 dB N/A 120 Kbps

With I-Proxy

CUS → CTR 95.1% 33.9 dB 5.6% 125.1 Kbps

CTR → CUS 95.5% 34.4 dB 2.4% 124.9 Kbps

5.7 Conclusions

In this chapter, we presented a practical use of proxies in delay-sensitive video applications.

In particular, by proposing an efficient and accurate RTO estimation method, we showed

the potential benefits of using proxies in providing improved error-control/protection capa-

bilities to the clients communicating with each other over long distances. As we leverage the

106

existing IP infrastructure in transmitting and relaying the video packets, our approach does

not require any native network support. This makes our approach advantageous for the

worldwide service and application providers that seek cost-effective and efficient solutions

for delivering interactive video.

107

CHAPTER VI

DELAY AND DELAY-BOUNDARY PREDICTION

FOR PACKET VIDEO

Time-constrained error recovery is an integral component of reliable low-delay video ap-

plications. Regardless of the error-control/protection method adopted by the application,

unacknowledged or missing packets must be quickly identified as lost or delayed, so that

necessary actions can be taken by the server/client on time. Historically, this problem has

been referred to as retransmission timeout (RTO) estimation. Earlier studies show that

existing RTO estimators suffer from either long loss detection times or a large number of

spurious timeouts. The goal of this study is to address these problems by devising a two-

step RTO estimation method that is specifically tailored for low-delay video applications.

These two steps are (i) delay prediction, and (ii) delay-boundary prediction. For delay

prediction, we develop an adaptive linear delay predictor that produces the best estimate

in terms of the mean-squared error criterion by exploiting the temporal dependence among

the packet delay samples. For delay-boundary prediction, on the other hand, we develop a

controller that optimally manages the trade-off between the amount of overwaiting and rate

of spurious timeouts. As opposed to existing methods, our approach is completely adaptive

to the source video transmission rate and time-varying network conditions, and does not

use any preset parameters.

6.1 Introduction†

In packet-switched IP networks, packets are transmitted from a source node to a destination

via several intermediate network devices whose resources such as bandwidth and processing

power are shared among the connections flowing through them. While this architecture

facilitates a good utilization of the network capacity, it lacks the ability of providing any

†Parts of this chapter were previously published in [136, 137].

108

guarantee on the delays that individual packet flows experience. Depending on the charac-

teristics of the cross traffic at each intermediate router/switching device on their path, the

packets are variably delayed. Often, the video applications are forced to pre-buffer some

content before they start playing out the streamed video to avoid potential interruptions

that may result from excessively-delayed packets. However, adopting a large playout buffer

is not viable for several applications such as videotelephony, videoconferencing and dis-

tance learning, or not desirable for applications such as on-demand video and IP television

(IPTV).

Understanding the nature of packet delay is important for service providers, and proto-

col and application developers in appropriate network provisioning, designing routing and

transport protocols, and developing congestion and flow algorithms. While conventional

queuing theory can be used to lay out an analytical framework based on the Markov mod-

els, the assumptions of independent arrival and service times are rarely valid in today’s

Internet. Therefore, such theoretical derivations are of a little use in practice. The study

by Li [138] shows that a stable queuing system has a multistructure, where packet delays

can be modeled by a stationary process with non-stationary sub-processes. The stationarity

perception on measured packet delays depends on the sampling interval. For example, if we

measure the delay of the packets that are transmitted at intervals smaller than the average

congestion duration, we probably capture the non-stationary behavior. However, when the

packets are transmitted at large intervals, our measurements likely reveal the stationary

behavior.

The ability of accurate delay and delay-boundary prediction in real time is an integral

component for many of the layers in the video communication protocol stack, e.g., rate

control, error control and network adaptation. A delay-sensitive video application has to

take well-timed actions against unacknowledged and missing packets. It is also as critical

that the application employs network-adaptive error-recovery methods and packet schedul-

ing algorithms so that the application can sustain an acceptable level of quality in the

event of deteriorated network conditions. Given the highly-dynamic nature of the Internet,

delay-boundary prediction for the incoming packets, or, in other words, determining when

109

a missing packet can be considered lost as opposed to late without exceeding the desired

spurious timeout rate is not an easy task. Let us illustrate this point on an example.

Consider a video-on-demand session running over UDP between a server and a client,

where the server continuously transmits video packets to the client, and the client reports

missing packets to the server with negative acknowledgements (NACKs); a NACK message

is generated for a packet when the client decides that the packet is lost. If the NACKs

are received by the server early enough, missing packets can be retransmitted successfully

before their decoding deadlines pass1. As a rule of thumb, the client should not time out

pre-maturely for the excessively-delayed packets, since under normal circumstances it is

highly unlikely that a retransmitted packet will arrive earlier than the initially-transmitted

packet.

Needless to say, the primary challenge is that the client has to decide on timeouts merely

by observing the packet arrivals in the course of a streaming session. It is never a clear-cut

decision whether a missing packet has been lost or delayed. Naturally, a trade-off between

overwaiting and spurious timeouts is present. To address this problem, in Chapter 5, we

introduced a client-driven method that used packet interarrival times for retransmission

timeout (RTO) estimation. The proposed approach was computationally efficient, and

substantially outperformed an enhanced TCP-like RTO estimator by reducing both the

amount of overwaiting and rate of redundant retransmissions. In Chapter 5, however, we

did not provide a formal way to compute the parameters used in the RTO estimation. Our

experiments with several video streams encoded at different bitrates later showed that the

best-performing set of parameters varied for each stream, and there was not a global optimal

solution that would work for every video traffic. This motivated us to develop an adaptive

RTO estimation method that would configure itself based on the source video transmission

rate and time-varying network conditions.

1Naturally, retransmission-based error-control methods are unsuitable for multimedia applications where

the extra delay introduced by the retransmissions is prohibitively large. However, due to emerging broadband

technologies, end-to-end delays experienced by Internet users today are comparably smaller. Consequently,

retransmission-based error-control methods can still be accommodated by many of today’s low-delay multi-

media applications.

110

In this study, we devise a novel RTO estimation method that involves two main steps. In

the first step, an adaptive linear delay predictor produces the best estimate in terms of the

mean-squared error criterion by exploiting the temporal dependence among the packet delay

samples. In the second step, on the other hand, a controller optimally manages the trade-off

between the amount of overwaiting and redundant retransmission rate by regulating the bias

to be added to the estimate produced in the previous step. This controller has two different

modes of operation: (i) media-unaware, and (ii) media-aware. In the media-unaware mode,

the controller ignores the unequal importance of the video packets and treats each of them

equally. In the media-aware mode, however, the controller prioritizes the packets that carry

a more important payload and the packets whose decoding deadlines are sooner, over the

less important and non-urgent packets. This way, a higher rendering quality is attained at

the client side without any additional increase in the rate. Our approach has three main

contributions:

• We develop an adaptive delay predictor for high-bitrate video applications. A large

number of multimedia protocols such as packet scheduling algorithms and adaptive

buffer management techniques can potentially benefit from this predictor [52, 139].

• We derive an optimal media-unaware redundancy-controllable timeout estimator. This

estimator allows applications to recover as many packets as possible under a given re-

dundant rate budget.

• We formulate an optimal media-aware timeout estimator that jointly considers the

interdependency relations among the video packets as well as their decoding dead-

lines in computing the timeout estimates while still conforming to the redundant rate

constraint dictated by the application or the network.

To the best of our knowledge, neither a redundancy-controllable nor a media-aware RTO

estimation method has been previously proposed. To keep the discussion concrete and

focused, this chapter explores the adaptive delay prediction and media-unaware timeout es-

timation only. We defer the discussion of the media-aware timeout estimation to Chapter 7.

111

It is important to note that not all of the applications necessarily use retransmissions

to recover from errors. With our proposed RTO estimation method, one can also employ

different types of error-control/protection methods. For example, based on the delay/loss

predictions, the amount of redundancy in channel coding or the amount of error resiliency

in video coding can be optimally adjusted to minimize the impact of packet erasures.

One of the earliest RTO estimation methods is the Jacobson’s algorithm [140], which

uses an exponentially-weighted moving average (EWMA) approach. Currently, TCP em-

ploys this algorithm with some modifications [141]. This class of RTO estimators have been

thoroughly examined by Loguinov and Radha in the context of a video streaming applica-

tion [142]. Their empirical study concluded that EWMA-based RTO estimation was not

quick enough to detect lost packets. The authors also suggested using jitter samples for

fine-tuning the estimations. Although [142] presents important findings, its scope is rather

limited, since the study primarily focuses on a low-bitrate video streaming application with

a large playout buffer. On the TCP end, other proposals for replacing [140] are [143–146].

However, these approaches are not suitable for low-delay video applications either, due to

their conservative estimates and slow adaptation to time-varying network conditions.

In a recent study [147], Sinha and Papadopoulos proposed a timerless retransmission pro-

tocol that eliminated the pitfalls of round-trip time (RTT) estimation and timer-triggered

timeouts. In this protocol, a lost packet can only be identified upon detection of a gap

in the received packets. Hence, when a batch of packets are lost or excessively delayed,

this protocol has to wait indefinitely until a new packet is received, which may impede the

timely recovery of the bursty losses. Previously, Papadopoulos and Parulkar used an algo-

rithm similar to [140] for real-time streaming [21]. A different approach was later proposed

by Rhee [148], where retransmission decisions were based on multiples of frame durations.

However, these approaches are not adaptive and may not perform well when streaming

high-bitrate video under low-delay requirements.

In the rest of the chapter, we continue with an overview of different RTO estimation

methods in Section 6.2. In Section 6.3, we study autoregressive models for packet delay

prediction. Section 6.4 discusses the media-unaware RTO estimation method. Simulation

112

results and a detailed analysis of different RTO estimation methods are presented in Sec-

tion 6.5. Finally, Section 6.6 concludes the chapter with a summary of our main findings.

6.2 Overview of RTO Estimators

In this section, we briefly summarize three different classes of previously proposed RTO

estimators. Later, in Section 6.5, we compare our approach with these estimators in terms

of their performances.

6.2.1 TCP-Like RTO Estimators

The RTO estimation algorithm used in current TCP implementations is based on Jacobson’s

algorithm [140], which was later modified in [141]. In TCP, the TCP sender records a new

RTT measurement when it receives an unambiguous acknowledgement packet. Let r[n]

denote the RTT observation corresponding to packet n. Jacobson’s algorithm predicts the

RTT of the subsequent packet, denoted by r̃[n + 1], by computing the following moving

average:

r̃[n+ 1] =
7

8
r̃[n] +

1

8
r[n]. (64)

The TCP sender also keeps track of the variation in the observed RTT values, which is

computed by

σRTT [n+ 1] =
3

4
σRTT [n] +

1

4
× |r[n] − r̃[n+ 1]|. (65)

Subsequently, the value of RTO is set by using

RTO = max
(
RTOmin, r̃[n+ 1] + max

(
G, k × σRTT [n+ 1]

))
, (66)

where k = 4 and G is the clock granularity (The default value for G is 500 ms in the

BSD implementation). In practice, RTOmin is set to one second [141] to reduce spurious

timeouts. In addition, current TCP variants implement Karn’s algorithm [135], which

suggests doubling the RTO value when a timeout occurs. Employing exponential timer

backoff as well as adopting a large RTOmin are essential for TCP’s congestion control

algorithm and network-friendliness. However, such measures are naturally too costly for

delay-sensitive applications. Therefore, in our comparisons, we use an enhanced TCP-like

113

RTO estimator, where RTOmin is set to zero, and the exponential timer backoff is disabled.

In addition, in our simulations and experiments, we use a clock granularity of 10 ms to

further improve the RTO estimation performance [141].

6.2.2 Recursive Weighted Median Filtering

Recursive weighted median (RWM) filtering was recently proposed by Ma et al. to improve

the TCP’s RTO estimation method [146]. Due to its nature, a weighted median filter is less

susceptible to rapid fluctuations in the observed data and can provide a better model for the

signals showing impulsive statistics as compared to (64). The basic idea in RWM filtering

is to compute the RTT estimate by taking the weighted median of the last K estimates and

last J observations. That is,

r̃[n] = WM

([
r̃[n− k]|Kk=1, r[n− j]|Jj=1

]
,W

)
, (67)

where W is the weight vector. The study suggests the following values: K = 1, J = 5 and

W = [12 , (
7
8)0, (7

8)1, (7
8)2, (7

8)3, (7
8)4]. Once an RTT estimate is computed, the value of RTO

is determined by scaling the RTT estimate, where the scale factor depends on the mean

absolute deviation among the RTT samples. Improvements over Jacobson’s algorithm are

reported through Internet experiments [146].

6.2.3 Percentile-Based RTO Estimators

Empirical studies usually try to fit a well-known distribution to packet delays experienced

in IP networks [7, 99, 101]. Such statistical models are particularly useful in laying out a

mathematical framework for building application-layer protocols [52]. For example, [101]

suggests that RTT values follow a shifted Gamma distribution, whereas [7, 99] show that

packet delay distributions are heavy-tailed and can be characterized by a Pareto distribu-

tion. The pertaining distribution model parameters can be estimated from the collected

samples by using maximum likelihood estimation. Alternatively, one can collect the delay

samples and generate a distribution on the fly. Having a history of the delay samples,

the delay of the next packet can be predicted by computing the pth-percentile of the delay

histogram, where p is selected depending on the maximum redundant retransmission rate

114

tolerable by the application. The flowchart for the percentile-based RTO estimation is given

in Figure 52.

Compute

p
th
-percentile

Update the delay

histogram for the next

packet

TIMEOUT
Yes No

Run the timer

Was packet

received before

timer expired?

Figure 52: Flowchart for the percentile-based RTO estimators.

6.3 Autoregressive Models for Packet Delay

Statistical models, briefly discussed in Section 6.2.3, are only useful in characterizing the

general properties of packet delays, and fall short in describing the temporal dependence

among packet delays. Previously, Jiang and Schulzrinne investigated the conditional delay

distributions [99], and found a significant correlation between the adjacent delay samples.

Temporal dependence in packet delay was also reported by Kalman and Girod [149]. In this

section, we exploit the packet delay correlation through autoregressive models and introduce

the concept of model selection. Before we start our discussion, we first provide an insight

for the client-driven RTO estimation.

6.3.1 System Overview

Consider a low-delay video application where the client runs an RTO estimation method to

determine the best time to request a retransmission for a missing packet. Upon receiving

a packet, the client measures its delay and predicts the delay for the subsequent packet.

115

The client then computes the amount of additional waiting to take into account the delay

variability2. In the implementation, we identify each packet with a unique number, which

can be associated with the Sequence Number field in the RTP header [102]. Since a retrans-

mission cannot be distinguished from the initial transmission, the delay measurements for

the retransmitted packets are ignored to avoid any ambiguity.

Our Internet experiments suggest that the majority of the lost packets can be recovered

with a single retransmission, and two or more retransmissions are rarely necessary. Fur-

thermore, the low-delay requirement of our target applications severely limits the possibility

of multiple retransmissions. Thus, our discussion focuses only on the single-retransmission

case.

6.3.2 Adaptive Linear Delay Prediction

Let us consider a stochastic process s and let s[n − k], k ≥ 1 denote the past samples of

this process. The operation of linear prediction expresses the value of s[n] as the linear

combination of the samples s[n − k]. The estimate based on the N most recent values is

given by

s̃N [n] = E
{
s[n]|s[n− k], 1 ≤ k ≤ N

}
=

N∑

k=1

αk,Ns[n− k]. (68)

This estimate is called the one-step forward predictor of order N . The process s̃N [n] is the

response of the forward predictor filter

HN (z) =
N∑

k=1

αk,Nz
−k (69)

to the input s[n]. Our objective in prediction is to determine the constants αk,N so as to

minimize the mean square value

PN = E
{

ǫ
2
N [n]

}
(70)

of the forward prediction error ǫN [n] = s[n] − s̃N [n]. From the orthogonality principle, we

know that the prediction error, i.e., ǫN [n], is orthogonal to all data used to generate the

2Note that the methods summarized in Section 6.2 were originally designed for server-side RTO estima-

tion. In our comparisons (Sections 6.3.5 and 6.5), we adapt them for use at the client side.

116

prediction, i.e., s[n−m], where 1 ≤ m ≤ N . Mathematically, we have

E






s[n] −

N∑

k=1

αk,Ns[n− k]


 s[n−m]





= 0 1 ≤ m ≤ N, (71)

which yields a set of linear equations known as the Yule-Walker equations. The coefficients

αk,N of the predictor filter HN (z) can be computed from

R[m] −
N∑

k=1

αk,NR[m− k] = 0 1 ≤ m ≤ N, (72)

where R[q] represents the lag-q autocorrelation of s. The resulting mean-squared prediction

error equals

PN = R[0] −
N∑

k=1

αk,NR[k]. (73)

Solving the linear system given in (72) is difficult for large N when the predictor filter

HN (z) is realized in a ladder, i.e., transversal, structure. An alternative realization is to

use a lattice structure. In addition to simplifying the solution of (72), the lattice realization

also has the following advantage: Suppose that we have a predictor of order N , and we

want to find the predictor of order N + 1. In the ladder realization, a new set of N + 1

filter coefficients (αk,N+1) has to be computed from scratch. In contrast, in the lattice

realization, only the new partial autocorrelation coefficient (φN+1) has to be computed; the

first N partial autocorrelation coefficients (φk) remain unchanged.

In the lattice realization, the predictor filter coefficients can be easily computed by the

Durbin-Levinson recursion [150]. Starting with α1,1 = φ1, we recursively express the filter

coefficients in terms of the partial autocorrelation coefficients. Initially, for N = 1, we have

α1,1 = φ1 =
R[1]

R[0]
and P1 = (1 − φ2

1)R[0]. (74)

By using the relation

PN−1φN = R[N] −
N−1∑

k=1

αk,N−1R[N − k], (75)

we compute φN in terms of the known parameters αk,N−1, R[m] and PN−1, and then plug

φN into

PN = (1 − φ2
N)PN−1 (76)

117

to compute PN . The predictor filter coefficients are recursively computed from

αN,N = φN (77)

and

αk,N = αk,N−1 − φNαN−k,N−1 1 ≤ k ≤ N − 1. (78)

As the order of prediction increases, the value of the mean prediction-error power de-

creases or else remains the same. Since prediction-error power is always positive, we have

P1 ≥ P2 ≥ . . . ≥ PN −−−−→
N→∞

P ≥ 0. (79)

The implication of (79) is that as we increase the order of the predictor filter HN (z), we

successively reduce the correlation between the adjacent samples of the input process until

we ultimately reach a point at which increasing the order of prediction any further does

not reduce the prediction-error power. At this point, the error is a white noise process and

consists of purely uncorrelated samples3.

Suppose that PM−1 > PM and PM = PM+1 = . . . = P . By definition, the process s

is called an M th-order autoregressive, denoted by AR(M), process or a wide-sense Markoff

process of order M . For this process, the M th-order predictor, s̃M [n], is equivalent to its

Wiener predictor:

E
{
s[n]|s[n− k], 1 ≤ k ≤M

}
= E

{
s[n]|s[n− k], k ≥ 1

}
. (80)

Wiener predictors produce the best fit to the observed data by exploiting the existing

correlation completely. However, due to their high complexity and low predictive accuracy,

Wiener predictors are usually not used in practice. In the next section, we discuss the issue

of prediction model selection by examining different delay traces.

6.3.3 Model Selection

Generally, it is desirable to have the values predicted by a model to be close to the actual

data values. As pointed out by (79), increasing the order of prediction naturally produces

3Linear models cannot be used to predict a process with uncorrelated samples. However, one can use

non-linear models such as Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models to

exploit any remaining dependency until the error samples are independent of each other.

118

better estimates and a lower prediction-error power. However, an overfitted model may

not distinguish the systematic effects of the data from its random effects. For practical

purposes, we seek a model that yields a high predictive accuracy with the smallest number

of parameters.

A popular model selection method is the Akaike’s Information Corrected Criterion

(AICC) [150, 151]. The AICC score quantifies the relative goodness-of-fit of a statisti-

cal model for the given data. A penalty factor is added to the negative log-likelihood of the

fitted model for each parameter in order to prevent overfitting. For an AR(M) process, the

AICC score is given by

AICC = −2 logL(s̃) +
2n× (M + 1)

n−M − 2
, (81)

where n is the sample size and L(s̃) is the likelihood of the n observations. The absolute

AICC scores include an arbitrary constant, thus, are of no direct use. However, a lower

AICC score indicates a better prediction model.

Let us illustrate the importance of model selection on three packet delay traces. To

generate these traces, we simulated a moderate-sized Internet topology [104] in ns-2 network

simulator [134] and used video streams that were encoded by a standard H.264 codec [120]

at 300 Kbps, 600 Kbps and 1.2 Mbps. We refer to these delay traces with the notation of

∆T = 40 ms, ∆T = 20 ms and ∆T = 10 ms, respectively, where ∆T denotes the average

transmission interval at the server.

First, we examine the relation between the mean prediction-error power and the order

of prediction in Figure 53. Based on the definition given in (80), the order of Wiener

prediction for the ∆T = 10 ms, ∆T = 20 ms and ∆T = 40 ms traces is found to be 12, 32

and 60, respectively. Clearly, we require a higher order of prediction for larger ∆T . This is

not surprising since the correlation between the adjacent delay samples reduces with ∆T .

This result can also be explained by the partial autocorrelation functions (PACF) plotted

in Figure 54, where we note that it takes a larger number of lags for the PACF to die off as

the value of ∆T increases.

Figure 53 shows that the mean prediction-error power gradually decreases with the order

119

of prediction. However, the AICC scores first show a decreasing and then an increasing trend

(See Figure 55). In other words, the predictive accuracy improves with increasing N until

a point and then starts degrading. Specifically, the AICC scores for the ∆T = 10 ms,

∆T = 20 ms and ∆T = 40 ms traces reach their global minima at N = 3, N = 9 and

N = 12, respectively. These values are comparably smaller than the ones corresponding

to the Wiener prediction, signifying that Wiener predictors are indeed overfitted and have

sub-optimal predictive accuracy.

0 10 20 30 40 50 60
0

50

100

150

200

250

M
e
a
n
 P

re
d
ic

ti
o
n
−

E
rr

o
r

P
o
w

e
r

Order of Prediction

∆T = 10

∆T = 20

∆T = 40

Figure 53: Variation of the mean prediction-error power with the order of prediction.

0 10 20 30 40 50 60
−0.2

0

0.2

0.4

0.6

0.8

Lags

P
a
rt

ia
l
A

u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
ts

∆T = 10

∆T = 20

∆T = 40

Figure 54: PACFs for all three delay traces.

6.3.4 Practical Considerations

Generally speaking, the AICC method suggests good models that provide sufficient insight

into the process being analyzed, while leaving out the random effects. In non-time-critical

120

0 10 20 30 40 50 60
4230

4240

4250

4260

4270

4280

4290

4300

4310

4320

Order of Prediction

A
IC

C
 S

c
o
re

Figure 55: Variation of the AICC score with the order of prediction for ∆T = 40 ms.

tasks, the computational complexity is of a less important issue. Thus, the models suggested

by the AICC approach can be facilely employed without hampering the performance of

the system. However, if the prediction is carried out in real time, low-complexity models

have to be used to sustain the system feasibility. The main objective is, thus, to select a

computationally-efficient yet intuitively-plausible prediction model that adequately captures

the dynamics in the packet delay process.

A naive approach is the AR(1) model, where the next delay estimate is solely determined

by the last observation, i.e., s̃1[n] = s[n − 1]. The phase diagrams plotted in Figure 56

clearly indicate the existence of a significant lag-1 correlation among the delay samples and

support the AR(1) prediction model. However, this predictor is not capable of distinguishing

whether packet delays are increasing, decreasing, or remaining the same, and therefore, does

not serve our goal well.

A more elaborate model is the AR(2) model. AR(2) model bases its estimation on the

last two observations. By definition, we have

s̃2[n] = α1,2s[n− 1] + α2,2s[n− 2], (82)

which can be rewritten as

s̃2[n] = (α1,2 + α2,2)s[n− 1] + α2,2

(
∆T − ∆t[n− 1]

)
, (83)

where ∆t[n] denotes the interarrival time for packet n, i.e., the time difference between the

arrivals of packets n and n − 1. The interpretation of (83) is that the AR(2) model takes

121

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

(a)

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

(b)

100 150 200 250 300 350
100

150

200

250

300

350

 s[n−1]

 s
[n

]

(c)

Figure 56: Phase diagrams for ∆T = 10 ms (a), ∆T = 20 ms (b) and ∆T = 40 ms (c).

122

into consideration not only the last delay sample but also its deviation from the previous

sample.

To understand how well an AR(2) predictor compares to its Wiener counterpart, we plot

the prediction-error autocorrelation functions (ACF) for both predictors. Since Wiener

predictors completely model the data, the resulting error samples are guaranteed to be

uncorrelated, which is, however, not necessarily true for AR predictors of lower orders.

Nevertheless, Figure 57 shows that the correlation left out by the AR(2) predictors is rather

insignificant, implying that AR(2) predictors have sufficient predictive accuracy for practical

purposes.

6.3.5 Performance Analysis

In this section, we evaluate the performance of different delay predictors. We analyze (i) the

exponentially-weighted moving average (EWMA) approach, defined in (64), (ii) recursive

weighed median (RWM) filtering, defined in (67), (iii) Wiener prediction, (iv) AICC-based

prediction, and (v) AR(2) prediction. In Table 8, we observe that the prediction-error

standard deviations produced by the AR predictors are substantially smaller than those

produced by the EWMA approach and RWM filtering. In particular, the AR(2) predic-

tors can achieve up to 50% and 39% reduction in the prediction-error standard deviation

compared to the EWMA approach and RWM filtering, respectively.

Table 8: Comparison of the prediction-error standard deviations produced by different
delay predictors.

EWMA RWM Wiener AICC-based AR(2)

Approach Filtering Prediction Prediction Prediction

∆T = 10 ms 11.6 ms 9.0 ms 6.0 ms 6.0 ms 6.0 ms

∆T = 20 ms 19.4 ms 15.7 ms 9.3 ms 9.5 ms 9.6 ms

∆T = 40 ms 26.1 ms 21.8 ms 13.9 ms 14.4 ms 14.8 ms

In Figure 58, we compare three different delay predictors in time domain for the ∆T =

40 ms trace. We observe that the AR(2) predictor outperforms its rivals in terms of tracking

the actual delay trace more closely. We also observe that the EWMA approach largely fails

in detecting the delay spikes, mainly because EWMA naturally smooths out the outliers.

123

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
ts

∆T = 10, AR(2)

∆T = 10, Wiener

(a)

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
ts

∆T = 20, AR(2)

∆T = 20, Wiener

(b)

5 10 15 20
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Lags

A
u
to

c
o
rr

e
la

ti
o
n
 C

o
e
ff
ic

ie
n
ts

∆T = 40, AR(2)

∆T = 40, Wiener

(c)

Figure 57: ACFs of the prediction errors produced by Wiener and AR(2) predictors for
∆T = 10 ms (a), ∆T = 20 ms (b) and ∆T = 40 ms (c).

124

In Figure 58, we did not include the AR(60) and AR(12) predictors for comparison, since

according to Table 8, the AR(2) predictors perform closely to their Wiener counterparts as

well as the predictors suggested by the AICC method.

600 610 620 630 640 650 660 670 680 690 700
100

150

200

250

300

Sequence Number

P
a
c
k
e
t
D

e
la

y
 (

m
s
)

Actual

TCP−like

RWM(1,5)

AR(2)

Figure 58: Time-domain comparison of different predictors for ∆T = 40 ms.

6.4 Media-Unaware Timeout Estimation

From the point of view of (70), an underestimate that is marginally smaller than the actual

value is as good as an overestimate that is marginally larger than the actual value. However,

in the context of RTO estimation, underestimations trigger pre-mature timeouts whereas

overestimations eliminate them. In this section, we formulate a computationally-efficient

way to compute the minimum amount of additional waiting that is required to keep the

probability of timing out pre-maturely below a desired value. In this media-unaware ap-

proach, the timeout decisions are given purely based on the observed delay samples. Later,

in Chapter 7, we will study a media-aware approach where the timeout computation is

carried out based on packet-specific information.

In Figure 59, we plot the prediction-error distributions for the ∆T = 10 ms and ∆T =

40 ms traces. We notice that each of these distributions (particularly, the tail parts) can be

approximated by a Gaussian distribution whose mean and standard deviation are equal to

those of the corresponding prediction-error distribution. Statistically, Gaussian-distributed

samples of a white noise process are independent of each other. In the light of Figure 57,

we infer that AR(2) predictors produce error samples that are independent. This result

has two important implications: First, a sequence of independent random variables is not

125

predictable by linear or non-linear models. Thus, if packet delay sampling is sufficiently

dense, the delay process can be almost completely characterized by an AR(2) model. Second,

Gaussian-distributed processes are easy to work with, and a rich set of mathematical tools

is available.

Let τ denote the additional amount of waiting to be added to the initial delay predicted

by (83), and let Φ(τ) denote the delay underestimation probability. By definition,

Φ(τ) = P
{
s̃2[n] + τ < s[n]

}
, (84)

which is a non-increasing function of τ . We seek the minimum value for τ that satisfies

Φ(τ) ≤ pf , (85)

where pf is the desired probability of timing out pre-maturely. By rewriting Φ(τ) as

P {τ < ǫ2}, we compute τ from

τ = F−1
ǫ2

(1 − pf), (86)

where Fǫ2
is the cumulative density function of ǫ2. A nice feature of the Gaussian distri-

bution is that its inverse cumulative function can be directly calculated from the first and

second-order moments4. For example, to limit the rate of pre-mature timeouts to 5%, τ

should be set to 1.65 times the standard deviation, which is 1.65 × 14.8 = 25 ms for the

∆T = 40 ms trace. While 25 ms may seem insignificant, τ quickly increases for lower pf

values, e.g., for pf = 0.1%, the required amount increases to 46 ms.

The adverse impact of a large τ is the increase in the time required to detect lost packets.

To quantify the detection time of a lost packet, we use the delay of the last successfully-

received packet as the hypothetical delay for the lost packet. The loss detection time is

then given by the difference between the predicted and hypothetical delays. That is,

w[n] = s̃2[n] + τ − s[n∗], ∀n : s[n] = ∞, (87)

where n∗ is the last successfully-received packet. The average loss detection time and the

4Note that the mean of the prediction error produced by the AR(2) predictor is observed to be close to

zero in all traces. Thus, we merely require the sample standard variation to compute the optimal timeout

duration from (86).

126

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

Prediction Error, AR(2)

Normal(0,6)

(a)

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

Prediction Error, AR(2)

Normal(0,9.6)

(b)

−60 −40 −20 0 20 40 60
0

0.2

0.4

0.6

0.8

1

Time (ms)

C
D

F

Prediction Error, AR(2)

Normal(0,14.8)

(c)

Figure 59: Prediction-error distributions for ∆T = 10 ms (a), ∆T = 20 ms (b) and
∆T = 40 ms (c). Plots do not include the lost packets.

127

pre-mature timeout probability are the benchmarks that characterize the performance of

an RTO estimator.

6.5 Simulation Results

In this section, we present several ns-2 simulation results and evaluate the performances

of four different RTO estimators: (i) the enhanced TCP-like RTO estimator, denoted

by RTOE−TCP, (ii) recursive weighted median filtering, denoted by RTORWM(1,5), (iii)

a percentile-based RTO estimator that predicts the forward-trip time (FTT) of the next

expected packet by computing the pth-percentile of the FTT histogram (excluding the lost

packets), denoted by RTOPRC, and (iv) the media-unaware RTO estimator, denoted by

RTOAR(2). Before comparing all four RTO estimators, we first examine them individually.

We start our analysis with the enhanced TCP-like RTO estimator. RTOE−TCP runs (64)-

(66) on the FTT samples to compute the timeout value5. Recall that we set RTOmin to

zero and disable the exponential timer backoff to avoid excessive overwaiting. Here, by

changing the value of k in (66) we characterize the behavior of RTOE−TCP(k). The left plot

in Figure 60 shows that RTOE−TCP(k) suffers from frequent spurious timeouts when k ≤ 3,

mainly because of the slow convergence of (66). As k increases, k = 4 is the suggested value

for TCP [141], (66) becomes less susceptible to delay variations, and hence, more successful

in RTO estimation. However, the right plot in Figure 60 shows that while the average

loss detection time increases linearly with k, the 95th-percentile of the loss detection times

increases faster. This implies that some of the lost packets are identified in significantly

longer times when k > 3.

The second RTO estimator is the recursive weighted median (RWM) filtering. Due to

the large number of parameters associated with this estimator (K, J and W in (67)), we

omit a detailed analysis and simply adopt the values suggested by [146]. Table 9 shows that

RTORWM(1,5) is successful in keeping the estimation failure rate small, particularly for the

5Generally speaking, RTT samples show a larger variation due to the variations experienced in both

forward and backward-trip times. Hence, using RTT samples in (65) results in overinflated timeout estimates.

In order to remove this adverse effect, RTOE−TCP uses FTT samples instead of RTT samples for RTO

estimation.

128

1 2 3 4 5
0

5

10

15

20

25

k

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

∆T = 10

∆T = 20

∆T = 40

1 2 3 4 5
0

20

40

60

80

100

120

140

k

L
o

s
s
 D

e
te

c
ti
o

n
 T

im
e

 (
m

s
)

∆T = 10, Mean

∆T = 10, 95
th

−percentile

∆T = 20, Mean

∆T = 20, 95
th

−percentile

∆T = 40, Mean

∆T = 40, 95
th

−percentile

Figure 60: Performance analysis of RTOE−TCP(k).

∆T = 10 ms trace. In their study [146], the authors reported that RWM filtering performed

better than Jacobson’s algorithm with TCP flows. However, our simulations show that

RTORWM(1,5) detects lost packets in a substantially longer amount of time compared to

RTOE−TCP. While this seems to be a contradictory result, we must emphasize that RWM

filtering approach was designed for TCP, and hence, does not necessarily have to perform

well with non-TCP flows.

Table 9: Performance analysis of RTORWM(1,5).

pf Mean w 95th-percentile of w

∆T = 10 ms 0.2% 158 ms 199 ms

∆T = 20 ms 0.3% 156 ms 199 ms

∆T = 40 ms 0.6% 140 ms 185 ms

Third, we present the results for the percentile-based RTO estimator. In Figure 61,

we observe that the estimation failure probability of RTOPRC(p) decreases linearly with

parameter p. However, the incurred cost, i.e., the increase in the loss detection time,

escalates rather quickly with p. Moreover, unlike other RTO estimators, RTOPRC performs

better with lower-bitrate streams. We conjecture that this is mainly due to the fact that

at low bitrates the temporal dependence in packet delay is smaller, and the assumption of

uncorrelated delay samples holds more often, making RTOPRC more robust and successful

in RTO estimation.

Finally, we test the media-unaware RTO estimator with the same three delay traces.

129

80 85 90 95 100
0

5

10

15

20

25

30

35

p

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

∆T = 10

∆T = 20

∆T = 40

80 85 90 95 100
0

10

20

30

40

50

60

70

p

L
o

s
s
 D

e
te

c
ti
o

n
 T

im
e

 (
m

s
)

∆T = 10, Mean

∆T = 10, 95
th

−percentile

∆T = 20, Mean

∆T = 20, 95
th

−percentile

∆T = 40, Mean

∆T = 40, 95
th

−percentile

Figure 61: Performance analysis of RTOPRC(p).

Figure 62 reveals two important findings: First, we notice that the client detects lost packets

faster when streaming at higher bitrates. This result is consistent with Figures 53 and 57

where we showed that the AR(2) prediction is more accurate for smaller ∆T values. Second,

we observe that the mean and the 95th-percentile of the loss detection times are close to

each other in each trace, suggesting that the loss detection time does not vary much over

time.

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Average Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

∆T = 10

∆T = 20

∆T = 40

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

95
th

−Percentile Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

∆T = 10

∆T = 20

∆T = 40

Figure 62: Performance analysis of RTOAR(2).

Now we compare RTOE−TCP, RTOPRC and RTOAR(2) on the pf − w plane. Since the

loss-detection performance of RTORWM(1,5) is the worst by a large margin, we omit it from

this comparison. Here, we are interested in determining which RTO estimator detects the

lost packets in the shortest amount of time without exceeding a given pre-mature timeout

probability. Figure 63 shows that RTOAR(2) substantially outperforms RTOE−TCP in all

130

cases. For the ∆T = 10 ms and ∆T = 20 ms traces, RTOAR(2) also achieves a better

performance than RTOPRC. However, in the ∆T = 40 ms trace, RTOPRC detects the lost

packets 8 - 20 ms faster than RTOAR(2) at regions where pf > 0.6%. Nevertheless, at the

expense of a 20 ms increase in the average loss detection time, RTOAR(2) is able to diminish

the pre-mature timeout rate to 0.1%.

One important issue in RTO estimation is the rapid convergence of the timeout es-

timates. Based on our simulations, we found that RTOE−TCP required at least 15 - 20

samples to produce good estimates. Thus, when the network conditions changed rapidly,

RTOE−TCP largely failed. This problem was solved to some extent by RTORWM(1,5), which

only required five samples to produce an estimate. On the other hand, RTOPRC initially

required several samples to be able to work properly. In contrast, RTOAR(2) required only

the last two samples for RTO estimation. This fast-convergence feature provides RTOAR(2)

robustness when the packets continuously experience a large amount of jitter, or when only

a small number of delay samples are available for RTO estimation.

6.6 Conclusions

In this study, we developed an adaptive RTO estimation method for low-delay video appli-

cations. By exploiting the temporal dependence in packet delay, we achieved the optimal

trade-off between the amount of overwaiting and redundant retransmission rate. With simu-

lation results, we showed that our approach detected lost packets faster and more accurately

compared to other RTO estimators. Our findings can be summarized as follows:

• RTO estimation is an essential component for any error-control/protection method.

A good RTO estimator should be able to quickly identify lost packets under rigid

delay requirements.

• The RTO estimators that are developed for TCP severely suffer from long loss detec-

tion times. We were able to reduce the detection times by tweaking the estimation

parameters, e.g., k in (66) and W in (67). However, the resulting rate of spuri-

ous timeouts was unacceptably high. Percentile-based RTO estimators deliver higher

131

0 20 40 60 80 100
0

1

2

3

4

5

Average Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 50 100 150
0

1

2

3

4

5

95
th

−Percentile Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

RTO

E−TCP

RTO
PRC

RTO
AR(2)

(a)

0 20 40 60 80 100
0

1

2

3

4

5

Average Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 50 100 150
0

1

2

3

4

5

95
th

−Percentile Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

RTO

E−TCP

RTO
PRC

RTO
AR(2)

(b)

0 20 40 60 80 100
0

1

2

3

4

5

Average Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

RTO

E−TCP

RTO
PRC

RTO
AR(2)

0 50 100 150
0

1

2

3

4

5

95
th

−Percentile Loss Detection Time (ms)

P
re

−
M

a
tu

re
 T

im
e

o
u

t
P

ro
b

a
b

ili
ty

 (
%

)

RTO

E−TCP

RTO
PRC

RTO
AR(2)

(c)

Figure 63: Comparison of different RTO estimators for ∆T = 10 ms (a), ∆T = 20 ms (b)
and ∆T = 40 ms (c).

132

quality of video compared to the TCP-oriented RTO estimators at the expense of

increased redundant retransmissions.

• Provided that the packets are transmitted at sufficiently short intervals, consecutive

delay samples show a strong correlation. Wiener predictors can be used to fully

exploit this correlation and produce uncorrelated prediction-error samples. We showed

that these uncorrelated error samples could be modeled by a Gaussian distribution,

implying that the error samples were indeed independent. Thus, Wiener prediction

models can completely characterize the packet delay process. We also showed that

AR(2) predictors could be safely used in practice instead of their Wiener counterparts.

• Adaptivity to time-varying network conditions is the key in successful RTO estimation.

Slow adaptation potentially leads to a significant performance degradation in terms

of redundant and late retransmissions.

133

CHAPTER VII

MEDIA-AWARE RETRANSMISSION TIMEOUT ESTIMATION

FOR LOW-DELAY VIDEO APPLICATIONS

Developing error-control and error-resiliency methods for transmitting delay-sensitive media

content over the best-effort networks poses several challenges. Due to the lack of QoS

guarantees in the conventional Internet as well as in emerging wireless networks, these

methods must continuously monitor the characteristics of the underlying network and try

to infer the incipient network conditions so that they can take the necessary actions on

time. This is utmost important for enhancing the end-user quality, particularly in low-

delay multimedia applications. In this study, we tackle this problem from an error-control

method perspective and develop an innovative framework that optimizes the retransmission

decisions based on the urgency and importance of the media packets.

7.1 Introduction

In Chapter 6, we developed an adaptive retransmission timeout (RTO) estimation method

for low-delay Internet video applications. This method consisted of two main steps: (i) delay

prediction, and (ii) delay-boundary prediction. In the first step, we exploited the temporal

dependence among the packet delay samples and used an adaptive linear delay predictor

to produce the best estimate in terms of the mean-squared error criterion. This predictor

computed the required predictor filter coefficients on the fly, and did not use any fixed

coefficients. This way, we were able to carry out the delay prediction in an optimal fashion

regardless of the source video transmission rate and time-varying network conditions. In the

second step, on the other hand, we used a controller that optimally managed the trade-off

between the amount of overwaiting and spurious retransmission rate by adjusting the bias

to be added to the estimate produced in the first step. The goal was to compute the shortest

timeout duration, and hence, to maximize the chance of on-time error recovery such that

the redundant retransmission rate did not exceed a desired threshold. Our overall approach

134

merely used the delay samples observed at the client side for timeout estimation.

In packetized video applications, however, timely delivery of a packet does not guarantee

successful decoding. This is because many video coding standards, e.g., MPEG-x and H.26x,

use motion-compensated prediction to gain in coding efficiency at the expense of inducing a

dependency structure among the encoded video frames. This dependency structure renders

video frames unequally important. For example, a predicted frame can only be decoded

after all the frames to which this particular predicted frame is referenced (called ancestor

frames), are received and decoded. This implies that a frame missing during its decoding

not only causes errors or a freeze during its display time, but also impedes the successful

decoding of all frames that are dependent on it (called descendant frames). The resulting

error propagation continues through all dependent frames and usually decays slowly. It is

therefore essential to optimize the error control for each video packet/frame based on its

importance.

In this study, we develop a media-aware RTO estimation method that computes the

timeout estimates by jointly considering the interdependency relations and the decoding

deadlines of video frames. Naturally, we should select a shorter timeout duration for pack-

ets belonging to more important and urgent frames than it is for packets belonging to less

important and non-urgent frames. If retransmission capability is severely limited due to

scarce bandwidth, we may even opt not to request a retransmission for less important pack-

ets and save the retransmission opportunities for more important packets. This prescient

discrimination helps us achieve a higher rendering quality of video at the client side without

any additional increase in the total transmission rate.

The architecture of the client-driven media-aware RTO estimation is sketched in Fig-

ure 64. Upon receiving a packet, the client measures its delay, and updates the necessary

media-specific information and prediction-model parameters. The client then predicts the

delay for the subsequent packet. This prediction does not use any media-specific information

since the packet delay is totally independent of the payload. In contrast, the timeout dura-

tion for a packet is computed based on the importance of its payload, the time remaining

to its decoding deadline as well as the redundant rate budget.

135

Packet

Processor

Parameter

Update

Timeout

Estimation
Media

Information

Video packets

with variable delay

�����������

M
e
d
ia
-u
n
a
w
a
re

M
e
d
ia
-a
w
a
re

Delay

Prediction

Redundant

Rate Budget
Playout

Delay

Figure 64: Architecture of the client-driven media-aware RTO estimation.

Recently, a large number of studies explored the problem of rate-distortion optimized

media transmission in various contexts (See the references in [57]). Inspired by the work

of Chou and Miao [52], these studies offered solutions to compute the optimal transmis-

sion and/or error-control policies by solving a Markov decision process (MDP) framework.

However, in the interest of obtaining a manageable solution, the original MDP framework

ignored the correlation between consecutive packet delay samples. Furthermore, the MDP

framework also adopted the assumption of no dependency between the packet loss events

and packet delays1. One can justify these assumptions for low-bitrate video transmission

where the packets are transmitted at large intervals, and the delay/loss correlation between

the packets is rather insignificant. However, these assumptions may not hold and sub-

stantially hinder the performance of the optimal policies when transmitting high-bitrate

video2.

The rest of the chapter is organized as follows: In Section 7.2, we formulate our op-

timization problem and derive a set of equations for media-aware RTO estimation. We

discuss the solution approach and implementation issues in detail in Section 7.3. Results

produced from simulations and Internet experiments are presented in Sections 7.4 and 7.5,

1We attempted to address this issue in Chapter 4 to some degree. In this chapter, we further investigate

this issue and propose models that fully capture the delay-loss correlation.
2Note that some of the low-bitrate applications such as VoIP and online gaming also transmit packets

frequently. In such applications, the delay/loss correlation between the consecutive packets can be significant

and should not be ignored.

136

respectively. Finally, Section 7.6 concludes the chapter.

7.2 Problem Formulation

We solve the problem of media-aware RTO estimation within a finite-horizon optimization

framework; at each decision epoch a set of frames are considered, and the optimal timeout

durations are computed for each packet/frame. Let G denote a set of frames and assume

that the frames within this set have well-defined interdependency relations that are known

by the client. The critical step in media-aware RTO estimation is to develop an expres-

sion for evaluating the expected video quality of set G in terms of the packet decodability

probabilities. As it will be clear shortly, the decodability of a packet depends on its on-

time delivery probability, therefore, on the amount of its timeout duration, as well as the

decodability of the packet(s) to which this packet is referenced.

In Chapter 4, we adopted a sophisticated video quality metric. This metric required the

knowledge of per-packet distortion information, which could only be extracted during the

encoding process. For our derivations in this chapter, we prefer a more practical and easy-

to-work-with metric. To this effect, we quantify the video quality by the average rendered

frame rate. By definition, the achieved frame rate for set G is computed by

QG = f0 ×
η+
G

ηG
, (88)

where f0, η
+
G and ηG are the original frame rate, the number of decodable frames and the

total number of frames in set G, respectively. Generally, a video frame is packetized into one

or more equal-sized packets. Thus, without loss of generality, we assume that the decodable

fraction of frame Fu is given by the ratio of the number of decodable packets in frame Fu,

denoted by υ+
u , to the total number of packets in frame Fu, denoted by υu. Hence, we have

η+
G =

ηG∑

u=1

υ+
u

υu
. (89)

Since f0 and ηG are constants in (88), our goal is essentially to compute the optimal timeout

duration for each packet in set G such that the expression in (89) is maximized while the

expected redundant retransmission probability does not exceed the desired limit.

Our optimization problem can be formalized as follows:

137

Given: A set of frames, G.

Objective: Find the optimal timeout for each packet in set G.

τ opt = arg max
τ

η+
G (90)

Subject to: Expected redundant retransmission probability stays within the required

limit.
ηG∑

u=1

υu∑

n=1

pf [n]

ηG∑

u=1

υu

≤ pf (91)

Given a set of frames, the optimization problem defined in (90) and (91) requires the delay

prediction for R future packets, where R =
∑ηG

u=1 υu. That is, if n∗ denotes the last-

successfully received packet, we need to predict the delays for packets n∗ + 1, n∗ + 2, . . .,

n∗+R. For this purpose, we use the multi-step version of the AR(2) predictor given in (82).

The r-step AR(2) predictor is defined as follows:

s̃r
2[n] = E

{
s[n]|s[n− k], r ≤ k ≤ r + 1

}
1 ≤ r ≤ R. (92)

The r-step predictor filter coefficients, αr
1,2 and αr

2,2, are computed by solving the corre-

sponding Yule-Walker equations as described in Section 6.4.

In the following, we develop the mathematical framework for media-aware RTO estima-

tion, and illustrate the relation of the observed delay samples, timeout estimates, playout

buffer size and retransmission round-trip times to the video quality. The following equa-

tions are provided in a generalized form, however, it should be noted that for packet n, the

corresponding r-step predictor filter and error statistics are used, where r = n−n∗. We list

our notation in Table 10.

Let pn denote the probability of packet n being received by its decoding deadline, tD[n]3.

In our problem scenario, each packet has two transmission opportunities (one initial trans-

mission and one retransmission). We first examine these cases separately, and then combine

them together to compute pn.

3Here, the decoding deadline represents the difference between the transmission time at the server and

the decoding time at the client. Note that tD is common for all packets belonging to a particular video

frame.

138

Table 10: List of the notation for the optimization problem.

An Set of the ancestor packets for packet n

ǫ
r
2[n] Prediction error for packet n

Fǫr
2

Cumulative density function of ǫ
r
2

Fu Frame u

f0 Frame rate of the original video

I[n] Retransmission indicator function for packet n

ηG Total number of frames in set G

η+
G Number of decodable frames in set G

pf [n] Pre-mature timeout probability for packet n

pf Desired probability of timing out pre-maturely

pn Probability of on-time delivery for packet n

p1
n Probability of on-time initial transmission for packet n

p2
n Probability of on-time retransmission for packet n

Pn Decodability probability for packet n

QG Video quality of set G

r[n] Retransmission round-trip time for packet n

G Set of frames considered in the optimization

s[n] Observed delay for packet n

s̃r
2[n] Predicted delay for packet n

τ [n] Additional amount of waiting for packet n

tD[n] Decoding deadline for packet n

υu Total number of packets in frame Fu

υ+
u Number of decodable packets in frame Fu

The first step is to calculate the probability of on-time initial transmission for packet n.

Due to the correlation between the delay samples, this probability is given as follows:

p1
n = P

{
s[n] ≤ tD[n]|s[n∗], s[n∗ − 1]

}
. (93)

Expressing this conditional probability in closed form, however, is difficult. Instead, we can

avoid the conditions by substituting s[n] with s̃r
2[n] + ǫ

r
2[n]. The conditional in (93) can be

now expressed as an unconditional probability of the random variable ǫ
r
2:

p1
n =





Fǫr
2

(
tD[n] − s̃r

2[n]
)
, if s[n] <∞;

0, if s[n] = ∞.

(94)

139

Note that p1
n is still conditioned on whether packet n is lost or not since the prediction error

is only defined for non-lost packets. Thus, we also need to compute the loss probability of

packet n.

In order to understand the relation between the packet loss and delay, we plot the loss

probability of packet n∗ + r as a function of the delay of packet n∗ for the ∆T = 40 ms

trace. Figure 65 shows that the loss probability for packet n∗ + 1 is negligible if packet

n∗ experienced a delay smaller than 220 ms. However, if packet n∗ experienced a delay

between 220 and 260 ms, the chance of being lost for packet n∗ + 1 increases up to 50%.

Clearly, there is a strong dependence between the loss probability of packet n∗ + 1 and the

delay of packet n∗. More importantly, a noticeable dependence also exists between the loss

probability of packet n∗ +r and the delay of packet n∗ for r ≤ 10. Ignoring this dependence

and merely using the average packet loss rate (2.2% for this particular trace) would result in

either an overrated or underrated packet loss probability. Therefore, it is important that we

express the loss probability of packet n as a conditional on the last observed delay sample.

P
{
s[n] = ∞

}
= P

{
s[n] = ∞|s[n∗]

}
(95)

In practice, the conditional loss probability distribution can be generated on the fly. A

closed form expression is not essential for media-aware RTO estimation.

140 160 180 200 220 240 260 ... Inf
0

10

20

30

40

50

Delay of Packet n* (ms)

L
o
s
s
 P

ro
b
a
b
ili

ty
 o

f
P

a
c
k
e
t

n
*
+

r
(%

)

r = 1

r = 5

r = 10

Figure 65: Relation between the packet delay and packet loss probability for ∆T = 40 ms.

Having computed the first step of the on-time delivery probability, we now compute the

probability of the retransmission for packet n being received before the decoding deadline.

140

Recall that when a packet is received, the client predicts the delay for the subsequent

packet and estimates the timeout duration. If the expected packet is still not received

within this time, a retransmission request is sent to the server. Assuming that the request

is immediately processed by the server, the probability of an on-time retransmission equals

p2
n = P

{
s̃r
2[n] + τ [n] + r[n] ≤ tD[n]

}
, (96)

where r[n] is the round-trip time for the retransmission. It is important to note that in (96)

we do not impose any condition on the previous delay samples. The reason is that the

correlation between r[n] and s[n∗] is usually insignificant. Thus, p2
n can be computed from

the empirical distribution of r in a straightforward manner.

Once we have computed p1
n and p2

n, it is easy to express pn as

pn = p1
n + I[n] × (1 − p1

n)p2
n, (97)

where I[n] is an indicator function: I[n] = 1 if a retransmission is requested for packet n,

and 0 otherwise. Considering that the chance of a retransmission arriving earlier than the

initial transmission is negligible, (97) reduces to

pn =
(
1 − P

{
s[n] = ∞

})
× Fǫr

2

(
tD[n] − s̃r

2[n]
)

(98)

+ I[n] × P
{
s[n] = ∞

}
× P

{
s̃r
2[n] + τ [n] + r[n] ≤ tD[n]

}
.

As mentioned previously, packet n can only be decoded if all of its ancestor packets were

decoded successfully. Thus, the decodability probability of packet n equals the following

product:

Pn = pn ×
∏

n′∈An

pn′ , (99)

where An denotes the set of the ancestor packets for packet n. Here, we observe how the

dependency structure of the streamed video explicitly factors in the video quality. More

implicitly, we also notice that as more of its descendant packets are received by the client,

an ancestor packet becomes more important since its successful delivery would enable the

decoding of several packets. Note that in (99), we are able to express Pn as the product

of individual packet decodability probabilities since any existing delay/loss correlation is

already taken into account while computing pn.

141

Given the packet decodability probabilities, we compute the expected number of decod-

able packets in frame Fu from

υ+
u =

υu∑

n=1

Pn. (100)

Finally, the expected video quality of set G can be calculated by substituting (100) in (89).

The last step in our optimization problem is to calculate the redundant retransmission

probability for each packet. Similar to our derivation in Section 6.4, we compute the pre-

mature timeout probability for packet n as follows:

pf [n] = I[n] × P
{
s̃r
2[n] + τ [n] < s[n]

}
(101)

= I[n] ×
(
1 − Fǫr

2
(τ [n])

)
.

A solution to (90) is feasible only if the expectation of the redundant retransmission prob-

ability over all packets in set G satisfies the constraint given in (91).

7.3 Solution Approach and Implementation Issues

In this section, we first formulated an optimization problem and then derived a set of

equations pertaining to this optimization problem. Depending on the complexity of the

video dependency structure and the horizon of the optimization, the solution can potentially

require a large number of multiplications and additions. In practice, however, solving the

system given in (90) and (91) is less complicated than it may seem. For example, when

network conditions are not severe and packet delays are below a certain threshold, the

client can safely skip computing a timeout estimate for the subsequent packets based on

the knowledge that the loss probability for those packets is negligible. The delay traces

we collected reveal that the majority of the packets usually experience a non-critical delay,

implying that the computational load of the RTO estimation on the client is often minimal.

It is, however, critical to solve (90) and (91) for the client when an incipient congestion

is inferred. An important issue in this optimization is the selection of the optimization

horizon and the granularity of the timeout durations. Suppose that we have R packets

and we need to select a timeout duration for each of them from a set of H quantized

values. In this case, our solution has a complexity of O(HR). Due to the exponential

142

relation, the optimization horizon R cannot be chosen arbitrarily large. Furthermore, the

predictive accuracy of the multi-step delay predictor degrades with R. Figure 66 shows that

the prediction-error standard deviation doubles at step four and triples at step 10 for all

delay traces. Since a poor prediction has no practical use, we suggest that the optimization

horizon should not exceed 10. On the other hand, the value of H depends on the maximum

complexity tolerable by the client. In our simulations and experiments, we selected the

timeout durations among seven different values from the set H = {0 ms, 20 ms, 40 ms,

60 ms, 80 ms, 100 ms, ∞}.

1 2 3 4 5 6 7 8 9 10
5

10

15

20

25

30

35

40

45

 r

P
re

d
ic

ti
o
n
−

E
rr

o
r

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

∆T = 10

∆T = 20

∆T = 40

Figure 66: Variation of the prediction-error standard deviation with r.

For R-step prediction, we require R sets of the predictor filter coefficients, αr
1,2 and αr

2,2.

To compute these coefficients, we use a window-based approach. The window size W is

chosen short enough to ensure the pseudostationarity of the input data over the length W .

Our tests indicate that W = 20 is a good choice. Given this window size, the predictor filter

coefficients are computed by solving (72). Note that solving (72) requires the knowledge

of the sample autocorrelations for the first two lags in our case. When a new sample is

observed, the oldest sample is removed from the window and the other samples remain

unchanged. Thus, the sample autocorrelations can be updated in an efficient manner.

Furthermore, the filter coefficients vary over time, but due to the pseudostationarity of the

data, we observe that αr
1,2 + αr

2,2 = 1. Thus, it is sufficient to compute only one of the

coefficients for each r.

143

Here, we have to point out that the proposed media-aware RTO estimator is a consid-

erably more elaborative method compared to Jacobson’s algorithm or the RWM approach

(See Section 6.2). Hence, it naturally requires more computational power. Yet, due to

the simplifications discussed in this section, the computation overhead can be considered

modest for today’s available communication systems.

7.4 Simulation Results

In this section, we analyze the performance of the media-aware RTO estimator. We de-

note this estimator with RTOMedia−aware(R), where R is the optimization horizon. Nat-

urally, RTOMedia−aware(1) is the same as the media-unaware RTO estimator, denoted by

RTOAR(2), studied in Chapter 6. To better illustrate the impact of R on the performance

of RTOMedia−aware(R), we compare the on-time arrival rates of the individual frames in a

GOP. For this purpose, we encoded a test sequence with a standard H.264 codec [120] at

300 Kbps and 20 frames per second. The adopted GOP structure was one I-frame plus

nine P-frames. We streamed this video between two end-points in a moderately-congested

Internet topology, where the forward-path packet loss rate averaged 5%.

In Figure 67, we plot the average on-time arrival rates of the individual frames when the

playout buffer is 500 ms. Under the adopted simulation settings, we observe that RTOAR(2)

could deliver approximately 30% of the retransmissions on time, and, as expected, this

success rate did not vary much among the frames. In contrast, RTOMedia−aware was able

to deliver as much as 40% of the I-frame retransmissions on time at the expense of least

important P-9 frames. In other words, RTOMedia−aware recovered more of the important

video content by not increasing the streaming rate, but by relinquishing the recovery of

the less important content. It is important to note that as we increased the optimization

horizon, the optimization gain improved.

Next, we plot the average on-time arrival rates when the playout buffer is relaxed to

600 ms. In this case, RTOAR(2) delivered 90% of the retransmissions on time. Naturally,

the on-time retransmission probability improved with an increase in the playout buffer size.

Although RTOMedia−aware still produced better quality video, the performance gap between

144

I P−1 P−2 P−3 P−4 P−5 P−6 P−7 P−8 P−9
96

96.2

96.4

96.6

96.8

97

Frames in a GOP

A
v
e
ra

g
e
 O

n
−

T
im

e
 A

rr
iv

a
l
R

a
te

 (
%

)

R = 1

R = 2

R = 5

R = 10

Figure 67: Variation of the frame on-time performance with the optimization horizon
when the playout buffer is 500 ms.

the media-aware and media-unaware approaches reduced with respect to the previous case.

Thus, we conclude that the media-aware RTO estimation becomes more crucial under low

end-to-end delay requirements, and as the delay requirement relaxes, its performance con-

verges to that of the media-unaware RTO estimation.

I P−1 P−2 P−3 P−4 P−5 P−6 P−7 P−8 P−9
99

99.2

99.4

99.6

99.8

100

Frames in a GOP

A
v
e
ra

g
e
 O

n
−

T
im

e
 A

rr
iv

a
l
R

a
te

 (
%

)

R = 1

R = 2

R = 5

R = 10

Figure 68: Variation of the frame on-time performance with the optimization horizon
when the playout buffer is 600 ms.

7.5 Internet Experiments

In this section, we present a comprehensive set of experimental results and assess the perfor-

mance of different RTO estimation methods. First, we explain the setup and then discuss

the results.

145

7.5.1 Experimental Setup

We developed and established an experimental platform on the Internet. On this platform,

we emulated a real-time video streaming application over UDP between a broadband client

in Ankara, Turkey and a broadband server in Atlanta, GA USA4. The client simultaneously

streamed video packets from the server and carried out the RTO computation. When a

packet was identified as lost, a retransmission request was sent to the server. If this request

was successfully received, the server immediately retransmitted the requested packet.

In the implementation, we identified each packet with a unique sequence number as-

signed by the server. Prior to any video transmission, the client synchronized its internal

clock with the server [152] and received video-specific information such as encoding bitrate

and GOP structure, from the server. This information as well as the delay measurements

were used by the client for real-time RTO estimation.

We conducted our experiments in six sessions of 60 minutes, where we tested all five

different RTO estimators discussed throughout Chapter 6 and this chapter. After each

session, the mean delay and packet loss rate were measured to ensure that similar network

characteristics were observed in all sessions. The mean round-trip delay and mean forward-

path packet loss rate were measured as approximately 250 ms and 6.0%, respectively. While

all lost packets were eventually detected by any of the RTO estimators, the total recovery

times varied depending on the agility of the RTO estimators. To illustrate this variation,

we examine the delay distributions of the retransmitted packets. Figure 69 shows that we

empirically required a playout buffer of 440 ms to merely enable the retransmission capa-

bility. Naturally, with a larger playout buffer, more and more retransmissions would reach

the client on time. Figure 69 also reveals that playout buffers larger than 600 ms were

essentially useless since even the worst-performing RTO estimator completed its retrans-

missions within 600 ms. Yet, for the sake of demonstrating the impact of accurate RTO

estimation, we adopted a playout buffer of half a second in producing the results presented

in this section.

4The reason for experimenting over an intercontinental network was to observe a wide range of packet

loss and delay characteristics.

146

200 300 400 500 600
0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Packet Delay (ms)

C
D

F

RTO

E−TCP

RTO
RWM(1,5)

RTO
PRC

RTO
AR(2)

Figure 69: Total-delay distributions for different RTO estimators.

For video quality comparison, we encoded the test sequences Foreman (352 × 288)

and Suzie (176 × 144) with a standard H.264 codec [120] and a GOP structure of one

I-frame plus nine P-frames at 600 Kbps, 20 frames per second and 150 Kbps, 30 frames

per second, respectively. We report our results in terms of three metrics: (i) percentage

of the on-time packets, (ii) average video quality, and (iii) glitch rate. For the average

video quality, we use the peak signal-to-noise ratio (PSNR) measure on the luminance (Y)

channel. Glitch rate is defined as the percentage of the frames whose PSNR value is below a

certain threshold. The value of this threshold is sequence-specific and should be determined

by visually inspecting the individual frames. For the Foreman and Suzie sequences, we

selected a threshold of 30 and 34 dB, respectively. During the decoding process, we concealed

the missing macroblocks with the ones in the last successfully-decoded frame in order to

reduce the amount of severe transitions from the frames in error. In addition, the packets

that missed their decoding deadlines, i.e., late packets, were still used in the decoding

process to improve the decodability of the predictively-encoded frames. Yet, Figure 70

shows that the late packets severely affected the video quality rendered at the client.

7.5.2 Results

In the following discussion, we first present the results obtained from the Foreman se-

quence. Then, we will provide the results for the Suzie sequence.

An immediate result of our experiments is that without any error control, the video

147

350 400 450 500 550 600 650
34

35

36

37

38

39

40

Playout Buffer (ms)

P
S

N
R

 (
d
B

)

Lossless

No Retransmission

RTO
E−TCP

RTO
RWM(1,5)

RTO
PRC

RTO
AR(2)

Figure 70: Variation of the video quality with the playout buffer size for the Foreman

sequence.

quality severely suffers from the lost packets; in the case of the Foreman sequence, the

average streaming quality barely reached 34.3 dB, which is 5.6 dB lower than the lossless

case. When RTOE−TCP was employed, the video quality improved by 0.7 dB at the expense

of an average rate increase of 39 Kbps. However, 7% of this rate increase was redundant

due to pre-mature timeouts, and 86% of it was useless since those packets missed their

decoding deadlines. The second method, RTORWM(1,5), improved the video quality by only

0.2 dB while increasing the average transmission rate by 38 Kbps. We observed that 5% of

the retransmissions requested by RTORWM(1,5) were redundant and 93% of them were late.

These results clearly indicate that the RTO estimators that are primarily designed for TCP

are not suitable for low-delay applications. The overinflated estimates inevitably disrupt

the timely detection of lost packets, which adversely affects the on-time retransmission

performance.

In the third session, we tested RTOAR(2) and obtained an average video quality of

38.3 dB (4.0 dB improvement over the no-retransmission case) at an average streaming rate

of 638 Kbps. The quality gain stemmed from the fact that only 5% and 30% of the total

retransmissions were redundant and late, respectively. In the fourth and fifth sessions, we

experimented with RTOPRC with two different p values. These p values were chosen by

trial and error such that (i) RTOPRC recovered as many packets on time as RTOAR(2),

and (ii) RTOPRC consumed an average total streaming rate equal to the one consumed

148

by RTOAR(2). In the first case, RTOPRC produced almost three times more redundant

retransmissions compared to RTOAR(2). In the second case, on the other hand, RTOPRC

barely delivered a 36.5 dB video.

Finally, in the last session, we experimented with RTOMedia−aware(10). While the percent-

age of the late retransmissions slightly increased with respect to RTOAR(2), RTOMedia−aware(10)

further improved the video quality by 0.3 dB and delivered the highest quality of video at

38.6 dB. The comparison of RTOMedia−aware(10) against the other four RTO estimators for

the Foreman sequence is given in Table 11.

Table 11: Experimental results for the Foreman sequence.

Rate Rate of Redundant Rate of Late PSNR Glitch

(Kbps) Retransmission Retransmission (dB) Rate

Lossless 600 N/A N/A 39.9 0%

No Retransmission 600 N/A N/A 34.3 35%

RTOE−TCP 639 7% 86% 35.0 28%

RTORWM(1,5) 638 5% 93% 34.5 30%

RTOPRC 644 18% 29% 38.3 8%

RTOPRC 638 5% 55% 36.5 11%

RTOAR(2) 638 5% 30% 38.3 8%

RTOMedia−aware(10) 638 5% 35% 38.6 4%

We present the results for the Suzie sequence in Table 12. Compared to the results of the

higher-bitrate Foreman sequence, we observe that RTOPRC showed a little performance

improvement, whereas the other RTO estimators experienced a small amount of perfor-

mance degradation. This observation is consistent with the simulation results presented in

Section 6.4.

We summarize our experimental results for both test sequences on a rate-quality plane.

In Figures 71 and 72, we clearly see that RTOMedia−aware(10) outperforms all other four

RTO estimators by achieving a higher video quality while streaming at an equal or smaller

bitrate. In other words, RTOMedia−aware(10) has the best rate-quality performance.

149

Table 12: Experimental results for the Suzie sequence.

Rate Rate of Redundant Rate of Late PSNR Glitch

(Kbps) Retransmission Retransmission (dB) Rate

Lossless 150 N/A N/A 38.9 0%

No Retransmission 150 N/A N/A 36.5 27%

RTOE−TCP 160 7% 96% 36.6 25%

RTORWM(1,5) 160 8% 92% 36.7 23%

RTOPRC 161 15% 40% 37.8 9%

RTOPRC 160 7% 50% 37.5 13%

RTOAR(2) 160 7% 40% 37.8 9%

RTOMedia−aware(10) 160 7% 44% 38.1 3%

600 610 620 630 640
34

35

36

37

38

39

Total Rate (Kbps)

P
S

N
R

 (
d
B

)

No Retransmission

RTO
E−TCP

RTO
RWM(1,5)

RTO
PRC

RTO
AR(2)

RTO
Media−aware(10)

Figure 71: Rate-quality performance of different RTO estimators for the Foreman se-
quence.

7.6 Conclusions

Previously in Chapter 6, we proposed an autoregression-based adaptive RTO estimation

method for low-delay Internet video applications. This method substantially outperformed

existing estimators such as the enhanced TCP-like RTO estimator and recursive weighted

median filtering. In this study, we furthered our approach and developed a media-aware

RTO estimator. This RTO estimator computes the optimal timeout duration for each packet

such that the video quality rendered at the client is maximized for a given retransmission

rate budget. Our simulations show that media-aware RTO estimation provides a significant

quality improvement over its media-unaware counterpart, particularly when the application

150

150 155 160 165
36

37

38

39

Total Rate (Kbps)

P
S

N
R

 (
d
B

)

No Retransmission

RTO
E−TCP

RTO
RWM(1,5)

RTO
PRC

RTO
AR(2)

RTO
Media−aware(10)

Figure 72: Rate-quality performance of different RTO estimators for the Suzie sequence.

requires a low end-to-end delay.

151

CHAPTER VIII

CONCLUSIONS AND FUTURE WORK

8.1 Contributions

This thesis develops a collection of end-to-end and system-level protocol-based solutions for

a diverse set of multimedia applications, and conducts a comparative performance analysis

against the state-of-the-art methods. Contributions of this thesis include the following:

• We develop an optimal multi-path transmission framework for streaming error-resilient

videos over overlay networks in low-delay video applications,

• We experiment with and analyze the performance of the single/multi-hop and single/multi-

path transmission methods for streaming high-resolution videos in mesh networks,

• We formulate a mathematical framework that models on-demand video delivery from

multiple content servers, and develop a packet scheduling algorithm that achieves the

rate-distortion optimal performance within a multi-server streaming system,

• We investigate the use of proxies to overcome the problems associated with packet

loss, large delay and delay jitter in interactive video applications,

• We characterize the packet dynamics in networked-video applications, propose models

for packet delay, develop accurate delay and delay-boundary prediction methods, and

interpret the correlation between the packet delay and packet loss events,

• We engineer media-aware and network-adaptive error-control methods, and lay out a

framework that computes the optimal actions for error control.

8.2 Future Research Directions

Multimedia networking is an active area of research, and it is continuously evolving. There

are several open issues that remain to be thoroughly researched. Below, we present an

overview for the ones that fall into the context of this thesis.

152

Optimized Residential Wireless Mesh Networks:

During our experiments in Chapter 3, we fixed the location of the mesh nodes since most

in-home nodes such as TVs, PVRs and DVD players are usually immobile. However, in-

termediate relay nodes can sometimes be mobile nodes, in which case the problem of low-

latency video transmission becomes more complicated. The second simplification we made

in that chapter was that we considered a single flow throughout the mesh network and did

not allow any other background traffic. Of course, in real life, there will very likely be

several simultaneous data flows as well as multiple video flows, each potentially originating

and terminating at different nodes. In multi-sender multi-receiver environments, a joint op-

timization for path selection and resource allocation will be compulsory, which, we believe,

will be a good extension to this work.

In-Network Cooperative Media-Aware Error Control:

In Chapter 5, we studied the potential benefits of using proxies in providing improved

error-control/protection capabilities to the clients communicating with each other over long

distances. In Appendix C, our simulations showed the effectiveness of the I-Proxy approach

and that its advantages could be best exploited with a proper I-Proxy selection. An in-

teresting future work is to extend the idea of I-Proxy to Skype-like peer-to-peer networks

where multiple client pairs exist, and the I-Proxy functionalities are carried out by actual

clients rather than dedicated proxy servers. Two important problems that deserve further

attention are the selection of the relay nodes and the error-control functionalities that will

be performed at the relay nodes.

Proxy-Based On-Demand Video Distribution in Cable Networks:

A challenging problem for cable TV operators is to deliver the on-demand content from

potentially several different content providers throughout the world to its customers in

a high-quality fashion. Customers demand, actually will pay only for, an uninterrupted

service and error-free audiovisual quality. While the on-demand content can be easily

pushed from local caches, head-ends or even central content repositories by the help of

intelligent content caching and replication, several problems likely occur when the content

153

is pushed from outside sources. The outsourced video streams are subject to congestion

in the public Internet and at the points-of-presence (PoP), where several Internet service

providers interconnect to each other.

A practical solution to this problem is to co-locate proxy servers at the ingress points.

These proxies partition each end-to-end connection into two sub-connections. This allows us

(i) faster packet loss detection and recovery, (ii) jitter compensation via buffering, and (iii)

content adaptation via transcoding and transrating. Furthermore, if the network conditions

between the outside source and designated proxy deteriorate over time, the incoming video

traffic can be rerouted over alternative proxies to deliver a continuous video experience to

the customers. Another advantage of this approach is that the cable operators can use their

proprietary transport and application-layer protocols for video within their network, while

retaining a standard-compliant connection with the external content providers.

Delay Prediction in Wireless and Mixed Networks:

Delay and delay-boundary prediction are two essential components for error-control and

protection methods. In Chapter 6, we studied autoregressive models to characterize the

nature of the packet delay observed in Internet video applications. Our simulations and

experiments mainly focused on the wired networks. Yet, applications that are running

between two wireless clients or between a wireless client and a wired client also require

accurate models for delay and delay-boundary prediction. To this effect, research needs to

be performed to capture the unique features of the wireless channels and develop tailored

prediction models.

154

APPENDIX A

FAST HEURISTICS FOR OPTIMAL MULTI-PATH SELECTION

In Chapter 2, we modeled multi-path streaming for multiple description video, and pre-

sented a formal way to evaluate the streaming distortion for each set of paths in a given

network. The optimal solution was a straightforward evaluation of the distortion for each

possible path pair and choosing the one with the minimum distortion. However, given

that (3) is highly nonlinear, solving this optimization problem may become computationally-

intractable in large topologies. In particular, optimal solution may not be feasible if the

client does not have enough processing power, memory resources and time to find the so-

lution, or if the client resides in a network where the conditions change rapidly. In this

appendix, we address this problem and investigate a fast heuristics-based solution.

First, we analyze the brute-force complete enumeration approach. Then, we develop a

heuristic that selects a good pair of diverse paths. This heuristic is based on first iden-

tifying a small subset of good paths, and then choosing the pair among this subset that

minimizes (3). In developing our heuristic, we exploit the routing hierarchy in the Internet.

See [104] for further details on this subject.

A.1 Brute-Force Approach

Consider an Internet topology with M transit domains (TD) each of which contains N

nodes. An illustrative topology with four TDs is shown in Figure 73. Assume that the

multi-path routing capability is enabled only within TDs. In this topology, the brute-force

(BF) approach for finding the optimal pair enumerates all possible paths between the server

and client. Then, (3) is computed for each pair, and the pair that gives the minimum average

distortion is selected.

The complexity analysis of this approach can be summarized as follows: All paths in

the given topology can be generated in O(2MN) time, and (3) is evaluated for all possible

155

Client

Stub Domain

Stub Domain

Stub Domain

Stub Domain
Stub Domain

Stub Domain

Transit Domain

Server

Stub Domain

Stub Domain

Transit Domain

Transit Domain

Transit Domain

Figure 73: An Internet topology with four transit domains. Reproduced from Sec-
tion 2.5.3.

pairs in O(MN × 22MN) time. The identification of the optimal pair requires O(log 22MN)

time. Hence, the BF approach has a complexity of

O(2MN) +O(MN × 22MN) +O(MN) = O(MN × 22MN). (102)

In (102), we observe that the BF approach complexity increases exponentially with both

M and N . Clearly, this approach does not scale well. Below, we develop a more efficient

heuristic, which we refer to as the rapid path generation (RPG) approach.

A.2 Rapid Path Generation

An important characteristic of the Internet is that a path connecting two nodes in different

stub domains (SD), e.g., the ones containing the server and client, never passes through any

other SD [104]. This feature implies that multi-path routing mainly takes place within or

between the TDs. Moreover, between two TDs, usually there is only one link through which

all traffic from the source domain is carried to the destination domain. This natural decom-

position of the Internet leads us to consider the TDs individually in the path-generation

process.

We start our algorithm by finding good paths in each TD. During this process, we also

exploit the fact that among the links in a TD, only a few of them may be heavily congested

at a time while the rest is lightly congested or not congested at all. Eliminating these

156

congested links reduces the topology size. Moreover, after this reduction, the remaining

links will have similar (almost zero) packet loss rates. On the other hand, the end-to-end

bandwidth is often limited by the SD or inter-domain links. We assume that TD links can

support the bandwidth desired by the clients. Hence, the bandwidths of the remaining TD

links have a negligible effect in selecting the good paths.

Now, we are left only with the delay and jitter parameters in the path-generation process.

To find a subset of good paths in each TD, we solve a k-shortest path algorithm where the

cost on each link is the sum of its delay and average jitter. The most straightforward k-

shortest path algorithm for M TDs requires O(kMN2) time. After selecting k good paths

in each TD, we combine them to create O(kM) end-to-end paths. Then, out of these paths

we form O(k2M) pairs. At this point, we evaluate (3) for each pair. This process takes

O(MN × k2M) time. Finally, selecting the pair with the minimum average distortion can

be accomplished in O(log k2M) time. Hence, the RPG approach has an overall complexity

of

O(kMN2) +O(MN × k2M) +O(M) = O(MN × k2M). (103)

Generally, we have M < N , which is the case in small-to-moderate sized networks.

Hence, although the RPG approach runs in exponential time in M , it still provides an

important improvement over the BF complete enumeration, which requires exponential

time in the total number of nodes, i.e., M × N . In addition, with this approach rather

than trying to seek the solution in the whole network, we handle reduced-sized problems in

each TD separately. Hence, the demand for the memory space in the RPG implementation

is substantially lower than that in the BF implementation. On the other hand, k is an

important parameter in (103). We will examine its impact on the performance of the RPG

approach in the next section.

A.3 Performance Analysis

In order to evaluate the performance of the RPG approach, we used random Internet topolo-

gies generated by GT-ITM [104]. We varied k, the number of TDs and SDs to analyze the

effects of the variations in the network connectivity. The link parameters were assigned as

157

described in Section 2.5.3. For each random topology, we first found the path pairs corre-

sponding to the BF and RPG solutions. Then, by using each pair we streamed a standard

test sequence from the server to the client with a delay tolerance of 200 ms1. We repeated

this process 100 times to obtain reliable PSNR results. The results are tabulated in Ta-

bles 13 - 15 along with the values of k, M and N . The PSNR differences between the BF

and RPG approaches are also given in the last column of each table. Note that each row

represents a different random topology. Hence, the results in a row of a table should only

be compared with the results in the same row of other tables.

Table 13: Comparison of the BF and RPG approaches when k = 1.

k M N BF RPG Difference

1 2 5 33.39 dB 31.82 dB 1.57 dB

1 2 8 33.45 dB 31.56 dB 1.89 dB

1 3 5 33.36 dB 31.63 dB 1.73 dB

1 3 8 33.38 dB 31.44 dB 1.94 dB

1 4 8 33.30 dB 31.39 dB 1.91 dB

Table 14: Comparison of the BF and RPG approaches when k = 2.

k M N BF RPG Difference

2 2 5 33.39 dB 32.93 dB 0.46 dB

2 2 8 33.45 dB 32.85 dB 0.60 dB

2 3 5 33.36 dB 32.84 dB 0.52 dB

2 3 8 33.38 dB 32.66 dB 0.72 dB

2 4 8 33.30 dB 32.43 dB 0.87 dB

The results show that as we identify more good paths in each TD, the performance of the

RPG approach gets closer to the optimal in all topologies. Although there is approximately

1.80 dB difference in the average qualities when k = 1, this difference reduces to around

0.16 dB when k = 3. This is also shown in Figures 74 - 76, where individual frame qualities

are plotted. In Figure 76, the RPG plot tracks the BF plot more closely on the average

than it does in Figure 74. Even when k = 3 (and M = 4, N = 8), the number of operations

1We used the Table Tennis (352 × 240) sequence. This sequence consisted of 150 frames. The frame

rate was 30 frames per second.

158

Table 15: Comparison of the BF and RPG approaches when k = 3.

k M N BF RPG Difference

3 2 5 33.39 dB 33.32 dB 0.07 dB

3 2 8 33.45 dB 33.30 dB 0.15 dB

3 3 5 33.36 dB 33.24 dB 0.12 dB

3 3 8 33.38 dB 33.15 dB 0.23 dB

3 4 8 33.30 dB 33.06 dB 0.24 dB

required by the RPG approach is 500K times smaller than the one required by the BF

approach, which proves a quite large saving in terms of processing power and computation

time.

An interesting issue here is the choice of k. In addition to the reported results, we also

tested the same topologies with k = 4. However, the improvement over the case when k = 3

was not that significant. Hence, we conclude that keeping k = 3 is a good choice. It is

worthy to note that k = 1 does not necessarily imply that the 1st and 2nd shortest paths

are selected between the server and client. Although only the shortest path is computed in

each TD for k = 1, we still evaluate (3) for all possible end-to-end pairs and choose the pair

accordingly.

0 50 100 150
27

28

29

30

31

32

33

34

35

36

37

Frame Number

P
S

N
R

 (
d

B
)

BF

RPG

Figure 74: The PSNR comparisons of the BF and RPG approaches when k = 1, M = 4
and N = 8.

159

0 50 100 150
27

28

29

30

31

32

33

34

35

36

37

Frame Number

P
S

N
R

 (
d

B
)

BF

RPG

Figure 75: The PSNR comparisons of the BF and RPG approaches when k = 2, M = 4
and N = 8.

0 50 100 150
27

28

29

30

31

32

33

34

35

36

37

Frame Number

P
S

N
R

 (
d

B
)

BF

RPG

Figure 76: The PSNR comparisons of the BF and RPG approaches when k = 3, M = 4
and N = 8.

A.4 Conclusions

In this appendix, we presented a fast heuristics-based solution for the optimal multi-path

selection problem. This approach performs within 0.2 dB of the optimal solution in small-to-

moderate sized networks without incurring any runtime or memory-space problems. Par-

ticularly, this fast heuristic is best suited to interactive multimedia applications such as

videoconferencing and VoIP, where multi-path computation is a time-critical process. In

addition, our approach is also suitable for the clients whose processing-power capabilities

are limited.

160

APPENDIX B

MULTIPLE DESCRIPTION VS. SCALABLE VIDEO

STREAMING WITH OPTIMAL DIVERSE ROUTING

With the proliferation of multiple description (MD)-based streaming solutions, it naturally

became necessary to conduct a performance comparison study for MD and scalable video

(SV) streaming. Several researchers investigated this issue to date in different setups and

scenarios [44, 72, 75, 153, 154]. A common result out of all these studies was that MD

streaming outperformed SV streaming when no error protection was applied on the sub-

bitstreams. The main reason was that any erasure in the base layer would cause irrecoverable

errors and avoid the decoding of other enhancement layers. In contrast, erasures in a

description would only affect that description, leaving other descriptions completely intact.

These studies also reported that protecting the base layer against erasures and packet

losses was essential to improve the performance of SV streaming. Two main suggested

methods were retransmission-based error control and forward error correction. However,

these methods were prohibitive in some scenarios due to the extra delays introduced.

While these studies shed light on the specifics of MD vs. SV streaming, they often

fell short to provide an analytical comparison approach. In this appendix, we address this

problem by extending the multi-path selection framework that we developed in Chapter 2 to

SV streaming. We claim that using multiple transmission paths for SV streaming can be an

effective way in protecting the base layer, provided that the paths are selected intelligently.

A major advantage of this approach is that it achieves high-quality SV streaming without

using any error control or protection.

The contribution of this study is two-fold: First, we provide an optimal multi-path

selection method for SV streaming. Second, we propose a quality comparison methodology

for determining whether MD or SV streaming performs better under the given network

conditions. With this methodology, a multi-codec application that supports both MD and

161

SV codecs can estimate the performance of both streaming approaches prior to and during

the video transmission, and make a codec switch, if necessary. In this perspective, the

results presented in this study not only provide prominent insights into the capabilities

of MD and SV streaming but also complement the MD vs. SV streaming performance

comparison studies conducted so far.

B.1 Multi-Path Selection for Scalable Video Streaming

In an MD streaming system, individual descriptions can be decoded independently. How-

ever, in an SV streaming system, the base layer has to be received intact to be able to

decode any enhancement layer. Suppose that our SV streaming system produces one base

layer and one enhancement layer. For SV streaming, we define three distortion terms: (i)

D1,1 is the achieved distortion when both the base and enhancement layers are received

successfully on time, (ii) D1,0 is the achieved distortion when only the base layer is received

successfully on time, and (iii) D0,x is the achieved distortion when the base layer is lost or

late. Thus, we can express the expected distortion for SV streaming at the client as

E{D} =

P1,1︷ ︸︸ ︷
P
{
Both received on time

}
×D1,1 (104)

+

P1,0︷ ︸︸ ︷
P
{
Base layer received on time & enhancement layer lost or delayed

}
×D1,0

+ P
{
Base layer lost or delayed

}
︸ ︷︷ ︸

P0,x

×D0,x.

Note that the arrival of the enhancement layer is a “don’t care” in P0,x since the enhance-

ment layer cannot be decoded unless the base layer is successfully received on time.

Due to the fundamental differences in MD and SV coding, MD and SV streams generally

produce different average qualities (distortions), even they are encoded at the same total

rate. In order to estimate the corresponding distortions accurately by using (2), we need to

compute the actual source rates for both of them. Let’s explore this on an example.

Consider a source video encoded by an MD/SV encoder at a total rate of RM . To

achieve the same quality, suppose that it is sufficient to encode the same source video at

a rate of RS for a conventional single stream encoder. Since the redundancy introduced

162

into the stream by the single stream encoder is smaller, we have RS ≤ RM . We define the

redundancy level injected into an MD and SV stream as the proportion of the additional

rate needed by its encoder. That is, the redundancy level, denoted by ρ, is given by

ρ =
RM −RS

RM
. (105)

We compute the redundancy level of the individual sub-bitstreams, e.g., the descriptions

and layers, with the same formula by replacing the total rate with the sub-bitstream rates

in (105). Now, we can revise the distortion model given in (2) as

D(rk, ρ) ≈
κ

rk × (1 − ρ)
, (106)

where rk is the rate in terms of the number of bits per source sample on the kth channel

(defined in (6)), and κ is a model parameter. With this revised distortion model, we apply

the same set of equations derived in Section 2.4.1 to compute the distortion terms of D1,1,

D1,0 and D0,x. Note that D0,x is computed in a similar fashion as D0,0. The success

probabilities P1,1, P1,0 and P0,x are also computed as discussed in Section 2.4.2.

B.2 Simulation Results

In this section, we investigate the performance of MD and SV streaming in a simulation

environment. For this purpose, we developed a real-time streaming application that sup-

ported both MD and SV codecs. We adopted the simulation settings from Section 2.5.

We present several results for the standard test sequences Table Tennis and Flower

Garden, both of which have a resolution of 352 × 240 pixels.

In the simulations, the MD and SV streams were produced by the help of MPEG-2

based MD and SV encoders, respectively. For MD streaming, we preferred the time-domain

partitioning method with two descriptions. For SV streaming, we used the SNR-scalability

mode with two layers (one base plus one enhancement layer). The redundancy levels of each

stream and sub-bitstreams were obtained from a lookup table, which was prepared offline

for the encoders used in the simulations. During the decoding process, we concealed the

missing frames by repeating the information from the last available frame.

163

To emulate a realistic simulation environment, we generated a random Internet topology

with GT-ITM [104]. This topology consisted of 240 nodes with four mesh-connected transit

domains, 10 nodes per transit domain, one stub per transit-domain node and five nodes in a

stub domain. We assumed multi-path routing capability at each transit-domain node. The

link parameters were assigned random values as described in Section 2.5.3. We compared

three different streaming methods: (i) shortest-path, (ii) maximally link-disjoint path, and

(iii) optimal multi-path streaming.

Although we held the topology unchanged, we varied the link parameters and chose

different congested links in each of the 10 independent simulations. We summarize the

results for the Table Tennis and Flower Garden sequences in Figures 77 and 78,

respectively. Not surprisingly, maximally link-disjoint path streaming outperforms shortest-

path streaming. However, optimal multi-path streaming further achieves a better video

quality in all simulations.

B.3 Discussion

A quick examination of the results reveals the fact that the average video quality is degraded

severely when the shortest-path streaming method is employed as the underlying routing

method. Moreover, the streaming quality widely fluctuates, which further degrades the

perceptual quality. Particularly, this has more devastating effects on SV streaming, which

is an expected result since the quality of the SV stream often suffers from the losses incurred

in the base layer. On the other hand, MD stream is able to recover from the losses with

a slight quality degradation unless both descriptions are concurrently lost. These results

agree with those reported in [44, 75].

The results also show that maximally link-disjoint path streaming is able to reduce

the adverse effect of a congested link by exploiting the path diversity and improves the

average quality over shortest-path streaming. However, the improvement in SV streaming

is not as much as the one in MD streaming. The reason is that the path assigned to the

base layer by the maximally link-disjoint path streaming method need not necessarily be

a good path. If this path experiences packet losses and/or long delays, SV streaming still

164

1 2 3 4 5 6 7 8 9 10
16

18

20

22

24

26

28

30

32

34

36

Run #

P
S

N
R

 (
d

B
)

MD Streaming

SV Streaming

(a)

1 2 3 4 5 6 7 8 9 10
16

18

20

22

24

26

28

30

32

34

36

Run #

P
S

N
R

 (
d

B
)

MD Streaming

SV Streaming

(b)

1 2 3 4 5 6 7 8 9 10
16

18

20

22

24

26

28

30

32

34

36

Run #

P
S

N
R

 (
d

B
)

MD Streaming

SV Streaming

(c)

Figure 77: Average PSNRs for different streaming methods for the Table Tennis se-
quence: shortest-path streaming (a), maximally link-disjoint path streaming (b) and opti-
mal multi-path streaming (c).

165

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

Run #

P
S

N
R

 (
d

B
)

MD Streaming

SV Streaming

(a)

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

Run #

P
S

N
R

 (
d

B
)

MD Streaming

SV Streaming

(b)

1 2 3 4 5 6 7 8 9 10
10

15

20

25

30

Run #

P
S

N
R

 (
d

B
)

MD Streaming

SV Streaming

(c)

Figure 78: Average PSNRs for different streaming methods for the Flower Garden

sequence: shortest-path streaming (a), maximally link-disjoint path streaming (b) and op-
timal multi-path streaming (c).

166

performs poorly, even though the enhancement layer is transmitted over a link-disjoint path.

However, the performance of SV streaming increases drastically with optimal multi-path

streaming. This is because optimal multi-path streaming considers the characteristics of

the base and enhancement layers, and selects the paths accordingly.

B.4 Conclusions

In this appendix, we provided an optimal multi-path selection method for SV streaming and

proposed a quality comparison methodology for determining whether MD or SV streaming

performed better under the given network conditions. Our simulations ran over an over-

lay infrastructure showed that sizeable PSNR improvements could be achieved when the

video was streamed over intelligently-selected multiple paths instead of the shortest path

or maximally link-disjoint paths.

167

APPENDIX C

PROXY SELECTION METHODS FOR INTERACTIVE VIDEO

Our simulations and Internet experiments with a single-proxy system between the U.S and

Europe, presented in Chapter 5, clearly proved the advantages of the I-Proxy approach.

These simulations and experiments also showed that the location of the I-Proxy played an

important role on the overall performance of the system. Given that a large number of

I-Proxies can be available at different locations throughout the Internet, we clearly require

a method for selecting a good I-Proxy. In this appendix, our goal is to model the dynamics

involved in the networks with proxies, and investigate mathematical and practical I-Proxy

selection methods.

C.1 Effects of the Location of the I-Proxy

The analysis of Figure 49 reveals two important results:

• Fast retransmission may recover packets faster than early retransmission, however,

cannot recover all lost packets.

• Early retransmission can recover any lost packet but may not be able to recover all

of them on time.

Generally speaking, congestion and packet losses occur on the bottleneck link of the path

between two ends. As mentioned previously, the node that is closest to where the packets

are dropped can notify the server and request a retransmission before all the other nodes.

Let us exemplify this point on the single Internet path sketched in Figure 79. Here, assume

that the bottleneck is the link between the first and second nodes. In this case, locating

the I-Proxy on the second node minimizes the loss detection time, and consequently, the

error-recovery time.

Yet, an opposite scenario is when the congested link is closer to the client than it is to

the server. An example is sketched in Figure 80, where the link between the fourth and fifth

168

Server

1 2 3 4 5

Client

Retransmission

Retransmission

Request

Figure 79: Fast retransmission by the I-Proxy.

nodes is congested and causing the majority of the packet losses. In this case, it is a better

practice to place the I-Proxy on the fourth node rather than the fifth one. The reason being

that packets will eventually arrive at the fourth node from where a quick recovery can be

done for those packets that get lost between the I-Proxy and client. As a matter of fact,

locating the I-Proxy on the third node would unnecessarily increase the error-recovery time,

whereas locating on the fifth node would render almost all of the advantages of the I-Proxy

approach useless. It is interesting to note that the scenario sketched in Figure 79 is the

exact replica of the one sketched in Figure 80 with the server and client are switched. In

two-way video applications, this implies that the I-Proxy selected for the video transmission

in one direction is a good choice for the video transmission in the reverse direction as well.

Server

1 2 3 4 5

Client

Retransmission

Retransmission

Request

Figure 80: Early retransmission by the I-Proxy.

These two examples clearly show why an intelligent I-Proxy placement/selection is es-

sential to the success of our approach. Unfortunately, there is no immediate solution to

this problem. The network conditions should be carefully evaluated, and a proper decision

should be given accordingly. In the next section, we look into this problem and provide a

solution based on a mathematical model.

C.2 Model-Based I-Proxy Selection

In this section, we derive mathematical expressions to model the dynamics of fast and early

retransmission mechanisms. In our formulations, we make certain assumptions regarding

169

the knowledge of path conditions between the end-users and the candidate I-Proxies such

as packet delay and loss characteristics. While such information is difficult to collect in

practice, we believe that the following discussion provides an insight for the I-Proxy selection

problem. Based on our findings, we will propose a practical approach in Section C.3. We

start our discussion by introducing the notation.

C.2.1 Definitions

We characterize a communication network by a set of I-Proxy nodes, N1,N2, . . . ,Nn, a

server S and a client C. The delay of a packet transmitted the kth time from node U

destined to node V via node X is denoted by tkU→X→V , which includes the processing,

transmission, propagation as well as the queuing delays. A sample network with three I-

Proxies is sketched in Figure 81. When a user logs into the system, a list of the available

I-Proxies and relevant statistics are transmitted to the user.

Server Client

I-Proxy 1

I-Proxy 2

I-Proxy 3

Figure 81: Sample network topology with three I-Proxies.

A critical variable that affects the on-time delivery performance of an application is the

delay jitter. Unfortunately, it is not possible to accommodate an excessively-delayed packet

in conversational applications due to the strict delay requirements. Hence, the server has to

deliver every packet to the client within a short amount of time after the packet is generated.

In the sequel, we refer to the maximum tolerable delay by the application as Tmax.

Without loss of generality, we assume that any packet delivered within Tmax improves

170

the video quality rendered at the client1. Naturally, the path that has the best on-time

delivery performance delivers the highest quality of video on the average. Hence, the I-

Proxy should be selected such that the path going through it has the highest on-time

delivery rate. Explicitly, this selection process requires the evaluation of each possible

path between the server and client. For this purpose, we develop a quality metric, i.e., an

objective function, that computes the on-time delivery rate based on the network conditions

between the server/client and each I-Proxy. The quality of the path going through I-Proxy

Nk is denoted by QNk
. To make the analysis tractable, we limit the maximum number

of retransmissions to one for each packet, which is at the end a reasonable assumption for

interactive video applications.

C.2.2 Objective Function

First, we compute the on-time delivery rate of the direct path between the server and client,

i.e., no I-Proxy is used. We express the quality of the direct path as

QØ = P
{
t1S→C ≤ Tmax

}
+ P

{
t1S→C = ∞

}
× P

{
tE2E−ARQ ≤ Tmax

}
, (107)

where P{tE2E−ARQ ≤ Tmax} represents the probability of an on-time end-to-end retrans-

mission. This probability can be written as follows:

P
{
tE2E−ARQ ≤ Tmax

}
= P

{
dC + t1C→S + t2S→C ≤ Tmax|t

1
S→C = ∞

}
. (108)

In (108), dC is the difference between the time of the initial transmission at the server

and the time a retransmission request is sent by the client. The value of dC depends on

the delay and congestion level between the server and client as well as the agility of the

RTO estimator employed by the application. Note that in (108), we use a conditional

probability to compute the probability of a successful end-to-end retransmission. This is

particularly important since packet delays and loss events are correlated in the short term

(See Chapters 6 and 7 for details). Avoiding this conditional would lead to overestimating

this probability.

1Due to the interdependency relations among video packets, the decoder may not be able to decode a

video packet even if it is received before its decoding deadline.

171

Now, we can generalize (107) to the case when an I-Proxy is used between the server and

client. Denoting the durations of fast and early retransmissions by tF−ARQ and tE−ARQ,

respectively, we can express the quality of the path going through node Nk as

QNk
= P

{
t1S→Nk→C ≤ Tmax

}
(109)

+P
{
t1S→Nk

= ∞
}
× P

{
tF−ARQ ≤ Tmax

}

+P
{
t1S→Nk

<∞
}
× P

{
t1Nk→C = ∞

}
× P

{
tE−ARQ ≤ Tmax

}
.

The probabilities of successful fast and early retransmissions are given by

P
{
tF−ARQ ≤ Tmax

}
= P

{
dNk

+ t1Nk→S + t2S→Nk→C ≤ Tmax|t
1
S→Nk

= ∞
}

(110)

and

P
{
tE−ARQ ≤ Tmax

}
= P

{
dC + t1C→Nk

+ t2Nk→C ≤ Tmax|t
1
Nk→C = ∞

}
, (111)

respectively. It is not surprising that as the I-Proxy gets closer the server, the chance of

successful fast retransmission increases while the early retransmission capability gets less

viable. The opposite is true if the I-Proxy gets closer to the client, as suggested by Figures 79

and 80. Note that (111) assumes that the packet requested by the client is available at the

I-Proxy. This assumption is not strictly true. However, it is likely that the I-Proxy will

have already received and cached the packet by the time it receives a retransmission request

from the client.

Recall that at the beginning of this section, we assumed that packet delay and loss

characteristics were known for all paths between the server and client. Armed with this

information and by incorporating the statistical models for the specific RTO estimator that

is used by the application, one can evaluate each possible path between the server and

client. The goal is to select the path that has the highest average quality metric.

k∗ = arg max
k

E
{
QNk

}
k = {Ø, 1, 2, . . . , n} (112)

In selecting the I-Proxy based on (112), we very likely may face two main challenges:

First, it is a difficult task to gather the required statistics, particularly when the net-

work conditions change rapidly. Second, service providers may allocate a large number of

172

I-Proxies throughout the Internet. In practice, it is neither feasible nor necessary to evalu-

ate (112) for each I-Proxy. In the light of our findings, we next propose a practical approach

to address these two concerns.

C.3 Practical I-Proxy Selection

To date, several metaheuristic methods have been developed for solving combinatorial and

global optimization problems. A popular and successful one is the variable neighborhood

search method, where the basic idea is to start with a feasible solution and try to find a better

one through a local search. Provided that a good neighborhood structure is defined, one

can obtain near-optimal solutions. However, constructing a good neighborhood structure

is particularly difficult in our case, since our problem domain, i.e., the Internet, is a huge

diverse environment with time-varying characteristics. As a result, the chances are the

solution easily gets trapped in a local optima.

To circumvent this potential drawback, we apply the basic idea of binary search. In this

approach, we initially start direct video transmission from the server to the client. After a

certain number of packets, say m, are transmitted, we count the number of retransmission

requests received, and divide it by m to compute the retransmission request rate of the

client, which is denoted by ρC . Unless the retransmission request rate is negligibly small,

the server selects an I-Proxy that is approximately in the middle of the path between the

server and client, and starts relaying the video packets over it. Here, selecting a node in the

middle of an Internet path stands for finding a node that is network-wise equally close to

both ends. If we examine (109) carefully, we infer that selecting the mid node is the best

action in practice, if we do not have enough information whereabouts of the congestion. In

the flowchart sketched in Figure 82, the selection process is represented by 〈l, r〉, where l

and r are pointers to the boundary nodes.

Once m packets are transmitted over the selected I-Proxy, the server counts the number

of individual retransmission requests. If the client reports a larger number of lost packets

compared to the I-Proxy, the server infers that majority of packet losses occur between the

I-Proxy and client. In this case, the server selects a new I-Proxy that is in the middle of the

173

path between the current I-Proxy and client. However, if the I-Proxy reports more losses,

a new I-Proxy that is in the middle of the path between the server and current I-Proxy is

selected.

No Yes

 Transmit m pkts

 via

k
ρ ρ≥
C N

,l r= =S C
,k l r=

k
N

k
l = N

,k l r=
k

r = N
,k l r=

Figure 82: Flowchart for the binary-search based I-Proxy selection method. ρNk
denotes

the retransmission request rate of the current I-Proxy.

An important advantage of this approach is that upon a change in the location of the

congestion, a new more appropriate I-Proxy is selected through accumulated statistics.

C.4 Simulation Results and Performance Analysis

In this section, we evaluate the performance of three different video transmission schemes:

(i) direct video transmission between the server and client, (ii) video transmission over a

randomly selected I-Proxy, and (iii) video transmission over an I-Proxy selected based on

the method described in Section C.3. To this effect, we generated a moderate-sized Internet

topology based on the Georgia Tech Internetwork Topology Models [104] and simulated

it with ns-2 network simulator [134]. On this topology, we selected a server and a client

that were 10-hop away from each other. Data and video flows were attached to all stub-

domain nodes to generate background traffic. For RTO estimation, we adopted the method

proposed in Section 5.3.

The video sequence we used in the simulations (Foreman, 352×288) was encoded offline

by a standard H.264 codec [120] at 600 Kbps and 20 frames per second. To maintain a good

interactivity in our application, we limited the buffering at the client side to 200 ms. That is,

any packet that could not be delivered within 200 ms was considered late and not displayed.

When we tested the direct video transmission, we observed that one-way delay between

174

the server and client averaged over 100 ms, which rendered end-to-end retransmissions

impractical. Without any retransmission, only 96.2% of the packets were delivered on time

for decoding, which actually produced an unsatisfactory video quality at 36.1 dB (3.8 dB

lower than the original quality). As our next step, we introduced a varying number I-Proxies

on the path between the server and client to enable the ARQ capability, and evaluated the

random and binary-search based I-Proxy selection methods. We present the results in

Figure 83.

0 2 4 6 8 10
96

96.5

97

97.5

98

98.5

99

99.5

100

Number of I−Proxies (n)

P
e
rc

e
n
ta

g
e
 o

f
O

n
−

T
im

e
 D

e
liv

e
ry

 (
%

)

No I−Proxy

Random

Binary Search

Figure 83: Comparison of different I-Proxy selection methods.

0 2 4 6 8 10
96

96.5

97

97.5

98

98.5

99

99.5

100

Number of I−Proxies (n)

P
e
rc

e
n
ta

g
e
 o

f
O

n
−

T
im

e
 D

e
liv

e
ry

 (
%

)

Random − Mean

Random − Best

Random − Worst

Figure 84: Performance variation of the random I-Proxy selection method.

With the introduction of the first I-Proxy, the percentage of the on-time packets in-

creases by 1.7% for both selection methods. At the client side, this translates to 1.6 dB

175

improvement in the average quality. When the second I-Proxy is introduced into the net-

work, we observe that the binary-search based selection method provides a larger increase

in the on-time delivery performance than the random selection method. This is mainly

because that binary-search based selection method always selects the best I-Proxy, while

random selection has an equal chance of selecting any available I-Proxy. In fact, as the num-

ber of available I-Proxies increases, the random selection method starts performing worse

on the average. In opposite, each additional I-Proxy continuously improves the performance

of the binary-search based selection method. When all the intermediate nodes between the

server and client can act as an I-Proxy, i.e., when n = 10, we achieve an on-time delivery

performance of 99.2%, which produces an average video quality of 39.0 dB at the client2,3.

As mentioned in Section C.3, the binary-search based I-Proxy selection method is net-

work adaptive. Congestions are detected through observations, and a new selection is made

if necessary. In opposite, random selection does not adapt to network changes, and may or

may not do a good initial selection. If an inappropriate I-Proxy selection is made, the sys-

tem performance can be severely impaired. Figure 84 clearly shows that the performance

may even deteriorate to a point where the system performance equals the case when no

I-Proxy is used.

C.5 Conclusions

In this appendix, we addressed the problem of I-Proxy selection, and studied both math-

ematical and practical solution approaches. With examples and simulations, we demon-

strated the superiority of our network-adaptive I-Proxy selection method over the naive

random I-Proxy selection method. The main result of this study is that using I-Proxies is

an effective way for providing more robust and better error-control capabilities for delay-

sensitive applications, and its advantages can be best exploited with a proper I-Proxy se-

lection.

2The remaining 0.8% of the packets are late for decoding mainly due to long-lasting congestions and

imperfections in the RTO estimation.
3Note that we use only one I-Proxy at a given time regardless of the number of available I-Proxies.

176

REFERENCES

[1] Transmission control protocol. [Online]. Available: http://www.ietf.org/rfc/rfc793.txt
(Accessed Sept., 2006)

[2] A. Goel, C. Krasic, K. Li, and J. Walpole, “Supporting low latency TCP-based media
streams,” in 10th IEEE Int. Wksp. Quality of Service, 2002.

[3] T. Kim and M. H. Ammar, “Optimal quality adaptation for scalable encoded video,”
IEEE J. Select. Areas Commun., vol. 23, no. 2, pp. 344–356, Feb. 2005.

[4] User datagram protocol. [Online]. Available: http://www.ietf.org/rfc/rfc768.txt
(Accessed Sept., 2006)

[5] Problem statement for the datagram congestion control protocol (DCCP). [Online].
Available: http://www.ietf.org/rfc/rfc4336.txt (Accessed Sept., 2006)

[6] V. Paxson, “End-to-end Internet packet dynamics,” IEEE/ACM Trans. Networking,
vol. 7, no. 3, pp. 277–292, 1999.

[7] D. Loguinov and H. Radha, “End-to-end Internet video traffic dynamics: Statistical
study and analysis,” in IEEE Int. Conf. Computer Communications (INFOCOM),
2002.

[8] Y. Wang, J. Ostermann, and Y. Q. Zhang, Video Processing and Communications.
Prentice Hall, 2002.

[9] J.-C. Bolot, S. Fosse-Parisis, and D. F. Towsley, “Adaptive FEC-based error control
for Internet telephony,” in IEEE Int. Conf. Computer Communications (INFOCOM),
1999.

[10] B. Girod and N. Farber, Wireless Video, M.-T. S. A. Reibman, Ed. Marcel Dekker,
2000.

[11] W. Kumwilaisak, J. Kim, and C.-C. J. Kuo, “Video transmission over wireless fading
channels with adaptive FEC,” in Picture Coding Symposium, 2001.

[12] M. Elaoud and P. Ramanathan, “Adaptive use of error-correcting codes for real-time
communication in wireless networks,” in IEEE Int. Conf. Computer Communications
(INFOCOM), 1998.

[13] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority encoding
transmission,” IEEE Trans. Inform. Theory, vol. 42, no. 6, pp. 1737–1744, Nov. 1996.

[14] U. Horn, K. Stuhlmuller, M. Link, and B. Girod, “Robust Internet video transmis-
sion based on scalable coding and unequal error protection,” Image Communication,
vol. 15, no. 1-2, pp. 77–94, Sept. 1999.

177

[15] E. Mohr, E. A. Riskin, and R. E. Ladner, “Unequal loss protection: Graceful degrada-
tion of image quality over packet erasure channels through forward error correction,”
IEEE J. Select. Areas Commun., vol. 18, no. 6, pp. 819–829, June 2000.

[16] J. Kim, R. M. Mersereau, and Y. Altunbasak, “Error-resilient image and video trans-
mission over the Internet using unequal error protection,” IEEE Trans. Image Pro-
cessing, vol. 12, no. 2, pp. 121–131, 2003.

[17] J. H. Kim, R. M. Mersereau, and Y. Altunbasak, “Bit-plane-wise unequal error pro-
tection for Internet video applications,” in IEEE Int. Conf. Communications (ICC),
2002.

[18] G. Al-Regib and Y. Altunbasak, “An unequal error protection method for packet
loss resilient 3-D mesh transmission,” in IEEE Int. Conf. Computer Communications
(INFOCOM), 2002.

[19] J. Kim, R. M. Mersereau, and Y. Altunbasak, “A multiple-substream unequal error-
protection and error-concealment algorithm for SPIHT-coded video bitstreams,”
IEEE Trans. Image Processing, vol. 13, no. 12, pp. 1547–1553, 2004.

[20] G. Al-Regib, Y. Altunbasak, and J. Rossignac, “An unequal error protection method
for progressively transmitted 3-D models,” IEEE Trans. Multimedia, vol. 7, no. 4, pp.
766–776, 2005.

[21] C. Papadopoulos and G. M. Parulkar, “Retransmission-based error control for contin-
uous media applications,” ACM Int. Wksp. Network and Operating Systems Support
for Digital Audio and Video (NOSSDAV), 1996.

[22] B. J. Dempsey, J. Liebeherr, and A. C. Weaver, “On retransmission-based error con-
trol for continuous media traffic in packet-switching networks,” Computer Networks
and ISDN Systems, vol. 28, no. 5, pp. 719–736, 1996.

[23] B. Mukherjee and T. Brecht, “Time-lined TCP for the TCP-friendly delivery of
streaming media,” in IEEE Int. Conf. Network Protocols (ICNP), 2000.

[24] P. Hurley, J. Boudec, P. Thiran, and M. Kara, “ABE: Providing a low-delay service
within best-effort,” IEEE Network, vol. 15, no. 3, pp. 60–69, 2001.

[25] H. Liu and M. E. Zarki, “Performance of H.263 video transmission over wireless
channels using hybrid ARQ,” IEEE J. Select. Areas Commun., vol. 15, no. 9, pp.
1775–1786, 1997.

[26] R. H. Deng and M. L. Lin, “A type-I hybrid ARQ system with adaptive code rates,”
IEEE Trans. Commun., vol. 43, no. 2/3/4, pp. 733–737, 1995.

[27] Y. Wang and Q.-F. Zhu, “Error control and concealment for video communication:
A review,” Proc. IEEE, vol. 86, no. 5, pp. 974–997, May 1998.

[28] J. Wen and J. D. Villasenor, “Reversible variable length codes for efficient and robust
image and video coding,” in IEEE Data Compression Conference (DCC), 1998.

[29] Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Review of error resilient coding
techniques for real-time video communications,” IEEE Signal Processing Mag., vol. 17,
no. 4, pp. 61–82, July 2000.

178

[30] G. Cote, S. Shirani, and F. Kossentini, “Optimal mode selection and synchronization
for robust video communications over error prone networks,” IEEE J. Select. Areas
Commun., vol. 18, no. 6, pp. 952–965, 2000.

[31] R. Zhang, S. L. Regunathan, and K. Rose, “Video coding with optimal inter/intra-
mode switching for packet loss resilience,” IEEE J. Select. Areas Commun., vol. 18,
no. 6, pp. 966–976, 2000.

[32] G. D. L. Reyes, A. Reibman, S. Chang, and J. Chuang, “Error-resilient transcoding
for video over wireless channels,” IEEE Trans. Multimedia, vol. 18, pp. 1063–1074,
June 2000.

[33] B. Yan and K. Ng, “A survey on the techniques for the transport of MPEG-4 video
over wireless networks,” IEEE Trans. Consumer Electron., vol. 48, no. 4, pp. 863–873,
Nov. 2002.

[34] V. Hardman, M. A. Sasse, M. Handley, and A. Watson, “Reliable audio for use over
the Internet,” Proceedings of INET, 1995.

[35] C. Perkins, O. Hodson, and V. Hardman, “A survey of packet loss recovery techniques
for streaming audio,” IEEE Network, vol. 12, no. 5, pp. 40–48, 1998.

[36] B. Wah, X. Su, and D. Lin, “A survey of error-concealment schemes for real-time
audio and video transmissions over the Internet,” in IEEE Int. Symp. Multimedia
Software Engineering, 2000.

[37] Y. C. Lee and Y. Altunbasak, “Spatial error concealment using multi-frame recovery
principle for MPEG-coded video delivery over error-prone networks,” in IEEE Int.
Conf. Information, Communications, and Signal Processing (ICICS), 2001.

[38] Y. C. Lee, Y. Altunbasak, and R. M. Mersereau, “A temporal error concealment
method for MPEG-coded video using a multi-frame boundary matching algorithm,”
in IEEE Int. Conf. Image Processing (ICIP), 2001.

[39] ——, “Multiframe error concealment for MPEG-coded video delivery over error-prone
networks,” IEEE Trans. Image Processing, vol. 11, no. 11, pp. 1314–1331, 2002.

[40] D. Taubman and A. Zakhor, “Multirate 3-D subband coding of video,” IEEE Trans.
Image Processing, vol. 3, no. 5, pp. 572–588, 1994.

[41] M. van der Schaar and H. Radha, “Unequal packet loss resilience for fine-granular-
scalability video,” IEEE Trans. Multimedia, vol. 3, no. 4, pp. 381–394, Dec. 2001.

[42] V. K. Goyal, “Multiple description coding: Compression meets the network,” IEEE
Signal Processing Mag., vol. 18, no. 5, pp. 74–93, 2001.

[43] J. G. Apostolopoulos, “Reliable video communication over lossy packet networks using
multiple state encoding and path diversity,” in Visual Communications and Image
Processing (VCIP), 2001.

[44] Y. C. Lee, J. Kim, Y. Altunbasak, and R. M. Mersereau, “Layered coding vs. multiple
description coding for video over error-prone networks,” EURASIP Signal Processing:
Image Communication, vol. 18, no. 5, pp. 337–356, 2003.

179

[45] Y. C. Lee, Y. Altunbasak, and R. M. Mersereau, “An integrated application of mul-
tiple description transform coding and error concealment for error-resilient video
streaming,” EURASIP Signal Processing: Image Communication, vol. 18, no. 10,
pp. 957–970, 2003.

[46] A. Reibman, H. Jafarkhani, M. Orchard, and Y. Wang, “Performance of multiple de-
scription coders on a real channel,” in IEEE Int. Conf. Acoust. Speech Sign. Processing
(ICASSP), 1999.

[47] M. Podolsky, S. McCanne, and M. Vetterli, “Soft ARQ for layered streaming media,”
Technical Report UCB/CSD-98-1024, University of California, Computer Science Di-
vision, 1998.

[48] Z. Miao and A. Ortega, “Optimal scheduling for streaming of scalable media,” in
Asilomar Conf. Signals, Systems, and Computers, 2000.

[49] ——, “Expected run-time distortion based scheduling for delivery of scalable media,”
in Packet Video Wksp., 2002.

[50] ——, “Fast adaptive media scheduling based on expected run-time distortion,” in
Asilomar Conf. Signals, Systems, and Computers, 2002.

[51] P. Decuetos and K. Ross, “Optimal streaming of layered video: Joint scheduling and
error concealment,” in ACM Multimedia, 2003.

[52] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized media,”
Microsoft Research Technical Report MSR-TR-2001-35, 2001.

[53] J. Chakareski, P. A. Chou, and B. Girod, “Computing rate-distortion optimized poli-
cies for hybrid receiver/sender driven streaming of multimedia,” in Asilomar Conf.
Signals, Systems, and Computers, 2002.

[54] ——, “Rate-distortion optimized streaming from the edge of the network,” in IEEE
Wksp. Multimedia Signal Processing (MMSP), 2002.

[55] P. A. Chou and A. Sehgal, “Rate-distortion optimized receiver-driven streaming over
best-effort networks,” in Packet Video Wksp., 2002.

[56] A. Sehgal and P. A. Chou, “Cost-distortion optimized streaming media over DiffServ
networks,” in IEEE Int. Conf. Multimedia and Expo (ICME), 2002.

[57] P. A. Chou and Z. Miao, “Rate-distortion optimized streaming of packetized media,”
IEEE Trans. Multimedia, vol. 8, no. 2, pp. 390–404, Apr. 2006.

[58] M. Kalman, E. Steinbach, and B. Girod, “Rate-distortion optimized video streaming
with adaptive playout,” in IEEE Int. Conf. Image Processing (ICIP), 2002.

[59] M. Kalman, P. Ramanathan, and B. Girod, “Rate-distortion optimized streaming
with multiple deadlines,” in IEEE Int. Conf. Image Processing (ICIP), 2003.

[60] J. Chakareski and B. Girod, “Rate-distortion optimized packet scheduling and routing
for media streaming with path diversity,” in IEEE Data Compression Conference
(DCC), 2003.

180

[61] ——, “Server diversity in rate-distortion optimized media streaming,” in IEEE Int.
Conf. Image Processing (ICIP), 2003.

[62] S. H. Kang and A. Zakhor, “Packet scheduling algorithm for wireless video streaming,”
in Packet Video Wksp., 2002.

[63] A. C. Begen, Y. Altunbasak, , and O. Ergun, “Multi-path selection for multiple
description encoded video streaming,” in IEEE Int. Conf. Communications (ICC),
2003.

[64] A. C. Begen, Y. Altunbasak, and O. Ergun, “Fast heuristics for multi-path selection
for multiple description encoded video streaming,” in IEEE Int. Conf. Multimedia
and Expo (ICME), 2003.

[65] A. C. Begen, Y. Altunbasak, O. Ergun, and M. A. Begen, “Real-time multiple de-
scription and layered encoded video streaming with optimal diverse routing,” in IEEE
Int. Symp. Computers and Communications (ISCC), 2003.

[66] A. C. Begen, Y. Altunbasak, O. Ergun, and M. H. Ammar, “Multi-path selection
for multiple description encoded video streaming over overlay networks,” EURASIP
Signal Processing: Image Communication, vol. 20, no. 1, pp. 39–60, 2005.

[67] S. McCanne, V. Jacobson, and M. Vetterli, “Receiver-driven layered multicast,” in
ACM SIGCOMM, 1996.

[68] X. Li, S. Paul, P. Pancha, and M. Ammar, “Layered video multicast with retrans-
mission (LVMR): Evaluation of error recovery schemes,” in ACM Int. Wksp. Network
and Operating Systems Support for Digital Audio and Video (NOSSDAV), 1997.

[69] W. Tan and A. Zakhor, “Multicast transmission of scalable video using receiver-driven
hierarchical FEC,” in Packet Video Wksp., 1999.

[70] J. Apostolopoulos, W. Tan, S. Wee, and G. Wornell, “Modeling path diversity for
multiple description video communication,” in IEEE Int. Conf. Acoust. Speech Sign.
Processing (ICASSP), 2002.

[71] S. Lin, S. Mao, Y. Wang, and S. Panwar, “A reference picture selection scheme for
video transmission over ad-hoc networks using multiple paths,” in IEEE Int. Conf.
Multimedia and Expo (ICME), 2001.

[72] S. Mao, S. Lin, Y. Wang, and S. Panwar, “Reliable transmission of video over ad-
hoc networks using automatic repeat request and multi-path transport,” in IEEE
Vehicular Technology Conference (VTC), 2001.

[73] R. Chow, C. Lee, and J. C. Liu, “Traffic dispersion strategies for multimedia stream-
ing,” in 8th IEEE Wksp. on Future Trends of Distributed Computing Systems, 2001.

[74] Y. J. Liang, E. Setton, and B. Girod, “Channel-adaptive video streaming using packet
path diversity and rate-distortion optimized reference picture selection,” in IEEE
Wksp. Multimedia Signal Processing (MMSP), 2002.

[75] Y. Wang, S. Panwar, S. Lin, and S. Mao, “Wireless video transport using path diver-
sity: Multiple description vs. layered coding,” in IEEE Int. Conf. Image Processing
(ICIP), 2002.

181

[76] J. Apostolopoulos, T. Wong, W. Tan, and S. Wee, “On multiple description stream-
ing with content delivery networks,” in IEEE Int. Conf. Computer Communications
(INFOCOM), 2002.

[77] T. Nguyen and A. Zakhor, “Path diversity with forward error correction (PDF) sys-
tem for packet switched networks,” in IEEE Int. Conf. Computer Communications
(INFOCOM), 2003.

[78] R. Karrer and T. Gross, “Multipath streaming in best-effort networks,” in IEEE Int.
Conf. Communications (ICC), 2003.

[79] S. Mao, S. Lin, S. S. Panwar, Y. Wang, and E. Celebi, “Video transport over ad
hoc networks: Multistream coding with multipath transport,” IEEE J. Select. Areas
Commun., vol. 21, no. 10, pp. 1721–1737, 2003.

[80] S. Mao, D. Bushmitch, S. Narayanan, and S. Panwar, “MRTP: A multi-flow real-time
transport protocol for ad hoc networks,” in IEEE Vehicular Technology Conference
(VTC), 2003.

[81] H.-M. Hang and J.-J. Chen, “Source model for transform video coder and its appli-
cation – part i: Fundamental theory,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 7, no. 2, pp. 287–298, 1997.

[82] Z. He and S. K. Mitra, “A unified rate-distortion analysis framework for transform
coding,” IEEE Trans. Circuits Syst. Video Technol., vol. 11, no. 12, pp. 1221–1236,
2001.

[83] M. Dai and D. Loguinov, “Analysis of rate-distortion functions and congestion control
in scalable Internet video streaming,” in ACM Int. Wksp. Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), 2003.

[84] M. Dai, D. Loguinov, and H. Radha, “Statistical analysis and distortion modeling of
MPEG-4 FGS,” in IEEE Int. Conf. Image Processing (ICIP), 2003.

[85] The MPEG software simulation group website (MSSG). [Online]. Available:
http://www.mpeg.org/MPEG/MSSG/ (Accessed Sept., 2006)

[86] T. Chiang and Y. Zhang, “A new rate control scheme using quadratic rate distortion
model,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, no. 1, pp. 246–250, 1997.

[87] J. Kim, R. M. Mersereau, and Y. Altunbasak, “An integrated multiple-substream
unequal error protection and error concealment algorithm for Internet video applica-
tions,” in IEEE Int. Conf. Image Processing (ICIP), 2002.

[88] V. A. Vaishampayan, “Design of multiple description scalar quantizers,” IEEE Trans.
Inform. Theory, vol. 39, no. 3, pp. 821–834, 1993.

[89] Y. C. Lee, Y. Altunbasak, and R. M. Mersereau, “A two-stage multiple description
video coder with drift-preventing motion compensated prediction,” in IEEE Int. Conf.
Image Processing (ICIP), 2002.

[90] ——, “A collaborative multiple description transform coding and statistical error
concealment method for error resilient video streaming over noisy channels,” in IEEE
Int. Conf. Acoust. Speech Sign. Processing (ICASSP), 2002.

182

[91] N. R. Council, Looking Over the Fence at Networks: A Neighbor’s View of Networking
Research. National Academies Press, 2001.

[92] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris, “Resilient overlay
networks,” in 18th ACM Symposium on Operating Systems Principles, 2001.

[93] J. Touch and S. Hotz, “The X-Bone,” in Third Global Internet Mini-Conference at
GLOBECOM, 1998.

[94] Y.-H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” in ACM
SIGMETRICS, 2000.

[95] S. Lee, S. Das, G. Pau, and M. Gerla, “A hierarchical multipath approach to QoS rout-
ing: Performance and cost evaluation,” in IEEE Int. Conf. Communications (ICC),
2003.

[96] J. Apostolopoulos and S. Wee, “Unbalanced multiple description video communication
using path diversity,” in IEEE Int. Conf. Image Processing (ICIP), 2001.

[97] Y. Wang, M. Claypool, and Z. Zuo, “An empirical study of realvideo performance
across the Internet,” in ACM SIGCOMM Internet Measurement Wksp., 2001.

[98] M. Yajnik, S. Moon, J. Kurose, and D. Towsley, “Measurement and modelling of the
temporal dependence in packet loss,” in IEEE Int. Conf. Computer Communications
(INFOCOM), 1999.

[99] W. Jiang and H. Schulzrinne, “Modeling of packet loss and delay and their effects
on real-time multimedia service quality,” in ACM Int. Wksp. Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), 2000.

[100] Y. C. Lee, Y. Altunbasak, and R. M. Mersereau, “Optimal packet scheduling for
multiple description coded video transmissions over lossy networks,” in IEEE Global
Communications Conference (GLOBECOM), 2003.

[101] A. Mukherjee, “On the dynamics and significance of low frequency components of
Internet load,” University of Pennsylvania, Tech. Rep. MS-CIS-92-83, 1992.

[102] RTP: A transport protocol for real-time applications. [Online]. Available:
http://www.ietf.org/rfc/rfc1889.txt (Accessed Sept., 2006)

[103] RTP payload format for MPEG1/MPEG2 video. [Online]. Available:
http://www.ietf.org/rfc/rfc2250.txt (Accessed Sept., 2006)

[104] E. W. Zegura, K. L. Calvert, and M. J. Donahoo, “A quantitative comparison of
graph-based models for Internet topology,” IEEE/ACM Trans. Networking, vol. 5,
no. 6, pp. 770–783, 1997.

[105] J. Chen and S.-H. G. Chan, “Multipath routing for video unicast over bandwidth-
limited networks,” in IEEE Global Communications Conference (GLOBECOM), 2001.

[106] A. C. Begen, Y. Altunbasak, M. R. Civanlar, and G. Gorbil, “High-resolution video
streaming in mesh-networked homes,” in IEEE Int. Conf. Image Processing (ICIP),
2005.

183

[107] S. Cass, “Viva mesh Vegas,” IEEE Spectr., vol. 42, no. 1, pp. 48–53, Jan. 2005.

[108] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,” Elsevier
Computer Networks, vol. 47, no. 4, pp. 445–487, Mar. 2005.

[109] The dynamic source routing protocol for mobile ad hoc networks (DSR). [Online].
Available: http://www3.ietf.org/proceedings/04mar/I-D/draft-ietf-manet-dsr-09.txt
(Accessed May, 2005)

[110] Jini network technology. [Online]. Available: http://www.sun.com/software/jini/
(Accessed May, 2005)

[111] UPnP forum. [Online]. Available: http://www.upnp.org/ (Accessed May, 2005)

[112] Self-organizing neighborhood wireless mesh networks. [Online]. Available:
http://research.microsoft.com/mesh/ (Accessed May, 2005)

[113] A. C. Begen, Y. Altunbasak, and M. A. Begen, “Rate-distortion optimized on-demand
media streaming with server diversity,” in IEEE Int. Conf. Image Processing (ICIP),
2003.

[114] A. C. Begen, M. U. Demircin, and Y. Altunbasak, “Packet scheduling for multiple
description video streaming in multipoint-to-point networks,” in IEEE Int. Conf.
Communications (ICC), 2004.

[115] P. Rodriguez, A. Kirpal, and E. Biersack, “Parallel-access for mirror sites in the
Internet,” in IEEE Int. Conf. Computer Communications (INFOCOM), 2000.

[116] J. W. Byers, M. Luby, and M. Mitzenmacher, “Accessing multiple mirror sites in
parallel: Using tornado codes to speed up downloads,” in IEEE Int. Conf. Computer
Communications (INFOCOM), 1999.

[117] A. Majumdar, R. Puri, and K. Ramchandran, “Rate-distortion efficient video trans-
mission from multiple servers,” in IEEE Int. Conf. Multimedia and Expo (ICME),
2002.

[118] SIP: Session initiation protocol. [Online]. Available:
http://www.ietf.org/rfc/rfc2543.txt (Accessed Sept., 2006)

[119] M. Puterman, Markov Decision Processes. J. Wiley & Sons, 1994.

[120] H.264 AVC reference software. [Online]. Available:
http://iphome.hhi.de/suehring/tml/download (Accessed Sept., 2006)

[121] A. C. Begen and Y. Altunbasak, “Videoconferencing over an intermediate-proxy,” in
IEEE Int. Conf. Image Processing (ICIP), 2004.

[122] ——, “Timely inference of late/lost packets in real-time streaming applications,” in
Picture Coding Symp. (PCS), 2004.

[123] ——, “Estimating packet arrival times in bursty video applications,” in IEEE Int.
Conf. Multimedia and Expo (ICME), 2005.

184

[124] ——, “Proxy-assisted interactive-video services over networks with large delays,”
EURASIP Signal Processing: Image Communication, Special Issue on Video Net-
working, vol. 20, no. 8, pp. 755–772, 2005.

[125] A. C. Begen, M. A. Begen, Y. Altunbasak, and M. R. Civanlar, “Proxy selection for
interactive video,” in IEEE Int. Conf. Communications (ICC), 2006.

[126] Y. Wang, Z. Zhang, D. Du, and D. Su, “A networkconscious approach to endtoend
video delivery over wide area networks using proxy servers,” in IEEE Int. Conf.
Computer Communications (INFOCOM), 1998.

[127] S. Sen, J. Rexford, and D. Towsley, “Proxy prefix caching for multimedia streams,”
in IEEE Int. Conf. Computer Communications (INFOCOM), 1999.

[128] R. Rejaie, M. Handley, H. Yu, and D. Estrin, “Proxy caching mechanism for multi-
media playback streams in the Internet,” in Int. Web Caching Wksp., 1999.

[129] Z. Miao and A. Ortega, “Proxy caching for efficient video services over the Internet,”
in Packet Video Wksp., 1999.

[130] F. Hartanto, M. Reisslein, and K. W. Ross, “Interactive video streaming with proxy
servers,” Information Sciences, an International Journal, 2001.

[131] C. Venkatramani, O. Verscheure, P. Frossard, and K.-W. Lee, “Optimal proxy man-
agement for multimedia streaming in content distribution networks,” in ACM Int.
Wksp. Network and Operating Systems Support for Digital Audio and Video (NOSS-
DAV), 2002.

[132] L. Gao, Z.-L. Zhang, and D. Towsley, “Proxy-assited techniques for delivering conti-
nous multimedia streams,” IEEE/ACM Trans. Networking, vol. 11, no. 6, pp. 884–894,
Dec. 2003.

[133] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across network
address translators,” in USENIX, 2005.

[134] S. McCanne and S. Floyd. Network simulator. [Online]. Available:
http://www.isi.edu/nsnam/ns (Accessed Sept., 2006)

[135] P. Karn and C. Partridge, “Improving round-trip time estimates in reliable transport
protocols,” in ACM SIGCOMM, 1987.

[136] A. C. Begen and Y. Altunbasak, “Redundancy-controllable adaptive retransmission
timeout estimation for packet video,” in ACM Int. Wksp. Network and Operating
Systems Support for Digital Audio and Video (NOSSDAV), 2006.

[137] A. C. Begen, M. A. Begen, and Y. Altunbasak, “Predictive modeling of video packet
delay in IP networks,” in IEEE Int. Conf. Image Processing (ICIP), 2006.

[138] Q. Li, “Delay characterization and performance control of wide-area networks,” Ph.D.
dissertation, Univ. of Delaware, Newark, May 2000.

[139] M. Kalman, E. Steinbach, and B. Girod, “Adaptive media playout for low delay video
streaming over error-prone channels,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 14, no. 6, pp. 841–851, June 2004.

185

[140] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM, 1988.

[141] Computing TCP’s retransmission timer. [Online]. Available:
http://www.ietf.org/rfc/rfc2988.txt (Accessed Sept., 2006)

[142] D. Loguinov and H. Radha, “On retransmission schemes for real-time streaming in
the Internet,” in IEEE Int. Conf. Computer Communications (INFOCOM), 2001.

[143] M. Allman and V. Paxson, “On estimating end-to-end network parameters,” in ACM
SIGCOMM, 1999.

[144] R. Ludwig and K. Sklower, “The eifel retransmission timer,” SIGCOMM Comput.
Commun. Rev., vol. 30, no. 3, pp. 17–27, 2000.

[145] Q. Li and D. L. Mills, “Jitter-based delay-boundary prediction of wide-area networks,”
IEEE/ACM Trans. Networking, vol. 9, no. 5, pp. 578–590, Oct. 2001.

[146] L. Ma, G. R. Arce, and K. E. Barner, “TCP retransmission timeout algorithm using
weighted medians,” IEEE Signal Processing Lett., vol. 11, no. 6, pp. 569–572, June
2004.

[147] R. Sinha and C. Papadopoulos, “An adaptive multiple retransmission technique for
continuous media streams,” in ACM Int. Wksp. Network and Operating Systems Sup-
port for Digital Audio and Video (NOSSDAV), 2004.

[148] I. Rhee, “Error control techniques for interactive low bitrate video transmission over
the Internet,” in ACM SIGCOMM, 1998.

[149] M. Kalman and B. Girod, “Modeling the delays of successively-transmitted Internet
packets,” in IEEE Int. Conf. Multimedia and Expo (ICME), 2004.

[150] P. J. Brockwell and R. A. Davis, Introduction to Time Series and Forecasting.
Springer, 2003.

[151] P. Stoica and Y. Selen, “Model-order selection: a review of information criterion
rules,” IEEE Signal Processing Mag., vol. 21, no. 4, pp. 36–47, July 2004.

[152] Simple network time protocol (SNTP) version 4 for IPv4, IPv6 and OSI. [Online].
Available: http://www.ietf.org/rfc/rfc2030.txt (Accessed Sept., 2006)

[153] R. Singh, A. Ortega, L. Perret, and W. Jiang, “Comparison of multiple description
coding and layered coding based on network simulations,” in Visual Communications
and Image Processing (VCIP), 2000.

[154] M. Gallant and F. Kossentini, “Rate-distortion optimized layered coding with unequal
error protection for robust Internet video,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 11, no. 3, pp. 357–372, Mar. 2001.

186

VITA

Ali C. Begen received his B.S. degree in Electrical and Electronics Engineering from Bilkent

University, Ankara, Turkey, in 2001, and the M.S. degree in Electrical and Computer En-

gineering from Georgia Institute of Technology, Atlanta, GA, in 2002. Since 2001, he has

been a member of the Center for Signal and Image Processing at Georgia Tech, where

he participated in several government and industry-sponsored research projects in the ar-

eas of media delivery over the Internet and wireless networks, networked entertainment,

multimedia transport protocols and content distribution. He held an Interim Engineering

Intern position at Qualcomm Standards Engineering Group between May and December

2004, where he received Qualstar Hall of Fame Award for his contributions to the standards

development.

Ali C. Begen is a member of the IEEE and ACM, IEEE Communications and Signal

Processing Societies, and Eta Kappa Nu. Since 2002 and 2004, he has been serving as

the webmaster on the IEEE Signal Processing Society Image and Multidimensional Signal

Processing Technical Committee and IEEE Communications Society Multimedia Commu-

nications Technical Committee, respectively. Between 2004 and 2006, he has also served as

a member of the Organizing Committee for the IEEE Int. Conf. Image Processing (ICIP)

2006. Ali C. Begen is a TPC member for several international conferences and a reviewer

for several journals including the IEEE Trans. Multimedia, IEEE Trans. Speech and Audio

Processing, IEEE Trans. Image Processing, IEEE Multimedia, IEEE Trans. Circuits and

Systems for Video Technology, IEEE Trans. Mobile Computing, IEEE Jour. Selected Ar-

eas in Communications, IEEE Trans. Vehicular Technology, EURASIP Signal Processing:

Image Communication, and EURASIP Jour. Wireless Communications and Networking.

In 2003, he received the Best Student-paper Award at IEEE ICIP in Barcelona, Spain.

187

