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Abstract

Seamless phase II/lll clinical trials are attractive in elepment of new drugs because
they accelerate the drug development process. Seamless [phiatrials are carried outin
two stages. After stage 1 (phase Il stage), an interim aisalyperformed and a decision
is made on whether to proceed to stage 2 (phase Il stagd)e i¢cision is to continue
with further testing, some dose selection procedure is tesddtermine the set of doses to
be tested in stage 2. Methodology exists for the analysigdf frials that allows complete
flexibility of the choice of doses that continue to the secstagie. There is very little work,
however, on optimizing the selection of the doses. This i®alenging problem as it
requires incorporation of the dose-response relationsiiijne observed safety profile and
of the planned analysis method. In this thesis we proposesa-gelection procedure for
binary outcomes in adaptive seamless phase Il/lll clirtitals that incorporates the dose-
response relationship, and explicitly incorporates béfibacy and toxicity. The choice of
the doses to continue to stage 2 is made by comparing thecpvedbower of the potential

sets of doses which might continue to stage 2.



Chapter 1

Introduction

In drug development, clinical trials are categorized ifieeé phases. Phase | is the stage
where the drug is first tested in human beings and the obgaistto determine the safety of
the new drug. Phase | trials are small and several dose laretgenerally tested. If a safe
dose (or dose range) is identified, the drug is then testezffioacy in a small clinical trial.
Such a trial is referred to as a phase Il clinical trial ané lghase I, often more than one
dose level is tested. At the end of the phase Il trial, a deibas to be made on the basis
of efficacy and safety data regarding which dose(s) proceetl®e next stage of testing.
The last stage of drug testing in human beings before sulomissr regulatory approval
is the phase Il clinical trial which is a large confirmatonat for efficacy. A review of
the statistical models used in design and analyses of daachtof the three phases of a
clinical trial is given in Chapter 3. Chapter 2 outlines thatistical tools needed in the

review of the statistical models used in each of the phasasfical trial.

In order to reduce the time before approval of a new drugethas been interest in
combining different phases of a clinical trial. Trials whicombine phase Il and phase I
into a single trial with a phase Il stage and phase Il stageeferred to as (seamless) phase

[/l trials. Such trials are conducted in two stages. lagd 1 (phase Il stage) of phase

1



2 CHAPTER 1. INTRODUCTION

[I/1Il trials, several hypotheses, such as comparing hosvdrug works in different sub-
populations or which doses are more efficacious than cotrtatment are tested. Based
on stage 1 data, subpopulation(s) or dose(s) which showigimgmresults continue to
stage 2 (phase Il stage) for further testing. At the end ajest2, data from both stage 1
and stage 2 are used for the final confirmatory analysis. Atthasuch phase II/IlI trials
save development time, they introduce statistical comfyle@ssociated with controlling
the type | error while testing multiple hypotheses and camnigj evidence from the two
phases. In Chapter 4 we describe how to address these issues.

In addition to the issues associated with testing phasi dlihical trials, another
challenge raised by these trials is how to make the choiceeobubpopulation(s) or the
dose(s) to continue to stage 2 after stage 1. This is theiquesinsidered in this thesis. In
Chapter 5, we develop a new method for dose selection in ssarphase 11/111 allowing
for the final analysis that incorporates the dose resporatomship, the prior knowledge
and the stage 1 data. The dose selection procedure is edluging simulation studies in
Chapter 6.

The method for dose selection developed in Chapter 5 asstiraes(1) in both
stages binary outcomes are primary endpoints, (2) there isncertainty on the dose-
response relationship, and (3) the seamless phase Illfbisitored only once and there
are no opportunities for stopping early either for futily for overwhelming evidence
of efficacy. In Chapter 7, we describe how in future work, weemd to address these
limitations. We end the thesis by discussing the main feataf the new dose selection

procedure and stating the conclusions in Chapter 8.



Chapter 2

Statistical background

In this chapter we give background on some of the statigticds that will be needed in the
rest of this thesis. The work in this thesis is based on binatgomes, that is, occurrence
or non-occurrence of an event such as toxicity or a therapetfect. Hence statistical
tools reviewed in this chapter are demonstrated using pioatcomes. After describing
the technique of transformation of random variables inige@.1, we will describe how
to make Bayesian inference for a binary outcome paramet8eation 2.2. The chapter

ends by describing Bayesian decision theoretic technigu®sction 2.3.

2.1 Transformation of random variables

In this thesis, we will occasionally need to determine thatrdiution of a random vector

when we know the distribution of another random vector withick there is one-to-one

transformation. To do this, we will use the technique of $farmation of random variables
that is described in several statistics text books such &hapter 11 of Roussas (2007).
In the rest of this section, we briefly review this techniquet fx, . x, (21, ..., z,) be the

value of the joint probability density of the continuousdam vectorX = (X3, ..., X,,).

3



4 CHAPTER 2. STATISTICAL BACKGROUND

Suppose the transformatiops = ¢1(x1, ..., ), oy Yo = On(x1, ..., x,) are respectively
partially differentiable with respect to,, ..., z,, and represent one-to-one transformations

for all values within the range of for which fx,  x,(z1,...,x,) # 0, then for these val-

ues of(zy, ..., x,), the equationg; = ¢1(x1, ..., Tp), oy Yn = On(21, ..., x,) @re uniquely
solved forzy, ..., x, to givexy = ¥1(Y1, -, Yn), ooy Tn = Un(Y1, ..., yn) and for the cor-
responding values dfy, ..., ), the joint probability density o¥ = (¢ (X, ..., X,), ...,

bn(X1, ..., X)) is given by

fY1 ..... Yn(y17"'7yn> :le ..... Xn(¢l(y17"'7yn)7-'-7¢n<y17-“7yn))|‘]‘7 (21)

where|J| is the determinant of the Jacobian of the transformatfigiven by

vy vy

dy1 vee dyn
J =
dyn dyn
dyl o dyn

For all the other values a1, ..., y»n), fvi.. v, (Y1, -, Yn) = 0.

2.2 Review of Bayesian principle

As mentioned above, we will mostly focus on clinical trialgwbinary outcomes. Exam-
ples of binary outcomes in clinical trials are (1) after treant is administered to a patient,
the patient is successfully treated or not, and (2) aftattnent is administered to a patient,
the patient experiences an adverse (or toxic effect) orinahis chapter, we will use the
first example. We will assume successful treatment (suredtss treatment is a Bernoulli
process that occurs with probability that is, the probability of successjis The number
of successfully treated patients,J generated using the Bernoulli process aftesubjects
have been entered in the trial will have a binomial distidnutwith parameters. andp,

that isS,, is Bin(n, p). The objective of the clinical trial is to make inferencejon
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A common feature of phase | and phase Il trials is that theyarall studies. This
means that the incorporation of information from outsidettial is particularly attractive.
This can be achieved by using the Bayesian principle in aiméarn from previous ex-
perience. In this section, we demonstrate how to make Bayésference for a parameter
of interest such as the binomial parametetn contrast to the frequentist setting where
is assumed to be fixed, in Bayesian statistigself is considered to be a random variable
whose distribution is continually updated as more data alleated. After datx are col-
lected, the updated distribution pfis referred to as the posterior distributionofivenx,
with the density that will be denoted by(p|x). The Bayesian principle is centered around
Bayes’ theorem. Ip is the parameter of interest and datare collected, Bayes’ theorem

is expressed as

_lpx) - mo(p)
"= T o) @2

wherel(p|x) is the likelihood function ofy given the data andm,(p) is the density of

the prior distribution ofp before datax are observed. For binary outcomes, data can be
summarised by the number of successfully treated patiepts(d the number of patients
entered in the trial/() so that we may writd(p|s,,n) for [(p|x). Inference orp or a
function ofp is then made using the posterior distribution. For exantheposterior mean
can be used to estimate the probability of sucgess

When a prior distribution chosen for some parameter leadptisterior distribution
of the same form as the prior distribution, the prior disitibn is said to be a conjugate
prior. Conjugate priors are advantageous because they eadytd integrals which can
be evaluated using analytical methods. In general nunidritegration techniques are
required to make inference using the posterior distrilbuti&xpression (2.2) assumes a
single parametep but this could be replaced by a vector. Gelman et al. (2004¢rdee
making inference for several models. In this chapter, wéfailus on obtaining the prior

distribution for the probability of success based on a siiglatment and for parameters in
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a logistic regression model.

2.2.1 Eliciting beta prior distribution for a Bernoulli par ameter

The beta prior distribution is a conjugate prior for a Bertiqurocess parameter such as
the probability of succegs The beta prior distribution for the binomial data paramete
proposed in some clinical trial designs that will be reviewrethe next chapter and is also
used for research work outlined in the remainder of thisighé®r a Bernoulli process, the
likelihood function ofp, the probability of success, afterpatients have been treated and

s, successes have been observed is given by

n —s
[(p|sn,n) = (s )ps"(l —p)" 7 (s, =0,1,...,m).

If we assume that has a beta prior distribution with parameters- 0 andb > 0, that is,

p (1 —p)"!

To(p) = Betap; a,b) = Blab)

0<p<l,

whereB(a, b) is the beta function, then using equation (2.2), the pasteistribution ofp
given(s,, n) is given by
l(p|sn,n) - Betap; a, b)

[ {i(plsn,n) - Betap;a,b)} dp
o pa—l—sn—l(l o p)b-i—n—sn—l

7(p|sn, 1)

which is of beta form Beta + s,,, b+n —s,,). Hence a beta prior distribution is a conjugate
prior for a Bernoulli parameter.

The prior information is elicited from investigators andagtified into a relevant
distribution. For a beta prior distribution, the elicitedfarmation is quantified into a
beta distribution by using the elicited information to detee the parameteksandb in
Betap; a, b). For the rest of this subsection, we describe how this mayhbe.dn addition

to being a conjugate prior for the binomial distributiongraeter, a beta distribution has a
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number of attractive properties which make it appealingstitias a prior distribution for a
binomial data parameter The domain op in Betap; a, b) is [0, 1] which makes it sensible
to use a beta distribution as a prior for a binomial distifmuparameter which itself has its
domain|0, 1]. As shown above, if a binomial distribution parameigs assumed to have
a beta distribution Beta; a, b), the posterior distribution qgf is Betga + s,,,b + n — s,),
wheres,, is the number of successfully treated patients aftpatients have been admin-
istered a treatment. The mean of a random varialtleat is Betda + s,,,b + n — s,)
is
a+ Sy
at+b+n

If « = b = 0, then expression (2.3) gives the proportion of succegditdated patients after

(2.3)

n patients have been entered in the trial. Thus the paranudtdre beta prior distribution,
that isa and b, may be thought of as pseudo-data elicited such that the belef is
that if a + b patients were treated, will be successfully treated so that the proportion
of successfully treated patientsdg(a + b). This proportion is then updated when data
(sn,n) are collected to give expression (2.3). Figure 2.1 shouws tensities with different
parameter values. The legends give the parameter valubs bkta densities. For a beta
density with parameter vectgr,b) = (0.5,10), most mass is at values pfclose to 0
while for a beta density with parameter vectarb) = (10,0.5), most mass is at values of
p close to 1. For a beta density with parameter vegiob) = (0.5,0.5), probability mass

is concentrated at values pfclose to 0 and 1. When s Beta(1,1), the density is flat so
that this corresponds to Uniform[0,1]. When both paransetatues are greater than 1, the
densities have a mode between 0 and 1. For example wieBeta(2,8)p = 0.1 is the

mode. Wheru > 1 andb > 1 the mode is
a—1
a+b—2
so that whem — oo orb — oo, the mean is approximately equal to the mode. Hence from

Figure 2.1, if the investigators do not have prior knowledge, the flat prior distribution
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Figure 2.1: Beta densities with different parameter valUdge legends give the values of
the parameters.

is Beta(1,1) and prior densities with parameter value(s$ than 1 should be used with
care.

In addition to the mean value of the parameter of interest,p@irameter values
chosen for its prior distribution should reflect the leveliotertainty (variance) associated

with the parameter of interest. The variance eofhich is Betag, b) is given by

ab
(a+Db)*(a+b+1)

so that different sets of andb can result in the same mean but different variance. The
variance of the probability of succegsn the density curve is exhibited by the spread of
the curve. Large values of variance (small values ahdb) lead to flat densities reflecting

limited knowledge while small values of variance (largewes ofa andb) lead to curves
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with high peaks at the mode reflecting more certainty on the ¥alue ofp. Accordingly,
Lindley and Phillips (1976) suggest referring to curvesioé beta densities plotted for
different values of: andb during the elicitation process. In their paper, they giveoad
discussion using an example of how to elicit and quantify & lokéstribution. Figure 2.2
shows curves for different values @andb but with the same mean (0.2). As the values of
a andb increase the peaks are higher and the mode moves closeme#re0.2. Thall and
Simon (1994) refer to Lindley and Phillips (1976) for thecghition and quantification of
the beta distribution but they also introduce the idea ofattth of the 90% intervall(/y)
running from the 5% to 95% percentiles. An investigator iseasto provide the width of
an interval within which he/she is 90% confidenties. A search is then carried out to
determine values af andb such that the mean ofis a/(a + b) and the difference between
the 95th quantile and the 5th quantile is equal to the spdoridue. The shorter the width

the more informative is the prior distribution since the signcurves will be more peaked.

2.2.2 Prior distribution for dose-response parameters

The example given above is applicable when inference is rfadée probability of suc-
cess at a single treatment dose. When more than one dose sdirtieedrug are tested,
some dose-response curve may be assumed and if the Bayadsi@ple is used to make
inference, it is necessary to give the joint prior distribntof the parameters of the dose-
response curve. Prior distributions for generalized limeadels parameters were proposed
by Bedrick et al. (1996). The form of prior distribution foegeralized linear models pa-
rameters proposed by Bedrick et al. (1996) generalizesribe giistribution proposed by
Tsutakawa (1975). This form of prior distributions is usadne of the phase Il design
reviewed in the next chapter and will also be adopted in ths&= delection procedure that
we propose in Chapter 5. Rather than describe the theorn giyBedrick et al. (1996),

we will demonstrate with the models which we are interestedWhitehead (2006) has
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/ \ —— a=1,b=4
o / \ o a=2, b=8

o\ === a=4, b=16
AN ——- a=6,b=24

Figure 2.2: Beta curves with same mean (0.2) but differerdrpater values

reviewed this form of prior distribution and some of the riata used in this section is

adopted from his review.

Let p(d) denote the probability of success at dose lévé&lurther suppose that given
dose, successes are independent binary outcomes withbiityba(d) and thatp(d) can
be modeled by a generalized linear model. Then probamilitiesuccess are related to the

dose levels through the formula

9(p(d)) = a+ 5 f(d),

whereg(.) is a link function that links the probability of succesgd)) to the linear pre-
dictora + 3 f(d), whereq« is the intercept parametes, is the slope parameter arfd.)

is some transformation of the dose such as natural log ofdie do thaif (d) = log(d).
Agresti (2002) describes link functions which can be usedbfivary outcomes such as the

logit, probit and complementary log-log link functions. Wl use the logit link which
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links the probability of success to the linear predictorakivs

p(d)
1 —p(d)

9(p(d)) = logit(p(d)) = log ( ) —a+ 6 f(d) (2.9)

Using the proposal of Bedrick et al. (1996), rather thanatlyeelicit prior distri-
butions for the parameter vectgr, 3), prior distributions for the probabilities of success
are elicited at some dose levels. Because the dose-respanvge(2.4) is defined by two
parameterso and/3), prior distributions for probabilities of success areidid at two dose
levels. Assuming these prior distributions are indepetidba joint distribution of the two
probabilities of success is obtained and hence the joirloligion of the linear predictor
parametersa, () using transformation of random variables. If there weredtparameters
in the linear predictor, prior distributions for probab#s of success would be elicited at
three dose levels and so on. For the dose-response curyesi@pose the prior distribu-
tions for probabilities of success are elicited at doseléevie i = —1, 0. These dose levels
do not have to be among the experimental dose levels. Inhbg&g, we will assume beta
prior distributions Betaf; a;, b;), i = —1,0 at dosei can be elicited as described above
wherep,; denotes the probability of success at doseda; andb; may be interpreted as
pseudo-data elicited as described above. Assuming thiedlioeta prior distributions at
the two doses are independent, then the joint prior digtdhwf p(d_;) andp(d,) is given
by

(ai—1)

]2 )t
B(Cl,i,bi) ’

i=—1
To obtain the joint prior distribution of and 3 which we denote byr(«, ), the
technique of transformation of random variables describe®kection 2.1 is used. In equa-
tion (2.1), letn = 2, Xy = p(d_1), Xo = p(do), y1 = «, y» = (. Assuming the logit link
(2.4),

B  expla+ B fldoy))
Yi(a, B) =pld-1) =p1 = 7 expla + 3 f(d-1))
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and

expla + 5 f(do))
1+ expla+ 3 f(do))’

¢2(Oé7ﬁ) = p(do) = Po =

so that using equation (2.1),

0 a; — PR
pt (1= p) Y

7T0(Oé, 6) = Zl_‘_[l B(CLZ', bz) "]|7 (25)
wherep;, (i = —1,0) are functions ofxr and 5 as defined above. The partial derivatives
are

dii dip; .
o =pi(1 —p;) and 3 =pi(1 —pi)g(di) i=-1,0
so that

171 = la(dor) gt T[ (1= 20

i=—1

which when substituted in equation (2.5) gives

pz pl
mo(e, B) = |g(d g(dp)| H @ .

The transformation of the dose that we are going to use inttigsis is the natural log.

Hence the joint prior density af and is given by,

0 )
_ P — i) d_y
w&mﬁ»—ll—iﬂﬁzy—hg<gg)y (2.6)

Suppose that a new drug is testedcatoses. Let the number of treatment successes and
treatment failures at dosg (i = 1, ..., k) be denoted by; andb; respectively. The likeli-

hood function of(«, 5) given the observed data is

o, BIX) = fi(%) T

i=1
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wheren; = a; + b; is the number of patients allocated to deseso that updating the
distribution of ¢, ) given by equation (2.6) with these data using equation (#h2 joint

posterior density forr andj is
k
(e, Bx) oc T pi(1 —pa), (2.7)
i=—1

where

1 .
p= et flogd) gy
1 +expla+ G log d;)

The form of the posterior distribution given by equatiorvjzas the same form as the prior
distribution given by equation (2.6) so that this prior isoajigate prior for &, 3). Eliciting

the prior distribution for &, 3) as described in this section may also have the advantage of
being easier and more intuitive since it involves elicaatof the probabilities of success

at several doses from investigators rather than direcdtadien of the joint probability of

(o, ).

2.3 Bayesian decision theory

Bayesian decision procedures are most common and seempapfeadn early clinical
trials. For example, Stallard (1998) points out that theconte of a phase Il study is a
decision of whether to continue with further evaluation @abandon the therapy due to
lack of efficacy or high toxicity or cost and hence argues fay&sian decision techniques.
Decision theory involves defining gain functions for di#fat actions (or decisions) that
can be taken and comparing the expected gain from each adtiebest decision is the
one with the highest expected gain. Rather than think of #ir, gf is also possible to think
of losses and hence take the decision with the least expksedLindley (1985) gives a

good introduction to the basic concepts in decision theory.
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Before giving gain functions for complex decision problemse first consider the
simplest decision making problem where there are only twasttns to choose from and
only two states of nature can occur. Table 2.1 summarizessthiple problem for a drug
company with a capital base dfm from which it can choose whether or not to invest
in a clinical trial to test efficacy of a new drug. Decision 1tis invest” (d;) and decision
2 is “not to invest” (;). At the end of the clinical trial, the two states of nature #re
new drug will be concluded to be efficacious (“drug is efficas”) and the new drug will
be concluded not to be efficacious (“drug is not efficaciowsith probability 6; and 6,
respectively, wher@, + 60, = 1. Suppose that if the new drug is concluded to be efficacious
at the end of the clinical trial, the drug company will maké from marketing the new
drug. Then if the drug company decides to undertake the deugldpment, and the drug
is concluded to be efficacious, the drug company will imprieseapital to£ (m — ¢ + k)
while if the drug is concluded not to be efficacious, then dpital will decrease byc
to £(m — ¢). If the drug company chooses not to undertake the drug devedot, the
drug company will neither lose nor gain anything regardtédsshether the drug will have
been concluded effective or not as shown in row correspgaidecisionl,. To compare

decisiond; andds, the expected gain function for decisidn(i=1,2) is defined by
2
E(d;) =) _0,Gi(0)), (2.8)
j=1

whereG;(0;) is the final capital base if stafe(j = 1, 2) occurs for decisiofi (i=1,2). The

resulting expected gains from decisi@dnandd, are respectively
2 2
E(dl) = Z Gle(Gj) =m + ]{791 —c¢ and E(dg) = Z Gng(Gj) =1m, (29)
j=1 j=1

whereG;(0;) (i = 1,2) is as defined above. If the initial capital basénf) invested is

ignored so that7;(6;) is the gain if statg occurs for decision, then the expected gains
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Table 2.1: Simplest decision making problem

State of Nature

Drug efficacious Drug not efficacious
Decision (Prob of this state i8,) | (Prob of this state i8,)
dy : Invest m—c+k m—c
dy : Do not invest m m

are evaluated as follows
2 2
E(dl) = Z@Gl(ﬁj) = 1{361 —c¢ and E(dg) = ZGJGQ(QJ) =0. (210)
j=1 j=1

The two expressions (2.9 and 2.10) show that the differemexpected fortune between
decisions/; andd; only depends on the amount the drug company will make frofimgel
the new drug if it is concluded to be effective and the amoumwill lose if the new drug
will be concluded not to be effective. Hence the gain funttioan be compared relative to
any baseline.

In the example of Table 2.1, the decision is whether to ineesbt to invest. A more
natural decision in clinical trials is whether to proceeahfrone phase of a clinical trial to
the next phase. For example, in a phase Il study, one may wahbbse between a decision
to proceed from phase Il to phase I, | and decision to abandon drug development after
the phase Il studydg). Another example would be a phase Il clinical trial thatva# more
than one inspection of data during the trial. Before the fimgppection, one may choose to
stop the phase Il study and proceed to phase Il stdgdy $top phase Il study and abandon
drug developmentd}) or continue with the phase Il study and make another ingpect
(d3). Thus the number of decisions to choose from may be morezHart often will be
finite.

Further in Table 2.1, the state of nature is that the druditseeious, in a clinical trial
the unknown state of nature would be the probability of effjckmr an experimental drug,
denoted by € [0, 1]. In Bayesian decision theory, the decision maker’s priavikedge of

pis encoded by a prior distributiafy(p) (French and Insua, 2000). Then data are observed
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that are drawn from a distribution that depends on the unknstate of nature. These
data are used to update the distributiorpafsing the Bayes’ theorem given by equation
(2.2) resulting to a posterior distribution(p|x). Then the expected gai@,, for action

a € D, whereD is the set of actions that may be chosen is given by

/0 Galp. ) (plX)dp, (2.11)

whereG,(p, n) is the gain associated with actiorand depends on the probability of suc-
cesyp and the number of patients in the trial To give an example of the form 6f,(p, n),
suppose in a phase Il clinical trial one of the actions that beataken is to proceed to phase
lll. Suppose the average amount of money required to treapatient in the phase Il trial
is k and the amount required to test a drug in a phase Il trial i5 0. After the phase IlI
trial, the company gets a reward denoted/ by 0 which depends on the probability that
the drug is concluded effective by a phase Il clinical tribhis probability is given by the

power function of the test denoted Byp). Then the gain may be expressed as
—nk —m + lk(p),

which is O (baseline value) less the expenses in phase Il laaskdIl plus the reward after

phase Ill. More gain functions are defined in the next chapter



Chapter 3

Clinical trials

In the introduction, we mentioned that in drug developmelmjcal trials are categorized
into three phases. In this chapter, we will first in Sectioh @ive the broader definition
of a clinical trial and the definition of clinical trials in ¢hdevelopment of a new drug and
then in Sections 3.2, 3.3 and 3.4 respectively, we will ghe dbjective and review some
of the statistical models used to design and analyse clitrieds in phase |, phase Il and
phase Ill. Most of the models reviewed in this chapter willase that the clinical trials

are carried out in the traditional set-up where each phaseatifiical trial is carried out

separately.

3.1 Whatis a clinical trial?

In this section, we define a clinical trial, describe the ddegelopment process, and de-
scribe the different phases of a clinical trial. The sectsas compiled from various lit-
erature. Some of the text books used are Wang and Bakhai)Y20606Cook and DeMets
(2008). The papers reviewed in later sections were alsoingdelveloping this section. A

clinical trial is a research study to test how well a new iméaition such as a new therapy or

17
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a different mode of administration of an existing drug wookspeople. We will consider a
clinical trial in the development of a new drug. The broad aima clinical trial in the de-
velopment of a new drug is to find out whether there is a dosddse range) and schedule
at which the drug can be shown to be simultaneously safe decdtigé, to the extent that
the risk-benefit relationship is acceptable. The particsildjects who may benefit from
the drug, and the specific indications for its use, also ned&e tdefined.

The modern drug development process involves a series @friexgpnts that are
carried out with specific objectives. First, tests are edrgut in the laboratory in isolation
from living organisms. After obtaining promising resultse next step is to test the new
substance in animals (animal pharmacological studie®rédhe testing can proceed to
human beings. The testing in human beings is what is refeéor@d a clinical trial and is
categorized into phase | clinical trials, phase Il clinic&ls and phase 11l clinical trials.

Phase | is the stage where the drug is first tested in humagsé€lime primary ob-
jective is to determine the safety of the new therapy. Sédexse levels are made available
for testing. The dose levels are determined from the anirhafrpacological studies. If
a safe dose (or dose range) is found, the drug is then testdaiological activity (anti-
disease activity) in a small clinical trial. Such a trialéerred to as a phase Il clinical trial.
Before the product is released into the market, a confirmpatiad (phase lll trial) has to be
carried out. While phase | and Il trials could include onlyeatment arm, phase 1l trials
are almost always randomized studies comparing a contaidard therapy) arm and a

treatment (new drug) arm.

3.2 Phase | clinical trials

The primary objective of phase | clinical trials is to studitity of the new drug and
determine a dose that has acceptable toxicity (tolerabde)dimr further testing. In this

section we give the basic set-up of phase | clinical trial$ gime some of the designs used
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to achieve this primary objective. The basic set-up of phadimical trials described in
Section 3.2.1 is generally adopted from combining mateiimithe articles later cited in

this section.

3.2.1 Basic set-up of a phase I clinical trial

Phase | clinical trials are typically small, having as fewldsparticipants while rarely
exceeding 30 participants. Except for cancer trials (avgg)l, where subjects are usually
patients who are at an advanced stage of the disease andéofailad to respond to the
standard therapies, healthy volunteers are used. In agpgdick patients are used because
potential cancer drugs are known to be highly toxic and ithdne unethical to administer
them to healthy volunteers who have not been diagnosed waitber. These are normally
patients who have not responded to existing therapies.e$moncology the subjects are
patients, it may be desired that most of the patients aJaikaie allocated to the dose that
will be proposed for testing in the next phases of a clinidal.t This is to enable them
have maximum benefit in case the new cancer therapy has gwti@pffect on this group
of patients.

Most designs, such as those proposed by O’Quigley et al0j18abb et al. (1998)
and Durham et al. (1997) among others, have been developedroer trials but can be
modified for other therapies. Suppadsealifferent dosesd; < dy < ... < dy, are chosen
for consideration in an oncology trial and we wish to estblihe maximum tolerated
dose (MTD). We define MTD as the dosé, for which the probability of a medically
unacceptable dose limiting toxicity (DLT) is equal to sorpedfied valu&). That is MTD

is the dosel* such that
Prob{DLT|d*} = 6.

The value ofd is the maximum accepted probability of a DLT and is chosereddmg on

the nature of the DLT and the potential benefit expected fluerdrug. The reason that it
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is not necessarily the safest dose that is sought is bedaaseidely assumed that toxicity
is a prerequisite for antidisease activity such as antituambvity in cancer treatment. The
MTD d* is not necessarily one of the experimental dagesi = 1, ..., k. It is hoped that

the lowest dosed) is safe and that
d; < MTD < dy.

Most investigators assume that there is an underlying desgense relationship but not
all phase | designs explicitly involve fitting the dose-resge curve. Each dose level has
a corresponding probability of DLT. The probability of DL$ assumed to be monotonic
increasing in dose. Diagrammatical representation ofeh@g is given by Figure 3.1. The
experiment is performed usingdose levelsi;, ..., d, whose respective probabilities of
DLT aref,, ..., 0,. With the maximum accepted probability of DLT denotedfythe
dose that corresponds to this valu@isas is shown in the figure. In Figure 3.1, it has been
assumed that the MTD has been captured by the experimers&ardogel; to d;.

For safety reasons, the available patients (volunteees$eguentially entered into
the trial in small cohorts. Each cohort usually includes aistrthree volunteers. The
early designs are intuitive and approach the MTD consemigtifrom the lowest dose
(d1) while recent designs are based on statistical principlesrg/ithe cohort of volunteers,
for example in the Bayesian setting, are allocated to themx@ntal doses based on the
predictive probability of toxicity at the experimental @ss

In addition to allocation based on safety reasons, ethssales based on other fac-
tors are also considered and hence some patients may batatldo different doses from
those which the design proposes. Investigators’ opinioy lead to allocation of a trial
subject to a different dose from the one the design propdsesexample, for a therapy
which seems to have therapeutic effect, if a design basedfetysonly proposes a lower
dose whereas a higher dose may be fairly safe, the invest{gamay want a very sick

patient to be allocated the higher dose.



3.2. PHASE | CLINICAL TRIALS 21

Ox
prob. of 0 _ -
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97; //////////
91_1
d d; ! dy
dose

Figure 3.1: Phase | set-up

3.2.2 Early designs

Storer (1989) describes a traditional design (which hesckdkign A) and also defines three
more designs (B, C and D). In design A, whose flowchart is glwefigure 3.2, cohorts
of 3 patients are treated at a time starting from the lowesedd he patients’ responses
are observed before allocating the next cohort to one ofxtperemental doses. If no DLT
is observed in all 3 patients, escalation to the next higlhsedaccurs. If 2 or 3 DLTs are
observed, the MTD is reached and the trial stops. If only iepaexperiences a DLT, 3
more patients are allocated to the same dose and if no exffadabserved, escalation

again continues; otherwise the MTD is reached and the toglss

Designs B, C and D are “up and down” schemes in which both agaland de-
escalation takes place. In design B, one patient is tredtadime. If a DLT occurs, the
next patient is treated at the next lower dose; otherwisalason to the next higher dose
takes place. The only difference between designs C and B isdtalation rule. For design
C, escalation takes place after two consecutive patiecetdeld at the same dose do not
experience a DLT. For design D, cohorts of 3 patients ardddeat a time. Escalation
occurs if no DLT is observed and de-escalation if more tharLT I3 observed. If only
1 DLT is observed, then the next cohort is treated at the sase lével. A flowchart of

this procedure is given in Figure 3.3. The difference betwaesigns A and D is that D
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Start at lowest dose

Treat 3 patients )
No DLT IZDLT @‘E

Figure 3.2: Flowcharts of the traditional design (Design A)

allows de-escalation to lower doses and all available pettiare entered in the trial. For

this design, there is no outcome that leads to stopping doathavailable patients are

tested.

Storer has proposed two two-stage designs, denoted by B8@n¢ehich combine
the single-stage designs (that is B followed by either C ahdTbe first stage follows
design B until the first toxic response occurs. From the painthich the next patient is
entered at the next lower dose level, the second stage dg3ignD) is implemented. He
showed the two stage designs (BC and BD) estimated the MTreduced bias relative
to the single stage designs A, C and D.

In all these designs (A, B, C, D, BC and BD), the dose to be rewended for
testing in further clinical trials depends on the resultshef highest dose administered to
the participants. If this highest dose administered is dmknontoxic, it is recommended

for further testing. Otherwise, the immediate lower dose®mmended.
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Start at lowest dose

Treat 3 pati
{ patients
T

No DLT 1DLT 2 or 3DLTs
Go to next Treat 3 more Go to next
higher dose at this dose lower dose

Figure 3.3: A variation of the traditional design (Design D)

3.2.3 The continual reassessment method

The Continual Reassessment Method (CRM) was developedQ@ui@ley et al. (1990) for
a cancer trial. Several authors, for example Babb et al. 8}l 8hitehead et al. (2006), Fan
and Wang (2006) and Durham et al. (1997) among others, haupar@d their methods’
operating characteristics with those of CRM. ¢t be a binary random variable (that is,
X, € {0,1}), where 1 denotes occurrence of a DLT and 0 nonoccurrenc®bT dor the
5t patient ( = 1,...,n) entered in the trial. Further, as above,dét(not necessarily one
of the experimental dose levels < d, < ... < di) be the MTD. The probability of DLT
is modeled by a simple dose-response cufVé, ) that depends on the dose levednd

a single parameter. The dose-response function is assumed to be monotodianta
and that for some, saya,, from the setA of possible values af, we havey)(d*, ay) = 6,

whered is the maximum accepted probability of DLT.

The version of the CRM proposed by O’Quigley et al. (1990)suibe Bayesian
principle where the parameteris considered to be a random variable. Lef, ..., z;_),
the data before experimentation on ff¥epatient, be denoted by; and letr(a|x;) denote
the prior density of the parametebefore experimentation on th& patient. The form of

m(alX;) is given later. Wheny = 1, mo(a) = 7(alx;) is the prior density for. before the
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experimentation. They také = (0, co) so that

/ m(alX;)da =1, (j=1,...,n).
0

Using the accumulated information on thg— 1) patients responses, the probability of
DLT at dose level (denoted by, ;) is estimated by

0;; = /Oow(di,a)ﬂ(a|xj)da, (1=1,..,k). (3.1)
0

This is the expected value of the probabilities over As an approximation to equation
(3.1), O’Quigley et al. (1990) suggest one could obtain thet@rior mean of, and substi-

tute this in the dose-response function resulting in a strtgpevaluate estimate 8f; given

by
0, = b(dna(j)). (i=1...k), a(j):/Ooan(a|Xj)da.

We continue explanation of the CRM usiﬁ;g but the same procedure would be followed
if one chose to usé,;. In order to determine the best dose to allocate tojthepatient,

the estimates of probabilities of DLA,,,

(=1, ..., k) are compared with the accepted
proportion of DLT# by defining some measure of distankeof 9;]. from 6. A commonly
used choice is the absolute differenfxée;j,@) = \G;j — 6|. The j'" entered patient is
assigned to the dosk such thatA(6;;, §) is minimized.

Given the response of thg" patient, which updates the knowledge abaytthe
posterior distributionr(a|x;.;) is obtained fromr(a|X;) using Bayes’ formula given by

equation (2.2). The likelihood of the outcome for tie patient is Bernoulli given by

$(d(j), x5, a) = (P(d(5), )" {1 = (d(j), a)}' ™,

whered(5) is the dose allocated to thé patient and)(d(j), a) is the probability of DLT

given by the dose-response cunvgl, a). The prior distribution of: before experimenta-
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tion with ;% patient ism(a|X;) so that the posterior distribution has density equal to
¢(d<])7 Zj, CL)7T(CL|Xj)

Jo o(d(j), zj, w)m(ulx;)du
7T0(CL) g_:l (b{d(l)? Ly, a’}

I mo(w) TTi=, ¢Ad(D), 21, u) Ydu

Patients are entered in this way until the results of thedasent entered are avail-

m(alXj41)

able. The recommended dose level for further testing withesdosel; (i = 1, ..., k) such
thatA(6;,,., ) is minimized. As seen in the allocation of the patients todbse levels,
the design takes into consideration the large potential igeihe patients by aiming to treat
as many patients as possible at the MTD. This makes it superibe designs that begin
testing at the lowest dose; these designs tend to undeémtaa patients particularly if the
MTD is the highest dose considered for experimentation.

O’Quigley and Shen (1996) proposed a likelihood based eeidithe CRM (CRML).
Supposé; — 1) subjects have been entered in the trial and a dose-respans®h is de-

fined as before, then the likelihood is equal to

L(a) = [ [(w(di, )" {1 = ¢(dr,a)}' ",

=1
whered, € {d;,...,d,} is the dose level allocated to patient To obtain an estimate
for a using the maximum likelihood method, the derivative of thgdrithm of the above

expression is obtained which results in the score function

Ula) = i{xl%“l’“)} D NCE v

=1

(di, @)} (3.2)

When there is heterogeneity in the outcomes (that is, sormenpswith DLT and some
without DLT), then the equatioli (a) = 0 has a solution. The solution is given by= a;,
the maximum likelihood estimate af The maximum likelihood estimate for probability

of a DLT at dosed; for patient; is ¢(d;, a;), wherea; is assumed to exist. Patiepts
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allocated to dosé; such that\(v(d;, a;),0),i = 1, ..., k, is minimized. The recommended
dose level for further testing will be the dogesuch thatA (¢(d;, an+1), #) is minimized.

Before heterogeneity, that is, when all patients expegddkTs or all patients do
not experience DLTs, the equatiéf(a) = 0 has no solution so that it is not possible to
obtain the maximum likelihood estimate efand consequently the maximum likelihood
estimate)(d;, a;). Before heterogeneity in results is observed, O’Quigley &hen (1996)
suggest using the Bayesian CRM or one of the early desigrsied above until a DLT
is observed if the first outcome is a non-DLT or vice versa. sTikibecause the early
designs do not involve estimating a parameter while alloggiatients to a dose and in the
Bayesian CRM, a prior distribution faris defined which is updated by the data so that we
do not have problem of estimatingthrough maximum likelihood estimate. Comparison
using different starting procedures show that the finalltesthat is the dose recommended
for testing in the next phases of a clinical trial, are laygebust to the method used before
heterogeneity is achieved. Operational characteristmsladvbe expected to differ when
the lower doses have a very low probability of DLT where stgriwith the traditional
design, more patients are allocated to the lower dose lewédsvever, the probabilities
of recommending the experimental doses for further testiggsimilar to starting with
the Bayesian CRM. Comparison of likelihood CRM and Baye&i&M using simulation
studies indicated similar results.

O’Quigley and Shen (1996) performed simulation studies@mdpared the prob-
abilities of recommending the experimental doses for furtesting using the following
three methods; (i) the Bayesian CRM, (ii) CRML while stagtiwith traditional design
until heterogeneity is observed and (iii) CRML while stagiiwith Bayesian CRM until
heterogeneity is observed. The probabilities of recomnmgndach of the experimental
doses for testing in the next phases of a clinical were sirfolahe three methods. Of par-
ticular interest is the scenario for which the lower dose®lzavery low probability of DLT,

where when the traditional design is used before heterdiyeneny patients are allocated
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to the lower doses. Despite the difference in operatingataristics with this scenario,
the probabilities of recommending experimental dosesdstirtg in the next phases of a
clinical were similar in the three methods. The Bayesian C&M CRML started with

Bayesian CRM used the same prior distributiond@nd the probabilities of recommend-
ing the experimental doses were very close. O’'Quigley arehh996) observed that if
less informative prior distributions were used, the resaftthese two methods would be

closer.

3.2.4 Overdose control

An attractive idea for phase | clinical trials is to imposeadesy constraint in order to
minimize the chance of exposing patients to dose(s) witbgndity of DLT above that of
the MTD. This can be achieved by requiring that a désmnnot be administered if the
predictive probability of a DLT at that dose is greater thgmrexspecified value given the
already collected data. Whitehead et al. (2006) proposexplicé consideration which
they argue is more transparent. For example, using the Bay&RM, safety may be
incorporated by allocating thg" patient to dosel; such thatA(é);j, 6) is minimized and
9;]- < Or, whereA, 9;]- andd are as defined above afigd is the probability of DLT which
would be considered too high to allocate patients.

Alternatively, the constraint can be incorporated in tlaistical model. Babb et al.
(1998) have proposed a phase I clinical trial design thatriparates safety in the statistical
model. The model selects a dose for each patient so that ¢laécped probability that the
dose exceeds the MTD is less than or equal to some pre-spegfige«. This is accom-
plished by also considering the MTD to be random variabld &iprior distribution and
then computing the posterior cumulative distribution filore (CDF) of the MTD. We will
only give the rule of how the patients are allocated to theed@sd not the details of how

to obtain the distribution of MTD (Babb et al. (1998) give atample of the distribution of
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MTD for binary outcomes). For th¢" (j = 1,...,n) patient, if allocation is to a dosé
the probability that/ exceeds the MTD is related to the posterior CDF of the MTD and i

given by the functionr; defined as

wherex; is the data at the time of” patient, that is, the responses and the dose levels
administered. Hencer; is the conditional probability that dogskexceeds the MTD given
the currently available data. Based on this criteria, figatient is allocated to the dose

level d; such that
T (dz) = .

That is, each patient is allocated to a dose so that the peeldicobability it exceeds the
MTD is equal toa. Babb et al. (1998) assume that any dose is available witieiexperi-
mental dose range. If only a distinct number of doses ardadlaj the;j*” patient may be

allocated to the highest dose levglsuch that

Wj(di) < a.

3.3 Phase Il clinical trials

The primary objective of phase Il clinical trials is to studificacy of the new drug in
comparison with the standard treatment(s). Hence, althsugh studies can be carried
out in a single arm setting, the trials are inherently corafrae. In addition to efficacy,
consideration of toxicity (safety) and cost of the trial naso be incorporated in a phase Il
trial. The trials are used to determine whether to proceedpbase Il trial depending on
the efficacy level, evaluation of toxicity and cost involhadhe development of the drug.

Designs utilizing frequentist techniques as well as puBgyesian and Bayesian decision
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techniques have been proposed. After outlining the set-ppase Il clinical trials, we will

give a review of the popular designs and the emerging nevgdgsi

3.3.1 Set-up of phase Il clinical trials

For ethical reasons, it is often important to monitor thecountes for patients in a phase

Il clinical trial. For this reason, phase Il trials are soimets designed such that at least
two inspections are carried out so that there are oppoitgrit stop early either for futility

or highly promising results before all the patients avdddbr phase 1l testing are entered
into the trial. Suppose there akenspections where all remaining patients are entered into
the trial after thgk — 1) inspection. At the'" inspection(i = 1, ..., k — 1), three actions

(decisions) can be taken
e Action A: Stop the phase Il study and abandon developmefhteoitug
e Action P: Stop the phase Il study and proceed to phase Illystud
e Action C: Continue with the phase Il study and make the 1) inspection.

Focussing on studies in which actions are based only on effiéection A is taken when
evidence of efficacy is below a certain level so that the nawg ds not promising. The
motivation for Action A is that patients should not continioebe exposed to a drug that
is clearly not effective. Action P is taken when the evidefareefficacy of the new drug

is high enough to mean that more evidence on efficacy fromesulent inspections in
phase Il is not required. The motivation for Action P is tHdiased on accumulated data
at thei'” (i = 1,...,k — 1) inspection, there is high probability the new drug is more
beneficial compared to the standard drug, the trial shouddqad to phase Il stage to
reduce the development duration for the new drug. Redutiaglevelopment duration
avoids delay of potential benefit to the society if the newgdsill be concluded better than

the standard treatment after the phase Il stage and sasef®cthe drug company because
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fewer patients are recruited and treated. Also, reducieglévelopment duration increases
profit to the drug company because lesser time of the patens lused to develop the new
drug. On the other hand Action C is taken when the drug showieeege of efficacy but
not strong enough to suggest stopping the phase Il testtagtagi’ (i = 1,....,k — 1)
inspection to proceed to phase Ill testing. At ffi& (last) inspection only actions A and P

can be taken.

In some settings, not all three actions are considered.¥&onple some trials allow
for action P only at th&*" inspection; that is, they do not allow for early stopping bépe
Il due to highly promising results from the new drug and peating to phase Il before all
trial subjects are treated and observed. Decision (actionhdaries depend on the design
being utilized. For binary data, it makes sense action Pheiltaken if enough successes
are observed, action A will be taken if too few successes laserved and action C will be
taken if the number of successes is between the number dssesrequired to take action
A and the number of successes required to take action P. Arjaictepresentation of the
decision boundaries is shown in Figure 3.4. In the genesd,daefore the last inspection,
if all the three actions can be taken at theinspection { = 1,..,k — 1), two valueslU;
andL; (L; < U;) are predetermined. The two values are used as the decisimaaies
for the action to be taken. Suppose attfieénspection the total number of treated patients
in the phase Il trial is:; and s; are treated successfully. 4f < L;, drug development is
abandoned (Action A). I§; > U;, phase Il trial is stopped and drug development proceeds
to phase Il (Action P). On the other hand [if < s; < U;, more patients are treated and
(i + 1) inspection is made (Action C). If the design does not alloviiéw P, no upper

valuesU/s in Figure 3.4 are defined.
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Figure 3.4: A phase Il setting allowing for 3 actions at eawpection

3.3.2 Frequentist designs

Frequentist designs focus on determining decision bouggltitat control the error rates.
Suppose that the true probabilities of success using thdatd treatment and the new drug
arepy andp; respectively. Then the new drug may be considered to be iguiffig more
efficacious than the control treatmenpif > p, + J, whered > 0 is a clinically relevant
improvement of the new drug over the standard treatment.hypethesis would then be
totestHy : py = po VS Hy : p1 > po + 9. The experiment is set up such that the error of
rejecting H, when actuallyH, is true (type | error, usually denoted by and the error of
concludingH, when in realityH; is the truth (type Il error, commonly denoted by are

controlled to some specified levels.

Making a type Il error in a phase Il clinical trial means thaatments that offer
larger benefits compared to the existing treatments aretegjdbased on a small sample
size clinical trial. Schoenfeld (1980) notes that investitigs do not want to reject treatments
with larger benefit on the basis of small sample size trialakiklg a type | error means that
a new treatment that is not better than the existing treatmeoncluded to be better than

the existing treatment. Schoenfeld (1980) observes tha Tgrror is minimized in a large
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phase Il clinical trial. Hence unlike in phase lll clinicalals, Schoenfeld proposes that
in a phase Il clinical trial, preference should be given tmimizing type Il error (hence
increasing the power; powet 1 — 3). He proposes setting type Il error to less than 0.10
and type | error to less than 0.25.

Gehan (1961) proposed a design which has had considergbieadion in the past.

The design has two stages. He stated that two decisions caade

e Decision I: Drug is unlikely to be effective in a proportipnof the patients or more

e Decision Il: Drug could be effective in a proportign of patients or more.

When Decision | is made at inspection 1, Action A is taken wiifilDecision Il is made,
Action C is taken. There is no opportunity for Action P. Gellustrated how to determine
the decision boundaries by takipg = 0.20. With p; = 0.20, the chance of consecutive
treatment failures is summarized in Table 3.1. The proliglmf treatment failure id —

p1 = 0.8. Assuming the observations are independent, the probeabfli (i = 1,...,14)
consecutive failures i€).8)". The chance of at least 1 success afteatients will then be
given byl — (0.8)". For example as shown in the table, the chance of 3 consedativres

is (0.8)3 = 0.8 x 0.8 x 0.8 = 0.512 and the chance of at least 1 success after 3 patients
have been treated will be— (0.8)% = 0.488.

Supposing that 14 patients are inspected at the first inspe&ehan (1961) pro-
posed decision boundaries summarized in Table 3.2. Actias #aken if they are 14
consecutive failures while Action C is taken if 1 or more treant successes out of the 14
patients is observed. Withy = 0.2, the probability of taking Action A is 0.044. That is,
type Il error is controlled at less than 5% and hence the aahconcluding the drug may
be working when true probability of success is 0.2 (powegriater than 95%. On the
other hand, using the same ideas, if one is prepared to aat¢epe Il error rate of 0.1, 11
patients are required at the first inspection where as béifctien A is taken if there are 11

consecutive failures and Action C is taken otherwise.
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Table 3.1: Chance of successive treatment failures wheyapility of success is 0.2
CONSECUTIVE CHANCE OF TREATMENT FAILURE IN GIVEN

PATIENTS CONSECUTIVE NUMBER OF PATIENTS
1 0.8
2 0.8x0.8=0.64
3 0.8x0.8x0.8=0.512
8 0.168
11 0.086
14 0.044

The number of additional subjects for the second stage ermi@ied so that the
true effectiveness of the drug is estimated with a givenipiag, i.e, standard error. The
standard error of the estimated proportion of the treatreeatesses after the first sample
of n, patients is

p(1—p) |
ni
wherep is the proportion of treatment successes in the first sammue.athe size of the
first sample. If the proportion of successes is approximdted same for future patients,
the standard error with the total number of patients is about

p(1 —p)

, (3.3)

wheren, is the combined size of the first and the second stage sammedsithe same as

above. The second sample number — n;) can be determined so that approximately the
required precision will result. It is hoped thats near the true rate of treatment successes.
A more conservative value ofto substitute in equation (3.3) would be the 75% confidence

limit for the true rate of successes as derived from the fastde.
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Table 3.2: Decision boundaries at inspection 1 using Gshaerthod

TREATMENT SUCCESSES ACTION
0 Drop drug
1 Include more patients in

study to pinpoint

14 effectiveness

The sample size for second stage using Gehan’s (1961) mewehds on the
success rate in the first stage. Also, Gehan’s design certtiel error rates for the first
inspection only. Simon (1989) proposed an optimal two-estdgsign that like Gehan'’s
method allows for Actions A and C but the second stage sanigged®es not depend on
first stage success rate and his design controls the erew fiat the entire phase Il trial.
At the first inspection, the number of successgsfrom n, patients is observed. A lower
boundL; is predetermined so that §, < L, action A will be taken. Otherwise action
C is taken, with a furthefn, — n,) treated at the second stage. A lower bodndor the
second stage is also set such that if the total number of sses€in both stages) < L,
development of the drug will be abandoned.

The probability of treatment success depends on the trugapility of success,
p, for the new drug. Assuming that the responses from thergatere independent and
identically distributed as Bernoulli with parametethe probability ofi (i = 0,1,...,n;)
successes in the first stage is Bin, p). Thus the probability of abandoning the drug at

first stage, that is praly; < L,), is given by
Ly
nl 7 ny—t __ .
> (M) pr = Falkaim), 3.4)
i=0

wherel's denotes the cumulative distribution function of a binondiatribution. Action A

is taken at the end of the second stag®if= i (for: > Ly + 1) and(S; — S1) < (Lg — ).
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Thus the probability of proceeding at stage 1 and abandatistage 2 is expressed as

> proh(S; =iandS, — Sy < Ly —i;p).

i=L1+1
Since(S; — S1) is binomial with parameter vecton, —nq, p), with (S, — 57 ) independent
of S1, the above probability is

>3 (Zl)pfu —p)m (" . "l)pfu -

i=L1+1 j=0

= Z fB(i;n1,p)Fp(Lay — 1;n9 — ny,p), (3.5)

i=L1+1
where fz denotes a binomial mass function and as befgsadenotes the cumulative dis-

tribution function of a binomial distribution.

The expected sample size i SN = n; + (1 — PET)(ny, — ny) where PET is the
probability of early termination after the first stage. Paetersp,, p1, « andg are specified
and then the two-stage design that satisfies the error pitipabnstraints and minimizes
the expected sample size when the response probabilityissdetermined. Optimization
is taken over all values of; and(n, —n;) as well asl; andL,. This is found by searching
over the range of; € (0,n;) and for each value of; determine the maximuni, that

satisfies the type Il error.

3.3.3 A Bayesian design

Thall and Simon (1994) have proposed a Bayesian design &weph clinical trials. LetF
denote the new (experimental) drug afithe standard (control) drug and that all patients
entered in the trial receive new drug. Furthergdetandps respectively denote the proba-
bilities of success after treatment with the new drug andsthadard treatment. The prior
distributions forpr andpg are respectively denoted hy(pg) andmy(ps). Because Thall
and Simon (1994) assume that all patients in the phasellWitiaeceive the new drug, the

posterior distribution op after the phase Il trial is equal to its prior distributiogps).
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Let the response for thg" patient in the phase Il clinical trialX; (j = 1,2,...)
take values 0 and 1 for treatment failure and successfuhties# respectively. Assuming
the responseX]'.s are independent, the total number of successes afpatients,S, =
X; + Xo + ... + X, is Bin(n, pg). Suppose in an experiment afterpatients,s,, are
treated successfully, then the posterior distributiomgfpafter observing datés,,, n) is
denoted byr(pg|s,, n). Assuming an improvement of sizas of medical significance, the
objective is to determine the probability that the effectraf new treatmenp(;) is greater

than the effect of the standard treatment plss + 0) expressed as

Asp,n; g, TR, 0) = Prolps +d < pg|S, = s, outofn)
1-5  p1
= / / T(pE|Sn, n)mo(ps)dprdps. (3.6)
ps=0 Jprp=ps+6

Figure 3.5 demonstrates the range of the parameter valedsto®btain the probability.
Since we want to determine the probability that the new dsuggitter than the control by
effective sized, ps andpp are integrated over values such thiat — ps) > 6. Hence
parametep; is allowed to take values from 0 to— 9, since beyond — ¢, (pg — ps) Will
be less tha. The parametep is similarly integrated fromps + § to 1 to make sure that
(pe —ps) = 9.

Thall and Simon (1994) proposed beta prior distributiomdfmhpz andps. Sup-
pose thatr,(pg) is Betdag, bg) andry(ps) is Betdas, bs). Since there is no experimenta-
tion with the control treatment, the posterior distribatiaf ps is also Betéag, bs). For the
new drug the likelihood is Binomial so that following the dission of Section 2.2.1, the

posterior distributionr (pg|s,, n) is Betdag + s,,bg +n — s,) and since
1
f8(pE; ag + Sn,bg +n — sp)dpg =1 — Fg(ps + 0;a + Sn,bg +n — sp),
ps+6

where fz and F; are respectively the probability density function and tbealative dis-

tribution function of a beta distribution, then equatior6)3simplifies to
1-6

{1 - F5<pS + 5; ag + Sn; bE +n— 3n)}fﬁ(p; Qs, bs)dp57 (37)
0
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Ps ‘

Ds Ps+9
Figure 3.5: Range of the parameter values

1

wheref; andF3 are as defined above.

Thall and Simon assume the parametess bg, ap andbg can be elicited from
the investigators and the parameters represent pseudoigat-or exampleg andbg are
elicited such that ifas+bg) patients are treated with the standard drug, thewould have
successful responses to the treatment whilavill not respond positively to the standard
drug. Similarly,ar patients would be treated successfully afier+ bz are treated with
the new drug. Thall and Simon assume an informative pridribigion 7y(ps) and an at
most slightly informative prior distribution,(px). They suggest eliciting and quantifying
the prior distributions by setting width of the 90% intery#ly,) and examining the Beta
curves as described in Section 2.2.1.

The design allows for the three actions (A, P and C) statecectiéh 3.3.1. To
determine the decision boundaries, a small valusuch as (0.01-0.05) and a large value
pu such as (0.95-0.99) for equation (3.7) are predeterminetl A Idenote the expression
(3.7) after the prior distributionsr((pr), m(ps)) and parameter values, n andd are

given. The lower and upper cut-offs are then given by

U, = smallest integes,, such that\(s,,,n, 7s, 7, 0) > pu

L, = Largestinteges,, < U,, such that\(s,,,n, 7g, 7g,d) < pr.
The decision rule aftet patients are treated is:

if S, < L,, take action A
if S, > U,, take action P and

if L, <5, <U,andn < n,,.., take action C,
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wheren,,.. is the maximum number of patients that can be entered intpttase Il clinical

trial.

3.3.4 A Bayesian decision design

The decision boundaries (rules) for the frequentist anceBiay designs described in Sec-
tions 3.3.2 and 3.3.3 respectively depend only on the nurmbsuccessfully treated pa-
tients. Fully Bayesian decision theory techniques can bd tesdefine gain function which
incorporate other measures such as the monetary gain fghidwenaceutical company.
Stallard (1998) has proposed a method for sample size dietion for phase Il clinical
trials using Bayesian decision theory. Here we will dwellrmmon Stallard’s proposal for
defining decision boundaries after evaluating data ratiem bn sample size determina-
tion. He defines a gain function that depends on the true effiaad stage of the trial at
which the decision is made. Suppose a maximunkahspections are planned at phase
Il and that thei’” inspection{ = 1, ..., K) is carried out after a total of; patients have
been entered into the trial. Further let the true probabdit efficacy be denoted by.
Then the gain is a function ¢f andn; and for actioru(a € {A, P, C}), it is denoted by
G.(p,n;). Actions A, P and C are as defined in Section 3.3.1. Xetbe the indicator
variable for successful treatment of patigntj = 1, ..., n; andsS,, = Z?;l X, be the
number of successfully treated patients aftgpatients have been treated. After observing
dataX; = =1, Xo = 29,..., X,,, = x,, With S,,, = s,,., using the Bayesian decision theory

principles of Section 2.3, the expected utility from actiois

1
Ga(Sn;) = E{Ga(p,n;)|Sn;, ni} =/ Go(p, ni)m(p|Sn,, ni)dp,
0

wheren(p|sn,, n;) is the posterior distribution g given the datgs,,,, n;). The optimal
action is the one with largest expected utility.
The baseline for the utility function defined here is 0 so théte phase Il study

is assumed to have a cdgt> 0) per patient, the utility function for abandoning the trial
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(action A) at thei’ inspection is given by
GA(pv nz) = _nlk

which is 0 (baseline value) less the number of patients edtsltiplied by the cost per
patient.

To proceed to phase lll (action P), in addition to the costhef phase Il trial, the
gain function needs to incorporate the cost of the phaseidll and the expected reward
if the phase Il trial shows that the new drug is efficaciousll8rd assumed that the total
cost of the phase lll trial is fixed and equal to some amoeuft 0). The reward(> 0) is
taken to depend on the speed with which the drug can be dedldssuming the length
of phase Il is fixed, the variability of speed of the drug depenent will depend on the
length of the phase Il trial and hent¢evill be taken to be a function af;. Further, the
reward will depend on the probability that the drug will belicated efficacious by the
phase Il trial. This probability depend gnand is given by the power function of the test
denoted byk(p). The utility function for action P at thé" inspection will thus be of the

form
Gp(p,ni) = —nik —m + 1(n;)k(p).
Expectations for the two gain functions corresponding tmas A and P are given by
Ga(p,ni) = E[Ga(p,ni)] = —nik (3.8)
and
Gr(p,ni) = E[Gp(p,ni)] = —nik —m + 1(ni) E(r(p)[sn,, ) (3.9)

respectively, wheré’(x(p)|s,,, n;) which we define as the predictive power in Chapter 5,
is the expected value af(p) obtained using the posterior distributionofiven (s,,,, n;).
At i = K, further continuation (that is action C) is not possible tiis inspection,

G¢ will be taken to be—co so that it will have the least gain among actions A, P and
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C. Wheni # K, the utility from action C, depends on the action that willtaken at the

(¢4 1)™ inspection and subsequent inspections. Afthel )™ inspection, ifS,,,,, = sn,.,

and the optimal action is taken, the expected utility will be

MaX,c(ap,c;Ga(Sniyrs Mit1)

The expected utility from action C at thi& inspection can thus be given recursively by

Sn; +Ni41—Ng

gC(Sma nz) = Z maX'zG{A,P,C}{ga(Ser1 ’ ni-i—l)}fnprl (Sni+1 |Sni7 ni)7 (310)

Snip1=5n;

wheref,, , (sn,., |5, n:) is the density o5, , givenS,, = s,, given by

1
fm+1 (Sm‘+1 |Sm'7 nl) = / In;pq (Sni+1 ‘Snnp)ﬂ-(p‘smv nl)dp
0

With g,,, ., (Sn.., |Sn,, p) the density ofS,,,, givenS,,, = s,,, and the value op.

i1

Figure 3.6 gives all possible outcomes at stége 1) and the probability of each
possible outcome given the outcome at stagBuppose at inspectians,,, successes are
observed. With théi + 1) inspection carried out after;, patients have been treated,
at inspection(i + 1) an extra(n;+1; — n;) patients are entered so that the extra number
of successes takes valugs 1, ..., (n,1 — n;) and consequently,,  , can take values

Sp; + 0, Sp, + 1, ooy (Sp, + nip1 — n;). Thus

PrOdSNiH = Sn; T S(nip1—n)

p) = Prods(mﬂ—m) = S(nip1—ni) p)

which is Bin((n;41 — n;),p) whereS(,,,,_,,) is the random variable denoting the extra
number of successes at inspectjor- 1). This is the distribution of,,, , (s, |Sn,, p)-

If K is finite, that is for a truncated test, equation (3.10) casdieed using equa-
tions (3.8) and (3.9) using backward induction starting at K. It is thus possible to
compare the utilities for the three actions A, P and C givepeetively by equations (3.8),

(3.9) and (3.10) and choose the optimal action. For a treacest, it can be shown that
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Figure 3.6: Possible outcomes at stage 1)

functionsc andd exist that determine decision boundaries so that

4
Ga(Sny,ni)y S, < (i)

ma)ng{A,P,C}ga(Snia nz) = gc(sni,’fli>, C(Z) < Sp; < d(Z)

gP<Sm7ni>7 d@) S Sni'

3.3.5 Phase Il studies based on therapeutic benefit and toig

The phase Il designs described above focussed only on gffilzda. However, it may be
desirable to make the decision on which doses to considéurfibrer testing based on both
efficacy and safety data. Both frequestists and Bayesiahadsthat use both efficacy and
safety are available. We will mention several methods butwiledescribe in detail one

frequentist method and two Bayesian methods.

A frequentist method

In the frequentist setting, if both efficacy and safety anesidered, the type | error needs
to be controlled at some level Let X; and X, denote the outcome variables for efficacy
and toxicity (DLT) respectively. Following Pocock et al9@7), one possible solution is to

considerX; as the primary endpoint whose p-value for treatment diffeeds used for the
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formal test of hypothesis and toxicity as a subsidiary emttpequiring exploratory rather
than formal interpretation. However, this may sometimesagodesirable so that, may
also be used in the hypothesis testing. Because a familypdthgses (hypothesis testing
X; and hypothesis testing;) are tested, procedures that control the type | familywise
error rate (FWER), the probability of rejecting at least tnue null hypothesis in the family
under any configuration, need to be employed. By under anfjgeoation, we mean when
only one null hypothesisis true or both the null hypothesesrae. One possible method as
pointed by Geller and Pocock (1987) and Pocock et al. (138 Bonferroni correction,
where to control the type | FWER, each varialllg (i = 1, 2) is tested at level /2. Other
methods that may be used to control the type | FWER by admistia level of the tests
areSidak’s method and Holm’s procedure among others. Theseatis are described in
detail in Section 4.3. In this section we will describe thettmoe proposed by Jennison and
Turnbull (1993, 2000).

Jennison and Turnbull (1993, 2000) consider pairs- (X, X,) that have bivariate
normal distributions with mean = (4, u2), correlationp and known variances which by
appropriate re-scaling are such that(Var) = var(X,) = 1. They also assume that, and
X, are defined such that higher valuesgfand ., are desirable. Jennison and Turnbull
(1993) further assume that with regardXe (: = 1, 2), there are constants < A; such
that the new drug is preferred if; > A; and is unacceptable ji; < &;, but the region
with ¢; < p; < A, is a region of indifference so that the parameter space ferdivided
into nine preference regions as shown in Figure 3.7 (a). énpirs, the first position
corresponds toX; and the second position t&,. The symbols—, 0 and + respectively
indicate that the new drug is unacceptable, new drug isfereift to the standard treatment
and the new drug is preferred. After a trial, the objectivididecide whether to accept (A)
or reject (R) the new drug so that for each of the nine regithesinvestigators will either
accept the new drug or drop (reject) it. We have given one elawof collapsing the nine

regions in Figure 3.7 (b). In this case, the investigatoraldide interested in a new drug
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@ (b)
p2 = Ay
(=, B, |+, B + R R A
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Figure 3.7: (a) The preference regions for= (u4,u2). The first position in the pair
correspond toX; (efficacy) and the second positionis (toxicity). The symbols +, 0 and
- respectively indicates new drug is preferred, considerpdvalent and unacceptable. (b)
An example of appropriate actions for specified valueg;0R (reject new drug) and A
(accept new drug)

that is more efficacious than the standard drug while it igastl as safe as the standard
drug. Hence the new drug is preferreqiifandp, are either in the region (+, +) or (+, 0).
More examples of categorization are presented in Jennisbiiarnbull (1993).

Jennison and Turnbull (1993, 2000) propose a unified mettodifferent catego-
rization based on preferences for the new drug which is aetiby shiftingX. For the
example presented in Figure 3.7 (b), the shifted randonovéstX — (Ay, e,). With the
transformation, there is a single region over which to aadrtype | FWER. The type |
FWER is controlled at level if

max{P4(p1, pia); pn < 001 py <0} <,

where P4 (11, 2) is the probability of concluding that the new drug is prederwhen

w = (1, p2). Suppose aften patients dataX;;; i = 1,2; j = 1,...,n are taken. Let
Xi=n"YXy + ... + X;n), i = 1,2 to be the sample means with the standardized values
Z; = X;\/n, i = 1,2. The decision rule is:

e If min(Zy, Z;) > ®~!(1 — «), accept new drug;

e Otherwise, reject new drug.
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Jennison and Turnbull (1993, 2000) show that with this dewisule, the type | FWER
is controlled at levelv. To show this result, they first show th&(-,-) is monotone
in both directions for this decision rule. This is accomipdid by comparing the proba-
bility of concluding that a new drug is preferred based on s&ts of bivariate random
vectorsZ and Z'. Let the first random vectof = (Z1, Zs) be bivariate normal with
mean(uy/n, pey/n), vanz,) = vanZy) = 1 andcorr(Z,, Z3) = p. Let the second
random vectorZ' = (Z,,7Z,) = Z + (vi\/n, v2/n), Wherev; > 0 andwv, > 0 so that
7' is distributed asZ except that its mean is greater than the mea& @ind is equal to

([ + vi]/n, [p2 + va]y/n). SinceZ, > Z, andZ, > Z, for all values ofZ, and 25,

Palpn +v1, o +v2) = Prob{min(Z,, Z,) > &1 — )} (3.11)
> Prob{min(Z,, Z5) > &1 (1 — a) = Palp, p2)}-

The equality (3.11) holds from the definition &% (-, -) and the decision rule. The above
inequality indicates thaP 4 (u1, i) is monotone increasing in both arguments. Hence, for

any value ofp,

max{Pa(p1, pio); 1 < 00rps <0} < max{Pa(0,00),Pa(c0,0)} (3.12)
= max{Prodz, > &7 '(1 — a)|u; = 0],
ProfZ, > @ '(1 — a)|uz = 0]}

= a’

since ProbZ; > ®~(1 — a)|u; = 0] = ProgZ, > ®~1(1 — a)|us = 0] = a. The right
hand side of inequality (3.12), by monotonicity Bf; (1, 2), represents scenarios where
the probability of making type | error is highest. Althougindison and Turnbull (1993,
2000) consider normally distributed random variablesygisihe central limit theorem, the
method can be used for binary outcomes if the number of gatierarge enough. Fur-
ther, Jennison and Turnbull (1993) have extended the methaliow for more than one

inspection.
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Bayesian methods

In Bayesian setting the possible outcomes (based on effmagdytoxicity) are assigned
some utility values. While focussing on efficacy only, for imdry outcome, binomial
models are reasonable. The same is true for toxicity (DLTHeWnterestis in both efficacy
and toxicity, two categories are no longer adequate. Coatioins of efficacy and toxicity
outcomes will result in more than two categories. Supposeamsider the simplest case
where both efficacy and toxicity are binary outcomes. Thesibdes outcomes are shown
in Table 3.3. Administration of a drug to a patient will eithresult in efficacy and DLT
(YY), DLT without efficacy (VY), efficacy without toxicity ¥ /V) or neither efficacy nor
toxicity (/VN). Let ! denote the possible categories based on efficacy and toxi@ke
et al. (2006) propose a method that models the probabilitheffour outcomes so that
[ = 4. Whitehead et al. (2006) give priority to avoiding a DLT subht the four outcomes
YY,NY,YN andNN reduce torY, YN and N N wherexY means eitheNY orYY so
that/ = 3. Stallard et al. (1999) noted that these two casds-o8 and/ = 4 encompass a

very large proportion of phase Il clinical trials.

The method by Loke et al. (2006) was intended for phase ktbat like the method
proposed by Whitehead et al. (2006), it could be used in gdudge Il clinical trials where
another separate phase Il trial is expected to be carriedrotite two methods, all patients
are allocated to the experimental treatment. The methoddila&l et al. (1999) includes
a control arm and is applicable to the late phase Il clinidald. Loke et al. (2006) and
Stallard et al. (1999) assume the outcomes in Table 3.3 hawelttnomial density and
Dirichlet prior distribution can be elicited. To compare thutcomes, utilities are assigned
to the different possible outcomes. Whitehead et al. (26Q&)el two dose-response curves
to estimate the probabilities of the three outcom¥Es YN and NN. In this subsection,
we will describe the method by Stallard et al. (1999) becatusaifferent from the other

two methods in that it has a control arm. We will also descitilmawvork of Whitehead et al.
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Table 3.3: Cross tabulation of toxicity and efficacy

Toxicity (X5)
Efficacy (X1) | Yes (Y) | No (N)
Yes (N) YY YN
No (N) NY NN

(2006) because later in this thesis we borrow ideas frormtlethod.

Stallard’s method

The phase Il design proposed by Stallard et al. (1999) is @idedheoretic method which
allows for more than one data inspection and at any datadtispethe decision theoretic
design they propose is flexible enough to allow the thre@ast{A, P and C) described in
Section 3.3.1 or only actions A and C. In their design, theyiage a maximum sample size
of M patients is available for testing in phase Il. In order tced®ine whether to accept
or not to accept early stopping in phase Il in favour of the meug, somelM; < M is
pre-determined such that at leddt patients are treated before actibncan be allowed.
M; = 0 allows proceeding to phase Il at any data inspection while= M only allows

proceeding to phase Il when all the available patients &en treated.

The possible actions (A, P and C) may be compared using gaatifuns. The gain
functions Stallard et al. (1999) proposed are similar togai@ functions given in Section
3.3.4. As before, lel’ denote the new drug arffithe standard drug and that the probability
of outcomei, i = 1,...,1 (I < 4) for treatment, ¢ € {£, S} be denoted by,; such that
0,1 + ... + 0, = 1. Further let the probability vecto(®x,, ..., 0x;)" for the new drug and
(051, ...,05) for the standard drug be denoted dyyandds respectively. The addition in
the gain functions of Section 3.3.4 is the patient gain whwehdenote by some function
g(0g, 0s) for patient treated withE' under the paiffg, fs). To specify the form of this
function utilities are assigned to theossible outcomes such that the expected utility when

a patient is treated with the new drijis u' 6z = w1651 + ... + wfg. The corresponding
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expected utility for a patient treated with the standardydsw: s = w051 + ... + wfs

and the patient gain could be defined as
g(@E,GS) :u,(ﬁE —95). (313)

The utilitiesug, ..., u; may be elicited from the investigators. One way is to assign t
best outcome utility value +1 and the worst outcome utiljue —1. Other outcomes are
elicited such that they take values in the intefjval, +1].

In Section 3.3.4, the gain function for action A at theinspection was defined as
G a(p,n;) = —n;k wherep was the parameter of interest,the number of patients treated
at thes™" inspection and: the cost of treating 1 patient. Now when the patient gain is

included and replaced with the new parameter vectér, 6<) the gain function becomes

GA(QE,HS,’H/Z') = ni9(9E>QS) _nik
= ni{u (0 —0s) — k. (3.14)

The gain function for action P in Section 3.3.4 was giveG'asp, n;) = —n;k+1(n;)x(p)—

m, wherem is the total cost of the phase Il clinical trial. By includirthe patient gain
for patients treated at the end @f inspection, the term-n;k, as in equation (3.14), is
replaced by {u (6 — 0s) — k}. Stallard et al. (1999) take the benefit to future patients to
bellg(0g, 0s) for somell > 0. Becausélg(fg, 05) is in the same scale as the patient gain,
IT may be interpreted as the number of future patients to beneit treatment withE.
The values ofl might also reflect the gains to the clinicians or pharmacattompanies
and thus need not to be equated to a number of potential patiBimus the terni(n;)x(p)

is replaced byIg(0g, 65) so that

Gp(0g,0s,n;) = ndu (0 —0g) — kY +Tg(05,05) —m
= n{u (0p — Os) — k} + T (0 — Os) —m. (3.15)

To compare the actions, expectations of equations (3.1d)&Md5) are evaluated. The
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expected gain function for action C @t inspection depends on the action that will taken

at(i + 1)*" inspection and is obtained as was explained in Section.3.3.4

Whitehead’s method

As mentioned before, Whitehead et al. (2006) give priotyavoiding a DLT so that the
four outcomes in Table 3.37Y, NY, YN andN N reduce tocY, Y N and NN wherexY
means eitheNY orY'Y. The probabilities for the three outcomes are respectiehoted
by p.y (d), pyn(d) andpyy(d) and the conditional probability of DO, given no DLT is

denoted byyn(d). Two logistic models are used to describe the probabijities

exqa*Y + ﬁ*Y IOg d)
w(d) = 3.16

_ exp(ay |y + By|n log d)
1+ eXFXOéyUV + 6}/‘]\7 lOg d) )

pyin(d) (3.17)

The advantage of modeling the conditional probability|{(d)) is that this does not re-
quire modeling the association between DO and DLT. Usingnhéiplicity probability
law p(A N B) = p(B|A) x p(A), we have

pyn(d) = PY|N(d) X (pay ) = pY\N(d) X (1 —=pay)

explay |y + Byv log d)
{1 + exq()é*y + 6*3/ 10g d)}{l + eXIXOéy‘N + BY|N 10g d)} ’

Using the law of probability,y (d) + pyn(d) + pyn(d) = 1, then

PNN(d) = 1- P*Y(d) - pYN(d)
1
{1+ expla.y + Buy log d)H{1 + explay |y + By log d)}’

The Whitehead et al. (2006) method for recommending thesdimserhich the next

cohort of patients should be allocated uses the Bayesiagiple. The joint distribution
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for (ow.y, Byy) in model (3.16) and the joint distribution fty |, By () in model (3.17)
are elicited separately. Figure 3.8 shows the curves of tioe means for different dose
response relationships using the prior distributionsihitehead et al. (2006) use in their
illustrating example. Using the elicited prior distribaris, the dose-response curves based
on prior means indicate the probability of a DLj,{) and the probability of DO given
no DLT (py|n) increase with dose level. The other curves are derived fimesae two
models. The probability that the administration of a drugtpatient results in neither a
therapeutic effect nor a toxic effegtyy) decreases with the dose level. The highest dose is
not necessarily the best choice as the curve,gf(d) shows. The posterior probability of
a therapeutic effect and no toxic outcome increases to saseldvel and then decreases.
Thus if the investigators’ objective is to identify a dosatthas the highest chance of
therapeutic effect but no DLT, this dose is not necessdnigyhighest experimental dose
level although the probability of DO given no DLy y) increases with dose level. This
is similar to the objective of the dose selection procedwg@mpose in Chapter 5. We will
aim to select the dose that is more efficacious compared todhteol treatment and has
the probability of DLT less than a specified value.

The joint prior distributions for the parameter vecttsy, 5.y) and(ay v, By|n)
are obtained as described in Section 2.2.2. For model (3&6udo-data are used to define
the prior distributions at two dose levels (i = —1,0). These consist of;; = a; + b;
pseudo-subjects treated at ddsg of whoma,; suffer DLTs. The second subscript on dose
d;1, that is 1, is an indicator for model (3.16). Thus assumirggghor distribution of the

form (2.6), the prior distribution fofa..y, .y ),

1 i d_
o1 a*Yv 5*)/ pllé( p-1 log (Wlll) ' ) (3.18)
where
D = explauy + Ouy log di) — 10

1 + explouy + Buy log din)’
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log (Dose)

Figure 3.8: Dose response curves using the prior means

After the trial starts, suppose that subjects have been treated with the experimental dose
d;; of whomm,; have shown no responsg,have exhibited a DO without a DLT, and
have suffered a DLT so that; + ¢; + a; = n;; fori = 1, ..., k. Denoting these observed

data byx, the posterior distribution will be of the form given by (250 that
k
m(ay, By X) oc [ pii (1 = pin)™, (3.19)

i=—1

where

o exp(a*y + ﬁ*y log dil)
1 + expla.y + Buy log dir)’

Pi1 i:—l,O,l,...,l{;.
Similarly, for model (3.17), to define the prior distributidor oy y and By |y, let n;, =
t; + u; pseudo-subjects treated at ddsg all of whom have no DLT, and of whom have

a DO. The second subscript on dakg that is 2, is an indicator for model (3.17). Thus
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assuming the prior distribution of the form (2.6), the pustribution for(ay |, By|n),

Pi(1— pio)¥ d_13
o2 (Qy (N, log | — )|,
02(ayn, Byn) = 21__[1 Bl ) g ( d02)

and the joint posterior density far y andgyy is

k
m(ay iy, ByinlX) o [T pia(1 = pi2)™, (3.20)

i=—1

where

exp(ay|N + 6Y|N log d22>
1+ eX[XOéyUV + ﬁY\N log di2)7

Di2 = _170717"'7k7

andu; = m;, nyp = u; +t; With d;; = dpp fori =1, ..., k.

Let us define the therapeutic window as the intefval d;) for whichpyy(dy) =
¢, andp,y (dy) = cy (er, andey small values such as 0.2). Whitehead et al. (2006) propose
dose allocation so as to maximize the inverse of the sum ofdhiances of the boundaries

of the therapeutic window defined as
G(0) = {wrVar(dp|x,) +wyVar(dy|x,)} ™,

whered is a vector of parameters,y, 3.y, ay|y and By |y, X, denotes the current data
augmented with the data that will be observed on the nextrta@fisubjects, andv;, and
wy are appropriate weights. The number of inspections with tinethod depend on the

total sample size for the whole trial and the cohort sizes.

3.3.6 Phase Il studies with several doses

In the late phase Il studies, the investigators while dogsgstto decide whether it is worth
continuing to phase Il studies, may still be uncertain astah is the best potential dose
of the new drug to test in the phase Il clinical trial. To oware this difficulty, several

doses of the new drug may be compared to the standard treatiies results to testing
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multiple hypotheses comparing the standard treatment ttyases of the new drug. In
frequentist testing, if it is desired to control the type | E®/ associated with comparing
several doses to a control treatment at some leyéhen the pairwise p-value comparing
each dose to the control needs to be adjusted. These metigodiseussed extensively in
Section 4.3. Bayesian methods are also available. For deathe ideas in the works by
Stallard et al. (1999) and Loke et al. (2006) could be conmbiiwedevelop a method that
allows for several doses. The method by Loke et al. (2006 seeeral doses and Stallard
et al. (1999) define gain functions which incorporate whethis worth continuing to the

phase Il stage.

3.4 Phase lll clinical trials

Phase lll trials are typically large confirmatory trials &fficacy. The main focus is placed
on efficacy but safety is also monitored. The new drug is coetbaith a commonly used
drug (the control or the standard drug) usually in a randethizial. The trial subjects are
allocated randomly to the new drug treatment arm and thelatdrdrug treatment arm and
the measure of efficacy, side effects and all informatiohwhihallow the new treatment to
be used safely are examined. Evidence of efficacy is ususslyssed by testing hypotheses

usually using frequentist methods.

3.4.1 Sample size calculation in fixed sample trials

The statistical aspects involved in designing a phase ihiaal trial include determining
whether there will be interim analyses or not and calcuipthre sample size. Adopting
the definition of Whitehead (1997), we refer to clinical Isiavhere analysis is carried out
after all patients have been entered in the trial and theoouts observed as fixed sample

clinical trials. In this subsection, we briefly describe thgonale for sample size formulae



3.4. PHASE Il CLINICAL TRIALS 53

for a fixed sample clinical trial. More detail of the ratioadbr sample size formulae are
given by Friedman et al. (1998), Machin et al. (2009) and fhes et al. (2009) among
others.

For simplicity, suppose a new drug is being tested for sopé&yi Before a new
drug is accepted for use by the regulatory authorities, itiestigators must demonstrate
clearly that the new drug is better than the standard drugtH®reason, the probability
of concluding that the new drug is better than the standarg dtile the truth is that the
new drug is not better than the standard drug, is often setrtexamum of 2.5% (0.025).
This probability is referred to as the type | error and is ligsudenoted bya. On the
other hand it is essential to have a clinical trial with sudint statistical power to detect a
difference between the new drug and the standard drug whretyiexists. The probability
of concluding that the new drug is better than the standard whhen the new drug is truly
better than the standard drug by some specified amount eddaké power and is usually
denoted by { — ), where denotes the type Il error. Type Il error is the probability of
failing to reject the null hypothesis that the new drug is better than the standard drug
when the truth is that the new drug is better than the stardtaigiby the specified amount.
The danger of conducting a clinical trial with low power isatmew treatments that are
beneficial are discarded without adequate testing and magr e considered in future
(Friedman et al., 1998). In addition to the monetary lossdttugg company will incur, this
leads to loss to society associated with the lack of effedtierapies. In practice trials are
normally designed to have power of between 0.8 and 0.95 $ahgrobability of a type
Il error is controlled at between 0.05 and 0.2.

To plan a trial with the desired statistical power and cdriype | error, sample
size calculation is based anand 5. To determine the power of a test the effectiveness
of the new and standard drug are required. In sample sizeladtn, the hypothetical
effectiveness of the standard is determined and the eféaass of the new drug is taken

as the sum of the effectiveness of the standard drug andematiffe of medical relevance.
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For example for binary outcomes, suppose the probabilisuotessful treatment with the
standard drug ig, and with the new drug is; = po + 9, whered is a difference of medical

relevance, then one of the sample size approximation foessated test at level is given

by

B 2 {Zm/Qﬁ(l — D)+ Zs\/po(1 — po) + (1 —pl)}2

(]90 - p1)2

2N

Y

wherep = (po + p1)/2 and N is the number of patients in each treatment arm, Zpdnd
Zg are standard normal values such théaZ,) = 1 — a and®(Z3) = 1 — 3, whered as
before is the standard normal distribution function. Alegtive sample size formulae are
given for example by Friedman et al. (1998) and Machin e2&l09) but they point out that
these formulae give similar results to the above samplefsineula. Sample size formulae
for other outcome variables such as survival outcomesjraamis outcomes are available
in most clinical trials books such as the ones cited at théibarg of this subsection. Due
to loss in follow-up visits, some investigators increase ¢hlculated sample size by some

factor.

3.4.2 Sequential investigations

Recruitment of patients in a clinical trial occurs gradyallring the course of the trial
which can extend to years depending on the prevalence oditheted disease and the size
of targeted population. This feature opens the possilofistopping the trial earlier based
on the emerging evidence (Armitage, 1975; Whitehead, 19®i73linical trials based on
efficacy, on ethical grounds, it may be desirable to stoprthkitthere is a clear advantage
of either drug (new or standard) over the other thereby avgithe allocation of more pa-
tients to the less efficacious drug. The pharmaceutical emmmay also wish to save costs
by stopping a trial early for a drug which appears to havieldhance of demonstrating im-

proved efficacy. In principle sequential investigation nbaycarried out after the outcome
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of each patient has been observed but for practical reasegsgntial investigations are
performed either at some pre-specified times or after apeeHsed number of patients (or
pre-specified number of events such as number of deathsrovaioutcomes) have been
observed.

In sequential trials, some method for combining evidenemfthe interim analyses
is required. In this thesis, we will describe two methodsthia first method, raw data or
sufficient statistics are merged to make the final analysis.will refer to this method of
combining evidence as the group sequential technique. drs¢lsond method, data from
each interim analysis are analysed separately and someir@atiob function is used to
combine the p-values. We will refer to this method of comignevidence using the p-
values as the method of combination tests. In Chapter 4, Wawvoduce seamless phase
[I/1Il clinical trials which are trials that combine phaskdnd phase Il into single trial.
Analysing these trials require combining evidence fromgehl stage and the phase Il
stage which can be done using the group sequential techoigoye combination tests so
that these methods of combining evidence will be describetktail in Chapter 4.

In the next chapter, while demonstrating how evidence frioenphase Il and phase
[l stages may be combined using the group sequential tqakrand by use of combination
tests, we will assume that there will be no opportunity tggtee trial after the phase I
stage for futility or for strong evidence against the nulpbthesis that the new drug is
not better than the control treatment. Phase Il clinidalgrwith sequential investigation
(testing) would allow for early stopping either for futitibr overwhelming evidence that
the new drug is better than the control treatment. Supposkeirentire trial we aim to
control the type | error at level. Armitage (1975), by use of examples based on binary
and continuous data, has shown that if at each stage of thstigation hypothesis testing
is carried out at levek, the overall type | error is inflated abowe Accordingly, methods
for analysing data sequentially without inflating overgfyé¢ | error have been developed.

Pocock (1977), O'Brien and Fleming (1979), and Lan and DeNi£983) have developed
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methods based on group sequential testing that allow fdy stpping while controlling
overall type | error rater and Brannath et al. (2002) have developed methods for aatjust

for early stopping without inflating overall ratebased on combination tests.



Chapter 4

Seamless phase Il/ll clinical trials

In the last chapter, we have stated the objective of eacheptfas clinical trial, reviewed
some methods used to design trials in each phase, and didduss conclusions are made
from these trials. In the methods described, the conclusmm a trial did not include
evidence from the previous trials. In this chapter, we ithtice seamless phase I/l clinical
trials, which are trials that combine phase Il and phasdliliaal trials into a single trial.
These trials are attractive because data from both phaseliphase Il are used in the
final confirmatory analysis. The combination of phases Il Bindbes, however, introduce
complexity in analysis. The analysis poses a challenge wftbacombine evidence from
the phase Il stage and phase Ill stage without inflating tpe tyerror rate. Further, if
multiple hypotheses are tested, the analysis poses a sebahlenge of how to adjust for
multiple testing associated with testing several hypabkeb the next section, we describe
the testing process in phase I/l clinical trials and asitlly describe the challenges posed
by these trials. In Section 4.2, we review some methods thatbe used to combine
evidence from the phase Il stage and phase Ill stage. Ind®edtB, we review some
methods that can be used to adjust for multiple testing. bkti@e 4.4, we describe the

proposal by Bauer and Kieser (1999), Hommel (2001) and Bre#d. (2006) to analyse

57
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phase Il/lll clinical trials data that address both the Eraje of combining evidence and
testing multiple hypotheses without inflating the type loenmrate. The notation given in
Bretz et al. (2006) is used. In Section 4.5, we review somdefexisting methods for

treatment selection in phase I/l clinical trials.

4.1 The testing process and challenges in phase II/lll clin-

ical trials

In most of the designs that we reviewed in Chapter 3, it wasrasd that the testing of
the new drug takes place in the traditional way: each phasarited out as a separate
trial. Furthermore, it may appear as if in each phase, ongytaal is required. However,
for example in phase Il, two or more trials may be carried diitwo trials are carried
out in phase Il, the first trial may be a proof of concept tnelhere some dose-response
modelling is done with the intention of identifying the rmmim effective dose (MED).
The second trial would then be a phase llb trial, which magplver testing of hypotheses,
where for example, several doses of a new drug (of higheraeffitevel than MED) are
compared to the standard treatment. Each clinical trialiireg careful planning which
means considerable time may be required to plan a trial. fteusaditional procedure for
testing a new drug, with many trials to be carried out, is wene consuming. Secondly,
in the traditional procedure, data from the previous tréaisnot used in the analysis of the
current trial data. This means to achieve adequate powee patients are required, hence
prolonging the recruitment time.

When a drug company starts testing a new product, the prasluegistered and
the company is given a patent period during which no otherpaom is allowed to test
or produce that product. The patent period includes theldpreent process time; hence

there is a financial benefit to a drug company if the developtivae is reduced, increasing
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the period the drug company will have a monopoly to produckraarket the new drug. In

addition to the financial benefit to the drug company, acatterdrug development avoids
delay in potential benefits to the society. Hence any praeediutechnique that will reduce
the duration of drug development while maintaining thd trigegrity is welcome.

In order to reduce the time before approval of a new drugethas been interest in
combining different phases of a clinical trial. Trials whicombine phase Il and phase llI
into a single trial with a phase Il stage and phase Il stageeferred to as (seamless) phase
[I/111 clinical trials. Such trials are conducted in two g&s. In stage 1 (phase Il stage) of
phase II/lll clinical trials, usually several hypotheses af interest. For example, a new
drug may be tested in different sub-populations such asgréift age-groups or groups
based on a set of biomarkers which could affect sensitigithé new drug, with the aim of
identifying the sub-populations that respond favorablyhe new drug. Another example
is that in stage 1, a control treatment is compared to difteexperimental treatments,
which could be different doses of a new drug, with the aim ehtifying promising new
treatments. In the case of sub-population selection, syodptions that show promising
results continue to stage 2 (phase Il stage). Similarlyhecase of treatment selection,
sufficiently promising treatments continue to stage 2 alwoitlythe control treatment. After
stage 2 results, at the end of the phase Il/llI clinical tii@ta from both stages are used to
test the hypotheses of interest. In both the examples thaiawe given above, two issues
arise while analysing data generated from such a phaseclifiical trials, namely: (i) how
to combine the evidence from the two stages without inflativegtype | error rate, and (ii)
how to control the type | familywise error rate (FWER) asated with testing multiple
hypotheses.

The work in this thesis is based on the second example abdarevin the phase
Il stage, the objective is to identify promising treatmettiat will continue for testing in
the phase lll stage. Specifically, in the phase Il stage, Weassume that several dose

levels of a new drug are compared to the control treatmedtaasubset of the dose levels
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tested in phase Il stage continue with the control treatrietiite phase Il stage. Planning
such a phase Il/lll clinical trial presents two challengé@show to perform analysis that
controls the error rates, and (ii) how to choose which dokesild continue to the phase
lll stage after the phase Il stage. Methods that controlreai®s in the analysis of phase
[I/111 clinical trials with flexible choice of doses exist bthere is very little work to guide
the choice of doses. An example of an analysis that allowghfexhoice of doses to test
in stage 2 is given in Section 4.4. The objective of this thésio provide a solution for
the second challenge by developing a new dose selectiorguog. This procedure is
described in the next chapter. In order to point out the ifiees between this procedure
and the existing methods that can be used to make a choice db#es to test in stage 2,
in Section 4.5 we review some methods available in liteeatbat may be used to select

the doses that proceed to stage 2.

4.2 Combining evidence from two stages

In Section 3.4.2, we explained that a phase Il trial coulcdude one or more interim

analyses. We mentioned two techniques of including evidéman interim analyses in the
final analysis: the group sequential method, and the userobuwtion tests. The same
techniques would apply in a phase Il/1ll clinical trial, wieethe phase Il stage could be
viewed as being equivalent to an interim analysis. In thigiSe, we describe how the two
methods may be used to test data from a phase II/lll clinf@@lwhen we assume there is

no stopping after stage 1 (phase Il stage).

4.2.1 Combining evidence using group sequential technique

Using the group sequential techniques, data from stage ktage 2 are merged and an

analysis is carried on the merged data set. Alternativeliiaa been the case while design-
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ing group sequential clinical trials, some sufficient stits could be used to combine the
evidence from the two stages. We demonstrate combiningeeealin a two-stage group
sequential using the efficient score statistics descrilyad/bitehead (1997). Suppose that
the new drug and the control are compared using some panafhetkich is a measure of
the treatment difference between the new and the contrgl dior example if the outcome
of interest is continuous and normally distributed, theapagterd could be given by the
standardized mean difference

gl tc

g

whereu g andyuc are treatment means for the new drug and the control drugcéesely
ando is the population standard deviation for patients treatdguthe new drug and the
control drug. The inference ahusing the data from stagealone(s = 1,2), is based
on a statisticZ,. The statisticZ; is the efficient score and is asymptotically normally
distributed with meadV, and variancéd/,, whereV, is the Fisher’s information about
contained inZ,, that is,Z, will be taken to be normally distributed (6V, V;). As Z; and
Z, are calculated from data from separate stages, they arpandent. This notation is
used to facilitate comparison with the method describecertiSn 4.2.2. Notation used by
Whitehead (1997) is different witl, being the efficient score based on both stage 1 and
stage 2 data antl, the accumulated Fisher’s information so that— Z; ~ N(0(V, —
V1), Vo — Vp) and is independent df;.

To describe how the statisti¢s andV, are derived, we for the moment ignore the
subscript denoting the stage for which the statistics asedao that we describe using
notationZ and V. The statisticsZ and V' can be derived from appropriate likelihood
functions. If there are unknown nuisance parameters, tifdelikelihood is used and this

guarantees

16,6(6)} = constr 67 — 67V + O(6°),
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whereg(6) is the maximum likelihood estimate of the nuisance parametetor¢ given

the value of. In the absence of nuisance parameters,
Z =1y(0)
and
V' = —lp(0),

wherel,(0) andlyy(0) denote respectively the first and second derivativé&fevaluated
with respect tod, evaluated at = 0. To illustrate with inference for mean of normal
data with known variance, let a samplig ..., z,, be observations from a normal population

distributed asV(u, 1) so that the likelihood of these data is given by

L) = TJezmexp( =20

i=1
—(oi @ -2y i + nu2)>
5 :

= (27r)‘"/2exp(
The corresponding log-likelihood has the form
1 2
[(n) = const+ uS,, — KT,

where S, = >  x; so thatZ = S, andV = n and inference om is made from the
statistic,S,, which is such that,, ~ N(un,n). Whitehead (1997) also gives forms fgr
andV for comparative studies.

Reverting toZ, andV, to denote the statistics at stagés = 1, 2), the statistic
Z = (Z1+ Z2) ~ N(O(V1 + V2), (Vi + 12))

is the efficient score statistic based on data from both staged stage 2. Suppose that

after collecting data in stage 1 and stage 2, the realizafimnthe efficient score&; and
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Zy arez; andz, respectively. Then, using the group sequential approaehpvalue from

the two stages is given by

PI’OdZ >z + 2’2|90) = 1- PrOt(Z <z + 22|90)

_ I_Prob(Z—eo(Vl+Vz)<21+2’2—90(V1+V2))
VVi+Ve o T VVi+ Vs,
21—90V1 2’2—90V2)
= 1—-Prob| Z* <
( IRYAZE S CERVA 2 S )

21—90‘/1 22—90‘/2}
= 1—-® + : 4.1
{vvlm NSy “-1)

whereZ* ~ N (0, 1) and#, is the value of the parametéunder the null hypothesis.

4.2.2 Combining evidence using combination tests

Bretz et al. (2006) use the combination test as describeddueBand Kdohne (1994).
Using the combination test, data from each stage are anbdggmrately. In order to make
a single conclusion from the two stages, p-values obtaing¢deaend of each stage are
combined using some functi@ninto a single p-value. Bauer and Kdohne (1994) implement
combination tests in adaptive clinical trials but the taeghe of combining evidence using
combinations tests had been proposed by Fisher (1932) tessithe need to combine
results from a number of independent tests used to test a oanhipothesis. Suppose
a null hypothesid? (notice here we do not use the conventional notafighis tested at
stage 1 and stage 2 obtaining the p-valyat stages (s = 1, 2). Further, let the combined
p-value be denoted bg'(p;, p2). Zaykin et al. (2002) have reviewed some methods of
combining the p-values. Two of the commonly used methodsh@&isher’s combination
method and the weighted inverse normal method.

For uniformly distributech; andps, the functions-2 log p, (s = 1,2), wherelog
is to basee, have a chi-square distribution with two degrees of freeddsing the fact

that the sum of random variables that afedistributed has a?-distribution with degrees
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of freedom equal to the sum of the degrees of freedom of theredmwandom variables,
Fisher (1970) noted that

2 2
T = —2Zlog Ds = —2longs
s=1 s=1

has ay2-distribution with 4 degrees of freedom when the null hyesis is true and the
p-valuesp; andp, are independent. Therefore, the p-value for testing thiehyplothesis

H using the evidence from the 2 stages is the probability pf @ariable being greater or
equal to the observed valdé& of T" so that, using the Fisher's combination method, the

combined p-value

2
C(p1,p2) = 1= Fa(=2log [ ] ps), (4.2)

s=1
whereF: is the distribution function of a chi-square distributiofttw4 degrees of free-
dom.

The inverse normal procedure uses the normal-transformedues. LetX be a
normally distributed random variable with mean 0 and vaéah, that is,X ~ N(0,1).
Further, let the distribution function of be denoted byb(z) and suppose that PX <
x) = ®(z) = c¢. BecauseX < zis equivalenttob(X) < &(x), then

Prol®(X) <¢) = Prob(®(X) < ®&(x))
= ProbX <z)=®(x) =c.
Hence Prob®(X) < ¢) = ¢, which implies the distribution function of a standard nafm

random variable is Uniform[0,1] so that the p-vahidor hypothesidi at stages (s = 1, 2)

can be transformed into standard normal score when the lhggist{ is true by taking
ze =01 —p,), s=1,2.

LetX;, j =1,2,...,nbedistributedV(0, 1) anday, ..., a,, be constants such tth oz? =
1, then the linear combination = » . «;X; is distributedV (0, 1). Using this standard
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result, then

is standard normal and the combined p-value may be given by

C(pi,p2) =1-0 <% ;@‘1(1 —ps)> .

Other weightsw; andw, which satisfyw? + w? = 1 can be used in place of the 2 equal
weights1/+/2 so that using the weighted inverse normal method for comgieividence
in a phase /11l clinical trial, the combined p-value is givby

C(p1,p2) =1 — Qw1 @ (1 — p1) + we® ' (1 — po)], (4.3)
where0 < w, < 1, s = 1,2, are arbitrary weights subject t&? + w2 = 1. Suppose the

efficient scores given in Section 4.2.1 are used to obtaipteues at each stage, then

1 —p1 = 1— ProliZl > le()) = Prot(Zl < 21‘90>
_ PrOb(Zl —0oV1 < £ 90V1)

VA RVATA

£ 90V1)
Pl —— - 4.4

& @4

Equivalently,
— Gy V2
1—p2:@<ézﬁéﬁ). (4.5)
2

Substituting the expressions (4.4) and (4.5) in the expesg.3) for inverse normal
method combined p-value and letting = /V,/(V; + V32) (s =1,2), then

Clprpe) = 1-@ { v1 WY { ( QOV)}}

- H’{ﬂ%)}

:1_@{a_%%+@_%%}. (4.6)
VitV VVi+ T,
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The combined p-value obtained from expression (4.6) angt&ue obtained using the
group sequential in expression (4.1) are equal. Henceeifmbightsw, (s = 1,2) for
the inverse combination method are appropriately choses combination function cor-
responds to the two-stage group sequential test. Chodsengeights proportional to the
sample size, that is taking, = /n,/(n, +ns) (s = 1,2), wheren, andn, are the stage
1 and stage 2 sample sizes, achieves this dipneadV; are approximately proportional to
the respective sample sizes.

Next we give the expressions for the type | error and thecalipp-value for testing
hypothesisd such that the type | error is not inflated. Suppose there ismppity to stop
the trial early after stage 1 for overwhelming evidence agfahe null hypothesis, that is
whenp; < a3 (o < «) or for futility, that is whenp; > ag (ap > «). Then, the type |
error is the probability that, under the null hypotheiseitherp; < a; ora; < p1 < o

and the combined p-valu&(p;, p2) < ¢, that is
Proby[p1 < ai] + Proby [C(p1, p2) < ¢, an < p1 < al,

wherec is the combined critical p-value and is obtained by equatimegabove equation
to overall type | erroree and solving forc. Assuming that the p-valugg andp, have
independent Uniforf, 1] distributions under the null hypothesis, then the ovesgdet|

error is given by

[e7s) 1
ag + / / Lic(py p2)<qdp2dp1, (4.7)
[e%1 0

where 1o, ,)<q equals 1 ifC(py, p2) < c and O otherwise. For the first part of our
work, we assume we do not stop for overwhelming evidence tppsg for unpromising
results in stage 1 does not depend on the observed stageldggvaNote in this case we
do not make any type | error at stage 1 so that equation (4 fhg trial proceeds to stage

2, simplifies to

1 1
/ / 1[0(171 ;p2)<c] dpadp;. (4.8)
0 0
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In expression (4.8), if the overall type | error is contrdil levelo, we have: = «, so that

the combined p-values defined by equations (4.2) and (4r8jacerror rate at levek.

The p-values defined by (4.2) and (4.3) clearly control thpetlyerror rate because
the p-value®; andp, are assumed independent under Brannath et al. (2002) explain
this is a strong requirement. The only requirement neededder for the p-values defined
by equations (4.2) and (4.3) to control the type | error ratéhat the distribution of the

p-valuesp; andp, underH to satisfy
Pry(pr < o) <aand Pi(p: < alpy) < aforall0 <o <1. (4.9)

Brannath et al. (2002) refer to this property of the disttidnu of p-valuesp; andp, as “p

clud”.

4.3 Controlling familywise error rate in multiple hypothe-

ses testing

Suppose in an experimeht> 1) experimental treatments are to be compared with a con-
trol treatment such that null hypothesed?; : 6, = 6,, j = 1,...,k comparing each
experimental dose with the control treatment are of interesered; andd, respectively
denote the measure of effectiveness for experimentahtiesatyy and the control treatment.
Without loss of generality, suppose the fikst(k; < k) null hypotheses are true. Lé&t;

be the event that the null hypothedis (; = 1, ..., k) is rejected, then if no multiple testing
adjustmentis made, the overall (type I) FWER associateutegting the: null hypotheses

is

1 — Prob(n"., ES | Hoy, ),
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where the notation

“Hor,” means that given the null hypothests, j = 1,..., k; are true.

If the eventstis, j = 1, ..., k; are independent the above expression reduces to

k1
1— 1 - ProuE; | Hy,))-

J

For example, ifc; = 2 and each hypothesis is tested at levek 0.05 and the hypothesis

H, and H, are independent, then the unadjusted type | error is
1—(1-0.95)% = 0.0975

so that the FWER is almost double the individual type | eremsociated with testing/;
and H,. Indeed, one is almost certain to make a type | error when tiheer of true null
hypotheses to be tested becomes large (Hochberg and TamB&¢. Thus, for a credible
analysis, methods are required to control the FWER assatigith testing thé: pairwise
null hypotheses at the pre-specified lexel

There are several testing procedures that can be used tbeestiltiple hypotheses
so that the FWER is controlled at the desired lewel Hochberg and Tamhane (1987)
explain that the FWER may be strongly or weakly controlleche FWER is strongly

controlled if
[1 — Prob(NiL, ES | Hor,)| < «, forall ky <k,
and the FWER is controlled weakly if
[1 — Prob(M}L, E | Hor,)] <, only whenk; = k,

that is, when all the tested null hypotheses are true. An pl@af a test that controls
FWER weakly is due to Fisher (1935). In this test, individpalrwise hypotheses are
tested only when the global null hypothesis of no differemtmng all the: + 1 treatments

(that is thek experimental and the control treatment are all equal) iedeand rejected.
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This test controls the FWER strongly only if = 2. For k > 3, the test controls the
FWER weakly. All the other procedures we describe later is $lection strongly control
the FWER.

Westfall and Young (1993) have reviewed some methods tha@taahe FWER.
The simplest is the Bonferroni method in which each of heull hypothesis is rejected
when the observed p-value is less or equal t&, which leads to the Bonferroni adjusted
p-valuep; = min(kp;, 1), wherep; is the unadjusted p-value obtained from testing the null
hypothesidi;, j = 1, ..., k. The FWER is protected since

Prob(Reject at least oné; | H,) = Prob(lrgjgkpj <a/k | HO)
>
k
< > Prob(p; <a/k| Ho) = o
j=1

A similar adjustment is by use of tHsidak method, which rejects each of thewull hy-
pothesis when the observed p-value is less than(1 — «)'/*. This leads to th&Sidak
adjusted p-valug; = 1 — (1 — p;)*. This method is less conservative than the Bonferroni

correction and is exact for protecting FWER if all p-values imdependent since

Prob(Reject at least one; | Hy)
_ S0 (1 — o )E
= PrOb(1r§nj1£k{1 (1—p;)"} <a| HO)
_ g I (1 — ok
= 1 Pr0b<1r<njl£1k{1 (1—p;)"} >« HO)
= 1-Prob(p; > {1 — (1 —a)"*} forall j | Hy)

k
= 1-][Prob(p; > {1-(1-a)/*} | H))  (4.10)

J=1

= 1—{(1 -} =qa.

The equality in step 4.10 holds assuming independence arfih#i results holds assuming

pj, j =1,..., k are Uniform[0,1].
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The Bonferroni and th&idak methods described above are single step procedures.
Holm (1979) introduced a sequentially rejective algoritiotest multiple hypotheses. The
algorithm is based on the ordered p-valygs, < ... < p(), corresponding to hypotheses
Hqy, ..., Hyy. The reasoning is that ondé(;) has been rejected using for example the
Bonferroni critical valuer /%, we should believe thall(,) is false. Thus, there are only
k — 1 hypotheses which might still be true, implying the critigaluea/(k — 1) should be

used forH ;) and so on. Holm’s Sequentially rejective algorithm is gitetow.

e Step 1: Ifpq) > o/k, then accept all hypothesés,, ..., Hy, and stop; otherwise,

rejectH ;) and continue.

e Stepy: If p;y > o/(k — j + 1), then accept all hypothesé;), ..., H;) and stop;

otherwise, reject/ ;) and continue.

e Stepk: If p) > a, then accept hypothesig,; otherwise, reject! ;.

The adjusted p-values of this algorithm aFg) = max{kpq),1}, P = max{(k —
Dpe), 1} oDy = Py

Westfall and Young (1993) introduce the Bootstrap adjustsievhich have the
advantage of capturing the correlation structure. Theeeatso other adjustments meth-
ods in literature. In order to control the FWER associateth westing thek pairwise
null hypotheses at pre-specified levelBretz et al. (2006) use the closure principle (CP)
of Marcus et al. (1976). The CP considers the set of all ietdrgsn hypotheseél; =
NjesH;, J C {1,...,k} constructed from the initial hypotheses of interest. Maretial.
(1976) refer to this set, denoted By, as the closure set. Using the CP, a null hypoth-
esisH;, j = 1,...,k is rejected at FWER if all hypothesesH;, J C {1,...,k} with

j € J are rejected at level. Consider Figure 4.1 whel = 3. The closure set{ equals
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H123

l l

m, i,

Figure 4.1: Closure set with 3 treatments. The hypothesasiced inH; are circled.

{Hl, H,, Hs, H5, Hi3, Hos, ngg}. HypotheSiSHl is rEjected if the circled hypOtheseS

Hyo3, Hyo, Hi3, and H; are all rejected each at level

Marcus et al. (1976) have explained how the type | error fisrghocedure is at most
a. Let X be a random variable with distribution depending on a patame= 2 such that
'H, the set of null hypotheses defined above, is a set of subis@tskor eacht; € H, let
¢;(X) be alevek test, that is, Proj¢,(X) = 1} < aforall § € H; whereg;(X) is an
indicator variable for rejecting/ ;. As detailed in the steps for the closure principle above,
any null hypothesig?; is rejected by means af;(X) if and only if all hypothese$/ that
are included in/f; (H C H;) and belonging té{ (H € H) have been tested and rejected.
A type | error is committed if and only if the intersection diftaue hypothesesi . say, is
tested and rejected by meansgof X ); in other words, if we denote by the event that

any trueH is rejected, and by the event thap, (X) = 1, then

Pro AN B) = Pro( B)Pro( A|B) < a,

sinceg. is a levela test hence Prdi3) < aand ProA|B) < 1. However, sincelN B =
A, ProfA N B) = Prok(A) and hence Prdbl) < a. The probability of making no type |

error with this procedure is thus at ledast «.
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4.4 Analysing data from a phase lI/lll clinical trial

Bauer and Kieser (1999), Hommel (2001) and Bretz et al. (2p0fpose using the combi-
nation tests and the CP for the analysis of phase Il/11l chhirials data. In their proposal,

a null hypothesid?; (j = 1, ..., k) is rejected at the end of stage 2 if all the combined p-
values for all the hypothesds;, J C {1, ..., k} with j € J are less than the pre-specified
level of testing. For example, suppose there are three iexeetal treatments at stage 1 and
let p; ; denote the p-value for testing hypothesig, J C {1,2,3} at stages (s = 1,2).

Then hypothesié, is rejected at the end of stage 2 at lewef

maX{C(le,ng), C(p1712,p2712), C(p1,137]92,13), C(p1,123,p2,123)} <a.

Figure 4.2 gives the flow chart of this example. Panel (a)gthe stage 1 p-values cor-
responding to the hypotheses given in Figure 4.1. The pegdior hypotheses contained
in H, are circled. On the other hand, panel (b) gives stage 2 pesalarresponding to the
hypotheses given in Figure 4.1 and once again, p-valuesyfustheses contained i
are circled. Panel (c) gives the combined p-values. The awdlp-values for hypotheses
contained inH; are circled and they must all be rejected for hypothékito be rejected
after stage 2.

To illustrate what happens if some treatments are droppedstbge 1, suppose for
example that treatment 3 is dropped after stage 1, so thatamde available for treatment
3 at stage 2. The stage 2 p-values for this scenario are givEBigure 4.3. The tests for
intersection hypothesd3,;, Ho3 and Hi,3 respectively reduce to the tests for hypotheses
H,, Hy andHy5 SO thatps 15 = pa 1, paos = P22 @ndps 1a3 = pa 0. If treatment 3 is tested
for efficacy after stage Zx 3 may be fixed to 1. This follows the proposal by Posch et al.
(2005) where stage 2 p-values for hypotheses that do notdtage 2 data are fixed to 1,
which lead to conservative final tests for the hypothesesdrctosure set.

To show tests folff;5, Haz and Hyo3 respectively usings 1, p22 andp, 15 at stage
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@ ()

(c) (C(p1,1237 p2,123)>

y ! |
@(p1,12,p2,12D @(p1,13;p2,13) C(p1,23, P2,23)

| > =]

C(pm, ]92,1) C(p1,2, ]92,2) C(p1,37 ]92,3)

Figure 4.2: P-values required to test 3 elementary hypetheBanels (a) and (b) respec-
tively give stage 1 and stage 2 p-values corresponding tothgges given in Figure 4.1.
Panel (c) gives the combined p-values for these hypotheses.

2 are levelx tests when dose 3 is not tested in stage 2, we use a general#sgose
we wish to test a hypothesi$; using the p-valug, ; for hypothesidi; with H; C H
(thatisJ’ C J). SinceHd; C H,, underH;, H, is also true so that, ;, ~ U[0, 1]. Hence

testingH ; usingp, ; provides a leved test.

For the test described above to control the type | error sttesgly, the p-values
p1,; andp, ; should satisfy thep clud” condition given by expression (4.9). In this thesis,
we will consider p-valueg; ; andp, ; obtained using separate data, that is, p-value
(s = 1,2) will be obtained using stagedata only. For now, we also assume appropriate
level « tests are used so that for all hypotheggs Proby, (ps; < o) < a (s = 1,2).
Hence, when no treatments are dropped, the p-valuesandp. ; are independent so that

under H,, the distribution ofp, ; andp, ; satisfy the » clud” condition. If some fixed
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DP2,123 = P2,12

' ! !

P212 D213 = P21 D223 = P22
P21 D22

Figure 4.3: Stage 2 p-values when treatment 3 is dropped

treatments are dropped after stage 1, as demonstrated Ahagdeested at stage 2 using
the p-valuep, ; for hypothesis ;» with H; C H (thatisJ’ C J). We need to show
that Proly, (p2 » < a|p1;) < «. From above a test fol ; usingp, ;- is ana test, and
sincep; ; andp, ;» are independent for a fixeH ;/, then Proby, (p2 ; < «a|p1,y) < a S0
that the p-valueg, ; andp, ; satisfy the b clud” condition. If the dropped treatments
are tested for efficacy after stage 2, for some hypoth&ses/’ = (. If following Posch
et al. (2005), the p-values, ; for these hypotheses are set to 1, thaps: = 1 for
all J/ = 0, the p-values for hypotheses with = () satisfy the ) clud” condition since

Proby, (p2.; < a | p1.s) = 0 < «, so that the type | error rate is maintained.

In the next chapter, we develop a new procedure to selecteéharients to test in
stage 2 and the selection procedure depends on stage lgswalu(J C {1,...,k}). We
will set a rule that the intersection hypothesis will be tested using a test for the smallest
intersection hypothesiH ; (H; C H ;) that can be constructed from all the experimental
treatments that are selected for testing in stage 2. Forgheamonly experimental treat-
ment;j (j = 1,2, 3) is tested in stage 2, hypothedis,; is tested using, ; and if we test
treatments andj (i,j € {1,2,3}) at stage 2H,,3 will be tested using., ;; so thatH
used in test fof{; at stage 2 is random. We need to show that Rrob, ,» < a|p1.;) < a,
whereJ’" is random. Undel, all hypothesedi; with H; C H (thatisJ’ C J) are

also true. Hence a test féf,; usingp. ;- using hypothesi#/ ;; defined using the above rule
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is a levela test so that Prab, (p2 ; < a|p1,7) < a. Hencep, ; andp, ; are “p clud”.

In the above discussion, while showing the p-values satisfy“p clud” condi-
tion, we have assumed appropriate levdkests are used for all the hypothedés (J C
{1,...,k}). We will illustrate the dose selection procedure devetbjpethe next chapter
using chi-squared tests for the pairwise hypothd$e§ = 1, ..., k). Asymptotically, the
chi-square test provides a test with the type | error rateecto the desired nominal level
a. We will assume that sufficiently large samples will be aafalié at stage 1 for each treat-
ment arm so that the type | error rate will be close to the nainialue for hypotheses
H; (j =1,...k). Atstage 2, generally large samples are available so thatquare tests
for hypothesed?; (j = 1, ..., k) control type | error rates close to nominal valueWith
treatment selection, at stage 2, the number of experimgatdaments to be tested will vary
so that the sample available to test hypothdde¢; = 1, ..., k) will vary with more data
available if few treatments are tested in stage 2. Howeiraredarge samples are available
at stage 2, the chi-square test will still be adequate torobtitie type | error rates when
number of treatments to test in stage 2 vary. In the next papag we describe how the
p-values for the hypothesd$; with |J| > 2 may be obtained. The tests described are
conservative. Hence, all the p-values used to analyse #mless phase Il/1ll clinical trial
incorporating the treatment selection will be asymptdiycap clud” (Zuber et al., 2006).

Bauer and Kieser (1999), Hommel (2001) and Bretz et al. (Rdo6not give de-
tails of how the p-values testing the hypothesegirshould be calculated but Westfall
and Wolfinger (2000) provide a simplified discussion of somethmds. The pairwise
hypotheses may be tested using basic tests such as theuelneddgest for binary data
or the t-test for continuous data. There are several testhéintersection hypotheses
Hy, J C {1,...,k} with |J| > 2 but some are specific to certain forms. For example,
Hotelling’s T? test described by Johnson and Wichern (2002) is valid foticoaus data.
Flexible tests that can be used for many forms of responsemél, Poisson, etc) are Bon-

ferroni, Sidak and Simes tests. Suppose we wish to test a hypothesiguafity of the
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control treatment withn (1 < m < k) experimental treatments. The Bonferroni ad-
justed p-value is given byin{1, (m x minp)}, while Sidak adjusted p-value is given by
(1 —[1 —minp]™), where minp is the minimum p-value of the individual compuirtests.
The Simes adjusted p-value is given by filtp;)}, 7 = 1,...,m wherep(; denote the
ordered p-values.

When several treatments are compared to a control treatmary the same control
group, it would be desired rather than assume the pairwsse &ee independent, to utilize
correlation in the comparisons because of the pairwise aenisgns versus the same control
group. Dunnett (1955) proposed a multiple comparison mhoeethat makes use of the
correlation associated with comparing several treatmenthe same control group for
continuous normal data. This test can be used for all thesettion hypotheses in the
closure set. Let/; (j = 0,1,..., k) be the standardized response from treatmemntth
j = 0 corresponding to the control treatment. For hypothésjs(J C {1,...,k}), let
Z7* = max;ey Z; and define

Fypax(2) = /_OO [@(V22 + 2] ¢ (20)d,

where as beforé(.) and®(.) respectively denote the density and the distribution fionct
of a standard normal distribution. For obsen&ff* = z, the p-value for hypothesid ;
is given byl — Fzmax(2). The test can be used for other outcomes such as binary data by
applying the central limit theorem.

To illustrate hypotheses testing in a phase Il/1ll clinitél with an example, we
assume a new drug is tested at three doses; dose 1, dose Zar®i ddie primary hypothe-
ses of interest arf;, j = 1,2, 3, whereH, is the null hypothesis comparing dos&o the
control treatment. Suppose that using the stage 1 dataffesdata used to demonstrate CP
in Westfall and Wolfinger (2000}, ; = 0.0982, p; » = 0.0262 andp; 3 = 0.0067. Using
the Bonferroni adjusted p-values for the intersection hiypses giveg; 125 = min{1, 3 x

min{p; 1,p1,2,p13}} = 0.0201, p112 = min{l,2 x min{p;1,p12}} = 0.0524, py 15 =
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min{1,2 x min{p; 1,p13}} = 0.0134 andp,; o3 = min{1,2 x min{p; 2, p13}} = 0.0134.
Quite naively, suppose the stage 2 data result in similaalpes, that isps; = p11 =
0.0982, pas = p12 = 0.0262 andp, 3 = p1 3 = 0.0067 so thatp, 123 = p1123 = 0.0201,
D212 = P12 = 0.0524, pa 13 = p113 = 0.0134 andps 93 = p1 23 = 0.0134.

Let us assume that the total sample sizes at stage 1 and stageespectively 120
and 400. Then we could choose the weights proportional tesdah#ple sizes in each treat-

ment arm so that the stage 1 weight= /30/130 and stage 2 weight, = /100/130.
Using the inverse normal method,

C(p1123,D2123) = 1— ®{w, ® (1 — P1123) + wy® (1 — P2.123) }

= 1-9 { ﬂ<1>—1(1 —0.0201) + L<1>-1(1 — 0.0201)}

—_
(@]

130 30

—_

= 0.0027.

Similarly, C'(p1,12,p212) = 0.0138, C(p1,13,p2,13) = 0.0013, C(p1,23, p2,23) = 0.0013,
C(p11,p21) = 0.0397, C(p12,p22) = 0.0042 andC(py 3, p23) = 0.0004 so that for each
dosej (j = 1,2,3),

maX{C'(pl,J,ng)} < 0.05 for J C {1,2,3} with 7€ J.

Hence at the end of phase II/lll clinical trial, all doses eoacluded to be more effective

than the control treatment.

4.5 Treatment selection in phase II/lll clinical trials

Methods that can be used (or adapted) to select the mostgryreatment(s) after stage
1 for testing in stage 2 have been developed by Thall et a8 %Schaid et al. (1990),
Stallard and Todd (2003), Schmidli et al. (2007), and Zulieale(2006). Thall et al.

(1988) consider binary outcomes and select the most progiiseatment if the global null
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hypothesis is not accepted at stage 1. Evidence from stagd &tage 2 is combined in
a test similar to the combination test given by equation)(4Schaid et al. (1990) con-
sider survival outcomes and their method allows for stogaifter stage 1 results either
for futility or overwhelming evidence. The method allowsciantinue with more than one
experimental treatment and multiple testing is adjusteduing the Bonferroni correc-
tion. The methods by Thall et al. (1988) and Schaid et al. )1 2%e respectively specific
to binary and survival outcomes because of the statistied.uStallard and Todd (2003)
method generalizes these two methods because it assumgs3iatistics introduced in
Section 4.2.1 which can be derived for many outcomes. The prosising treatment is
selected for further testing. These authors considemndistieatments that may be different
doses of the same drug but have not considered the dosaisesmtationship. The method
we develop in the next chapter is for binary outcomes and wesider a phase Il/Ill trial
where in stage 1 several doses of the same drug are comparedmdrol treatment so that
we model the dose-response relationship while making tbeelof the dose(s) to test in
stage 2.

Like Schmidli et al. (2007) and Zuber et al. (2006), we wikase the analysis will
be conducted as described in Section 4.4. Given the stagtalfdaeach candidate set
of the treatments (or subgroups) to be tested in stage 2, i8klanal. (2007) and Zuber
et al. (2006) obtain the expression for the probability bstdge 2 data for which the null
hypothesis will be rejected after stage 2. They use the Baiyésols so that the expected
value of this expression, which is referred to as the pradiqiower, is obtained. The
treatment (or subgroup) that results in highest prediciy@oposed for testing in stage 2.
Schmidli et al. (2007) and Zuber et al. (2006) consider sahoutcomes. In our proposed
method, we use the same ideas but for binary outcomes. Iti@addiecause we consider
experimental treatments that are different dose levelt©\@fsame drug, we incorporate
dose-response relationship. Also, we explicitly includéety data in the dose selection

procedure.



Chapter 5

Dose selection in phase I/l trials

In Chapter 4, we reviewed methods of how phase I/l clihtt@a may be analysed. We
also briefly described procedures that may be used to selpetimental dose(s) to test
at stage 2 after the stage 1 results. In this chapter, we expauwew procedure we have
proposed (Kimani et al., 2009) for selecting the doses tbitestage 2 based on stage 1
data and prior knowledge. The selection procedure is @éiffieirom the methods described
in Section 4.5 in at least one of the following charactesgsstf our new procedure; the out-
comes of interest are binary, more than one experimental @y be selected to continue
to stage 2, dose-response relationships are incorporatkd dose selection procedure and
safety data is considered explicitly to make the choice efdbses to test in stage 2. This
selection procedure assumes the efficacy data will be aatbs described in Section 4.4,
where the closure principle is used to control the type | FWaSBociated with comparing
the control treatment to several experimental doses andaimbination tests are used to

combine evidence from stage 1 and stage 2.

In the next section, we explicitly describe the setting @érast while introducing
the notation that we will use to develop the dose selectiocgrure. In Section 5.2, we

develop expressions for the probability that at least ond@fcandidate set of doses that

79
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may continue to stage 2 is concluded to be effective and ¥séerefer to this expression
as the (penalized) conditional power. In Section 5.3, wepse a prior distribution for
the parameters in the penalized conditional power whiclpdated by the stage 2 data to
obtain the posterior distribution. We define the expectddevaf the penalized conditional
power using the posterior distribution as the (penalizediligtive power. We propose to
test at stage 2 the set of doses that has the highest prediciner. We summarise the dose
selection procedure developed in this chapter in Sectién IB. Section 5.5, we compare
the new dose selection procedure to the some of the selgoticedures in literature. The

chapter ends by remarks describing how various assocsadimodeled in Section 5.6.

5.1 Setting of interest

Consider an experiment with, (> 1) experimental doses in stage 1 of which a subset
remains for testing in stage 2. Suppose the sample sizesfpe 4tis fixed to be; (k; + 1),
so thatn; patients are randomized to receive each experimental dolsg @are randomized
to receive the control. The data from stage 1 can be sumnddrizthe number of observed
successesy;;, and the number of observed toxicities;, at dosej for j = 0, ..., k,
with 5 = 0 corresponding to the control treatment. At the onset of tmesp 11/111 trial,
the interest is to determine whether there is a safe dose@thert; experimental doses
which is more effective than the control treatment. Thusrtbk hypotheses of interest
areH, : 6y = 61, ..., Hg, : 0y = 0, whered;, j € {0,1,...,k} is a measure of the
effectiveness of treatmepit Based on the efficacy daxa = {x19, 11, ..., T1x, } @and with
the intention of using the closure principle to control tWER, a set of p-valueg, ; for
Hy;, J CA{1,..., ki } can be constructed.

Suppose that the total sample size for stage 2 is fixed. Theébauwof patients
randomized to each dose;, then depends on the number of doses that remain in the

trial. Let Ky C {1,...,k1} be the set of experimental doses that remain in the trial for



5.2. CONDITIONAL POWER 81

testing in stage 2 withk, = |KCy3]. The selection procedure we propose in this chapter
allows considering any of thie doses in stage 1 to continue to stage 2 so that therz‘are
possible sets of doses that we could choose. To reduce tbkedsetes to be considered, the
search may be restricted to sets of adjacent doses. Alsoaatige at the phase Il stage,
the number of experimental doses is fewer so that the pess#blof doses to be considered
could be lower. Letry; andty;, j € {0} U Ky with j = 0 corresponding to the control
treatment, respectively denote the number of successem=nidies on dose in stage 2.

At the end of stage 2, the efficacy data= ({xs;}), j € {0} UK, can be used to construct

a set of p-valuep, ; corresponding to the closure set of p-valpeg constructed using the
stage 1 data.

By utilizing the method described in Section 4.4, the twe sétp-values from the
two stages can be used to test whether there is an effectseeatnong thé, doses that
proceed to the second stage. Given stage 1 data we want tondetehe setC, which
will be most likely to lead us to finding at least one effectared safe dose at the end of
stage 2 using the predictive power. In the next sectionjgstage 1 data, for each potential
set of dosed’, to test in stage 2, we develop an expression for the probahtlieast one
of the doses iriC, will be concluded effective and safe after stage 2 (condaigower).
This probability is the sum of probabilities of differenage 2 outcomes for which at least
one dose will be concluded effective and safe. The predigtower, which is the expected

value of the conditional power, is given in Section 5.3.

5.2 Conditional power

As described above, in this section, assuming that stagéa?hdae a distribution which
depends on a fixed parameter vector, we develop an exprdssitire probability of con-
cluding at least one of thig, doses in the potential set of dogésto be tested in stage 2 is

effective given the results of stage 1. The expression igindtl by summing probabilities
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of outcomes for which we will find at least one effective dofierastage 2 given stage 1
data. To incorporate the safety measure, we multiply thebgpility by an indicator vari-
able that doses that are effective are safe. We will refdnitogrobability as the penalized
(combined) conditional power. Since the conditional poiwersummation of probabilities
of stage 2 data, we need to determine the distribution okes?agata. The distribution of
stage 2 data is given in the next subsection. In Section 5:&2yive the probability of
stage 2 data for which at least one dose will be concludedtefée This probability is

penalized for toxicity in Section 5.2.4.

5.2.1 Distribution of second stage data

Let f(x,ts;0) denote the distribution of stage 2 data wheiie the vector of parameters
giving the dose-response curves for efficacy and toxicitygive the form off, suppose
a study patient is administered a dose lelelThe outcome for efficacy will be either a
successful treatment or a treatment failure and the prbtyabi the successful treatment
will be denoted by (d). The toxicity outcome will be categorized as either toxiaon-
toxic and the probability of a toxic outcome will be denotedly-(d). We propose two
logistic models for the outcomes;

(d) = explag + Oglog d)
PE 1+ explag + frlog d)

(5.1)

and

(d) — exP(CYT + ﬁT 1Og d)
pr 1+ explar + frlog d)

(5.2)

so that stage 2 data,, t;) would depend on the probability vectér= (ag, Bg, ar, Or)’.
Although we propose a logit link, other link functions mayumed. For the logistic dose-
response models (5.1) and (5.2), we have taken the dose loglseale as in common in

drug development but a different linear predictor may aksased. Assuming the outcomes
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are independent, then the probability:gf successes artg, toxicities in the control group
andx,; successes ang; toxicities in the experimental doge j € K is

f(X2,t2;0) = fB(220; M2, PRy ) fB(t20; N2, P13y ) H [B(x25: 12, pE;) fB(t2); N2, P1;),

jEK2

wherefp(z25; 12, pr,) and f5(ty;; na, pr;), j € {0} UK, are binomial mass functions with
parameter vectorsi,, pg;) and @2, pr;) respectively. The parameters, andpr;, j € Ky
are respectively points on the dose-response curves (dl{5a2) corresponding to dose
levelj. If the control treatment is a dose level of the experimethtiad), p z, andpy, are also
points on the dose response curves (5.1) and (5.2). Otheerfgisexample, an estimate of

PE, IS obtained by maximizing the likelihood

n
l(pEo\wa, nl) = <.T110>p%100<1 —pE0>n1—m10.

5.2.2 Expressions for conditional power

After obtaining the distribution of stage 2 data, the negpsh obtaining the conditional
power involves determining stage 2 data for which the fingddtlgesis will be significant
given the results of stage 1. Given stage 1 datethe p-valuep, ; corresponding to an
intersection hypothesi#&l; in the closure set{ can be considered fixed. The final hy-
pothesis test for the intersection hypotheRis will be significant at levek if and only

if C'(p1,s,p2,7) < a. The inequality can be rearranged to determine the maximaloev
of p, ; such that the null hypothesis; is rejected at the end of stage 2. For example if
the combination test of choice is the inverse normal contlinajiven by equation (4.3),
rearranging the inequality, the final hypothesis test walsignificant if and only if

P11 —a)—w® (1 —p1y)
Wao ’

(5.3)

pz,Jﬁl—q){

Let! < |J| be the number of experimental doses in hypoth&sisat stage 2. Then using

the Bonferroni adjusted p-valu@y ; = min(1,! x min;e;{p2,}), Wherep, ; is the p-
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value obtained from testing the pairwise null hypothegisat the second stage. Since
P2,y = min(1,! x min;e {ps;}), inequality (5.3) holds if and only if

P11 —a) —w® (1 —puy)
Wa

; <1
er]rlel}l{p27J}_1 <I>{

since, as the right hand side (RHS) is less than 1, we so caawet1< RHS. Dividing
both sides of the above inequality bythen hypothesisi; is rejected after stage 2 if and

only if

min{pa ;) < (1 _ & {@—1(1 —o) w1 (1 —py) }) /z. (5.4)

w2
Note that if inequality (5.4) holds, then it means that fomsopairwise hypothesi#/;
(j € J), pa; is less than the RHS of inequality (5.4). Thus hypothésjswill be rejected
at the end stage 2 if and only if

1 ) — e B1(1 —
paj < (1—(1){(1) (1=a)—w® (1 pl’J)}) /l forsome jeJ  (5.5)

Wa
The RHS of inequality (5.5) could be viewed as the “level stiteg” for hypothesidi; at
stage 2.

For each possible number of successes in the control traeafmseg), the minimum
number of successes required in either ofitHeses such that inequality (5.5) holds can be
obtained. We will denote this minimum number of successeB by(p; ;) where the nota-
tion reflects dependency an, and the stage 1 p-valyg ; for the intersection hypothesis
H ;. The next subsection focusses on obtainithg, (p; ;). HypothesisH ; will be rejected
for the set of stage 2 data such thatry; > B,,,(p1,s) for somej € J. To conclude that
an experimental dosgis more effective than the control treatment, we need tordete
the set of stage 2 data for which all hypothese#/; with j € J are all rejected. We de-
note the set ok, for which this is true byR(p, ;), j € K2. The probability of concluding
dosej is more effective than the control after stage 2 analysidiained by summing the

probabilities of all outcomes iR (p; ;).
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The form of R(p; ;) depends on the number of doses that continue to the second
stage. For example, suppdse= 4 with a single treatment continuing, s& = {1}. To
conclude that dose 1 is effective all the hypotheBes,, His3, Hio4, H134, H12, Hi3, H14
andH; need to be rejected. Since only dose 1 proceeds to the setemyad the intersection
hypotheses$i1234, H123, Hi24, H134, H12, H13 and Hy4 Simplify to the pairwise hypothesis
H, because no data are available for the other doses at stagetl2ehiests are carried
out at different levels determined by inequality (5.5). Th@mimum number of successes
at dose 1,;) for a given number of successes in the control treatmepj (equired to
reject all hypotheseH ; for J C {1,2,3,4} with 1 € J could be obtained and is given by
B,,,(max{p; s}). We takemax{p; ;} since the RHS of inequality (5.5) decreases when
p1,s increases. Dose 1 would then be concluded to be more effetttan the control

treatment at the end of stage 2 if

Ty > By, (max{p; s})

for all J with 1 € J. The probability of concluding dose 1 is more effective tttancontrol

treatment at the end of stage 2 is then given by

> flxe0) =Y {fB(ﬁzo;nmpEo) > fB($21;n2,pE1)}, (5.6)

R(p1,1) 220=0 z21=B
where (125312, pg,) (j = 0,1) is the probability mass function of the binomial random
variable X,; with parameter vectan,, pg, ), B = Ba,,(max{p; s}) andR(p;,1) denotes
the set ofx, for which dose 1 is rejected after stage 2.

Suppose from an initial four experimental doses at stagede d and dose 2 pro-
ceed to stage 2, that ig; = 4 and K, = {1,2}. In order to make inference on the
effectiveness of dose 1 using the closure principle, thehwidothesed1134, Hi23, Hi24,
His4, Hyo, Hi3, Hi, and H, are tested. On the other hand, the null hypothésgs,, H23,
Hyo4, Hosa, Hi9, Hos, Hyy and H, are tested in order to make inference on dose 2. Since

no data are available for doses 3 and 4, tests for hypothégesH, s, H1, and H; which
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are included inf; but not in H, are performed using only the test fak but at different
levels. The minimunx,; required to reject all these hypotheses which we denotg, kg
obtained by evaluating,,, (max{p; ;}) for J C {1,3,4} with 1 € J. Similarly, only dose
2 data are available for hypothedés;,, H.3, Ho, and H, which are included i, but not
in H;. The minimumz,, required to reject all these hypotheses which we denotB;lig
obtained by evaluating,,,, (max{p, ;}) for J C {2,3,4} with 2 € J. On the other hand,
only dose 1 and dose 2 data are available at stage 2 for hygestHe,s,, H123, Hi24 and
Hy> and hence their test is performed using only the testffgr The minimum number of
successes required in either dose 1 or 2 to reject all thgsattgses which we denote by
B, is obtained by evaluating,,, (max{p; s }) for J C {1,2,3,4} with {1,2} € J.
Assuming dose 1 and dose 2 are interchangeable, there aeepibssible configu-

rations forB;, B, and B;; namely;
(’L) B < By < Bjs (’Ll) By < B; < By and (’LZ’L) B; < By < Bs.

The expression for conditional power for each of these stehas different. From left to

right, Figure 5.1 shows configurations (i) to (iii) for a giveealizationzyy. The partitions

marked by 1, 2 and 12 respectively represent the realizafitihe number of successes in
the experimental doses for which only dose 1, only dose 2 @ndliich both dose 1 and 2
are concluded to be effective for a given number of succesghe control treatment. The
probability of concluding at least one of the experimentades is effective is obtained by
summing all the probabilities of all outcomes in the pastis marked by 1, 2 and 12. For
example, for configuration (i), the probability of concladidose 1 or dose 2 is effective

after stage 2 is
D F0ai0) + Y f(xas0) + > f(xa6), (5.7)
R(p1,1) R(p1,2) R(p1,12)

whereR (p11), R(p12) andR(p1,12) respectively denote the set of stage 2 data given the
stage 1 data for which after stage 2 only dose 1 would be eféeainly dose 2 would be
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N9 Ng e
B, 2 12012 p 2 |2)12 p| 2 |2|12
T2 B2 12 Bl2 1 ‘B2 12
1 1 1
0 By Bia ng By By no By B; no
To1 To1 T21

Figure 5.1: Configuration of the minimum number of succes§he x-axes are the number
of successes in dose #,() and y-axes the number of successes in dosg.d. (

effective and when both dose 1 and 2 would be effective so that

na n2 B,
S fxes0) = fB(IQ();nQapEo){ > fB(x21§n25pE1>fB(x22;n2apE2)}7

R(p1,1) z20=0 r21=DB12 22=0

no B no
> flxe0) = ) fB(IQO;m,pEo){ > fB(le;nz,PEl)fB(xzz);nzapEz)}

R(p1,2) z20=0 221=0 x22=DB12
and
nz mn2 T2
> fxe0) = ZfB(@o;nmpEo){ > fB(I21;n2,pE1)fB($22;nzapEz)}
R(p1,12) z20=0 T21=B12 x22=DB>

ng B2 ng
+ 0> fB(I2o;n2,pEo){ > fB(I21;n2,pE1)fB($22;nz,pEz)},

z20=0 T21=B1 22=B12

where fg(12;; 12, pg,), j = 0,1,2, is the probability mass function of the binomial ran-
dom variableX,; with parameters,, andpEj.

Expressions (5.6) and (5.7) are respectively the combipaditonal power when
Ky = {1} andKCy = {1,2}. The expressions also give the conditional power for taking
Ko = {1} or £y = {1, 2} for any value oft; > 2 and similar expressions can be obtained
for any K, = {i} andKCy = {i,j} for anyi,j € {1,..., k1 }. The Bonferroni adjusted p-
values have been used to obtain the expressions for camaliiower. TheSidak adjusted

p-values similarly lead to simple expressions for condaiopower. For Simes adjusted
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p-values, it is not possible to obtain a single inequalitghsas the one resulting from
Bonferroni adjusted p-values given by inequality (5.5)domposite hypotheses. However,
itis still possible to obtain expressions for conditionayer using this test but this becomes
less straightforward as the value/gfincreases.

We have given the expressions for when up to two doses praoocstalye 2 but using
the same principles, expressions can be obtainef,for 2. In practice, it would be rare

to proceed to stage 2 with many experimental doses.

5.2.3 Obtaining the minimum number of successes

In this sub-section, we illustrate how to obtaih,, (p; ;), the minimum number of suc-
cesses required in either of thexperimental doses i such that the null hypothesig;

is rejected at the end of stage 2. The left hand side of inggy&l5) is the p-value from
testing the null hypothesiH;, j € J at stage 2. If a chi-squared test is used to test the null
hypothesisH; with j € J, the critical chi-squared valug? corresponding to the level of
the test (RHS of inequality (5.5)) can be determined. ThéhygothesisH; is rejected if
and only if the observed chi-square value

2”2@20 - x2j)2 > X?
(z90 + @25){2n9 — (z20 + 725)}

Rearranging the expression, the null hypothesis is rejdoresuperiority if and only if

U+V

> - __ B
Toj = <2n2 +X§) 20(p1,J>

where

U= —{Xi(l’go — ’flg) — 2”23720} and V = \/HQXE{TZQXE -+ 81’20(712 — .I'Qo)}.

Although we focus here on the® test, the value of3,,,(p; ;) can be evaluated for any

other test statistic that can be used for making inferendarary data.
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5.2.4 Penalizing for toxicity

Toxicity has not been incorporated in the conditional poexgressions (5.6) and (5.7).
Suppose a dose will be rejected for toxicity if the prob&pibf toxicity exceeds some
predetermined level. Then the probability that a dose is demonstrated to be lad¢heshd
effective is the product of the conditional power given bpmession (5.6) and the indicator
I(pr, < 7). If more than one experimental dose proceeds to the secaged 8te different
disjoint events for which we conclude at least one of the erpental doses in stage 2 is
effective are multiplied by different indicators. For exalif 1C, = {1, 2}, there are three
disjoint events for which we conclude there is an effectivead These are; only dose 1 is
effective, only dose 2 effective and both dose 1 and 2 aretafée The respective indicators

with which the probability of these events are multiplied &tpr, < ~), I(pr, < ) and

I(pr, <7v,pm < 7).

5.3 Predictive power

The conditional power expressions obtained in Section Ss2irae a fixed value of the
parameter vectdt. Suppose that is given some prior distribution with density(#). The
posterior distribution of) given the data observed at the end of the first stage is given by
Bayes’ theorem to be equal to

(0%, t1,m1)m0(0)
0%, t =
m(0[X1, 1, m1) fl(e\xl,tl,m)ﬁow)d@’

wherel(0]xy,t;, nq) is the likelihood function of given the observed data,, t;, n;) from
thek; doses of the experimental treatment observed at the eneé fifshstage. Assuming

the number of successes and toxicities at each dose levieldagendent,

k1
n T1j ni—zy; [T J ni1—ty;
1(0]x1,t,m1) = [ ] <x 1,)pE§¥(1 —pE,)" Y (tll)p%;(l —pr,)" T,

j=1 13 J
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wherepr; andpr, are respectively the probabilities of success and toxatityosej. The
predictive power is then obtained by evaluating the pastenean of the conditional power,

that is, the predictive power is given by

A(CP@)W(9|X1,t1,n1)d9, (58)

where CR denotes the conditional power. For example&Cif = {1,2}, the penalized

predictive power is given by

/ U(pr, <7v) - Av+1(pr, <) - A+ 1(pry < 7,01 < 7) - A w(0]%q, 11, m1)d0,
o

where

Aj= Y f(x:0), Je{1,2,12}
R(p1,7)

p1,J

andR(p1.1), R(p1,2) andR(pi 12) respectively denote the set of stage 2 data given the stage
1 data for which after stage 2 only dose 1 would be effectinl; dose 2 would be effective
and when both dose 1 and 2 would be effective as describeaabov

The penalized predictive power depends on the choice ofdkesdselected to con-
tinue to stage 2 as these affect the number of patients perratnthe rejection region,
R(p1), which probabilitiegp s, enter the density (x,; §) and which probabilitiegr, enter
the penalty. We wish to make a choice of doses to continue ®@dsis ofx; andt; to

make the penalized predictive power as large as possible.

5.3.1 Distribution of the unknown parameters

We propose obtaining the prior beliefs on the dose-respaurses for efficacy and toxicity
separately using the technique of Bedrick et al. (1996) asdescribed in Section 2.2.2.
This requires eliciting beta prior distributions at two ddevelsd_; andd, for each dose-

response curve since each dose-response curve is defineo Ipatameters. We assume
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the beta prior distributions at each dose level can be eticis was described in Section
2.2.1 using the contribution by Thall and Simon (1994) anadlgey and Phillips (1976).
Suppose for the probability of success, = pr(d;) at dosej (j = —1,0), the elicited
prior distribution is Betér,;, y1;). Then assuming that the probabilities of success are re-
lated to the dose levels according to the logistic model) @ntl using the prior distribution
given by equation (2.6), the prior distribution fatz, Gg)

d_,
lo
g(dO)

0 le

OéE; ﬂE H

— pE:)le

xl]? yl])

(5.9)

whereB is the beta function and

eXIXOéE -+ BE 10g dj)
1+ explag + O log d;)’

pEj = = —1,0

Similarly suppose a beta prior distribution Beta ; t1;, u1;) is elicited for the probability
of toxicity, pr, = pr(d;) atdosej (j = —1, 0), then assuming logistic dose-response (5.2)
for the probabilities of toxicity, the prior distributiorf dar, 5r)

d_y
log (d—o) y

t1;

(1 - j)ulj
mo(ar, Br) = H pTB(tl- ZZ)

(5.10)

j=-1

whereB is the beta function and

EXFXO[T —+ 6T 10g dj)
1 + explar + fr log d;)’

pry = J=-10.

As in Section 5.1, letr;; denote the number of successfully treated patients and
y1; = n1 — x1; the number of patients that are not treated successfulliagesl after
treatment with doseg (j = 1, ..., k1). After observation of the stage 1 data, using equation

(2.7), the updated distribution (posterior distributioh)o s, Gr) is

(g, BelX1,n1) o H ]9 1—pE ), (5.11)

j=—1
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where

- eXIZXOéE + 6E log dj)
1+ EXFXOéE + 6E log dj)’

PE; j=—1,0,1,...,k‘1.

Similarly lett,; denote the number of patients that experience toxicitye@fesl and:,; =
ni —t1; the number of patients that do not experience toxicity, therposterior distribution

of
k1
m(ar, Brlt,ni) o ] p%.j(l - pr;)", (5.12)
j=-1

where

o exp(aT + 61“ log dj)
1+ eXIXOéT + BT log dj)’

P, = —1,0,1,...,]{51.

If the control treatment is a lower dose of the same drug asxtperimental treat-
ments, data from the control group are used in updating tlee gistributions of (z, 5r)
and @, Br). If itis a different drug, a beta prior distribution Béta, ; ao, by) for the prob-
ability of successful treatment at control treatment whilkeonjugate for the likelihood

function

n
l<pE0|x107n1) == <x110)p%100(1 _ pEO)TL1—m10

is elicited. The parametetg andb, are elicited as explained in Section 2.2.1. The resulting

posterior has a beta distribution Beig, ; ag + 10, bo + n1 — x10)-

5.4 Summarizing the dose selection procedure

In Chapter 4, we introduced seamless phase Il/1ll clinicald and described the challenges
in these trials. One of the challenges of seamless phaBelirdical trials is how to analyse
these trials without inflating type | error rates. In Chaptemwe described in detail an

analysis method given in Bauer and Kieser (1999), Hommel12and Bretz et al. (2006).
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When several doses are to be tested with the possibilityapfing some doses after stage
1, this analysis allows selection of any combination of ddsecontinue to stage 2 with a
final analysis that strongly controls the FWER.

The second challenge of seamless phase IlI/lll is how besléxtsthe doses that
are tested in stage 2. In the previous sections of this chaptehave proposed a procedure
for selecting the doses to test in stage 2 of a seamless pidseihical trials assuming
the analysis described in Bauer and Kieser (1999), Homn@@1(Pand Bretz et al. (2006).
The doses are selected by calculating the predictive poixesaah set of doses that may be
tested in stage 2 using the knowledge of this analysis amye stavhile also incorporating
the prior knowledge through prior distributions, and preipg to test in stage 2 the set of
doses with the highest predictive power.

In more detail, before the seamless phase II/Ill clinidal tprior distributions given
by equations (5.9) and (5.10) for the parameters that ddfieeldse-response curves for
the probability efficacy and for the probability of toxiciaye elicited. After stage 1, stage
1 efficacy and toxicity data are used to update prior distigms of the parameters for the
efficacy and toxicity dose-response curves using equafmid) and (5.12). In addition
to using the stage | data to update prior distribution, stagéicacy data are used to ob-
tain all intersection hypotheses p-valyes(J C {1, ..., k1}), wherek; is the number of
experimental doses in stage 1.

The stage 1 p-values are required to obtain expression®fwltional power, the
conditional probability of concluding at least one of th@esimental doses that is tested
in stage 2 is efficacious and safe given stage 1 data. Thessxpns for conditional power
are obtained for each potential set of doses that may baltesttage 2. For example, if
the number of experimental doses at stage 1 is 3, and can mrdggx with a single dose
or consecutive pairs of doses, then 5 expressions for gonditpower are obtained. The
5 expressions for conditional power correspond to the siegperimental doses 1, 2 and

3, and the consecutive pairs doses 1 and 2 and doses 2 and droEeeding with the
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single doses, the conditional powers have the form givenxpyession (5.6) multiplied
by probability of safety described in Section 5.2.4. Fortouring with two experimental
doses, the conditional powers have the form given by exjae$s.7) multiplied by prob-
abilities of safety as described in Section 5.2.4. Expoess{5.6) and (5.7) are expressions
for probability of all data for which we conclude at least @mfd¢he experimental doses is
more efficacious than control. Stage 1 p-values enter thggegsions by determining the
minimum successes using equation (5.5). Equation (5.6)raljuires the weights; and
wq, and the level of the test to be pre-defined. A typical level for one-sided tests is .02
The weightsw; andw, could be chosen proportional to the pairwise comparisongpka
sizes (that is patients treated in each treatment arm) adevasnstrated using the example
given at the end of Section 4.4.

The posterior distribution is then used to obtain the exgubealue of the conditional
powers using equation (5.8). This is the predictive power.dxample, using the example
given in the previous paragraph, 5 predictive power valeesesponding to proceeding to
single doses 1, 2 and 3 and the consecutive pairs doses 1 antblddses 2 and 3 will be
obtained. The predictive power values are compared to ehthesset of doses to test in
stage 2. The set of doses with the highest predictive powstrdsen for testing in stage 2.

The final analysis does not include the prior knowledge. T plistributions are

only used to plan stage 2.

5.5 Comparing the dose selection procedure with existing

methods

In this section, we explicitly discuss the features of theedselection developed above in
comparison with the existing methods. The features desdiib detail in this section are

generally attractive. Before describing the attractiatdees, in this paragraph, we briefly
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mention the features of the dose selection developed irckiapter that may be improved
while also giving the thesis sections in which these featare described in more detail.
The first feature that may be improved concerns how the astsatibetween efficacy and
toxicity is modeled. The association between efficacy aritity is not modeled explicitly
and the details of how the association between efficacy anditipare givenin Section 5.6.
Also, we have assumed some known dose-response curvesitd.{.2) respectively for
efficacy and toxicity. However, there may be uncertaintyhi@ fiorm of the dose-response
curves and it would be desirable to include this uncertamtiie dose selection procedure.
Bretz et al. (2005) and Klingenberg (2009) have proposecdauist that include model
uncertainty while estimating the minimum effective dogseSéction 7.2, we have described
how the ideas in Klingenberg (2009) could be borrowed taidelmodel uncertainty in the
dose selection procedure.

Some of the key attractive features of this procedure areitthél) allows for the
dose-response relationships by using the logistic modely @nd (5.2) respectively to
model the probability of efficacy and toxicity, (2) as debed in Section 5.3, uses the
Bayesian tools by defining some prior distributions for thegmeters that enter the prob-
ability of concluding at least one of the doses that is testetiage 2 is effective and safe,
and (3) explicitly includes safety by including the prodapiof concluding that the doses
that are concluded effective after stage 2 are also safesasiloed in Section 5.2.4. In the
light of these features, we explain why this new procedumifferent from the existing
methods and why the new procedure is expected to performrbett

The method proposed by Stallard and Todd (2003) selects gtherexperimental
treatments (doses) tested in stage 1, the best performeagrtent (dose) in terms of its
efficacious level compared to the control treatment. If mben one dose is selected, it
is not guaranteed the type | error rates are controlled atléiseéed level. This restriction
also applies to the method proposed by Thall et al. (1988). gtacedure does not have

this restriction because the analysis assumed allows fodecision rule without inflating
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type | error rates. The simulation results presented in theé chapter show under some
scenarios, it is often better to choose two doses so thabétier to have a procedure that
allows continuing with more than a single dose. Furtherikenbtallard and Todd (2003)

and Thall et al. (1988), with this procedure the prior kna¥ge about the experimental
doses and the control treatment is formally used in plansiage 2.

Stallard and Todd (2003), Thall et al. (1988), Schmidli e{2007) and Zuber et al.
(2006) would be adequate if the experimental treatmentdiatieict treatments. However,
when the treatments are different doses of the same drugttieee methods do not exploit
the dose-response relationship which is expected whenghirtents are different doses of
the same drug. The simulation results presented in the hapter show the dose selection
developed in this chapter capture the dose-responseoredatps.

Finally, we have explicitly included safety in the dose st procedure. It is
likely the methods proposed by Thall et al. (1988), Schaidle{1990) and Stallard and
Todd (2003) require a lot effort to include safety. It may lB&syeto incorporate safety in
the methods proposed by Schmidli et al. (2007) and Zuber. 2@06) but these authors

have not done this.

5.6 Remarks on the dose selection procedure

The method of Bedrick et al. (1996) of eliciting prior diswiions for the dose-response
curves parameters assumes that the beta prior distrilsutiaoited at dose levelé ; and

dy are independent. This assumption simplifies the matheslatitas noted in Whitehead
et al. (2006), it has the undesired consequences that itssilie forGr < 0 or fr <

0 when it is believed that; > 0 and3r > 0. This is because assuming the elicited
beta distributions at dose levels; andd, are independent, for example implies that the
probability that the probability of efficacy at dose level, is higher than the probability of

efficacy at dose level, for d_; < dy is not zero even when it is believed efficacy improves
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with dose level. This in turn means it is possible to haye < 0 when it is believed
Br > 0. To partly address this problem the beta prior distribugiare elicited at locations
that are far from each other. Also as in Whitehead et al. (2G96ce we are interested in
the posterior means of the conditional powers associatddomntinuing with different set
of doses, negative parameter values for the slope parawatenot have undesired effects
on the predictive power. Further, since we obtain the pmstdistributions by updating the
prior distributions using all the phase Il clinical trialtdafor the posterior distributions,
the slope parameters are unlikely to be negative when thee gjarameters are actually
positive.

The use of conditional efficacy and toxicity models (5.1) ém@) may raise concern
about the association between efficacy and safety. At eash l@vel, we are assuming
independence between the probabilities of efficacy anctitgxio obtain the predictive
power. However, because we are using more than one expdéahumse, this does not
imply marginal independence between efficacy and toxicly.demonstrate this, using
odds ratio as a measure of the association, first we give firegsion for the odds ratio and
then give the implied odds ratio for some scenarios. As alevgp, andpr, respectively
denote the probability of efficacy and of toxicity at dgsgj = 1, ..., k). Further letpg,
denote the probability of a patient being randomized to goge= 1, ..., k;). Using law
of total probability, the marginal probabilities of effigapz) and toxicity () and the
probability of efficacy and toxicityy(zr) assuming independence of safety and efficacy at
each dose level are expressed as:

k1 k1 k1

pr = ZijpRj, PE = ZpEijj and  ppr = ZpEjij PR,

j=1 j=1 j=1
so that the marginal odds ratio is given by

per(l —pe — pr+ per)
(PT - pET)(pE - pET)

(5.13)

To give examples of some implied odds ratio, we use the thoeessios used to assess the
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effect probability of efficacy in the next chapter. We refettte three scenarios as the refer-
ence scenario, Scenario 2 and Scenario 3. The dose-respowuss for the three scenarios
are given in Figure 5.2. In the three scenarios, the dogmnse curve for the probability
of toxicity is the same witilar, 87) = (—2.5782,0.1621) and is given by the continuous
line (—). The three scenarios differ in the parameter veeter 55 ). For the reference sce-
nario, the parameter vectt s, 5r) = (—1.4867,0.2720) and the dose-response curve is
given by the dashed line (- - -). In Scenarid @, fr) = (—2.6226, 0.3187) and the dose-
response curve is given by the dotted line-J. For Scenario 3,ag, fg) = (—0.8473,0)
and the dose-response curve is given by the dashed and tio¢té¢d - - -).

Assuming a new drug is tested at the marked dose levels ondRisf Figure 5.2,
that is dose levels 10.5mg, 35mg, 87.5mg, 262.5mg, 700.0mdd@50.0mg, the marginal
odds ratios for reference scenario, Scenario 2 and SceBagspectively are 1.13, 1.14
and 1.0. In Scenario 3 the probability of toxicity increasgth dose level and probability
of efficacy does not change with the dose level so that an atasaf 1 would not be a
bad assumption. Scenario 2 has a higher odds ratio thanfdremee scenario which is
what we would desire. This is made possible since we assume dose-response curves.
The marginal odds ratio expression (5.13) holds even whehailities of efficacy and
toxicity are not modelled using some dose-response culedelling the probabilities at
each dose level independently may result in instances wherenarginal odds ratio for
Scenario 2 is less than the odds ratio for the reference soerBy using different dose
levels, as would be expected, we observed that the modediés mtios for the reference
scenario and Scenario 2 are higher when: (1) patients aea#dd to more dose levels, and
(2) the experimental dose level are further apart.

To conclude, by modelling the probabilities of efficacy ahd probabilities of tox-
icity as described above, we assume that the probabilityfichey is independent of the
probability of toxicity given dose subject to a given maaindds ratio. The marginal

odds ratio is induced by assuming some dose-response dongb® probabilities of ef-
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Figure 5.2: Different scenarios of dose response curves tasgive examples of implied
marginal associations.

ficacy and of toxicity. Thus, although we assume indeperel@ab@ach dose level, there
is a restriction of the values the probabilities of efficaog &f toxicity can take. If there
is correlation between efficacy and toxicity, we reduce thteos values probabilities of
efficacy and of toxicity can take at each dose level so thatrtlependence assumption
is less strong compared to modelling outcomes (efficacy axridity) at each dose level
independent and also outcomes at a dose level independtna ofitcomes in other dose

levels.



Chapter 6

Simulation studies

In Chapter 5, we have described how the doses continuingtfierfirst stage of a seamless
phase Il/111 clinical trial may be chosen and how a final asaynay be conducted to allow
for this without inflating type | error rates. In this chaptiére performance of the selection
procedure is investigated using simulation studies. Bgfiescenarios for the underlying
true probabilities of toxicity and efficacy using the di#fet doses are considered. For
each of these scenarios, 1000 studies were simulated intordbtain the probabilities of

continuing to stage 2 with each of the potential doses.

6.1 Simulation model parameter values

The simulation studies are based on the trial described hyeWéad et al. (2006). We as-
sume that the new drug is tested at dose levels 10.5mg, 358¥1gng, 262.5mg, 700.0mg
and 1050.0mg plus a control. To conform with the previougptdra, we simply refer to
the experimental doses in increasing dose levels as dosesé 2] dose 3, dose 4, dose 5
and dose 6. Further, in all simulation studies, we assunteythlie accepted maximum

probability of toxicity, is 0.2. The control treatment issasned to be a different drug from

100
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the experimental drug with the true probability of efficacy the control treatment taken
to be 0.3. For the dose-response curve parameters, thearameter values fdio g, Og)
and(ar, Or) corresponding to dose-response curves (5.1) and (5.2)satened to be (-
1.4867, 0.2720) and (-2.5782, 0.1621) respectively. Wer tefthis set of parameter values
for (ag, Br) and(ar, fr) as the reference scenario. With these parameter valuessas
are acceptably safe and dose 1 is as efficacious as the ctvaatwhent while all the other
experimental doses are more efficacious than the contaihtient.

To explore the effect of efficacy, two more scenarios are aebto the reference
scenario. We will refer to them as efficacy Scenario 2 andaffiScenario 3. The two sce-
narios have the same value for the true parameter veeto5) as the reference scenario
but differ from the reference scenario in the value of theapeater vectofag, Gr). The
probabilities of efficacy and toxicity at each experimemntage level for the two scenarios
and the reference scenario are given in Table 6.1 while tee-desponse curves for the two
scenarios and the reference scenario are given in the le# pdFigure 6.1. The marked
points on the x-axis correspond to the experimental dosasthé linear predictor of the
dose-response curves are on the natural log dose scals, alesplotted on the log scale
in Figure 6.1, so that the higher doses are closer to each athidne x-axis. The continu-
ous line (—) shows the toxicity dose-response curve for ¢fierence scenario. The same
toxicity dose-response curve will be used for the efficacgr@cio 2 and efficacy Scenario
3. As already described above, the dose-response curves shat all the experimental
doses are acceptably safe since the probability of toxicigll cases is less than 0.2. The
dashed line (- - -) gives the efficacy dose-response curvinéoreference scenario. In this
scenario, dose 1 is as efficacious as the control while dose8 are more efficacious than
the control. The dotted line ( -) gives the efficacy dose-response curve for the efficacy
Scenario 2 for whicag, fr) = (—2.6226,0.3187). In this scenario only doses 5 and 6
are more efficacious compared to control. The dashed andddiite ¢ - - - -) gives the

efficacy Scenario 3 witliag, 5g) = (—0.8473,0). In this scenario, all the experimental
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Figure 6.1: Underlying true dose-response curves. Th@éefel shows different scenarios
for efficacy while the right panel shows different scenaf@goxicity.

doses have the same efficacy level as the control treatmenéa€h of these three scenar-
ios, 1000 studies were simulated and in each case predpciwer calculated to determine

the dose(s) that continue to stage 2. The simulation regrdtgiven in Section 6.5.

We also wish to explore the effect of true toxicity on the prsgd dose selection
procedure. To do this, two more scenarios that will be coegb#w the reference scenario
will be considered. We will refer to them as toxicity Scena?i and toxicity Scenario 3.
The dose-response curves for the probability of efficacythiertoxicity Scenario 2 and
the toxicity Scenario 3 have the same parameter veator{r) as the reference scenario.
However, the dose-response curves for the probability xititites for the two scenarios
are different from the reference scenario. Table 6.2 giegptobabilities of efficacy and
toxicity at each experimental dose level for the referememario and the toxicity Scenario

2 and the toxicity Scenario 3 while Figure 6.1 (right panéleg the dose-response curves
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Table 6.1: Probabilities of efficacy and toxicity at testedel levels for the three scenarios
used to assess effect of efficacy

Dose levels (mg)
Scenario (Outcome) 10.5] 35.0] 87.5] 262.5] 700.0| 1050
All Scenarios (Toxicity) 0.10/0.12|0.14| 0.16 | 0.18 | 0.19
Reference Scenario (Efficacy).30| 0.37| 0.43| 0.51 | 0.57 | 0.60
Scenario 2 (Efficacy) 0.13] 0.18| 0.23| 0.23 | 0.37 | 0.40
Scenario 3 (Efficacy) 0.30| 0.30| 0.30| 0.30 | 0.30 | 0.30

for the reference scenario and the toxicity Scenario 2 aeddRicity Scenario 3. The
continuous line (—) shows the efficacy dose-response cuw¢he reference scenario.
The same dose-response curve for efficacy will be used tolaienatudies for toxicity
Scenario 2 and 3. The dashed line (- - -) gives the toxicityed@sponse curve for the
reference scenario for which all doses are acceptably Jdfe.dotted line (- -) and the
dashed and dotted line- - -) respectively give the toxicity dose-response curvesHer t
toxicity Scenario 2 and toxicity Scenario 3. For the toxiccenario 2 (- -), (ar, fr) =
(—2.6728,0.2023). In this scenario dose 5 is nearly safe (probability of tiyits 0.206)
and dose 6 is unacceptably toxic while the other doses aeptatady safe. On the other
hand, for the toxicity Scenario 3 (- - -), (ar, 8r) = (—2.9523,0.3211) so that doses 1
to 3 are acceptably safe while the other experimental dose&ivbe considered too toxic.
A further two sets of 1000 studies for each of these two newates were simulated
and predictive powers evaluated to determine the dosegs)ctintinue to stage 2. The

simulation results for these scenarios are also given itic3e6.5.

In all the simulation studies, it will be assumed thatthe number of patients tested
at each dose at stage 1 is 20 and the total number of patieaitatde for testing at stage
2 is 400 such thats, the number of patients allocated to each treatment arnage
is 400/(ky + 1), wherek, is the number of the number of doses chosen to be tested in
the second stage. We will demonstrate the method for clitvigds in which up to 2 ex-

perimental doses are included with the control in stage &,id%, = 1 or k; = 2. We
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Table 6.2: Probabilities of efficacy and toxicity at testedel levels for the three scenarios
used to assess effect of toxicity

Dose levels (mg)
Scenario (Outcome) 10.5] 35.0| 87.5] 262.5] 700.0| 1050
All Scenarios (Efficacy) 0.30| 0.37| 0.43| 0.51 | 0.57 | 0.60
Reference Scenario (Toxicity)0.10| 0.12| 0.14| 0.16 | 0.18 | 0.19
Scenario 2 (Toxicity) 0.10| 0.12| 0.15| 0.18 | 0.206| 0.22
Scenario 3 (Toxicity) 0.10| 0.14| 0.18| 0.24 | 0.30 | 0.33

will also restrict testing consecutive experimental dos@shat we will not consider for
example a stage 2 trial with dose 1 and dose 3. The restritiioonsecutive experimental
and considering, < 2 is not a limitation of the selection procedure. The selecpoo-
cedure can be extended to consiéler> 2 but the expressions for the conditional power
would involve summing over more dimensions which is compoitel expensive. Further,
including non-consecutive experimental doses incredsesdts to be compared increasing

the computation time.

6.2 Prior distributions

As described in Section 5.3, to evaluate the predictive poleta prior distributions for
the probability of efficacy using the control treatment aadthe probabilities of efficacy
and toxicities at two dose levels of the new drug are requifeddetermine the parameter
values for the beta prior distributions, we examined thea lsetrves and the 90% credible
interval width as described in Section 2.2 while also cossidy what would be typical of
the prior distributions elicited in practice. In all the siation studies, the predictive power
is evaluated assuming a beta prior distribution Beta(12 f@8the probability of efficacy
using the control treatment.

Beta prior distributions for probabilities of successheldtment and probabilities of

toxicity are defined at dose levels 10.50mg and 5000mg. Eigu2 shows the densities
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Figure 6.2: Elicited prior densities. Row 1 and 2 give thepidistributions for efficacy and
toxicity respectively. Columns 1 and 2 correspond to pristributions at dose 10.50mg
and 5000mg respectively. Column 3 gives the resulting joiitr distributions.

of the elicited prior distributions. Rows 1 and 2 respedyivgve the prior distributions
for the efficacy and toxicity models. Columns 1 and 2 respeltigive the beta prior
distributions at dose levels 10.50mg and 5000mg whose deswalues are given in
the legends. Column 3 is the resulting joint prior distribns of the intercept and slope

parameters obtained as described in Section 2.2.2.
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6.3 Computational details

The predictive power was defined in Section 5.3 as the exgeeteie of the conditional

power using the posterior distribution. Evaluating thipestation has two complexities:
(2) the integral in equation (5.8) cannot be given in closaahf and (2) the expression
for CP in equation (5.7) requires calculation of an expémtethat involves summing over
more than one dimension. To overcome the first complexityused numerical quadra-
ture to integrate over the parameter space. In the restos#ation, we describe how we
avoided more than one summation using the normal approxamtd the binomial distri-

bution.

Examples of the form of the conditional power are given byregpions (5.6) and
(5.7). These expressions entail summing over possiblesaiuthe control treatment and
over outcomes in the experimental doses for which at leastdmse is concluded to be
better than control. These summations are computatioeafpensive so that to make it
feasible to evaluate the predictive power for the simutattudies, some approximations

are needed. Expression (5.6) is given by

na no
Z_O { (Z))pﬁ?(l —PE,)" Z_ (;Z)p?f (1- pEl)"2_m} , (6.1)
To0= ro1=DB

whereB = B,,,(max{p; s}) is the minimum number of successes in dose 1 required to
conclude that dose 1 is better than control after stage 2s @kpression requires sum-
ming over a grid of possible number of successes in the domgatment {,,) and for
each possible value af;;, summing over the number of successes in dose,y) from
B,,,(max{p; s}) to ny. To reduce the computation time, the latter summation is ap-
proximated using the normal approximation to the binomiatridbution. Suppose the
probability of successful treatment with dose 1pijg so that the number of successes

at stage 24s) is Bin(n, pg,). The number of successes,{) is approximately normal
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N(nepg,,n2pe, (1 — pg,)) SO that using the properties of the normal distribution

PrOngl > 1'21) = 1- PrOngl < 1'21)

1— & To1 — N2PE, :
\/n2pE1 (1 - pE1)

where® is the standard normal distribution function. Hence, taumesdthe computation

12

time for evaluating expression (6.1), the following appnaation is used

n2 B —
2 <n2 )p”é’il(l —p)T =10 { ey } .
xro1=B T2 \/anEl (1 - pEl)
On the other hand, expression (5.7) has summations of thre for

n2 n2 Ba
Z {fB($20§n27pEo){ Z Z fB(1'21§n27pE1)fB($22§n2>pE2)}}a (6.2)

220=0 x21=DB12 22=0

where fp(xo0; 12, PRy ), fB(T21; 192, pE,) @nd fp(xe9; na, pE,) are respectively probability
mass functions of Bifxag; 12, pr, ), BiN(xer;ne, pr,) and BiNxa; ne, pr,) and By; and
B, are quantities that depend og, and stage 1 results. The normal approximation to the

binomial distribution in expression (6.2) is used for therte

n2 Ba
{ Z Z fB(«TQI;n27pE1>fB(l’22;n2,pE2)}.

x21=DB12 T22=0
Since conditional opg, andpg,, the number of successes in dose:4; Y and dose 24,)

are independent, then the above expression could be ressqut as

ng By
{ Z [B(2215n2,PE,) Z fB(l"zz;nz,pEg)},

r21=Bi12 x22=0
which using the normal approximation to the binomial disition as described above can

be approximated by

B By — nopp, By — napE,
(1 ? { Vnape, (1 —pe,) }) <(I) { Vn2pe,(1 - pg,) }) '
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These approximations reduced the computation time fouatialg the predictive
powers associated with continuing to stage 2 with a singée@md two consecutive doses
in a single simulation study from a few days to a few minutea @ersonal computer using
the R package. For each scenario, 1000 simulation studies wged and it takes about

three days to simulate and evaluate predictive powers &1@00 simulation studies.

6.4 Explanation of how results will be obtained

In the previous sections of this chapter, we have descriteddenarios (based on true pa-
rameter values) we will use to investigate the operatingastaristics of the dose selection
procedure, the total sample sizes at each stage that wilkée im the simulation studies
(120 for stage 1 and 400 for stage 2), prior distributions$ il be used to calculate the
predictive powers and the computational details. Also, weaned that in the simulation
results we present in this chapter, we can proceed to stagé 28ingle experimental doses
1, 2, 3, 4, 5 and 6 or pairs of consecutive experimental délsasis, doses 1 and 2, doses
2 and 3, doses 3 and 4, doses 4 and 5, and doses 5 and 6. In tius,sge describe how
we obtained the simulation results given in this chapter.

For each scenario, 1000 simulation studies will be carrigid lm each simulation
study, stage 1 data are simulated using the underlying tanpeter values. The stage 1
data consist of the number of successes from 20 simulatezhmper experimental dose
and the control treatment. Using the stage 1 data, stagealups/for all intersection hy-
potheses, ;, J C {1,...,6} are obtained. Given these p-values, for each potential set
of doses that may be tested in stage 2, that is, the singles gogkconsecutive pairs of
consecutive doses, we obtain the expressions for conditpmwer as described in Section
5.2. Thus there will be 11 separate expressions for comditipower corresponding to the
6 experimental doses and 5 pairs of consecutive doses. Eairljle doses, the condi-

tional powers have the form given by expression (5.6) miitipby probability of safety
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described in Section 5.2.4. For pairs of consecutive dosegonditional powers have the
form given by expression (5.7) multiplied by probabilitefssafety as described in Section
5.2.4. To obtain the expressions for conditional power, eedito define the weights and
level of the tests given in inequality (5.3). The hypothemestested at level 2.5% and the
squares of the weights are proportional to the total sanipés sthat isw; = 1/120/520
andw, = 1/400/520.

The next step in the dose selection is obtaining the predigibwer. To obtain
the predictive power, we need the distribution of the patansein the expressions for
conditional power. The parameters are given by the dosemnsgpcurves and the prior
distributions of these parameters are given in SectionTh&.prior distribution are updated
using the stage 1 data to obtain the posterior distributadinthe dose response curves
parameters using equations (5.11) and (5.12). The postkstoibutions are used to obtain
the expected value of each of the 11 expressions for conditipower described in the
previous paragraph. This is the predictive power. The 1Hiptiee power values are
compared to choose the set of doses to test in stage 2. Thédmtas with the highest
predictive power is proposed for testing in stage 2. Thigjeated for the 1000 simulated
studies. To obtain the simulated probability of selectiaghepotential set of doses, the

number of times this set is proposed for testing in stage Ridetl by 1000.

6.5 Comparing results for different scenarios

Figure 6.3 shows histograms of the simulated probabildfesontinuing to stage 2 with
each dose and consecutive pair of doses. Each histograespomnds to one of the sce-
narios described in Section 6.1 and is based on a 1000 siowkttdies. On the x-axis,
the notation d i € {1,...,6} means doseéis selected for testing at stage 2 whilg evith
i,7 € {1,...,6} means both dosesand; are selected for testing at stage 2. The selected

set of doses has the highest predictive power among thetitdases or pair of doses



110

CHAPTER 6. SIMULATION STUDIES

Max power > 0.7

d1d12d2d23d3d34d4d45d5d56d6

Dose(s) with highest predictive power
(d)

Max power > 0.7

d1d12d2d23d3d34d4d45d5d56d6

Dose(s) with highest predictive power
(e)

Max power > 0.7

e} — © Max power <= 0.7 © N -
2 Max power <= 0.7 2 X POW! 2 BN  Max power <= 0.7
g = g
S «© S © o ©
- © Z © s o
o o o
c f= f=
(=} o o
e 3 g I g I
o o =} o o o
Q Q Q
o o o
o a a
~N o~ N
[} <} <}
o o o
o <} S
d1d12d2d23d3d34d4d45d5d56d6 d1d12d2d23d3d34d4d45d5d56d6 d1d12d2d23d3d34d4d45d5d56d6
Dose(s) with highest predictive power Dose(s) with highest predictive power Dose(s) with highest predictive power
(@ (b) (©
n | Max power>0.7 n | Max power>0.7 n Max power > 0.7
© BN  Max power <= 0.7 ° BN  Max power <= 0.7 ° BN  Max power <= 0.7
= = =
o o o
< © ©
5 o S 5 oS
i=4 i=4 i=4
k=) k=] k=]
£ o £ £
2 o g o g o
<) < <
o a a
— — —
=} <} <}
o o o
o o o

d1d12d2d23d3d34d4d45d5d56d6

Dose(s) with highest predictive power
®

Figure 6.3: Histograms of set of doses with highest predictiower. Row 1 explores
different scenarios for efficacy. In (a), only dose 1 is irefive, in (b) only doses 5 and
6 are effective and in (c), all doses are ineffective. Row @l@es different scenarios for
toxicity. In (d), all doses are safe, in (e) dose 6 is toxic an(), doses 4 to 6 are toxic.

considered for testing at stage 2. The y-axis gives the ptiopdor which the doses on the
x-axis are selected out of the total 1000 simulation studibe bars have been partitioned
into simulation studies whose maximum predictive poweraiéptial doses to test in stage
2 is above 0.7 (shaded parts) and studies whose maximuncpvedbower is less than
0.7 (striped parts). The latter represent trials in whicis minlikely that any dose would
continue to the second stage because the probability ofcessil trial, that is, a trial that

is going to identify a safe and efficacious dose, is low.
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Row 1 of Figure 6.3 corresponds to the results comparin@mifit scenarios for
efficacy (the dose-response curves for these scenariogiverein Figure 6.1, left panel).
The same true dose-response curve for probabilities o€itgxireference scenario toxi-
city dose-response curve) is used in these scenarios. AwnsinoTable 6.1 Row 3, the
respective true probabilities of toxic outcomes for thessnarios at doses 1 to 6 are 0.10,
0.12, 0.14, 0.16, 0.18 and 0.19. In panel (a), the referecerasio for dose-response for
efficacy is used. The respective true probabilities of effict doses 1 to 6 for this scenario
are given in Table 6.1 Row 4 and are 0.30, 0.37, 0.43, 0.5, &% 0.60. Thus all the
experimental doses are safe and doses 5 and 6 do not différimterms of efficacy. Dose
4 is considerably less efficacious than doses 5 and 6 but aisiderably safer than doses
5 and 6. Based on all simulation studies (shaded and strigetsl) pdose 5 or 6 is selected
for testing at stage 2 with probability of about 0.6. Dose 4woe of the higher doses is
among the selected doses for testing at stage 2 with prdtyadilover 0.9. When only
the simulation studies whose predictive power greater thamare considered (607 studies
out of 1000), dose 5 or 6 would be tested in stage 2 with prdibabbove 0.65 and dose
4 or 5 or 6 would be tested in stage 2 with probability abové&0Ranel (b) gives results
for efficacy Scenario 2. The respective probabilities otaffy for this scenario are given
in Table 6.1 Row 5 and are 0.13, 0.18, 0.23, 0.30, 0.37 andsh4Bat in comparison to
the control treatment, dose 4 is not better, dose 5 and 6 are effccacious while doses 1
to 3 are less efficacious. In this scenario, the desired dosesting at stage 2 would be
dose 6. In the simulation studies, this dose alone is seletith probability above 0.75.
Doses 5 or 6, which are the only dose levels efficacious thardintrol, are selected for
testing at stage 2 with probability of above 0.90. Sets whictude only doses that are less
efficacious than the control treatment, that is doses 1 toe3selected with probability of
about 0.01. In panel (c), the probabilities of efficacy aresame among all the experimen-
tal doses and the control treatment. As would be desiredréndigtive power for almost

all the simulated studies is less than or equal to 0.7. Indtenario dose 1 would be the
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most desired because it is the least toxic. However doseng dlas the highest probabil-
ity of being tested in stage 2. The selection procedure magriven more by the prior
distribution since the prior belief is that the efficacy irapes with dose level. In the next
section, more simulations based on the same scenario ferdsgonse curves but different
prior distributions support this view. With stronger primelief, dose 1 is selected with less
probability and when the prior belief is weak, dose 1 is delgavith higher probability.

A distinctive difference between results in panel (a) andgt&(b) and (c) is that
in (a) continuing with more than one dose has higher proltglbiian in (b) and (c). This
may be explained by the true probabilities of efficacy of theezimental doses. In panels
(b) and (c), the probability of efficacy is low and hence thedictive) power of potential
doses will be lower so that it would be preferable to allo¢hteavailable patients to the
control and to only one dose of the new drug. Further compgaesults in panel (a) to
the results in panel (b), in panel (a), the probabilities elesting the doses increase to
selecting both dose 4 and 5 and then drops for continuing date 5 or 6 or both dose
5 and 6. On the other hand, in panel (b), the probability afctelg doses increase with
dose level with dose 6 selected with the highest probabilligis may be explained by
the probabilities of efficacy and toxicity. In panel (a), pr@babilities of efficacy are high
so that the probability of obtaining a significant result itrial that includes dose 4 and
dose 5 is as high as a trial that includes either dose 5 onég Bmnly or both dose 5 and
dose 6. However, since testing both dose 4 and 5 involvesdesafer doses, this set is
selected with higher probability. In panel (b), the proliitibs of efficacy are low so that
the probability of obtaining a significant result in a triatkvhigher dose levels is higher so
that dose 6 is selected with highest probability since it3s aafe.

Row 2 of Figure 6.3 corresponds to the results comparin@mifit scenarios for
toxicity (the dose-response curves for these scenaricsgween in Figure 6.1, right panel).
As shown in Table 6.2 Row 3, for all these scenarios the resgeitue probabilities of

efficacy at doses 1 to 6 are 0.30, 0.37, 0.43, 0.51, 0.57 artd (R@sults in panel (d)
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are the same as in panel (a) but on a different vertical scafacilitate comparison of
results in panels (e) and (f). Panel (e) gives results ofcttyxiScenario 2 and as shown
in Table 6.2 Row 5, the true probabilities of toxicity for $h8cenario at tested dose levels
in increasing order are 0.10, 0.12, 0.15, 0.18, 0.206 an&200.Hence the prior belief
(mean) underestimates the level of toxicity. Based on alugtion studies, dose 6 alone
whose true proportion of toxicity is well above 0.20, theeued proportion of toxicity,
is selected for testing at stage 2 with probability less ©d®. Dose 4 which would be
the desired dose for testing in stage 2 is among the seleosas dvith probability of about
0.70. When only simulation studies with maximum predictpsver greater than 0.7 are
considered (483 studies out of 1000), dose 6 is selectegwathability less than 0.02 while
dose 4 is among the selected doses with probability abo@e D&se 5 which is nearly safe
is selected with probability 0.05. Both dose 5 (nearly safe) dose 6 (toxic) are selected
for testing in stage 2 with probability 0.08. Panel (f) givesults for toxicity Scenario 3
and as shown in Table 6.2 Row 6, the true probabilities ofcitkior this scenario at the
tested dose levels in increasing order are 0.10, 0.14, 0.28, 0.30 and 0.33. The desired
dose is dose 3. When only simulation studies with predigtiower greater than 0.7 are
considered, dose 3 is among the set selected for testingge & with probability 0.79.
Dose 4 or both dose 4 and 5 which are all toxic are selectedanigh probability of 0.18.
We could not find an explanation to this high probability eatthan chance.

Comparing the results in Row 2, we observe that the propodisimulation studies
with predictive power above 0.7 decreases from panel (dateb(f). This is because
the probabilities of toxicity for doses 2 to 6 which are moffcacious than the control
treatment increase from panel (d) to (f) so that from panelqdf) lower doses which are
less effective than the higher doses would be desired fintesm stage 2. The difference
in panels (d) and (e) is particularly interesting. Althouglboth panels testing both dose
4 and dose 5 has the highest probability, testing either Bpdese 6 or both dose 5 and

dose 6 is selected with lower probability in panel (e). Whaty studies with predictive
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power above 0.7 are considered, the probability of comiguwiith either of these doses
is even lower. Further we observe that dose 1 is selectedweithlow probability in the
three scenarios so that even though higher doses are skelattdower probability when
they are considered too toxic, the selection procedulalsiés not favour dose 1 which is

not efficacious.

6.6 Comparing results for different prior distributions

The results discussed in the last section were obtainedj tisenprior distributions pre-
sented in Figure 6.2. We refer to these sets of prior digioha as the middle weight prior
belief. In order to assess the effect of prior distributiozight, we consider two more sets
of prior distributions. In the second set of the prior distitions, Beta prior distributions
at dose levels 10.50mg and 5000mg for the efficacy model heraaneter vectors (18, 42)
and (18, 7.71) respectively. For the toxicity model the Batar distributions have pa-
rameter vectors (9, 81) and (10.2, 30.6) at dose levels hiy5hd 5000mg respectively.
These beta distributions have the same prior means as tliberveight belief but smaller
variance. From left, the first and the second contour plotguare 6.4 respectively give
the resulting joint prior distribution of the slope and irttept for the efficacy and toxicity
model. We refer to this set of prior belief as the most infatiweaprior belief. The third set
of the prior distribution is less informative and we refetthds set as the least informative
prior belief. For the least informative prior belief, for thoefficacy and toxicity the beta
distributions at both dose 10.50mg and 5000mg are assigaradngter vector (1, 1) (that
is Beta(1, 1) which is equivalent to the Uniform(0,1)). Tlesulting joint prior distribution
for the intercept and the slope parameters is given by thimaom the right panel of Figure
6.4. Note that the scale for this contour plot is differenbfirthe scales of the other contour
plots in Figure 6.4 and in Figure 6.2 with its contours spre&ter along the intercept and

slope parameters.
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M
(Efficacy) (Toxicity) (Efficacy & toxicity)

4
g

Intercept Intercept

Figure 6.4: Contour plots for more informative and lessiinfative prior densities.

We chose to demonstrate the effect of the prior distribgtioging the reference
scenario (all doses safe, dose 1 as efficacious as contatinieat and doses 2 to 6 more
efficacious than the control) and efficacy Scenario 2 (aledasafe and equally as effica-
cious as the control treatment). Figure 6.5 gives the resisihg the different sets of prior
distributions. Row 1 and Row 2 respectively correspond ¢éarélierence scenario and effi-
cacy Scenario 2. Columns 1 to 3 respectively correspondetonibist informative, middle
weight and least informative prior distributions. For tleéerence scenario (Row 1), using
the three sets of the prior distribution, probability oftieg both dose 4 and dose 5 at stage
2 is highest. However the relative frequency decreaseseaprtbr distributions become
less informative. As the prior belief becomes less informeaibwer, higher doses are se-
lected with higher probability. For example, the frequentygose 6 increases as the prior
distributions become less informative. The frequency, év@y, has a larger contribution

from the simulation studies whose predictive power is lbas 0.7 (striped parts).

For efficacy Scenario 2 (Row 2), when the prior distributibase higher weight
(panel (d)), higher doses are selected for testing at stagghzhigher probability with
dose 6 selected with the highest probability. This is dribgnthe prior distribution in
which higher doses are considered more efficacious compatbd lower doses. In panel

(e), the prior distributions have lesser weight compareganel (d) but the prior belief
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Figure 6.5: Histograms of set of doses with highest pradigiower. From left to right the
prior beliefs are less informative.

is still that higher doses are more efficacious so that dosesglected with the highest
probability. However, in panel (e), dose 1 is selected witghar probability compared to

panel (d) as would be expected. In panel (f), the prior distions used in obtaining the
predictive power, assumed there is no difference betwaeerland higher doses. Further,
the prior distribution had least weight with beta parangetaving values (1,1) so that the
selection probability compared to results in panels (e) @pguts more weight on stage
1 data. As expected, dose 1 is selected for testing at stagéh2h& highest probability

because it is the safest and is not inferior compared to dbse$. Dose 6 has the second

highest probability of selection. This may be explained ty $tage 1 efficacy data. The
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stage 1 data may suggest either a positive or a negative felopeobability of efficacy. A
positive slope will favour dose 6 resulting into dose 6 steldenore compared to doses 2
to 5.

6.7 Summary findings from the simulation results

In the previous sections of this chapter, we have presentedation results under several
scenarios. In this section, we summarize the key charatiterifrom these results while
also pointing the advantage of the dose selection procemiiexhibited by the results.
First, we observed that, as desired, when the second stage &lequately powered in
terms of probabilities of efficacy, the candidate sets wisingle treatment are selected for
testing at stage 2 with higher probability compared to caatgi sets with two experimental
doses. This is the case of the scenario whose results ameigi¥égure 6.3 (b). However,
under scenarios where some experimental doses are higbbogius and safe, such as the
scenario whose results are given in Figure 6.3 (d), it isdfietter to test two experimental
doses at stage 2. Thus the new dose selection is advantabaaube methods that allow
only to proceed with one experimental dose.

Secondly, when all the experimental doses are acceptafglypsatoxicity increases
with dose level and the second stage sample size is such fiawers (based on proba-
bilities of efficacy) the lower doses enough so that the diffiee in power of highest dose
levels and some lower dose levels is not large, lower dosddare selected with higher
probability because they are safer to administer to patiélitie results given in Figure 6.3
(d) are from such a scenario. Also, the inclusion of safetthendose selection procedure
avoids selecting unsafe doses although they may be moraadfics. For example, for
the results given in Figure 6.3 (e), dose 6 is unsafe and tpared to results in Figure
6.3 (d) in which all experimental doses are safe, it is setketith lower probability and

when it is selected, the predictive power is low as in moseésdlse predictive is less than
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0.70. The same trend, as shown in Figure 6.3 (f), is observethwloses 4 to 6 are unsafe.
Thus new dose selection procedure is advantageous thametieys procedures that do
not explicitly include safety.

The results for all scenarios captured the dose-respolamreships. For example,
in Figure 6.3 (b), the probability of selection increasethvdose. The same is observed
from Figure 6.3 (f) where the probability of selection ingses with dose and then de-
creases with dose when doses 4 or higher, which are unsafeldod become less safe
with increase in dose, are selected for testing in stage 2 uBe of dose-response also
captures the probabilities of efficacy and toxicity well. rFexample, in Figure 6.3 (d),
there is huge increase in probability of selection from wbely dose 3 is selected to when
both doses 3 and 4 are selected. Probability of efficacy itrab®.3 while probabilities
of efficacy at doses 3 and 4 are respectively 0.37 and 0.43asdt thhay be that it is only
when dose 4 or higher doses are selected that the probathiibncluding efficacy is high.

Finally, the results for a scenario where the experimerdaéd of the new drug are
not better than the control treatment, that is for the sdenenose results are given in 6.3
(c), the selected doses to test in stage follow the profilehefdrior distribution but the

predictive power is low so that the trial is unlikely to predeto stage 2.



Chapter 7

Further work

In Chapter 5, we have developed a new method for selectingsdib&t continue from
a phase Il stage to a phase lll stage of a seamless phaseclitiital trial. The work
focussed on binary outcomes at both stages, assumes thardajanerated using some
known generalized linear model and that there are only tagest. These features lead to
three new research questions that can extend the work dedan Chapter 5: (1) can the
work be extended to include more than 2 stages with mongdsisundaries, (2) can the
dose selection procedure be extended to include modeltairdgrand can the outcomes be
modelled using models that are not in the family of geneedlitmear models, and (3) can
the work be extended to include other endpoints or a changedyoint. In this chapter,
we describe the direction we are taking to answer theseiquestor the first question, we
will describe ongoing recent work. For the second and thirglstjons, we will summarise

some works that have answered similar questions in diffe@mtexts that may be relevant.
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7.1 Extending to more than two stages with monitoring

In Chapter 5, we assumed that there is no early stopping abfepldlase 1l stage and that
in the phase Il stage, there will be no monitoring. Howess,described in Sections
3.3.1 and 3.4.2, the investigators may wish stop the trial &éiie phase Il stage and to also
monitor the phase IIl data for among other reasons, ethaaiderations. In this section,
we give the progress made on exploring how a seamless pllkeliical trials with a
single monitoring in the phase Il stage so that the seanplease I/l clinical trial will
have 3 stages; the phase Il stage and two phase lll stagefenpdgnned. We will assume
that there are no opportunities for adaptation in the phHsgtdge and we present the
simple case of proceeding with one experimental dose irg@kiase Il stage. In Section
3.3.1, we explained that clinical trials may stopped eaitlyez for overwhelming evidence
of efficacy, futility or both. In Section 7.1.1, we will dedoe an example of how p-values
using the combination tests may be adjusted when there g@topities to stop early for
overwhelming evidence of efficacy or for futility. We will sihe notation of the seamless
phase Il/111 clinical trial of interest in Section 7.1.2. 8ection 7.1.3, given the stage 1 data,
we will describe how to obtain the expression for the conddil power, the probability of
concluding at least one of the experimental doses thatmemtio the phase Il stage is
effective after stage 2 or after stage 3. Finally, in Sectidh4, we define the predictive

power for a trial with opportunities to stop early.

7.1.1 Combined p-value with opportunity to stop early

Let H be a null hypothesis of interest that is tested at two stdges:, andp, respectively
denote stage 1 and stage 2 p-values. Suppose that at stagadllthypothesig? will be
rejected ifp; < «a; and is accepted jf; > ap, where0 < a7 < a < ag < 1. Assumingp,

andp, are independent and uniform[0,1] undérin Section 4.2.2, we gave the expression
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for type | error rate as

[e7s) 1
ag + / / Loy p2)<qdp2dp1, (7.1)
[e%1 0

whereC'(py, p2) is some combination function of the p-values such as theeFsshombi-
nation function given by equation (4.2) and the inverse radifioemction given by equation
(4.3), c is the stage 2 critical value obtained by solving expreséioh) for overall type |
error rater, andlc,, p,)< €Qquals 1ifC(py, p2) < c and equals 0 otherwise. In the previ-
ous chapters, we assumed that we do not have opportunisegtearly so that expression

(7.1) simplifies to

1 1
/ / LC(p1 p2) <) dP2dp1 - (7.2)
0 0

In this subsection, we consider seamless phase Il/llladirrials with opportunities to stop
early for overwhelming evidence or futility. The valueswf anda, can be determined
using the group sequential methods (Brannath et al., 200&) as the alpha spending
function of Lan and DeMets (1983).

Let q(p1, p2) denote the adjusted combined p-value. For expression, (Sir)e
there are no opportunities to stop eatlp, p2) = C(p1,p2). To control type | error rate
defined by expression (7.1), Brannath et al. (2002) propdisisting the combined p-values

as follows

D1 if pr <oqorp >
q(p1,p2) = , (7.3)
ar+ [ [y Lety <o pydyds  otherwise

For the Fisher's combination function given by expressib), solving expression (7.3)

gives the combined p-value as
(

P1 if pr <ay0rpr >

q(p1,p2) = § oy + p1.pe[Inag — Inay] if p1 € (o, o] @andpy.ps < oy (7.4)

p1.p2 + p1-p2|lnag — In(pr.pe)]  if p1 € (a1, ] @andpy.ps > ag.
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For the normal combination method, there is no closed swiub expression (7.3) so that
numerical integration methods are required.
The type | error rate expression (7.1) was obtained by etiatythe following def-

inition of type | error for a two stage trial

Proby [p1 < ay] + Proby [C(p1,p2) < e, an < p1 < ).

Extending this to a trial with three stages (3 stage tri@fal, andag; (s = 1, 2) respec-
tively denote the futility boundary and rejection boundargtages so that the trial stops at
stages for futility if the adjusted p-value is greater than, and for efficacy if the adjusted
combined p-value is less or equaldg,. Letp, (s = 1,2, 3) denote the stage p-value,

then for a 3 stage trial, the type | error is given by

Proby[p1 < aii] + Proby [C(p1,p2) < Cayy, 011 < p1 < aqg) +
Proby [c(p1, p2, p3) < ¢, a1 < p1 < 40, Cany < C(P1,D2) < Canls

wherec,,, andc,,, are respectively the critical values for efficacy and ftytiliFollowing
Brannath et al. (2002), the combined p-value for a 3 stagelesa phase II/Ill clinical trial
may be given by

P, if trial stops at stage 1
q(P1,p2:P3) = § ann + [2° [ Letem)<Corpm) dyda, if trial stops at stage 2(7.5)

Q11

Qo1 + f;lllo jo fo [Cagy <C(2,) <Cagy) L[C(2,y,2)<C (p1,p2,ps)| 42dYde, otherwise
In equation (7.5), the trial stops in stage Ipif < «y; Or p; > aq9 and in stage 2 if
C(p1,p2) < Cay OF C(p1,p2) > cay- IN general, numerical methods may be required to

evaluate equation (7.5).

7.1.2 Notation and setting of interest

As in Chapter 5, supposk experimental doses are compared to the control treatment

at stage 1 so that the null hypotheses of interestfare 6y, = 6y, ..., Hg, : 0y =
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0x, whered;, j € {0,1,...,k } is a measure of the effectiveness of dgsavith j = 0
corresponding to the control treatment. If the closureqpie is to be used to control the
FWER associated with comparing the experimental doses to the control treatment, all
the intersection hypothesés;, J C {1,...,k;} are constructed. We assume patients
are allocated to each dogej € {0,1, ...,k } at stage 1 and we respectively denote the
number of successes and toxicities in dgsdter stage 1 by, andt,;. The probabilities
of efficacy and toxicity at dosgwill respectively be denoted byz, andpr,. The efficacy
datax; = (x19, z11, ..., T1x, ) CaN be used to obtain the stage 1 p-vajues(J C {1, ..., k1 }
corresponding to the constructed intersection hypothdses

Let o C {1,...,k} be the set of experimental doses that remain in the trial for
testing in stage 2 with, = |K,|. We assume that there is no adaptation after stage 2 so
that if the trial does not stop after stage 2, all the expentaledoses tested at stage 2 and
control continue to stage 3. Leb andns respectively denote the total sample sizes at
stage 2 and stage 3. We assume that the total stage 2 and Sagpl@ sizes are fixed so
that the number of patients allocated to dgsg € {0} U K, with j = 0 corresponding
to the control treatment at staggs = 2, 3) is n,/k,. At stages (s = 2, 3), let z,; and
tsj» 7 € {0} UKy with j = 0 corresponding to the control treatment, respectively teeno
the number of successes and toxicities on dosét the end of stage (s = 2, 3), the
efficacy datax, = ({zs;}) (j € {0} U Ky) can be used to construct a set of p-valpes

corresponding to stage 1 p-valygs; constructed using the stage 1 data.

7.1.3 Conditional power

From the setting abovey, ; denotes stage (s = 1,2, 3) p-value obtained from testing
hypothesisd;, J C {1,...,k;}. Given the stage 1 p-valyg , for hypothesisd,, as in
inequality (5.3), using the adjusted p-valg@; s, p2.s, ps.s) given by equation (7.5), we

can obtain the minimum value of stage 2 p-valdg so that hypothesi#/; is rejected at
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the end of stage 2. If a Bonferroni adjustment is used to olites p-value for hypothesis
H, the minimum p-value testing the pairwise hypothesis campgahe control treatment
to the experimental doses contained in the hypothégisan be obtained as described for
inequality (5.5). Subsequently, as was described in det&iéction 5.2.2, for each possible
number of successes in the control arm at stage,2we can obtain the configurations of
data such that at least one experimental dose is conclutkedied after stage 2.

Suppose we continue to stage 2 with a single experimentalidos {1, ..., k1 }. In
Section 5.2.2, for each possihlg), we denoted the minimum number of successes required
at experimental doseat stage 2;,; so that dosé is concluded effective at stage 2 by
B,,,(max{p; s}) for all J with i € J. For a 3 stage seamless phase Il/lll clinical trial, for
eachz,y, we are also interested in determining the minimum numbsuo€esses required
in dose: so that the trial does not stop at stage 2 with acceptanceeaiuh hypothesis
of no treatment difference. This number is obtained sinyiltw B,,, (max{p; ;}). To
differentiate between the notation for the two numbers, aeotie the minimum number
of successes required to stop the trial at stage 2 for effibg Z;O(max{pL s}) and the
minimum number of successes required to avoid stoppingitidat stage 2 for acceptance
of the null hypothesis byB;. (max{p; ;}). Thus the expression for the probability of
concluding dose (i € {1, ...,, k1}) is more effective than the control treatment at stage 2
is

Z {fB(l'ZOSTL%pEO) Z fB(l'ZﬁnZapEi)}a (7.6)

x20=0 r9;=DB

where f5(x2;; 12, pE,) (j = 0,1) is the probability mass function of the binomial random

variableX,; with parameter vectdm,, pg, ), B = B (max{p; s})forall J C {1,... %k}

20

with i € J.
If the trial does not stop at stage 2, for all possible datatages 2 for which we
do not stop at stage 2 and for each possible number of suscegibecontrol treatment at
stage 3;x30 we can obtain the minimum number of successes required midaisstage 3
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so that dosé is concluded effective after stage 3. Let us denote thismim number of
successes b#..,, (X2, max{p; s }), where notation reflects number of successes in control
treatmentes,, the stage 2 dats, and stage 1 datmax{p, ;}. Then the probability that
dosei is concluded not futile after stage 2 and effective aftegestais given by

na B-1 ns3 n3
> {fB(CCQO;n%pEO) > <fB(CU2i§n2apEi) > | fo(@soina, pe,) Y fB($3i;n37pEi)]>}a(7-7)

x20=0 To;=A x30=0 x3;=C
wherefp(xa;; 12, pg,) (j = 0,1) is as defined abovgp(zs;; n3, pe,) (j = 0,4) is the prob-

ability mass function of the binomial random variablg; with parameter vectans, pz; ),

A = B (max{pi,}), B = BY (max{p:,}) andC = By, (X, max{p; s}). Expres-
sion (7.7) contains many summations which would make it¢uatimn computationally
expensive so that some approximation may be required. Akemative, we will explore

whether it is easier to use the efficient score statisticerde=] in Section 4.2.1.

The conditional power, the expression for probability ohcliding dose is effec-
tive at stage 2 or at stage 3 given stage 1 data is given by sugnempressions (7.6) and
(7.7). The probability of concluding doges effective and safe is obtained by multiplying
expressions (7.6) and (7.7) by the indicator that doisesafe. For example, if an exper-
imental dose is considered safe if its probability of totyiaés less than or equal to some
value~, expressions (7.6) and (7.7) are multiplied by the indicétp;, < ~). We will
denote the conditional power by gRhered is a vector of parameters in the conditional

power.

7.1.4 Predictive power

The probabilities of efficacy and toxicityz, andpz, that enter the conditional power are
respectively given by the dose-response models (5.1) apgdthat = (ag, Sk, ar, Br)’.

As in Section 5.3, the predictive power may be obtained byuetiag the posterior mean
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of the conditional power, that is, the predictive power i&egi by

/(CPG)W(9|X1, ty,n1)db, (7.8)
S

wherer(6|x,t1,n1) is the posterior mean @fgiven the stage 1 datx;, t;, n;) obtained

as described in Section 5.3.1. To improve the predictivegrayiven by expression (7.8),
we will investigate how feasible it is to update the disttibn of # with second stage data
(X9, t2) SO that the parameter values that enter part of the condltfwower that includes
stage 3 data reflect the knowledge gained in stage 2. Thidikelynto be an easy task but

has the advantage of reducing the uncertainty (varianddegbarameter values.

7.2 Uncertainty in the dose-response curves

In Chapter 5, we assumed that the probabilities of efficadycdnoxicity can be modelled
by generalized linear models of known form. However, thegtigators may be uncertain
about the dose-response curve so that they would want tedesreeveral models. Klin-
genberg (2009) has proposed a method for estimating thermiaxiestimated dose (MED)
that incorporates model uncertainty. He proposes inctudihdose-response curves that
significantly reflect the dose-response signal from the we¢stimate the MED by getting
the weighted average of the MEDs from these dose-respondelsadn future work, we
intend to consider including model uncertainty by obtagnine predictive power possibly
by averaging the predictive power obtained using differeatiels similar to the proposal
of Klingenberg (2009) of estimating the MED.

Klingenberg (2009) gives several dose-response curvelergéneralized linear
model family that result into different dose-response slsauch as probabilities increasing
and then dropping. However, these models may not captumdotbesresponse profile ade-
guately so that further work needs to develop models thatatssde the generalized linear

models family. Yin et al. (2006) have proposed models thatalospecify any parametric
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form for the dose-response curve. Rather they model prbtiediso that it is possible
to induce some relationship such as probability of toxigiyreasing with dose level. In
particular, they assume that the probability of toxicitgrieases with dose because most
investigators assume a monotonically increasing relaligmbetween toxicity and dose.
They do not enforce any ordering for the probability of efficaince for certain therapy,
probability of efficacy may decrease with dose.

In detail, letpr, be the probability of toxicity at experimental dog€¢j = 1, ..., k1),
Yin et al. (2006) model the probabilities of toxicity as falNs

, log if j=1
j = ’
IOg <1ij — ij711> for ] = 2, ..., k1

—PT; 1=p1;_

so that
exp(¢;) if j=1
ij = 1+exp(;) (79)
OO T AOXND)  for 5= k.

1+exp(¢1)+...+exp(o;)
Modelling probability of toxicity using equation (7.9) amgs that
Pj-1 <p]7 j:27"'7k17

that is, probability of toxicity increases with dose as fieggh because the terms €xp)
are positive. To define the model of efficacy, fet be the probability of efficacy at ex-

perimental dosg (7 = 1, ..., k7). Yin et al. (2006) model the probabilities of efficacy as

follows
L e t
j pr
log (755;) —log (Z55) for j=2.ky
so that
exp(1) i | =
PE, = 1+exp(11/11) =1 (7.10)
’ IR L I (YO R
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Expression (7.10) does not impose any order for the probabif efficacy. For further
work on model uncertainty, we will study characteristicgitting models given by expres-
sions (7.9) and (7.10) and consider including these modéfeicandidate set of models so

as to capture dose-response relationships not describibx lggeneralized linear models.

7.3 Change of endpoints

The dose selection procedure developed in Chapter 5 fotusséinary outcomes both
at phase Il and phase Ill stage. Posch et al. (2005) presehtatrial where in both
stage 1 and stage 2 of a seamless phase I/l clinical biagry outcomes are considered.
However, for some therapies as Inoue et al. (2002) explaa ptimary outcome in the
phase Il study is a binary outcome which is used to plan a plilaseidy whose primary
outcome is a time to an event outcome. Hence, it would beipadigtimportant to design
seamless phase I/l clinical trials with change of primandpoint from a binary endpoint
to a survival outcome.

Inoue et al. (2002) propose a fully Bayesian seamless phdideclinical trial by
using Bayesian tools to plan a trial and make inference fleobserved data. Here we just
describe how the binary outcomes are included in the interebetY” andT respectively
denote the binary outcome and the survival time. Inoue ¢2@D2) assume there will be
censoring after tim& and that the binary outcome is observed after time: U. If the
survival time for a patient is less thay) Y is not observed, that i3] is observed il * > t,,
whereT* = min(7T, U). Using the law of total probability, they write the distriin of 7’

as follows
f(t) = f(t|T < to)ProlT < to) + f(t|T > to)Pro(T > ty). (7.11)

SinceY is observed fofl” > t,, Inoue et al. (2002) use it to learn about the distribution of

T in the second part of equation (7.11). Thus they incorpdratethe second piece of the
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distribution of 7', that is in the second part of RHS of equation (7.11), usieddtv of total

probability to result in the following mixture distributo

f(t) = f(t|]T < to)ProT < to) + Zf(t|T >0, Y =y)m,ProT > ty), (7.12)

y=0
wherer, = Prol(Y = y|T" > t;). LetV be the indicator thal” is observed or equivalently
the indicatorl” > t,, Inoue et al. (2002) assurie= Ty(1 — W) + (T} + to)W, whereTy
andT7; are latent survival times with, following a distributionf, not depending ofr” and
T, following the mixture distributiorE;:0 fym,. Hence expression (7.12) may be written

as

1

f@) = {fomi-" {fo(to)ny(t—to)Wy}

y=0
fo(t) ift <ty
Folto) Sy fylt — to)m, i &> 1o,

whereF,(t) = Prol(T, > t) is the survival function corresponding fg. The inference is
then made using the distribution @fdefined above.

Schmidli et al. (2007) do not consider change of endpointhey propose a seam-
less phase Il/lll design that utilize binary and survivatammes techniques. Schmidli
et al. (2007) consider survival outcomes with right censpriAt both stage 1 and stage
2, survival or censoring time and the binary outcome thabteswhether the outcome of
interest (the outcome that gives survival time) are reabrdg&uppose the right censoring
time isU. The analysis is based on the binary outcomes, that is, comgptne number
of events that occur within the censoring titfie To determine the distribution of stage 2
data, the probability of an event of interest is considerechBulli(l — S(U; 6,)), where
¢, are the parameters of the survival functi®ft) which enter the stage 2 data distribution
when treatment (dosg)is considered for testing at stage 2. At the time of plannivg t

phase Il stage, some of the phase Il stage patients willaa n event and will not have
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reached the censoring tinié If the phase Il stage planning is done at tinge< U for
a patient, the probability of an event for this patient in teenaining follow-up time is
(1= S(U:6;)) — (1= S(to: 6)) = S(t; 6;) — S(U;6).

Both the work of Schmidli et al. (2007) and Inoue et al. (206@hsider survival
outcome up to some censoring tirle Schmidli et al. (2007) do not incorporate the sur-
vival time in the analysis but incorporate it the planningasguming that the probability of
a survival event between time 0 and censoring timgepends on some survival functions.
Inoue et al. (2002) use the survival outcome to make inferdnut the distribution of the
survival timeT is a mixture of distributions for different outcomes of thiedry outcomes.
The two approaches underline the complexity of having twdpeimts. However, the ideas
in these articles in which the authors use one outcome tordete another outcome and the
technique of surrogate endpoints which we have not yetatijdnay offer a starting point

for further work on designing seamless phase I/ clihicals with change of endpoints.
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Discussion and conclusions

The work in this thesis was based on seamless phase llicalitrials. Seamless phase
[I/111 clinical trials are carried out in two stages; the [deall stage (stage 1) and the phase
lll stage (stage 2). After collecting stage 1 data, an imexnalysis is done so that there
are opportunities to adapt the trial based on stage 1 refldssible adaptations in clinical
trials are sample size re-estimation for example as desthly Friede and Kieser (2006),
sub-population selection for example as proposed by Zubat. €2006) and treatment
selection for example as proposed by Thall et al. (1988)af8ott al. (1990), Stallard and
Todd (2003), and Schmidli et al. (2007). Our work also foedlssn treatment selection in
seamless phase I/l clinical trials but include featutiegt are not included in the above

works on treatment selection.

Most work for treatment selection in phase I/l trials sister candidate treatments
which are distinct treatments. In this thesis, we have cm@nsd candidate treatments which
are different doses of the same drug. To incorporate thishave proposed some dose-
response curves to estimate the probabilities of efficadytaricity at the experimental
doses to inform the planning of the phase Ill stage so that dekection is based on data

observed over the entire experimental dose range in theeghatage. This is similar to
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dose-finding phase | studies where it is common to allocatienta to the experimental
doses assuming some dose-response curves. For examplaig@iQet al. (1990) pro-
posed an exponential curve for a safety model while Whitéle¢al. (2006) have proposed
logistic models for both safety and efficacy outcomes. Thekvio dose-finding phase |
studies generally does not focus on hypotheses testing.etwin phase Il/lll clinical
trials hypotheses testing is done and the dose selectiaeguoe should be made such that
the type | error is not inflated. The flexible two stage hypsihiéests we assume will be
used to analyze data from the two stages of the seamless phiaseals allow the use of
the dose-response curves and also the prior knowledge dbsetresponse curves without
inflating type | error rates.

Both efficacy and toxicity have been considered explicitlgarly clinical trials. For
example Whitehead et al. (2006) have proposed a desigrncapfdito phase I/11 clinical
trials. However, safety is often not explicitly includedthre dose-selection procedure for
doses to be tested in phase Ill. For example, at the plantégeg sthe dose selection pro-
cedure may determine the (predictive) probability thatdledidate sets will be concluded
effective after stage 2 and a separate decision is made aevitbe promising doses are
safe for further experimentation. The dose-selectiongutace that we have proposed con-
siders both the efficacy and the safety of potential doselscép Rather than only focus
on the probability that the dose will be concluded effecaer phase Il stage, the pro-
cedure uses the joint probability that the dose will be catetl effective and safe by not
exceeding some threshold safety level.

The penalty for safety was considered based on the distibof probability of
toxicity rather than the distribution of the number of pateewho would experience a toxic
outcome at stage 2. This option was preferred for two reasibrise penalty considered
the probability that the number of patients treated in aredrpental dose does not exceed
(v x ny), where~ is the maximum probability of toxicity that can be tolerasuin, is

the number of patients randomized to each treatment arnage s, then larger samples
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will be penalized more when the true probability of toxidgygreater thary and less when
the true probability of toxicity is less than The second reason is that, in practice, safety
data are monitored as the trial continues so that the safeéhealrug is evaluated before
all patients have been treated.

In Chapter 6, to study the characteristics of the dose seteprocedure, we re-
stricted the doses to be considered for testing at phaseg/égo consecutive doses. How-
ever, as described in Sections 5.2.2 and 6.1, this does fettra limitation to the dose
selection procedure developed in Chapter 5. The resticéduces the sets of doses to be
considered for testing in the phase Il stage and hence esdhe computation time. Also
continuing with nonconsecutive doses seems practicalpfaosible. However, in some
scenarios it may be reasonable to consider nonconsecubesdTo demonstrate when it
may be desirable to consider proceeding with non-consexdtses, consider three doses,
say dose 1, dose 2 and dose 3. Suppose the efficacy dose esporesis such that the
probabilities of efficacy at dose 1 and dose 2 differ veriel@ind the probability of efficacy
at dose 3 is considerably higher than at dose 2. Then if ttetysdbse response curve is
such that the probabilities of toxicity at consecutive doaee considerably different, then
it would be desirable to proceed to phase Il stage with dosedldose 3 rather than with
doses 2 and 3.

We have assumed that efficacy and toxicity are independeahdghe dose level.
In Section 5.6, we showed by using the conditional efficaay tamicity models (5.1) and
(5.2), we do not assume marginal independence and that ttell®d association between
probabilities of efficacy and toxicity are reasonable. Altdively the association between
efficacy and safety may be modelled explicitly by introdgcanparameter for association.
For example, Yin et al. (2006) include parameters for thesadtlo at each dose to model
the association between efficacy and toxicity. This is likel capture association better
but would introduce complexity in obtaining the joint dibtrtion of the parameters in the

model and increase the computation time, and we do not thiskwwould make much
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difference on the choice of doses to continue to stage 2.

To summarise, in this thesis, we have proposed a new methadb&e selection
in seamless phase IlI/lll clinical trials. The method enabi&ional choice of doses to
continue to stage 2 while: (1) allowing for the final analy$®) incorporating the stage 1

data profile, and (3) incorporating the prior knowledge.
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