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Abstract

Seamless phase II/III clinical trials are attractive in development of new drugs because

they accelerate the drug development process. Seamless phase II/III trials are carried out in

two stages. After stage 1 (phase II stage), an interim analysis is performed and a decision

is made on whether to proceed to stage 2 (phase III stage). If the decision is to continue

with further testing, some dose selection procedure is usedto determine the set of doses to

be tested in stage 2. Methodology exists for the analysis of such trials that allows complete

flexibility of the choice of doses that continue to the secondstage. There is very little work,

however, on optimizing the selection of the doses. This is a challenging problem as it

requires incorporation of the dose-response relationship, of the observed safety profile and

of the planned analysis method. In this thesis we propose a dose-selection procedure for

binary outcomes in adaptive seamless phase II/III clinicaltrials that incorporates the dose-

response relationship, and explicitly incorporates both efficacy and toxicity. The choice of

the doses to continue to stage 2 is made by comparing the predictive power of the potential

sets of doses which might continue to stage 2.

x



Chapter 1

Introduction

In drug development, clinical trials are categorized into three phases. Phase I is the stage

where the drug is first tested in human beings and the objective is to determine the safety of

the new drug. Phase I trials are small and several dose levelsare generally tested. If a safe

dose (or dose range) is identified, the drug is then tested forefficacy in a small clinical trial.

Such a trial is referred to as a phase II clinical trial and like phase I, often more than one

dose level is tested. At the end of the phase II trial, a decision has to be made on the basis

of efficacy and safety data regarding which dose(s) proceedsto the next stage of testing.

The last stage of drug testing in human beings before submission for regulatory approval

is the phase III clinical trial which is a large confirmatory trial for efficacy. A review of

the statistical models used in design and analyses of data ateach of the three phases of a

clinical trial is given in Chapter 3. Chapter 2 outlines the statistical tools needed in the

review of the statistical models used in each of the phases ofa clinical trial.

In order to reduce the time before approval of a new drug, there has been interest in

combining different phases of a clinical trial. Trials which combine phase II and phase III

into a single trial with a phase II stage and phase III stage are referred to as (seamless) phase

II/III trials. Such trials are conducted in two stages. In stage 1 (phase II stage) of phase

1



2 CHAPTER 1. INTRODUCTION

II/III trials, several hypotheses, such as comparing how the drug works in different sub-

populations or which doses are more efficacious than controltreatment are tested. Based

on stage 1 data, subpopulation(s) or dose(s) which show promising results continue to

stage 2 (phase III stage) for further testing. At the end of stage 2, data from both stage 1

and stage 2 are used for the final confirmatory analysis. Although such phase II/III trials

save development time, they introduce statistical complexity associated with controlling

the type I error while testing multiple hypotheses and combining evidence from the two

phases. In Chapter 4 we describe how to address these issues.

In addition to the issues associated with testing phase II/III clinical trials, another

challenge raised by these trials is how to make the choice of the subpopulation(s) or the

dose(s) to continue to stage 2 after stage 1. This is the question considered in this thesis. In

Chapter 5, we develop a new method for dose selection in seamless phase II/III allowing

for the final analysis that incorporates the dose response relationship, the prior knowledge

and the stage 1 data. The dose selection procedure is evaluated using simulation studies in

Chapter 6.

The method for dose selection developed in Chapter 5 assumesthat: (1) in both

stages binary outcomes are primary endpoints, (2) there is no uncertainty on the dose-

response relationship, and (3) the seamless phase II/III ismonitored only once and there

are no opportunities for stopping early either for futilityor for overwhelming evidence

of efficacy. In Chapter 7, we describe how in future work, we intend to address these

limitations. We end the thesis by discussing the main features of the new dose selection

procedure and stating the conclusions in Chapter 8.



Chapter 2

Statistical background

In this chapter we give background on some of the statisticaltools that will be needed in the

rest of this thesis. The work in this thesis is based on binaryoutcomes, that is, occurrence

or non-occurrence of an event such as toxicity or a therapeutic effect. Hence statistical

tools reviewed in this chapter are demonstrated using binary outcomes. After describing

the technique of transformation of random variables in Section 2.1, we will describe how

to make Bayesian inference for a binary outcome parameter inSection 2.2. The chapter

ends by describing Bayesian decision theoretic techniquesin Section 2.3.

2.1 Transformation of random variables

In this thesis, we will occasionally need to determine the distribution of a random vector

when we know the distribution of another random vector with which there is one-to-one

transformation. To do this, we will use the technique of transformation of random variables

that is described in several statistics text books such as inChapter 11 of Roussas (2007).

In the rest of this section, we briefly review this technique.Let fX1,...,Xn
(x1, ..., xn) be the

value of the joint probability density of the continuous random vectorX = (X1, ..., Xn)
′.

3



4 CHAPTER 2. STATISTICAL BACKGROUND

Suppose the transformationsy1 = φ1(x1, ..., xn), ..., yn = φn(x1, ..., xn) are respectively

partially differentiable with respect tox1, ...,xn and represent one-to-one transformations

for all values within the range ofX for which fX1,...,Xn
(x1, ..., xn) 6= 0, then for these val-

ues of(x1, ..., xn), the equationsy1 = φ1(x1, ..., xn), ..., yn = φn(x1, ..., xn) are uniquely

solved forx1, ..., xn to givex1 = ψ1(y1, ..., yn), ....,xn = ψn(y1, ..., yn) and for the cor-

responding values of(y1, ..., yn), the joint probability density ofY = (φ1(X1, ..., Xn), ...,

φn(X1, ..., Xn))
′ is given by

fY1,...,Yn
(y1, ..., yn) = fX1,...,Xn

(ψ1(y1, ..., yn), ..., ψn(y1, ..., yn))|J |, (2.1)

where|J | is the determinant of the Jacobian of the transformationJ given by

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

dψ1

dy1
... dψ1

dyn

.

dψn

dy1
... dψn

dyn

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

For all the other values of(y1, ..., yn), fY1,...,Yn
(y1, ..., yn) = 0.

2.2 Review of Bayesian principle

As mentioned above, we will mostly focus on clinical trials with binary outcomes. Exam-

ples of binary outcomes in clinical trials are (1) after treatment is administered to a patient,

the patient is successfully treated or not, and (2) after treatment is administered to a patient,

the patient experiences an adverse (or toxic effect) or not.In this chapter, we will use the

first example. We will assume successful treatment (success) after treatment is a Bernoulli

process that occurs with probabilityp, that is, the probability of success isp. The number

of successfully treated patients (sn) generated using the Bernoulli process aftern subjects

have been entered in the trial will have a binomial distribution with parametersn andp,

that isSn is Bin(n, p). The objective of the clinical trial is to make inference onp.
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A common feature of phase I and phase II trials is that they aresmall studies. This

means that the incorporation of information from outside the trial is particularly attractive.

This can be achieved by using the Bayesian principle in orderto learn from previous ex-

perience. In this section, we demonstrate how to make Bayesian inference for a parameter

of interest such as the binomial parameterp. In contrast to the frequentist setting wherep

is assumed to be fixed, in Bayesian statisticsp itself is considered to be a random variable

whose distribution is continually updated as more data are collected. After datax are col-

lected, the updated distribution ofp is referred to as the posterior distribution ofp givenx,

with the density that will be denoted byπ(p|x). The Bayesian principle is centered around

Bayes’ theorem. Ifp is the parameter of interest and datax are collected, Bayes’ theorem

is expressed as

π(p|x) =
l(p|x) · π0(p)

∫

l(p|x) · π0(p)dp
, (2.2)

wherel(p|x) is the likelihood function ofp given the datax andπ0(p) is the density of

the prior distribution ofp before datax are observed. For binary outcomes, data can be

summarised by the number of successfully treated patients (sn) and the number of patients

entered in the trial (n) so that we may writel(p|sn, n) for l(p|x). Inference onp or a

function ofp is then made using the posterior distribution. For example,the posterior mean

can be used to estimate the probability of successp.

When a prior distribution chosen for some parameter leads toa posterior distribution

of the same form as the prior distribution, the prior distribution is said to be a conjugate

prior. Conjugate priors are advantageous because they may lead to integrals which can

be evaluated using analytical methods. In general numerical integration techniques are

required to make inference using the posterior distribution. Expression (2.2) assumes a

single parameterp but this could be replaced by a vector. Gelman et al. (2004) describe

making inference for several models. In this chapter, we will focus on obtaining the prior

distribution for the probability of success based on a single treatment and for parameters in
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a logistic regression model.

2.2.1 Eliciting beta prior distribution for a Bernoulli par ameter

The beta prior distribution is a conjugate prior for a Bernoulli process parameter such as

the probability of successp. The beta prior distribution for the binomial data parameter is

proposed in some clinical trial designs that will be reviewed in the next chapter and is also

used for research work outlined in the remainder of this thesis. For a Bernoulli process, the

likelihood function ofp, the probability of success, aftern patients have been treated and

sn successes have been observed is given by

l(p|sn, n) =

(

n

sn

)

psn(1 − p)n−sn (sn = 0, 1, ..., n).

If we assume thatp has a beta prior distribution with parametersa > 0 andb > 0, that is,

π0(p) = Beta(p; a, b) =
pa−1(1 − p)b−1

B(a, b)
, 0 < p < 1,

whereB(a, b) is the beta function, then using equation (2.2), the posterior distribution ofp

given(sn, n) is given by

π(p|sn, n) =
l(p|sn, n) · Beta(p; a, b)

∫

{l(p|sn, n) · Beta(p; a, b)} dp
∝ pa+sn−1(1 − p)b+n−sn−1

which is of beta form Beta(a+sn, b+n−sn). Hence a beta prior distribution is a conjugate

prior for a Bernoulli parameter.

The prior information is elicited from investigators and quantified into a relevant

distribution. For a beta prior distribution, the elicited information is quantified into a

beta distribution by using the elicited information to determine the parametersa andb in

Beta(p; a, b). For the rest of this subsection, we describe how this may be done. In addition

to being a conjugate prior for the binomial distribution parameter, a beta distribution has a
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number of attractive properties which make it appealing to use it as a prior distribution for a

binomial data parameterp. The domain ofp in Beta(p; a, b) is [0, 1] which makes it sensible

to use a beta distribution as a prior for a binomial distribution parameter which itself has its

domain[0, 1]. As shown above, if a binomial distribution parameterp is assumed to have

a beta distribution Beta(p; a, b), the posterior distribution ofp is Beta(a + sn, b+ n− sn),

wheresn is the number of successfully treated patients aftern patients have been admin-

istered a treatment. The mean of a random variablep that is Beta(a + sn, b + n − sn)

is

a + sn
a+ b+ n

. (2.3)

If a = b = 0, then expression (2.3) gives the proportion of successfully treated patients after

n patients have been entered in the trial. Thus the parametersof the beta prior distribution,

that is a and b, may be thought of as pseudo-data elicited such that the prior belief is

that if a + b patients were treated,a will be successfully treated so that the proportion

of successfully treated patients isa/(a + b). This proportion is then updated when data

(sn, n) are collected to give expression (2.3). Figure 2.1 shows beta densities with different

parameter values. The legends give the parameter values of the beta densities. For a beta

density with parameter vector(a, b) = (0.5, 10), most mass is at values ofp close to 0

while for a beta density with parameter vector(a, b) = (10, 0.5), most mass is at values of

p close to 1. For a beta density with parameter vector(a, b) = (0.5, 0.5), probability mass

is concentrated at values ofp close to 0 and 1. Whenp is Beta(1,1), the density is flat so

that this corresponds to Uniform[0,1]. When both parameters values are greater than 1, the

densities have a mode between 0 and 1. For example whenp is Beta(2,8),p = 0.1 is the

mode. Whena > 1 andb > 1 the mode is

a− 1

a + b− 2

so that whena→ ∞ or b→ ∞, the mean is approximately equal to the mode. Hence from

Figure 2.1, if the investigators do not have prior knowledgeon p, the flat prior distribution
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Figure 2.1: Beta densities with different parameter values. The legends give the values of
the parameters.

is Beta(1,1) and prior densities with parameter value(s) less than 1 should be used with

care.

In addition to the mean value of the parameter of interest, the parameter values

chosen for its prior distribution should reflect the level ofuncertainty (variance) associated

with the parameter of interest. The variance ofp which is Beta(a, b) is given by

ab

(a+ b)2(a+ b+ 1)
,

so that different sets ofa andb can result in the same mean but different variance. The

variance of the probability of successp in the density curve is exhibited by the spread of

the curve. Large values of variance (small values ofa andb) lead to flat densities reflecting

limited knowledge while small values of variance (large values ofa andb) lead to curves
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with high peaks at the mode reflecting more certainty on the true value ofp. Accordingly,

Lindley and Phillips (1976) suggest referring to curves of the beta densities plotted for

different values ofa andb during the elicitation process. In their paper, they give a good

discussion using an example of how to elicit and quantify a beta distribution. Figure 2.2

shows curves for different values ofa andb but with the same mean (0.2). As the values of

a andb increase the peaks are higher and the mode moves closer to themean 0.2. Thall and

Simon (1994) refer to Lindley and Phillips (1976) for the elicitation and quantification of

the beta distribution but they also introduce the idea of thewidth of the 90% interval (W90)

running from the 5% to 95% percentiles. An investigator is asked to provide the width of

an interval within which he/she is 90% confidentp lies. A search is then carried out to

determine values ofa andb such that the mean ofp is a/(a+ b) and the difference between

the 95th quantile and the 5th quantile is equal to the specified value. The shorter the width

the more informative is the prior distribution since the density curves will be more peaked.

2.2.2 Prior distribution for dose-response parameters

The example given above is applicable when inference is madefor the probability of suc-

cess at a single treatment dose. When more than one dose of thesame drug are tested,

some dose-response curve may be assumed and if the Bayesian principle is used to make

inference, it is necessary to give the joint prior distribution of the parameters of the dose-

response curve. Prior distributions for generalized linear models parameters were proposed

by Bedrick et al. (1996). The form of prior distribution for generalized linear models pa-

rameters proposed by Bedrick et al. (1996) generalizes the prior distribution proposed by

Tsutakawa (1975). This form of prior distributions is used in one of the phase II design

reviewed in the next chapter and will also be adopted in the dose selection procedure that

we propose in Chapter 5. Rather than describe the theory given by Bedrick et al. (1996),

we will demonstrate with the models which we are interested in. Whitehead (2006) has
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Figure 2.2: Beta curves with same mean (0.2) but different parameter values

reviewed this form of prior distribution and some of the notation used in this section is

adopted from his review.

Let p(d) denote the probability of success at dose leveld. Further suppose that given

dose, successes are independent binary outcomes with probability p(d) and thatp(d) can

be modeled by a generalized linear model. Then probabilities of success are related to the

dose levels through the formula

g(p(d)) = α + β f(d),

whereg(.) is a link function that links the probability of success (p(d)) to the linear pre-

dictor α + β f(d), whereα is the intercept parameter,β is the slope parameter andf(.)

is some transformation of the dose such as natural log of the dose so thatf(d) = log(d).

Agresti (2002) describes link functions which can be used for binary outcomes such as the

logit, probit and complementary log-log link functions. Wewill use the logit link which
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links the probability of success to the linear predictor as follows

g(p(d)) = logit(p(d)) = log

(

p(d)

1 − p(d)

)

= α+ β f(d). (2.4)

Using the proposal of Bedrick et al. (1996), rather than directly elicit prior distri-

butions for the parameter vector(α, β), prior distributions for the probabilities of success

are elicited at some dose levels. Because the dose-responsecurve (2.4) is defined by two

parameters (α andβ), prior distributions for probabilities of success are elicited at two dose

levels. Assuming these prior distributions are independent, the joint distribution of the two

probabilities of success is obtained and hence the joint distribution of the linear predictor

parameters(α, β) using transformation of random variables. If there were three parameters

in the linear predictor, prior distributions for probabilities of success would be elicited at

three dose levels and so on. For the dose-response curve (2.4), suppose the prior distribu-

tions for probabilities of success are elicited at dose levels di, i = −1, 0. These dose levels

do not have to be among the experimental dose levels. In this thesis, we will assume beta

prior distributions Beta(pi; ai, bi), i = −1, 0 at dosei can be elicited as described above

wherepi denotes the probability of success at dosei andai andbi may be interpreted as

pseudo-data elicited as described above. Assuming the elicited beta prior distributions at

the two doses are independent, then the joint prior distribution of p(d−1) andp(d0) is given

by

0
∏

i=−1

p
(ai−1)
i (1 − pi)

(bi−1)

B(ai, bi)
.

To obtain the joint prior distribution ofα andβ which we denote byπ0(α, β), the

technique of transformation of random variables describedin Section 2.1 is used. In equa-

tion (2.1), letn = 2, X1 = p(d−1), X2 = p(d0), y1 = α, y2 = β. Assuming the logit link

(2.4),

ψ1(α, β) = p(d−1) = p−1 =
exp(α + β f(d−1))

1 + exp(α+ β f(d−1))
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and

ψ2(α, β) = p(d0) = p0 =
exp(α + β f(d0))

1 + exp(α + β f(d0))
,

so that using equation (2.1),

π0(α, β) =

0
∏

i=−1

p
(ai−1)
i (1 − pi)

(bi−1)

B(ai, bi)
|J |, (2.5)

wherepi, (i = −1, 0) are functions ofα andβ as defined above. The partial derivatives

are

dψi
dα

= pi(1 − pi) and
dψi
dβ

= pi(1 − pi)g(di) i = −1, 0

so that

|J | = |g(d−1) − g(d0)|
0
∏

i=−1

(pi)(1 − pi)

which when substituted in equation (2.5) gives

π0(α, β) = |g(d−1) − g(d0)|
0
∏

i=−1

pai

i (1 − pi)
bi

B(ai, bi)
.

The transformation of the dose that we are going to use in thisthesis is the natural log.

Hence the joint prior density ofα andβ is given by,

π0(α, β) =

0
∏

i=−1

pai

i (1 − pi)
bi

B(ai, bi)

∣

∣

∣

∣

log

(

d−1

d0

)
∣

∣

∣

∣

. (2.6)

Suppose that a new drug is tested atk doses. Let the number of treatment successes and

treatment failures at dosedi (i = 1, ..., k) be denoted byai andbi respectively. The likeli-

hood function of(α, β) given the observed data is

l(α, β|x) =
k
∏

i=1

(

ni
ai

)

pai

i (1 − pi)
bi ,
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whereni = ai + bi is the number of patients allocated to dosedi so that updating the

distribution of (α, β) given by equation (2.6) with these data using equation (2.2), the joint

posterior density forα andβ is

π(α, β|x) ∝
k
∏

i=−1

pai

i (1 − pi)
bi , (2.7)

where

pi =
exp(α + β log di)

1 + exp(α + β log di)
, i = −1, 0, 1, ..., k.

The form of the posterior distribution given by equation (2.7) has the same form as the prior

distribution given by equation (2.6) so that this prior is a conjugate prior for (α, β). Eliciting

the prior distribution for (α, β) as described in this section may also have the advantage of

being easier and more intuitive since it involves elicitation of the probabilities of success

at several doses from investigators rather than direct elicitation of the joint probability of

(α, β).

2.3 Bayesian decision theory

Bayesian decision procedures are most common and seem appropriate in early clinical

trials. For example, Stallard (1998) points out that the outcome of a phase II study is a

decision of whether to continue with further evaluation or to abandon the therapy due to

lack of efficacy or high toxicity or cost and hence argues for Bayesian decision techniques.

Decision theory involves defining gain functions for different actions (or decisions) that

can be taken and comparing the expected gain from each action. The best decision is the

one with the highest expected gain. Rather than think of the gain, it is also possible to think

of losses and hence take the decision with the least expectedloss. Lindley (1985) gives a

good introduction to the basic concepts in decision theory.



14 CHAPTER 2. STATISTICAL BACKGROUND

Before giving gain functions for complex decision problems, we first consider the

simplest decision making problem where there are only two decisions to choose from and

only two states of nature can occur. Table 2.1 summarizes this simple problem for a drug

company with a capital base of£m from which it can choose whether or not to invest£c

in a clinical trial to test efficacy of a new drug. Decision 1 is“to invest” (d1) and decision

2 is “not to invest” (d2). At the end of the clinical trial, the two states of nature are the

new drug will be concluded to be efficacious (“drug is efficacious”) and the new drug will

be concluded not to be efficacious (“drug is not efficacious”)with probability θ1 andθ2

respectively, whereθ1 +θ2 = 1. Suppose that if the new drug is concluded to be efficacious

at the end of the clinical trial, the drug company will make£k from marketing the new

drug. Then if the drug company decides to undertake the drug development, and the drug

is concluded to be efficacious, the drug company will improveits capital to£(m− c+ k)

while if the drug is concluded not to be efficacious, then its capital will decrease by£c

to £(m − c). If the drug company chooses not to undertake the drug development, the

drug company will neither lose nor gain anything regardlessof whether the drug will have

been concluded effective or not as shown in row corresponding to decisiond2. To compare

decisiond1 andd2, the expected gain function for decisiondi (i=1,2) is defined by

E(di) =

2
∑

j=1

θjGi(θj), (2.8)

whereGi(θj) is the final capital base if statej (j = 1, 2) occurs for decisioni (i=1,2). The

resulting expected gains from decisiond1 andd2 are respectively

E(d1) =
2
∑

j=1

θjG1(θj) = m+ kθ1 − c and E(d2) =
2
∑

j=1

θjG2(θj) = m, (2.9)

whereGi(θj) (i = 1, 2) is as defined above. If the initial capital base (£m) invested is

ignored so thatGi(θj) is the gain if statej occurs for decisioni, then the expected gains
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Table 2.1: Simplest decision making problem
State of Nature

Drug efficacious Drug not efficacious
Decision (Prob of this state isθ1) (Prob of this state isθ2)
d1 : Invest m− c+ k m− c
d2 : Do not invest m m

are evaluated as follows

E(d1) =
2
∑

j=1

θjG1(θj) = kθ1 − c and E(d2) =
2
∑

j=1

θjG2(θj) = 0. (2.10)

The two expressions (2.9 and 2.10) show that the difference in expected fortune between

decisionsd1 andd2 only depends on the amount the drug company will make from selling

the new drug if it is concluded to be effective and the amount it will lose if the new drug

will be concluded not to be effective. Hence the gain functions can be compared relative to

any baseline.

In the example of Table 2.1, the decision is whether to investor not to invest. A more

natural decision in clinical trials is whether to proceed from one phase of a clinical trial to

the next phase. For example, in a phase II study, one may want to choose between a decision

to proceed from phase II to phase III (d1) and decision to abandon drug development after

the phase II study (d2). Another example would be a phase II clinical trial that allows more

than one inspection of data during the trial. Before the finalinspection, one may choose to

stop the phase II study and proceed to phase III study (d1), stop phase II study and abandon

drug development (d2) or continue with the phase II study and make another inspection

(d3). Thus the number of decisions to choose from may be more than2 but often will be

finite.

Further in Table 2.1, the state of nature is that the drug is efficacious, in a clinical trial

the unknown state of nature would be the probability of efficacy for an experimental drug,

denoted byp ∈ [0, 1]. In Bayesian decision theory, the decision maker’s prior knowledge of

p is encoded by a prior distributionπ0(p) (French and Insua, 2000). Then data are observed
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that are drawn from a distribution that depends on the unknown state of naturep. These

data are used to update the distribution ofp using the Bayes’ theorem given by equation

(2.2) resulting to a posterior distributionπ(p|x). Then the expected gainGa, for action

a ∈ D, whereD is the set of actions that may be chosen is given by

∫ 1

0

Ga(p, n)π(p|x)dp, (2.11)

whereGa(p, n) is the gain associated with actiona and depends on the probability of suc-

cessp and the number of patients in the trialn. To give an example of the form ofGa(p, n),

suppose in a phase II clinical trial one of the actions that may be taken is to proceed to phase

III. Suppose the average amount of money required to treat one patient in the phase II trial

is k and the amount required to test a drug in a phase III trial ism ≥ 0. After the phase III

trial, the company gets a reward denoted byl ≥ 0 which depends on the probability that

the drug is concluded effective by a phase III clinical trial. This probability is given by the

power function of the test denoted byκ(p). Then the gain may be expressed as

−nk −m+ lκ(p),

which is 0 (baseline value) less the expenses in phase II and phase III plus the reward after

phase III. More gain functions are defined in the next chapter.



Chapter 3

Clinical trials

In the introduction, we mentioned that in drug development,clinical trials are categorized

into three phases. In this chapter, we will first in Section 3.1 give the broader definition

of a clinical trial and the definition of clinical trials in the development of a new drug and

then in Sections 3.2, 3.3 and 3.4 respectively, we will give the objective and review some

of the statistical models used to design and analyse clinical trials in phase I, phase II and

phase III. Most of the models reviewed in this chapter will assume that the clinical trials

are carried out in the traditional set-up where each phase ofa clinical trial is carried out

separately.

3.1 What is a clinical trial?

In this section, we define a clinical trial, describe the drugdevelopment process, and de-

scribe the different phases of a clinical trial. The sectionwas compiled from various lit-

erature. Some of the text books used are Wang and Bakhai (2006) and Cook and DeMets

(2008). The papers reviewed in later sections were also usedin developing this section. A

clinical trial is a research study to test how well a new intervention such as a new therapy or

17
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a different mode of administration of an existing drug workson people. We will consider a

clinical trial in the development of a new drug. The broad aimof a clinical trial in the de-

velopment of a new drug is to find out whether there is a dose (ordose range) and schedule

at which the drug can be shown to be simultaneously safe and effective, to the extent that

the risk-benefit relationship is acceptable. The particular subjects who may benefit from

the drug, and the specific indications for its use, also need to be defined.

The modern drug development process involves a series of experiments that are

carried out with specific objectives. First, tests are carried out in the laboratory in isolation

from living organisms. After obtaining promising results,the next step is to test the new

substance in animals (animal pharmacological studies) before the testing can proceed to

human beings. The testing in human beings is what is referredto as a clinical trial and is

categorized into phase I clinical trials, phase II clinicaltrials and phase III clinical trials.

Phase I is the stage where the drug is first tested in human beings. The primary ob-

jective is to determine the safety of the new therapy. Several dose levels are made available

for testing. The dose levels are determined from the animal pharmacological studies. If

a safe dose (or dose range) is found, the drug is then tested for biological activity (anti-

disease activity) in a small clinical trial. Such a trial is referred to as a phase II clinical trial.

Before the product is released into the market, a confirmatory trial (phase III trial) has to be

carried out. While phase I and II trials could include only a treatment arm, phase III trials

are almost always randomized studies comparing a control (standard therapy) arm and a

treatment (new drug) arm.

3.2 Phase I clinical trials

The primary objective of phase I clinical trials is to study toxicity of the new drug and

determine a dose that has acceptable toxicity (tolerable dose) for further testing. In this

section we give the basic set-up of phase I clinical trials and give some of the designs used
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to achieve this primary objective. The basic set-up of phaseI clinical trials described in

Section 3.2.1 is generally adopted from combining materials in the articles later cited in

this section.

3.2.1 Basic set-up of a phase I clinical trial

Phase I clinical trials are typically small, having as few as10 participants while rarely

exceeding 30 participants. Except for cancer trials (oncology), where subjects are usually

patients who are at an advanced stage of the disease and/or have failed to respond to the

standard therapies, healthy volunteers are used. In oncology, sick patients are used because

potential cancer drugs are known to be highly toxic and it would be unethical to administer

them to healthy volunteers who have not been diagnosed with cancer. These are normally

patients who have not responded to existing therapies. Since in oncology the subjects are

patients, it may be desired that most of the patients available are allocated to the dose that

will be proposed for testing in the next phases of a clinical trial. This is to enable them

have maximum benefit in case the new cancer therapy has therapeutic effect on this group

of patients.

Most designs, such as those proposed by O’Quigley et al. (1990), Babb et al. (1998)

and Durham et al. (1997) among others, have been developed for cancer trials but can be

modified for other therapies. Supposek different doses,d1 < d2 < ... < dk, are chosen

for consideration in an oncology trial and we wish to establish the maximum tolerated

dose (MTD). We define MTD as the dose,d∗, for which the probability of a medically

unacceptable dose limiting toxicity (DLT) is equal to some specified valueθ. That is MTD

is the dosed∗ such that

Prob{DLT|d∗} = θ.

The value ofθ is the maximum accepted probability of a DLT and is chosen depending on

the nature of the DLT and the potential benefit expected from the drug. The reason that it
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is not necessarily the safest dose that is sought is because it is widely assumed that toxicity

is a prerequisite for antidisease activity such as antitumor activity in cancer treatment. The

MTD d∗ is not necessarily one of the experimental dosesd′is, i = 1, ..., k. It is hoped that

the lowest dose (d1) is safe and that

d1 ≤ MTD ≤ dk.

Most investigators assume that there is an underlying dose-response relationship but not

all phase I designs explicitly involve fitting the dose-response curve. Each dose level has

a corresponding probability of DLT. The probability of DLT is assumed to be monotonic

increasing in dose. Diagrammatical representation of the set-up is given by Figure 3.1. The

experiment is performed usingk dose levelsd1, ..., dk whose respective probabilities of

DLT are θ1, ..., θk. With the maximum accepted probability of DLT denoted byθ, the

dose that corresponds to this value isd∗ as is shown in the figure. In Figure 3.1, it has been

assumed that the MTD has been captured by the experimental dose ranged1 to dk.

For safety reasons, the available patients (volunteers) are sequentially entered into

the trial in small cohorts. Each cohort usually includes at most three volunteers. The

early designs are intuitive and approach the MTD conservatively from the lowest dose

(d1) while recent designs are based on statistical principles where the cohort of volunteers,

for example in the Bayesian setting, are allocated to the experimental doses based on the

predictive probability of toxicity at the experimental doses.

In addition to allocation based on safety reasons, ethical issues based on other fac-

tors are also considered and hence some patients may be allocated to different doses from

those which the design proposes. Investigators’ opinion may lead to allocation of a trial

subject to a different dose from the one the design proposes.For example, for a therapy

which seems to have therapeutic effect, if a design based on safety only proposes a lower

dose whereas a higher dose may be fairly safe, the investigator(s) may want a very sick

patient to be allocated the higher dose.
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Figure 3.1: Phase I set-up

3.2.2 Early designs

Storer (1989) describes a traditional design (which he calls design A) and also defines three

more designs (B, C and D). In design A, whose flowchart is givenby Figure 3.2, cohorts

of 3 patients are treated at a time starting from the lowest dose. The patients’ responses

are observed before allocating the next cohort to one of the experimental doses. If no DLT

is observed in all 3 patients, escalation to the next higher dose occurs. If 2 or 3 DLTs are

observed, the MTD is reached and the trial stops. If only 1 patient experiences a DLT, 3

more patients are allocated to the same dose and if no extra DLT is observed, escalation

again continues; otherwise the MTD is reached and the trial stops.

Designs B, C and D are “up and down” schemes in which both escalation and de-

escalation takes place. In design B, one patient is treated at a time. If a DLT occurs, the

next patient is treated at the next lower dose; otherwise escalation to the next higher dose

takes place. The only difference between designs C and B is the escalation rule. For design

C, escalation takes place after two consecutive patients treated at the same dose do not

experience a DLT. For design D, cohorts of 3 patients are treated at a time. Escalation

occurs if no DLT is observed and de-escalation if more than 1 DLT is observed. If only

1 DLT is observed, then the next cohort is treated at the same dose level. A flowchart of

this procedure is given in Figure 3.3. The difference between designs A and D is that D
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Figure 3.2: Flowcharts of the traditional design (Design A)

allows de-escalation to lower doses and all available patients are entered in the trial. For

this design, there is no outcome that leads to stopping so that all available patients are

tested.

Storer has proposed two two-stage designs, denoted by BC andBD which combine

the single-stage designs (that is B followed by either C and D). The first stage follows

design B until the first toxic response occurs. From the pointat which the next patient is

entered at the next lower dose level, the second stage design(C or D) is implemented. He

showed the two stage designs (BC and BD) estimated the MTD with reduced bias relative

to the single stage designs A, C and D.

In all these designs (A, B, C, D, BC and BD), the dose to be recommended for

testing in further clinical trials depends on the results ofthe highest dose administered to

the participants. If this highest dose administered is deemed nontoxic, it is recommended

for further testing. Otherwise, the immediate lower dose isrecommended.
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Figure 3.3: A variation of the traditional design (Design D)

3.2.3 The continual reassessment method

The Continual Reassessment Method (CRM) was developed by O’Quigley et al. (1990) for

a cancer trial. Several authors, for example Babb et al. (1998), Whitehead et al. (2006), Fan

and Wang (2006) and Durham et al. (1997) among others, have compared their methods’

operating characteristics with those of CRM. LetXj be a binary random variable (that is,

Xj ∈ {0, 1}), where 1 denotes occurrence of a DLT and 0 nonoccurrence of aDLT for the

jth patient (j = 1, ..., n) entered in the trial. Further, as above, letd∗ (not necessarily one

of the experimental dose levelsd1 < d2 < ... < dk) be the MTD. The probability of DLT

is modeled by a simple dose-response curveψ(d, a) that depends on the dose leveld and

a single parametera. The dose-response function is assumed to be monotonic ind anda

and that for somea, saya0, from the setA of possible values ofa, we haveψ(d∗, a0) = θ,

whereθ is the maximum accepted probability of DLT.

The version of the CRM proposed by O’Quigley et al. (1990) uses the Bayesian

principle where the parametera is considered to be a random variable. Let(x1, ..., xj−1),

the data before experimentation on thejth patient, be denoted byxj and letπ(a|xj) denote

the prior density of the parametera before experimentation on thejth patient. The form of

π(a|xj) is given later. Whenj = 1, π0(a) = π(a|x1) is the prior density fora before the
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experimentation. They takeA = (0,∞) so that

∫ ∞

0

π(a|xj)da = 1, (j = 1, ..., n).

Using the accumulated information on the(j − 1) patients responses, the probability of

DLT at dose leveli (denoted byθij) is estimated by

θij =

∫ ∞

0

ψ(di, a)π(a|xj)da, (i = 1, ..., k). (3.1)

This is the expected value of the probabilities overA. As an approximation to equation

(3.1), O’Quigley et al. (1990) suggest one could obtain the posterior mean ofa and substi-

tute this in the dose-response function resulting in a simple to evaluate estimate ofθij given

by

θ
′

ij = ψ(di, ā(j)), (i = 1, ..., k), ā(j) =

∫ ∞

0

aπ(a|xj)da.

We continue explanation of the CRM usingθ
′

ij but the same procedure would be followed

if one chose to useθij . In order to determine the best dose to allocate to thejth patient,

the estimates of probabilities of DLTθ
′

ij , (i = 1, ..., k) are compared with the accepted

proportion of DLTθ by defining some measure of distance∆ of θ
′

ij from θ. A commonly

used choice is the absolute difference∆(θ
′

ij , θ) = |θ′

ij − θ|. The jth entered patient is

assigned to the dosedi such that∆(θ
′

ij , θ) is minimized.

Given the response of thejth patient, which updates the knowledge abouta0, the

posterior distributionπ(a|xj+1) is obtained fromπ(a|xj) using Bayes’ formula given by

equation (2.2). The likelihood of the outcome for thejth patient is Bernoulli given by

φ(d(j), xj, a) = (ψ(d(j), a))xj{1 − ψ(d(j), a)}1−xj ,

whered(j) is the dose allocated to thejth patient andψ(d(j), a) is the probability of DLT

given by the dose-response curveψ(d, a). The prior distribution ofa before experimenta-
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tion with jth patient isπ(a|xj) so that the posterior distribution has density equal to

π(a|xj+1) =
φ(d(j), xj, a)π(a|xj)

∫∞

0
φ(d(j), xj, u)π(u|xj)du

=
π0(a)

∏j
l=1 φ{d(l), xl, a}

∫∞

o
π0(u)

∏j
l=1 φ{d(l), xl, u)}du

.

Patients are entered in this way until the results of the lastpatient entered are avail-

able. The recommended dose level for further testing will bethe dosedi (i = 1, ..., k) such

that∆(θ
′

i,n+1, θ) is minimized. As seen in the allocation of the patients to thedose levels,

the design takes into consideration the large potential gain to the patients by aiming to treat

as many patients as possible at the MTD. This makes it superior to the designs that begin

testing at the lowest dose; these designs tend to under-treat more patients particularly if the

MTD is the highest dose considered for experimentation.

O’Quigley and Shen (1996) proposed a likelihood based version of the CRM (CRML).

Suppose(j − 1) subjects have been entered in the trial and a dose-response function is de-

fined as before, then the likelihood is equal to

L(a) =

j−1
∏

l=1

(ψ(dl, a))
xl{1 − ψ(dl, a)}1−xl,

wheredl ∈ {d1, ..., dk} is the dose level allocated to patientl. To obtain an estimate

for a using the maximum likelihood method, the derivative of the logarithm of the above

expression is obtained which results in the score function

U(a) =

j−1
∑

l=1

{xl
ψ

′

ψ
(dl, a)} −

j−1
∑

l=1

{(1 − xl)
ψ

′

1 − ψ
(dl, a)}. (3.2)

When there is heterogeneity in the outcomes (that is, some patients with DLT and some

without DLT), then the equationU(a) = 0 has a solution. The solution is given bya = âj ,

the maximum likelihood estimate ofa. The maximum likelihood estimate for probability

of a DLT at dosedi for patientj is ψ(di, âj), whereâj is assumed to exist. Patientj is
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allocated to dosedi such that∆(ψ(di, âj), θ), i = 1, ..., k, is minimized. The recommended

dose level for further testing will be the dosedi such that∆(ψ(di, ân+1), θ) is minimized.

Before heterogeneity, that is, when all patients experience DLTs or all patients do

not experience DLTs, the equationU(a) = 0 has no solution so that it is not possible to

obtain the maximum likelihood estimate ofa and consequently the maximum likelihood

estimateψ(di, âj). Before heterogeneity in results is observed, O’Quigley and Shen (1996)

suggest using the Bayesian CRM or one of the early designs described above until a DLT

is observed if the first outcome is a non-DLT or vice versa. This is because the early

designs do not involve estimating a parameter while allocating patients to a dose and in the

Bayesian CRM, a prior distribution fora is defined which is updated by the data so that we

do not have problem of estimatinga through maximum likelihood estimate. Comparison

using different starting procedures show that the final results, that is the dose recommended

for testing in the next phases of a clinical trial, are largely robust to the method used before

heterogeneity is achieved. Operational characteristics would be expected to differ when

the lower doses have a very low probability of DLT where starting with the traditional

design, more patients are allocated to the lower dose levels. However, the probabilities

of recommending the experimental doses for further testingare similar to starting with

the Bayesian CRM. Comparison of likelihood CRM and BayesianCRM using simulation

studies indicated similar results.

O’Quigley and Shen (1996) performed simulation studies andcompared the prob-

abilities of recommending the experimental doses for further testing using the following

three methods; (i) the Bayesian CRM, (ii) CRML while starting with traditional design

until heterogeneity is observed and (iii) CRML while starting with Bayesian CRM until

heterogeneity is observed. The probabilities of recommending each of the experimental

doses for testing in the next phases of a clinical were similar for the three methods. Of par-

ticular interest is the scenario for which the lower doses have a very low probability of DLT,

where when the traditional design is used before heterogeneity, many patients are allocated
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to the lower doses. Despite the difference in operating characteristics with this scenario,

the probabilities of recommending experimental doses for testing in the next phases of a

clinical were similar in the three methods. The Bayesian CRMand CRML started with

Bayesian CRM used the same prior distribution fora and the probabilities of recommend-

ing the experimental doses were very close. O’Quigley and Shen (1996) observed that if

less informative prior distributions were used, the results of these two methods would be

closer.

3.2.4 Overdose control

An attractive idea for phase I clinical trials is to impose a safety constraint in order to

minimize the chance of exposing patients to dose(s) with probability of DLT above that of

the MTD. This can be achieved by requiring that a dosed cannot be administered if the

predictive probability of a DLT at that dose is greater than apre-specified value given the

already collected data. Whitehead et al. (2006) propose an explicit consideration which

they argue is more transparent. For example, using the Bayesian CRM, safety may be

incorporated by allocating thejth patient to dosedi such that∆(θ
′

ij , θ) is minimized and

θ
′

ij ≤ θT , where∆, θ
′

ij andθ are as defined above andθT is the probability of DLT which

would be considered too high to allocate patients.

Alternatively, the constraint can be incorporated in the statistical model. Babb et al.

(1998) have proposed a phase I clinical trial design that incorporates safety in the statistical

model. The model selects a dose for each patient so that the predicted probability that the

dose exceeds the MTD is less than or equal to some pre-specified valueα. This is accom-

plished by also considering the MTD to be random variable with a prior distribution and

then computing the posterior cumulative distribution function (CDF) of the MTD. We will

only give the rule of how the patients are allocated to the doses and not the details of how

to obtain the distribution of MTD (Babb et al. (1998) give an example of the distribution of
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MTD for binary outcomes). For thejth (j = 1, ..., n) patient, if allocation is to a dosed,

the probability thatd exceeds the MTD is related to the posterior CDF of the MTD and is

given by the functionπj defined as

πj(d) = Prob{MTD ≤ d|xj},

wherexj is the data at the time ofjth patient, that is, the responses and the dose levels

administered. Hence,πj is the conditional probability that dosed exceeds the MTD given

the currently available data. Based on this criteria, thejth patient is allocated to the dose

leveldi such that

πj(di) = α.

That is, each patient is allocated to a dose so that the predicted probability it exceeds the

MTD is equal toα. Babb et al. (1998) assume that any dose is available within the experi-

mental dose range. If only a distinct number of doses are available, thejth patient may be

allocated to the highest dose leveldi such that

πj(di) ≤ α.

3.3 Phase II clinical trials

The primary objective of phase II clinical trials is to studyefficacy of the new drug in

comparison with the standard treatment(s). Hence, although such studies can be carried

out in a single arm setting, the trials are inherently comparative. In addition to efficacy,

consideration of toxicity (safety) and cost of the trial mayalso be incorporated in a phase II

trial. The trials are used to determine whether to proceed toa phase III trial depending on

the efficacy level, evaluation of toxicity and cost involvedin the development of the drug.

Designs utilizing frequentist techniques as well as purelyBayesian and Bayesian decision
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techniques have been proposed. After outlining the set-up of phase II clinical trials, we will

give a review of the popular designs and the emerging new designs.

3.3.1 Set-up of phase II clinical trials

For ethical reasons, it is often important to monitor the outcomes for patients in a phase

II clinical trial. For this reason, phase II trials are sometimes designed such that at least

two inspections are carried out so that there are opportunities to stop early either for futility

or highly promising results before all the patients available for phase II testing are entered

into the trial. Suppose there arek inspections where all remaining patients are entered into

the trial after the(k− 1)th inspection. At theith inspection(i = 1, ..., k− 1), three actions

(decisions) can be taken

• Action A: Stop the phase II study and abandon development of the drug

• Action P: Stop the phase II study and proceed to phase III study

• Action C: Continue with the phase II study and make the(i+ 1)th inspection.

Focussing on studies in which actions are based only on efficacy, Action A is taken when

evidence of efficacy is below a certain level so that the new drug is not promising. The

motivation for Action A is that patients should not continueto be exposed to a drug that

is clearly not effective. Action P is taken when the evidencefor efficacy of the new drug

is high enough to mean that more evidence on efficacy from subsequent inspections in

phase II is not required. The motivation for Action P is that if based on accumulated data

at theith (i = 1, ..., k − 1) inspection, there is high probability the new drug is more

beneficial compared to the standard drug, the trial should proceed to phase III stage to

reduce the development duration for the new drug. Reducing the development duration

avoids delay of potential benefit to the society if the new drug will be concluded better than

the standard treatment after the phase III stage and saves cost for the drug company because
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fewer patients are recruited and treated. Also, reducing the development duration increases

profit to the drug company because lesser time of the patent life is used to develop the new

drug. On the other hand Action C is taken when the drug shows evidence of efficacy but

not strong enough to suggest stopping the phase II testing after theith (i = 1, ..., k − 1)

inspection to proceed to phase III testing. At thekth (last) inspection only actions A and P

can be taken.

In some settings, not all three actions are considered. For example some trials allow

for action P only at thekth inspection; that is, they do not allow for early stopping of phase

II due to highly promising results from the new drug and proceeding to phase III before all

trial subjects are treated and observed. Decision (action)boundaries depend on the design

being utilized. For binary data, it makes sense action P willbe taken if enough successes

are observed, action A will be taken if too few successes are observed and action C will be

taken if the number of successes is between the number of successes required to take action

A and the number of successes required to take action P. A pictorial representation of the

decision boundaries is shown in Figure 3.4. In the general case, before the last inspection,

if all the three actions can be taken at theith inspection (i = 1, .., k − 1), two valuesUi

andLi (Li < Ui) are predetermined. The two values are used as the decision boundaries

for the action to be taken. Suppose at theith inspection the total number of treated patients

in the phase II trial isni andsi are treated successfully. Ifsi < Li, drug development is

abandoned (Action A). Ifsi > Ui, phase II trial is stopped and drug development proceeds

to phase III (Action P). On the other hand, ifLi ≤ si ≤ Ui, more patients are treated and

(i + 1)th inspection is made (Action C). If the design does not allow Action P, no upper

valuesU ′
is in Figure 3.4 are defined.
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Figure 3.4: A phase II setting allowing for 3 actions at each inspection

3.3.2 Frequentist designs

Frequentist designs focus on determining decision boundaries that control the error rates.

Suppose that the true probabilities of success using the standard treatment and the new drug

arep0 andp1 respectively. Then the new drug may be considered to be sufficiently more

efficacious than the control treatment ifp1 ≥ p0 + δ, whereδ > 0 is a clinically relevant

improvement of the new drug over the standard treatment. Thehypothesis would then be

to testH0 : p1 = p0 VsH1 : p1 ≥ p0 + δ. The experiment is set up such that the error of

rejectingH0 when actuallyH0 is true (type I error, usually denoted byα) and the error of

concludingH0 when in realityH1 is the truth (type II error, commonly denoted byβ) are

controlled to some specified levels.

Making a type II error in a phase II clinical trial means that treatments that offer

larger benefits compared to the existing treatments are rejected based on a small sample

size clinical trial. Schoenfeld (1980) notes that investigators do not want to reject treatments

with larger benefit on the basis of small sample size trials. Making a type I error means that

a new treatment that is not better than the existing treatment is concluded to be better than

the existing treatment. Schoenfeld (1980) observes that Type I error is minimized in a large



32 CHAPTER 3. CLINICAL TRIALS

phase III clinical trial. Hence unlike in phase III clinicaltrials, Schoenfeld proposes that

in a phase II clinical trial, preference should be given to minimizing type II error (hence

increasing the power; power= 1 − β). He proposes setting type II error to less than 0.10

and type I error to less than 0.25.

Gehan (1961) proposed a design which has had considerable application in the past.

The design has two stages. He stated that two decisions can bemade

• Decision I: Drug is unlikely to be effective in a proportionp1 of the patients or more

• Decision II: Drug could be effective in a proportionp1 of patients or more.

When Decision I is made at inspection 1, Action A is taken while if Decision II is made,

Action C is taken. There is no opportunity for Action P. Gehanillustrated how to determine

the decision boundaries by takingp1 = 0.20. With p1 = 0.20, the chance of consecutive

treatment failures is summarized in Table 3.1. The probability of treatment failure is1 −
p1 = 0.8. Assuming the observations are independent, the probability of i (i = 1, ..., 14)

consecutive failures is(0.8)i. The chance of at least 1 success afteri patients will then be

given by1− (0.8)i. For example as shown in the table, the chance of 3 consecutive failures

is (0.8)3 = 0.8 × 0.8 × 0.8 = 0.512 and the chance of at least 1 success after 3 patients

have been treated will be1 − (0.8)3 = 0.488.

Supposing that 14 patients are inspected at the first inspection, Gehan (1961) pro-

posed decision boundaries summarized in Table 3.2. Action Ais taken if they are 14

consecutive failures while Action C is taken if 1 or more treatment successes out of the 14

patients is observed. Withp1 = 0.2, the probability of taking Action A is 0.044. That is,

type II error is controlled at less than 5% and hence the chance of concluding the drug may

be working when true probability of success is 0.2 (power) isgreater than 95%. On the

other hand, using the same ideas, if one is prepared to accepta type II error rate of 0.1, 11

patients are required at the first inspection where as beforeAction A is taken if there are 11

consecutive failures and Action C is taken otherwise.
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Table 3.1: Chance of successive treatment failures when probability of success is 0.2
CONSECUTIVE CHANCE OF TREATMENT FAILURE IN GIVEN

PATIENTS CONSECUTIVE NUMBER OF PATIENTS
1 0.8
2 0.8×0.8=0.64
3 0.8×0.8×0.8=0.512
. .
. .
8 0.168
. .
. .

11 0.086
. .
. .

14 0.044

The number of additional subjects for the second stage is determined so that the

true effectiveness of the drug is estimated with a given precision, i.e, standard error. The

standard error of the estimated proportion of the treatmentsuccesses after the first sample

of n1 patients is
√

p(1 − p)

n1
,

wherep is the proportion of treatment successes in the first sample and n1 the size of the

first sample. If the proportion of successes is approximately the same for future patients,

the standard error with the total number of patients is about
√

p(1 − p)

n2

, (3.3)

wheren2 is the combined size of the first and the second stage samples andp is the same as

above. The second sample number(n2 − n1) can be determined so that approximately the

required precision will result. It is hoped thatp is near the true rate of treatment successes.

A more conservative value ofp to substitute in equation (3.3) would be the 75% confidence

limit for the true rate of successes as derived from the first sample.
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Table 3.2: Decision boundaries at inspection 1 using Gehan’s method
TREATMENT SUCCESSES ACTION

0 Drop drug
1 Include more patients in
.
. study to pinpoint
.

14 effectiveness

The sample size for second stage using Gehan’s (1961) methoddepends on the

success rate in the first stage. Also, Gehan’s design controls the error rates for the first

inspection only. Simon (1989) proposed an optimal two-stage design that like Gehan’s

method allows for Actions A and C but the second stage sample size does not depend on

first stage success rate and his design controls the error rates for the entire phase II trial.

At the first inspection, the number of successes,S1, from n1 patients is observed. A lower

boundL1 is predetermined so that ifS1 ≤ L1, action A will be taken. Otherwise action

C is taken, with a further(n2 − n1) treated at the second stage. A lower boundL2 for the

second stage is also set such that if the total number of successes (in both stages)S2 ≤ L2,

development of the drug will be abandoned.

The probability of treatment success depends on the true probability of success,

p, for the new drug. Assuming that the responses from the patients are independent and

identically distributed as Bernoulli with parameterp the probability ofi (i = 0, 1, ..., n1)

successes in the first stage is Bin(n1, p). Thus the probability of abandoning the drug at

first stage, that is prob(S1 ≤ L1), is given by

L1
∑

i=0

(

n1

i

)

pi(1 − p)n1−i = FB(L1; p, n1), (3.4)

whereFB denotes the cumulative distribution function of a binomialdistribution. Action A

is taken at the end of the second stage ifS1 = i (for i ≥ L1 + 1) and(S2 − S1) ≤ (L2 − i).
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Thus the probability of proceeding at stage 1 and abandoningat stage 2 is expressed as
n1
∑

i=L1+1

prob(S1 = i andS2 − S1 ≤ L2 − i; p).

Since(S2−S1) is binomial with parameter vector(n2−n1, p), with (S2−S1) independent

of S1, the above probability is
n1
∑

i=L1+1

L2−i
∑

j=0

(

n1

i

)

pi(1 − p)n1−i

(

n2 − n1

j

)

pj(1 − p)n2−n1−j

=

n1
∑

i=L1+1

fB(i;n1, p)FB(L2 − i;n2 − n1, p), (3.5)

wherefB denotes a binomial mass function and as beforeFB denotes the cumulative dis-

tribution function of a binomial distribution.

The expected sample size isEN = n1 + (1 − PET)(n2 − n1) where PET is the

probability of early termination after the first stage. Parametersp0, p1,α andβ are specified

and then the two-stage design that satisfies the error probability constraints and minimizes

the expected sample size when the response probability isp0 is determined. Optimization

is taken over all values ofn1 and(n2−n1) as well asL1 andL2. This is found by searching

over the range ofL1 ∈ (0, n1) and for each value ofL1 determine the maximumL2 that

satisfies the type II error.

3.3.3 A Bayesian design

Thall and Simon (1994) have proposed a Bayesian design for phase II clinical trials. LetE

denote the new (experimental) drug andS the standard (control) drug and that all patients

entered in the trial receive new drug. Further letpE andpS respectively denote the proba-

bilities of success after treatment with the new drug and thestandard treatment. The prior

distributions forpE andpS are respectively denoted byπ0(pE) andπ0(pS). Because Thall

and Simon (1994) assume that all patients in the phase II trial will receive the new drug, the

posterior distribution ofpS after the phase II trial is equal to its prior distributionπ0(pS).
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Let the response for thejth patient in the phase II clinical trial,Xj (j = 1, 2, ...)

take values 0 and 1 for treatment failure and successful treatment respectively. Assuming

the responsesX
′

js are independent, the total number of successes aftern patients,Sn =

X1 + X2 + ... + Xn, is Bin(n, pE). Suppose in an experiment aftern patients,sn are

treated successfully, then the posterior distributions for pE after observing data(sn, n) is

denoted byπ(pE|sn, n). Assuming an improvement of sizeδ is of medical significance, the

objective is to determine the probability that the effect ofthe new treatment (pE) is greater

than the effect of the standard treatment plusδ (pS + δ) expressed as

λ(sn, n; πS, πE , δ) = Prob(pS + δ < pE|Sn = sn out ofn)

=

∫ 1−δ

pS=0

∫ 1

pE=pS+δ

π(pE|sn, n)π0(pS)dpEdpS. (3.6)

Figure 3.5 demonstrates the range of the parameter values used to obtain the probability.

Since we want to determine the probability that the new drug is better than the control by

effective sizeδ, pS andpE are integrated over values such that(pE − pS) ≥ δ. Hence

parameterps is allowed to take values from 0 to1 − δ, since beyond1 − δ, (pE − pS) will

be less thanδ. The parameterpE is similarly integrated frompS + δ to 1 to make sure that

(pE − pS) ≥ δ.

Thall and Simon (1994) proposed beta prior distributions for bothpE andpS. Sup-

pose thatπ0(pE) is Beta(aE , bE) andπ0(ps) is Beta(aS, bS). Since there is no experimenta-

tion with the control treatment, the posterior distribution of pS is also Beta(aS, bS). For the

new drug the likelihood is Binomial so that following the discussion of Section 2.2.1, the

posterior distributionπ(pE|sn, n) is Beta(aE + sn, bE + n− sn) and since
∫ 1

ps+δ

fβ(pE ; aE + sn, bE + n− sn)dpE = 1 − Fβ(pS + δ; aE + sn, bE + n− sn),

wherefβ andFβ are respectively the probability density function and the cumulative dis-

tribution function of a beta distribution, then equation (3.6) simplifies to
∫ 1−δ

0

{1 − Fβ(pS + δ; aE + sn, bE + n− sn)}fβ(p; as, bs)dpS, (3.7)
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Figure 3.5: Range of the parameter values

wherefβ andFβ are as defined above.

Thall and Simon assume the parametersaS, bS , aE andbE can be elicited from

the investigators and the parameters represent pseudo-patients. For exampleaS andbS are

elicited such that if(aS+bS) patients are treated with the standard drug, thenaS would have

successful responses to the treatment whilebS will not respond positively to the standard

drug. Similarly,aE patients would be treated successfully afteraE + bE are treated with

the new drug. Thall and Simon assume an informative prior distributionπ0(pS) and an at

most slightly informative prior distributionπ0(pE). They suggest eliciting and quantifying

the prior distributions by setting width of the 90% interval(W90) and examining the Beta

curves as described in Section 2.2.1.

The design allows for the three actions (A, P and C) stated in Section 3.3.1. To

determine the decision boundaries, a small valuepL such as (0.01-0.05) and a large value

pU such as (0.95-0.99) for equation (3.7) are predetermined. Let λ denote the expression

(3.7) after the prior distributions (π0(pE), π0(pS)) and parameter valuessn, n andδ are

given. The lower and upper cut-offs are then given by

Un = smallest integersn such thatλ(sn, n, πS, πE , 0) ≥ pU

Ln = Largest integersn < Un such thatλ(sn, n, πS, πE , δ) ≤ pL.

The decision rule aftern patients are treated is:

if Sn ≤ Ln, take action A,

if Sn ≥ Un, take action P, and

if Ln < Sn < Un andn < nmax, take action C,
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wherenmax is the maximum number of patients that can be entered into thephase II clinical

trial.

3.3.4 A Bayesian decision design

The decision boundaries (rules) for the frequentist and Bayesian designs described in Sec-

tions 3.3.2 and 3.3.3 respectively depend only on the numberof successfully treated pa-

tients. Fully Bayesian decision theory techniques can be used to define gain function which

incorporate other measures such as the monetary gain for thepharmaceutical company.

Stallard (1998) has proposed a method for sample size determination for phase II clinical

trials using Bayesian decision theory. Here we will dwell more on Stallard’s proposal for

defining decision boundaries after evaluating data rather than on sample size determina-

tion. He defines a gain function that depends on the true efficacy and stage of the trial at

which the decision is made. Suppose a maximum ofK inspections are planned at phase

II and that theith inspection (i = 1, ..., K) is carried out after a total ofni patients have

been entered into the trial. Further let the true probability of efficacy be denoted byp.

Then the gain is a function ofp andni and for actiona(a ∈ {A, P, C}), it is denoted by

Ga(p, ni). Actions A, P and C are as defined in Section 3.3.1. LetXj be the indicator

variable for successful treatment of patientj, j = 1, ..., ni andSni
=
∑ni

j=1Xj be the

number of successfully treated patients afterni patients have been treated. After observing

dataX1 = x1, X2 = x2, ..., Xni
= xni

with Sni
= sni

, using the Bayesian decision theory

principles of Section 2.3, the expected utility from actiona is

Ga(sni
) = E{Ga(p, ni)|sni

, ni} =

∫ 1

0

Ga(p, ni)π(p|sni
, ni)dp,

whereπ(p|sni
, ni) is the posterior distribution ofp given the data(sni

, ni). The optimal

action is the one with largest expected utility.

The baseline for the utility function defined here is 0 so thatif the phase II study

is assumed to have a costk(≥ 0) per patient, the utility function for abandoning the trial
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(action A) at theith inspection is given by

GA(p, ni) = −nik

which is 0 (baseline value) less the number of patients entered multiplied by the cost per

patient.

To proceed to phase III (action P), in addition to the cost of the phase II trial, the

gain function needs to incorporate the cost of the phase III trial and the expected reward

if the phase III trial shows that the new drug is efficacious. Stallard assumed that the total

cost of the phase III trial is fixed and equal to some amountm(≥ 0). The rewardl(≥ 0) is

taken to depend on the speed with which the drug can be developed. Assuming the length

of phase III is fixed, the variability of speed of the drug development will depend on the

length of the phase II trial and hencel will be taken to be a function ofni. Further, the

reward will depend on the probability that the drug will be indicated efficacious by the

phase III trial. This probability depend onp and is given by the power function of the test

denoted byκ(p). The utility function for action P at theith inspection will thus be of the

form

GP (p, ni) = −nik −m+ l(ni)κ(p).

Expectations for the two gain functions corresponding to actions A and P are given by

GA(p, ni) = E[GA(p, ni)] = −nik (3.8)

and

GP (p, ni) = E[GP (p, ni)] = −nik −m+ l(ni)E(κ(p)|sni
, ni) (3.9)

respectively, whereE(κ(p)|sni
, ni) which we define as the predictive power in Chapter 5,

is the expected value ofκ(p) obtained using the posterior distribution ofp given(sni
, ni).

At i = K, further continuation (that is action C) is not possible. Atthis inspection,

GC will be taken to be−∞ so that it will have the least gain among actions A, P and
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C. Wheni 6= K, the utility from action C, depends on the action that will betaken at the

(i+1)th inspection and subsequent inspections. At the(i+1)th inspection, ifSni+1
= sni+1

and the optimal action is taken, the expected utility will be

maxa∈{A,P,C}Ga(sni+1
, ni+1)

The expected utility from action C at theith inspection can thus be given recursively by

GC(sni
, ni) =

sni
+ni+1−ni
∑

Sni+1
=sni

maxa∈{A,P,C}{Ga(sni+1
, ni+1)}fni+1

(sni+1
|sni

, ni), (3.10)

wherefni+1
(sni+1

|sni
, ni) is the density ofSni+1

givenSni
= sni

given by

fni+1
(sni+1

|sni
, ni) =

∫ 1

0

gni+1
(sni+1

|sni
, p)π(p|sni

, ni)dp

with gni+1
(sni+1

|sni
, p) the density ofSni+1

givenSni
= sni

and the value ofp.

Figure 3.6 gives all possible outcomes at stage(i + 1) and the probability of each

possible outcome given the outcome at stagei. Suppose at inspectioni, sni
successes are

observed. With the(i + 1)th inspection carried out afterni+1 patients have been treated,

at inspection(i + 1) an extra(ni+1 − ni) patients are entered so that the extra number

of successes takes values0, 1, ..., (ni+1 − ni) and consequentlySni+1
can take values

sni
+ 0, sni

+ 1, ..., (sni
+ ni+1 − ni). Thus

Prob(Sni+1
= sni

+ s(ni+1−ni)|p) = Prob(S(ni+1−ni) = s(ni+1−ni)|p)

which is Bin((ni+1 − ni), p) whereS(ni+1−ni) is the random variable denoting the extra

number of successes at inspection(i+ 1). This is the distribution ofgni+1
(sni+1

|sni
, p).

If K is finite, that is for a truncated test, equation (3.10) can besolved using equa-

tions (3.8) and (3.9) using backward induction starting ati = K. It is thus possible to

compare the utilities for the three actions A, P and C given respectively by equations (3.8),

(3.9) and (3.10) and choose the optimal action. For a truncated test, it can be shown that
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Figure 3.6: Possible outcomes at stage(i+ 1)

functionsc andd exist that determine decision boundaries so that

maxa∈{A,P,C}Ga(sni
, ni) =



























GA(sn1
, ni), sni

< c(i)

GC(sni
, ni), c(i) ≤ sni

< d(i)

GP (sni
, ni), d(i) ≤ sni

.

3.3.5 Phase II studies based on therapeutic benefit and toxicity

The phase II designs described above focussed only on efficacy data. However, it may be

desirable to make the decision on which doses to consider forfurther testing based on both

efficacy and safety data. Both frequestists and Bayesian methods that use both efficacy and

safety are available. We will mention several methods but wewill describe in detail one

frequentist method and two Bayesian methods.

A frequentist method

In the frequentist setting, if both efficacy and safety are considered, the type I error needs

to be controlled at some levelα. LetX1 andX2 denote the outcome variables for efficacy

and toxicity (DLT) respectively. Following Pocock et al. (1987), one possible solution is to

considerX1 as the primary endpoint whose p-value for treatment difference is used for the
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formal test of hypothesis and toxicity as a subsidiary endpoint requiring exploratory rather

than formal interpretation. However, this may sometimes not be desirable so thatX2 may

also be used in the hypothesis testing. Because a family of hypotheses (hypothesis testing

X1 and hypothesis testingX2) are tested, procedures that control the type I familywise

error rate (FWER), the probability of rejecting at least onetrue null hypothesis in the family

under any configuration, need to be employed. By under any configuration, we mean when

only one null hypothesis is true or both the null hypotheses are true. One possible method as

pointed by Geller and Pocock (1987) and Pocock et al. (1987) is the Bonferroni correction,

where to control the type I FWER, each variableXi, (i = 1, 2) is tested at levelα/2. Other

methods that may be used to control the type I FWER by adjusting the level of the tests

areŠidák’s method and Holm’s procedure among others. These methods are described in

detail in Section 4.3. In this section we will describe the method proposed by Jennison and

Turnbull (1993, 2000).

Jennison and Turnbull (1993, 2000) consider pairsX = (X1, X2) that have bivariate

normal distributions with meanµ = (µ1, µ2), correlationρ and known variances which by

appropriate re-scaling are such that var(X1) = var(X2) = 1. They also assume thatX1 and

X2 are defined such that higher values ofµ1 andµ2 are desirable. Jennison and Turnbull

(1993) further assume that with regard toXi (i = 1, 2), there are constantsεi < ∆i such

that the new drug is preferred ifµi > ∆i and is unacceptable ifµi ≤ εi, but the region

with εi < µi ≤ ∆i is a region of indifference so that the parameter space forµ is divided

into nine preference regions as shown in Figure 3.7 (a). In the pairs, the first position

corresponds toX1 and the second position toX2. The symbols−, 0 and + respectively

indicate that the new drug is unacceptable, new drug is indifferent to the standard treatment

and the new drug is preferred. After a trial, the objective isto decide whether to accept (A)

or reject (R) the new drug so that for each of the nine regions,the investigators will either

accept the new drug or drop (reject) it. We have given one example of collapsing the nine

regions in Figure 3.7 (b). In this case, the investigators would be interested in a new drug
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Figure 3.7: (a) The preference regions forµ = (µ1, µ2). The first position in the pair
correspond toX1 (efficacy) and the second position toX2 (toxicity). The symbols +, 0 and
- respectively indicates new drug is preferred, consideredequivalent and unacceptable. (b)
An example of appropriate actions for specified values ofµ; R (reject new drug) and A
(accept new drug)

that is more efficacious than the standard drug while it is at least as safe as the standard

drug. Hence the new drug is preferred ifµ1 andµ2 are either in the region (+, +) or (+, 0).

More examples of categorization are presented in Jennison and Turnbull (1993).

Jennison and Turnbull (1993, 2000) propose a unified method for different catego-

rization based on preferences for the new drug which is achieved by shiftingX. For the

example presented in Figure 3.7 (b), the shifted random vector isX − (∆1, ε2). With the

transformation, there is a single region over which to control type I FWER. The type I

FWER is controlled at levelα if

max{PA(µ1, µ2);µ1 ≤ 0 or µ2 ≤ 0} ≤ α,

wherePA(µ1, µ2) is the probability of concluding that the new drug is preferred when

µ = (µ1, µ2). Suppose aftern patients dataXij ; i = 1, 2; j = 1, ..., n are taken. Let

X̄i = n−1(Xi1 + ... +Xin), i = 1, 2 to be the sample means with the standardized values

Zi = X̄i

√
n, i = 1, 2. The decision rule is:

• If min(Z1, Z2) > Φ−1(1 − α), accept new drug;

• Otherwise, reject new drug.
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Jennison and Turnbull (1993, 2000) show that with this decision rule, the type I FWER

is controlled at levelα. To show this result, they first show thatPA(·, ·) is monotone

in both directions for this decision rule. This is accomplished by comparing the proba-

bility of concluding that a new drug is preferred based on twosets of bivariate random

vectorsZ andZ
′

. Let the first random vectorZ = (Z1, Z2) be bivariate normal with

mean(µ1

√
n, µ2

√
n), var(Z1) = var(Z2) = 1 and corr(Z1, Z2) = ρ. Let the second

random vectorZ
′

= (Z
′

1, Z
′

2) = Z + (v1

√
n, v2

√
n), wherev1 > 0 andv2 > 0 so that

Z ′ is distributed asZ except that its mean is greater than the mean ofZ and is equal to

([µ1 + v1]
√
n, [µ2 + v2]

√
n). SinceZ

′

1 > Z1 andZ
′

2 > Z2 for all values ofZ1 andZ2,

PA(µ1 + v1, µ2 + v2) = Prob{min(Z
′

1, Z
′

2) > Φ−1(1 − α)} (3.11)

≥ Prob{min(Z1, Z2) > Φ−1(1 − α) = PA(µ1, µ2)}.

The equality (3.11) holds from the definition ofPA(·, ·) and the decision rule. The above

inequality indicates thatPA(µ1, µ2) is monotone increasing in both arguments. Hence, for

any value ofρ,

max{PA(µ1, µ2);µ1 ≤ 0 or µ2 ≤ 0} ≤ max{PA(0,∞),PA(∞, 0)} (3.12)

= max{Prob[Z1 > Φ−1(1 − α)|µ1 = 0],

Prob[Z2 > Φ−1(1 − α)|µ2 = 0]}

= α,

since Prob[Z1 > Φ−1(1 − α)|µ1 = 0] = Prob[Z2 > Φ−1(1 − α)|µ2 = 0] = α. The right

hand side of inequality (3.12), by monotonicity ofPA(µ1, µ2), represents scenarios where

the probability of making type I error is highest. Although Jennison and Turnbull (1993,

2000) consider normally distributed random variables, using the central limit theorem, the

method can be used for binary outcomes if the number of patients is large enough. Fur-

ther, Jennison and Turnbull (1993) have extended the methodto allow for more than one

inspection.
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Bayesian methods

In Bayesian setting the possible outcomes (based on efficacyand toxicity) are assigned

some utility values. While focussing on efficacy only, for a binary outcome, binomial

models are reasonable. The same is true for toxicity (DLT). When interest is in both efficacy

and toxicity, two categories are no longer adequate. Combinations of efficacy and toxicity

outcomes will result in more than two categories. Suppose weconsider the simplest case

where both efficacy and toxicity are binary outcomes. The possible outcomes are shown

in Table 3.3. Administration of a drug to a patient will either result in efficacy and DLT

(Y Y ), DLT without efficacy (NY ), efficacy without toxicity (Y N) or neither efficacy nor

toxicity (NN). Let l denote the possible categories based on efficacy and toxicity. Loke

et al. (2006) propose a method that models the probability ofthe four outcomes so that

l = 4. Whitehead et al. (2006) give priority to avoiding a DLT suchthat the four outcomes

Y Y ,NY , Y N andNN reduce to∗Y , Y N andNN where∗Y means eitherNY orY Y so

thatl = 3. Stallard et al. (1999) noted that these two cases ofl = 3 andl = 4 encompass a

very large proportion of phase II clinical trials.

The method by Loke et al. (2006) was intended for phase I trials but like the method

proposed by Whitehead et al. (2006), it could be used in earlyphase II clinical trials where

another separate phase II trial is expected to be carried out. In the two methods, all patients

are allocated to the experimental treatment. The method by Stallard et al. (1999) includes

a control arm and is applicable to the late phase II clinical trials. Loke et al. (2006) and

Stallard et al. (1999) assume the outcomes in Table 3.3 have amultinomial density and

Dirichlet prior distribution can be elicited. To compare the outcomes, utilities are assigned

to the different possible outcomes. Whitehead et al. (2006)model two dose-response curves

to estimate the probabilities of the three outcomes∗Y , Y N andNN . In this subsection,

we will describe the method by Stallard et al. (1999) becauseit is different from the other

two methods in that it has a control arm. We will also describethe work of Whitehead et al.
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Table 3.3: Cross tabulation of toxicity and efficacy
Toxicity (X2)

Efficacy (X1) Y es (Y ) No (N)
Y es (N) Y Y Y N
No (N) NY NN

(2006) because later in this thesis we borrow ideas from thismethod.

Stallard’s method

The phase II design proposed by Stallard et al. (1999) is a decision theoretic method which

allows for more than one data inspection and at any data inspection, the decision theoretic

design they propose is flexible enough to allow the three actions (A, P and C) described in

Section 3.3.1 or only actions A and C. In their design, they assume a maximum sample size

of M patients is available for testing in phase II. In order to determine whether to accept

or not to accept early stopping in phase II in favour of the newdrug, someM1 ≤ M is

pre-determined such that at leastM1 patients are treated before actionP can be allowed.

M1 = 0 allows proceeding to phase III at any data inspection whileM1 = M only allows

proceeding to phase III when all the available patients havebeen treated.

The possible actions (A, P and C) may be compared using gain functions. The gain

functions Stallard et al. (1999) proposed are similar to thegain functions given in Section

3.3.4. As before, letE denote the new drug andS the standard drug and that the probability

of outcomei, i = 1, ..., l (l ≤ 4) for treatmentt, t ∈ {E, S} be denoted byθti such that

θt1 + ... + θtl = 1. Further let the probability vectors(θE1, ..., θEl)
′

for the new drug and

(θS1, ..., θSl)
′

for the standard drug be denoted byθE andθS respectively. The addition in

the gain functions of Section 3.3.4 is the patient gain whichwe denote by some function

g(θE, θS) for patient treated withE under the pair(θE , θS). To specify the form of this

function utilities are assigned to thel possible outcomes such that the expected utility when

a patient is treated with the new drugE is u
′

θE = u1θE1 + ... + ulθEl. The corresponding
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expected utility for a patient treated with the standard drug is u
′

θS = u1θS1 + ... + ulθSl

and the patient gain could be defined as

g(θE, θS) = u
′

(θE − θS). (3.13)

The utilitiesu1, ..., ul may be elicited from the investigators. One way is to assign the

best outcome utility value +1 and the worst outcome utility value−1. Other outcomes are

elicited such that they take values in the interval[−1,+1].

In Section 3.3.4, the gain function for action A at theith inspection was defined as

GA(p, ni) = −nik wherep was the parameter of interest,ni the number of patients treated

at theith inspection andk the cost of treating 1 patient. Now when the patient gain is

included andp replaced with the new parameter vector(θE , θS) the gain function becomes

GA(θE , θS, ni) = nig(θE, θS) − nik

= ni{u
′

(θE − θS) − k}. (3.14)

The gain function for action P in Section 3.3.4 was given asGP (p, ni) = −nik+l(ni)κ(p)−
m, wherem is the total cost of the phase III clinical trial. By including the patient gain

for patients treated at the end ofith inspection, the term−nik, as in equation (3.14), is

replaced byni{u′

(θE − θS)− k}. Stallard et al. (1999) take the benefit to future patients to

beΠg(θE , θS) for someΠ > 0. BecauseΠg(θE , θS) is in the same scale as the patient gain,

Π may be interpreted as the number of future patients to benefitfrom treatment withE.

The values ofΠ might also reflect the gains to the clinicians or pharmaceutical companies

and thus need not to be equated to a number of potential patients. Thus the terml(ni)κ(p)

is replaced byΠg(θE , θS) so that

GP (θE , θS, ni) = ni{u
′

(θE − θS) − k} + Πg(θE, θS) −m

= ni{u
′

(θE − θS) − k} + Πu
′

(θE − θS) −m. (3.15)

To compare the actions, expectations of equations (3.14) and (3.15) are evaluated. The
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expected gain function for action C atith inspection depends on the action that will taken

at (i+ 1)th inspection and is obtained as was explained in Section 3.3.4.

Whitehead’s method

As mentioned before, Whitehead et al. (2006) give priority to avoiding a DLT so that the

four outcomes in Table 3.3,Y Y ,NY , Y N andNN reduce to∗Y , Y N andNN where∗Y
means eitherNY orY Y . The probabilities for the three outcomes are respectivelydenoted

by p∗Y (d), pY N(d) andpNN (d) and the conditional probability of DO, given no DLT is

denoted bypY |N(d). Two logistic models are used to describe the probabilities;

p∗Y (d) =
exp(α∗Y + β∗Y log d)

1 + exp(α∗Y + β∗Y log d)
(3.16)

pY |N(d) =
exp(αY |N + βY |N log d)

1 + exp(αY |N + βY |N log d)
. (3.17)

The advantage of modeling the conditional probability (pY |N(d)) is that this does not re-

quire modeling the association between DO and DLT. Using themultiplicity probability

law p(A ∩ B) = p(B|A) × p(A), we have

pY N (d) = pY |N(d) × (p∗Y )c = pY |N(d) × (1 − p∗Y )

=
exp(αY |N + βY |N log d)

{1 + exp(α∗Y + β∗Y log d)}{1 + exp(αY |N + βY |N log d)} .

Using the law of probabilityp∗Y (d) + pY N(d) + pNN(d) = 1, then

pNN(d) = 1 − p∗Y (d) − pY N(d)

=
1

{1 + exp(α∗Y + β∗Y log d)}{1 + exp(αY |N + βY |N log d)} .

The Whitehead et al. (2006) method for recommending the doses to which the next

cohort of patients should be allocated uses the Bayesian principle. The joint distribution
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for (α∗Y , β∗Y ) in model (3.16) and the joint distribution for(αY |N , βY |N) in model (3.17)

are elicited separately. Figure 3.8 shows the curves of the prior means for different dose

response relationships using the prior distributions thatWhitehead et al. (2006) use in their

illustrating example. Using the elicited prior distributions, the dose-response curves based

on prior means indicate the probability of a DLT (p∗Y ) and the probability of DO given

no DLT (pY |N ) increase with dose level. The other curves are derived fromthese two

models. The probability that the administration of a drug toa patient results in neither a

therapeutic effect nor a toxic effect (pNN ) decreases with the dose level. The highest dose is

not necessarily the best choice as the curve ofpY N(d) shows. The posterior probability of

a therapeutic effect and no toxic outcome increases to some dose level and then decreases.

Thus if the investigators’ objective is to identify a dose that has the highest chance of

therapeutic effect but no DLT, this dose is not necessarily the highest experimental dose

level although the probability of DO given no DLT (pY |N ) increases with dose level. This

is similar to the objective of the dose selection procedure we propose in Chapter 5. We will

aim to select the dose that is more efficacious compared to thecontrol treatment and has

the probability of DLT less than a specified value.

The joint prior distributions for the parameter vectors(α∗Y , β∗Y ) and(αY |N , βY |N)

are obtained as described in Section 2.2.2. For model (3.16), pseudo-data are used to define

the prior distributions at two dose levelsdi1 (i = −1, 0). These consist ofni1 = ai + bi

pseudo-subjects treated at dosedi1, of whomai suffer DLTs. The second subscript on dose

di1, that is 1, is an indicator for model (3.16). Thus assuming the prior distribution of the

form (2.6), the prior distribution for(α∗Y , β∗Y ),

π01(α∗Y , β∗Y ) =
0
∏

i=−1

pai

i1(1 − pi1)
bi

B(ai, bi)

∣

∣

∣

∣

log

(

d−11

d01

)
∣

∣

∣

∣

, (3.18)

where

pi1 =
exp(α∗Y + β∗Y log di1)

1 + exp(α∗Y + β∗Y log di1)
, i = −1, 0.
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Figure 3.8: Dose response curves using the prior means

After the trial starts, suppose thatni1 subjects have been treated with the experimental dose

di1 of whommi have shown no response,ti have exhibited a DO without a DLT, andai

have suffered a DLT so thatmi + ti + ai = ni1 for i = 1, ..., k. Denoting these observed

data byx, the posterior distribution will be of the form given by (2.7) so that

π(α∗Y , β∗Y |x) ∝
k
∏

i=−1

pai

i1(1 − pi1)
bi, (3.19)

where

pi1 =
exp(α∗Y + β∗Y log di1)

1 + exp(α∗Y + β∗Y log di1)
, i = −1, 0, 1, ..., k.

Similarly, for model (3.17), to define the prior distribution for αY |N andβY |N , let ni2 =

ti + ui pseudo-subjects treated at dosedi2, all of whom have no DLT, andti of whom have

a DO. The second subscript on dosedi2, that is 2, is an indicator for model (3.17). Thus
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assuming the prior distribution of the form (2.6), the priordistribution for(αY |N , βY |N),

π02(αY |N , βY |N) =
0
∏

i=−1

ptii2(1 − pi2)
ui

B(ti, ui)

∣

∣

∣

∣

log

(

d−12

d02

)
∣

∣

∣

∣

,

and the joint posterior density forαY |N andβY |N is

π(αY |N , βY |N |x) ∝
k
∏

i=−1

ptii2(1 − pi2)
ui, (3.20)

where

pi2 =
exp(αY |N + βY |N log di2)

1 + exp(αY |N + βY |N log di2)
, i = −1, 0, 1, ..., k,

andui = mi, ni2 = ui + ti with di1 = di2 for i = 1, ..., k.

Let us define the therapeutic window as the interval(dL, dU) for whichpNN(dL) =

cL andp∗Y (dU) = cU (cL andcU small values such as 0.2). Whitehead et al. (2006) propose

dose allocation so as to maximize the inverse of the sum of thevariances of the boundaries

of the therapeutic window defined as

G(θ) = {wLV ar(dL|xa) + wUV ar(dU |xa)}−1,

whereθ is a vector of parametersα∗Y , β∗Y , αY |N andβY |N , xa denotes the current datax

augmented with the data that will be observed on the next cohort of subjects, andwL and

wU are appropriate weights. The number of inspections with this method depend on the

total sample size for the whole trial and the cohort sizes.

3.3.6 Phase II studies with several doses

In the late phase II studies, the investigators while doing tests to decide whether it is worth

continuing to phase III studies, may still be uncertain as towhich is the best potential dose

of the new drug to test in the phase II clinical trial. To overcome this difficulty, several

doses of the new drug may be compared to the standard treatment. This results to testing
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multiple hypotheses comparing the standard treatment to many doses of the new drug. In

frequentist testing, if it is desired to control the type I FWER associated with comparing

several doses to a control treatment at some levelα, then the pairwise p-value comparing

each dose to the control needs to be adjusted. These methods are discussed extensively in

Section 4.3. Bayesian methods are also available. For example, the ideas in the works by

Stallard et al. (1999) and Loke et al. (2006) could be combined to develop a method that

allows for several doses. The method by Loke et al. (2006) uses several doses and Stallard

et al. (1999) define gain functions which incorporate whether it is worth continuing to the

phase III stage.

3.4 Phase III clinical trials

Phase III trials are typically large confirmatory trials forefficacy. The main focus is placed

on efficacy but safety is also monitored. The new drug is compared with a commonly used

drug (the control or the standard drug) usually in a randomized trial. The trial subjects are

allocated randomly to the new drug treatment arm and the standard drug treatment arm and

the measure of efficacy, side effects and all information that will allow the new treatment to

be used safely are examined. Evidence of efficacy is usually assessed by testing hypotheses

usually using frequentist methods.

3.4.1 Sample size calculation in fixed sample trials

The statistical aspects involved in designing a phase III clinical trial include determining

whether there will be interim analyses or not and calculating the sample size. Adopting

the definition of Whitehead (1997), we refer to clinical trials where analysis is carried out

after all patients have been entered in the trial and the outcomes observed as fixed sample

clinical trials. In this subsection, we briefly describe therationale for sample size formulae
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for a fixed sample clinical trial. More detail of the rationale for sample size formulae are

given by Friedman et al. (1998), Machin et al. (2009) and Cleophas et al. (2009) among

others.

For simplicity, suppose a new drug is being tested for superiority. Before a new

drug is accepted for use by the regulatory authorities, the investigators must demonstrate

clearly that the new drug is better than the standard drug. For this reason, the probability

of concluding that the new drug is better than the standard drug while the truth is that the

new drug is not better than the standard drug, is often set to amaximum of 2.5% (0.025).

This probability is referred to as the type I error and is usually denoted byα. On the

other hand it is essential to have a clinical trial with sufficient statistical power to detect a

difference between the new drug and the standard drug when ittruly exists. The probability

of concluding that the new drug is better than the standard drug when the new drug is truly

better than the standard drug by some specified amount is called the power and is usually

denoted by (1 − β), whereβ denotes the type II error. Type II error is the probability of

failing to reject the null hypothesis that the new drug is notbetter than the standard drug

when the truth is that the new drug is better than the standarddrug by the specified amount.

The danger of conducting a clinical trial with low power is that new treatments that are

beneficial are discarded without adequate testing and may never be considered in future

(Friedman et al., 1998). In addition to the monetary loss thedrug company will incur, this

leads to loss to society associated with the lack of effective therapies. In practice trials are

normally designed to have power of between 0.8 and 0.95 so that the probability of a type

II error is controlled at between 0.05 and 0.2.

To plan a trial with the desired statistical power and control type I error, sample

size calculation is based onα andβ. To determine the power of a test the effectiveness

of the new and standard drug are required. In sample size calculation, the hypothetical

effectiveness of the standard is determined and the effectiveness of the new drug is taken

as the sum of the effectiveness of the standard drug and a difference of medical relevance.
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For example for binary outcomes, suppose the probability ofsuccessful treatment with the

standard drug isp0 and with the new drug isp1 = p0 + δ, whereδ is a difference of medical

relevance, then one of the sample size approximation for a one-sided test at levelα is given

by

2N =
2
{

Zα
√

2p̄(1 − p̄) + Zβ
√

p0(1 − p0) + p1(1 − p1)
}2

(p0 − p1)2
,

wherep̄ = (p0 + p1)/2 andN is the number of patients in each treatment arm, andZα and

Zβ are standard normal values such thatΦ(Zα) = 1 − α andΦ(Zβ) = 1 − β, whereΦ as

before is the standard normal distribution function. Alternative sample size formulae are

given for example by Friedman et al. (1998) and Machin et al. (2009) but they point out that

these formulae give similar results to the above sample sizeformula. Sample size formulae

for other outcome variables such as survival outcomes, continuous outcomes are available

in most clinical trials books such as the ones cited at the beginning of this subsection. Due

to loss in follow-up visits, some investigators increase the calculated sample size by some

factor.

3.4.2 Sequential investigations

Recruitment of patients in a clinical trial occurs gradually during the course of the trial

which can extend to years depending on the prevalence of the targeted disease and the size

of targeted population. This feature opens the possibilityof stopping the trial earlier based

on the emerging evidence (Armitage, 1975; Whitehead, 1997). In clinical trials based on

efficacy, on ethical grounds, it may be desirable to stop the trial if there is a clear advantage

of either drug (new or standard) over the other thereby avoiding the allocation of more pa-

tients to the less efficacious drug. The pharmaceutical company may also wish to save costs

by stopping a trial early for a drug which appears to have little chance of demonstrating im-

proved efficacy. In principle sequential investigation maybe carried out after the outcome
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of each patient has been observed but for practical reasons,sequential investigations are

performed either at some pre-specified times or after a pre-specified number of patients (or

pre-specified number of events such as number of deaths for survival outcomes) have been

observed.

In sequential trials, some method for combining evidence from the interim analyses

is required. In this thesis, we will describe two methods. Inthe first method, raw data or

sufficient statistics are merged to make the final analysis. We will refer to this method of

combining evidence as the group sequential technique. In the second method, data from

each interim analysis are analysed separately and some combination function is used to

combine the p-values. We will refer to this method of combining evidence using the p-

values as the method of combination tests. In Chapter 4, we will introduce seamless phase

II/III clinical trials which are trials that combine phase II and phase III into single trial.

Analysing these trials require combining evidence from phase II stage and the phase III

stage which can be done using the group sequential techniqueor by combination tests so

that these methods of combining evidence will be described in detail in Chapter 4.

In the next chapter, while demonstrating how evidence from the phase II and phase

III stages may be combined using the group sequential technique and by use of combination

tests, we will assume that there will be no opportunity to stop the trial after the phase II

stage for futility or for strong evidence against the null hypothesis that the new drug is

not better than the control treatment. Phase III clinical trials with sequential investigation

(testing) would allow for early stopping either for futility or overwhelming evidence that

the new drug is better than the control treatment. Suppose inthe entire trial we aim to

control the type I error at levelα. Armitage (1975), by use of examples based on binary

and continuous data, has shown that if at each stage of the investigation hypothesis testing

is carried out at levelα, the overall type I error is inflated aboveα. Accordingly, methods

for analysing data sequentially without inflating overall type I error have been developed.

Pocock (1977), O’Brien and Fleming (1979), and Lan and DeMets (1983) have developed
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methods based on group sequential testing that allow for early stopping while controlling

overall type I error rateα and Brannath et al. (2002) have developed methods for adjusting

for early stopping without inflating overall rateα based on combination tests.



Chapter 4

Seamless phase II/III clinical trials

In the last chapter, we have stated the objective of each phase of a clinical trial, reviewed

some methods used to design trials in each phase, and discussed how conclusions are made

from these trials. In the methods described, the conclusionfrom a trial did not include

evidence from the previous trials. In this chapter, we introduce seamless phase II/III clinical

trials, which are trials that combine phase II and phase III clinical trials into a single trial.

These trials are attractive because data from both phase II and phase III are used in the

final confirmatory analysis. The combination of phases II andIII does, however, introduce

complexity in analysis. The analysis poses a challenge of how to combine evidence from

the phase II stage and phase III stage without inflating the type I error rate. Further, if

multiple hypotheses are tested, the analysis poses a secondchallenge of how to adjust for

multiple testing associated with testing several hypotheses. In the next section, we describe

the testing process in phase II/III clinical trials and explicitly describe the challenges posed

by these trials. In Section 4.2, we review some methods that can be used to combine

evidence from the phase II stage and phase III stage. In Section 4.3, we review some

methods that can be used to adjust for multiple testing. In Section 4.4, we describe the

proposal by Bauer and Kieser (1999), Hommel (2001) and Bretzet al. (2006) to analyse

57
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phase II/III clinical trials data that address both the challenge of combining evidence and

testing multiple hypotheses without inflating the type I error rate. The notation given in

Bretz et al. (2006) is used. In Section 4.5, we review some of the existing methods for

treatment selection in phase II/III clinical trials.

4.1 The testing process and challenges in phase II/III clin-

ical trials

In most of the designs that we reviewed in Chapter 3, it was assumed that the testing of

the new drug takes place in the traditional way: each phase iscarried out as a separate

trial. Furthermore, it may appear as if in each phase, only one trial is required. However,

for example in phase II, two or more trials may be carried out.If two trials are carried

out in phase II, the first trial may be a proof of concept trial,where some dose-response

modelling is done with the intention of identifying the minimum effective dose (MED).

The second trial would then be a phase IIb trial, which may involve testing of hypotheses,

where for example, several doses of a new drug (of higher efficacy level than MED) are

compared to the standard treatment. Each clinical trial requires careful planning which

means considerable time may be required to plan a trial. Thusthe traditional procedure for

testing a new drug, with many trials to be carried out, is verytime consuming. Secondly,

in the traditional procedure, data from the previous trialsare not used in the analysis of the

current trial data. This means to achieve adequate power, more patients are required, hence

prolonging the recruitment time.

When a drug company starts testing a new product, the productis registered and

the company is given a patent period during which no other company is allowed to test

or produce that product. The patent period includes the development process time; hence

there is a financial benefit to a drug company if the development time is reduced, increasing
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the period the drug company will have a monopoly to produce and market the new drug. In

addition to the financial benefit to the drug company, accelerated drug development avoids

delay in potential benefits to the society. Hence any procedure or technique that will reduce

the duration of drug development while maintaining the trial integrity is welcome.

In order to reduce the time before approval of a new drug, there has been interest in

combining different phases of a clinical trial. Trials which combine phase II and phase III

into a single trial with a phase II stage and phase III stage are referred to as (seamless) phase

II/III clinical trials. Such trials are conducted in two stages. In stage 1 (phase II stage) of

phase II/III clinical trials, usually several hypotheses are of interest. For example, a new

drug may be tested in different sub-populations such as different age-groups or groups

based on a set of biomarkers which could affect sensitivity to the new drug, with the aim of

identifying the sub-populations that respond favorably tothe new drug. Another example

is that in stage 1, a control treatment is compared to different experimental treatments,

which could be different doses of a new drug, with the aim of identifying promising new

treatments. In the case of sub-population selection, sub-populations that show promising

results continue to stage 2 (phase III stage). Similarly, inthe case of treatment selection,

sufficiently promising treatments continue to stage 2 alongwith the control treatment. After

stage 2 results, at the end of the phase II/III clinical trial, data from both stages are used to

test the hypotheses of interest. In both the examples that wehave given above, two issues

arise while analysing data generated from such a phase II/III clinical trials, namely: (i) how

to combine the evidence from the two stages without inflatingthe type I error rate, and (ii)

how to control the type I familywise error rate (FWER) associated with testing multiple

hypotheses.

The work in this thesis is based on the second example above, where in the phase

II stage, the objective is to identify promising treatmentsthat will continue for testing in

the phase III stage. Specifically, in the phase II stage, we will assume that several dose

levels of a new drug are compared to the control treatment, and a subset of the dose levels
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tested in phase II stage continue with the control treatmentto the phase III stage. Planning

such a phase II/III clinical trial presents two challenges:(i) how to perform analysis that

controls the error rates, and (ii) how to choose which doses should continue to the phase

III stage after the phase II stage. Methods that control error rates in the analysis of phase

II/III clinical trials with flexible choice of doses exist but there is very little work to guide

the choice of doses. An example of an analysis that allows flexible choice of doses to test

in stage 2 is given in Section 4.4. The objective of this thesis is to provide a solution for

the second challenge by developing a new dose selection procedure. This procedure is

described in the next chapter. In order to point out the differences between this procedure

and the existing methods that can be used to make a choice of the doses to test in stage 2,

in Section 4.5 we review some methods available in literature that may be used to select

the doses that proceed to stage 2.

4.2 Combining evidence from two stages

In Section 3.4.2, we explained that a phase III trial could include one or more interim

analyses. We mentioned two techniques of including evidence from interim analyses in the

final analysis: the group sequential method, and the use of combination tests. The same

techniques would apply in a phase II/III clinical trial, where the phase II stage could be

viewed as being equivalent to an interim analysis. In this Section, we describe how the two

methods may be used to test data from a phase II/III clinical trial when we assume there is

no stopping after stage 1 (phase II stage).

4.2.1 Combining evidence using group sequential technique

Using the group sequential techniques, data from stage 1 andstage 2 are merged and an

analysis is carried on the merged data set. Alternatively, as has been the case while design-
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ing group sequential clinical trials, some sufficient statistics could be used to combine the

evidence from the two stages. We demonstrate combining evidence in a two-stage group

sequential using the efficient score statistics described by Whitehead (1997). Suppose that

the new drug and the control are compared using some parameter θ, which is a measure of

the treatment difference between the new and the control drug. For example if the outcome

of interest is continuous and normally distributed, the parameterθ could be given by the

standardized mean difference

θ =
µE − µC

σ
,

whereµE andµC are treatment means for the new drug and the control drug respectively

andσ is the population standard deviation for patients treated using the new drug and the

control drug. The inference onθ using the data from stages alone(s = 1, 2), is based

on a statisticZs. The statisticZs is the efficient score and is asymptotically normally

distributed with meanθVs and varianceVs, whereVs is the Fisher’s information aboutθ

contained inZs, that is,Zs will be taken to be normally distributedN(θVs, Vs). AsZ1 and

Z2 are calculated from data from separate stages, they are independent. This notation is

used to facilitate comparison with the method described in Section 4.2.2. Notation used by

Whitehead (1997) is different withZ2 being the efficient score based on both stage 1 and

stage 2 data andV2 the accumulated Fisher’s information so thatZ2 − Z1 ∼ N(θ(V2 −
V1), V2 − V1) and is independent ofZ1.

To describe how the statisticsZs andVs are derived, we for the moment ignore the

subscript denoting the stage for which the statistics are based so that we describe using

notationZ andV . The statisticsZ andV can be derived from appropriate likelihood

functions. If there are unknown nuisance parameters, the profile likelihood is used and this

guarantees

l{θ, φ̂(θ)} = const+ θZ − 1

2
θ2V +O(θ3),
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whereφ̂(θ) is the maximum likelihood estimate of the nuisance parameter vectorφ̂ given

the value ofθ. In the absence of nuisance parameters,

Z = lθ(0)

and

V = −lθθ(0),

wherelθ(0) andlθθ(0) denote respectively the first and second derivatives ofl(θ) evaluated

with respect toθ, evaluated atθ = 0. To illustrate with inference for mean of normal

data with known variance, let a samplex1, ..., xn be observations from a normal population

distributed asN(µ, 1) so that the likelihood of these data is given by

L(µ) =
n
∏

i=1

(2π)−1/2exp

(−(xi − µ)2

2

)

= (2π)−n/2exp

(−(
∑n

i x
2
i − 2µ

∑n
i xi + nµ2)

2

)

.

The corresponding log-likelihood has the form

l(µ) = const+ µSn −
1

2
µ2n,

whereSn =
∑n

i=1 xi so thatZ = Sn andV = n and inference onµ is made from the

statisticSn which is such thatSn ∼ N(µn, n). Whitehead (1997) also gives forms forZ

andV for comparative studies.

Reverting toZs andVs to denote the statistics at stages (s = 1, 2), the statistic

Z = (Z1 + Z2) ∼ N(θ(V1 + V2), (V1 + V2))

is the efficient score statistic based on data from both stage1 and stage 2. Suppose that

after collecting data in stage 1 and stage 2, the realizations for the efficient scoresZ1 and
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Z2 arez1 andz2 respectively. Then, using the group sequential approach, the p-value from

the two stages is given by

Prob(Z ≥ z1 + z2|θ0) = 1 − Prob(Z ≤ z1 + z2|θ0)

= 1 − Prob

(

Z − θ0(V1 + V2)√
V1 + V2

≤ z1 + z2 − θ0(V1 + V2)√
V1 + V2

)

= 1 − Prob

(

Z∗ ≤ z1 − θ0V1√
V1 + V2

+
z2 − θ0V2√
V1 + V2

)

= 1 − Φ

{

z1 − θ0V1√
V1 + V2

+
z2 − θ0V2√
V1 + V2

}

, (4.1)

whereZ∗ ∼ N(0, 1) andθ0 is the value of the parameterθ under the null hypothesis.

4.2.2 Combining evidence using combination tests

Bretz et al. (2006) use the combination test as described by Bauer and Köhne (1994).

Using the combination test, data from each stage are analysed separately. In order to make

a single conclusion from the two stages, p-values obtained at the end of each stage are

combined using some functionC into a single p-value. Bauer and Köhne (1994) implement

combination tests in adaptive clinical trials but the technique of combining evidence using

combinations tests had been proposed by Fisher (1932) to address the need to combine

results from a number of independent tests used to test a common hypothesis. Suppose

a null hypothesisH (notice here we do not use the conventional notationH0) is tested at

stage 1 and stage 2 obtaining the p-valueps at stages (s = 1, 2). Further, let the combined

p-value be denoted byC(p1, p2). Zaykin et al. (2002) have reviewed some methods of

combining the p-values. Two of the commonly used methods arethe Fisher’s combination

method and the weighted inverse normal method.

For uniformly distributedp1 andp2, the functions−2 log ps (s = 1, 2), wherelog

is to basee, have a chi-square distribution with two degrees of freedom. Using the fact

that the sum of random variables that areχ2-distributed has aχ2-distribution with degrees
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of freedom equal to the sum of the degrees of freedom of the summed random variables,

Fisher (1970) noted that

T = −2
2
∑

s=1

log ps = −2 log
2
∏

s=1

ps

has aχ2-distribution with 4 degrees of freedom when the null hypothesisH is true and the

p-valuesp1 andp2 are independent. Therefore, the p-value for testing the null hypothesis

H using the evidence from the 2 stages is the probability of aχ2
4 variable being greater or

equal to the observed valueT ∗ of T so that, using the Fisher’s combination method, the

combined p-value

C(p1, p2) = 1 − Fχ2
4
(−2 log

2
∏

s=1

ps), (4.2)

whereFχ2
4

is the distribution function of a chi-square distribution with 4 degrees of free-

dom.

The inverse normal procedure uses the normal-transformed p-values. LetX be a

normally distributed random variable with mean 0 and variance 1, that is,X ∼ N(0, 1).

Further, let the distribution function ofX be denoted byΦ(x) and suppose that Pr(X ≤
x) = Φ(x) = c. BecauseX ≤ x is equivalent toΦ(X) ≤ Φ(x), then

Prob(Φ(X) ≤ c) = Prob(Φ(X) ≤ Φ(x))

= Prob(X ≤ x) = Φ(x) = c.

Hence Prob(Φ(X) ≤ c) = c, which implies the distribution function of a standard normal

random variable is Uniform[0,1] so that the p-valueps for hypothesisH at stages (s = 1, 2)

can be transformed into standard normal score when the hypothesisH is true by taking

zs = Φ−1(1 − ps), s = 1, 2.

LetXj , j = 1, 2, ..., n be distributedN(0, 1) andα1, ..., αn be constants such that
∑

j α
2
j =

1, then the linear combinationY =
∑

j αjXj is distributedN(0, 1). Using this standard
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result, then

z =
2
∑

s=1

zs√
2

is standard normal and the combined p-value may be given by

C(p1, p2) = 1 − Φ

(

1√
2

2
∑

s=1

Φ−1(1 − ps)

)

.

Other weightsw1 andw2 which satisfyw2
1 + w2

2 = 1 can be used in place of the 2 equal

weights1/
√

2 so that using the weighted inverse normal method for combining evidence

in a phase II/III clinical trial, the combined p-value is given by

C(p1, p2) = 1 − Φ[w1Φ
−1(1 − p1) + w2Φ

−1(1 − p2)], (4.3)

where0 < ws < 1, s = 1, 2, are arbitrary weights subject tow2
1 + w2

2 = 1. Suppose the

efficient scores given in Section 4.2.1 are used to obtain thep-values at each stage, then

1 − p1 = 1 − Prob(Z1 ≥ z1|θ0) = Prob(Z1 ≤ z1|θ0)

= Prob

(

Z1 − θ0V1√
V1

≤ z1 − θ0V1√
V1

)

= Φ

(

z1 − θ0V1√
V1

)

. (4.4)

Equivalently,

1 − p2 = Φ

(

z2 − θ0V2√
V2

)

. (4.5)

Substituting the expressions (4.4) and (4.5) in the expression (4.3) for inverse normal

method combined p-value and lettingws =
√

Vs/(V1 + V2) (s = 1, 2), then

C(p1, p2) = 1 − Φ

{

2
∑

s=1

√

Vs
V1 + V2

Φ−1

{

Φ

(

zs − θ0Vs√
Vs

)}

}

= 1 − Φ

{

2
∑

s=1

(

zs − θ0Vs√
V1 + V2

)

}

= 1 − Φ

{

z1 − θ0V1√
V1 + V2

+
z2 − θ0V2√
V1 + V2

}

. (4.6)
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The combined p-value obtained from expression (4.6) and thep-value obtained using the

group sequential in expression (4.1) are equal. Hence, if the weightsws (s = 1, 2) for

the inverse combination method are appropriately chosen, this combination function cor-

responds to the two-stage group sequential test. Choosing the weights proportional to the

sample size, that is takingws =
√

ns/(n1 + n2) (s = 1, 2), wheren1 andn2 are the stage

1 and stage 2 sample sizes, achieves this sinceV1 andV2 are approximately proportional to

the respective sample sizes.

Next we give the expressions for the type I error and the critical p-value for testing

hypothesisH such that the type I error is not inflated. Suppose there is opportunity to stop

the trial early after stage 1 for overwhelming evidence against the null hypothesis, that is

whenp1 ≤ α1 (α1 ≤ α) or for futility, that is whenp1 > α0 (α0 > α). Then, the type I

error is the probability that, under the null hypothesisH, eitherp1 ≤ α1 or α1 < p1 ≤ α0

and the combined p-valueC(p1, p2) ≤ c, that is

ProbH [p1 ≤ α1] + ProbH [C(p1, p2) ≤ c, α1 < p1 ≤ α0],

wherec is the combined critical p-value and is obtained by equatingthe above equation

to overall type I errorα and solving forc. Assuming that the p-valuesp1 andp2 have

independent Uniform[0, 1] distributions under the null hypothesis, then the overall type I

error is given by

α1 +

∫ α0

α1

∫ 1

0

1[C(p1,p2)≤c]dp2dp1, (4.7)

where1[C(p1,p2)≤c] equals 1 ifC(p1, p2) ≤ c and 0 otherwise. For the first part of our

work, we assume we do not stop for overwhelming evidence and stopping for unpromising

results in stage 1 does not depend on the observed stage 1 p-valuep1. Note in this case we

do not make any type I error at stage 1 so that equation (4.7), if the trial proceeds to stage

2, simplifies to
∫ 1

0

∫ 1

0

1[C(p1,p2)≤c]dp2dp1. (4.8)
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In expression (4.8), if the overall type I error is controlled at levelα, we havec = α, so that

the combined p-values defined by equations (4.2) and (4.3) control error rate at levelα.

The p-values defined by (4.2) and (4.3) clearly control the type I error rate because

the p-valuesp1 andp2 are assumed independent underH. Brannath et al. (2002) explain

this is a strong requirement. The only requirement needed inorder for the p-values defined

by equations (4.2) and (4.3) to control the type I error rate is that the distribution of the

p-valuesp1 andp2 underH to satisfy

PrH(p1 ≤ α) ≤ α and PrH(p2 ≤ α|p1) ≤ α for all 0 ≤ α ≤ 1. (4.9)

Brannath et al. (2002) refer to this property of the distribution of p-valuesp1 andp2 as “p

clud”.

4.3 Controlling familywise error rate in multiple hypothe-

ses testing

Suppose in an experimentk(> 1) experimental treatments are to be compared with a con-

trol treatment such thatk null hypothesesHj : θj = θ0, j = 1, ..., k comparing each

experimental dose with the control treatment are of interest, whereθj andθ0 respectively

denote the measure of effectiveness for experimental treatmentj and the control treatment.

Without loss of generality, suppose the firstk1 (k1 ≤ k) null hypotheses are true. LetEj

be the event that the null hypothesisHj (j = 1, ..., k) is rejected, then if no multiple testing

adjustment is made, the overall (type I) FWER associated with testing thek null hypotheses

is

1 − Prob(∩k1j=1E
c
j | H0k1),
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where the notation “| H0k1” means that given the null hypothesesHj, j = 1, ..., k1 are true.

If the eventsE ′
js, j = 1, ..., k1 are independent the above expression reduces to

1 −
k1
∏

j

[1 − Prob(Ej | H0k1)].

For example, ifk1 = 2 and each hypothesis is tested at levelα = 0.05 and the hypothesis

H1 andH2 are independent, then the unadjusted type I error is

1 − (1 − 0.95)2 = 0.0975

so that the FWER is almost double the individual type I errorsassociated with testingH1

andH2. Indeed, one is almost certain to make a type I error when the number of true null

hypotheses to be tested becomes large (Hochberg and Tamhane, 1987). Thus, for a credible

analysis, methods are required to control the FWER associated with testing thek pairwise

null hypotheses at the pre-specified levelα.

There are several testing procedures that can be used to testthe multiple hypotheses

so that the FWER is controlled at the desired levelα. Hochberg and Tamhane (1987)

explain that the FWER may be strongly or weakly controlled. The FWER is strongly

controlled if

[

1 − Prob(∩k1j=1E
c
j | H0k1)

]

≤ α, for all k1 ≤ k,

and the FWER is controlled weakly if

[

1 − Prob(∩k1j=1E
c
j | H0k1)

]

≤ α, only whenk1 = k,

that is, when all the tested null hypotheses are true. An example of a test that controls

FWER weakly is due to Fisher (1935). In this test, individualpairwise hypotheses are

tested only when the global null hypothesis of no differenceamong all thek+1 treatments

(that is thek experimental and the control treatment are all equal) is tested and rejected.
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This test controls the FWER strongly only ifk = 2. For k ≥ 3, the test controls the

FWER weakly. All the other procedures we describe later in this section strongly control

the FWER.

Westfall and Young (1993) have reviewed some methods that control the FWER.

The simplest is the Bonferroni method in which each of thek null hypothesis is rejected

when the observed p-value is less or equal toα/k, which leads to the Bonferroni adjusted

p-valuep̃j = min(kpj, 1), wherepj is the unadjusted p-value obtained from testing the null

hypothesisHj, j = 1, ..., k. The FWER is protected since

Prob(Reject at least oneHj | H0) = Prob

(

min
1≤j≤k

pj ≤ α/k | H0

)

≤
k
∑

j=1

Prob(pj ≤ α/k | H0) = α.

A similar adjustment is by use of thěSidák method, which rejects each of thek null hy-

pothesis when the observed p-value is less than1 − (1 − α)1/k. This leads to thěSidák

adjusted p-valuẽpj = 1 − (1 − pj)
k. This method is less conservative than the Bonferroni

correction and is exact for protecting FWER if all p-values are independent since

Prob(Reject at least oneHj | H0)

= Prob

(

min
1≤j≤k

{1 − (1 − pj)
k} ≤ α | H0

)

= 1 − Prob

(

min
1≤j≤k

{1 − (1 − pj)
k} > α | H0

)

= 1 − Prob
(

pj > {1 − (1 − α)1/k} for all j | H0

)

= 1 −
k
∏

j=1

Prob
(

pj > {1 − (1 − α)1/k} | H0

)

(4.10)

= 1 − {(1 − α)1/k}k = α.

The equality in step 4.10 holds assuming independence and the final results holds assuming

pj, j = 1, ..., k are Uniform[0,1].
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The Bonferroni and thěSidák methods described above are single step procedures.

Holm (1979) introduced a sequentially rejective algorithmto test multiple hypotheses. The

algorithm is based on the ordered p-values,p(1) ≤ ... ≤ p(k), corresponding to hypotheses

H(1), ..., H(k). The reasoning is that onceH(1) has been rejected using for example the

Bonferroni critical valueα/k, we should believe thatH(1) is false. Thus, there are only

k− 1 hypotheses which might still be true, implying the criticalvalueα/(k− 1) should be

used forH(2) and so on. Holm’s Sequentially rejective algorithm is givenbelow.

• Step 1: Ifp(1) > α/k, then accept all hypothesesH(1), ..., H(k) and stop; otherwise,

rejectH(1) and continue.

.

• Stepj: If p(j) > α/(k − j + 1), then accept all hypothesesH(j), ..., H(k) and stop;

otherwise, rejectH(j) and continue.

.

• Stepk: If p(k) > α, then accept hypothesisH(k); otherwise, rejectH(k).

The adjusted p-values of this algorithm arep̃(1) = max{kp(1), 1}, p̃(2) = max{(k −
1)p(2), 1}, ...., p̃(k) = p(k).

Westfall and Young (1993) introduce the Bootstrap adjustments which have the

advantage of capturing the correlation structure. There are also other adjustments meth-

ods in literature. In order to control the FWER associated with testing thek pairwise

null hypotheses at pre-specified levelα, Bretz et al. (2006) use the closure principle (CP)

of Marcus et al. (1976). The CP considers the set of all intersection hypothesesHJ =

∩j∈JHj, J ⊆ {1, ..., k} constructed from the initial hypotheses of interest. Marcus et al.

(1976) refer to this set, denoted byH, as the closure set. Using the CP, a null hypoth-

esisHj, j = 1, ..., k is rejected at FWERα if all hypothesesHJ , J ⊆ {1, ..., k} with

j ∈ J are rejected at levelα. Consider Figure 4.1 whenk = 3. The closure setH equals
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Figure 4.1: Closure set with 3 treatments. The hypotheses contained inH1 are circled.

{H1, H2, H3, H12, H13, H23, H123}. HypothesisH1 is rejected if the circled hypotheses

H123, H12, H13, andH1 are all rejected each at levelα.

Marcus et al. (1976) have explained how the type I error for this procedure is at most

α. LetX be a random variable with distribution depending on a parameter θ ∈ Ω such that

H, the set of null hypotheses defined above, is a set of subsets of Ω. For eachHJ ∈ H, let

φJ(X) be a levelα test, that is, Probθ{φJ(X) = 1} ≤ α for all θ ∈ HJ whereφJ(X) is an

indicator variable for rejectingHJ . As detailed in the steps for the closure principle above,

any null hypothesisHJ is rejected by means ofφJ(X) if and only if all hypothesesH that

are included inHJ (H ⊂ HJ ) and belonging toH (H ∈ H) have been tested and rejected.

A type I error is committed if and only if the intersection of all true hypotheses,Hτ say, is

tested and rejected by means ofφτ (X); in other words, if we denote byA the event that

any trueHJ is rejected, and byB the event thatφτ (X) = 1, then

Prob(A ∩ B) = Prob(B)Prob(A|B) ≤ α,

sinceφτ is a levelα test hence Prob(B) ≤ α and Prob(A|B) ≤ 1. However, sinceA∩B =

A, Prob(A ∩ B) = Prob(A) and hence Prob(A) ≤ α. The probability of making no type I

error with this procedure is thus at least1 − α.
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4.4 Analysing data from a phase II/III clinical trial

Bauer and Kieser (1999), Hommel (2001) and Bretz et al. (2006) propose using the combi-

nation tests and the CP for the analysis of phase II/III clinical trials data. In their proposal,

a null hypothesisHj (j = 1, ..., k) is rejected at the end of stage 2 if all the combined p-

values for all the hypothesesHJ , J ⊆ {1, ..., k} with j ∈ J are less than the pre-specified

level of testing. For example, suppose there are three experimental treatments at stage 1 and

let ps,J denote the p-value for testing hypothesisHJ , J ⊆ {1, 2, 3} at stages (s = 1, 2).

Then hypothesisH1 is rejected at the end of stage 2 at levelα if

max{C(p1,1, p2,1), C(p1,12, p2,12), C(p1,13, p2,13), C(p1,123, p2,123)} ≤ α.

Figure 4.2 gives the flow chart of this example. Panel (a) gives the stage 1 p-values cor-

responding to the hypotheses given in Figure 4.1. The p-values for hypotheses contained

in H1 are circled. On the other hand, panel (b) gives stage 2 p-values corresponding to the

hypotheses given in Figure 4.1 and once again, p-values for hypotheses contained inH1

are circled. Panel (c) gives the combined p-values. The combined p-values for hypotheses

contained inH1 are circled and they must all be rejected for hypothesisH1 to be rejected

after stage 2.

To illustrate what happens if some treatments are dropped after stage 1, suppose for

example that treatment 3 is dropped after stage 1, so that no data are available for treatment

3 at stage 2. The stage 2 p-values for this scenario are given in Figure 4.3. The tests for

intersection hypothesesH13, H23 andH123 respectively reduce to the tests for hypotheses

H1, H2 andH12 so thatp2,13 = p2,1, p2,23 = p2,2 andp2,123 = p2,12. If treatment 3 is tested

for efficacy after stage 2,p2,3 may be fixed to 1. This follows the proposal by Posch et al.

(2005) where stage 2 p-values for hypotheses that do not havestage 2 data are fixed to 1,

which lead to conservative final tests for the hypotheses in the closure set.

To show tests forH13, H23 andH123 respectively usingp2,1, p2,2 andp2,12 at stage
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Figure 4.2: P-values required to test 3 elementary hypotheses. Panels (a) and (b) respec-
tively give stage 1 and stage 2 p-values corresponding to hypotheses given in Figure 4.1.
Panel (c) gives the combined p-values for these hypotheses.

2 are levelα tests when dose 3 is not tested in stage 2, we use a general case. Suppose

we wish to test a hypothesisHJ using the p-valuep2,J ′ for hypothesisHJ ′ with HJ ⊆ HJ ′

(that isJ ′ ⊆ J). SinceHJ ⊆ HJ ′, underHJ ,HJ ′ is also true so thatp2,J ′ ∼ U [0, 1]. Hence

testingHJ usingp2,J ′ provides a levelα test.

For the test described above to control the type I error ratesstrongly, the p-values

p1,J andp2,J should satisfy the “p clud” condition given by expression (4.9). In this thesis,

we will consider p-valuesp1,J andp2,J obtained using separate data, that is, p-valueps,J

(s = 1, 2) will be obtained using stages data only. For now, we also assume appropriate

level α tests are used so that for all hypothesesHJ , ProbHJ
(ps,J ≤ α) ≤ α (s = 1, 2).

Hence, when no treatments are dropped, the p-valuesp1,J andp2,J are independent so that

underHJ , the distribution ofp1,J andp2,J satisfy the “p clud” condition. If some fixed
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Figure 4.3: Stage 2 p-values when treatment 3 is dropped

treatments are dropped after stage 1, as demonstrated aboveHJ is tested at stage 2 using

the p-valuep2,J ′ for hypothesisHJ ′ with HJ ⊆ HJ ′ (that isJ ′ ⊆ J). We need to show

that ProbHJ
(p2,J ′ ≤ α|p1,J) ≤ α. From above a test forHJ usingp2,J ′ is anα test, and

sincep1,J andp2,J ′ are independent for a fixedHJ ′, then ProbHJ
(p2,J ′ ≤ α|p1,J) ≤ α so

that the p-valuesp1,J andp2,J ′ satisfy the “p clud” condition. If the dropped treatments

are tested for efficacy after stage 2, for some hypothesesHJ , J ′ = ∅. If following Posch

et al. (2005), the p-valuesp2,J ′ for these hypotheses are set to 1, that isp2,J ′ = 1 for

all J ′ = ∅, the p-values for hypotheses withJ ′ = ∅ satisfy the “p clud” condition since

ProbHJ
(p2,J ′ ≤ α | p1,J) = 0 ≤ α, so that the type I error rate is maintained.

In the next chapter, we develop a new procedure to select the treatments to test in

stage 2 and the selection procedure depends on stage 1 p-valuesp1,J (J ⊆ {1, ..., k}). We

will set a rule that the intersection hypothesisHJ will be tested using a test for the smallest

intersection hypothesisHJ ′ (HJ ⊆ HJ ′) that can be constructed from all the experimental

treatments that are selected for testing in stage 2. For example, if only experimental treat-

mentj (j = 1, 2, 3) is tested in stage 2, hypothesisH123 is tested usingp2,j and if we test

treatmentsi andj (i, j ∈ {1, 2, 3}) at stage 2,H123 will be tested usingp2,ij so thatHJ ′

used in test forHJ at stage 2 is random. We need to show that ProbHJ
(p2,J ′ ≤ α|p1,J) ≤ α,

whereJ ′ is random. UnderHJ , all hypothesesHJ ′ with HJ ⊆ HJ ′ (that isJ ′ ⊆ J) are

also true. Hence a test forHJ usingp2,J ′ using hypothesisHJ ′ defined using the above rule
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is a levelα test so that ProbHJ
(p2,J ′ ≤ α|p1,J) ≤ α. Hencep1,J andp2,J ′ are “p clud”.

In the above discussion, while showing the p-values satisfythe “p clud” condi-

tion, we have assumed appropriate levelα tests are used for all the hypothesesHJ (J ⊆
{1, ..., k}). We will illustrate the dose selection procedure developed in the next chapter

using chi-squared tests for the pairwise hypothesesHj (j = 1, ..., k). Asymptotically, the

chi-square test provides a test with the type I error rate close to the desired nominal level

α. We will assume that sufficiently large samples will be available at stage 1 for each treat-

ment arm so that the type I error rate will be close to the nominal value for hypotheses

Hj (j = 1, ..., k). At stage 2, generally large samples are available so that chi-square tests

for hypothesesHj (j = 1, ..., k) control type I error rates close to nominal valueα. With

treatment selection, at stage 2, the number of experimentaltreatments to be tested will vary

so that the sample available to test hypothesesHj (j = 1, ..., k) will vary with more data

available if few treatments are tested in stage 2. However, since large samples are available

at stage 2, the chi-square test will still be adequate to control the type I error rates when

number of treatments to test in stage 2 vary. In the next paragraph, we describe how the

p-values for the hypothesesHJ with |J | ≥ 2 may be obtained. The tests described are

conservative. Hence, all the p-values used to analyse the seamless phase II/III clinical trial

incorporating the treatment selection will be asymptotically “ p clud” (Zuber et al., 2006).

Bauer and Kieser (1999), Hommel (2001) and Bretz et al. (2006) do not give de-

tails of how the p-values testing the hypotheses inH should be calculated but Westfall

and Wolfinger (2000) provide a simplified discussion of some methods. The pairwise

hypotheses may be tested using basic tests such as the chi-squared test for binary data

or the t-test for continuous data. There are several tests for the intersection hypotheses

HJ , J ⊆ {1, ..., k} with |J | ≥ 2 but some are specific to certain forms. For example,

Hotelling’sT 2 test described by Johnson and Wichern (2002) is valid for continuous data.

Flexible tests that can be used for many forms of responses (normal, Poisson, etc) are Bon-

ferroni, Šidak and Simes tests. Suppose we wish to test a hypothesis ofequality of the
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control treatment withm (1 < m ≤ k) experimental treatments. The Bonferroni ad-

justed p-value is given bymin{1, (m × minp)}, while Šidak adjusted p-value is given by

(1− [1− minp]m), where minp is the minimum p-value of the individual component tests.

The Simes adjusted p-value is given by min{m
i
p(i)}, i = 1, ..., m wherep(i) denote the

ordered p-values.

When several treatments are compared to a control treatmentusing the same control

group, it would be desired rather than assume the pairwise tests are independent, to utilize

correlation in the comparisons because of the pairwise comparisons versus the same control

group. Dunnett (1955) proposed a multiple comparison procedure that makes use of the

correlation associated with comparing several treatmentsto the same control group for

continuous normal data. This test can be used for all the intersection hypotheses in the

closure set. LetZj (j = 0, 1, ..., k) be the standardized response from treatmentj with

j = 0 corresponding to the control treatment. For hypothesisHJ (J ⊆ {1, ..., k}), let

Zmax
J = maxj∈J Zj and define

FZmax
J

(z) =

∫ ∞

−∞

[Φ(
√

2z + z0]
|J |φ(z0)dz0,

where as beforeφ(.) andΦ(.) respectively denote the density and the distribution function

of a standard normal distribution. For observedZmax
J = z, the p-value for hypothesisHJ

is given by1 − FZmax
J

(z). The test can be used for other outcomes such as binary data by

applying the central limit theorem.

To illustrate hypotheses testing in a phase II/III clinicaltrial with an example, we

assume a new drug is tested at three doses; dose 1, dose 2 and dose 3. The primary hypothe-

ses of interest areHj, j = 1, 2, 3, whereHj is the null hypothesis comparing dosej to the

control treatment. Suppose that using the stage 1 data, as inthe data used to demonstrate CP

in Westfall and Wolfinger (2000),p1,1 = 0.0982, p1,2 = 0.0262 andp1,3 = 0.0067. Using

the Bonferroni adjusted p-values for the intersection hypotheses givesp1,123 = min{1, 3 ×
min{p1,1, p1,2, p1,3}} = 0.0201, p1,12 = min{1, 2 × min{p1,1, p1,2}} = 0.0524, p1,13 =
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min{1, 2 × min{p1,1, p1,3}} = 0.0134 andp1,23 = min{1, 2 × min{p1,2, p1,3}} = 0.0134.

Quite naively, suppose the stage 2 data result in similar p-values, that is,p2,1 = p1,1 =

0.0982, p2,2 = p1,2 = 0.0262 andp2,3 = p1,3 = 0.0067 so thatp2,123 = p1,123 = 0.0201,

p2,12 = p1,12 = 0.0524, p2,13 = p1,13 = 0.0134 andp2,23 = p1,23 = 0.0134.

Let us assume that the total sample sizes at stage 1 and stage 2are respectively 120

and 400. Then we could choose the weights proportional to thesample sizes in each treat-

ment arm so that the stage 1 weightw1 =
√

30/130 and stage 2 weightw2 =
√

100/130.

Using the inverse normal method,

C(p1,123, p2,123) = 1 − Φ{w1Φ
−1(1 − p1,123) + w2Φ

−1(1 − p2,123)}

= 1 − Φ

{

√

30

130
Φ−1(1 − 0.0201) +

√

100

130
Φ−1(1 − 0.0201)

}

= 0.0027.

Similarly, C(p1,12, p2,12) = 0.0138, C(p1,13, p2,13) = 0.0013, C(p1,23, p2,23) = 0.0013,

C(p1,1, p2,1) = 0.0397, C(p1,2, p2,2) = 0.0042 andC(p1,3, p2,3) = 0.0004 so that for each

dosej (j = 1, 2, 3),

max{C(p1,J , p2,J)} ≤ 0.05 for J ⊆ {1, 2, 3} with j ∈ J.

Hence at the end of phase II/III clinical trial, all doses areconcluded to be more effective

than the control treatment.

4.5 Treatment selection in phase II/III clinical trials

Methods that can be used (or adapted) to select the most promising treatment(s) after stage

1 for testing in stage 2 have been developed by Thall et al. (1988), Schaid et al. (1990),

Stallard and Todd (2003), Schmidli et al. (2007), and Zuber et al. (2006). Thall et al.

(1988) consider binary outcomes and select the most promising treatment if the global null
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hypothesis is not accepted at stage 1. Evidence from stage 1 and stage 2 is combined in

a test similar to the combination test given by equation (4.3). Schaid et al. (1990) con-

sider survival outcomes and their method allows for stopping after stage 1 results either

for futility or overwhelming evidence. The method allows tocontinue with more than one

experimental treatment and multiple testing is adjusted for using the Bonferroni correc-

tion. The methods by Thall et al. (1988) and Schaid et al. (1990) are respectively specific

to binary and survival outcomes because of the statistics used. Stallard and Todd (2003)

method generalizes these two methods because it assumes using Statistics introduced in

Section 4.2.1 which can be derived for many outcomes. The most promising treatment is

selected for further testing. These authors consider distinct treatments that may be different

doses of the same drug but have not considered the dose-response relationship. The method

we develop in the next chapter is for binary outcomes and we consider a phase II/III trial

where in stage 1 several doses of the same drug are compared toa control treatment so that

we model the dose-response relationship while making the choice of the dose(s) to test in

stage 2.

Like Schmidli et al. (2007) and Zuber et al. (2006), we will assume the analysis will

be conducted as described in Section 4.4. Given the stage 1 data, for each candidate set

of the treatments (or subgroups) to be tested in stage 2, Schmidli et al. (2007) and Zuber

et al. (2006) obtain the expression for the probability of all stage 2 data for which the null

hypothesis will be rejected after stage 2. They use the Bayesian tools so that the expected

value of this expression, which is referred to as the predictive power, is obtained. The

treatment (or subgroup) that results in highest predictiveis proposed for testing in stage 2.

Schmidli et al. (2007) and Zuber et al. (2006) consider survival outcomes. In our proposed

method, we use the same ideas but for binary outcomes. In addition, because we consider

experimental treatments that are different dose levels of the same drug, we incorporate

dose-response relationship. Also, we explicitly include safety data in the dose selection

procedure.



Chapter 5

Dose selection in phase II/III trials

In Chapter 4, we reviewed methods of how phase II/III clinical data may be analysed. We

also briefly described procedures that may be used to select experimental dose(s) to test

at stage 2 after the stage 1 results. In this chapter, we expound a new procedure we have

proposed (Kimani et al., 2009) for selecting the doses to test in stage 2 based on stage 1

data and prior knowledge. The selection procedure is different from the methods described

in Section 4.5 in at least one of the following characteristics of our new procedure; the out-

comes of interest are binary, more than one experimental dose may be selected to continue

to stage 2, dose-response relationships are incorporated in the dose selection procedure and

safety data is considered explicitly to make the choice of the doses to test in stage 2. This

selection procedure assumes the efficacy data will be analysed as described in Section 4.4,

where the closure principle is used to control the type I FWERassociated with comparing

the control treatment to several experimental doses and thecombination tests are used to

combine evidence from stage 1 and stage 2.

In the next section, we explicitly describe the setting of interest while introducing

the notation that we will use to develop the dose selection procedure. In Section 5.2, we

develop expressions for the probability that at least one ofthe candidate set of doses that

79
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may continue to stage 2 is concluded to be effective and safe.We refer to this expression

as the (penalized) conditional power. In Section 5.3, we propose a prior distribution for

the parameters in the penalized conditional power which is updated by the stage 2 data to

obtain the posterior distribution. We define the expected value of the penalized conditional

power using the posterior distribution as the (penalized) predictive power. We propose to

test at stage 2 the set of doses that has the highest predictive power. We summarise the dose

selection procedure developed in this chapter in Section 5.4. In Section 5.5, we compare

the new dose selection procedure to the some of the selectionprocedures in literature. The

chapter ends by remarks describing how various associations are modeled in Section 5.6.

5.1 Setting of interest

Consider an experiment withk1(> 1) experimental doses in stage 1 of which a subset

remains for testing in stage 2. Suppose the sample size for stage 1 is fixed to ben1(k1 +1),

so thatn1 patients are randomized to receive each experimental dose andn1 are randomized

to receive the control. The data from stage 1 can be summarized by the number of observed

successes,x1j , and the number of observed toxicities,t1j , at dosej for j = 0, ..., k1,

with j = 0 corresponding to the control treatment. At the onset of the phase II/III trial,

the interest is to determine whether there is a safe dose among thek1 experimental doses

which is more effective than the control treatment. Thus thenull hypotheses of interest

areH1 : θ0 = θ1, ..., Hk1 : θ0 = θk1 whereθj , j ∈ {0, 1, ..., k1} is a measure of the

effectiveness of treatmentj. Based on the efficacy datax1 = {x10, x11, ..., x1k1} and with

the intention of using the closure principle to control the FWER, a set of p-valuesp1,J for

HJ , J ⊆ {1, ..., k1} can be constructed.

Suppose that the total sample size for stage 2 is fixed. The number of patients

randomized to each dose,n2, then depends on the number of doses that remain in the

trial. Let K2 ⊆ {1, ..., k1} be the set of experimental doses that remain in the trial for
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testing in stage 2 withk2 = |K2|. The selection procedure we propose in this chapter

allows considering any of thek1 doses in stage 1 to continue to stage 2 so that there are2k1

possible sets of doses that we could choose. To reduce the setof doses to be considered, the

search may be restricted to sets of adjacent doses. Also, in practice at the phase III stage,

the number of experimental doses is fewer so that the possible set of doses to be considered

could be lower. Letx2j andt2j , j ∈ {0} ∪ K2 with j = 0 corresponding to the control

treatment, respectively denote the number of successes andtoxicities on dosej in stage 2.

At the end of stage 2, the efficacy datax2 = ({x2j}), j ∈ {0}∪K2 can be used to construct

a set of p-valuesp2,J corresponding to the closure set of p-valuesp1,J constructed using the

stage 1 data.

By utilizing the method described in Section 4.4, the two sets of p-values from the

two stages can be used to test whether there is an effective dose among thek2 doses that

proceed to the second stage. Given stage 1 data we want to determine the setK2 which

will be most likely to lead us to finding at least one effectiveand safe dose at the end of

stage 2 using the predictive power. In the next section, given stage 1 data, for each potential

set of dosesK2 to test in stage 2, we develop an expression for the probability at least one

of the doses inK2 will be concluded effective and safe after stage 2 (conditional power).

This probability is the sum of probabilities of different stage 2 outcomes for which at least

one dose will be concluded effective and safe. The predictive power, which is the expected

value of the conditional power, is given in Section 5.3.

5.2 Conditional power

As described above, in this section, assuming that stage 2 data have a distribution which

depends on a fixed parameter vector, we develop an expressionfor the probability of con-

cluding at least one of thek2 doses in the potential set of dosesK2 to be tested in stage 2 is

effective given the results of stage 1. The expression is obtained by summing probabilities
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of outcomes for which we will find at least one effective dose after stage 2 given stage 1

data. To incorporate the safety measure, we multiply this probability by an indicator vari-

able that doses that are effective are safe. We will refer to this probability as the penalized

(combined) conditional power. Since the conditional poweris a summation of probabilities

of stage 2 data, we need to determine the distribution of stage 2 data. The distribution of

stage 2 data is given in the next subsection. In Section 5.2.2, we give the probability of

stage 2 data for which at least one dose will be concluded effective. This probability is

penalized for toxicity in Section 5.2.4.

5.2.1 Distribution of second stage data

Let f(x2, t2; θ) denote the distribution of stage 2 data whereθ is the vector of parameters

giving the dose-response curves for efficacy and toxicity. To give the form ofθ, suppose

a study patient is administered a dose leveld. The outcome for efficacy will be either a

successful treatment or a treatment failure and the probability of the successful treatment

will be denoted bypE(d). The toxicity outcome will be categorized as either toxic ornon-

toxic and the probability of a toxic outcome will be denoted by pT (d). We propose two

logistic models for the outcomes;

pE(d) =
exp(αE + βE log d)

1 + exp(αE + βE log d)
(5.1)

and

pT (d) =
exp(αT + βT log d)

1 + exp(αT + βT log d)
(5.2)

so that stage 2 data(x2, t2) would depend on the probability vectorθ = (αE , βE, αT , βT )′.

Although we propose a logit link, other link functions may beused. For the logistic dose-

response models (5.1) and (5.2), we have taken the dose in thelog scale as in common in

drug development but a different linear predictor may also be used. Assuming the outcomes
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are independent, then the probability ofx20 successes andt20 toxicities in the control group

andx2j successes andt2j toxicities in the experimental dosej, j ∈ K2 is

f(x2, t2; θ) = fB(x20;n2, pE0
)fB(t20;n2, pT0

)
∏

j∈K2

fB(x2j ;n2, pEj
)fB(t2j ;n2, pTj

),

wherefB(x2j ;n2, pEj
) andfB(t2j ;n2, pTj

), j ∈ {0}∪K2 are binomial mass functions with

parameter vectors(n2, pEj
) and (n2, pTj

) respectively. The parameterspEj
andpTj

, j ∈ K2

are respectively points on the dose-response curves (5.1) and (5.2) corresponding to dose

levelj. If the control treatment is a dose level of the experimentaldrug,pE0
andpT0

are also

points on the dose response curves (5.1) and (5.2). Otherwise, for example, an estimate of

pE0
is obtained by maximizing the likelihood

l(pE0
|x10, n1) =

(

n1

x10

)

px10

E0
(1 − pE0

)n1−x10 .

5.2.2 Expressions for conditional power

After obtaining the distribution of stage 2 data, the next step in obtaining the conditional

power involves determining stage 2 data for which the final hypothesis will be significant

given the results of stage 1. Given stage 1 datax1, the p-valuep1,J corresponding to an

intersection hypothesisHJ in the closure setH can be considered fixed. The final hy-

pothesis test for the intersection hypothesisHJ will be significant at levelα if and only

if C(p1,J , p2,J) ≤ α. The inequality can be rearranged to determine the maximum value

of p2,J such that the null hypothesisHJ is rejected at the end of stage 2. For example if

the combination test of choice is the inverse normal combination given by equation (4.3),

rearranging the inequality, the final hypothesis test will be significant if and only if

p2,J ≤ 1 − Φ

{

Φ−1(1 − α) − w1Φ
−1(1 − p1,J)

w2

}

. (5.3)

Let l ≤ |J | be the number of experimental doses in hypothesisHJ at stage 2. Then using

the Bonferroni adjusted p-value,p2,J = min(1, l × minj∈J{p2,j}), wherep2,j is the p-
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value obtained from testing the pairwise null hypothesisHj at the second stage. Since

p2,J = min(1, l× minj∈J{p2,j}), inequality (5.3) holds if and only if

l × min
j∈J

{p2,j} ≤ 1 − Φ

{

Φ−1(1 − α) − w1Φ
−1(1 − p1,J)

w2

}

since, as the right hand side (RHS) is less than 1, we so cannothave 1≤ RHS. Dividing

both sides of the above inequality byl, then hypothesisHJ is rejected after stage 2 if and

only if

min
j∈J

{p2,j} ≤
(

1 − Φ

{

Φ−1(1 − α) − w1Φ
−1(1 − p1,J)

w2

})

/

l. (5.4)

Note that if inequality (5.4) holds, then it means that for some pairwise hypothesisHj

(j ∈ J), p2,j is less than the RHS of inequality (5.4). Thus hypothesisHJ will be rejected

at the end stage 2 if and only if

p2,j ≤
(

1 − Φ

{

Φ−1(1 − α) − w1Φ
−1(1 − p1,J)

w2

})

/

l for some j ∈ J. (5.5)

The RHS of inequality (5.5) could be viewed as the “level of testing” for hypothesisHJ at

stage 2.

For each possible number of successes in the control treatment (x20), the minimum

number of successes required in either of thel doses such that inequality (5.5) holds can be

obtained. We will denote this minimum number of successes byBx20
(p1,J) where the nota-

tion reflects dependency onx20 and the stage 1 p-valuep1,J for the intersection hypothesis

HJ . The next subsection focusses on obtainingBx20
(p1,J). HypothesisHJ will be rejected

for the set of stage 2 datax2 such thatx2j ≥ Bx20
(p1,J) for somej ∈ J . To conclude that

an experimental dosej is more effective than the control treatment, we need to determine

the set of stage 2 datax2 for which all hypothesesHJ with j ∈ J are all rejected. We de-

note the set ofx2 for which this is true byR(p1,j), j ∈ K2. The probability of concluding

dosej is more effective than the control after stage 2 analysis is obtained by summing the

probabilities of all outcomes inR(p1,j).
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The form ofR(p1,j) depends on the number of doses that continue to the second

stage. For example, supposek1 = 4 with a single treatment continuing, sayK2 = {1}. To

conclude that dose 1 is effective all the hypothesesH1234,H123,H124,H134,H12,H13,H14

andH1 need to be rejected. Since only dose 1 proceeds to the second stage, the intersection

hypothesesH1234,H123,H124,H134,H12,H13 andH14 simplify to the pairwise hypothesis

H1 because no data are available for the other doses at stage 2 but the tests are carried

out at different levels determined by inequality (5.5). Theminimum number of successes

at dose 1 (x21) for a given number of successes in the control treatment (x20) required to

reject all hypothesesHJ for J ⊆ {1, 2, 3, 4} with 1 ∈ J could be obtained and is given by

Bx20
(max{p1,J}). We takemax{p1,J} since the RHS of inequality (5.5) decreases when

p1,J increases. Dose 1 would then be concluded to be more effective than the control

treatment at the end of stage 2 if

x21 ≥ Bx20
(max{p1,J})

for all J with 1 ∈ J . The probability of concluding dose 1 is more effective thanthe control

treatment at the end of stage 2 is then given by

∑

R(p1,1)

f(x2; θ) =

n2
∑

x20=0

{

fB(x20;n2, pE0
)

n2
∑

x21=B

fB(x21;n2, pE1
)

}

, (5.6)

wherefB(x2j ;n2, pEj
) (j = 0, 1) is the probability mass function of the binomial random

variableX2j with parameter vector(n2, pEj
), B = Bx20

(max{p1,J}) andR(p1,1) denotes

the set ofx2 for which dose 1 is rejected after stage 2.

Suppose from an initial four experimental doses at stage 1, dose 1 and dose 2 pro-

ceed to stage 2, that is,k1 = 4 andK2 = {1, 2}. In order to make inference on the

effectiveness of dose 1 using the closure principle, the null hypothesesH1234, H123, H124,

H134,H12,H13,H14 andH1 are tested. On the other hand, the null hypothesesH1234,H123,

H124, H234, H12, H23, H24 andH2 are tested in order to make inference on dose 2. Since

no data are available for doses 3 and 4, tests for hypothesesH134, H13, H14 andH1 which
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are included inH1 but not inH2 are performed using only the test forH1 but at different

levels. The minimumx21 required to reject all these hypotheses which we denote byB1 is

obtained by evaluatingBx20
(max{p1,J}) for J ⊆ {1, 3, 4} with 1 ∈ J . Similarly, only dose

2 data are available for hypothesesH234,H23,H24 andH2 which are included inH2 but not

in H1. The minimumx22 required to reject all these hypotheses which we denote byB2 is

obtained by evaluatingBx20
(max{p1,J}) for J ⊆ {2, 3, 4} with 2 ∈ J . On the other hand,

only dose 1 and dose 2 data are available at stage 2 for hypothesesH1234, H123, H124 and

H12 and hence their test is performed using only the test forH12. The minimum number of

successes required in either dose 1 or 2 to reject all these hypotheses which we denote by

B12 is obtained by evaluatingBx20
(max{p1,J}) for J ⊆ {1, 2, 3, 4} with {1, 2} ∈ J .

Assuming dose 1 and dose 2 are interchangeable, there are three possible configu-

rations forB1, B2 andB12 namely;

(i) B1 < B2 < B12 (ii) B12 < B1 < B2 and (iii) B1 < B12 < B2.

The expression for conditional power for each of these scenarios is different. From left to

right, Figure 5.1 shows configurations (i) to (iii) for a given realizationx20. The partitions

marked by 1, 2 and 12 respectively represent the realizationof the number of successes in

the experimental doses for which only dose 1, only dose 2 and for which both dose 1 and 2

are concluded to be effective for a given number of successesin the control treatment. The

probability of concluding at least one of the experimental doses is effective is obtained by

summing all the probabilities of all outcomes in the partitions marked by 1, 2 and 12. For

example, for configuration (i), the probability of concluding dose 1 or dose 2 is effective

after stage 2 is

∑

R(p1,1)

f(x2; θ) +
∑

R(p1,2)

f(x2; θ) +
∑

R(p1,12)

f(x2; θ), (5.7)

whereR(p1,1), R(p1,2) andR(p1,12) respectively denote the set of stage 2 data given the

stage 1 data for which after stage 2 only dose 1 would be effective, only dose 2 would be
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Figure 5.1: Configuration of the minimum number of successes. The x-axes are the number
of successes in dose 1 (x21) and y-axes the number of successes in dose 2 (x22).

effective and when both dose 1 and 2 would be effective so that

∑

R(p1,1)

f(x2; θ) =

n2
∑

x20=0

fB(x20; n2, pE0
)

{

n2
∑

x21=B12

B2
∑

x22=0

fB(x21; n2, pE1
)fB(x22; n2, pE2

)

}

,

∑

R(p1,2)

f(x2; θ) =

n2
∑

x20=0

fB(x20; n2, pE0
)

{

B1
∑

x21=0

n2
∑

x22=B12

fB(x21; n2, pE1
)fB(x22; n2, pE2

)

}

and

∑

R(p1,12)

f(x2; θ) =

n2
∑

x20=0

fB(x20; n2, pE0
)

{

n2
∑

x21=B12

n2
∑

x22=B2

fB(x21; n2, pE1
)fB(x22; n2, pE2

)

}

+

n2
∑

x20=0

fB(x20; n2, pE0
)

{

B12
∑

x21=B1

n2
∑

x22=B12

fB(x21; n2, pE1
)fB(x22; n2, pE2

)

}

,

wherefB(x2j ;n2, pEj
), j = 0, 1, 2, is the probability mass function of the binomial ran-

dom variableX2j with parametersn2 andpEj
.

Expressions (5.6) and (5.7) are respectively the combined conditional power when

K2 = {1} andK2 = {1, 2}. The expressions also give the conditional power for taking

K2 = {1} or K2 = {1, 2} for any value ofk1 ≥ 2 and similar expressions can be obtained

for anyK2 = {i} andK2 = {i, j} for any i, j ∈ {1, ..., k1}. The Bonferroni adjusted p-

values have been used to obtain the expressions for conditional power. ThěSidak adjusted

p-values similarly lead to simple expressions for conditional power. For Simes adjusted
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p-values, it is not possible to obtain a single inequality such as the one resulting from

Bonferroni adjusted p-values given by inequality (5.5) forcomposite hypotheses. However,

it is still possible to obtain expressions for conditional power using this test but this becomes

less straightforward as the value ofk2 increases.

We have given the expressions for when up to two doses proceedto stage 2 but using

the same principles, expressions can be obtained fork2 > 2. In practice, it would be rare

to proceed to stage 2 with many experimental doses.

5.2.3 Obtaining the minimum number of successes

In this sub-section, we illustrate how to obtainBx20
(p1,J), the minimum number of suc-

cesses required in either of thel experimental doses inJ such that the null hypothesisHJ

is rejected at the end of stage 2. The left hand side of inequality (5.5) is the p-value from

testing the null hypothesisHj , j ∈ J at stage 2. If a chi-squared test is used to test the null

hypothesisHj with j ∈ J , the critical chi-squared valueχ2
c corresponding to the level of

the test (RHS of inequality (5.5)) can be determined. The null hypothesisHj is rejected if

and only if the observed chi-square value

2n2(x20 − x2j)
2

(x20 + x2j){2n2 − (x20 + x2j)}
≥ χ2

c .

Rearranging the expression, the null hypothesis is rejected for superiority if and only if

x2j ≥
U + V

(2n2 + χ2
c)

= Bx20
(p1,J)

where

U = −{χ2
c(x20 − n2) − 2n2x20} and V =

√

n2χ2
c{n2χ2

c + 8x20(n2 − x20)}.

Although we focus here on theχ2 test, the value ofBx20
(p1,J) can be evaluated for any

other test statistic that can be used for making inference onbinary data.



5.3. PREDICTIVE POWER 89

5.2.4 Penalizing for toxicity

Toxicity has not been incorporated in the conditional powerexpressions (5.6) and (5.7).

Suppose a dose will be rejected for toxicity if the probability of toxicity exceeds some

predetermined levelγ. Then the probability that a dose is demonstrated to be both safe and

effective is the product of the conditional power given by expression (5.6) and the indicator

I(pT1
≤ γ). If more than one experimental dose proceeds to the second stage the different

disjoint events for which we conclude at least one of the experimental doses in stage 2 is

effective are multiplied by different indicators. For example if K2 = {1, 2}, there are three

disjoint events for which we conclude there is an effective dose. These are; only dose 1 is

effective, only dose 2 effective and both dose 1 and 2 are effective. The respective indicators

with which the probability of these events are multiplied are I(pT1
≤ γ), I(pT2

≤ γ) and

I(pT1
≤ γ, pT2

≤ γ).

5.3 Predictive power

The conditional power expressions obtained in Section 5.2 assume a fixed value of the

parameter vectorθ. Suppose thatθ is given some prior distribution with densityπ0(θ). The

posterior distribution ofθ given the data observed at the end of the first stage is given by

Bayes’ theorem to be equal to

π(θ|x1, t1, n1) =
l(θ|x1, t1, n1)π0(θ)

∫

l(θ|x1, t1, n1)π0(θ)dθ
,

wherel(θ|x1, t1, n1) is the likelihood function ofθ given the observed data(x1, t1, n1) from

thek1 doses of the experimental treatment observed at the end of the first stage. Assuming

the number of successes and toxicities at each dose level areindependent,

l(θ|x1, t1, n1) =

k1
∏

j=1

(

n1

x1j

)

p
x1j

Ej
(1 − pEj

)n1−x1j

(

n1

t1j

)

p
t1j

Tj
(1 − pTj

)n1−t1j ,
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wherepEj
andpTj

are respectively the probabilities of success and toxicityat dosej. The

predictive power is then obtained by evaluating the posterior mean of the conditional power,

that is, the predictive power is given by

∫

Θ

(CPθ)π(θ|x1, t1, n1)dθ, (5.8)

where CPθ denotes the conditional power. For example ifK2 = {1, 2}, the penalized

predictive power is given by

∫

Θ

[I(pT1
≤ γ) · A1 + I(pT2

≤ γ) · A2 + I(pT1
≤ γ, pT2

≤ γ) ·A12] π(θ|x1, t1, n1)dθ,

where

AJ =
∑

R(p1,J )

f(x2; θ), J ∈ {1, 2, 12}

andR(p1,1),R(p1,2) andR(p1,12) respectively denote the set of stage 2 data given the stage

1 data for which after stage 2 only dose 1 would be effective, only dose 2 would be effective

and when both dose 1 and 2 would be effective as described above.

The penalized predictive power depends on the choice of the doses selected to con-

tinue to stage 2 as these affect the number of patients per arm, n2, the rejection region,

R(p1), which probabilitiespEj
enter the densityf(x2; θ) and which probabilitiespTj

enter

the penalty. We wish to make a choice of doses to continue on the basis ofx1 and t1 to

make the penalized predictive power as large as possible.

5.3.1 Distribution of the unknown parameters

We propose obtaining the prior beliefs on the dose-responsecurves for efficacy and toxicity

separately using the technique of Bedrick et al. (1996) as was described in Section 2.2.2.

This requires eliciting beta prior distributions at two dose levelsd−1 andd0 for each dose-

response curve since each dose-response curve is defined by two parameters. We assume
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the beta prior distributions at each dose level can be elicited as was described in Section

2.2.1 using the contribution by Thall and Simon (1994) and Lindley and Phillips (1976).

Suppose for the probability of success,pEj
= pE(dj) at dosej (j = −1, 0), the elicited

prior distribution is Beta(x1j , y1j). Then assuming that the probabilities of success are re-

lated to the dose levels according to the logistic model (5.1) and using the prior distribution

given by equation (2.6), the prior distribution for(αE , βE)

π0(αE, βE) =
0
∏

j=−1

p
x1j

Ej
(1 − pEj

)y1j

B(x1j , y1j)

∣

∣

∣

∣

log

(

d−1

d0

)
∣

∣

∣

∣

, (5.9)

whereB is the beta function and

pEj
=

exp(αE + βE log dj)

1 + exp(αE + βE log dj)
, j = −1, 0.

Similarly suppose a beta prior distribution Beta(pTj
; t1j , u1j) is elicited for the probability

of toxicity, pTj
= pT (dj) at dosej (j = −1, 0), then assuming logistic dose-response (5.2)

for the probabilities of toxicity, the prior distribution of (αT , βT )

π0(αT , βT ) =
0
∏

j=−1

p
t1j

Tj
(1 − pTj

)u1j

B(t1j , u1j)

∣

∣

∣

∣

log

(

d−1

d0

)
∣

∣

∣

∣

, (5.10)

whereB is the beta function and

pTj
=

exp(αT + βT log dj)

1 + exp(αT + βT log dj)
, j = −1, 0.

As in Section 5.1, letx1j denote the number of successfully treated patients and

y1j = n1 − x1j the number of patients that are not treated successfully at stage 1 after

treatment with dosej (j = 1, ..., k1). After observation of the stage 1 data, using equation

(2.7), the updated distribution (posterior distribution)of (αE , βE) is

π(αE, βE|x1, n1) ∝
k1
∏

j=−1

p
x1j

Ej
(1 − pEj

)y1j , (5.11)
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where

pEj
=

exp(αE + βE log dj)

1 + exp(αE + βE log dj)
, j = −1, 0, 1, ..., k1.

Similarly let t1j denote the number of patients that experience toxicity at stage 1 andu1j =

n1−t1j the number of patients that do not experience toxicity, thenthe posterior distribution

of

π(αT , βT |t1, n1) ∝
k1
∏

j=−1

p
t1j

Tj
(1 − pTj

)u1j , (5.12)

where

pTj
=

exp(αT + βT log dj)

1 + exp(αT + βT log dj)
, j = −1, 0, 1, ..., k1.

If the control treatment is a lower dose of the same drug as theexperimental treat-

ments, data from the control group are used in updating the prior distributions of (αE, βE)

and (αT , βT ). If it is a different drug, a beta prior distribution Beta(pE0
; a0, b0) for the prob-

ability of successful treatment at control treatment whichis conjugate for the likelihood

function

l(pE0
|x10, n1) =

(

n1

x10

)

px10

E0
(1 − pE0

)n1−x10

is elicited. The parametersa0 andb0 are elicited as explained in Section 2.2.1. The resulting

posterior has a beta distribution Beta(pE0
; a0 + x10, b0 + n1 − x10).

5.4 Summarizing the dose selection procedure

In Chapter 4, we introduced seamless phase II/III clinical trials and described the challenges

in these trials. One of the challenges of seamless phase II/III clinical trials is how to analyse

these trials without inflating type I error rates. In Chapter4, we described in detail an

analysis method given in Bauer and Kieser (1999), Hommel (2001) and Bretz et al. (2006).
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When several doses are to be tested with the possibility of dropping some doses after stage

1, this analysis allows selection of any combination of doses to continue to stage 2 with a

final analysis that strongly controls the FWER.

The second challenge of seamless phase II/III is how best to select the doses that

are tested in stage 2. In the previous sections of this chapter, we have proposed a procedure

for selecting the doses to test in stage 2 of a seamless phase II/III clinical trials assuming

the analysis described in Bauer and Kieser (1999), Hommel (2001) and Bretz et al. (2006).

The doses are selected by calculating the predictive power of each set of doses that may be

tested in stage 2 using the knowledge of this analysis and stage 1 while also incorporating

the prior knowledge through prior distributions, and proposing to test in stage 2 the set of

doses with the highest predictive power.

In more detail, before the seamless phase II/III clinical trial, prior distributions given

by equations (5.9) and (5.10) for the parameters that define the dose-response curves for

the probability efficacy and for the probability of toxicityare elicited. After stage 1, stage

1 efficacy and toxicity data are used to update prior distributions of the parameters for the

efficacy and toxicity dose-response curves using equations(5.11) and (5.12). In addition

to using the stage I data to update prior distribution, stage1 efficacy data are used to ob-

tain all intersection hypotheses p-valuespJ (J ⊆ {1, ..., k1}), wherek1 is the number of

experimental doses in stage 1.

The stage 1 p-values are required to obtain expressions for conditional power, the

conditional probability of concluding at least one of the experimental doses that is tested

in stage 2 is efficacious and safe given stage 1 data. The expressions for conditional power

are obtained for each potential set of doses that may be tested in stage 2. For example, if

the number of experimental doses at stage 1 is 3, and can only proceed with a single dose

or consecutive pairs of doses, then 5 expressions for conditional power are obtained. The

5 expressions for conditional power correspond to the single experimental doses 1, 2 and

3, and the consecutive pairs doses 1 and 2 and doses 2 and 3. Forproceeding with the
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single doses, the conditional powers have the form given by expression (5.6) multiplied

by probability of safety described in Section 5.2.4. For continuing with two experimental

doses, the conditional powers have the form given by expression (5.7) multiplied by prob-

abilities of safety as described in Section 5.2.4. Expressions (5.6) and (5.7) are expressions

for probability of all data for which we conclude at least oneof the experimental doses is

more efficacious than control. Stage 1 p-values enter these expressions by determining the

minimum successes using equation (5.5). Equation (5.5) also requires the weightsw1 and

w2, and the level of the testα to be pre-defined. A typical level for one-sided tests is 0.025.

The weightsw1 andw2 could be chosen proportional to the pairwise comparisons sample

sizes (that is patients treated in each treatment arm) as wasdemonstrated using the example

given at the end of Section 4.4.

The posterior distribution is then used to obtain the expected value of the conditional

powers using equation (5.8). This is the predictive power. For example, using the example

given in the previous paragraph, 5 predictive power values corresponding to proceeding to

single doses 1, 2 and 3 and the consecutive pairs doses 1 and 2 and doses 2 and 3 will be

obtained. The predictive power values are compared to choose the set of doses to test in

stage 2. The set of doses with the highest predictive power ischosen for testing in stage 2.

The final analysis does not include the prior knowledge. The prior distributions are

only used to plan stage 2.

5.5 Comparing the dose selection procedure with existing

methods

In this section, we explicitly discuss the features of the dose selection developed above in

comparison with the existing methods. The features described in detail in this section are

generally attractive. Before describing the attractive features, in this paragraph, we briefly
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mention the features of the dose selection developed in thischapter that may be improved

while also giving the thesis sections in which these features are described in more detail.

The first feature that may be improved concerns how the association between efficacy and

toxicity is modeled. The association between efficacy and toxicity is not modeled explicitly

and the details of how the association between efficacy and toxicity are given in Section 5.6.

Also, we have assumed some known dose-response curves (5.1)and (5.2) respectively for

efficacy and toxicity. However, there may be uncertainty in the form of the dose-response

curves and it would be desirable to include this uncertaintyin the dose selection procedure.

Bretz et al. (2005) and Klingenberg (2009) have proposed methods that include model

uncertainty while estimating the minimum effective dose. In Section 7.2, we have described

how the ideas in Klingenberg (2009) could be borrowed to include model uncertainty in the

dose selection procedure.

Some of the key attractive features of this procedure are that it: (1) allows for the

dose-response relationships by using the logistic models (5.1) and (5.2) respectively to

model the probability of efficacy and toxicity, (2) as described in Section 5.3, uses the

Bayesian tools by defining some prior distributions for the parameters that enter the prob-

ability of concluding at least one of the doses that is testedin stage 2 is effective and safe,

and (3) explicitly includes safety by including the probability of concluding that the doses

that are concluded effective after stage 2 are also safe as described in Section 5.2.4. In the

light of these features, we explain why this new procedure isdifferent from the existing

methods and why the new procedure is expected to perform better.

The method proposed by Stallard and Todd (2003) selects among the experimental

treatments (doses) tested in stage 1, the best performing treatment (dose) in terms of its

efficacious level compared to the control treatment. If morethan one dose is selected, it

is not guaranteed the type I error rates are controlled at thedesired level. This restriction

also applies to the method proposed by Thall et al. (1988). Our procedure does not have

this restriction because the analysis assumed allows for any decision rule without inflating
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type I error rates. The simulation results presented in the next chapter show under some

scenarios, it is often better to choose two doses so that it isbetter to have a procedure that

allows continuing with more than a single dose. Further, unlike Stallard and Todd (2003)

and Thall et al. (1988), with this procedure the prior knowledge about the experimental

doses and the control treatment is formally used in planningstage 2.

Stallard and Todd (2003), Thall et al. (1988), Schmidli et al. (2007) and Zuber et al.

(2006) would be adequate if the experimental treatments aredistinct treatments. However,

when the treatments are different doses of the same drug, then these methods do not exploit

the dose-response relationship which is expected when the treatments are different doses of

the same drug. The simulation results presented in the next chapter show the dose selection

developed in this chapter capture the dose-response relationships.

Finally, we have explicitly included safety in the dose selection procedure. It is

likely the methods proposed by Thall et al. (1988), Schaid etal. (1990) and Stallard and

Todd (2003) require a lot effort to include safety. It may be easy to incorporate safety in

the methods proposed by Schmidli et al. (2007) and Zuber et al. (2006) but these authors

have not done this.

5.6 Remarks on the dose selection procedure

The method of Bedrick et al. (1996) of eliciting prior distributions for the dose-response

curves parameters assumes that the beta prior distributions elicited at dose levelsd−1 and

d0 are independent. This assumption simplifies the mathematics but as noted in Whitehead

et al. (2006), it has the undesired consequences that it is possible forβE < 0 or βT <

0 when it is believed thatβE ≥ 0 andβT ≥ 0. This is because assuming the elicited

beta distributions at dose levelsd−1 andd0 are independent, for example implies that the

probability that the probability of efficacy at dose leveld−1 is higher than the probability of

efficacy at dose leveld0 for d−1 < d0 is not zero even when it is believed efficacy improves
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with dose level. This in turn means it is possible to haveβE < 0 when it is believed

βE ≥ 0. To partly address this problem the beta prior distributions are elicited at locations

that are far from each other. Also as in Whitehead et al. (2006), since we are interested in

the posterior means of the conditional powers associated with continuing with different set

of doses, negative parameter values for the slope parameters will not have undesired effects

on the predictive power. Further, since we obtain the posterior distributions by updating the

prior distributions using all the phase II clinical trial data, for the posterior distributions,

the slope parameters are unlikely to be negative when the slope parameters are actually

positive.

The use of conditional efficacy and toxicity models (5.1) and(5.2) may raise concern

about the association between efficacy and safety. At each dose level, we are assuming

independence between the probabilities of efficacy and toxicity to obtain the predictive

power. However, because we are using more than one experimental dose, this does not

imply marginal independence between efficacy and toxicity.To demonstrate this, using

odds ratio as a measure of the association, first we give the expression for the odds ratio and

then give the implied odds ratio for some scenarios. As above, let pEj
andpTj

respectively

denote the probability of efficacy and of toxicity at dosej (j = 1, ..., k1). Further letpRj

denote the probability of a patient being randomized to dosej (j = 1, ..., k1). Using law

of total probability, the marginal probabilities of efficacy (pE) and toxicity (pT ) and the

probability of efficacy and toxicity (pET ) assuming independence of safety and efficacy at

each dose level are expressed as:

pT =

k1
∑

j=1

pTj
pRj

, pE =

k1
∑

j=1

pEj
pRj

and pET =

k1
∑

j=1

pEj
pTj

· pRj

so that the marginal odds ratio is given by

pET (1 − pE − pT + pET )

(pT − pET )(pE − pET )
. (5.13)

To give examples of some implied odds ratio, we use the three scenarios used to assess the
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effect probability of efficacy in the next chapter. We refer to the three scenarios as the refer-

ence scenario, Scenario 2 and Scenario 3. The dose-responsecurves for the three scenarios

are given in Figure 5.2. In the three scenarios, the dose-response curve for the probability

of toxicity is the same with(αT , βT ) = (−2.5782, 0.1621) and is given by the continuous

line (—). The three scenarios differ in the parameter vector(αE, βE). For the reference sce-

nario, the parameter vector(αE, βE) = (−1.4867, 0.2720) and the dose-response curve is

given by the dashed line (- - -). In Scenario 2,(αE , βE) = (−2.6226, 0.3187) and the dose-

response curve is given by the dotted line (· · ·). For Scenario 3,(αE , βE) = (−0.8473, 0)

and the dose-response curve is given by the dashed and dottedline (· - · - ·).
Assuming a new drug is tested at the marked dose levels on the x-axis of Figure 5.2,

that is dose levels 10.5mg, 35mg, 87.5mg, 262.5mg, 700.0mg and 1050.0mg, the marginal

odds ratios for reference scenario, Scenario 2 and Scenario3 respectively are 1.13, 1.14

and 1.0. In Scenario 3 the probability of toxicity increaseswith dose level and probability

of efficacy does not change with the dose level so that an odds ratio of 1 would not be a

bad assumption. Scenario 2 has a higher odds ratio than the reference scenario which is

what we would desire. This is made possible since we assume some dose-response curves.

The marginal odds ratio expression (5.13) holds even when probabilities of efficacy and

toxicity are not modelled using some dose-response curves.Modelling the probabilities at

each dose level independently may result in instances wherethe marginal odds ratio for

Scenario 2 is less than the odds ratio for the reference scenario. By using different dose

levels, as would be expected, we observed that the modelled odds ratios for the reference

scenario and Scenario 2 are higher when: (1) patients are allocated to more dose levels, and

(2) the experimental dose level are further apart.

To conclude, by modelling the probabilities of efficacy and the probabilities of tox-

icity as described above, we assume that the probability of efficacy is independent of the

probability of toxicity given dose subject to a given marginal odds ratio. The marginal

odds ratio is induced by assuming some dose-response curvesfor the probabilities of ef-
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Figure 5.2: Different scenarios of dose response curves used to give examples of implied
marginal associations.

ficacy and of toxicity. Thus, although we assume independence at each dose level, there

is a restriction of the values the probabilities of efficacy and of toxicity can take. If there

is correlation between efficacy and toxicity, we reduce the set of values probabilities of

efficacy and of toxicity can take at each dose level so that theindependence assumption

is less strong compared to modelling outcomes (efficacy and toxicity) at each dose level

independent and also outcomes at a dose level independent ofthe outcomes in other dose

levels.



Chapter 6

Simulation studies

In Chapter 5, we have described how the doses continuing fromthe first stage of a seamless

phase II/III clinical trial may be chosen and how a final analysis may be conducted to allow

for this without inflating type I error rates. In this chapter, the performance of the selection

procedure is investigated using simulation studies. Different scenarios for the underlying

true probabilities of toxicity and efficacy using the different doses are considered. For

each of these scenarios, 1000 studies were simulated in order to obtain the probabilities of

continuing to stage 2 with each of the potential doses.

6.1 Simulation model parameter values

The simulation studies are based on the trial described by Whitehead et al. (2006). We as-

sume that the new drug is tested at dose levels 10.5mg, 35.0mg, 87.5mg, 262.5mg, 700.0mg

and 1050.0mg plus a control. To conform with the previous chapters, we simply refer to

the experimental doses in increasing dose levels as dose 1, dose 2, dose 3, dose 4, dose 5

and dose 6. Further, in all simulation studies, we assume that γ, the accepted maximum

probability of toxicity, is 0.2. The control treatment is assumed to be a different drug from

100
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the experimental drug with the true probability of efficacy for the control treatment taken

to be 0.3. For the dose-response curve parameters, the true parameter values for(αE , βE)

and(αT , βT ) corresponding to dose-response curves (5.1) and (5.2) are assumed to be (-

1.4867, 0.2720) and (-2.5782, 0.1621) respectively. We refer to this set of parameter values

for (αE , βE) and(αT , βT ) as the reference scenario. With these parameter values, alldoses

are acceptably safe and dose 1 is as efficacious as the controltreatment while all the other

experimental doses are more efficacious than the control treatment.

To explore the effect of efficacy, two more scenarios are compared to the reference

scenario. We will refer to them as efficacy Scenario 2 and efficacy Scenario 3. The two sce-

narios have the same value for the true parameter vector (αT , βT ) as the reference scenario

but differ from the reference scenario in the value of the parameter vector(αE, βE). The

probabilities of efficacy and toxicity at each experimentaldose level for the two scenarios

and the reference scenario are given in Table 6.1 while the dose-response curves for the two

scenarios and the reference scenario are given in the left panel of Figure 6.1. The marked

points on the x-axis correspond to the experimental doses. As the linear predictor of the

dose-response curves are on the natural log dose scale, doses are plotted on the log scale

in Figure 6.1, so that the higher doses are closer to each other on the x-axis. The continu-

ous line (—) shows the toxicity dose-response curve for the reference scenario. The same

toxicity dose-response curve will be used for the efficacy Scenario 2 and efficacy Scenario

3. As already described above, the dose-response curves shows that all the experimental

doses are acceptably safe since the probability of toxicityin all cases is less than 0.2. The

dashed line (- - -) gives the efficacy dose-response curve forthe reference scenario. In this

scenario, dose 1 is as efficacious as the control while doses 2to 6 are more efficacious than

the control. The dotted line (· · ·) gives the efficacy dose-response curve for the efficacy

Scenario 2 for which(αE , βE) = (−2.6226, 0.3187). In this scenario only doses 5 and 6

are more efficacious compared to control. The dashed and dotted line (· - · - ·) gives the

efficacy Scenario 3 with(αE , βE) = (−0.8473, 0). In this scenario, all the experimental
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Figure 6.1: Underlying true dose-response curves. The leftpanel shows different scenarios
for efficacy while the right panel shows different scenariosfor toxicity.

doses have the same efficacy level as the control treatment. For each of these three scenar-

ios, 1000 studies were simulated and in each case predictivepower calculated to determine

the dose(s) that continue to stage 2. The simulation resultsare given in Section 6.5.

We also wish to explore the effect of true toxicity on the proposed dose selection

procedure. To do this, two more scenarios that will be compared to the reference scenario

will be considered. We will refer to them as toxicity Scenario 2 and toxicity Scenario 3.

The dose-response curves for the probability of efficacy forthe toxicity Scenario 2 and

the toxicity Scenario 3 have the same parameter vector (αE , βE) as the reference scenario.

However, the dose-response curves for the probability of toxicities for the two scenarios

are different from the reference scenario. Table 6.2 gives the probabilities of efficacy and

toxicity at each experimental dose level for the reference scenario and the toxicity Scenario

2 and the toxicity Scenario 3 while Figure 6.1 (right panel) gives the dose-response curves
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Table 6.1: Probabilities of efficacy and toxicity at tested dose levels for the three scenarios
used to assess effect of efficacy

Dose levels (mg)
Scenario (Outcome) 10.5 35.0 87.5 262.5 700.0 1050

All Scenarios (Toxicity) 0.10 0.12 0.14 0.16 0.18 0.19
Reference Scenario (Efficacy)0.30 0.37 0.43 0.51 0.57 0.60
Scenario 2 (Efficacy) 0.13 0.18 0.23 0.23 0.37 0.40
Scenario 3 (Efficacy) 0.30 0.30 0.30 0.30 0.30 0.30

for the reference scenario and the toxicity Scenario 2 and the toxicity Scenario 3. The

continuous line (—) shows the efficacy dose-response curve for the reference scenario.

The same dose-response curve for efficacy will be used to simulate studies for toxicity

Scenario 2 and 3. The dashed line (- - -) gives the toxicity dose-response curve for the

reference scenario for which all doses are acceptably safe.The dotted line (· · ·) and the

dashed and dotted line (· - · - ·) respectively give the toxicity dose-response curves for the

toxicity Scenario 2 and toxicity Scenario 3. For the toxicity Scenario 2 (· · ·), (αT , βT ) =

(−2.6728, 0.2023). In this scenario dose 5 is nearly safe (probability of toxicity is 0.206)

and dose 6 is unacceptably toxic while the other doses are acceptably safe. On the other

hand, for the toxicity Scenario 3 (· - · - ·), (αT , βT ) = (−2.9523, 0.3211) so that doses 1

to 3 are acceptably safe while the other experimental doses would be considered too toxic.

A further two sets of 1000 studies for each of these two new scenarios were simulated

and predictive powers evaluated to determine the dose(s) that continue to stage 2. The

simulation results for these scenarios are also given in Section 6.5.

In all the simulation studies, it will be assumed thatn1, the number of patients tested

at each dose at stage 1 is 20 and the total number of patients available for testing at stage

2 is 400 such thatn2, the number of patients allocated to each treatment arm at stage 2

is 400/(k2 + 1), wherek2 is the number of the number of doses chosen to be tested in

the second stage. We will demonstrate the method for clinical trials in which up to 2 ex-

perimental doses are included with the control in stage 2, that isk2 = 1 or k2 = 2. We
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Table 6.2: Probabilities of efficacy and toxicity at tested dose levels for the three scenarios
used to assess effect of toxicity

Dose levels (mg)
Scenario (Outcome) 10.5 35.0 87.5 262.5 700.0 1050

All Scenarios (Efficacy) 0.30 0.37 0.43 0.51 0.57 0.60
Reference Scenario (Toxicity)0.10 0.12 0.14 0.16 0.18 0.19
Scenario 2 (Toxicity) 0.10 0.12 0.15 0.18 0.206 0.22
Scenario 3 (Toxicity) 0.10 0.14 0.18 0.24 0.30 0.33

will also restrict testing consecutive experimental dosesso that we will not consider for

example a stage 2 trial with dose 1 and dose 3. The restrictionto consecutive experimental

and consideringk2 ≤ 2 is not a limitation of the selection procedure. The selection pro-

cedure can be extended to considerk2 > 2 but the expressions for the conditional power

would involve summing over more dimensions which is computational expensive. Further,

including non-consecutive experimental doses increases the sets to be compared increasing

the computation time.

6.2 Prior distributions

As described in Section 5.3, to evaluate the predictive power, beta prior distributions for

the probability of efficacy using the control treatment and for the probabilities of efficacy

and toxicities at two dose levels of the new drug are required. To determine the parameter

values for the beta prior distributions, we examined the beta curves and the 90% credible

interval width as described in Section 2.2 while also considering what would be typical of

the prior distributions elicited in practice. In all the simulation studies, the predictive power

is evaluated assuming a beta prior distribution Beta(12, 28) for the probability of efficacy

using the control treatment.

Beta prior distributions for probabilities of successful treatment and probabilities of

toxicity are defined at dose levels 10.50mg and 5000mg. Figure 6.2 shows the densities
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Figure 6.2: Elicited prior densities. Row 1 and 2 give the prior distributions for efficacy and
toxicity respectively. Columns 1 and 2 correspond to prior distributions at dose 10.50mg
and 5000mg respectively. Column 3 gives the resulting jointprior distributions.

of the elicited prior distributions. Rows 1 and 2 respectively give the prior distributions

for the efficacy and toxicity models. Columns 1 and 2 respectively give the beta prior

distributions at dose levels 10.50mg and 5000mg whose parameter values are given in

the legends. Column 3 is the resulting joint prior distributions of the intercept and slope

parameters obtained as described in Section 2.2.2.
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6.3 Computational details

The predictive power was defined in Section 5.3 as the expected value of the conditional

power using the posterior distribution. Evaluating this expectation has two complexities:

(1) the integral in equation (5.8) cannot be given in closed form, and (2) the expression

for CP in equation (5.7) requires calculation of an expectation that involves summing over

more than one dimension. To overcome the first complexity, weused numerical quadra-

ture to integrate over the parameter space. In the rest of this section, we describe how we

avoided more than one summation using the normal approximation to the binomial distri-

bution.

Examples of the form of the conditional power are given by expressions (5.6) and

(5.7). These expressions entail summing over possible values in the control treatment and

over outcomes in the experimental doses for which at least one dose is concluded to be

better than control. These summations are computationallyexpensive so that to make it

feasible to evaluate the predictive power for the simulation studies, some approximations

are needed. Expression (5.6) is given by

n2
∑

x20=0

{

(

n2

x20

)

px20

E0
(1 − pE0

)n2−x20

n2
∑

x21=B

(

n2

x21

)

px21

E1
(1 − pE1

)n2−x21

}

, (6.1)

whereB = Bx20
(max{p1,J}) is the minimum number of successes in dose 1 required to

conclude that dose 1 is better than control after stage 2. This expression requires sum-

ming over a grid of possible number of successes in the control treatment (x20) and for

each possible value ofx20, summing over the number of successes in dose 1 (x21) from

Bx20
(max{p1,J}) to n2. To reduce the computation time, the latter summation is ap-

proximated using the normal approximation to the binomial distribution. Suppose the

probability of successful treatment with dose 1 ispE1
so that the number of successes

at stage 2 (x21) is Bin(n2, pE1
). The number of successes (x21) is approximately normal
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N(n2pE1
, n2pE1

(1 − pE1
)) so that using the properties of the normal distribution

Prob(X21 ≥ x21) = 1 − Prob(X21 < x21)

≃ 1 − Φ

{

x21 − n2pE1
√

n2pE1
(1 − pE1

)

}

,

whereΦ is the standard normal distribution function. Hence, to reduce the computation

time for evaluating expression (6.1), the following approximation is used

n2
∑

x21=B

(

n2

x21

)

px21

E1
(1 − pE1

)n2−x21 = 1 − Φ

{

B − n2pE1
√

n2pE1
(1 − pE1

)

}

.

On the other hand, expression (5.7) has summations of the form

n2
∑

x20=0

{

fB(x20;n2, pE0
)

{

n2
∑

x21=B12

B2
∑

x22=0

fB(x21;n2, pE1
)fB(x22;n2, pE2

)

}}

, (6.2)

wherefB(x20;n2, pE0
), fB(x21;n2, pE1

) andfB(x22;n2, pE2
) are respectively probability

mass functions of Bin(x20;n2, pE0
), Bin(x21;n2, pE1

) and Bin(x22;n2, pE2
) andB12 and

B2 are quantities that depend onx20 and stage 1 results. The normal approximation to the

binomial distribution in expression (6.2) is used for the term
{

n2
∑

x21=B12

B2
∑

x22=0

fB(x21;n2, pE1
)fB(x22;n2, pE2

)

}

.

Since conditional onpE1
andpE2

, the number of successes in dose 1 (x21) and dose 2 (x22)

are independent, then the above expression could be re-expressed as
{

n2
∑

x21=B12

fB(x21;n2, pE1
)

B2
∑

x22=0

fB(x22;n2, pE2
)

}

,

which using the normal approximation to the binomial distribution as described above can

be approximated by
(

1 − Φ

{

B12 − n2pE1
√

n2pE1
(1 − pE1

)

})(

Φ

{

B2 − n2pE2
√

n2pE2
(1 − pE2

)

})

.
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These approximations reduced the computation time for evaluating the predictive

powers associated with continuing to stage 2 with a single dose and two consecutive doses

in a single simulation study from a few days to a few minutes ona personal computer using

the R package. For each scenario, 1000 simulation studies were used and it takes about

three days to simulate and evaluate predictive powers for the 1000 simulation studies.

6.4 Explanation of how results will be obtained

In the previous sections of this chapter, we have described the scenarios (based on true pa-

rameter values) we will use to investigate the operating characteristics of the dose selection

procedure, the total sample sizes at each stage that will be used in the simulation studies

(120 for stage 1 and 400 for stage 2), prior distributions that will be used to calculate the

predictive powers and the computational details. Also, we explained that in the simulation

results we present in this chapter, we can proceed to stage 2 with single experimental doses

1, 2, 3, 4, 5 and 6 or pairs of consecutive experimental doses,that is, doses 1 and 2, doses

2 and 3, doses 3 and 4, doses 4 and 5, and doses 5 and 6. In this section, we describe how

we obtained the simulation results given in this chapter.

For each scenario, 1000 simulation studies will be carried out. In each simulation

study, stage 1 data are simulated using the underlying true parameter values. The stage 1

data consist of the number of successes from 20 simulated patients per experimental dose

and the control treatment. Using the stage 1 data, stage 1 p-values for all intersection hy-

pothesesp1,J , J ⊆ {1, ..., 6} are obtained. Given these p-values, for each potential set

of doses that may be tested in stage 2, that is, the single doses and consecutive pairs of

consecutive doses, we obtain the expressions for conditional power as described in Section

5.2. Thus there will be 11 separate expressions for conditional power corresponding to the

6 experimental doses and 5 pairs of consecutive doses. For the single doses, the condi-

tional powers have the form given by expression (5.6) multiplied by probability of safety
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described in Section 5.2.4. For pairs of consecutive doses,the conditional powers have the

form given by expression (5.7) multiplied by probabilitiesof safety as described in Section

5.2.4. To obtain the expressions for conditional power, we need to define the weights and

level of the tests given in inequality (5.3). The hypothesesare tested at level 2.5% and the

squares of the weights are proportional to the total sample sizes, that is,w1 =
√

120/520

andw2 =
√

400/520.

The next step in the dose selection is obtaining the predictive power. To obtain

the predictive power, we need the distribution of the parameters in the expressions for

conditional power. The parameters are given by the dose response curves and the prior

distributions of these parameters are given in Section 6.2.The prior distribution are updated

using the stage 1 data to obtain the posterior distributionsof the dose response curves

parameters using equations (5.11) and (5.12). The posterior distributions are used to obtain

the expected value of each of the 11 expressions for conditional power described in the

previous paragraph. This is the predictive power. The 11 predictive power values are

compared to choose the set of doses to test in stage 2. The set of doses with the highest

predictive power is proposed for testing in stage 2. This is repeated for the 1000 simulated

studies. To obtain the simulated probability of selecting each potential set of doses, the

number of times this set is proposed for testing in stage 2 is divided by 1000.

6.5 Comparing results for different scenarios

Figure 6.3 shows histograms of the simulated probabilitiesof continuing to stage 2 with

each dose and consecutive pair of doses. Each histogram corresponds to one of the sce-

narios described in Section 6.1 and is based on a 1000 simulation studies. On the x-axis,

the notation di, i ∈ {1, ..., 6} means dosei is selected for testing at stage 2 while dij with

i, j ∈ {1, ..., 6} means both dosesi andj are selected for testing at stage 2. The selected

set of doses has the highest predictive power among the potential doses or pair of doses



110 CHAPTER 6. SIMULATION STUDIES

d1d12d2d23d3d34d4d45d5d56d6

0.
0

0.
2

0.
4

0.
6

0.
8

Dose(s) with highest predictive power 
 (a)

P
ro

po
rt

io
n 

of
 to

ta
l

Max power > 0.7
Max power <= 0.7

d1d12d2d23d3d34d4d45d5d56d6

0.
0

0.
2

0.
4

0.
6

0.
8

Dose(s) with highest predictive power 
 (b)

P
ro

po
rt

io
n 

of
 to

ta
l

Max power > 0.7
Max power <= 0.7

d1d12d2d23d3d34d4d45d5d56d6

0.
0

0.
2

0.
4

0.
6

0.
8

Dose(s) with highest predictive power 
 (c)

P
ro

po
rt

io
n 

of
 to

ta
l

Max power > 0.7
Max power <= 0.7

d1d12d2d23d3d34d4d45d5d56d6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Dose(s) with highest predictive power 
 (d)

P
ro

po
rt

io
n 

of
 to

ta
l

Max power > 0.7
Max power <= 0.7

d1d12d2d23d3d34d4d45d5d56d6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Dose(s) with highest predictive power 
 (e)

P
ro

po
rt

io
n 

of
 to

ta
l

Max power > 0.7
Max power <= 0.7

d1d12d2d23d3d34d4d45d5d56d6
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

Dose(s) with highest predictive power 
 (f)

P
ro

po
rt

io
n 

of
 to

ta
l

Max power > 0.7
Max power <= 0.7

Figure 6.3: Histograms of set of doses with highest predictive power. Row 1 explores
different scenarios for efficacy. In (a), only dose 1 is ineffective, in (b) only doses 5 and
6 are effective and in (c), all doses are ineffective. Row 2 explores different scenarios for
toxicity. In (d), all doses are safe, in (e) dose 6 is toxic andin (f), doses 4 to 6 are toxic.

considered for testing at stage 2. The y-axis gives the proportion for which the doses on the

x-axis are selected out of the total 1000 simulation studies. The bars have been partitioned

into simulation studies whose maximum predictive power of potential doses to test in stage

2 is above 0.7 (shaded parts) and studies whose maximum predictive power is less than

0.7 (striped parts). The latter represent trials in which itis unlikely that any dose would

continue to the second stage because the probability of a successful trial, that is, a trial that

is going to identify a safe and efficacious dose, is low.
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Row 1 of Figure 6.3 corresponds to the results comparing different scenarios for

efficacy (the dose-response curves for these scenarios weregiven in Figure 6.1, left panel).

The same true dose-response curve for probabilities of toxicity (reference scenario toxi-

city dose-response curve) is used in these scenarios. As shown in Table 6.1 Row 3, the

respective true probabilities of toxic outcomes for these scenarios at doses 1 to 6 are 0.10,

0.12, 0.14, 0.16, 0.18 and 0.19. In panel (a), the reference scenario for dose-response for

efficacy is used. The respective true probabilities of efficacy at doses 1 to 6 for this scenario

are given in Table 6.1 Row 4 and are 0.30, 0.37, 0.43, 0.51, 0.57 and 0.60. Thus all the

experimental doses are safe and doses 5 and 6 do not differ much in terms of efficacy. Dose

4 is considerably less efficacious than doses 5 and 6 but also considerably safer than doses

5 and 6. Based on all simulation studies (shaded and striped parts), dose 5 or 6 is selected

for testing at stage 2 with probability of about 0.6. Dose 4 orone of the higher doses is

among the selected doses for testing at stage 2 with probability of over 0.9. When only

the simulation studies whose predictive power greater than0.7 are considered (607 studies

out of 1000), dose 5 or 6 would be tested in stage 2 with probability above 0.65 and dose

4 or 5 or 6 would be tested in stage 2 with probability above 0.96. Panel (b) gives results

for efficacy Scenario 2. The respective probabilities of efficacy for this scenario are given

in Table 6.1 Row 5 and are 0.13, 0.18, 0.23, 0.30, 0.37 and 0.40so that in comparison to

the control treatment, dose 4 is not better, dose 5 and 6 are more efficacious while doses 1

to 3 are less efficacious. In this scenario, the desired dose for testing at stage 2 would be

dose 6. In the simulation studies, this dose alone is selected with probability above 0.75.

Doses 5 or 6, which are the only dose levels efficacious than the control, are selected for

testing at stage 2 with probability of above 0.90. Sets whichinclude only doses that are less

efficacious than the control treatment, that is doses 1 to 3, are selected with probability of

about 0.01. In panel (c), the probabilities of efficacy are the same among all the experimen-

tal doses and the control treatment. As would be desired the predictive power for almost

all the simulated studies is less than or equal to 0.7. In thisscenario dose 1 would be the
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most desired because it is the least toxic. However dose 6 alone has the highest probabil-

ity of being tested in stage 2. The selection procedure may bedriven more by the prior

distribution since the prior belief is that the efficacy improves with dose level. In the next

section, more simulations based on the same scenario for dose response curves but different

prior distributions support this view. With stronger priorbelief, dose 1 is selected with less

probability and when the prior belief is weak, dose 1 is selected with higher probability.

A distinctive difference between results in panel (a) and panels (b) and (c) is that

in (a) continuing with more than one dose has higher probability than in (b) and (c). This

may be explained by the true probabilities of efficacy of the experimental doses. In panels

(b) and (c), the probability of efficacy is low and hence the (predictive) power of potential

doses will be lower so that it would be preferable to allocatethe available patients to the

control and to only one dose of the new drug. Further comparing results in panel (a) to

the results in panel (b), in panel (a), the probabilities of selecting the doses increase to

selecting both dose 4 and 5 and then drops for continuing withdose 5 or 6 or both dose

5 and 6. On the other hand, in panel (b), the probability of selecting doses increase with

dose level with dose 6 selected with the highest probability. This may be explained by

the probabilities of efficacy and toxicity. In panel (a), theprobabilities of efficacy are high

so that the probability of obtaining a significant result in atrial that includes dose 4 and

dose 5 is as high as a trial that includes either dose 5 only, dose 6 only or both dose 5 and

dose 6. However, since testing both dose 4 and 5 involves testing safer doses, this set is

selected with higher probability. In panel (b), the probabilities of efficacy are low so that

the probability of obtaining a significant result in a trial with higher dose levels is higher so

that dose 6 is selected with highest probability since it is also safe.

Row 2 of Figure 6.3 corresponds to the results comparing different scenarios for

toxicity (the dose-response curves for these scenarios were given in Figure 6.1, right panel).

As shown in Table 6.2 Row 3, for all these scenarios the respective true probabilities of

efficacy at doses 1 to 6 are 0.30, 0.37, 0.43, 0.51, 0.57 and 0.60. Results in panel (d)
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are the same as in panel (a) but on a different vertical scale to facilitate comparison of

results in panels (e) and (f). Panel (e) gives results of toxicity Scenario 2 and as shown

in Table 6.2 Row 5, the true probabilities of toxicity for this scenario at tested dose levels

in increasing order are 0.10, 0.12, 0.15, 0.18, 0.206 and 0.220. Hence the prior belief

(mean) underestimates the level of toxicity. Based on all simulation studies, dose 6 alone

whose true proportion of toxicity is well above 0.20, the accepted proportion of toxicity,

is selected for testing at stage 2 with probability less than0.10. Dose 4 which would be

the desired dose for testing in stage 2 is among the selected doses with probability of about

0.70. When only simulation studies with maximum predictivepower greater than 0.7 are

considered (483 studies out of 1000), dose 6 is selected withprobability less than 0.02 while

dose 4 is among the selected doses with probability above 0.80. Dose 5 which is nearly safe

is selected with probability 0.05. Both dose 5 (nearly safe)and dose 6 (toxic) are selected

for testing in stage 2 with probability 0.08. Panel (f) givesresults for toxicity Scenario 3

and as shown in Table 6.2 Row 6, the true probabilities of toxicity for this scenario at the

tested dose levels in increasing order are 0.10, 0.14, 0.18,0.24, 0.30 and 0.33. The desired

dose is dose 3. When only simulation studies with predictivepower greater than 0.7 are

considered, dose 3 is among the set selected for testing in stage 2 with probability 0.79.

Dose 4 or both dose 4 and 5 which are all toxic are selected witha high probability of 0.18.

We could not find an explanation to this high probability rather than chance.

Comparing the results in Row 2, we observe that the proportion of simulation studies

with predictive power above 0.7 decreases from panel (d) to panel (f). This is because

the probabilities of toxicity for doses 2 to 6 which are more efficacious than the control

treatment increase from panel (d) to (f) so that from panel (d) to (f) lower doses which are

less effective than the higher doses would be desired for testing in stage 2. The difference

in panels (d) and (e) is particularly interesting. Althoughin both panels testing both dose

4 and dose 5 has the highest probability, testing either dose5, dose 6 or both dose 5 and

dose 6 is selected with lower probability in panel (e). When only studies with predictive
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power above 0.7 are considered, the probability of continuing with either of these doses

is even lower. Further we observe that dose 1 is selected withvery low probability in the

three scenarios so that even though higher doses are selected with lower probability when

they are considered too toxic, the selection procedure still does not favour dose 1 which is

not efficacious.

6.6 Comparing results for different prior distributions

The results discussed in the last section were obtained using the prior distributions pre-

sented in Figure 6.2. We refer to these sets of prior distributions as the middle weight prior

belief. In order to assess the effect of prior distribution weight, we consider two more sets

of prior distributions. In the second set of the prior distributions, Beta prior distributions

at dose levels 10.50mg and 5000mg for the efficacy model have parameter vectors (18, 42)

and (18, 7.71) respectively. For the toxicity model the Betaprior distributions have pa-

rameter vectors (9, 81) and (10.2, 30.6) at dose levels 10.50mg and 5000mg respectively.

These beta distributions have the same prior means as the middle weight belief but smaller

variance. From left, the first and the second contour plots inFigure 6.4 respectively give

the resulting joint prior distribution of the slope and intercept for the efficacy and toxicity

model. We refer to this set of prior belief as the most informative prior belief. The third set

of the prior distribution is less informative and we refer tothis set as the least informative

prior belief. For the least informative prior belief, for both efficacy and toxicity the beta

distributions at both dose 10.50mg and 5000mg are assigned parameter vector (1, 1) (that

is Beta(1, 1) which is equivalent to the Uniform(0,1)). The resulting joint prior distribution

for the intercept and the slope parameters is given by the contour in the right panel of Figure

6.4. Note that the scale for this contour plot is different from the scales of the other contour

plots in Figure 6.4 and in Figure 6.2 with its contours spreadwider along the intercept and

slope parameters.
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Figure 6.4: Contour plots for more informative and less informative prior densities.

We chose to demonstrate the effect of the prior distributions using the reference

scenario (all doses safe, dose 1 as efficacious as control treatment and doses 2 to 6 more

efficacious than the control) and efficacy Scenario 2 (all doses safe and equally as effica-

cious as the control treatment). Figure 6.5 gives the results using the different sets of prior

distributions. Row 1 and Row 2 respectively correspond to the reference scenario and effi-

cacy Scenario 2. Columns 1 to 3 respectively correspond to the most informative, middle

weight and least informative prior distributions. For the reference scenario (Row 1), using

the three sets of the prior distribution, probability of testing both dose 4 and dose 5 at stage

2 is highest. However the relative frequency decreases as the prior distributions become

less informative. As the prior belief becomes less informative lower, higher doses are se-

lected with higher probability. For example, the frequencyof dose 6 increases as the prior

distributions become less informative. The frequency, however, has a larger contribution

from the simulation studies whose predictive power is less than 0.7 (striped parts).

For efficacy Scenario 2 (Row 2), when the prior distributionshave higher weight

(panel (d)), higher doses are selected for testing at stage 2with higher probability with

dose 6 selected with the highest probability. This is drivenby the prior distribution in

which higher doses are considered more efficacious comparedto the lower doses. In panel

(e), the prior distributions have lesser weight compared topanel (d) but the prior belief
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Figure 6.5: Histograms of set of doses with highest predictive power. From left to right the
prior beliefs are less informative.

is still that higher doses are more efficacious so that dose 6 is selected with the highest

probability. However, in panel (e), dose 1 is selected with higher probability compared to

panel (d) as would be expected. In panel (f), the prior distributions used in obtaining the

predictive power, assumed there is no difference between lower and higher doses. Further,

the prior distribution had least weight with beta parameters having values (1,1) so that the

selection probability compared to results in panels (e) and(f), puts more weight on stage

1 data. As expected, dose 1 is selected for testing at stage 2 with the highest probability

because it is the safest and is not inferior compared to doses2 to 6. Dose 6 has the second

highest probability of selection. This may be explained by the stage 1 efficacy data. The
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stage 1 data may suggest either a positive or a negative slopefor probability of efficacy. A

positive slope will favour dose 6 resulting into dose 6 selected more compared to doses 2

to 5.

6.7 Summary findings from the simulation results

In the previous sections of this chapter, we have presented simulation results under several

scenarios. In this section, we summarize the key characteristics from these results while

also pointing the advantage of the dose selection procedureas exhibited by the results.

First, we observed that, as desired, when the second stage isnot adequately powered in

terms of probabilities of efficacy, the candidate sets with asingle treatment are selected for

testing at stage 2 with higher probability compared to candidate sets with two experimental

doses. This is the case of the scenario whose results are given in Figure 6.3 (b). However,

under scenarios where some experimental doses are highly efficacious and safe, such as the

scenario whose results are given in Figure 6.3 (d), it is often better to test two experimental

doses at stage 2. Thus the new dose selection is advantageousthan the methods that allow

only to proceed with one experimental dose.

Secondly, when all the experimental doses are acceptably safe but toxicity increases

with dose level and the second stage sample size is such that it powers (based on proba-

bilities of efficacy) the lower doses enough so that the difference in power of highest dose

levels and some lower dose levels is not large, lower dose levels are selected with higher

probability because they are safer to administer to patients. The results given in Figure 6.3

(d) are from such a scenario. Also, the inclusion of safety inthe dose selection procedure

avoids selecting unsafe doses although they may be more efficacious. For example, for

the results given in Figure 6.3 (e), dose 6 is unsafe and thus compared to results in Figure

6.3 (d) in which all experimental doses are safe, it is selected with lower probability and

when it is selected, the predictive power is low as in most cases the predictive is less than
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0.70. The same trend, as shown in Figure 6.3 (f), is observed when doses 4 to 6 are unsafe.

Thus new dose selection procedure is advantageous than the previous procedures that do

not explicitly include safety.

The results for all scenarios captured the dose-response relationships. For example,

in Figure 6.3 (b), the probability of selection increases with dose. The same is observed

from Figure 6.3 (f) where the probability of selection increases with dose and then de-

creases with dose when doses 4 or higher, which are unsafe andwhich become less safe

with increase in dose, are selected for testing in stage 2. The use of dose-response also

captures the probabilities of efficacy and toxicity well. For example, in Figure 6.3 (d),

there is huge increase in probability of selection from whenonly dose 3 is selected to when

both doses 3 and 4 are selected. Probability of efficacy in control 0.3 while probabilities

of efficacy at doses 3 and 4 are respectively 0.37 and 0.43 so that it may be that it is only

when dose 4 or higher doses are selected that the probabilityof concluding efficacy is high.

Finally, the results for a scenario where the experimental doses of the new drug are

not better than the control treatment, that is for the scenario whose results are given in 6.3

(c), the selected doses to test in stage follow the profile of the prior distribution but the

predictive power is low so that the trial is unlikely to proceed to stage 2.



Chapter 7

Further work

In Chapter 5, we have developed a new method for selecting doses that continue from

a phase II stage to a phase III stage of a seamless phase II/IIIclinical trial. The work

focussed on binary outcomes at both stages, assumes the dataare generated using some

known generalized linear model and that there are only two stages. These features lead to

three new research questions that can extend the work described in Chapter 5: (1) can the

work be extended to include more than 2 stages with monitoring boundaries, (2) can the

dose selection procedure be extended to include model uncertainty and can the outcomes be

modelled using models that are not in the family of generalized linear models, and (3) can

the work be extended to include other endpoints or a change ofendpoint. In this chapter,

we describe the direction we are taking to answer these questions. For the first question, we

will describe ongoing recent work. For the second and third questions, we will summarise

some works that have answered similar questions in different contexts that may be relevant.

119
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7.1 Extending to more than two stages with monitoring

In Chapter 5, we assumed that there is no early stopping at endof phase II stage and that

in the phase III stage, there will be no monitoring. However,as described in Sections

3.3.1 and 3.4.2, the investigators may wish stop the trial after the phase II stage and to also

monitor the phase III data for among other reasons, ethical considerations. In this section,

we give the progress made on exploring how a seamless phase II/III clinical trials with a

single monitoring in the phase III stage so that the seamlessphase II/III clinical trial will

have 3 stages; the phase II stage and two phase III stages, maybe planned. We will assume

that there are no opportunities for adaptation in the phase III stage and we present the

simple case of proceeding with one experimental dose into the phase III stage. In Section

3.3.1, we explained that clinical trials may stopped early either for overwhelming evidence

of efficacy, futility or both. In Section 7.1.1, we will describe an example of how p-values

using the combination tests may be adjusted when there are opportunities to stop early for

overwhelming evidence of efficacy or for futility. We will set the notation of the seamless

phase II/III clinical trial of interest in Section 7.1.2. InSection 7.1.3, given the stage 1 data,

we will describe how to obtain the expression for the conditional power, the probability of

concluding at least one of the experimental doses that continue to the phase III stage is

effective after stage 2 or after stage 3. Finally, in Section7.1.4, we define the predictive

power for a trial with opportunities to stop early.

7.1.1 Combined p-value with opportunity to stop early

LetH be a null hypothesis of interest that is tested at two stages.Let p1 andp2 respectively

denote stage 1 and stage 2 p-values. Suppose that at stage 1 the null hypothesisH will be

rejected ifp1 ≤ α1 and is accepted ifp1 > α0, where0 ≤ α1 < α < α0 ≤ 1. Assumingp1

andp2 are independent and uniform[0,1] underH, in Section 4.2.2, we gave the expression
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for type I error rate as

α1 +

∫ α0

α1

∫ 1

0

1[C(p1,p2)≤c]dp2dp1, (7.1)

whereC(p1, p2) is some combination function of the p-values such as the Fisher’s combi-

nation function given by equation (4.2) and the inverse normal function given by equation

(4.3), c is the stage 2 critical value obtained by solving expression(7.1) for overall type I

error rateα, and1[C(p1,p2)≤c] equals 1 ifC(p1, p2) ≤ c and equals 0 otherwise. In the previ-

ous chapters, we assumed that we do not have opportunities tostop early so that expression

(7.1) simplifies to
∫ 1

0

∫ 1

0

1[C(p1,p2)≤c]dp2dp1. (7.2)

In this subsection, we consider seamless phase II/III clinical trials with opportunities to stop

early for overwhelming evidence or futility. The values ofα1 andα0 can be determined

using the group sequential methods (Brannath et al., 2002) such as the alpha spending

function of Lan and DeMets (1983).

Let q(p1, p2) denote the adjusted combined p-value. For expression (7.2), since

there are no opportunities to stop early,q(p1, p2) = C(p1, p2). To control type I error rate

defined by expression (7.1), Brannath et al. (2002) propose adjusting the combined p-values

as follows

q(p1, p2) =











p1 if p1 ≤ α1 or p1 > α0

α1 +
∫ α0

α1

∫ 1

0
1[C(x,y)≤C(p1,p2)]dydx otherwise.

(7.3)

For the Fisher’s combination function given by expression (4.2), solving expression (7.3)

gives the combined p-value as

q(p1, p2) =



























p1 if p1 ≤ α1 or p1 > α0

α1 + p1.p2[lnα0 − lnα1] if p1 ∈ (α1, α0] andp1.p2 ≤ α1

p1.p2 + p1.p2[lnα0 − ln(p1.p2)] if p1 ∈ (α1, α0] andp1.p2 ≥ α1.

(7.4)
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For the normal combination method, there is no closed solution to expression (7.3) so that

numerical integration methods are required.

The type I error rate expression (7.1) was obtained by evaluating the following def-

inition of type I error for a two stage trial

ProbH [p1 ≤ α1] + ProbH [C(p1, p2) ≤ c, α1 < p1 ≤ α0].

Extending this to a trial with three stages (3 stage trial), letαs0 andαs1 (s = 1, 2) respec-

tively denote the futility boundary and rejection boundaryat stages so that the trial stops at

stages for futility if the adjusted p-value is greater thanαs0 and for efficacy if the adjusted

combined p-value is less or equal toαs1. Let ps (s = 1, 2, 3) denote the stages p-value,

then for a 3 stage trial, the type I error is given by

ProbH [p1 ≤ α11] + ProbH [C(p1, p2) ≤ cα21
, α11 < p1 ≤ α10] +

ProbH [c(p1, p2, p3) ≤ c, α11 < p1 ≤ α10, cα21
< C(p1, p2) ≤ cα20

],

wherecα21
andcα20

are respectively the critical values for efficacy and futility. Following

Brannath et al. (2002), the combined p-value for a 3 stage seamless phase II/III clinical trial

may be given by

q(p1, p2, p3) =



















p1, if trial stops at stage 1

α11 +
∫ α10

α11

∫ 1

0 1[C(x,y)≤C(p1,p2)]dydx, if trial stops at stage 2

α21 +
∫ α10

α11

∫ 1

0

∫ 1

0
1[cα21

<C(x,y)≤cα20
]1[C(x,y,z)≤C(p1,p2,p3)]dzdydx, otherwise.

(7.5)

In equation (7.5), the trial stops in stage 1 ifp1 ≤ α11 or p1 > α10 and in stage 2 if

C(p1, p2) ≤ cα21
or C(p1, p2) > cα20

. In general, numerical methods may be required to

evaluate equation (7.5).

7.1.2 Notation and setting of interest

As in Chapter 5, supposek1 experimental doses are compared to the control treatment

at stage 1 so that the null hypotheses of interest areH1 : θ0 = θ1, ..., Hk1 : θ0 =
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θk1 whereθj, j ∈ {0, 1, ..., k1} is a measure of the effectiveness of dosej, with j = 0

corresponding to the control treatment. If the closure principle is to be used to control the

FWER associated with comparing thek1 experimental doses to the control treatment, all

the intersection hypothesesHJ , J ⊆ {1, ..., k1} are constructed. We assumen1 patients

are allocated to each dosej, j ∈ {0, 1, ..., k1} at stage 1 and we respectively denote the

number of successes and toxicities in dosej after stage 1 byx1j andt1j . The probabilities

of efficacy and toxicity at dosej will respectively be denoted bypEj
andpTj

. The efficacy

datax1 = (x10, x11, ..., x1k1) can be used to obtain the stage 1 p-valuesp1,J (J ⊆ {1, ..., k1}
corresponding to the constructed intersection hypothesesHJ .

Let K2 ⊆ {1, ..., k1} be the set of experimental doses that remain in the trial for

testing in stage 2 withk2 = |K2|. We assume that there is no adaptation after stage 2 so

that if the trial does not stop after stage 2, all the experimental doses tested at stage 2 and

control continue to stage 3. Letn2 andn3 respectively denote the total sample sizes at

stage 2 and stage 3. We assume that the total stage 2 and stage 3sample sizes are fixed so

that the number of patients allocated to dosej, j ∈ {0} ∪ K2 with j = 0 corresponding

to the control treatment at stages (s = 2, 3) is ns/k2. At stages (s = 2, 3), let xsj and

tsj, j ∈ {0} ∪ K2 with j = 0 corresponding to the control treatment, respectively denote

the number of successes and toxicities on dosej. At the end of stages (s = 2, 3), the

efficacy dataxs = ({xsj}) (j ∈ {0} ∪ K2) can be used to construct a set of p-valuesps,J

corresponding to stage 1 p-valuesp1,J constructed using the stage 1 data.

7.1.3 Conditional power

From the setting above,ps,J denotes stages (s = 1, 2, 3) p-value obtained from testing

hypothesisHJ , J ⊆ {1, ..., k1}. Given the stage 1 p-valuep1,J for hypothesisHJ , as in

inequality (5.3), using the adjusted p-valueq(p1,J , p2,J , p3,J) given by equation (7.5), we

can obtain the minimum value of stage 2 p-valuep2,J so that hypothesisHJ is rejected at
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the end of stage 2. If a Bonferroni adjustment is used to obtain the p-value for hypothesis

HJ , the minimum p-value testing the pairwise hypothesis comparing the control treatment

to the experimental doses contained in the hypothesisHJ can be obtained as described for

inequality (5.5). Subsequently, as was described in detailin Section 5.2.2, for each possible

number of successes in the control arm at stage 2,x20, we can obtain the configurations of

data such that at least one experimental dose is concluded effective after stage 2.

Suppose we continue to stage 2 with a single experimental dose i, i ∈ {1, ..., k1}. In

Section 5.2.2, for each possiblex20, we denoted the minimum number of successes required

at experimental dosei at stage 2,x2i so that dosei is concluded effective at stage 2 by

Bx20
(max{p1,J}) for all J with i ∈ J . For a 3 stage seamless phase II/III clinical trial, for

eachx20, we are also interested in determining the minimum number ofsuccesses required

in dosei so that the trial does not stop at stage 2 with acceptance of the null hypothesis

of no treatment difference. This number is obtained similarly to Bx20
(max{p1,J}). To

differentiate between the notation for the two numbers, we denote the minimum number

of successes required to stop the trial at stage 2 for efficacyby BR
x20

(max{p1,J}) and the

minimum number of successes required to avoid stopping the trial at stage 2 for acceptance

of the null hypothesis byBA
x20

(max{p1,J}). Thus the expression for the probability of

concluding dosei (i ∈ {1, ..., , k1}) is more effective than the control treatment at stage 2

is

n2
∑

x20=0

{

fB(x20;n2, pE0
)

n2
∑

x2i=B

fB(x2i;n2, pEi
)

}

, (7.6)

wherefB(x2j ;n2, pEj
) (j = 0, i) is the probability mass function of the binomial random

variableX2j with parameter vector(n2, pEj
),B = BR

x20
(max{p1,J}) for all J ⊆ {1, ..., k1}

with i ∈ J .

If the trial does not stop at stage 2, for all possible data in stage 2 for which we

do not stop at stage 2 and for each possible number of successes with control treatment at

stage 3,x30 we can obtain the minimum number of successes required in dose i at stage 3
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so that dosei is concluded effective after stage 3. Let us denote this minimum number of

successes byBx30
(x2,max{p1,J}), where notation reflects number of successes in control

treatmentx30, the stage 2 datax2 and stage 1 datamax{p1,J}. Then the probability that

dosei is concluded not futile after stage 2 and effective after stage 3 is given by

n2
∑

x20=0

{

fB(x20; n2, pE0
)

B−1
∑

x2i=A

(

fB(x2i; n2, pEi
)

n3
∑

x30=0

[

fB(x30; n3, pE0
)

n3
∑

x3i=C

fB(x3i; n3, pEi
)

])}

,(7.7)

wherefB(x2j ;n2, pEj
) (j = 0, i) is as defined above,fB(x3j ;n3, pEj

) (j = 0, i) is the prob-

ability mass function of the binomial random variableX3j with parameter vector(n3, pEj
),

A = BA
x20

(max{p1,J}), B = BR
x20

(max{p1,J}) andC = Bx30
(x2,max{p1,J}). Expres-

sion (7.7) contains many summations which would make its evaluation computationally

expensive so that some approximation may be required. As an alternative, we will explore

whether it is easier to use the efficient score statistics described in Section 4.2.1.

The conditional power, the expression for probability of concluding dosei is effec-

tive at stage 2 or at stage 3 given stage 1 data is given by summing expressions (7.6) and

(7.7). The probability of concluding dosei is effective and safe is obtained by multiplying

expressions (7.6) and (7.7) by the indicator that dosei is safe. For example, if an exper-

imental dose is considered safe if its probability of toxicity is less than or equal to some

valueγ, expressions (7.6) and (7.7) are multiplied by the indicator I(pTi
≤ γ). We will

denote the conditional power by CPθ whereθ is a vector of parameters in the conditional

power.

7.1.4 Predictive power

The probabilities of efficacy and toxicity,pEj
andpTj

that enter the conditional power are

respectively given by the dose-response models (5.1) and (5.2) so thatθ = (αE, βE , αT , βT )′.

As in Section 5.3, the predictive power may be obtained by evaluating the posterior mean
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of the conditional power, that is, the predictive power is given by

∫

Θ

(CPθ)π(θ|x1, t1, n1)dθ, (7.8)

whereπ(θ|x1, t1, n1) is the posterior mean ofθ given the stage 1 data(x1, t1, n1) obtained

as described in Section 5.3.1. To improve the predictive power given by expression (7.8),

we will investigate how feasible it is to update the distribution of θ with second stage data

(x2, t2) so that the parameter values that enter part of the conditional power that includes

stage 3 data reflect the knowledge gained in stage 2. This is unlikely to be an easy task but

has the advantage of reducing the uncertainty (variance) ofthe parameter values.

7.2 Uncertainty in the dose-response curves

In Chapter 5, we assumed that the probabilities of efficacy and of toxicity can be modelled

by generalized linear models of known form. However, the investigators may be uncertain

about the dose-response curve so that they would want to consider several models. Klin-

genberg (2009) has proposed a method for estimating the maximum estimated dose (MED)

that incorporates model uncertainty. He proposes including all dose-response curves that

significantly reflect the dose-response signal from the datato estimate the MED by getting

the weighted average of the MEDs from these dose-response models. In future work, we

intend to consider including model uncertainty by obtaining the predictive power possibly

by averaging the predictive power obtained using differentmodels similar to the proposal

of Klingenberg (2009) of estimating the MED.

Klingenberg (2009) gives several dose-response curves in the generalized linear

model family that result into different dose-response shapes such as probabilities increasing

and then dropping. However, these models may not capture thedose-response profile ade-

quately so that further work needs to develop models that areoutside the generalized linear

models family. Yin et al. (2006) have proposed models that donot specify any parametric
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form for the dose-response curve. Rather they model probabilities so that it is possible

to induce some relationship such as probability of toxicityincreasing with dose level. In

particular, they assume that the probability of toxicity increases with dose because most

investigators assume a monotonically increasing relationship between toxicity and dose.

They do not enforce any ordering for the probability of efficacy since for certain therapy,

probability of efficacy may decrease with dose.

In detail, letpTj
be the probability of toxicity at experimental dosej (j = 1, ..., k1),

Yin et al. (2006) model the probabilities of toxicity as follows

φj =











log
pTj

1−pTj

if j = 1

log
(

pTj

1−pTj

− pTj−1

1−pTj−1

)

for j = 2, ..., k1

so that

pTj
=











exp(φj)

1+exp(φj)
if j = 1

exp(φ1)+...+exp(φj)

1+exp(φ1)+...+exp(φj)
for j = 2, ..., k1.

(7.9)

Modelling probability of toxicity using equation (7.9) ensures that

pj−1 < pj , j = 2, ..., k1,

that is, probability of toxicity increases with dose as required because the terms exp(φj)

are positive. To define the model of efficacy, letpEj
be the probability of efficacy at ex-

perimental dosej (j = 1, ..., k1). Yin et al. (2006) model the probabilities of efficacy as

follows

ψj =











log
pEj

1−pEj

if j = 1

log
(

pEj

1−pEj

)

− log
(

pEj−1

1−pEj−1

)

for j = 2, ..., k1

so that

pEj
=











exp(ψ1)
1+exp(ψ1)

if j = 1

exp(ψ1+...+ψj)

1+exp(ψ1+...+ψj)
for j = 2, ..., k1.

(7.10)
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Expression (7.10) does not impose any order for the probability of efficacy. For further

work on model uncertainty, we will study characteristics offitting models given by expres-

sions (7.9) and (7.10) and consider including these models in the candidate set of models so

as to capture dose-response relationships not described bythe generalized linear models.

7.3 Change of endpoints

The dose selection procedure developed in Chapter 5 focussed on binary outcomes both

at phase II and phase III stage. Posch et al. (2005) present such a trial where in both

stage 1 and stage 2 of a seamless phase II/III clinical trial,binary outcomes are considered.

However, for some therapies as Inoue et al. (2002) explain, the primary outcome in the

phase II study is a binary outcome which is used to plan a phaseIII study whose primary

outcome is a time to an event outcome. Hence, it would be practically important to design

seamless phase II/III clinical trials with change of primary endpoint from a binary endpoint

to a survival outcome.

Inoue et al. (2002) propose a fully Bayesian seamless phase II/III clinical trial by

using Bayesian tools to plan a trial and make inference from the observed data. Here we just

describe how the binary outcomes are included in the inference. LetY andT respectively

denote the binary outcome and the survival time. Inoue et al.(2002) assume there will be

censoring after timeU and that the binary outcome is observed after timet0 < U . If the

survival time for a patient is less thant0, Y is not observed, that is,Y is observed ifT ∗ ≥ t0,

whereT ∗ = min(T, U). Using the law of total probability, they write the distribution of T

as follows

f(t) = f(t|T < t0)Prob(T < t0) + f(t|T ≥ t0)Prob(T ≥ t0). (7.11)

SinceY is observed forT ≥ t0, Inoue et al. (2002) use it to learn about the distribution of

T in the second part of equation (7.11). Thus they incorporateY in the second piece of the
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distribution ofT , that is in the second part of RHS of equation (7.11), using the law of total

probability to result in the following mixture distribution

f(t) = f(t|T < t0)Prob(T < t0) +
1
∑

y=0

f(t|T ≥ t0, Y = y)πyProb(T ≥ t0), (7.12)

whereπy = Prob(Y = y|T ≥ t0). LetW be the indicator thatY is observed or equivalently

the indicatorT ≥ t0, Inoue et al. (2002) assumeT = T0(1 −W ) + (T1 + t0)W , whereT0

andT1 are latent survival times withT0 following a distributionf0 not depending onY and

T1 following the mixture distribution
∑1

y=0 fyπy. Hence expression (7.12) may be written

as

f(t) = {f0(t)}1−W

{

F0(t0)
1
∑

y=0

fy(t− t0)πy

}W

=











f0(t) if t < t0

F0(t0)
∑1

y=0 fy(t− t0)πy if t ≥ t0,

whereF0(t) = Prob(T0 > t) is the survival function corresponding tof0. The inference is

then made using the distribution ofT defined above.

Schmidli et al. (2007) do not consider change of endpoint butthey propose a seam-

less phase II/III design that utilize binary and survival outcomes techniques. Schmidli

et al. (2007) consider survival outcomes with right censoring. At both stage 1 and stage

2, survival or censoring time and the binary outcome that denotes whether the outcome of

interest (the outcome that gives survival time) are recorded. Suppose the right censoring

time isU . The analysis is based on the binary outcomes, that is, comparing the number

of events that occur within the censoring timeU . To determine the distribution of stage 2

data, the probability of an event of interest is considered Bernoulli(1 − S(U ; θj)), where

θj are the parameters of the survival functionS(t) which enter the stage 2 data distribution

when treatment (dose)j is considered for testing at stage 2. At the time of planning the

phase III stage, some of the phase II stage patients will not have an event and will not have
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reached the censoring timeU . If the phase III stage planning is done at timet0 < U for

a patient, the probability of an event for this patient in theremaining follow-up time is

(1 − S(U ; θj)) − (1 − S(t0; θj)) = S(t0; θj) − S(U ; θj).

Both the work of Schmidli et al. (2007) and Inoue et al. (2002)consider survival

outcome up to some censoring timeU . Schmidli et al. (2007) do not incorporate the sur-

vival time in the analysis but incorporate it the planning byassuming that the probability of

a survival event between time 0 and censoring timeU depends on some survival functions.

Inoue et al. (2002) use the survival outcome to make inference but the distribution of the

survival timeT is a mixture of distributions for different outcomes of the binary outcomes.

The two approaches underline the complexity of having two endpoints. However, the ideas

in these articles in which the authors use one outcome to determine another outcome and the

technique of surrogate endpoints which we have not yet studied, may offer a starting point

for further work on designing seamless phase II/III clinical trials with change of endpoints.
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Discussion and conclusions

The work in this thesis was based on seamless phase II/III clinical trials. Seamless phase

II/III clinical trials are carried out in two stages; the phase II stage (stage 1) and the phase

III stage (stage 2). After collecting stage 1 data, an interim analysis is done so that there

are opportunities to adapt the trial based on stage 1 results. Possible adaptations in clinical

trials are sample size re-estimation for example as described by Friede and Kieser (2006),

sub-population selection for example as proposed by Zuber et al. (2006) and treatment

selection for example as proposed by Thall et al. (1988), Schaid et al. (1990), Stallard and

Todd (2003), and Schmidli et al. (2007). Our work also focussed on treatment selection in

seamless phase II/III clinical trials but include featuresthat are not included in the above

works on treatment selection.

Most work for treatment selection in phase II/III trials consider candidate treatments

which are distinct treatments. In this thesis, we have considered candidate treatments which

are different doses of the same drug. To incorporate this, wehave proposed some dose-

response curves to estimate the probabilities of efficacy and toxicity at the experimental

doses to inform the planning of the phase III stage so that dose selection is based on data

observed over the entire experimental dose range in the phase II stage. This is similar to

131
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dose-finding phase I studies where it is common to allocate patients to the experimental

doses assuming some dose-response curves. For example, O’Quigley et al. (1990) pro-

posed an exponential curve for a safety model while Whitehead et al. (2006) have proposed

logistic models for both safety and efficacy outcomes. The work in dose-finding phase I

studies generally does not focus on hypotheses testing. However, in phase II/III clinical

trials hypotheses testing is done and the dose selection procedure should be made such that

the type I error is not inflated. The flexible two stage hypothesis tests we assume will be

used to analyze data from the two stages of the seamless phaseII/III trials allow the use of

the dose-response curves and also the prior knowledge aboutdose-response curves without

inflating type I error rates.

Both efficacy and toxicity have been considered explicitly in early clinical trials. For

example Whitehead et al. (2006) have proposed a design applicable to phase I/II clinical

trials. However, safety is often not explicitly included inthe dose-selection procedure for

doses to be tested in phase III. For example, at the planning stage, the dose selection pro-

cedure may determine the (predictive) probability that thecandidate sets will be concluded

effective after stage 2 and a separate decision is made on whether the promising doses are

safe for further experimentation. The dose-selection procedure that we have proposed con-

siders both the efficacy and the safety of potential doses explicitly. Rather than only focus

on the probability that the dose will be concluded effectiveafter phase III stage, the pro-

cedure uses the joint probability that the dose will be concluded effective and safe by not

exceeding some threshold safety level.

The penalty for safety was considered based on the distribution of probability of

toxicity rather than the distribution of the number of patients who would experience a toxic

outcome at stage 2. This option was preferred for two reasons. If the penalty considered

the probability that the number of patients treated in an experimental dose does not exceed

(γ × n2), whereγ is the maximum probability of toxicity that can be toleratedandn2 is

the number of patients randomized to each treatment arm in stage 2, then larger samples
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will be penalized more when the true probability of toxicityis greater thanγ and less when

the true probability of toxicity is less thanγ. The second reason is that, in practice, safety

data are monitored as the trial continues so that the safety of the drug is evaluated before

all patients have been treated.

In Chapter 6, to study the characteristics of the dose selection procedure, we re-

stricted the doses to be considered for testing at phase III stage to consecutive doses. How-

ever, as described in Sections 5.2.2 and 6.1, this does not reflect a limitation to the dose

selection procedure developed in Chapter 5. The restriction reduces the sets of doses to be

considered for testing in the phase III stage and hence reduces the computation time. Also

continuing with nonconsecutive doses seems practically implausible. However, in some

scenarios it may be reasonable to consider nonconsecutive doses. To demonstrate when it

may be desirable to consider proceeding with non-consecutive doses, consider three doses,

say dose 1, dose 2 and dose 3. Suppose the efficacy dose response curve is such that the

probabilities of efficacy at dose 1 and dose 2 differ very little and the probability of efficacy

at dose 3 is considerably higher than at dose 2. Then if the safety dose response curve is

such that the probabilities of toxicity at consecutive doses are considerably different, then

it would be desirable to proceed to phase III stage with dose 1and dose 3 rather than with

doses 2 and 3.

We have assumed that efficacy and toxicity are independent given the dose level.

In Section 5.6, we showed by using the conditional efficacy and toxicity models (5.1) and

(5.2), we do not assume marginal independence and that the modelled association between

probabilities of efficacy and toxicity are reasonable. Alternatively the association between

efficacy and safety may be modelled explicitly by introducing a parameter for association.

For example, Yin et al. (2006) include parameters for the odds ratio at each dose to model

the association between efficacy and toxicity. This is likely to capture association better

but would introduce complexity in obtaining the joint distribution of the parameters in the

model and increase the computation time, and we do not think this would make much
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difference on the choice of doses to continue to stage 2.

To summarise, in this thesis, we have proposed a new method for dose selection

in seamless phase II/III clinical trials. The method enables rational choice of doses to

continue to stage 2 while: (1) allowing for the final analysis, (2) incorporating the stage 1

data profile, and (3) incorporating the prior knowledge.
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