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Abstract

The fundamental bulk and surface electronic properties of a novel class of semicon-
ductors, characterised by a significant mismatch between the size and electronega-
tivity of the cation and anion (SCAMS), have been investigated. The characteristic
examples of CdO, In2O3, and InN were studied using high-resolution x-ray pho-
toemission spectroscopy, infrared reflectivity, optical absorption spectroscopy, and
single-field Hall effect measurements. The behaviour of not only defects, dopants
and impurities, which dominate the bulk electronic properties, but also surface states
was shown to depend on the position of a single energy level, the charge neutrality
level (CNL), unifying bulk and surface electronic properties of semiconductors.
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For the materials studied, the CNL was shown
to be located within the conduction band
(0.39 eV,∼0.65 eV, and 1.19 eV above the con-
duction band minimum (CBM) in CdO, In2O3,
and InN, respectively; see figure) in contrast to
the vast majority of semiconductors where the
CNL lies within the fundamental band gap (as,
for example, in the classic case of GaAs). In
CdO, this was shown to lead to native defects,
hydrogen impurities and surface states all be-
ing donors, even in already n-type material.
The donor surface states result in electron ac-

cumulation at the CdO surface. Such an electron accumulation is also present at
InN surfaces, and this was shown to exhibit a remarkable independence on surface
orientation, and to lead to inversion layers at the surface of p-type InN. The changes
in surface space-charge regions were investigated across the In(Ga,Al)N composition
range, for both undoped and Mg-doped alloys. The influence of the CNL position on
interface properties and conductivity in InN was considered. Electron accumulation
was observed in In2O3, in contrast to previous reports. Muonium, and by analogy
hydrogen, was also shown to be a shallow donor in this material. The location of
the CNL above the CBM in SCAMS was used to explain many of their striking
bulk electronic properties, such as why materials like In2O3 are able to be conduct-
ing despite being optically transparent, two normally contradictory properties. The
conclusions drawn from these studies are applicable to a wide variety of other ma-
terials, in particular other SCAMS such as ZnO or SnO2.

Surface electron accumulation is treated here mainly within a one-electron semi-
classical approximation. The final section of this work moves beyond this, using
angle-resolved photoemission spectroscopy measurements and theoretical calcula-
tions to consider both the quantized nature of an electron accumulation layer, and
the influence of many-body effects.
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Chapter 1

Introduction

1.1 Significantly cation-anion mismatched semiconductors

Research on semiconductor materials has been intimately linked with technological

developments. While silicon still dominates the microelectronics industry, III-V ma-

terials such as GaAs have become increasingly important as their generally direct

band gaps give favourable properties for optoelectronic applications, and their low

effective masses and high mobilities make them suitable for use in high-frequency

electronic devices. Indeed, the development of heterostructure-based III-V devices

can be regarded as one of the most important technological achievements of recent

years [1, 2]. Research into semiconductors is not, however, limited to practical ap-

plications: they have also provided an opportunity to study fundamental physics.

Perhaps most notably, studies of AlGaAs/GaAs heterostructures revealed a highly

precise quantization of the Hall coefficient at values dependent only on fundamental

physical constants [3].

The archetypal III-V semiconductor, GaAs, has been extensively studied and

utilized. However, an ever increasing need for higher-speed/higher-power electronic

and innovative photonic devices has spurred progressive investigation of new mate-

rials. A novel class of semiconductor compounds has emerged, characterised by a

large size and electronegativity mismatch between the constituent atoms. The elec-

tronegativity and atomic radii of some group II, III, V and VI elements are shown in

Fig. 1.1. In particular, N and O can be seen to be much more electronegative, and

have much smaller atomic radii, than other group V and VI elements, respectively,

as well as group II and III atoms.

One subset of such highly mismatched compounds results from the substitu-

tion of a dilute concentration of N or O in place of the anion of a III-V or II-VI

semiconductor, respectively [5, 6]. Studies of these alloys, where an interaction of

the localized N or O impurity levels and the host conduction band leads to a so-
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Figure 1.1: (a) Electronegativity (in Pauling units) from Ref. [4] and (b) atomic radii of some
group II, III, V and VI elements.

called conduction band anticrossing, restructuring the conduction band into two

subbands, revealed novel physical mechanisms involved in the formation of band

structure. Concurrently with these fundamental insights, the materials also show

technological promise, with high-efficiency multi-band solar cells just one suggested

application [6].

Instead of incorporation in dilute concentrations, N or O can themselves be

used as the anion of a compound semiconductor. These materials can be considered

significantly cation-anion mismatched semiconductors (SCAMS) due to the large

size and electronegativity mismatch between the anion (small, very electronegative

atom) and the cation (much larger, less electronegative atom). The SCAM na-

ture is most pronounced for compounds with large cations such as CdO, InN and

In2O3, which are the focus of the current work. While these materials have already

shown device potential, or indeed realisation, such as in high-frequency electronic,

efficient photonic and transparent contact applications, relatively little is known or

understood about their fundamental material properties. A number of striking phe-

nomena have, however, already been discovered. For example, InN has previously

been shown to support a surface accumulation of electrons [7], in contrast to the

depletion layers observed at the majority of semiconductor surfaces, and CdO and

In2O3 both exhibit high conductivity, despite their relatively wide band gaps and
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optical transparency [8, 9]. It is of interest to investigate what gives rise to these

seemingly unusual properties.

This thesis aims to develop a comprehensive understanding of the electronic

properties of SCAMS, centred around the concept of the charge neutrality level

(CNL), focussing specifically on the properties of CdO, InN and related alloys,

and In2O3. This is motivated by the dual goals of furthering the knowledge and

understanding of their material properties for potential use in device applications,

and the investigation of novel physical phenomena in solid state physics.

1.2 Organisation of the thesis

The remainder of this chapter presents an introduction to the concept of virtual gap

states, the CNL, electronic properties of surfaces, and defects in semiconductors.

Chapters 2 and 3 detail the basic theoretical models (band structure and semicon-

ductor space-charge calculations) and the core experimental techniques (photoemis-

sion spectroscopy, optical absorption, infrared reflectivity, and Hall effect measure-

ments) used throughout this thesis. In Chapter 4, investigations of CdO are used

to show that the CNL ultimately determines the charge character of surface states,

defects and impurities in semiconductors, hence unifying bulk and surface electronic

properties. These concepts are utilized in investigations of other materials systems

in Chapters 5 to 8: the CNL position in InN is determined in Chapter 5, and its

influence on the nature of InN’s surface electron accumulation and interface-related

electron density are investigated in detail in Chapter 6; the variation in surface

electronic properties of the In(Ga,Al)N alloys are considered in Chapter 7; surface

electron accumulation is also discovered in In2O3 in Chapter 8, and the determined

CNL position is shown to be the overriding factor giving rise to conductivity in

this transparent oxide. Throughout these chapters, surface electron accumulation

is treated in a semi-classical single-electron approximation (detailed in Chapter 2).

Chapter 9 moves beyond this approximation, considering the quantized nature of

an accumulation layer, and the influence of many-body effects at semiconductor

surfaces. Finally, the main findings of this work are summarised in Chapter 10.
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1.3 Charge neutrality level

1.3.1 Virtual Gap States

In the solution of the Schrödinger equation in terms of Bloch functions (see Sec-

tion 2.1.1), application of Born-von Karman periodic boundary conditions for the

infinite crystal requires the Bloch wavevector to be real. However, at the surface of a

material, the perfect periodicity of the structure is broken. This allows states with a

complex Bloch wavevector, which are also solutions of the Schrödinger equation, to

exist. Consequently, surface states are evanescent, that is, they decay exponentially

into the vacuum and into the bulk of the semiconductor, and physically describe

electronic levels that are localized near the surface. Due to a similar breaking of

the full translational symmetry of the lattice at a metal–semiconductor interface,

Heine [10] showed that the wavefunctions of the metal states can tunnel into the

band gap of the semiconductor just as a surface state does. Inkson [11] argued that

the same holds for deep (that is, localized) defects.

Much insight into these surface, interface, and defect states can be obtained

by considering the complex band structure of a one-dimensional lattice within the

nearly-free electron model [12]. An electron of mass m0 in a constant potential

V0 must satisfy the one-electron Schrödinger equation (see Section 2.1 for a more

thorough discussion of this)

H0 |ψk(r)〉 = E0
k |ψk(r)〉 (1.1)

where H0 = p2

2m0
+ V0, the momentum operator p = −i~∇, and the one-electron

wavefunctions |ψk(r)〉 ∝ eik·r, giving

E0
k =

~2k2

2m0

+ V0. (1.2)

A small periodic potential is introduced as a perturbation

H = H0 +H1 (1.3a)

H1 =
∑
G

V1e
−iG·r (1.3b)
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ture in the reduced zone scheme of a
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solid with band gap Eg. The imagi-
nary component of the complex band
structure is plotted as a function of
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below the middle of the energy gap.

where G is a reciprocal lattice vector. Writing the Hamiltonian in matrix form [13],

Hk′k ≡ 〈ψk′|H |ψk〉 = E0
k′δkk′ + 〈ψk′ |H1 |ψk〉 . (1.4)

The matrix elements

〈ψk′|H1 |ψk〉 =
∑
G

V1

∫
d3r e−ik′·re−iG·reik·r

=





V1 k = k′ + G

0 otherwise.
(1.5)

The energy eigenvalues, E(k), are therefore given by solution of the secular equation
∣∣∣∣∣∣

~2k2

2m0
+ V0 − E(k) V1

V1
~2(k−G)2

2m0
+ V0 − E(k)

∣∣∣∣∣∣
= 0. (1.6)

Considering the wavevector with respect to the Brillouin zone (BZ) boundary in one

dimension, κ = (π/a)− k, where a is the lattice parameter,

E(κ) = V0 + E1 +
~2κ2

2m0

±
√

V 2
1 + 4E1

~2κ2

2m0

(1.7)

where

E1 =
~2

2m0

(
G

2

)2

, (1.8)

the familiar dispersion shown in Fig. 1.2 results for real wavevectors, where an energy

gap Eg = 2 |V1| opens up at the BZ boundary.

However, as discussed above, it is not sufficient to consider only the band

structure corresponding to real wavevectors, but also evanescent states with real
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energies but complex wavevectors. Considering the imaginary component of the

wavevector q, where k = (π/a) + iq, the dispersion becomes

E(q) = V0 + E1 − ~
2q2

2m0

±
√

V 2
1 − 4E1

~2q2

2m0

. (1.9)

This complex dispersion exists within the band gap of the bulk semiconductor,

as shown in Fig. 1.2. As such states are meaningless within the bulk, they are

termed virtual gap states (ViGS) [10]. Similar considerations, although somewhat

less simple, hold in three dimensions [12,14].

As the ViGS derive from the bulk band structure, their character changes

from predominantly donor-like close to the valence band to predominantly acceptor-

like close to the conduction band. The energy at which they have equal donor- and

acceptor-like character is termed the branch-point energy of the ViGS, and occurs

where the decay length of the ViGS wavefunctions is a minimum. In the one-

dimensional example of Fig. 1.2, this occurs at qmax, V 2
1 /4E1 below the mid-gap

energy. As the ViGS are predominantly donor-like below this energy, and acceptor-

like above this energy, this branch point can be identified as the charge neutrality

level (CNL) of the semiconductor [15,16].

The ViGS are highly localized in real space, and so their character is de-

termined by contributions from a large proportion of the BZ, and not just around

the Γ-point. Consequently, the branch point of the ViGS, and hence the CNL, will

be located close to the mid-gap energy averaged across the BZ. Various theoretical

schemes for estimating the CNL position have been developed. Tersoff [16–19] de-

termined energy bands via linearized augmented plane-wave calculations within the

local density approximation (LDA) for a wide range of semiconductors. Following

a rigid shift of the conduction band to reproduce experimental band gaps, Tersoff

determined the CNL as the energy at which the valence and conduction band con-

tribution to the real-space Green’s function is equal. The calculation was performed

by averaging over 152 points within the first BZ, well representing the extended k-

space behaviour of the ViGS but resulting in a rather expensive calculation. Cardona

and Christensen [20] and Mönch [21] instead employed Baldereschi’s [22] concept

of mean-value points, which dictates that the value which any function periodic
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in wavevector assumes at this point is representative of the average value of that

function across the BZ. Mönch [21] showed that the energy gap at the mean-value

point of the BZ equals the dielectric band gap [23] of the semiconductor. Further, as

shown in Fig. 1.3, he used emperical tight-binding calculations to demonstrate a lin-

ear relation between the position of the branch point of the ViGS above the valence

band maximum (VBM) and the semiconductor dielectric band gap energy, with a

slope parameter 0.449 ± 0.007. The CNL therefore lies slightly below the average

mid-gap energy of the semiconductor, in agreement with the simple one-dimensional

model discussed above. Tersoff [24] semi-empirically identified an alternative average

mid-gap energy as

Ēmid =
1

2

(
ĒV + ĒC

)
(1.10)

where ĒV = EV − 1
3
∆so is the position of the ‘effective’ VBM in the absence of

spin-orbit splitting, ∆so, and ĒC is the indirect conduction band minimum (CBM).

This gives a simple scheme for estimating the CNL position of a material.

The CNL is thought to be universal for all materials on an absolute energy

scale [25]. However, while Walukiewicz [26] takes a value 4.9 eV below the vacuum

level, based on the electron affinity of GaAs, Van de Walle and Neugebauer [25]

employ a value of ∼ 4.5 eV. Meanwhile, the equivalent level in the calculations of

Kiliç and Zunger [27] is only 3 eV below the vacuum level. Despite these variations
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in absolute energy, the alignment of relative CNL positions has proved very powerful

in predicting electronic properties in different materials. Some implications of the

CNL position in conventional semiconductors are discussed in the following sections.

1.3.2 Surface electronic properties

Surface electronic states distinct from those of the bulk were first considered the-

oretically by Tamm [28], although substantial insight was added by Shockley [29]

who showed that localized levels deriving from the bulk bands exist within the

semiconductor band gap. Maue [30] considered the existence of evanescent surface

states within the nearly-free electron model discussed above. Provided boundary

conditions are fulfilled for matching of the wavefunction tails of the surface states

into both the vacuum and the semiconductor bulk [10, 12], these surface states can

therefore be seen to derive from the ViGS of the complex band structure.

The ViGS inherent to a clean surface with full translational symmetry in

two-dimensions (in the plane of the surface) are termed intrinsic surface states. The

microscopic origin for such state formation is the dangling bonds formed when a

surface is generated by truncating the bulk structure – each atom at the surface

has fewer nearest neighbours than those in the bulk. The breaking of bonds at

the surface costs energy, and so a rearrangement of the surface atoms in order to

minimize this energy, that is, minimize the energy associated with dangling bonds,

almost invariably results in a surface that is different to an ideally truncated bulk.

Intrinsic surface states are specific to such surface reconstructions [12,31].

Extrinsic surface states can also be formed when imperfections (for example

adatoms or defects) cause electronic states to become localized at the surface. In

the case of adatom induced states, charge transfer will occur between the semicon-

ductor and the adatom dependent on their difference in electronegativity, although

Mönch [12] incorporates this effect within the ViGS concept.

From the discussions in Section 1.3.1, the surface ViGS will either be donor-

like or acceptor-like if they are below or above the CNL, respectively. These states

can be occupied or unoccupied dependent on the Fermi level position at the sur-
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face and are either neutral (occupied donor-like or unoccupied acceptor-like states),

positively charged (unoccupied donor-like states) or negatively charged (occupied

acceptor-like states). In the presence of charged surface states, the carriers in the

near-surface region of the semiconductor rearrange in order to screen the macro-

scopic electric field induced by these states. This occurs over a distance determined

by the Thomas-Fermi screening length. While this is very short in metals due to their

extremely high free carrier concentration, it is appreciably longer in semiconductors

leading to macroscopic regions of charge redistribution known as space-charge re-

gions.

Consequently, the Fermi level shifts as a function of depth within the semi-

conductor, which can equivalently be viewed as a bending of the conduction and

valence bands with respect to the Fermi level. The position of the Fermi level at the

surface is determined by the condition of charge neutrality within the semiconduc-

tor: the total charge due to surface states, Qss, must be compensated by an equal

but opposite charge within the space-charge region, Qsc,

Qss = −Qsc. (1.11)

For an n-type material, when the surface states are negatively (positively)

charged, a positive (negative) space-charge region is therefore required to maintain

charge neutrality. This is achieved by an upward (downward) bending of the bands

in order to decrease (increase) the electron concentration at the surface with re-

spect to the bulk values, resulting in a depletion (accumulation) of electrons at the

surface. If there are sufficient negatively charged surface states, the band bending

required to maintain charge neutrality can be so severe that the Fermi level at the

surface moves below the middle of the direct band gap and a p-type surface layer

of holes exists, separated from the n-type bulk region by a depletion layer. This

is termed an inversion layer. In the situation where the Fermi level at the surface

is located exactly at the CNL, there are on average no charged surface states, and

so there is no band bending. This is referred to as the flat-band case. The pre-

ceding considerations are reversed when the bulk region has p-type conductivity.

Schematic representations of the band bending and carrier concentration variation
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Figure 1.4: A schematic representation of the band bending and associated charge profiles for
inversion, depletion, flat-bands and accumulation space-charge layers at the surface of n- and
p-type semiconductors. The variation of the conduction and valence band edges (EC and EV )
and the mid-gap energy (Emid, dotted line) are shown. A schematic Fermi level (EF ) is also
represented (dashed line). In the carrier concentration plots, the background net ionized donor
density (N+

D −N−
A ) and net ionized acceptor density (N−

A −N+
D ) is shown for n-type and p-type

samples, respectively (dotted line).

as a function of depth in each of these space-charge regions is shown in Fig. 1.4.

Allen and Gobeli [32] investigated the clean Si(111) surface prepared in the

(2 × 1) reconstruction by cleavage in ultra-high vacuum (UHV), and observed a

strong pinning of the Fermi level at the surface by intrinsic states for a wide range

of bulk Fermi level positions, with upward (downward) band bending observed for

n-type (p-type) samples. This results in electron (hole) depletion layers, consistent

with the CNL lying only a little below the middle of the direct band gap [24]. Similar

space-charge layers result for the Si(100)− (2×1) and Si(111)− (7×7) surfaces [31,

33], consistent with the position of the CNL, but with differences in surface state

distributions for the different crystal surfaces and reconstructions leading to small

differences in the Fermi level pinning position. Meanwhile, a much larger tendency

for upward band bending for n-type material than downward band bending for p-

type material was observed at the cleaved Ge(111)− (2× 1) surface [34], consistent
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with the CNL lying approximately at the VBM in Ge [24].

The situation is a little more complex for III-V compound semiconductors.

While a pinning of the Fermi level a little below mid-gap was observed at the (001)

surface of as-grown GaAs [35], consistent with the CNL position [24], flat-bands

were observed at the perfectly cleaved (110) surface [36, 37]. However, the pinning

of the Fermi level was recovered upon adsorption of a small quantity of O, or in the

presence of step edges on the cleaved surface [37]. This was subsequently understood

by theoretical predictions that a relaxation of the surface layer, where the Ga–As

zigzag chains tilt with the As atoms being pushed outwards at the cleaved (110)

surface, results in the intrinsic surface states related to dangling bonds being pushed

out of the band gap. Thus, the pinning of the Fermi level in as-grown or ex-situ

prepared GaAs(110) can be attributed to extrinsic surface states. This confirms

that the CNL still represents the relevant energy level for discussing the electronic

properties of surfaces where extrinsic, rather than intrinsic, surface states dominate.

A final interesting example is the case of InAs, which has been observed to exhibit

an accumulation of electrons at the clean surface of n-type material [38,39]. This is

because the CNL actually lies outside of the fundamental band gap in InAs, above

the CBM [24]. A pinning of the Fermi level close to this energy leads to an increase

in electron density approaching the surface. This example is of particular relevance

for the materials considered in this thesis.

1.3.3 Metal-semiconductor and semiconductor-semiconductor interfaces

The first model to explain the behaviour of metal-semiconductor contacts was de-

veloped as early as 1931 by Schottky et al. [40]. They proposed that the so-called

Schottky barrier height (that is, the separation of the Fermi level and CBM of the

semiconductor at the interface, ΦB) should simply be the difference between the

work function of the metal, φM , and the electron affinity of the semiconductor, χ,

both referenced to the vacuum level,

ΦB = φM − χ, (1.12)

as shown in Fig. 1.5. While this successfully explained the rectifying nature of
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Figure 1.5: Schematic representation of metal-semiconductor contact behaviour within the Schot-
tky model, (a) before and (b) after the junction is formed. Filled states are represented by shading.
The semiconductor is assumed to have no surface states, and so the bands are flat up to the surface
in (a). Equally, no interface states are considered once the contact is made. Figure adapted from
Ref. [41].

Schottky contacts, as they were later termed, the dependence of the barrier height

on the metal work function was generally found to be much weaker than predicted

by this model. Bardeen [42] alternatively considered the role of a high density of

interface states, effectively pinning the Fermi level at the interface. In this model,

the barrier height is independent of the metal work function, dependent only on the

relative difference between the CBM of the semiconductor and the pinning position

of the Fermi level

ΦB = Ec − E pin
F . (1.13)

Very ionic (covalent) materials are better described within the Schottky (Bardeen)

limit [43], whereas intermediate materials exhibit a degree of Fermi level pinning,

although with changes in the barrier height observed as a function of the metal work

function.

The microscopic origin of the interface states giving rise to Fermi level pinning

was variously attributed to defects [44,45] or to ViGS in the form of metal induced

gap states (MIGS) [10,16]. Tersoff [24] showed that a linear relation existed between

the CNL and the barrier height for gold contacts to a number of semiconductors,

as shown in Fig. 1.6(a). This suggests that the MIGS model, where the Fermi

level would pin at the CNL in the Bardeen limit, is likely key to understanding

the formation of Schottky barriers. However, some variation in barrier height with

metal work function would still be expected due to charge transfer between the
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Figure 1.6: (a) Schottky barrier height, ΦB , for gold on a number of semiconductors as a function
of the CNL position calculated from Eqn. 1.10, adapted from Ref. [24]. The solid line is ΦB =
1
2

(
ĒV + ĒC

) − 0.2 eV. (b) Schottky barrier height, ΦB , for different metals deposited on GaAs
as a function of metal electronegativity in Miedema units, adapted from Ref. [4]. The solid line is
Eqn. 1.14 with ΦCNL = 0.92 and SX = 0.08 eV.

metal and the semiconductor; indeed, Tersoff found that the barrier height for these

gold contacts was ∼ 0.2 eV below the value that would be obtained for pinning of

the Fermi level at the CNL, consistent with a ‘MIGS plus charge transfer’ model.

Mönch [4] included the variation in barrier height with work function of the

metal into the MIGS model via a slope parameter, SX , giving the n-type barrier

height

ΦB = ΦCNL + SX(Xm −Xs) (1.14)

where ΦCNL is the barrier height obtained when the metal is of the same electroneg-

ativity as the semiconductor, and so the Fermi level pins at the CNL at the interface,

and Xm and Xs are the metal and semiconductor electronegativities, respectively,

in Miedema units. The metal and semiconductor electronegativities were shown to

scale linearly with the metal work function and dielectric work function (vacuum

level to CNL) of the semiconductor, respectively [46], making this electronegativ-

ity difference a suitable quantity to characterise charge transfer at the interface.
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Mönch [46,47] further determined the slope parameter to vary as

SX =
0.86

1 + 0.1(ε(∞)− 1)2
(1.15)

where ε(∞) is the high-frequency dielectric constant of the semiconductor. Thus,

for very ionic (covalent) compounds where ε(∞) is small (large), SX is large (small)

leading to a weak (strong) pinning corresponding to the Schottky (Bardeen) limit.

This explains the chemical trends observed by Kurtin et al. [43].

The barrier heights for a number of metals on GaAs are shown in Fig. 1.6(b),

with the MIGS-plus-electronegativity model line. In general, good agreement is seen

between the barrier heights from experimental measurements and those predicted

theoretically. However, the points for Ni and Pd lie well below the model line. Ni

and Pd are known to decompose GaAs even at room temperature [4], and so the

Ni/Pd–GaAs interface may be somewhat defective. Mönch [48] showed that, while

the MIGS model was the overriding mechanism determining the formation of barrier

heights at metal-semiconductor contacts, a reduction in the barrier height below the

MiGS value would be expected for contacts where a high density of defects exist.

This reconciles the differing explanations of MIGS or defects as the microscopic

origin of the interface states.

The natural band lineup of two semiconductors can also be determined from

the locations of the CNL relative to the VBM in each material [15,17], where inter-

face induced gap states (IFIGS) are the important ViGS. The influence of charge

transfer at the interface can often be neglected in this case due to the similar elec-

tronegativities of most semiconductors. Mönch [4] has also shown the alignment of

CNLs to hold for metamorphic heterostructures, making this an excellent way to

predict the valence band offset (VBO) between highly lattice-mismatched semicon-

ductors such that the interface is characterised by a high density of strain-relieving

misfit dislocations. The measured VBOs of a number of pseudomorphic and meta-

morphic semiconductor heterojunctions are plotted against the difference in their

calculated CNL positions in Fig. 1.7, indicating the validity of the IFIGS model for

determining VBOs of semiconductors.
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Figure 1.7: The VBO of a number
of pseudomorphic and metamorphic semi-
conductor heterojunctions vs. the differ-
ence in their calculated CNL positions,
adapted from Mönch [4].

1.4 Amphoteric defect model

In an attempt to explain the mechanisms of Schottky barrier formation, Spicer et

al. [44,49] proposed a ‘unified defect model’, where Fermi level pinning at a metal/

semiconductor (or indeed oxide/semicondctor) contact was attributed to extrinsic

defects at the interface. While numerically this model appears to predict the values

of Schottky barrier heights rather well, there is evidence that a distribution of defects

do not pin the Fermi level in Schottky barrier formation [4, 50] – the formation of

Schottky barriers can be better understood in terms of the MIGS model, discussed

above. However, the numerical agreement achieved between the two models suggests

some intrinsic link exists between the energetics of native defect formation and that

of surface/interface states. This will be considered further in Chapter 4.

The unified defect model was subsequently extended by Walukiewicz [45,51],

where it was termed the amphoteric defect model (ADM). While it still inaccurately

assigns native defect states as the sole origin of the electronic properties of semi-

conductor interfaces, the ADM remains insightful in elucidating tendencies for their

bulk electronic properties. Within this model, the formation energy for donor (ac-

ceptor) native defects, such as anion (cation) vacancies, increases (decreases) with

increasing Fermi level, such that formation of donor (acceptor) native defects is most
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Figure 1.8: (a) Formation energies for Ga and As vacancies (VGa, VAs) and anti-site defect
complexes (AsGa + VAs, GaAs + VGa) in GaAs, with the charge state as shown, adapted from
Walukiewicz [51]. The vertical line represents EFS . (b) Evolution of the Fermi level in p-type, semi-
insulating and n-type GaAs upon high-energy electron irradiation, adapted from Walukiewicz [52].

favourable when the Fermi level is below (above) an energy known as the Fermi level

stabilization energy (EFS) in the nomenclature of the ADM. This is represented for

GaAs in Fig. 1.8(a). Consequently in GaAs, for energies below EFS, the donor As-

vacancy has a low formation energy, whereas for energies above EFS, the acceptor

cation-on-anion defect complex, GaAs + VGa, is more favourable. Conversely, above

EFS, the acceptor Ga vacancy can exist, although the donor anion-on-cation defect

complex, AsGa + VAs, becomes favourable as the Fermi level moves below EFS.

Native defects can be deliberately introduced into a semiconductor, for exam-

ple by high-energy particle irradiation. If the Fermi level is initially below EFS (for

example, in p-type GaAs), the production of donor defects will be more favourable

(see Fig. 1.8(a)), acting to increase the Fermi level up towards EFS. Conversely,

for Fermi levels initially lying above EFS (for example in n-type GaAs), acceptor

defects will have the lower formation energy (Fig. 1.8(a)), resulting in a decrease

of the Fermi level back down towards EFS. As the Fermi level reaches EFS, donor

and acceptor native defects will be generated at the same rate, resulting in no net

change in carrier concentration, and acting to stabilize the Fermi level at EFS for

high irradiation doses. This can be observed for GaAs is Fig. 1.8(b) [52].

The ADM can also be used to explain doping limits in semiconductors [53].
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As seen in Fig. 1.8(a), with increasing Fermi level away from EFS, the formation

energy of compensating defects decreases. Therefore, it is difficult to extrinsically

dope semiconductors to move the Fermi level too far above or below EFS due to the

increasing prevalence of compensating defect centres. Experimental doping limits

are represented for a number of semiconductors in Fig. 1.9. For materials where

EFS lies close to the valence band (for example, Ge), p-type doping is much more

efficient, whereas for materials where EFS lies close to the conduction band (for

example, ZnO, InAs), n-type doping can be readily achieved, while p-type doping

is difficult.

The above sections have revealed that the CNL and ADM are useful in the

analysis and understanding of the electronic properties of semiconductor materi-

als, including their bulk doping, surface space-charge, metal-semiconductor and

semiconductor-semiconductor interface properties. In this thesis, these two models

will be unified, and the influence of the CNL position on the electronic properties

of a number of SCAMS will be investigated.



Chapter 2

Theoretical methods

This thesis is concerned with the electronic properties of semiconductors. As such,

the relation between the electronic band structure and measurable/calculable pa-

rameters such as carrier densities and Fermi levels is of the utmost important. The

materials considered here have non-parabolic conduction band dispersions, necessi-

tating the use of band structure approximations beyond the simple parabolic model.

The theoretical background and resulting expressions of such approximations are

presented in Section 2.1 of this chapter. Furthermore, the solution of band bend-

ing potentials will form a large component of the work presented here, and the

formulations used for this are discussed in Section 2.2 of this chapter.

2.1 Electronic structure calculations

The behaviour of electrons in a crystal solid is governed by the many-body Schrödinger

equation

H |Ψ〉 = E |Ψ〉 . (2.1)

Neglecting magnetic effects, the Hamiltonian operator is given by

H =
N∑

i=1

p2
i

2mi

+
1

2

N∑
i=1

N∑

j 6=i

ZiZj

4πε0 |ri − rj| (2.2)

where the sums are over the N particles (electrons and nuclei) of charge Zi, mass

mi, and spatial position ri making up the system, the momentum operator

pi = −i~∇i (2.3)

and Ψ(r1, r2, . . . , rN) is a N -body wavefunction.

It is generally appropriate to consider the electrons as either core or valence

electrons. The core electrons are localized around the nuclei, and so the system can

be treated as a number of valence electrons interacting with ion cores (nuclei and

core electrons). Due to their significantly lower mass, the electrons can be assumed

to react almost instantaneously to the motion of the ions – the ions appear stationary
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to the electrons, whereas the ions only respond to the time-averaged behaviour of

the electrons. This is the Born-Oppenheimer (or adiabatic) approximation [55],

allowing the motion of the ions to be decoupled from that of the electrons. A

simplified N -body electronic Hamiltonian results,

He =
∑

i

− ~2

2me

∇2
i +

1

2

∑
i

∑

j 6=i

e2

4πε0 |ri − rj| −
∑

i

∑

`

Z` e

4πε0 |ri −R`0|
(2.4)

where the indices i, j (`) label the electrons (ions) at position ri/j (equilibrium

position R`0), e is the electronic charge, Z` is the charge of the ion core and me the

electron mass. The three terms in the above Hamiltonian physically represent the

kinetic energy of the electrons, electron-electron and electron-ion interactions.

2.1.1 Simplified band structure approximations

The simplified electronic Hamiltonian, Eqn. 2.4, remains analytically intractable. In

particular, the electron-electron interactions cause a correlation of the electronic mo-

tion, preventing the separation of the N -body problem into N one-electron problems.

The following further simplifications of the many-electron Schrödinger equation are

therefore often employed:

• one-electron approximation, where the electron-electron interaction is assumed

to contribute a constant repulsive component to the Hamiltonian resulting

from the averaged electron-electron interaction, and any deviations from this

are regarded as small and neglected;

• mean-field approximation, where each electron is assumed to be in identical

surroundings dependent on the interaction with the ions in their equilibrium

position.

Thus, the electronic band structure can be approximated from a solution of the

Schrödinger equation with the simplified Hamiltonian

H =
p2

2me

+ V0(r) (2.5)

where V0(r) represents the periodic potential of the Bravais lattice. Invoking the

translational symmetry of the lattice, it can be shown (see, for example, Ref. [56])
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that the solutions to Eqn. 2.5 are Bloch wavefunctions

ψνk(r) = uνk(r) exp(ik · r) (2.6)

where ν labels the band, k is the wavevector of the electron in the first Brillouin

zone and the Bloch wavefunction uνk(r) has the full translational symmetry of the

lattice

uνk(r + T) = uνk(r) (2.7)

where T is a primitive translation vector.

Parabolic approximation

Solution of the Schrödinger equation with the Hamiltonian given in Eqn. 2.5 is still,

however, non-trivial. A simple approximation is to consider the electron or hole

energy dispersion only close to the centre of the Brillouin zone (the Γ-point) where

the extrema of the conduction and valence bands are located for most semiconduc-

tors [57]. Expanding the dispersion relations about the Γ-point as a Taylor series,

it follows that they can be approximated by parabolic functions sufficiently close to

the zone centre. By analogy with the free electron case, the dispersion relations for

electrons or holes can be denoted

Ee,h(k) = Ee,h(0)± ~
2k2

2m∗ (2.8)

where m∗ is an effective electron or hole mass and Ee,h(0) defines the zero of the

energy scale. The semiconductor band gap Eg = Ee(0)− Eh(0).

As the electronic properties of a semiconductor are largely determined by

the few states (electrons and holes) close to the Γ-point, this approximation holds

well in non-degenerate wide band gap materials, where the interaction between the

conduction and valence bands is small. However, in certain cases, such as for narrow

band gap materials or where there is a large occupation of the conduction band, the

interaction between the conduction and valence bands cannot be neglected and

Eqn. 2.8 is no longer an appropriate approximation.
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k · p perturbation theory

A more accurate method of band structure calculation is the k · p perturbation

method of Kane [58]. Utilising the momentum operator (Eqn. 2.3) and the Bloch

theorem, the one-electron Schrödinger equation can be written
[
H0 +

~
m

k · p + Vso + Vcr

]
uνk(r) = Ẽνk(r)uνk(r) (2.9)

where H0 = p2

2m
+ V0(r), Ẽνk = Eν(k)− ~2k2

2m
and where magnetic effects have been

included through Vso and Vcr, the spin-orbit and crystal-field potentials, respectively.

At the Γ-point (k = (0, 0, 0)), Eqn. 2.9 reduces to

[H0 + Vso + Vcr] uν0(r) = Eν0(r)uν0(r) (2.10)

whose solutions form a complete orthonormal set. Thus, the energy eigenvalues and

wavefunctions at any value of k close to the Γ-point can be expressed by treating the

k · p interaction between the valence and conduction bands (and indeed the effects

of higher lying bands) as perturbations.

In the original theory of Kane [58] for zinc-blende structures, the Hamilto-

nian describing the interaction of the (doubly degenerate) conduction and top three

valence bands is given by

H =


H̃ 0

0 H̃


 (2.11a)

where

H̃ =




Es 0 kP 0

0 Ep −∆so/3
√

2∆so/3 0

kP
√

2∆so/3 Ep 0

0 0 0 Ep + ∆so/3




(2.11b)

where Es and Ep are the eigenvalues of the Hamiltonian at the Γ-point (Eqn. 2.10),

∆so is the spin-orbit splitting of the valence band and P is the optical momentum

matrix element

P = −i

(
~

me

)
〈S| pz |Z〉 (2.12)

where |S〉 and |Z〉 are the s-like and pz-like wavefunctions, having the symmetry

properties of atomic s and pz orbitals respectively. The material is assumed to be
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isotropic, and have negligible crystal field splitting, which is a good approximation

for all materials considered in this work.

The conduction band dispersion is described by

Ec(k) = E ′ + Ek (2.13)

where

Ek =
~2k2

2m0

(2.14)

where m0 is the free electron mass, and E ′ is the largest eigenvalue of the Hamilto-

nian (Eqn. 2.11), given by the largest solution of the algebraic equation

E ′(E ′ + Eg)(E
′ + Eg + ∆so)− k2P 2(E ′ + Eg + 2∆so/3) = 0. (2.15)

Es = 0 and Ep = −Eg −∆so/3 have been used here, defining the zero of energy at

the conduction band minimum (CBM). Kane’s matrix element (Eqn. 2.12) is given

by

P 2 =
3~2(1/m∗

0 − 1/m0)

2[2/Eg + 1/(Eg + ∆so)]
(2.16)

where m∗
0 is the conduction band-edge effective mass.

A useful simplifying approximation, applicable for the materials considered

in this work as ∆so ¿ Eg, is to neglect the spin-orbit splitting. In this case, solving

Eqn. 2.15 gives the ‘2-band’ k · p analytic form of the conduction band dispersion

Ec(k) =
1

2

[
−Eg +

√
E2

g + 4k2P 2
]

+ Ek, (2.17)

Kane’s matrix element simplifies to

P 2 =
~2

2m0

(
m0

m∗
0

− 1

)
Eg, (2.18)

the density of conduction band states is given by

gc(k) =
k2

π2

[
dEc(k)

dk

]−1

=
k/π2

2P 2
[
E2

g + 4k2P 2
]−1/2

+ (~2/m0)
, (2.19)

and the electron effective mass becomes energy dependent

m∗(E) = ~2k

[
dEc(k)

dk

]−1

=
~2

2P 2
[
E2

g + 4k2P 2
]−1/2

+ (~2/m0)
. (2.20)
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The electron density

n =

∫ ∞

0

dE f(E)gc(E) (2.21)

where the Fermi-Dirac distribution function

f(E) =
1

1 + exp [β(E − µ)]
(2.22)

where β = 1
kBT

and µ is the chemical potential (equal to the Fermi energy at zero

temperature).

2.1.2 Density functional theory

In some cases, however, such band structure approximations are not sufficient. For

example, knowledge of the electronic structure across the Brillouin zone, rather

than just at the zone centre, may be required. Alternative calculation methods are

therefore necessary. Density functional theory (DFT) is one widely used method.

In this, the electron density, which is a functional of the many-body wave-

function

n(r) = 〈Ψ(r)|Ψ(r)〉 , (2.23)

is treated as the central variable, rather than the many-body wavefunction itself.

Hohenberg and Kohn [59] showed that, for N interacting electrons in an external

potential, Vext, the external potential, and hence the Hamiltonian and the eigenstate

energy is a unique functional of the electron density [59]

E[n] = F [n] +

∫
drn(r)Vext(r), (2.24)

where F [n] is a universal functional valid for any number of particles and any ex-

ternal potential. The ground state energy is obtained by minimizing the functional,

corresponding to the ground state electron density, E0[n0].

Kohn and Sham [60] (KS) separated the functional F [n] into three parts to

account for the kinetic energy of a non-interacting electron gas, and the Hartree

(Coulomb) and exchange-correlation (XC) effects of the electron-electron interac-

tion. They showed that the ground state energy could be obtained by solving N

one-electron Schrödinger-like equations, self-consistently with the charge density.
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The Hamiltonian of the one-electron equations is of the form given in Eqn. 2.5 but

with the potential replaced by an effective KS potential including Hartree and XC

parts. Therefore, while the individual solutions do not include inter-particle inter-

actions (one-electron approximation), the KS particles do interact indirectly via the

density dependence of the Hartree and XC parts of the potential within a mean-field

approximation.

The theory discussed above is exact. However, the functional for XC is not

known for all but a few simple situations (such as a homogeneous free-electron gas).

A common approximation, the local density approximation (LDA), is therefore to

approximate this functional by the energy of an electron in a uniform electron gas

of the same density. Another approach, the generalized gradient approximation

(GGA), also includes the gradient of the density in the calculation. Various more

advanced approximations for the XC functional have subsequently been developed,

but these are beyond the scope of the current discussion. However, the eigenvalues

resulting from solution of the DFT equations are not the quasiparticle energies

relevant for discussing the electronic structure of solids. In fact, the DFT-formalism,

within the LDA and GGA approximations, is known to severely underestimate the

fundamental band gap of many semiconductors, in some cases even leading to an

absence of a fundamental gap. Hybertsen and Louie [61] showed that including

quasiparticle (QP) corrections for the electron self-energy based on dressed Green’s

functions and a screened Coulomb interaction (GW) is a suitable method with which

to overcome this band gap problem.

The DFT calculations utilised in this work were performed elsewhere by

Dr. Frank Fuchs, Mr. André Schleife, Prof. Dr. Friedhelm Bechstedt, and Dr. Jürgen

Furthmüller (Friedrich-Schiller-Universität, Jena, Germany), using a hybrid func-

tional HSE03 for exchange and correlation [62]. The electron-ion interaction was

treated in the framework of the projector-augmented wave method [63]. In this

method, a plane-wave basis set is used to represent the wavefunctions, while close

to the ion cores, a radial representation employing pseudopotentials is adopted.

Within the pseudopotential approximation, valence electrons are considered to be
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moving in a pseudopotential formed by the nuclei potential partially screened by

the core electrons. In materials with shallow semi-core-levels, such as In or Cd 4d

electrons, care must be taken to include the effects of these electrons on the va-

lence band states [64]. Consequently, these were included as valence states in the

calculations. QP effects were included in the calculations by a perturbative G0W0

correction of the HSE eigenvalues. As the HSE eigenvalues generally show much bet-

ter agreement with experimental band structure than the LDA or GGA calculations

(for example, the ordering of the bands is correct, even if their separation is not),

first-order perturbation theory is generally applicable to include QP effects, allowing

only G0W0 rather than full GW QP corrections. Full details of the quasiparticle-

corrected density-functional theory (QPC-DFT) calculations utilised in this work

are reported elsewhere [65].

2.2 Space-charge calculations

2.2.1 Poisson’s equation

The spatial dependence of band bending in the space-charge region at a semiconduc-

tor surface (see Fig. 1.4) can be described by a potential, V (z), which must satisfy

Poisson’s equation [12]

d2V

dz2
= − e

ε(0) ε0

[
N+

D −N−
A − n(z) + p(z)

]
(2.25)

where ε(0) is the static dielectric constant, N+
D [N−

A ] is the bulk ionized donor [ac-

ceptor] density, assumed constant throughout the sample, n(z) [p(z)] is the electron

[hole] density, and z is the depth below the surface. The potential V (z) satisfies the

boundary conditions

V (z) → 0 as z →∞ (2.26a)

as there can be no band bending in the bulk of the semiconductor and

dV

dz

∣∣∣∣
z=0

=
e

ε(0) ε0

Nss (2.26b)

where Nss is the surface state (sheet) density. Alternatively, it is equivalent to

consider the total band bending at the surface as a boundary condition.



2.2. Space-charge calculations 26

In order to obtain the potential V (z) and the carrier density, Poisson’s equa-

tion (Eqn. 2.25) should be solved self-consistently with the one-electron Schrödinger

equation (Eqns. 2.1 and 2.5). This is, however, non-trivial (especially for non-

parabolic semiconductors) as the carrier concentrations in Eqn. 2.25 are themselves

dependent on the potential via solution of the Schrödinger equation. Thus, the

problem becomes highly non-linear.

2.2.2 Modified Thomas-Fermi approximation

A simplified approach is to use a modified Thomas-Fermi approximation (MTFA)

[66], where the potential is calculated by solving the Poisson equation subject to

the boundary conditions (Eqn. 2.26) with the carrier densities corresponding to the

conduction and ith valence bands calculated, respectively, from

n(z) =

∫ ∞

0

dE gc(E)f ′(E)fMTFA(z) (2.27a)

pi(z) =

∫ −∞

EVi

dE gvi
(E)f ′(E)fMTFA(z) (2.27b)

where g(E) is the density of states, f ′(E) is the Fermi-Dirac function including the

potential dependence

f ′(E) =
1

1 + exp[β(E − µ + V (z))]
, (2.28)

and the MTFA factor

fMTFA(z) = 1− sinc

[
2z

L

(
E

kBT

) 1
2
(

1 +
E

Eg

) 1
2

]
(2.29)

where, for non-degenerate semiconductors, L is the thermal length L = ~/(2m∗
0kBT )1/2

whereas for degenerate semiconductors, L = 1
kF

is the Fermi length. Physically,

this correction factor fMTFA(z) represents the interference of incident and reflected

wavefunctions due to the potential barrier at the surface and thus causes the carrier

concentration to tend smoothly to zero right at the surface. The integral limit EVi

in Eqn. 2.27b denotes the VBM of the ith valence band allowing for spin-orbit and

crystal-field splittings. The MTFA correction has been shown [66] to yield profiles

that are in good agreement with those obtained from full self-consistent Poisson-

Schrödinger calculations (see also Section 9.3.1).
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The MTFA outlined here allows the important effect of the non-parabolicity

(especially of the conduction band) on the density of states to be easily incorpo-

rated. Numerical solution of Eqns. 2.25 and 2.27 using a trial potential V (z) and an

interval bisection method is used here to converge to a solution of the band bending

potential and the carrier concentration profiles as a function of depth. Note that, for

accumulation and depletion layers, the minority carrier concentration can, without

loss of information, be assumed to be zero in the calculations.



Chapter 3

Experimental techniques

Throughout this thesis, the techniques of photoemission spectroscopy, optical ab-

sorption spectroscopy, infrared reflectivity and the single-field Hall effect are used

extensively. This chapter presents an introduction to both the theoretical back-

ground of these techniques, and also experimental and technical details about the

specific instruments used in this work.

3.1 Photoemission spectroscopy

Photoemission spectroscopy (PES) relies on the photoelectric effect, first discovered

by Hertz in 1887 [67] and explained by Einstein in 1905 [68], whereby an electron is

emitted from a solid upon light-matter interaction. Stimulated largely by the work

of Siegbahn [69], PES has been developed into one of the most important techniques

for studying electronic and also chemical properties of solids. As such, it is one of

the central techniques used in this work.

At its simplest, PES, shown schematically in Fig. 3.1, involves illuminating a

sample with a flux of photons of energy hν from an x-ray tube, gas discharge tube

or a synchrotron radiation source. Photoelectrons are then emitted from both the

core and valence levels of the solid via the photoelectric effect in some direction and

with some kinetic energy

Ek = hν − φ− EB (3.1)

where φ is the spectrometer work function, assuming the sample and spectrometer

share the same ground, and EB is the binding energy of the electron. The binding

energy is given by the difference in total energy of the final N − 1 electron state

following ejection of the photoelectron and the initial N electron ground state of

the system,

EB = Ef,tot(N − 1)− Ei,tot(N), (3.2)

as will be discussed more rigorously below. Both the kinetic energy and emission

(polar, θ, and azimuthal, φ) angles of the photoelectron can be detected, giving
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Figure 3.1: Schematic representation of PES showing (a) photoemission from core and valence
states and (b) the angle of photoelectron emission referenced to the sample coordinate system.

information of both the binding energy and momentum of the electronic states

within the solid.

3.1.1 Three-step model

The photoemission process can be considered using the so-called three-step model of

Berglund and Spicer [70], consisting of: (i) the photo-excitation of an electron; (ii)

its passage to the surface of the solid; and (iii) its penetration through the surface

into the vacuum. The discussion here is based upon that of Hüfner [71].

In the first step, using Fermi’s golden rule to give the transition probability

between an initial state, |i〉, and final state, |f〉, the energy distribution of photoex-

cited electrons, N(E), can be obtained as

N(E) ∝
∑

f,i

|Mfi|2 δ (Ef − Ei − hν) δ (E − (Ef − φ)) δ (ki + G− kf ) . (3.3)

In the presence of electromagnetic radiation, the Hamiltonian of the system [55]

H =
1

2me

[
p +

(
eA

c

)]2

+ V (r)

≈ H0 +
e

mec
A · p (3.4)

where H0 = p2

2me
+V (r), p is the momentum operator, A is the vector potential, the

Coulomb gauge has been used so that both the scalar potential and ∇ ·A are zero,
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and terms O(A2) have been neglected. Consequently, the transition matrix element

Mfi ∝ 〈f |A · p |i〉 ∝ 〈f | (E · r) |i〉 (3.5)

where the final expression corresponds to the electric dipole approximation, appro-

priate if the photon wavevector is small. The first delta function in Eqn. 3.3 ensures

conservation of energy during the excitation of the photoelectron, while the second

ensures that the kinetic energy of the photoelectron in the vacuum is that of the

final state inside the crystal minus the work function [71]. The third delta function

ensures conservation of momentum, up to a reciprocal lattice vector.

The second step considers the transport of the excited photoelectrons to the

surface of the solid, during which time the photoelectrons can be inelastically scat-

tered, predominantly by other electrons, but also by phonons or ionized impurities.

Such inelastic scattering events cause the photoelectrons to be emitted from the

solid with a lower energy than would be expected from their initial state, and these

therefore contribute to the background of photoemission spectra.

The total intensity of photoelectrons emitted from a distance d below the

surface that have not been inelastically scattered by the time that they arrive at the

surface follows the Beer-Lambert law

I(E) = I0(E)e−d/λ sin θ (3.6)

where I0(E) is the initial intensity of photoemitted electrons of energy E, θ is the

polar angle that the detector makes to the surface, so that d/ sin θ is the effective

path length to the surface, and λ is the inelastic mean free path (IMFP) of the elec-

trons. Consequently, PES is a surface specific technique with, in a normal emission

geometry, 65% of the photoemission signal originating from within λ of the surface

and 95% from within 3λ of the surface, with the majority of the signal originating

from photoelectrons generated closest to the surface. The IMFP can be estimated

for specific materials from semi-empirical means such as the TPP-2M predictive for-

mula of Tanuma et al. [72]. However, Seah and Dench [73] showed that the IMFP for

a very large number of elements and compounds all fit approximately on a ‘universal

curve’ which shows a pronounced minimum in IMFP of λ ≈ 5 Å for electron kinetic
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energies of ∼ 30 − 70 eV, with a marked increase towards both lower and higher

kinetic energies. Consequently, PES measurements made in this energy range are

the most surface sensitive.

A characteristic of the inelastic scattering events is a stepped background,

with an increase in background intensity observed to the lower kinetic energy (higher

binding energy) side of spectral features [74]. For non-monochromatic sources,

photoemission due to Bremsstrahlung radiation can also give rise to a general

background, in addition to satellite features due to lower intensity satellite lines

of the photon source, although these two features do not need to be considered

for monochromatic sources. The background can be accounted for using various

methods. However, for most purposes, fitting a Shirley integrated iterative back-

ground [75] is sufficient.

The removal of the photoelectron from the solid into the vacuum is described

by the final step of the three-step model. Assuming perfect two-dimensional transla-

tional symmetry in the plane of the surface, parallel momentum must be conserved

in this step, up to a parallel reciprocal lattice vector, G‖, and so the momentum of

the final electron in vacuum, p, satisfies

p‖
~

= ki,‖ + G‖. (3.7)

Assuming a free electron dispersion of the final state bands, the parallel wavevector

of the initial state can therefore be determined

ki,‖ = kf,‖

=

∣∣∣∣∣sin(θ) (cos(φ)x̂ + sin(φ)ŷ)

√
2meEk

~2

∣∣∣∣∣

= sin(θ)

√
2meEk

~2
(3.8)

where the coordinate system is defined in Fig. 3.1(b). This ability to determine the

initial state wavevector simply from the angle of the photoemitted electrons is the

central concept of angle resolved photoemission spectroscopy (ARPES). However,

the wavevector is not simply conserved normal to the surface. Consequently, ARPES

is most effective for looking at electronic features characteristic of two-dimensional
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solids, such as surface states on metals or semiconductors. However, by applying

various approximations, such as free-electron final state bands and a step function

for the surface potential, it is possible to obtain information on the perpendicular

momentum, allowing, for example, bulk band mapping of semiconductors [71, 76].

Including all steps of the three-step model, the total photocurrent, I(E,p‖),

therefore becomes

I(E,p‖) ∝
∑

f,i

|Mfi|2 δ (Ef − Ei − hν) δ (E − (Ef − φ)) δ (ki + G− kf )

×D(E)× |T (E,p‖)| δ(ki,‖ + G‖ − (p‖/~)), (3.9)

where D(E) accounts for the attenuation of the excited photoelectrons by inelas-

tic scattering (step 2) and T (E,p‖) is the transmission factor for photoelectrons

penetrating the surface (step 3).

Although it has proved remarkably successful in explaining photoemission

features, the treatment of each step separately in the three-step model is a simpli-

fication. A more accurate picture is the one-step model, where the photon induces

an excitation from the initial state directly into a damped final state, which propa-

gates in the vacuum, but decays away into the solid near the surface. In fact, the

arguments leading to Eqns. 3.3 to 3.5 are appropriate for a one-step model, provided

that the final state wavefunction is taken as the damped state propagating into the

vacuum. However, theoretical treatments of this model, such as the inverse LEED

formalism, are beyond the scope of this thesis, and the interested reader is referred

to Refs. [71,77].

3.1.2 Sudden approximation and the spectral function

The above has all been considered in a one-electron picture. However, a solid is

a complex many-body system, and so the screening and relaxation effects of the

other particles must also be considered. In the sudden approximation, where the

photoemission process is assumed sufficiently fast that the photoelectron escapes

from the solid before the system relaxes, the initial and final states of the N electron

system can be written as a product of the states of the photoelectron, φ, and those
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of the remaining N − 1 electron system, ψ [78]

|i〉 = |φi〉 a−|ψi(N)〉 (3.10a)

|f〉 = |φf〉 |ψf,s(N − 1)〉 (3.10b)

where a− is the electron annihilation operator, and the subscript s denotes the sth

excited state of the final N−1 electron system. Consequently, the transition matrix

element (Eqn. 3.5) satisfies

|Mfi|2 ∝ |〈φf |A · p |φi〉|2
∑

s

∣∣〈ψf,s(N − 1)| a−|ψi(N)〉
∣∣2 . (3.11)

The electronic behaviour of the many-body system is entirely incorporated within

the so-called spectral function

A(k, E) =
∑

s

∣∣〈ψf,s(N − 1)| a−|ψi(N)〉
∣∣2 , (3.12)

which has been related to the single-particle Green’s function of the system [71]

A(k, E) =
1

π
={G(k, E)} . (3.13)

For a non-interacting system, |ψf (N − 1)〉 = |ψi(N − 1)〉, and the spectral

function is simply a delta function at E = E0
k where E0

k is the one-electron energy of

the system. Consequently, the binding energy observed in the photoemission spec-

trum would be that of the non-interacting system. This is known as the Koopman’s

energy, although it is never observed in practice. In reality, many-body interac-

tions such as electron-electron, electron-phonon and electron-ion interactions cause

a renormalization of the electron energy by the self energy Σ(k, E), and it is impor-

tant to remember that it is this renormalized electronic structure that is observed

in PES, which differs from the true ground state of the system by the self energy.

The Green’s function of the renormalized system,

G(k, E) =
1

E − E0
k − Σ(k, E)

, (3.14)

yielding a spectral function

A(k, E) =
1

π

={Σ(k, E)}
[E − E0

k −<{Σ(k, E)}]2 + [={Σ(k, E)}]2 . (3.15)



3.1. Photoemission spectroscopy 34

The lifetime of the electronic states is therefore given by τ = [2={Σ(k, E)}]−1, giv-

ing rise to a finite width to the spectral features, Γ ∼ ~/τ . For a weakly interacting

system, the Green’s function can be recast into a so-called coherent part, which is

very similar to the non-interacting system but with a slightly renormalized mass, a

so-called quasiparticle, and an incoherent part. These can approximately be con-

sidered as the main photoemission line and satellite features occurring at higher

binding energy due to screening by plasmons in the material [79], respectively.

3.1.3 Density of states measurements

Instead of detecting photoelectrons at a single angle, or more realistically within a

small solid angle, as in ARPES, the photoelectrons can be collected over a large solid

angle in an angle-integrated mode. At relatively low photon energies, the transitions

must still be direct, and so integrating over all wavevectors yields the joint density

of states between initial and final states [71]. In reality, the acceptance angle of a

spectrometer will be limited, which may restrict the portion of the Brillouin zone

sampled in the measurement.

However, if x-ray photons are used, several other factors become important.

First, for photoelectrons with high kinetic energies, small angles of emission still

correspond to high values of wavevector, and so even for relatively modest accep-

tance angles, it is possible to sample the entire Brillouin zone. Second, assuming the

Debye factor is not too large, the influence of phonon scattering at higher energies

can become very significant, meaning that direct transitions are no longer required.

It should also be noted that the wavevector of the photon can no longer be consid-

ered negligible for x-rays, resulting in the breakdown of the dipole approximation

introduced in Eqn. 3.5, and the necessity to include a term for the photon wavevec-

tor in the overall wavevector conservation term. Integrating Eqn. 3.9 over ki and

kf independently yields the total photocurrent

I(E)∝
∣∣M̄fi

∣∣2 N(Ei)N(Ef )D(E)T (E) (3.16)

where N(Ei) and N(Ef ) denote the initial and final density of states, respectively,

and M̄fi is an averaged transition matrix element. To a good approximation, both
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Figure 3.2: Shirley-background-subtracted
valence band x-ray photoemission spec-
trum and QPC-DFT VB-DOS calculations
shown without (shaded) and with lifetime
and instrumental broadening for wurtzite
InN(112̄0). The main features in the VB-
DOS are identified, after Ley et al. [82].
The measured valence band photoemission
is rigidly shifted to lower energies by 1.53 eV
to align the VBM at 0 eV binding energy as
for the calculations. The XPS and QPC-
DFT spectra are normalized to the peak
PWZ

I intensity. The corresponding QPC-
DFT valence band structure for wurtzite
InN is shown in (b). High symmetry points
are denoted using double group symmetry
notation, although the symmetry point la-
bel has been dropped for clarity of presen-
tation. Therefore, for example, at the va-
lence band maximum the label 6 denotes Γ6

symmetry. The XPS spectrum was mea-
sured at the National Centre for Electron
Spectroscopy and Surface Analysis, Dares-
bury Laboratory, UK, using a photon en-
ergy hν = 1486.6 eV. For more details, see
Ref. [83].

the matrix element and the final density of states, as well as terms due to the

second and third steps of the three-step model, can be treated as constant over the

range of the measurement, and so valence-band x-ray photoemission spectroscopy

(XPS) approximates well the initial density of states of the material. While in rare

cases, direct transition effects can be observed in XPS measurements [80], these can

normally be neglected, at least at room temperature and above. Indeed, Shirley [75]

found excellent agreement between broadened valence band density of states (VB-

DOS) calculations and valence band XPS measurements from gold, while Pollak et

al. [81] and Ley et al. [82] showed that this holds for a range of group IV, III-V and II-

VI semiconductors. Subsequent investigations have also shown excellent agreement

between theoretical calculations and XPS measurements for the VB-DOS of many

other materials. An example of this, for the case of InN, is shown in Fig. 3.2 [83].

The energy reference is generally taken to be the Fermi level in a PES mea-

surement. It should be noted that, in a semiconductor where space-charge regions

can exist, the reference Fermi level is that at the surface due to the surface speci-
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ficity of the technique. Consequently, by either extrapolating the leading edge of

the valence band photoemission to the background level, or by aligning it with VB-

DOS calculations, the surface Fermi level of a semiconductor can be determined.

This will be used extensively in this work. While XPS is not as surface sensitive as

PES performed with lower photon energies, it is still dominated by the signal from

the surface. Additionally, interpretation of valence band photoemission spectra ob-

tained using lower photon energies is complicated by final state effects and also the

presence of surface states. Consequently, XPS measurements are perhaps the most

suitable for determining the surface Fermi level position in semiconductors.

3.1.4 Core-levels

At higher binding energies, PES can be used to investigate the core levels of a

material, provided a high enough photon energy is utilized. XPS measurements

performed over a large energy range from an ‘as-loaded’ InN(112̄0) sample are shown

in Fig. 3.3, utilizing monochromated Al-Kα radiation (hν = 1486.6 eV) and hard

x-rays (HXPS, hν = 7600 eV). A series of peaks due to different elemental core-
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levels are observed, separated due to their different binding energies, sitting on a

stepped background due to inelastic scattering, as discussed above. The core-level

peaks are labelled by their element and orbital angular momentum quantum number

(` = s, p, d, f, . . .). A number of points deserve further comment.

The s-levels are characterised by a single peak, whereas core-levels for which

` 6= 0 exhibit a doublet structure due to spin-orbit coupling. The orbit of a charged

electron around a nucleus induces a magnetic field, which can couple with the spin

moment of the electron, ŝ. As the final state of the atom is singly ionized in pho-

toemission, the j–j coupling scheme is appropriate for use, where ĵ is the total

angular momentum, ĵ = ˆ̀+ ŝ. For the s state, ` = 0 and the only source of angular

momentum is the spin moment. Consequently, j(` = 0) = 1
2

as the electron is a

spin-1
2

particle. In contrast, for all other orbital angular momenta, j = `± 1
2
. This

spin-orbit coupling causes a shift of the energy level by an amount

∆Eso ∝ ξ(n`) [j(j + 1)− `(` + 1)− s(s + 1)] (3.17)

where ξ(n`) is the spin-orbit coupling constant [84]. Consequently, doublets are

observed in the core-level spectra, for example p 3
2
, 1
2

or d 5
2
, 3
2

levels, with the lower j

level occurring at higher binding energy. The intensity ratio of the spin-orbit split

components, after accounting for the background intensity, must be equal to the

ratio of their relative degeneracies, (2j +1) [74], namely 1:2 for a p3/2 :p1/2-level, 3:2

for a d5/2 :d3/2 level, and so on.

The photoionization cross-sections are determined by the matrix elements dis-

cussed above (Eqn. 3.5), and so will clearly vary significantly with atomic number

and core level via changes in the initial state wavefunction. However, it is also clear

from Fig. 3.3 that the relative ratio between the different core-levels shows a marked

dependence on photon energy. This can be understood by a change in the coupling

between the initial and final state wavefunctions with changes in the wavelength

of the free electron final states, although a detailed discussion of this is beyond

the scope of this thesis. Cross-sections can be calculated assuming one-electron

wavefunctions, and in practice their effect on measured spectra can be incorporated

using tabulated sensitivity factors, making quantitative analysis possible. As dis-
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cussed above, the Lorentzian linewidth of core-levels arises due to the many-body

interactions of the solid, although these must be convolved with a, typically Gaus-

sian, instrumental response function to account for instrumental broadening effects

such as a natural linewidth of the photon beam and a finite resolution of the electron

analyser, to give the measured spectral linewidth. Consequently, XPS core-levels

tend to have Voigt (mixed Lorentzian-Gaussian) lineshapes. In general, the width

of an inner core-level such as a 1s level will be larger than for an outer core-level,

reflecting the fact that an inner core-hole can be filled more rapidly.

A very useful feature of XPS core-levels for chemical analysis is that their

binding energy is sensitive to the exact local environment of the atom, as a change

in the valence charge of an atom changes the potential in which the core-level elec-

trons reside. For example, if an atom is bonded to another more electronegative one,

the valence charge of the original atom is effectively reduced, causing the core-level

electron to become more deeply bound. In contrast, if bonded to a less electroneg-

ative species, the atom in question will effectively become more negatively charged,

and the core-level electron will become less tightly bound. Consequently, when

bonded to a more (less) electronegative element, the emitted photoelectron exhibits

a chemical shift to higher (lower) binding energy. While this picture is complicated

by many-body interactions, it proves a useful guide. In particular, due to the surface

specificity of XPS, chemical shifts provide a very useful way to probe the chemical

nature of the surface of materials.

3.1.5 XPS measurements – Scienta ESCA-300 spectrometer

High-resolution XPS measurements were performed using a Scienta ESCA300 spec-

trometer at the National Centre for Electron Spectroscopy and Surface analysis,

Daresbury Laboratory, UK. The spectrometer consists of a high intensity rotating

anode Al-Kα x-ray source, a 7-crystal monochromator, a 300 mm mean radius hemi-

spherical electron energy analyser, and a multi-channel CCD detection system, as

shown schematically in Fig. 3.4. The main features of the system are summarised in

this section. More details about the spectrometer and its performance can be found
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Figure 3.4: Schematic of the Scienta ESCA-300 spectrometer, adapted from Ref. [85].

in Refs. [85,86].

The rotating anode x-ray source consists of an electron gun focussed on an Al

band around the edge of a water-cooled titanium alloy disc, which rotates at ∼10000

revolutions per minute. The emitted x-rays (predominantly Al-Kα, hν = 1486.6 eV)

pass into the monochromator chamber through a thin beryllium window which pre-

vents any secondary high-energy electrons from reaching the monochromator crys-

tals. Bremsstrahlung radiation and satellite x-ray lines are removed by monochro-

mation using the (101̄0) plane of seven α-quartz crystals, arranged on a Rowland

circle of 650 mm diameter. A combination of the finite width of the electron beam on



3.1. Photoemission spectroscopy 40

the anode and the diffraction width of the α-quartz crystals yields a total linewidth

of the x-ray source of ∼ 0.26 eV [86]. The whole monochromator chamber is tem-

perature stabilized by a quartz lamp to prevent changes in the lattice spacing of

the monochromator crystals in order to maintain a constant photon energy. The

monochromator chamber is separated from the analysis chamber by a thin Al win-

dow in order to maintain a good vacuum in the analysis chamber and prevent any

secondary electrons from the x-ray source impinging on the sample. The sample is

mounted on a precision four-axis manipulator. The geometry is arranged so that the

emission angle to the analyser can be varied from normal to grazing angles, while

still maintaining x-ray illumination of the sample. The footprint of the x-ray spot

on the sample is ∼4× 0.5 mm2.

If a sample is insulating, the emission of photoelectrons leaves the surface

of the sample positively charged, which can both shift and distort the XPS peaks,

making analysis impossible. To neutralise this charge, the sample can be irradiated

with low energy electrons simultaneously to the photon illumination, correcting the

spectral distortion and much of the peak shifts, although care must be taken with the

exact energy referencing of the spectra [87]. A low energy (up to 9 eV) electron flood

gun is incorporated into the analysis chamber, allowing such charge compensation

to be performed. Note, many of the samples investigated here are conducting but

were grown on insulating substrates. For these samples, an electrical contact was

made to the top of the sample to ensure that it was properly grounded.

Emitted photoelectrons are collected by a five-element electrostatic electron

lens and focussed onto the entrance slit of a 300 mm mean radius, 100 mm inner

electrode gap, hemispherical electron energy analyser. The analyser can be operated

with a pass energy of 20 to 1000 eV, with eight different slit widths from 0.2 mm to

4 mm. All spectra presented in this work were recorded with 0.8 mm slits at a pass

energy of 150 eV, giving a good compromise between resolution and count rates.

During each set of experiments, the Fermi edge of an ion-bombarded silver reference

sample was measured. This was fitted by a Gaussian-broadened Fermi function,

from which the Fermi level position and instrumental resolution were calibrated.
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The instrumental resolution determined in this way was 0.40 ± 0.05 eV, derived

from the convolution of the analyser broadening and the natural linewidth of the

x-ray source.

The multichannel electron detector contains two 40 mm diameter microchan-

nel plates, of which the electron cascade from the second plate is incident on a

phosphor screen, imaged by a CCD camera. The position on the CCD array is then

converted into energy and the total counts accumulated by a computer.

Samples are mounted on stubs, and transferred using wobble sticks and rack

and pinion railway transfer systems. Samples are introduced into the system via

a fast entry load lock, pumped by a turbomolecular pump to a base pressure of

∼10−6 mbar. There is also a preparation chamber, where samples can be annealed

by radiative heating or electron-beam heating. The temperature is calibrated by

a thermocouple spot-welded close to the sample stub position. The preparation

chamber also has ports where an ion gun and a thermal gas cracker can be installed

for sample preparation. The spectrometer and preparation chambers are all pumped

by separate oil diffusion pumps with liquid nitrogen cooled traps. The base pressure

of the analyser and analysis chambers is ∼ 5 × 10−10 mbar, and the preparation

chamber ∼1× 10−9 mbar.

3.1.6 ARPES measurements – SGM3 beamline, ASTRID

ARPES measurements were performed on the SGM3 undulator beamline at the

Århus STorage Ring In Denmark (ASTRID) synchrotron, Århus, Denmark. ASTRID

is a small (40 m circumference), 580 MeV electron storage ring, although it can also

be operated in an ion beam mode, with five bending magnet and three undulator

beamlines. Electron injection is achieved from a 100 MeV rack-track Microtron,

accelerated by eighteen passes through a linac before being extracted at full energy.

The storage ring is pumped by a total of 20 ion pumps and 24 sublimation pumps,

resulting in a typical pressure of 1× 10−10 mbar.

The undulator (DanFysik) consists of 30 periods of permanent magnets with a

55 mm period length. The first and third harmonic of the undulator are used to yield
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HFM VFM GENS EXS TFM Sample

Side view

Top view

Figure 3.5: Schematic of SGM3 beamline layout, adapted from Ref. [88], showing the horizontal
(HFM), vertical (VFM), and toroidal (TFM) focussing mirrors, entrance (ENS) and exit (EXS)
slits and the three spherical gratings (G).

photon energies in the range 12–130 eV. The beam from the undulator is reflected

from a spherical horizontal focussing mirror and a spherical vertical focussing mirror

which focus the beam into an entrance slit. The light is then directed onto one of

three spherical grating monochromators: a low-energy grating (10–27 eV), medium-

energy grating (22–60 eV) or a high-energy grating (55–130 eV). The beam then

passes through an exit slit, which can be moved by 500 mm in order to position

the slit in the beam focus over the whole energy range covered by the gratings.

Finally, a toroidal mirror re-focusses the beam onto the sample. A schematic of the

beamline layout is shown in Fig. 3.5. More details of the beamline construction and

specification can be found in Ref. [88].

PES measurements were performed using a Specs PHOIBOS 150 mm mean

radius hemispherical energy analyser, which has a theoretical resolution limit of

0.5 meV. The chamber where the analyser is installed and the analyser itself are

constructed from µ-metal in order to prevent stray magnetic fields influencing the

low energy photoelectrons. The analyser can be operated with a pass energy up

to 660 eV, and a kinetic energy range from 0 to 3500 eV, with a range of entrance

and exit slit sizes. Using a 2D CCD detector, both angle and spatially resolved

measurements can be performed. In particular, the angular dispersive modes of

operation allow parallel recording up to ±13◦ acceptance angle. For the best res-
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olution, a small photon spot size is required. Unfortunately, the beam spot size

on the ASTRID synchrotron is optimised for the bending magnet beamlines, and

is rather large for the undulator beamlines. Consequently, the beam spot size is

reduced by inserting a pinhole just before the sample, resulting in a spot size on

the sample of a few tenths of a mm diameter. The sample is mounted on a high-

precision four-axis cryo-manipulator, on which the sample can be cooled to ∼60 K.

Measurements at higher temperature are performed by radiative heating from a fil-

ament mounted behind the sample. The heating is ‘chopped’ so that measurements

are only performed when the filament is off, to prevent electric fields influencing

the measurements. The temperature is controlled by a Eurotherm controller, via

a thermocouple spot-welded to the sample plate. The rotation of the manipulator

is controlled by a stepper motor, so that automated Fermi surface/constant energy

contour ARPE spectra can be recorded. The spectrometer chamber also contains

low-energy electron diffraction optics. The spectrometer chamber is pumped by an

ion pump and a titanium sublimation pump, and has a typical base pressure of

∼1× 10−10 mbar.

There is also a preparation chamber attached to the spectrometer chamber,

in which the sample can be radiatively heated to ∼ 850 K, and ion bombarded

if required. The manipulator from the preparation chamber can be driven into

the main spectrometer chamber for sample transfer. The preparation chamber is

pumped by a turbomolecular pump, an ion pump and a titanium sublimation pump,

and reaches a typical base pressure of ∼ 1 × 10−10 mbar. Finally, there is a small

load lock chamber, pumped by a turbomolecular pump to a base pressure of ∼
1 × 10−8 mbar, for insertion of samples. All sample transfer is performed using

wobble sticks.

3.2 Optical absorption

Optical absorption spectroscopy (OAS) can be used to obtain information on the

band gap of semiconductor materials and, in certain cases, their bulk doping level.

As in photoemission, an incoming photon is absorbed, exciting an electron from
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some initial occupied state of the material to an unoccupied final state. Unlike

photoemission, however, the final state is typically a conduction band state just

above the band gap, and it is the transmission of the light that is monitored as

the photon energy is varied, from which the absorption is determined. A brief

introduction to this technique is given here.

3.2.1 Absorption coefficient

The one-electron Hamiltonian in the presence of electromagnetic radiation discussed

in Section 3.1.1 (Eqn. 3.4) is the relevant Hamiltonian again. Using Fermi’s golden

rule as above, the number of transitions from an initial to a final state per unit

volume and time due to photon absorption

N(hν) =
2π

~
∑
c,v

|Mfi|2 δ(Ef (kf )− Ei(ki)− hν) (3.18)

where the delta-function ensures initial and final states are separated by an energy

equal to the photon energy. The transition matrix element

Mfi = 〈c|E · r |v〉 (3.19)

where the initial and final states, |v〉 and |c〉, are Bloch states of the valence and

conduction bands, respectively, and the electric dipole approximation is valid as the

photon wavevector is small [55]. In practice, the magnitude of the matrix element

can often be treated as independent of k over the range of the measurement, yielding

|Mfi|2 ∝ |Pcv|2 δ(q− kc + kv) (3.20)

where Pcv is a constant representing the coupling strength of the initial and final

states, and the delta-function ensures that these states have the same wavevector,

neglecting the small photon wavevector, q, yielding so-called direct transitions shown

schematically in Fig. 3.6(a). The absorption of light is defined as the energy removed

from the beam, as a fraction of the incident flux

α(hν) =
hνN(hν)

εω2A2
0/2

∝ 1

hν

∑
c,v

|Pcv|2 δ(Ef (kf )− Ei(ki)− hν) δ(q− kc + kv). (3.21)
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Figure 3.6: Schematic representation of (a) direct and (b) indirect absorption, and (c) the Moss-
Burstein shift.

Treating E as a continuous function, changing the sum to an integral [89], Eqn. 3.21

can be written

α(hν) ∝ 1

hν
|Pcv|2 gj(Ec − Ev) (3.22)

where

gj(Ec − Ev) =
k2

π2

[
dEc(k)

dk
− dEv(k)

dk

]−1

(3.23)

is the joint density of states over the conduction and valence bands. Assuming

parabolic dispersion relations for the conduction and valence bands, the coefficient

of direct interband absorption

α(hν) ∝ (hν − Eg)
1/2. (3.24)

The band gap of the semiconductor can, in this limit, be determined by a linear

extrapolation of α2 to the background level. This expression is modified, and in fact

an analytical solution can often not be given, for non-parabolic bands, where the

non-parabolic dispersions and potentially k-dependent matrix elements should be

considered [90]. However, a linear extrapolation of α2 can often still yield sufficiently

accurate results.

In an indirect semiconductor, the direct transition model discussed above

suggests that there will be no onset of absorption until the photon energy is equal to

the direct band gap energy, rather than the fundamental band gap energy. However,

indirect transitions can occur, where a change of momentum is provided by either

emission or absorption of a phonon, as shown schematically in Fig. 3.6(b). In this

case, the energy separation of initial and final states is given by the photon energy,

hν, plus (absorption) or minus (emission) the phonon energy, ~Ωph, causing the
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delta-function in Eqn. 3.18 to become δ(Ef (kf )−Ei(ki)±~Ωph−hν), and momentum

conservation is ensured by modifying the delta function in Eqn. 3.20 to δ(q− kc +

kv +kph). Considering the density of phonons within Bose-Einstein statistics, it can

be shown [91] that the absorption coefficient for indirect transitions

αi(hν) ∝ (hν − Eg ± ~Ωph)
2. (3.25)

However, this process requires both the absorption of a photon and absorption or

emission of a phonon, and so the strength of absorption due to indirect transitions

is rather low. Consequently, a pronounced increase in absorption coefficient is still

observed when the photon energy becomes large enough to allow direct interband

transitions.

In the above, it has been assumed that all of the valence band states are filled,

and all of the conduction band states empty. However, for heavily doped semicon-

ductors, the Fermi level can move into one of the bands. Consider a degenerately

doped n-type semiconductor. Now, the lowest energy corresponding to direct inter-

band transitions from initially occupied valence band states to initially unoccupied

conduction band states is no longer given by the band gap energy, but rather by the

energy separating the valence band at the Fermi wavevector and the Fermi level,

as shown schematically in Fig. 3.6(c). Consequently, the absorption edge is shifted

to higher energies compared to non-degenerate samples. Such an effect was first

observed independently by Moss [92] and Burstein [93] in InSb, and so the shift of

the absorption edge due to band-filling is commonly termed the Moss-Burstein shift.

Formally, it can be accounted for by including conduction and valence band Fermi

functions in the matrix element discussed above.

Another effect can become important for heavily doped materials, where

charged impurities can induce a local change of the band edge potential due to

Coulombic interactions. Additionally, a change in local strain state due to the

presence of an impurity atom or vacancy in the host lattice can induce a similar

perturbation of the band edge energies. As these impurities/vacancies are randomly

distributed in space, the spatial variations in band edge potential can be averaged

into an exponential-like tailing of the density of states of the conduction and valence
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bands into the band gap. Consequently, optical transitions can occur from or into

band-tail states, leading to an exponential increase in absorption coefficient below

the fundamental onset of absorption [89], known as an Urbach tail [94]. Also, in

heavily doped materials, phonon-assisted transitions can occur from an electron in

a partially occupied band to an empty state higher in that band. This can lead to

a peak in the absorption coefficient at photon energies significantly below the band

gap. This ‘free-carrier absorption’ will be considered in more detail in Section 3.3.

3.2.2 Measurements of the absorption coefficient

In practice, optical absorption is monitored by the transmission of light through a

sample,

T (hν) =
(1−R)2 exp(−α(hν)d)

1−R2 exp(−2α(hν)d)
(3.26)

where R is the reflection coefficient of the air/semiconductor interface and d is the

thickness of the sample. At normal incidence, the reflection coefficient,

R(hν) =

∣∣∣∣
ñ(hν)− 1

ñ(hν) + 1

∣∣∣∣
2

(3.27)

where ñ(hν) = η(hν)+ iκ(hν) is the complex refractive index. In practice, however,

the refractive index is often treated as real and independent of frequency in this

conversion,

R ≈
[
η − 1

η + 1

]2

. (3.28)

Under this assumption, Eqn. 3.26 can be rearranged to yield the absorption coeffi-

cient of the sample. The presence of additional layers in the sample (for example,

substrate and buffer layers) can complicate the picture further, leading to features

such as Fabry-Pérot interference fringes, and substrate absorption features, but it is

usually possible to obtain quantitative information about the semiconductor layer

of interest.

FTIR measurements

Measurements at infrared (IR) wavelengths were performed here by Fourier-transform

IR (FTIR) spectroscopy. In this technique, light from a polychromatic IR source is
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Figure 3.7: Schematic of an FTIR spectrometer showing (a) the beam path and Michelson inter-
ferometer and the beam path in the sample compartment for (b) transmission and (c) reflectivity
measurements.

passed through a Michelson interferometer before being directed onto the sample, as

shown schematically in Fig. 3.7(a). In the Michelson interferometer, a beamsplitter

ensures that 50% of the light is reflected up to a fixed mirror, while the other 50%

of the light is transmitted, and subsequently reflected from a moveable mirror. The

light from the two paths recombines at the beamsplitter, before entering the sam-

ple compartment. After interaction with the sample, the light reaches a detector,

whose response must be ‘slow’, that is, it averages over a long time compared to the

coherence time of the light.

If the electric-field amplitude from one path reaching the detector at time

t is V (t), that from the other (shorter) arm is V (t + τ) where τ = 2x/c is the

time by which the wavetrain is advanced by travelling a shorter distance by 2x.

Consequently, the ‘slow’ detector measures an intensity [95]

I(τ) ∝ 〈
V (t)2

〉
+ 〈V (t)V (t + τ)〉 (3.29)

where the second term is the autocorrelation function

〈V (t)V (t + τ)〉 =
1

T

∫ T/2

−T/2

V (t)V (t + τ) dt. (3.30)
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From Eqn. 3.29, I(τ = 0) ∝ 2 〈V (t)2〉. The interferogram

W (τ)≡I(τ)− 1

2
I(0) ∝ 〈V (t)V (t + τ)〉 (3.31)

can be recorded as the moveable mirror distance, x, and consequently the time

delay, τ , is scanned. From the Wiener-Khintchine theorem, the frequency spectrum

of the light following interaction with the sample can then be obtained simply from

a Fourier transform of the interferogram [95],

∣∣∣Ṽ (ω)
∣∣∣
2

∝
∫ ∞

−∞
〈V (t)V (t + τ)〉 eiωτ dτ ∝

∫ ∞

−∞
W (τ)eiωτ dτ. (3.32)

As all frequencies are measured simultaneously, this leads to quick measure-

ments, and hence a good signal to noise ratio compared to measurements performed

using dispersive spectrometers. Additionally, the light throughput can be compara-

tively large as there are not the slits that cut out most of the light that are required

for dispersive instruments. However, there are some disadvantages. Most impor-

tantly, care must be taken when performing the Fourier transform not to introduce

additional structure into the spectrum, for example due to poor windowing of the

interferogram. Additionally, as FTIR spectrometers are single-beam instruments,

a background spectrum must be taken in advance without the sample present to

account for the spectral response of the source, mirrors, beamsplitter, detector and

any absorption by the atmosphere. The spectral response of the sample is then given

by the ratio of the measured spectrum with the sample present to the background

spectrum. However, atmospheric absorption features may change over the course of

a long scan due to a change in atmospheric conditions, which could adversely affect

the measured spectrum.

The optical transmission measurements reported in this work were performed

using a Perkin Elmer Spectrum GX FTIR spectrometer. A spectral range of 0.04

to 1.24 eV is available using a cadmium mercury telluride detector and potassium

bromide and quartz beamsplitters. The sample compartment arrangement for trans-

mission measurements is shown in Fig. 3.7(b), resulting in transmission of the beam

through the sample. A small aperture mask is used to ensure that the beam size

does not exceed the sample size. Nitrogen gas is flowed along the beam path and
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into the sample compartment to minimize changing absorption features due to a

change in atmospheric conditions.

UV-Visible measurements

For transmission measurements in the visible and ultraviolet (UV), a UV-Visible

spectrophotometer is used. In this instrument, the transmission of a sample is mea-

sured as a function of the frequency of the light, determined by a monochromator.

In this work, a Perkin Elmer Lambda 25 UV-Visible spectrophotometer was used

to cover the spectral range from 1.1 to 6.5 eV. The light is provided by deuterium

and tungsten sources, and monochromated by a Seya Namioka Holographic concave

grating.

3.3 IR reflectivity

Instead of considering the transmission of light, it is possible to investigate the

reflection of light from a sample (Eqn. 3.27). At mid-IR frequencies, this yields par-

ticularly useful information about phonons and free carriers in the material. Note,

this is the reflectivity analogue of free-carrier absorption discussed in Section 3.2.1.

A free electron gas can be described as a plasma which supports a collective

excitation of the electrons at a frequency known as the plasma frequency, ωp. The

plasma frequency is related to the carrier concentration, n, and momentum effective

mass, m∗, via

ω2
p =

ne2

ε0ε(∞) 〈m∗(E)〉 . (3.33)

As this is a collective excitation of all of the electrons in the free-electron gas, the

energy-dependent effective mass should be averaged over the density of states

〈m∗(E)〉 =

∫∞
0

g(E)m∗(E)f(E) dE∫∞
0

g(E)f(E) dE
, (3.34)

where g(E) is the density of states and f(E) is the Fermi-Dirac factor. Thus, deter-

mination of the plasma frequency yields the value of n/ 〈m∗(E)〉. If the band edge

effective mass and its energy dependence are known, the carrier concentration can

be determined. Otherwise, if the carrier concentration is determined by independent

means, the plasma frequency gives information on the effective mass of the carriers.
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3.3.1 Two-oscillator dielectric function

Within a two-oscillator approximation, the complex dielectric function (square of

the complex refractive index),

ε̃(ω) = ε′(ω) + iε′′(ω) = [ñ(ω)]2 (3.35)

is given by the sum of lattice (phonon) and free-carrier (plasmon) terms [96]

ε̃(ω) = ε̃L(ω) + ε̃e(ω)

= ε(∞) +
[ε(0)− ε(∞)]ω2

TO

ω2
TO − ω2 − iωΓ

− ε(∞)ω2
p

ω(ω + i/τ)
(3.36)

where ε(0) and ε(∞) are the static and high-frequency dielectric constants of the

material, respectively, ωTO (Γ) is the frequency (damping) of the transverse optical

phonon and ωp (τ) is the frequency (lifetime) of the plasmon. Considering just the

electronic term in the absence of damping, the reflectivity tends to unity at the

plasma frequency, giving rise to a Restrahlen band. However, this is modified by

damping and by interactions with the phonons of the lattice (if the plasma and

phonon frequencies are sufficiently close, the plasmon and phonon couple, forming

a collective mode known as a plasmaron). It is therefore necessary to simulate the

reflectivity spectra, which can be done using Eqns. 3.27, 3.35 and 3.36 and compared

to a measured spectrum.

Experimentally, the spectra are recorded here using the Perkin Elmer Spec-

trum GX FTIR spectrometer described above. The geometry in the sample com-

partment is shown in Fig. 3.7(c). In this arrangement, the angle of incidence is not

normal, but rather a specular reflection is used. Additionally, the sample is often

made up of several layers, and it is necessary to account for all of these in the anal-

ysis. These features can be effectively incorporated using a transfer matrix method

(TMM).

3.3.2 Transfer matrix formalism

The TMM utilised here is based upon that of Katsidis and Siapkas [97]. Consider the

electric field amplitudes within an arbitrary N -layer structure, shown schematically



3.3. IR reflectivity 52

E
+

0

E
-

0

E
+

1

E
-

1

‘

‘

E
+

1

E
-

1

E
+

2

E
-

2

‘

‘

E
+

N-1

E
-

N-1

E
+

N

E
-

N

‘

‘

E
+

N

E
-

N

E
+

N+1

E
-

N+1

‘

‘

Figure 3.8: Schematic representation of electric field amplitudes within an arbitrary N -layer
structure.

in Fig. 3.8. The subscript denotes the medium, +/− the direction of travel (to the

right/left). The electric field amplitudes just to the left of an arbitrary interface,

E±
m−1, can be related to those just to the right of that interface, E ′±

m by a dynamical

matrix that describes the reflection and transmission at the interface

E+

m−1

E−
m−1


 = D−1

m−1Dm


E ′+

m

E ′−
m


 . (3.37)

The elements of the 2 × 2 dynamical matrix Dij can be related to the complex

Fresnel coefficients for transmission and reflection at the interface

rm−1,m =
E−

m−1

E+
m−1

∣∣∣∣
E′−m=0

=
D21

D11

(3.38a)

tm−1,m =
E ′+

m

E+
m−1

∣∣∣∣
E′−m=0

=
1

D11

(3.38b)

rm,m−1 =
E ′−

m

E ′+
m

∣∣∣∣
E+

m−1=0

= −D12

D11

(3.38c)

tm,m−1 =
E−

m−1

E ′+
m

∣∣∣∣
E+

m−1=0

=
det(D−1

m−1Dm)

D11

(3.38d)

where det(D−1
m−1Dm) denotes the determinant of the dynamical matrix. As light

propagation occurs at an arbitrary angle θ to the surface normal, the complex Fresnel

coefficients must be treated separately for s-polarised (transverse electric) and p-
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polarised (transverse magnetic) light, and are given [98] by

rs
m−1,m =

ñm−1 cos θm−1 − ñm cos θm

ñm−1 cos θm−1 + ñm cos θm

(3.39a)

rp
m−1,m =

ñm cos θm−1 − ñm−1 cos θm

ñm−1 cos θm + ñm cos θm−1

(3.39b)

tsm−1,m =
2ñm−1 cos θm−1

ñm−1 cos θm−1 + ñm cos θm

(3.39c)

tpm−1,m =
2ñm−1 cos θm−1

ñm−1 cos θm + ñm cos θm−1

. (3.39d)

The electric field amplitudes at the left and right of a medium m can be

related by a propagator matrix

E ′+

m

E ′−
m


 = Pm


E+

m

E−
m




=


exp(−iδm) 0

0 exp(iδm)





E+

m

E−
m


 (3.40)

where, using Snell’s law,

δm =
2π

λ
ñmdm cos θm (3.41)

is the phase change of light travelling once through the medium m of thickness dm.

The total transfer matrix (TM) for the N layer system, T, satisfying

E+

0

E−
0


 = T


E ′+

N+1

E ′−
N+1


 , (3.42)

can then be determined by concatenating the relevant dynamical and propagation

matrices

T =


T11 T12

T21 T22


 = D−1

0

[
N∏

m=1

DmPmD−1
m

]
DN+1. (3.43)

The total reflection coefficient can be directly determined from the total TM (cf.

Eqn. 3.38a)

r =
T21

T11

. (3.44)

If unpolarised light has been used, as in the experimental arrangement used here,

the total reflectivity is given by the incoherent average of the two polarisations of

light

R =
1

2
(Rs + Rp) =

1

2

(|rs|2 + |rp|2) . (3.45)
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There is one final complication that should be considered. If the multilayer

structure of interest contains a thick layer, such as a substrate, it is more appropriate

to think of incoherent interference in this layer rather than the coherent interference

treated above. This is included in this TMM as follows. Assume that there is an

incoherent layer m in an N layer structure. The TMs up to and beyond layer m are

given, as before, by

T0,m =
1

t0,m


 1 −rm,0

r0,m t0,mtm,0 − r0,mrm,0


 (3.46)

and the equivalent for Tm,N+1. These are then converted to intensity TMs

Tint
0,m =

1

|t0,m|2


 1 − |rm,0|2

|r0,m|2 |t0,mtm,0|2 − |r0,mrm,0|2


 (3.47)

and the equivalent for Tint
m,N+1. The total TM is then given by concatenating these

intensity TMs with a propagator matrix for incoherent propagation in medium m,

Tint = Tint
0,mPint

m Tint
m,N+1 (3.48)

where

Pint
m =


 |exp(−iδm)|2 0

0 |exp(iδm)|2


 . (3.49)

Given that this is already a TM relating intensities, the total reflectivity is given by

R =
T int

21

T int
11

. (3.50)

This correctly represents all of the multiple interference within the multi-layer sam-

ple. In particular, it allows the fitting of both the plasma edge and Fabry-Pérot

interference fringes of a reflectivity spectrum to yield the correct plasma frequency

and thickness of a sample of interest atop a buffer and substrate layer structure.

3.4 Hall effect

Hall effect measurements are the most widely used method with which to deter-

mine carrier concentrations in semiconductors. A semiconductor sample is placed

in a magnetic field B, with a current flowing normal to the magnetic field. This
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Figure 3.9: Geometries for Hall effect measurements: (a) Hall bar; (b) van der Pauw.

generates a transverse electric field due to the action of the Lorentz force. In the

‘Hall bar’ geometry, shown in Fig. 3.9(a), the magnetic field is applied along the

z-direction, B = (0, 0, B), the current is driven in the x-direction, and transverse

and longitudinal voltages are measured to deduce the electric field, E = (Ex, Ey, 0),

assumed to have no component in the z-direction.

Within the relaxation-time approximation [99], the drift velocity of a carrier

in the semiconductor, vj, satisfies the relation

m∗
j

(
dvj

dt
+

vj

τj

)
= qj(E + vj ×B) (3.51)

where qj, m∗
j and τ−1

j are the charge, effective mass, and scattering rate of the carrier

respectively. In the steady-state, dv/dt = 0, and Eqn. 3.51 becomes

vy,j

(
1 + ω2

c,jτ
2
j

)
=

qjτj

m∗
j

(Ey − ωc,jτjEx) (3.52)

where the cyclotron frequency ωc,j = qB/m∗
j . For typical Hall-effect measurements,

rather small magnetic fields are employed, and so terms or order ω2
cτ

2 can be ne-

glected. The total net transverse current from all carriers must be zero

∑
j

njvy,jqj = 0, (3.53)

where nj is the density of carrier type j. From this, the Hall coefficient, RH =

Ey/JxB where Jx is the current density in the x-direction, can be determined, and,

in the presence of both electrons and holes, is given by

RH =
1

|e|
(pµ2

h − nµ2
e)

(pµh + nµe)2
(3.54)
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where n (µe) and p (µh) are the electron and hole concentrations (mobilities), re-

spectively. The hole signal is usually dominated by the heavy hole component. Fur-

thermore, either electrons or holes are usually dominant, and so Eqn. 3.54 simplifies

to RH = −1/ne (n-type semiconductors) or RH = 1/pe (p-type semiconductors).

In reality, the current, rather than current density, flowing through the sample is

known, and a Hall voltage, rather than electric field strength, is measured. Conse-

quently, an areal density of carriers is determined, although this can be converted

to a volume density upon division by the film thickness. The resistivity of a semi-

conductor

ρ =
1

e(nµe + pµh)
. (3.55)

From measurements of the sheet density and sheet resistance, the mobility of the

majority carriers can therefore also be determined.

3.4.1 Van der Pauw geometry

A common geometry used for measurements of the sheet resistance and Hall voltage

of a sample, and that used in this work, is the van der Pauw geometry, shown

schematically in Fig. 3.9(b).

If a current is passed between contacts 1 and 2, I12, and a voltage measured

across contacts 3 and 4, V34, the resistance

R12,34 =
V34

I12

. (3.56)

Van der Pauw [100,101] showed that, for a flat continuous lamina of arbitrary shape,

the sheet resistance Rs satisfies

exp(−πR12,34/Rs) + exp(−πR23,41/Rs) = 1, (3.57)

allowing the sheet resistance to be determined from simple electrical measurements.

From the reciprocity theorem, R12,34 = R34,12 = R21,43 = R43,21, and so these

quantities can be averaged to yield a much more accurate determination of the

sheet resistance, cancelling out any offset voltages.

In a similar way, the reciprocity theorem can be used to yield accurate values

of the Hall voltage. A current can be applied between a set of contacts on opposite
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corners, for example I13, in the presence of either a positive or negative magnetic

field, and a Hall voltage is measured between the other two corners, for example

V ±
24 , where ± denotes the polarity of the magnetic field. The average Hall voltage

is then given from

VH =
V +

13 − V −
13 + V +

24 − V −
24 + V +

31 − V −
31 + V +

42 − V −
42

8
. (3.58)

Using each set of currents and voltages for the Hall voltage and sheet resistance

measurements, it is therefore possible to obtain an accurate value for the sheet

density and mobility of the sample.

3.4.2 Hall effect measurements – HMS-3000 system

Hall effect measurements reported in this work were performed using an Ecopia

HMS-3000 Hall effect measurement system. Contacts are made to the samples in the

van der Pauw geometry discussed above. The system includes a 0.55 T permanent

magnet, and the polarity of the field is changed by rotating the magnet through 180◦.

The system can pass a current up to 20 mA. Current–voltage (I−V ) measurements

can also be taken between each set of contacts, and Hall effect measurements were

only made if a linear I−V curve was obtained, indicating Ohmic contacts had been

formed to the material. During measurements, the sample sits in a container that

can be filled with liquid nitrogen for performing measurements at 77 K if required.



Chapter 4

Unification of the electrical behaviour of de-
fects, impurities and surface states in semi-
conductors: Virtual Gap States in CdO

4.1 Introduction

The presence of even small concentrations of native defects or impurities in semicon-

ductors has a profound effect on their bulk electronic properties; for example, hy-

drogen almost always counteracts the prevailing conductivity [25]. Similarly, surface

electronic properties, crucial when forming contacts to the material, are generally

dominated by a small number of charged surface states of acceptor-like character

in n-type and donor-like character in p-type semiconductors, leading to a depletion

of charge carriers at the surface. In rare cases, however, such native defects, lo-

calised impurities and surface states can be donors in n-type or acceptors in p-type

material [7, 102, 103]. Understanding this unconventional behaviour is crucial to

advancing the functionality of current and future semiconductors.

The group II-oxide materials represent a rapidly emerging class of semicon-

ductors, where recent advances in growth resulting in high quality single-crystalline

material present opportunities for their use in a wide range of devices. Research

in these materials has largely focussed on ZnO which, with its similar band gap to

GaN but substantially larger exciton binding energy, has enormous promise for de-

vices such as light emitting diodes [104]. However, the smaller band gap compound

CdO (Eg ∼2.2 eV at the Brillouin zone centre [105]) has received far less attention,

despite its importance when alloyed with ZnO to extend the operation of ZnO-based

devices into the visible spectral range [106,107].

In this chapter, surface states and intentionally introduced impurities and

native defects are all shown to be donors in n-type CdO. While these properties have

important consequences for CdO’s use in practical applications, more importantly

it serves as a model system in which to probe the fundamental origins of bulk and
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Figure 4.1: (a) Single unit cell of the rock-salt crystal structure of CdO and (b) corresponding
Brillouin zone.

surface electronic properties. In particular, it is shown that the electrical behaviour

of native defects, hydrogen and surface states can all be understood from the position

of a single energy level, the charge neutrality level (CNL), unifying bulk, surface and

interface electronic properties of semiconductors, and giving insight into possibilities

for future engineering of materials with specific electrical characteristics.

4.1.1 Crystal and electronic structure

CdO crystallises in the rocksalt crystal structure (space group Fm3m), shown in

Fig. 4.1(a). It is a six-fold coordinated, face centred cubic structure with a two-atom

basis – a Cd atom at (0, 0, 0) and an O atom at (1
2
, 1

2
, 1

2
) – and a lattice parameter

a = 4.695 Å [108]. The corresponding Brillouin zone of the face centred cubic lattice

is shown in Fig. 4.1(b).

Quasiparticle-corrected density-functional theory (QPC-DFT) band struc-

ture calculations for CdO are shown in Fig. 4.2. The three topmost valence bands

have largely O 2p character, and these are separated from the fourth valence band

(of predominantly O 2s character), by a large ionicity gap of ∼15 eV. Very shallow

localised Cd 4d levels occur within this ionicity gap, visible in Fig. 4.2 at around 8 eV

below the valence band maximum (VBM). For the octahedral point symmetry of

CdO’s rock-salt structure, a p–d interaction between the Cd 4d and O 2p orbitals,

which pushes the VBM to higher energies, is symmetry forbidden at Γ [110, 111]

(Γv
15(p) states in the valence band, Γ12(d) and Γ25′(d) states for the d-levels). This
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Figure 4.2: QPC-DFT band struc-
ture calculations for CdO [109].
The fundamental energy gap across
the Brillouin zone is represented by
shading.

causes the valence bands to disperse upwards along the Γ → L and Γ → K directions

and downwards along the Γ → X direction, leading to an indirect band gap between

the VBM and the Γc
1 conduction band minimum (CBM).

4.1.2 Band parameters

The fundamental electronic parameters of CdO have received relatively little atten-

tion. The most widely quoted value of the direct bandgap is 2.28 eV, determined

by Koffyberg from thermoreflectance measurements at 100 K [112]. Koffyberg also

used an effective mass of 0.14m0, although without experimental justification. How-

ever, Jefferson et al. [105] showed that non-parabolicity could not be neglected, as

had been done in previous studies. From a combination of infrared (IR) reflectiv-

ity, optical absorption and Hall effect measurements, the room temperature direct

band gap and conduction band-edge effective mass were given as 2.16 ± 0.02 eV

and 0.21± 0.01m0, respectively. Here, the investigation of Jefferson et al. has been

extended to both lower and higher carrier density samples, as shown in Fig. 4.3.

The position of the direct absorption onset is determined by a linear extrapolation

of the squared absorption coefficient, while the plasma frequency is determined from

simulation of IR reflectivity spectra as discussed in Section 3.3. The room tempera-

ture direct bandgap obtained here is in good agreement with that of Jefferson et al.,

although a slightly higher value for the effective mass of 0.24±0.02m0 is determined.

These parameters are used for the following investigations.

There is a large spread in the experimental values for the indirect gap. Al-
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Figure 4.3: (a) Absorption edge and (b) plasma frequency, determined from optical absorption and
IR reflectivity, respectively, vs. Hall electron density for a range of CdO samples, as determined by
Jefferson et al. [105] and determined here. Model calculations for the variation of (a) the absorption
edge for different band gap values, and (b) the plasma frequency for different band edge effective
masses, as a function of bulk carrier concentration, are also shown.

though DFT calculations can be unreliable for predicting band gaps accurately,

dispersions are normally determined more accurately. Therefore, the separation

of the Γ-point and L-point of the valence band is taken as 1.2 eV here, from the

QPC-DFT calculations. This is supported by comparisons of the QPC-DFT cal-

culated density of states with photoemission and x-ray emission spectroscopy mea-

surements [109,113].

4.2 Experimental details

Single-crystalline CdO(001) samples were grown at the Universitat de València by

metal-organic vapour phase epitaxy (MOVPE) on r-plane (11̄02) sapphire substrates

at a growth temperature of 400◦C, using tertiary butanol and dimethlycadmium

as the oxygen and cadmium growth precursors, respectively. Further details of

the growth and materials characterisation are reported elsewhere [108]. The elec-

tron density and mobility of the as-grown samples were ∼ 1.5 × 1020 cm−3 and

∼ 60 cm2V−1s−1, respectively, from single-field Hall effect measurements. Parti-

cle irradiation was performed with 1 MeV 4He+ ions with a fluence ranging from
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6.4× 1013 cm−2 to 8.6× 1016 cm−2. The irradiation damage is characterised here by

the displacement damage dose (product of the calculated non-ionising energy loss

with the particle fluence) [114]. The stopping distance of the high energy particles

was sufficiently large to ensure that they penetrated through the CdO layer into

the substrate [115]. Atomic hydrogen diffusion into nominally undoped CdO was

performed by annealing samples at ∼350◦C in an ultra-high vacuum (UHV) system

at a background pressure of 5 × 10−6 mbar of molecular hydrogen passed through

a thermal gas cracker with a cracking efficiency of approximately 50%. Single-field

Hall effect, optical transmission, 35◦ specular IR reflectivity and x-ray photoemis-

sion spectroscopy (XPS) measurements were performed as described in Chapter 3.

All measurements were performed at room temperature.

4.3 Fermi level stabilization

As-grown CdO samples were irradiated with 1 MeV 4He+ particles to introduce

native defects. To accurately obtain the volume electron concentration from Hall

effect measurements following the irradiation, each sample thickness was determined

from simulations of the Fabry-Pérot interference fringes in IR reflectivity spectra,

as shown in Fig. 4.4. The reflectivity spectra were simulated, as discussed in Sec-

tion 3.3, using a transfer-matrix method to model transmission through the CdO

epilayer and reflections at the air/CdO and CdO/sapphire (substrate) interfaces,

as well as incoherent reflections from the back of the sapphire substrate. A two-

oscillator dielectric theory model was used to account for lattice and free-carrier

contributions.

Fig. 4.5 shows the evolution of electrical properties, as determined from Hall

effect measurements, of CdO when native defects are introduced by this high-energy

particle irradiation. The free-electron plasma frequency was also determined from

the simulations of the IR reflectivity spectra discussed above. The carrier concen-

trations derived from these plasma frequencies gave values consistent with the Hall

effect measurements. The mobility of the samples, determined both from the Hall

effect measurements and from the scattering time of the conduction band plasmon
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(b) 9.5×1015 MeV/g, and (c) 3.7×1016 MeV/g.

ΓX← Γ Γ→ L , K

E
g
 = 2 . 16 eV2 . 55 eV

V B

C B

C N L

(a) (b)

(c)

Figure 4.5: (a) Electron concentration of 4He+ ion irradiated CdO as a function of displacement
damage dose, Dd, with a sigmoidal fit to guide the eye. (b) Square of the optical absorption
coefficient for the most heavily irradiated sample. (c) Schematic representation of the conduction
(CB) and valence (VB) band edges in CdO close to Γ, indicating the position of the CNL above
the CBM.
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Figure 4.6: Schematic represen-
tation of the formation energy as
a function of Fermi level for (a,b)
irradiation-induced donor (Def+) and
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derived from the IR reflectivity simulations, decreased with increasing damage dose,

indicating the more defective nature of the samples, and potentially increased carrier

compensation.

Initially, the electron concentration increases with increasing displacement

damage dose: the defects introduced are predominantly donors in nominally un-

doped, although already heavily n-type, CdO. With further increase in damage

dose, however, the carrier concentration stabilizes at n = 2.2 × 1020 cm−3. The

stabilized carrier concentration corresponds to a bulk Fermi level 2.57 eV above the

Γ-point VBM from non-parabolic carrier statistics calculations. This is in agreement

(within experimental error) with optical absorption of the most heavily irradiated

sample, where the Fermi level is determined to lie 2.52± 0.05 eV above the Γ-point

VBM, as shown in Fig. 4.5(b). From the average of these values, the Fermi level is

therefore determined to stabilize 2.55± 0.05 eV above the Γ-point VBM, and hence

well above the CBM, following extremely heavy irradiation.

Within the amphoteric defect model (ADM) introduced in Section 1.4, the

formation energy for donor (acceptor) native defects, such as anion (cation) va-

cancies, increases (decreases) with increasing Fermi level, as shown in Fig. 4.6(a).

Consequently, the formation of donor native defects is most favourable when the

Fermi level is below, and the formation of acceptor native defects most favourable

when the Fermi level is above, an energy level known as the Fermi level stabilization

energy [51]. However, the behaviour of such native defects can, more generally, be
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considered from the charge character of the associated Virtual Gap States (ViGS),

introduced in Section 1.3.1. Indeed, Inkson [11] previously showed that a deep

impurity can be characterised by a localised evanescent state, that is, a ViG state.

Using the one-dimensional ViGS model described in Section 1.3.1 (see also

Fig. 4.7), the ADM can be understood within the ViGS concept. This is represented

schematically on the right of Fig. 4.7. If the Fermi level lies below the CNL, an

energy gain can occur by an electron from a donor ViG state ‘dropping down’

to the Fermi level, creating a positively charged, that is, ionized, donor defect,

Def+. In contrast, an acceptor ViG state must remain unoccupied, and therefore

neutral, as it would cost energy to promote an electron from the Fermi level up into

this state. Consequently, for Fermi levels below the CNL, it is more favourable to

create positively charged donor defects, acting as a source of n-type conductivity

and increasing the Fermi level. In contrast, for the Fermi level above the CNL,

an energy gain can occur by an electron at the Fermi level ‘dropping down’ into

an acceptor ViG state, leaving a negatively charged ionized acceptor defect, Def−.

However, the Fermi level lies above the donor ViGS, and so these must remain

filled, and cannot contribute to the conductivity. Consequently, for Fermi levels

above the CNL, it is more favourable to create negatively charged acceptor defects,

acting as a source of p-type conductivity and decreasing the Fermi level. With

significant introduction of defects, the Fermi level will therefore move to the CNL,
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at which point the formation energy for creating donor and acceptor native defects

will become equal; no net change in carrier density will occur upon further creation

of native defects, resulting in the Fermi level stabilizing at this energy [52]. Thus,

the Fermi level stabilization energy within the ADM can be equated with the CNL.

This explains why the ADM has previously been successful in describing the barrier

height of metal-semiconductor contacts [45], as these too are determined by ViGS

as discussed in Section 1.3.3.

In the majority of semiconductors, the CNL is located close to the middle of

the fundamental band gap. Ion irradiation therefore preferentially produces donor

defects in p-type material, whereas for n-type material, acceptor defects have the

lower formation energy, as represented schematically in Fig. 4.6(a). However, donor

defects are created here in already heavily n-type samples, indicating that the CNL

must be located substantially above the CBM in CdO (Fig. 4.6(b)). From the

above discussions and the position of the stabilized Fermi level following significant

irradiation, the CNL is determined to lie 2.55±0.05 eV above the Γ-point VBM, and

consequently 0.39 ± 0.05 eV above the CBM, in CdO, as illustrated schematically

in Fig. 4.5(c).

In addition to the behaviour of intentionally introduced defects, this has

important implications for unintentionally introduced defects, and indeed doping of

this material. As the CNL lies well above the CBM in CdO, and therefore above

typical Fermi level positions, unintentionally introduced native defects will tend to

be donors, acting to drive the Fermi level up towards the CNL and providing a

source of unintentional n-type conductivity. Furthermore, the formation energy of

compensating acceptor (donor) defects when n-type (p-type) doping CdO will be

relatively high (low) [Fig. 4.6(b) compared with (a)] for Fermi levels above the CBM

(below the VBM), allowing CdO to be extrinsically doped very heavily n-type, as

has been observed experimentally [116], whereas p-type doping will be difficult.

As the ViGS are gap states, it seems counter-intuitive that the CNL can lie

outside of the fundamental band gap. However, they are very localised, and so have

an extended k-space character, derived from the complex band structure across the
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entire Brillouin zone, rather than just at the Γ-point, with the CNL lying close

to the mid-gap energy averaged across the Brillouin zone [12]. Due largely to the

significant size and electronegativity mismatch of Cd and O, the CBM at the Γ-point

is significantly lower than across the rest of the Brillouin zone in CdO, as confirmed

by the band structure calculations shown in Fig. 4.2. Additionally, as discussed

above, the valence bands disperse upwards along the Γ → L and Γ → K directions

moving the valence band extrema away from Γ. The mid-gap energy averaged across

the Brillouin zone, and therefore the CNL, consequently occur above the CBM at

the zone centre.

4.4 Hydrogen in CdO

Hydrogen is a ubiquitous impurity in semiconductors, present in many growth en-

vironments and normally being electrically active. Interstitial hydrogen is generally

considered to be a ‘negative-U’ defect, where the formation energy for the neutral

charge state (H0) always lies above that of either the positive donor (H+) or neg-

ative acceptor (H−) centre [25]. Hydrogen, therefore, primarily forms either donor

or acceptor states when the Fermi level lies below or above an energy, H(+/−),

respectively. Similar to the native defects discussed above, hydrogen forms a very

localised impurity centre; it is therefore appropriate to also consider this within the

ViGS framework. Indeed, the theoretical work of Van de Walle and Neugebauer [25]

argued that hydrogen in the positive charge state can be associated with the cre-

ation of a cation dangling bond, whereas for hydrogen in the negative charge state,

an anion dangling bond will exist. Through the discussions of native defects above,

the H(+/−) transition should therefore occur at the CNL of the material.

To investigate this experimentally, atomic hydrogen was diffused into nom-

inally undoped CdO for 1 and 3 h, as described in Section 4.2. Optical absorp-

tion spectra of the untreated sample and following diffusion of hydrogen are shown

in Fig. 4.8. The incorporation of hydrogen within the semiconductor causes an

increased Moss-Burstein shift of the absorption edge, associated with the Fermi

level increasing in the conduction band, as represented schematically in the inset of
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Fig. 4.8. This is supported by Hall effect measurements which reveal an increase

in carrier concentration from 1.4 × 1020 cm−3 to 2.2 × 1020 cm−3 upon diffusion

of hydrogen. Following the 3 h treatment, the measured carrier density equates

to a Fermi level 2.57 eV above the Γ-point VBM, in agreement with the value of

2.55± 0.05 eV determined from optical absorption.

Hydrogen therefore forms an electrically active donor, even in highly n-type

CdO. This is in agreement with spectroscopic evidence for the shallow donor nature

of muonium, a light isotope analogue of hydrogen, in CdO [117]. However, this is in

contrast to the situation in most materials where hydrogen forms an acceptor (H−)

in n-type, or a donor (H+) in p-type, material [25], as represented schematically

in Fig. 4.6(c). In rare cases, however, perhaps most notably in ZnO, hydrogen

has been predicted to act solely as a donor [102], independent of whether it occurs

interstitially or substitutionally, where it forms a multicentre bond [118]. As for

ZnO, the H(+/−) transition must be above the CBM in CdO (Fig. 4.6(d)). In this

work, the Fermi level is observed to be located at the same energy as the CNL after

significant diffusion of hydrogen. This provides the first experimental evidence of

the equality of the CNL and the H(+/−) level, providing a common origin governing

the electrical behaviour of both native defects and hydrogen in semiconductors.

Given its prevalence in common growth environments, in particular in MOVPE

as used for the growth of the samples investigated here, hydrogen is certainly a plau-
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sible candidate for the unintentional dominant donor giving rise to the high n-type

conductivity of nominally undoped CdO samples, in addition to the donor native

defects discussed above. Indeed, annealing in UHV has previously been observed to

reduce the carrier concentration in MOVPE-grown CdO samples [105]. This is also

observed here for a sample annealed at 600◦C in UHV for 2 h, before (after) which

the carrier concentration and mobility were determined from Hall effect measure-

ments to be 1.7× 1020 cm−3 (1.6× 1019 cm−3) and 59 cm2V−1s−1 (106 cm2V−1s−1)

respectively. The carrier density determined by Hall effect measurements following

annealing is in agreement with the Fermi level determined from optical absorption

measurements and the plasma frequency determined from IR reflectivity measure-

ments, shown in Fig. 4.10 (b) and (c), respectively. Thermal de-bonding and removal

of hydrogen is a likely cause for this dramatic improvement in electrical properties

upon annealing. In all materials where the CNL, and consequently the H(+/−)

level, is above the CBM, hydrogen must certainly be considered as a potential cause

of unintentional n-type conductivity in addition to donor-type native defects. Con-

versely, when the CNL lies below the VBM, hydrogen is a plausible candidate for

unintentional p-type conductivity.

4.5 Surface electron accumulation

To investigate the importance of the CNL in determining surface electronic prop-

erties, the surface Fermi level position in a CdO sample, prepared by annealing in

UHV at 600◦C for 2 h (discussed above), has been investigated. Information on

the chemical nature of the surface was obtained from core-level XPS measurements,

shown in Fig. 4.9. Prior to annealing, a pronounced multiple peak structure was

observed for the Cd 3d5/2 core level. The lower binding energy component is at-

tributed to Cd–O bonding in the CdO, with the higher binding energy components

attributed to bonding to more electronegative species such as in CdO2 (peroxide),

Cd(OH)2 (hydroxide) and CdCO3 (carbonate) compounds, present due to atmo-

spheric surface contamination and potentially remnants of the growth precursors.

Equivalently, the low binding energy component of the O 1s peak is attributed to
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Cd–O bonding, with the higher binding energy components due to the peroxide,

hydroxide and carbonate species. A large C 1s peak was also observed, with a low

binding energy component due to adventitious physisorbed hydrocarbon, and higher

binding energy components due to carbonate and alcohol species. Following anneal-

ing, the components in the XPS core level peaks due to peroxide, hydroxide and

carbonate species were quenched, with only a negligible peak due to adventitious

hydrocarbon remaining (Fig. 4.9). A slight asymmetry to higher binding energies

was observed on the core level peaks. However, CdO is shown below to exhibit

electron accumulation at its surface. The asymmetry in the core level peaks is at-

tributed to satellite features due to conduction band plasmons in the accumulation

layer, as was observed for the analogous compound InN [119].

Valence band XPS measurements following annealing of the sample are shown

in Fig. 4.10(a). A linear extrapolation of the leading edge of the valence photoemis-

sion, to account for the finite resolution of the spectrometer [120], gives the L-point

(indirect) VBM to surface Fermi level separation as ξ = 1.29±0.05 eV. From Hall ef-

fect, optical absorption and IR reflectivity measurements (Fig. 4.10(b) and (c)), the

Γ-point VBM to bulk Fermi level separation was determined as η = 2.23± 0.05 eV.

Taking the separation of the Γ-point and L-point of the valence band as 1.2 eV

as discussed above, the Fermi level lies higher relative to the band extrema at the

surface than in the bulk, implying a downward bending of the bands at the surface.

The calculated band bending is shown in Fig. 4.10(d). Below the CNL, surface
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states can be described by ViGS which are predominantly donor-like (see Chap-

ter 1). As the surface Fermi level pins slightly below the CNL value determined

above (Fig. 4.10(d)), a number of these donor-like ViGS are unoccupied, and there-

fore ionized, leading to a positive surface charge. As the CNL is above the CBM

in CdO, these ViGS are able to donate their electrons directly into the conduction

band. This leads to a large accumulation of electrons in the near-surface region,

as shown in Fig. 4.10(e), which screen the surface charge, maintaining charge neu-

trality. The CNL lying above the CBM in CdO can therefore be understood as

the overriding mechanism driving the accumulation of electrons at the CdO sur-

face. Some more features of the electron accumulation in CdO will be discussed in

Chapter 9.

4.6 Implications and prospects

The above investigations have shown that a single energy level, fundamentally deriv-

ing from the bulk band structure of a material, dictates the favourable charge state
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for native defects, hydrogen impurities and surface states in semiconductors. When

the Brillouin zone averaged mid-gap energy, and hence the CNL, lie in the conduc-

tion band, as for CdO investigated here, the material exhibits properties such as:

donor nature of hydrogen; high unintentional n-type conductivities; ease of n-type

but difficulty of p-type doping; and surface electron accumulation. Similar properties

would be expected for other semiconductors with a large size and electronegativity

mismatch between the cation and anion, leading to particularly low Γ-point CBMs

lying below the CNL. This explains, for example, why the oxide materials such as

ZnO, SnO2 and indeed CdO can have very high n-type conductivities, despite being

optically transparent.

Conversely, in a material such as GaSb, the critical points of the conduction

band edge are all located at similar energies, whereas the downwards dispersion of

the valence bands away from Γ is rather pronounced [121]. Consequently, the CNL

would be expected to lie at or even below the VBM in this material, explaining

its propensity for unintentional p-type conductivity, surface hole accumulation [122]

and the recent theoretical predictions of the acceptor nature of hydrogen even in

p-type material [103]. Another interesting example is the Cu-containing delafossite

materials. In these, the very high Cu p-orbital energy pushes the VBM upwards in

energy, and so the CNL will lie relatively close to the VBM. High p-type conduc-

tivity can therefore be achieved, even in wide band gap materials as has previously

been observed experimentally [123], explaining the use of Cu in p-type transparent

conducting oxide semiconductors.

In general, band structure engineering of semiconductors involves the alloying

of several compounds in order to control basic optoelectronic and structural prop-

erties (for example, the band gap and lattice constant). Using the insights gained

here, this can be extended to tailor the electrical properties of the material by con-

sidering not only the band gap and lattice constant of the constituent compounds,

but also the position of the band extrema relative to the CNL. For example, if an

alloy is formed incorporating a material with a low Γ-point CBM, elements with

low s–orbital energies, or dilute impurities which cause an anti-crossing interaction
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lowering the conduction band edge [5], the CBM of the alloy will be pushed down

with respect to the CNL, increasing its tendency towards n-type conductivity and

surface electron accumulation. If, on the other hand, a high Γ-point VBM material

is used, elements are incorporated with high p-orbital energies or a valence band

anti-crossing interaction [124] is introduced pushing the VBM upwards with respect

to the CNL, the proclivity towards acceptor defects, impurities and surface states

will be increased.

4.7 Conclusions

The nature of the charge state of native defects, hydrogen and surface states has been

unified via a single energy level deriving from the bulk band structure, the charge

neutrality level. In CdO, this level was shown to be located 2.55±0.05 eV above the

Γ-point VBM, and consequently 0.39±0.05 eV above the CBM, resulting in not only

native defects but also hydrogen impurities and surface states being donors even in

already n-type material. The unification of bulk and surface electronic properties

presented here facilitates a general understanding of the electronic properties of all

semiconductors, and allows the possibility of band structure engineering of materials

to obtain not only the desired band gap and lattice constant, but also to tailor their

bulk and surface electrical characteristics.



Chapter 5

Charge neutrality level in InN

5.1 Introduction

Initial research on InN suggests that this material has enormous potential for use in

a range of device applications. It has excellent potential transport characteristics,

such as high electron mobilities [125], small electron effective mass [126], high peak

drift velocities [127], and high frequency transient drift velocity oscillations [128].

These suggest potential application for InN in high frequency electronic devices, op-

erating up to the THz range. InN has also been suggested as a suitable material for

light emission in the THz frequency range [129], with emission intensities already

reported that exceed those from p-type InAs [130], which was previously thought

to be the most efficient THz emitter. Further increases in emission intensity have

recently been reported for a-plane InN [131] and from InN nanorod arrays [132].

InN has also shown potential for use as a chemical sensing device, with a chemically

selective ‘fast capture, slow response’ modification of its electrical properties ob-

served upon exposure to a number of solvents [133], and has also been proposed as

a suitable material for biological sensing applications [134] and for anion concentra-

tion measurements [135,136]. In addition, In-containing III-N alloys have attractive

properties for a range of optoelectronic device applications, discussed in Chapter 7.

Irrespective of these potential applications, InN remains probably the least

understood of the III-V semiconductor materials, despite an intense recent research

effort. A number of seemingly unusual properties have, however, already been iden-

tified. In particular, InN has a propensity for high n-type conductivity [137], with

nominally undoped material typically having carrier concentrations in the range

1017 − 1021 cm−3. This n-type conductivity increases still further approaching the

surface of the material, where InN is known to exhibit a surface electron accumula-

tion layer [7, 138]. This surface electron accumulation is much more extreme than

in InAs [39], the only other III-V material in which this phenomenon has been ob-
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Figure 5.1: (a) Wurtzite and (b) zinc-blende crystal structure of InN. The unit cell is shown as
a thin black line. The corresponding Brillouin zones are shown in Fig. 5.2.

served. Consequently, metal contacts to InN surfaces have been found to exhibit

almost exclusively Ohmic behaviour [138,139]. This has important implications for

a variety of device architectures.

From the considerations presented in Chapter 4, these properties would seem

to be consistent with the charge neutrality level (CNL) lying above the conduction

band minimum (CBM), as was observed for CdO, the II-VI equivalent of InN. This

is shown to be the case in this chapter from studies of Si-doped InN samples (and

an undoped reference sample) using a combination of high-resolution x-ray photoe-

mission spectroscopy (XPS), optical absorption spectroscopy (OAS), infrared (IR)

reflectivity, and theoretical calculations employing quasiparticle-corrected density-

functional theory (QPC-DFT). The rather extreme location of the CNL in InN,

determined as lying 1.83 ± 0.10 eV above the valence band maximum (VBM), is

rationalised within chemical trends, and is used to explain the striking fundamental

bulk, surface and interface electronic properties of this material.

5.1.1 Crystal and electronic structure

The thermodynamically stable phase of InN, and indeed GaN, AlN and (In,Ga,Al)N

alloys, is the wurtzite (wz) polymorph with space group P63mc, shown in Fig. 5.1(a).

In this structure, the In and N atoms are arranged in hexagonally close packed

planes which alternate along the crystal c-axis. As for the zinc-blende (zb) structure,
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Figure 5.2: Brillouin zone of the (a) wurtzite and (b) zinc-blende structure.

most common amongst III-V semiconductors, the atoms are tetrahedrally bonded.

However, due to a reduced symmetry compared to the zb structure, the [0001] and

[0001̄] crystallographic directions are inequivalent, and so the nitrides are polar

materials. The In- (N-) polarity is defined as the orientation of the crystal such

that there is a single bond from the In (N) atom directed towards the surface along

the c-axis, and three bonds in the direction away from the surface, that is, upwards

(downwards) in Fig. 5.1(a). The a-plane (112̄0) and m-plane (11̄00) surfaces are

both non-polar. The lattice constants for wz–InN are a = 3.5377 Å and c =

5.7037 Å [140]. The Brillouin zone for the wz structure is shown in Fig. 5.2(a).

The QPC-DFT calculated band structure for wz-InN is shown in Fig. 5.3(a).

In the tetrahedrally bonded configuration, there are eight valence electrons per unit

cell. In a simple tight-binding picture, these form four doubly spin-degenerate va-

lence bands of p–orbital character (the highest 3 bands) and of s–orbital character.

Neglecting spin-orbit and crystal-field splitting, the three p–bands are degenerate at

the VBM, with Γv
15 symmetry. Including the spin-orbit and crystal-field (due to the

non-isotropic wurtzite structure) interactions splits the Γv
15 bands into an upper Γv

9

and two lower Γv
7± bands. Localized energy levels due to the In 4d orbitals can be

seen ∼15 eV below the VBM, which hybridize with the N 2s–like orbitals (bottom

valence band), as discussed elsewhere [83,141]. A highly non-parabolic Γc
15 conduc-

tion band is also present, necessitating the use of the non-parabolic band structure

approximations discussed in Section 2.1.1. The higher lying conduction bands are
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Figure 5.3: QPC-DFT band structure calculations for (a) wz and (b) zb InN [65]. The funda-
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well separated in energy from the lowest conduction band, and so the influence of the

higher lying bands on the dispersion around the CBM will be minimal, suggesting

the 2-band k · p approach outlined in Section 2.1.1 is generally adequate for InN.

Formation of the zb polymorph of InN, shown in Fig. 5.1(b), is calculated to

cost only an extra ∼ 20 meV of energy per cation-anion pair compared to the wz

polymorph [64]. Consequently, judicious choice of substrate material, orientation,

and growth conditions allows growth of zb-InN [142–145]. It is thought that the zb

polymorph may be preferable to the wz one for potential device applications due to

the smaller predicted band gap [64] and higher degree of symmetry, removing the

anisotropy present in wurtzite structures. However, structural quality is unlikely to

be as high as for wz–InN, with wz inclusions likely within a zb sample. The Brillouin

zone and calculated band structure are shown for zb–InN in Figs. 5.2(b) and 5.3(b),

respectively. The electronic band structure is similar to that for the wz structure,

although somewhat simpler in this case due to the lack of crystal field splitting.

The lattice constant of zb-InN is 5.01 Å [144]. While at standard temperature and

pressure, the rocksalt (rs) structure (the stable polymorph for CdO considered in

Chapter 4) has a very high formation energy [64], a high-pressure (∼12 GPa) wz–rs

phase transition occurs [146]. However, as this phase is only stable at high pressures,

this structure will not be considered further here.

At a surface, the atomic arrangement can differ from that of the bulk material
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in order to minimise energy. The III-N materials are known to reconstruct to form

a metal-rich surface. This has been extensively studied for GaN [147–149], where

the Ga-polar (N-polar) material has been found to be terminated by ∼ 2.4 (∼ 1)

monolayers (ML) of Ga following Ga-rich growth. Recent theoretical [150] and

experimental [151,152] investigations have also revealed In-adlayers as the favourable

reconstruction at InN surfaces with ∼ 2, ∼ 3 and ∼ 3.4 ML of In observed at the

surface of N-polar, a-plane and In-polar InN, respectively.

5.1.2 Band parameters

The most fundamental property of any semiconductor is the size of its band gap.

One of the most important occurrences in the development of InN to date was the

revision of its accepted fundamental band gap value from ∼2 eV [153] to less than

0.7 eV [154]. Early material was typically sputter-grown, and generally had very

high electron densities leading to a large Moss-Burstein (MB) shift in the absorption

edge, and hence the incorrect assignment of the band gap as ∼ 2 eV. Improved

growth of InN, largely by plasma-assisted molecular beam epitaxy (PAMBE), led

to a dramatic reduction in electron concentration of nominally undoped material

(see, for example, Fig. 18 in Ref. [137]), reducing the MB shift and consequently

allowing the much lower value of the fundamental band gap to be revealed [154–158].

The revision of the InN band gap proved very controversial [159–161], although the

debate has been almost entirely settled now (up to the second decimal place in the

band gap value) [140]. Here, the extrapolated zero-temperature, zero-density band

gap value and Varshni parameters derived by Wu et al. [154] are employed, giving

a room temperature band gap of 0.64 eV.

Due to the highly non-parabolic nature of the conduction band, the effective

mass varies rapidly with energy. Consequently, for samples with high carrier con-

centration, it is difficult to determine the band edge effective mass value. Wu et

al. [162] used the variation of the plasma frequency determined from simulation

of IR reflectivity spectra of a number of samples with differing carrier concentra-

tions to obtain a value of 0.07m0. Fu and Chen [126] employed the same approach,
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Table 5.1: Material parameters (a and c lattice constants, zero temperature band gap and Varshni
parameters, spin-orbit and crystal-field splitting, and conduction band minimum effective mass)
for wurtzite InN, GaN and AlN.

a c Eg(T = 0) α β ∆so ∆cr m∗
0

(Å) (Å) (eV) (meV/K) (K) (meV) (meV) (m0)

InN 3.538 5.704 0.69 0.414 454 5 24 0.048
GaN [170] 3.189 5.185 3.410 0.909 830 17 10 0.20
AlN [170] 3.112 4.982 6.25 1.799 1462 19 -169 0.31

although included a lower carrier density sample, determining a value of 0.05m0,

while Hofmann et al. [163] determined a value of 0.047m0 from IR magneto-optic

generalized ellipsometry measurements. Recently, Miller et al. [164] determined a

value of ∼ 0.05m0 from modelling of thermopower measurements. In light of this

scatter, a value of 0.048m0 is used here, determined from the empirical relationship

m∗
0 ∼ 0.07Eg [165], which is very close to the values determined from the most recent

experimental studies. For the valence bands, the crystal-field and spin-orbit split-

ting are taken as 24 meV and 5 meV respectively [166]. The hole effective masses

are not known, with only theoretical estimates having been provided [167–169]. The

parameters of Fritch et al. [168] are therefore used here. The main materials param-

eters discussed above for InN, and the equivalent parameters for GaN and AlN, are

summarised in Table 5.1.

5.2 Experimental and theoretical details

Wurtzite InN(0001) samples were grown on c-plane sapphire substrates by PAMBE

at Cornell University, USA. Details of the growth and materials characterisation are

reported elsewhere [171]. The InN layer thicknesses ranged from 250 to 2000 nm

and the growth temperature was ∼480◦C. The carrier concentrations and mobilities

(from single-field Hall effect measurements) vary from 2.0 × 1018 cm−3 to 6.6 ×
1020 cm−3 and 1100 cm2V−1s−1 to 38 cm2V−1s−1, respectively. All except the lowest

carrier concentration sample were doped with Si. Single-field Hall effect, optical

transmission, IR reflectivity, and XPS measurements were performed as described

in Chapter 3. All measurements were performed at room temperature. QPC-DFT

calculations were performed elsewhere, as discussed in Section 2.1.2. For comparison
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with the experimental results, the QPC-DFT valence band density of states (VB-

DOS) is broadened by a 0.2 eV full width at half maximum (FWHM) Lorentzian

and a 0.4 eV FWHM Gaussian to account for lifetime and instrumental broadening,

respectively.

5.3 Determination of the CNL position

5.3.1 Results and analysis

The carrier concentration of the samples, determined from single-field Hall effect

measurements, increases with increasing Si cell temperature during growth, indi-

cating that Si is being incorporated into the InN host and is electrically active,

acting as a donor. This is confirmed by XPS measurements of the Si 2p core-level

peak (Fig. 5.4(a)), which increases in intensity with increasing carrier concentra-

tion. Additionally, the binding energy of the peak (∼102 eV) is indicative of Si–N

bonding [172] (the peak is chemically shifted from its elemental position in Si of

∼99 eV) confirming that the Si preferentially occupies the In–site, therefore acting

as a donor. The increase in carrier density of the samples with increasing Si cell

temperature was also confirmed from an increase in the conduction electron plasma

frequency determined from IR reflectivity measurements, shown in Fig. 5.4(b). The

reflectivity spectra were simulated using a two-oscillator dielectric theory model to

account for lattice and free-carrier contributions. The transfer-matrix method dis-

cussed in Section 3.3 was used to model the effects of the InN epilayer as well as

the GaN and AlN buffer layers, and the sapphire substrate. The plasma frequencies

determined from these simulations gave carrier densities in reasonable agreement

with those from Hall effect measurements.

OAS spectra, shown in Fig. 5.4(c), also indicate the effects of the increase

in free-carrier concentration as an increase in free-carrier absorption at low photon

energies. Additionally, the OAS spectra directly indicate the effects of doping on

the bulk Fermi level: a significant increase in the absorption edge energy is observed

with increasing doping, attributed to the MB band-filling effect, whereby the (de-
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Figure 5.4: (a) Si 2p core-level XPS spectra, (b) IR reflectivity spectra, and (c) OAS spectra
of a selection of undoped and Si-doped InN samples. A schematic of the Moss-Burstein shift of
the optical absorption edge is shown inset in (c). (d) Bulk Fermi level versus carrier density for
the samples investigated here. A schematic of the shift of bulk Fermi level with increasing Si
concentration is shown inset.

generate) Fermi level shifts to higher energies with increasing doping, represented

schematically inset. An exponential Urbach tail is seen below the absorption edge,

and the extent of this tail increases with doping concentration due to the increase

in band-tailing effects.

This Urbach tail limits the accuracy of the Fermi level position that can be

determined from the OAS measurements. Instead, the bulk Fermi level position

is determined here from the measured electron concentration and carrier statistics

calculations. However, due to the very high doping levels involved, resulting in the

Fermi level lying over 1 eV above the CBM in the most heavily doped samples,

even non-parabolic band structure approximations (such as the k · p model intro-

duced in Section 2.1) are limited in accuracy for the most heavily doped samples.
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Consequently, carrier statistics calculations employing the conduction band disper-

sion from QPC-DFT calculations have been used to determine the bulk Fermi levels

from the measured carrier concentrations; these are shown in Fig. 5.4(d). The val-

ues determined using the conduction band dispersion from QPC-DFT calculations

agree well with those from k · p carrier statistics calculations for the lower doped

samples, but diverge somewhat for the more heavily doped samples. It should be

noted that the electron concentrations determined from the single-field Hall effect

measurements contain a contribution from a surface electron accumulation region

and an increase in electron density approaching the interface in addition to the

bulk (see below and Chapter 6). This introduces a small error in calculating the

bulk Fermi level based on the single-field Hall effect concentrations for the lower

carrier concentration samples. This, along with the small discrepancies between

the carrier density determined from Hall effect and IR reflectivity measurements,

is represented by the error bars in Fig. 5.4(d). The bulk Fermi level positions are

also consistent with the optical absorption edge positions in Fig. 5.4(c), although

as discussed above, the large extent of Urbach tailing for the very heavily doped

samples prevents an accurate determination of the bulk Fermi level position being

made from the OAS measurements of these samples.

XPS was employed to determine the pinning position of the Fermi level at

the surface as a function of bulk carrier concentration. The leading edges of the

valence band photoemission spectra are shown in Fig. 5.5(a). The surface Fermi

level position can be obtained by extrapolating the leading edge of the valence band

photoemission to the baseline in order to take account of the finite resolution of the

spectrometer [120]. The values determined in this way are shown in Fig. 5.5(b).

For the nominally undoped sample, the surface Fermi level position lies well above

its position in the bulk of the semiconductor (cf. Fig. 5.4(d)). Consequently, a

pronounced downward bending of the conduction and valence bands relative to the

Fermi level occurs at the surface of the nominally undoped InN, consistent with

previous observations of a surface electron accumulation layer in this material [7].

Increasing the doping shifts the leading edge of the valence band photoemission to
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Figure 5.5: (a) Valence band photoemission spectra and (b) corresponding VBM to surface Fermi
level separation evaluated by extrapolating the leading edge of the XPS spectra to the baseline
to account for the finite resolution of the spectrometer. The solid line is an exponential fit to the
data, to guide the eye.

higher binding energies indicating an increase in the VBM to Fermi level separation

at the surface with increasing bulk doping. With continued increase in bulk doping,

a stabilization of the surface Fermi level occurs at 1.83± 0.10 eV above the VBM.

For low bulk doping levels, the presence of such a significant band bending can

cause the linear extrapolation method of analysis of the valence band photoemission

to slightly underestimate the VBM to surface Fermi level separation [173]. An

alternative method of analysis is to compare the position of spectral features in the

valence band photoemission with those of a calculated VB-DOS which shows good

spectral agreement with the photoemission results. This has been demonstrated

for the QPC-DFT VB-DOS calculations of InN employed here [83]. The VBM is

defined as 0 eV in the QPC-DFT calculations, and so the energy separation of the

lowest energy peak in the VB-DOS and the corresponding peak in the XPS spectra

gives the VBM to surface Fermi level separation. The valence band XPS spectra

are shown, compared to the QPC-DFT VB-DOS, in Fig. 5.6(a), and the VBM to

surface Fermi level separation determined by this method is shown as a function of

bulk carrier concentration in Fig. 5.6(b).

For the lowest bulk carrier concentration sample, the Fermi level is pinned

a little higher at the surface than was determined using the linear extrapolation

method due to the significant downward band bending present and the finite escape

depth of photoelectrons [173]. The surface Fermi level positions for the higher
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Figure 5.6: (a) QPC-DFT VB-DOS shown without (shaded) and with lifetime and instrumental
broadening, and the Shirley-background-subtracted valence-band photoemission spectra, offset
from the calculated VB-DOS due to Fermi level shifts. (b) VBM to bulk and surface Fermi level
separation, with fits shown to guide the eye, and (c) resulting band bending.

bulk carrier concentration samples agree within experimental error between the two

methods of analysis. This analysis reveals that the surface Fermi level is virtually

static with increasing bulk carrier concentration below a value of ∼5 × 1019 cm−3.

Further increase in bulk carrier concentration again leads to an increase and then

saturation of the surface Fermi level position. Any difference between the bulk

and surface Fermi level positions must be incorporated via a bending of the bands

relative to the Fermi level, shown in Fig. 5.6(c), which tends smoothly to zero with

increasing bulk carrier concentration.

5.3.2 Discussions

For a given bulk Fermi level, the surface Fermi level position is determined by the

considerations of charge neutrality. If the surface Fermi level is located below the

CNL, some donor surface states will be unoccupied and hence positively charged.

This surface charge must be balanced by a space-charge due to downward band

bending, leading to an increase in the near-surface electron density (an accumulation

layer). For nominally undoped (low carrier concentration) InN, an extreme down-

ward band bending was observed: the Fermi level must therefore be pinned some

way below the CNL in these samples, as represented schematically in Fig. 5.7(a).
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Figure 5.7: Schematic representation of the decrease in downward band bending ∆E, correspond-
ing reduction in unoccupied surface-state density as the Fermi level moves closer to the CNL at the
surface, and eventual stabilization of the bulk and surface Fermi levels at the CNL with increasing
doping ((a) to (c)) in InN.

As the bulk Fermi level is increased, the amount of downward band bending

must necessarily decrease, reducing the space charge. However, if this was all that

happened, charge neutrality would no longer be maintained, as the surface charge

would no longer balance the space charge. Consequently, as the bulk Fermi level

increases, the surface Fermi level must move closer to the CNL so that a smaller

density of donor surface states are unoccupied, reducing the surface charge to that

of the new space charge, as represented in Fig. 5.7(b). For initial increases in bulk

Fermi level, the change in the space-charge can be accommodated by very small

shifts in the surface Fermi level position; the Fermi level is strongly pinned at the

surface, seen by the virtually static position of the surface Fermi level for the two

lowest carrier concentration samples in Fig. 5.6(a). However, as the bulk Fermi

level increases further, larger reductions of the surface-state density, achieved by

shifting of the surface Fermi level towards the CNL, are required to maintain charge

neutrality (Fig. 5.7(b)). As the bulk Fermi level approaches the CNL, the surface

Fermi level must also therefore approach the CNL, causing the band bending to

tend to zero (Fig. 5.7(c)). Consequently, for the most heavily doped sample, there

is zero space charge, as there is no band bending, and zero surface charge as the

surface Fermi level is pinned at the CNL leading to zero density of charged surface

states: charge neutrality is maintained.

The stabilization of the Fermi level at the CNL can be understood within

the amphoteric defect model (ADM), introduced in Section 1.4. When the bulk
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Fermi level is well below the CNL, Si preferentially occupies the In–site (Si+In), act-

ing as a donor, and any native defects preferentially have donor-character, increas-

ing the bulk conductivity. As the Fermi level increases, acceptor defects such as

triply charged In–vacancies (V3−
In ), Si on the N–site (Si−N) and acceptor-type defect

complexes become more favourable, preventing further increase in Fermi level and

acting to stabilize it at the CNL. In–vacancies have previously been observed to

provide partial compensation in Si-doped InN [174]. Initial results from positron

annihilation spectroscopy measurements also suggests that the same is true in these

samples, with the density of In–vacancies increasing with increasing bulk carrier

concentration [175]. Additionally, the low measured mobilities (by the single-field

Hall effect) and large Urbach tailing observed in the most heavily doped samples

(Fig. 5.4(c)) suggest the presence of significant concentrations of compensating na-

tive defects and impurities. Indeed, a comparison of the Hall mobilities of Si-doped

samples, including those investigated here, with nominally undoped samples that

have been irradiated [176] with high energy H+ and He+ ions is shown in Fig. 5.8.

Irradiation of the samples introduces native defects, which acts to increase the elec-

tron concentration [177]. The mobility of the undoped reference sample used here

(1100 cm2V−1s−1) is very similar to those of the irradiated samples with the lowest
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Figure 5.9: QPC-DFT (a) band structure across the Brillouin zone and (b) total DOS with the
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carrier concentration, and hence smallest radiation dose. In both of these cases,

the mobility is likely to be limited by native defects or impurities. However, for

slightly higher bulk carrier concentrations, the mobility is significantly lower for the

implanted samples as compared to equivalent Si-doped samples. This indicates that

Si-doping may cause an increase in the electron concentration without the introduc-

tion of as many native defects as in the irradiated samples. However, for the highest

concentration Si-doped sample, the mobility becomes equivalent to that of the most

heavily irradiated samples, suggesting that it is more indicative of a native-defect

controlled behaviour again. This supports the above arguments for stabilization of

the Fermi level at the CNL upon heavy Si-doping.

Both methods of analysis of the XPS data presented above reveal a stabiliza-

tion with heavy doping of the surface Fermi level at 1.83±0.10 eV: the CNL is there-

fore determined as lying 1.83 ± 0.10 eV above the VBM, as illustrated in Fig. 5.9,

slightly above the pinning position for moderately doped samples. In particular,

the linear extrapolation method of analysis (Fig. 5.5) allows a direct experimental

determination of the CNL position without recourse to theoretical calculations or

detailed knowledge of the bulk Fermi level in the samples.

As discussed in Chapters 1 and 4, the CNL is located close to the average

mid-gap energy across the entire Brillouin zone [12]. Employing Tersoff’s criterion



5.4. Chemical trends 88

for estimating the average mid-gap energy (Eqn. 1.10) [24], and taking the indirect

conduction band minimum at the A-point, the CNL can be estimated from the

QPC-DFT band structure calculations to lie close to 1.78 eV above the VBM, in

agreement with the measured value. From Fig. 5.9, the conduction band edge is

significantly lower at Γ than across the rest of the Brillouin zone: the CNL in InN

therefore lies well above the conduction band minimum (CBM), in contrast to almost

all other III-V semiconductors where the CNL is located below the CBM. In effect,

the position of the CNL can be considered as a weighted average over the material’s

DOS around the band gap [178]. In InN, while there is a high DOS in the valence

band, shown in Fig. 5.9(b), the highly dispersive conduction band at Γ, which lies

well below the other conduction band valleys, results in only a small spectral weight

in the DOS around the bottom of the conduction band. Consequently, the effective

‘centre-of-mass’ of the DOS around the band gap occurs well away from the VBM,

resulting in the CNL actually lying above the CBM in InN.

The CNL energy determined here also agrees very well with previous theo-

retical calculations. Van de Walle and Neugebauer [25] locate the CNL at 1.88 eV

above the VBM in InN using ab initio calculations. Additionally, Green’s functions

calculations by Robertson and Falabretti [178] give the CNL lying 1.87 eV above

the VBM, while they determine a value of 1.88 eV using the theoretical calculations

of Wei and Zunger [179].

5.4 Chemical trends

The seemingly unusually high location of the CNL relative to the CBM in InN,

compared to other III-V semiconductors, can be explained within chemical trends

by considering the band alignment of the common-anion III–N and the common-

cation In–V compounds, shown in Fig. 5.10(a). Appealing to a simple tight-binding

model, the valence (conduction) band edge derives mainly from the bonding (anti-

bonding) state of anion and cation p– (s–) orbitals [185]. Due to the very small

energy differences in the cation p–orbitals (Fig. 5.10(b)), the predominant factor in

determining the valence band edge variation in the III–Ns is the interaction between
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Figure 5.11: XPS spectra from InN,
GaN and AlN showing the occupied
cation d-levels in InN and GaN and
their absence in AlN. A small peak
due to N 2s-like states is seen in the
AlN spectrum. These hybridize with
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peaks in the InN and GaN spectra,
respectively. A magnified view of the
valence band photoemission is shown
inset for each material.

the cation d–orbitals and the N 2p–orbital [186]. In GaN and InN, shallow occupied

Ga 3d and In 4d orbitals are located close to the VBM, whereas no such occupied

cation d–orbitals are present in AlN, as shown by XPS measurements in Fig. 5.11.

The occupied Ga 3d and In 4d orbitals hybridize with the N 2p–orbital. This causes

a p–d repulsion which pushes the VBM to higher energies in GaN and InN with

respect to AlN. The smaller cation d to N 2p orbital separation in InN compared

with GaN results in the VBM lying highest in InN. The reduction of the CBM with

increasing cation atomic number results from the change in cation s-orbital energy

coupled with a decrease in the s–s repulsion strength between the cation and anion

s–orbitals with increasing cation-anion bond length (on moving from AlN to InN).
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Similar considerations hold for the common-cation compounds. The VBM

follows the trend of the anion p–orbitals, causing a lowering of the band edge energy

with decreasing anion atomic number. Furthermore, the spin-orbit splitting, which

pushes the VBM upwards in energy, decreases with decreasing anion atomic number.

The movement of the CBM results from the combined effects of the anion s–orbital

energy shifts (Fig. 5.10(b)) and the change of s–s coupling with cation–anion bond

length and energy separation of the In 5s and anion s–orbitals. In particular, the

narrow band gap and very low position of the band extrema relative to the CNL in

InN results from the large size and electronegativity mismatch of In and N, resulting

in a large In–N bond length and low energy of the N 2s–orbital. This is equivalent

to the situation for CdO investigated in Chapter 4.

5.5 Implications for electronic properties

The position of InN at the intersection of these chemical trends, with the CNL

located very high relative to the CBM, can be used to understand many of InN’s

striking electronic properties, as outlined in this section.

5.5.1 Surface electronic properties

As the Fermi level at the surface pins close to the CNL, but on the same side as the

bulk Fermi level, the high location of the CNL relative to the conduction band edge

in InN means that it will almost always exhibit a downward band bending, and

consequently an extreme electron accumulation, at the surface. Such an electron

accumulation would be expected to be present at the surface of p-type material

also, explaining the presence of the recently reported [187] inversion layer, and the

difficulty in determining p-type conductivity in InN. This is very similar to the

situation in InAs, where the CNL is also located above the CBM (Fig. 5.10(a)), and

electron accumulation (inversion) layers are present at the surface of n-type (p-type)

material [39,188]. However, due to the smaller separation between the CBM and the

CNL in InAs than in InN, the surface state densities are significantly lower than for

InN accumulation layers, and so the electron accumulation is less extreme. Electron
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Figure 5.12: Formation energy for
(a) native point defects and (b) addi-
tionally impurities, as a function of
Fermi level, EF , from the calcula-
tions of Stampfl et al. [190] and Jan-
otti and Van de Walle [191]. The
dashed lines indicate an extrapola-
tion of the calculated values of Jan-
otti and Van de Walle [191] to higher
Fermi levels (above the CBM). Typ-
ical Fermi level positions in InN are
represented in (b) by shading, and
the pinning position of the surface
Fermi level, as determined here, is
also shown (vertical line).

accumulation layers at InN surfaces are investigated in more detail in Chapter 6.

In contrast, in GaN for example, the CNL is located below the CBM (Fig.

5.10(a)), and so in typical samples, the surface Fermi level will tend to be pinned

below the bulk Fermi level for n-type material. Consequently, electron depletion

layers are observed at the surface [189]. A transition from electron accumulation (for

In-rich) to depletion (for Ga-rich) would therefore be expected at some composition

of InGaN alloy. This is investigated in Chapter 7.

5.5.2 Propensity for n-type conductivity

Within the ADM, when the bulk Fermi level lies below the CNL, donor-type native

defects are most favourable, tending to increase the Fermi level towards the CNL.

Conversely, for bulk Fermi levels above the CNL, acceptor-type native defects have

the lower formation energies, tending to reduce the net electron concentration and

lower the Fermi level towards the CNL. Indeed, first-principles calculations of the

formation energy of native defects in InN by Stampfl et al. [190], reproduced in

Fig. 5.12(a), indicate a transition from the donor-like nitrogen vacancy, V+
N, to the

acceptor-like indium vacancy, V3−
In , being the most favourable charge state at an

energy very close to the CNL determined here. The high CNL position relative to

the CBM in InN means that unintentional native defects will preferentially form as
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donors, generally resulting in a high unintentional n-type bulk conductivity. These

effects are also responsible for the observed stabilization of the Fermi level when

native defects are intentionally introduced in InN by high energy particle irradi-

ation [177]. The calculations also predict that both Si on the In site and O on

the N site are effective donors in InN, as observed here and elsewhere [192, 193].

Consequently, native defects and impurities are all possible candidates for the high

unintentional n-type conductivity of InN.

As discussed in Section 5.1.2, although the zero temperature InN band gap

is now generally accepted to be ∼ 0.7 eV [154], it was previously thought to be ∼
1.9 eV [153]. These early measurements were largely performed by OAS on sputter-

grown InN samples, which are likely to contain many native defects driving the Fermi

level towards the CNL. A Moss-Burstein shift to the CNL position determined here

is likely an important factor in explaining these previously observed high optical

gap values.

Note also that the CNL still lies above mid-gap in GaN, making n-type con-

ductivity more favourable than p-type, whereas for AlN, where the CNL lies a long

way from both the CBM and VBM, n- and p-type doping are both difficult [53]. The

position of the CNL relative to the band edges well explains the individual doping

characteristics of the different III-N materials.

5.5.3 Hydrogen in InN

Hydrogen can form a positive or negative charge state in semiconductors, and usu-

ally acts to counteract the prevailing conductivity, so that it is a donor (acceptor)

in p-type (n-type) material [25]. However, as discussed in Chapter 4, the H(+/−)

transition energy is the CNL, and so for materials where the CNL lies above the

CBM, as here, hydrogen can be a donor even in n-type samples. Indeed, hydrogen

has been theoretically predicted [191,194] (see Fig. 5.12(b)) and experimentally ob-

served [195, 196] to be a donor in n-type InN, also consistent with the behaviour

of muonium (a light isotope analogue of hydrogen) in this material [197]. Hydro-

gen must certainly, therefore, be considered as another potential source of n-type



5.5. Implications for electronic properties 93

conductivity in InN.

Discriminating between which of the native defects and impurities is respon-

sible for the unintentional n-type conductivity in InN has proved controversial. Due

to the lower calculated formation energies of impurities, such as oxygen and hy-

drogen, as compared to native defects (Fig. 5.12(b)), these have been suggested as

the dominant donors [191, 198]. However, in some cases, these do not appear to be

present in sufficient quantities to account for the total conductivity [199], and native

defects and dislocations were suggested as important sources of electrons. Hydro-

gen, being present in most growth environments, is certainly a promising candidate,

at least for a background concentration of electrons. However, it should also be

noted that interstitial hydrogen, with the lower formation energy of the hydrogen

impurities, may not be stable at growth temperatures [191]. Additionally, an ex-

trapolation of the formation energy calculations of Janotti and Van de Walle [191]

to Fermi levels above the CBM (Fig. 5.12(b)) reveals that the formation energy

for substitutional hydrogen and nitrogen vacancies may be expected to cross if H2+
N

remains the favourable charge state for substitutional hydrogen for Fermi levels well

into the conduction band. At Fermi levels typical for InN samples, in particular at

the surface where impurities are incorporated during growth, hydrogen impurities

and native defects could both, therefore, be important.

5.5.4 Interface-related electron density

An increase in electron density approaching the InN/buffer layer interface is also

thought to occur [200–208], although the microscopic origin of this is still debated.

As the lattice mismatch between InN and typical buffer layers is very large (∼11%

for GaN,∼14% for AlN), the interface is characterised by a large density of threading

dislocations (TDs) acting as a strain relieving mechanism [202,203,209,210]. Piper et

al. [200] and Cimalla et al. [202] independently proposed these dislocations as the

microscopic origin of the interface-related electron density. Due to the Γ-point CBM

lying below the CNL in InN, point defects along or impurities localized at the TDs

will preferentially have donor character, supporting the assignment of TDs as the
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Figure 5.13: (a) n-type barrier height, ΦBn , for metal contacts on InN as a function of metal
electronegativity. (b) The equivalent plot for GaN, adapted from Kampen and Mönch [182].

microscopic origin of an increase in electron density approaching the InN/buffer

layer interface, as for the similar case of InAs/GaP interfaces [211]. This will be

discussed in detail in Chapter 6.

5.5.5 Metal contacts to InN

Virtually all attempts to form metal/InN contacts have resulted in Ohmic, rather

than rectifying (Schottky), behaviour [139]. This can be understood within Mönch’s

metal-induced gap states (MIGS) model, discussed in Section 1.3.3. Taking the CNL

to lie 1.83 eV above the VBM (as determined here) and ε(∞) = 6.7 [212], Eqns. 1.14

and 1.15 give the variation of n-type barrier height with metal electronegativity

shown in Fig. 5.13(a). For a wide range of metal electronegativities, the barrier

height is negative, indicating Ohmic behaviour for a laterally homogeneous metal

contact. In contrast, for GaN shown in Fig. 5.13(b), the zero-charge-transfer barrier

height is positive, allowing a range of metals to make Schottky contacts to GaN [182].

The differing location of the CNL in InN and GaN explains the opposing tendencies

of their metal-semiconductor contact behaviour.
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5.6 Conclusions

The CNL in InN has been located 1.83 ± 0.10 eV above the VBM, well above the

Γ-point CBM. This was determined directly from experimental energy measure-

ments of the surface Fermi level position stabilized at the CNL by heavy Si-doping,

and confirmed using a combination of photoemission and optical measurements and

QPC-DFT calculations. The location of the CNL above the band extrema was un-

derstood by the particularly low Γ-point CBM value compared to the average band

edge across the Brillouin zone.

Many of the fundamental properties of the material which are often considered

unusual, such as an extreme electron accumulation at the surface, inversion layer

formation at the surface of p-type material, the propensity for high unintentional

n-type conductivity, the donor nature of hydrogen even in n-type material, and the

Ohmic behaviour of metal/InN contacts, were explained by the position of the CNL

relative to the band edges. Far from being anomalous, therefore, the fundamental

electronic properties of InN are governed by the same overriding mechanism as in

other semiconductors, namely the position of the band edges relative to the CNL.

This position follows from the chemical trends of common-cation and common-anion

semiconductors, providing an understanding of the striking electronic properties of

this material.



Chapter 6

Surface and interface-related electron density
in InN

6.1 Introduction

As discussed in Chapter 5, InN exhibits an extreme accumulation of electrons at the

surface, in contrast to all other III-V semiconductors except for InAs, which exhibit

a depletion of electrons at the surface. This has many important implications for

the use of InN as a material in device applications, in particular for the properties of

contacts that can be made to the surface, its role as a material for chemical sensing

applications and its potential for emission of THz radiation. Previous experimental

studies of this electron accumulation have focussed on wurtzite (wz) c-plane sur-

faces [7,138,201], although first-principles calculations [213] have predicted electron

accumulation at non-polar surfaces in the presence of In-adlayer surface reconstruc-

tions. Experimentally, however, studies of non-polar wurtzite surfaces and indeed

studies of other polymorphs of InN have been largely neglected.

In this chapter, high-resolution x-ray photoemission spectroscopy (XPS) is

used to investigate electron accumulation at cleaned wurtzite a- and c-plane surfaces,

as well as at the (001) surface of zinc-blende (zb) material. A remarkable universality

is observed between the degree of electron accumulation at different surfaces of

wurtzite material, and this is discussed in terms of the conduction band minimum

(CBM) position relative to the charge neutrality level (CNL). An interface-related

electron density in InN is also probed both via a comparison of surface and bulk

sensitive measurements, and by transport modelling of single-field Hall effect results.

Finally, the implications of electron accumulation on the growth and characterisation

of p-type InN are investigated.
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6.2 Experimental details

Wurtzite c-plane InN samples were grown on c-plane sapphire substrates by plasma

assisted molecular-beam epitaxy (PAMBE) with In- and N-polarity [(0001), grown

at Cornell University, USA, and (0001̄), grown at Ritsumeikan University, Japan,

respectively]. GaN/AlN and low-temperature InN buffer layers were used for the In-

and N-polarity samples, respectively. An a-plane (112̄0) sample was grown on an

r-plane sapphire(11̄02) substrate incorporating a GaN/AlN buffer layer at Cornell

University. Zinc-blende InN(001) samples were grown on 3C-SiC(001) substrates

incorporating a zb–GaN buffer layer at Universität Paderborn, Germany. As zb–InN

is not the most energetically favourable polymorph, wz inclusions are present in the

zb–InN film. The results presented here are from the sample with the lowest density

of wz inclusions – the sample was estimated to be approximately 95% zb phase

InN from x-ray diffraction reciprocal space mapping [144], allowing experimental

studies of almost phase pure zb–InN to be undertaken. Details of the various growth

methods and materials characterisation are reported elsewhere [144, 214–216]. Mg-

doped InN was also grown at Cornell University on c-plane sapphire by PAMBE,

incorporating a GaN buffer layer [214]. Secondary ion mass spectroscopy (SIMS)

measurements revealed a doping concentration of [Mg] = 3× 1019 cm−3, calibrated

from the Mg-SIMS profile of an undoped InN sample implanted with Mg25 to a

dose of 1× 1014 cm−2. Mg25 was utilized for the calibration sample to prevent false

counts from C2 fragments. The natural isotope abundances were used to determine

the total Mg-concentration in the InN:Mg sample.

Single-field Hall effect and XPS measurements were performed at room tem-

perature as described in Chapter 3. Sample preparation, performed in a preparation

chamber connected to the XPS chamber, was achieved by atomic hydrogen cleaning

(AHC), which has been shown to effectively clean surfaces of InN without causing

electronic damage [217]. The AHC consisted of annealing the samples at ∼ 200◦C

under exposure to a 10–20 kilo-Langmuir dose of molecular hydrogen passed through

a thermal gas cracker with a cracking efficiency of approximately 50%, followed by a

1–2 hour anneal at ∼275◦C. Core-level XPS was performed before and after surface
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preparation. Before treatment, a large O signal was observed for all samples, with

a corresponding significant oxide component in the In and N core level peaks chem-

ically shifted to higher binding energies than the In–N bonding component. The

surface oxide was seen to be largely quenched with the AHC treatment, although

small concentrations (estimated to be submonolayer) of adventitious carbon and

oxygen were still observed following the surface preparation. Scanning electron mi-

croscopy was used to ensure that the AHC had not resulted in In-droplet formation

at the surface.

Quasiparticle-corrected density-functional theory (QPC-DFT) calculations

were performed elsewhere, as discussed in Section 2.1.2. For comparison with the

experimental results, the QPC-DFT valence band density of states (VB-DOS) is

broadened by a 0.2 eV full width at half maximum (FWHM) Lorentzian and a

0.4 eV FWHM Gaussian to account for lifetime and instrumental broadening, re-

spectively. The surface Fermi level position was determined by the shift in spectral

features between the valence band photoemission and the QPC-DFT calculated

VB-DOS, as performed in Chapter 5.

6.3 Universality of electron accumulation

6.3.1 Wurtzite InN

Valence band photoemission spectra from wz In- and N-polarity c-plane, and a-

plane InN samples, following surface preparation by AHC, are shown with QPC-

DFT VB-DOS calculations in Fig. 6.1. The differences in intensity of the ∼ 3 eV

binding energy peak between the samples has been shown to be a signature of the

film polarity [151,152]. Apart from this difference, the valence band photoemission

spectra are very similar for the different samples. In particular, all of the photoemis-

sion spectra are coincident in energy, indicating the same valence band maximum

(VBM) to surface Fermi level separation. This is determined, from the shift in peak

position compared to the QPC-DFT calculations, to be 1.53± 0.10 eV for all three

samples, revealing that the surface Fermi level is pinned ∼ 0.9 eV above the CBM
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Table 6.1: Bulk carrier density, n, determined from single-field Hall effect measurements, and cor-
responding bulk Fermi level above the CBM, EFb

, calculated using non-parabolic carrier statistics
(Chapter 2). The band bending, Vbb, is calculated from the relative surface and bulk Fermi level
positions. Poisson-MTFA calculations give the surface-state density, Nss.

Orientation n (cm−3) EFb
(eV) Vbb (eV) Nss (cm−2)

(112̄0) 4.8× 1018 0.164 -0.725 1.66× 1013

(0001) 3.0× 1018 0.124 -0.765 1.64× 1013

(0001̄) 6.7× 1018 0.200 -0.689 1.65× 1013

in all of the wz samples. Note also that the leading edge of the valence band pho-

toemission extrapolates to the same value for all three samples, which is very close

to, but slightly below, that determined by comparison with the calculated VB-DOS,

consistent with the findings presented in Chapter 5.

The bulk electron densities in the samples, determined from Hall effect mea-

surements (see Table 6.1) give Fermi levels 0.12–0.20 eV above the CBM from non-

parabolic carrier statistics calculations. As the position of the surface Fermi level is

located substantially further above the CBM than the bulk Fermi level in all sam-

ples, a downward band bending relative to the Fermi level at the surface is present,

leading to electron accumulation in all cases. To investigate this further, the band

bending profile and corresponding electron accumulation in the surface space-charge

region was determined by solving Poisson’s equation numerically within the modi-

fied Thomas-Fermi approximation (MTFA) as described in Chapter 2. The resulting

profiles are shown in Fig. 6.2, and the relevant parameters listed in Table 6.1.
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Figure 6.2: (a) Band bending relative to the Fermi level and (b) resulting carrier concentration
variation in the accumulation layer at wz–InN surfaces.

Despite small differences in bulk Fermi level positions, the pinning of the

surface Fermi level at the same energy for a-plane and both polarities of c-plane

InN means that the band bending close to the surface is very similar (Fig. 6.2(a)),

resulting in similar charge profiles (Fig. 6.2(b)). Indeed, the calculated surface-state

density is essentially the same for all samples (Table 6.1), indicating the universality

of the electron accumulation at wz–InN surfaces. Electron accumulation has also

recently been observed at the non-polar m-plane surface of InN nanocolumns [218,

219], although a surface-state density for comparison with the values determined

here for epitaxial films has not yet been determined.

This universality of the electron accumulation can be understood by consid-

ering the location of the CNL high above the CBM, as determined in Chapter 5. As

discussed, the Fermi level pins slightly below the CNL at the surface leading to a pos-

itive surface charge from unoccupied donor surface states, resulting in the electron

accumulation. While the exact microscopic nature of these surface states may vary

between different surfaces, the position of the CNL is a bulk band structure prop-

erty, dictating that all surfaces will exhibit a pronounced tendency towards electron

accumulation, provided the bulk Fermi level lies below the CNL. As the density of

conduction band states is so high at the energy of the CNL, charge neutrality can be

maintained despite any small variations in surface-specific microscopic surface-state

density by only very small movements in the Fermi level: it is strongly ‘pinned’ at
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the surface of InN. This explains the universal nature of the electron accumulation

observed here at both polarities of c-plane and at a-plane InN surfaces.

Several microscopic origins of the surface electron accumulation have been

suggested. Theoretical calculations predict that In-rich surface reconstructions in-

volving In-adlayers are energetically favourable for all In chemical potential val-

ues [150], which have been experimentally confirmed under In-rich conditions from

core-level photoemission [151] and ion scattering [152] measurements, and addition-

ally from reflection high energy electron diffraction intensity oscillations [220, 221].

In-In bonds in such an In-adlayer reconstruction have been predicted as a mi-

croscopic origin of the surface states giving rise to the electron accumulation in

InN [213]. However, native defects [177] and impurities [201] have also been sug-

gested as possible mechanisms for providing the donor surface charge in oxidised

samples.

Certainly, analysis of the XPS core-level peak intensities supports the pres-

ence of In-adlayers at the surface of the samples investigated here, consistent with

In-In bonds in such adlayers being the microscopic origin of the electron accumu-

lation. Furthermore, the absence of In-adlayers on a perfect non-polar surface was

predicted to lead to an absence of electron accumulation [213]. This has recently

been observed by Wu et al. [222] who performed microscopic-area photoemission

spectroscopy on a pristine a-plane surface following cleavage in ultra-high vacuum.

This is, in fact, the usual situation for non-polar surfaces of III-V semiconductors,

where a perfect cleave causes the surface states to relax out of the band gap, lead-

ing to flat-bands [36, 37]. Note, this does not contradict the CNL arguments given

here – while for a perfect cleave, the microscopic situation may lead to zero charged

intrinsic surface states, the tendancy for any extrinsic surface states to be donors

is still there. Consequently, an imperfect cleave, resulting in any step edges, for

example, or any contamination of the surface would all be expected to result in a

pronounced electron accumulation again.
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Figure 6.3: (a) Valence band photoemission
spectrum for zb–InN(001) and corresponding
QPC-DFT VB-DOS shown without (shaded)
and with lifetime and instrumental broaden-
ing. Poisson-MTFA calculations yield (b) band
bending and (c) carrier concentration profiles.
The bulk Fermi level was determined from the
imaginary part of the dielectric function, de-
termined by spectroscopic ellipsometry (shown
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6.3.2 Zinc-blende InN

Valence band photoemission from zb–InN(001) is shown in Fig. 6.3(a). The DOS

is somewhat different for zinc-blende compared to wurtzite polymorphs, and the

detailed agreement of the XPS with the QPC electronic structure calculations is

discussed elsewhere [83], although good agreement is seen when incorporating a

VBM to surface Fermi level shift of 1.38± 0.10 eV.

Poisson-MTFA calculations for InN(001), using a room temperature band gap

of 0.56 eV [144] and a band-edge electron effective mass of 0.039m0 (based on the

empirical relation m∗ ≈ 0.07Eg [165]), are shown in Fig. 6.3. Due to growth on a

conducting substrate, single-field Hall effect measurements did not yield an accurate

carrier concentration for the InN layer. The bulk Fermi level was therefore estimated

from the imaginary part of the dielectric function (determined by spectroscopic

ellipsometry [144]), shown inset in Fig. 6.3, to be 1.05 eV above the VBM. This

corresponds to a bulk electron concentration (from non-parabolic carrier statistics

calculations) of 3.2× 1019 cm−3.
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Despite the higher bulk carrier density than in the wurtzite samples, a distinct

electron accumulation is still observed. However, the Fermi level appears to pin

slightly lower above the VBM, and the surface-state density from Poisson-MTFA

calculations (Nss = 9.11×1012 cm−2) is somewhat lower, for the zinc-blende than the

wurtzite cases. Although it has not been determined for InN, the valence band offset

(VBO) between wurtzite and zinc-blende GaN is less than 100 meV [223,224], and

would be expected to decrease with increasing ionicity of the semiconductor [225].

Thus, the VBO between wurtzite and zinc-blende InN is expected to be small, and

consequently the band edges in zinc-blende InN will still occur significantly below the

CNL. Indeed, using the Tersoff method (Eqn. 1.10, which gave good agreement with

the measured CNL in wz–InN, as discussed in Chapter 5) for the calculated zinc-

blende band structure (Fig. 5.3(b)), the CNL can be estimated to lie 1.88 eV above

the VBM in zb–InN, and so well above the Γ-point CBM as for the wz polymorph.

Thus, while the detailed surface state distribution may be rather different to the

previous cases, leading to the differences in observed surface Fermi level pinning

position, the bulk band structure still dictates that electron accumulation will occur

at the surface for this polymorph, as observed here.

6.3.3 Influence of growth conditions?

Fehlberg et al. [226] investigated the transport properties of In-polarity wz–InN films

grown under In-rich, stoichiometric and N-rich conditions by multiple-field Hall ef-

fect measurements. Their interpretations of the results suggested that the sheet

density associated with the surface electron accumulation layer increases with de-

creasing In-flux during growth, attributed to the increasing roughness of the surface.

Additionally, an investigation of the film-thickness dependence of the sheet density

determined from single-field Hall effect measurements of In- and N-polarity sam-

ples grown under optimised In-rich conditions [198, 227] revealed a different excess

sheet density in each case, interpreted as a change in the surface electron accumu-

lation. These interpretations are seemingly in contrast to the universality of the

surface electron accumulation observed here. However, King et al. [207] performed
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an XPS investigation of samples grown under identical conditions to those used in

these transport measurements, showing that the surface Fermi level exhibited no

dependence on film polarity or growth conditions.

The invariance of the surface Fermi level position of InN grown under differ-

ent conditions can be reconciled with the differing properties suggested by previous

electrical characterisation by considering an increase in electron density approaching

the InN/buffer layer interface (introduced in Section 5.5.4) which was not previously

considered in the interpretation of the electrical measurements. This supports the

universality of the electron accumulation at as-grown and ex-situ prepared InN sur-

faces, but indicates the necessity to consider the interface related electron density

when attempting to extract the surface electron contribution from electrical mea-

surements of InN.

6.4 Interface-related electron density

Further evidence for an interface-related electron density in InN is considered in this

section. Previous analysis of single-field Hall effect results from a large number of

samples grown by PAMBE on GaN and AlN buffer layers revealed some interesting

trends. A marked increase in carrier density was obtained with decreasing film

thickness, along with a corresponding decrease in Hall mobility [171, 200, 202, 214],

shown for samples grown by PAMBE on GaN buffer layers in Fig. 6.4.

The universal electron accumulation discussed above provides a possible mech-

anism for a variation in average electron concentration with film thickness, as the

surface electron accumulation contributes a constant sheet density, independent of

the film thickness. To investigate the effect of this on the single-field Hall results,

a parallel conduction analysis [187, 228] has been performed here, where the Hall

sheet density, NH , and mobility, µH , satisfy

NHµH = Nsµs + Nbµb (6.1a)

NHµ2
H = Nsµ

2
s + Nbµ

2
b (6.1b)

where Ns (Nb) and µs (µb) are the surface (bulk) sheet density and mobility, re-
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Figure 6.4: (a) Volume electron concen-
tration and (b) mobility determined by
single-field Hall effect measurements of a
number of InN samples of varying thick-
ness grown by PAMBE on GaN buffer
layers on sapphire substrates [171, 214].
A parallel conduction model, described
in the text, considering bulk and surface
(dashed line) and additionally interface
(solid line) contributions is also shown.

spectively. The surface sheet density is taken as the universal value of Ns =

1.65 × 1013 cm−2 determined above, and the mobility of these surface electrons

is estimated as µs ≈ 100 cm2V−1s−1 from previous multiple-field Hall effect mea-

surements [229]. A uniform background ‘bulk’ volume density of nb = 3×1017 cm−3

is taken from the slope of the sheet density as a function of film thickness for In-polar

InN grown under In-rich conditions on a GaN template [198], from the ‘bulk’ electron

density determined by multiple-field Hall effect measurements on a 7.5 µm thick InN

sample [229], and from the volume electron concentration determined by single-field

Hall effect measurements of thick samples (Fig. 6.4). This is converted into a sheet

density Nb = nbd, where d is the film thickness. The bulk carrier mobility was calcu-

lated from the ionized impurity scattering time calculated using the non-parabolic

formalism of Zawadzki and Szymanska [230], as described elsewhere [176].

The results of this parallel conduction model are shown in Fig. 6.4 (dashed

line). The electron concentration is clearly underestimated, and the mobility over-

estimated, for all thicknesses of sample. Even though very high carrier densities
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are present in the peak of the accumulation layer (∼1020 cm−3, Fig. 6.2), the band

bending occurs over a distance determined by the Thomas-Fermi screening length,

with the band bending potential reducing to zero over a distance of approximately

10 nm in InN. Consequently, the high carrier densities are very localized at the sur-

face, and so do not contribute significantly to the measured electron density, except

for very thin films. Additionally, as the carriers associated with the surface electron

accumulation have a lower mobility than those in the bulk, their influence on the

single-field Hall effect measurements is reduced further. It should be noted, however,

that even if the mobility of the surface electrons is assumed to be as high as that of

the bulk electrons, this model is still insufficient to reproduce the variation in mea-

sured electron density with film thickness [200]. Another explanation is therefore

required to explain the single-field Hall effect results.

InN has a large lattice mismatch with typical substrate and buffer layer ma-

terials, for example 11% and 14% with GaN and AlN, respectively. Consequently,

the InN/buffer layer interface is characterised by a large number of strain-relieving

threading dislocations (TDs), whose density falls off exponentially with distance

from the interface [209, 210, 231, 232]. By analogy with GaN [233], charged disloca-

tion scattering was suggested as a mechanism to explain the reduction in mobility

with decreasing film thickness [214]. However, dislocations in GaN are known to act

as acceptors, and this was originally assumed to be the case for InN also [209], and

so this mechanism was not thought to explain the dependence of the electron density

on film thickness. However, Piper et al. [200] and Cimalla et al. [202] suggested that

if dislocations at the interface acted as a source of donors, as for InAs/GaP [211]

and InAs/GaAs [234], this would give an effective mechanism with which to ex-

plain the thickness dependence of the single-field Hall effect results. The resulting

model for electron density in InN films is shown schematically in figure 6.5(a), and

is characterised by three contributions – I: the background ‘bulk’ density resulting

from defects or impurities uniformly distributed throughout the film; II: surface

electron accumulation; and III: donors due to dislocations, whose density falls off

exponentially away from the interface.
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Figure 6.5: (a) Schematic representation of the ‘three-region’ model for conductivity in InN,
indicating the I: bulk, II: surface, and III: interface contributions to the total electron concentration,
n, as a function of depth. (b) Representation of the quantized layer model used for the full parallel
conduction analysis described in the text.

Previous modelling of these three contributions was able to reproduce the

film-thickness dependence of the carrier concentration determined from single-field

Hall effect results for InN films grown on both GaN [200] and AlN [202,203] buffer

layers, but the analysis was performed assuming the same mobility for carriers in

each region. To validate this model, it is necessary to reanalyze the data incorporat-

ing varying mobilities of the different contributions, within a full parallel conduction

treatment. Such an analysis is presented here. In this model, the sample is divided

up into slabs of 1 nm thickness, shown schematically in figure 6.5(b). The volume

density in the jth slab

nj = nb + Dj/C, (6.2)

where nb is the background ‘bulk’ concentration considered previously, Dj is the

areal density of dislocations in the slab, assumed to follow the relation D(x) =

A(10− log10 x) with distance x from the interface [235], and C is the separation of

charged centres along a dislocation. The constant A is treated as a fit parameter to

reproduce the experimentally measured dislocation densities of 5.0×1010 cm−2 [209]

and 2.2× 1010 cm−2 [210] at 450 nm and 760 nm away from the InN/GaN interface,
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respectively. The mobility in the jth slab is given by

µ−1
j = µ−1

disj
+ µ−1

ionj
(6.3)

from Matthiessen’s rule, where the ionized impurity scattering is calculated as de-

scribed above, and scattering from dislocations is included via the formalism of

Look et al. [209]

µdisj
=

4(32/3)eC2n
2/3
j

π8/3~Dj

[1 + y(nj)]
3/2 , (6.4)

where

y(nj) =
2(31/3)π8/3~2ε(0)n

1/3
j

e2m∗ , (6.5)

where ε(0) = 9.7 is the static dielectric constant and m∗ the effective mass. Although

these relations assume parabolic band dispersion, conduction band non-parabolicity,

important in InN, is approximately included by replacing the effective mass in these

relations by the effective mass calculated at the Fermi level in each slab using the

non-parabolic relations discussed in Section 2.1.1. The parallel conduction model

introduced in Eqn. 6.1 is extended to incorporate the surface, bulk and interface-

derived carriers:

NHµH = Nsµs +
∑

j

(nj`)µj (6.6a)

NHµ2
H = Nsµ

2
s +

∑
j

(nj`)µ
2
j (6.6b)

where ` = 1 nm is the thickness of each slab.

The calculated volume electron concentration and mobility, assuming singly

charged scattering centres, a compensation ratio of 0.5, an impurity centre every

three unit cells along a dislocation, and the surface and bulk parameters used above,

are shown in Fig. 6.4 (solid lines). The thickness dependence of the volume elec-

tron density is well reproduced using this parallel conduction treatment, validating

the results of previous studies [200, 202] where variations in mobility were not con-

sidered. Further, it allows a calculation of the Hall mobility, which, as shown in

Fig. 6.4(b), exhibits good agreement with the measured values at sample thicknesses

below ∼1 µm. Above this, however, the experimental mobility is somewhat below
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that of the calculated values. Hsu et al. [236] have shown that, while at high car-

rier concentrations, the mobility is limited virtually solely by Coulomb scattering, at

lower electron densities, other mechanisms such as polar optical and acoustic phonon

scattering become important, reducing the mobility below that of the Coulomb scat-

tering limited value. For films thicker that ∼1 µm, the electron density is relatively

low, below 1018 cm−3, and so it is likely that, in addition to Coulomb and dislocation

scattering, phonon scattering also becomes important. This would reduce the mo-

bility below the calculated value, explaining the discrepancy between the calculated

and measured values for thick films. Notwithstanding these slight discrepancies, the

good general agreement between the calculated and measured electron concentra-

tions and mobilities supports the three-region model for conductivity in InN, with

the bulk, surface and particularly interface-related carriers all being important.

The highly n-type nature of an interface-related contribution is also supported

by the infrared reflectivity measurements of Ishitani et al. [237] and the modelling

of electrolyte-gated Hall effect measurements of Brown et al. [238], who estimated

a sheet density of ∼ 1013 cm−2 and 7.5 × 1013 cm−2 electrons associated with the

interface, respectively. Further, combined structural and electrical studies show a

correlation between the TD density and the average (Hall) electron concentration in

samples grown by both MBE [239] and MOVPE [206]. Variations in the interface-

related electron density with buffer layers, growth polarity and growth conditions are

also important. The extrapolated ‘excess’ sheet density for zero-thickness samples

determined from single-field Hall effect results has been shown to be slightly larger

when using AlN rather than GaN buffer layers [138, 240], and for In- rather than

N-polar InN samples, while the density of low-mobility electrons, not associated

with the background ‘bulk’ carriers, in multiple-field Hall effect measurements has

been shown to increase with decreasing In-flux during growth [226]. Any change in

the sheet density of the surface electron accumulation with buffer layer, polarity, or

growth conditions has been ruled out (see above) leaving the interface contribution

as the only remaining plausible cause of these changes. Each increase in interface-

related electron density can be correlated with an increase in the expected density
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of TDs, due to the larger lattice mismatch of InN with AlN than with GaN, or with

differing polarity and growth condition as previously inferred from x-ray diffraction

studies [227].

Recently, Darakchieva et al. [241] have questioned the interpretation of dislo-

cations as a source of interface-related electron density in InN from magneto-optic

generalised ellipsometry (MOGE). They analysed their MOGE data based on a two-

layer model including a surface electron accumulation and bulk layer, determining

a more pronounced variation in bulk concentration than might be expected from

the dislocation model presented here, along with potential small variations in sur-

face electron density. However, there are a number of significant problems with

their analysis: they did not include the possibility of any interface-related electron

density in their model of the MOGE data; they modelled smoothly varying car-

rier concentration profiles as two step functions; they did not consider bulk carrier

concentration dependence of the thickness of the surface electron accumulation due

to changing screening lengths; the obtained carrier concentrations are the result of

very complex multi-parameter fits; and their analysis was limited to a very small

sample set. In contrast, Lebedev et al. [203] presented a very convincing correlation

between the directly measured variation in dislocation density as a function of film

thickness and the free-electron concentration. From the modelling of single-field Hall

effect data presented here, and the observations of interface-related electron density

in InN discussed above, donors localized at dislocations certainly seem a probable

candidate. However, the exact microscopic origins of the electrons (whether they be

donor-type native defects localized at, or impurities decorating, dislocations), and

whether there are any additional sources of the observed film-thickness dependence

of electron concentration, warrant further investigation.

6.5 Inversion layers

As for n-type InN, the Fermi level would be expected to pin slightly below the

CNL at the surface of p-type InN, again leading to a positive surface charge. This

positive surface charge must still be balanced by a negative space charge in order
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Figure 6.6: Broadened QPC-DFT VB-
DOS (solid line) and Shirley-background-
subtracted valence-band photoemission
spectra for undoped (dashed line) and Mg-
doped (dot-dashed line) InN.

to maintain charge neutrality. As the Fermi level approaches the CNL from below

for both n- and p-type InN, the pinning position would be expected to be similar.

This is confirmed by valence band photoemission measurements for an undoped and

a Mg-doped InN sample, following surface preparation by AHC, shown in Fig. 6.6.

Comparing with the VB-DOS from QPC-DFT calculations, as above, the VBM to

surface Fermi level separation is determined as 1.4±0.1 eV for the Mg-doped sample,

slightly lower than the value of 1.5(3) ± 0.1 eV for the undoped sample (discussed

above). Due to the relative positions of the bulk Fermi levels, a greater degree of

band bending occurs for Mg-doped (p-type) compared to undoped (n-type) InN,

resulting in a greater space charge. For charge neutrality to be maintained, this

space charge must be balanced by a larger surface-state charge, requiring the Fermi

level to be located slightly further below the CNL at the surface of Mg-doped than

undoped InN so that more donor surface states are unoccupied. This explains the

slight difference in pinning position of the Fermi level observed here at the surface

of undoped and Mg-doped InN.

Despite this small difference, the surface Fermi level still pins well above the

CBM for p-type InN, resulting in an n-type surface region (electron accumulation)

separated from the p-type bulk by a depletion layer. Determination and charac-

terisation of a bulk p-type conductivity in InN are therefore very difficult. Direct

measurements, such as the single-field Hall effect, are dominated by the surface elec-

tron accumulation, revealing only n-type conductivity. Several recent works have
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used alternative techniques to infer the presence of a p-type bulk in some Mg-doped

InN samples. Jones et al. [187] investigated Mg-doped InN using a combination

of electrochemical capacitance-voltage (ECV) profiling and the effects of 2 MeV

He+ ion irradiation. The principal evidence for a bulk p-type conductivity came

from the ECV profiling, where a turnover in ∂(C−2)
∂V

with increasing bias voltage, V ,

was interpreted as evidence for a p-type region below the n-type surface. However,

ECV yields information on the acceptor density, rather than the density of free

holes in the material. Furthermore, Yim et al. [242] have shown that the turnover

in ∂(C−2)
∂V

occurs even in n-type samples at sufficient bias voltages, and modelling

is important to determine if a p-type bulk conductivity is present. ECV profiling

seems to have been adopted as the primary method to study p-type conductivity

in InN [243]. However, even with modelling, it is very difficult to distinguish be-

tween a p-type bulk and a heavily compensated n-type bulk. Recent thermopower

measurements [164, 244] seem somewhat more conclusive, with a positive Seebeck

coefficient measured giving a clear indication of mobile holes in the material. Ander-

son et al. [245] have additionally employed multiple-field Hall effect measurements,

using quantitative mobility spectrum analysis and multiple carrier fitting to reveal

both electron and hole signals with differing mobilities in Mg-doped InN. However,

this technique requires a complex fitting procedure, and does not have any depth

resolution. The unambiguous determination and characterisation of bulk p-type

conductivity in InN, therefore, remains a very active challenge.

For the Mg-doped sample investigated here (GS1810), the bulk acceptor den-

sity has been estimated as NA = 2.1× 1019 cm−3 from ECV modelling [242], consis-

tent with high concentrations of mobile holes estimated from thermopower measure-

ments [244]. This density has been used here to determine the bulk Fermi level in

Poisson-MTFA calculations, yielding band bending and carrier concentration pro-

files as a function of depth below the surface as shown in Fig. 6.7.

The propensity for high n-type conductivity in InN (discussed in Section 5.5.2),

combined with the difficulty associated with p-type doping GaN [246], has resulted in

the assumption that p-type doping of InN will be extremely difficult [247]. Despite
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Figure 6.7: Poisson-MTFA calculations
of (a) band bending and (b) carrier con-
centration variation in the inversion layer
of the Mg-doped sample investigated here.

this, the investigations discussed above have suggested that InN has successfully

been p-type doped with acceptor densities [187, 243] and heavy hole concentra-

tions [245] estimated to be in excess of 1019 cm−3, and possibly even degenerate

concentrations of free holes have been identified [244]. The pinning of the Fermi

level well into the conduction band at the surface may actually provide an intrinsic

mechanism that increases the efficiency of p-type doping InN with Mg. The forma-

tion energy of the singly-charged acceptor formed by Mg substitutionally occupying

the In site (Mg−In) is shown (after Stampfl et al. [190]) in Fig. 6.8(a). The formation

energy decreases with increasing Fermi energy, indicating that it is easier to incor-

porate Mg-acceptors into the InN sample in regions of high n-type conductivity,

where the Fermi level is high.

As seen above, the bulk conductivity has relatively little effect on the Fermi

level position at the surface. The variation in Fermi level with depth for n- and

p-type InN determined from Poisson-MTFA solutions for the samples considered

above, with bulk carrier concentrations of n = 3× 1018 cm−3 for the n-type sample
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and p = 2 × 1019 cm−3 estimated for the p-type sample, are shown in Fig. 6.8(b).

Irrespective of the bulk conductivity or net donor/acceptor concentration, the Fermi

level is very high at the surface. Consequently, the formation energy for incorpora-

tion of Mg−In acceptors is substantially lower at the surface than in the bulk of the

material. During epitaxial growth, the Mg can therefore be incorporated more easily

(as it is at the surface) than would be expected from considering the bulk properties

of the material alone. Thus, despite masking its presence in conventional electrical

characterisations, the p-type doping efficiency of InN may actually be enhanced by

the presence of electron accumulation at the surface, explaining the high acceptor

and hole densities that have previously been identified in InN:Mg films.

6.6 Conclusions

Electron accumulation has been shown to occur universally at InN surfaces due to

the low position of the band extrema with respect to the charge neutrality level.

The surface Fermi level pinning was shown to be the same for a-plane and for

both polarities of c-plane wurtzite InN, although the pinning position was slightly
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lower for zinc-blende InN(001). In addition to an accumulation of electrons at the

surface, evidence was presented for an increase in electron density approaching the

InN/buffer layer interface. A ‘three-region’ model was discussed, including contribu-

tions from background donors, interface-related electrons and the surface electron

accumulation layer. A parallel conduction analysis of this model was performed,

incorporating both ionized impurity scattering and charged dislocation scattering,

reproducing the film-thickness dependence of carrier concentration and mobility de-

termined from single-field Hall effect measurements of a large number of samples.

The surface electron accumulation layer was shown to lead to inversion layers

in p-type InN. The Fermi level at the surface is pinned well above the CBM for

both n-type and p-type InN, with only a slightly higher pinning position for the

n-type case. From previous calculations of the formation energy for Mg−In acceptors,

and from the pinning of the Fermi level at the surface determined here, the electron

accumulation layer was shown to enhance the dopability of InN with Mg during

epitaxial growth, explaining the high acceptor densities determined in some of the

InN:Mg samples grown to date.



Chapter 7

Electronic properties of III-N alloys

7.1 Introduction

The III-nitrides present enormous promise for a range of electronic and optoelec-

tronic device applications. This perhaps became most apparent with the introduc-

tion of high-brightness blue light emitting and laser diodes based around Ga-rich

InGaN alloys [248–250], which have since stimulated a multi-billion dollar indus-

try with implementation into many commercial technologies such as ‘Blu-ray’ DVD

players.

The revision of the band gap of InN to less than 0.7 eV (see Section 5.1.2)

extends the spectral range covered by this material system well into the infrared.

Combined with GaN and AlN, which have fundamental band gaps of ∼3.5 eV and

∼6.2 eV respectively [170], In(Ga,Al)N alloys have a range of band gaps that covers

an extremely large spectral window. As shown in Fig. 7.1, these band gaps are

almost perfectly matched to the solar spectrum, suggesting potential application

in full solar-spectrum high-efficiency photovoltaic devices. The range of band gaps

offered by the III-N materials may, in fact, allow a multi-junction solar cell to be

constructed from a single material system with an efficiency in excess of 50% at one

sun illumination [251]. Wu et al. [252] have further shown that the optoelectronic

properties of In-rich InGaN alloys show a higher degree of resistance to damage by

high-energy irradiation than materials such as GaAs and GaInP that are presently

used in photovoltaics, suggesting the application of In-rich III-N materials in solar

cells for operation in hostile environments such as outer space. Given the high

luminescence efficiency of InGaN, despite being characterised by high defect and

dislocation densities [253], intense research effort has also been focussed on the III-N

materials for use in high-performance light-emitting and laser diodes [250,253,254],

including their potential application in solid state lighting [255].

Despite their importance for device applications, the electronic, and especially
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Figure 7.1: Fundamental band gaps of the InGaN and InAlN alloy systems, showing their good
matching to the solar spectrum.

surface electronic, properties of (particularly In-rich) In(Ga,Al)N alloys are still

not well characterised or understood. In order to achieve functioning devices, the

surface electronic properties need to be understood across the composition range.

In particular, they are crucial in determining the properties of metal/semiconductor

and semiconductor/semiconductor contacts, which are fundamental components of

the majority of device architectures. For example, to extract current from high-

efficiency multi-junction solar cells, tunnel junctions must be formed between the

active regions. This is not possible at InN surfaces, for example, where an electron

accumulation generally results in ohmic contacts.

InAs is the only other III-V semiconductor which has been observed to ex-

hibit electron accumulation at its surface [39]. Consequently, when InAs and InN

are alloyed with other III-V materials, a transition from electron accumulation (in-

version) to electron (hole) depletion for n- (p-) type material would be expected.

This has previously been investigated via the variation in Au barrier heights on
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n-InGaAs alloys [256], where such a transition was observed. Similar variation in

surface electronic properties on moving from In-rich to Ga/Al-rich alloy compo-

sitions require investigation for In(Ga,Al)N alloys, across the composition range.

Such an investigation, for undoped and Mg-doped alloys, is presented here, utilis-

ing high-resolution x-ray photoemission spectroscopy (XPS), single-field Hall effect

measurements, and solutions of Poisson’s equation within a modified Thomas-Fermi

approximation (MTFA), as described in Section 2.2.2.

7.1.1 III-N band alignment

As discussed in the previous chapters, the overriding mechanism determining whether

an accumulation or depletion of charge carriers occurs at the surface is the position

of the band extrema relative to the charge neutrality level (CNL). To determine

this across the composition range, detailed knowledge of the conduction and valence

band offsets between InN, GaN and AlN is required. In addition, these quantities

are themselves crucial to the design of heterostructure-based In(Ga,Al)N optoelec-

tronic devices, and have consequently received considerable interest in recent years,

both experimentally [257–263] and theoretically [21,25,178,186,264]. However, there

is a large variety both within and between these studies. The reasons for this are

discussed in detail in Ref. [180], but can, at least partly, be ascribed to the use of

In 4d and Ga 3d levels in the determination of the valence band offset (VBO) by

photoemission spectroscopy in a number of previous investigations. These levels,

however, are very shallow in the nitrides, and so hybridize with the valence band

structure [83]. This makes peak fitting of these features using conventional spectral

functions impossible, yielding them inappropriate for use in the VBO measurement.

For this work, an investigation of the InN/GaN and InN/AlN VBOs, using

XPS but with an alternative choice of core-levels to those that have adversely af-

fected previous measurements, was therefore undertaken, and is reported in detail

elsewhere [180,181]. The valence (conduction) band offset of InN/GaN and InN/AlN

was identified as 0.58 eV (2.22 eV) and 1.52 eV (4.00 eV), respectively, as shown

in Fig. 7.2, in good agreement with both theoretical predictions and the relative
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locations of the CNL [182, this work (Chapter 5)]. From the transitivity rule, this

gives the GaN/AlN VBO as ∼0.9 eV, in agreement with previous results [170]. As

discussed in Section 5.4, the predominant factor in determining the alignment of the

valence band edges in the common-anion III-N material system is a hybridization

(or p–d repulsion) between the cation d–orbitals and N 2p–orbital [186, 264], which

pushes the valence band maximum (VBM) to higher energies [265]. Al has no oc-

cupied d–orbitals, whereas Ga and In both have occupied d–orbitals, explaining the

relatively smaller VBO between InN and GaN than between AlN and (In/Ga)N.

Taking the CNL position in InN from Chapter 5, the band lineup of the III-N

semiconductors relative to the CNL can therefore be derived, as shown in Fig. 7.2.

7.1.2 Band-gap bowing

In addition to the binary band offsets, it is also necessary to know the variation

in bulk properties such as band offsets and band gaps across the alloy composition

range. In the simplest approximation, the so-called virtual crystal approximation,

the parameters for any In(Ga,Al)N alloy is determined from a linear interpolation

between the parameters of the binary semiconductors. This is used here for the

VBO variation across the composition range, in agreement with the theoretical

calculations of Mönch [21]. Other parameters, however, show a deviation from

this linear behaviour. The variation in In(Ga,Al)N band gap across the composition

range has previously been investigated [266–270], and was found to be well described
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by a standard bowing equation

EAB
g (x) = (1− x)EA

g + xEB
g + bx(1− x), (7.1)

where the bowing parameter b = 1.4 eV for InxGa1−xN alloys [266] and b = 4.0 eV

for InxAl1−xN alloys [269]. Due to the linear variation in valence band edge on an

absolute energy scale, all of the band gap bowing occurs in the conduction band. The

variation of other parameters, such as the effective mass, have not been investigated

in detail across the composition range. However, given the empirical relation for

the effective mass discussed in Section 5.1.2, an effective mass bowing parameter

of bm = 0.07b, where b is the band gap bowing parameter, seems a reasonable

assumption, and will be used here.

7.2 Experimental details

Undoped In0.14Ga0.86N and GaN samples were grown on c-plane sapphire substrates

by metal-organic vapour phase epitaxy at the University of Liverpool, UK, uti-

lizing a low-temperature (∼ 550◦C) GaN buffer layer. The substrate temperature

was increased to 1050◦C (830◦C) for the GaN (In0.14Ga0.86N) epilayer growth. The

remaining undoped and Mg-doped InxGa1−xN samples were grown on c-plane sap-

phire substrates by plasma-assisted molecular-beam epitaxy (PAMBE) at Cornell

University, USA, incorporating AlN (grown at 800◦C) and/or GaN (grown at 750◦C)

buffer layers. The InxGa1−xN layer thicknesses ranged from 100 to 1000 nm and

growth temperatures from 480◦C to 740◦C. The Mg cell temperature was approxi-

mately 350◦C for all Mg-doped sample growths. The InxAl1−xN alloys were grown

by PAMBE on c-plane sapphire substrates incorporating AlN buffer layers at the

University of Crete, Greece (Al-rich undoped samples) and Cornell University, USA.

The InxAl1−xN layer thicknesses ranged from 190 nm to 4600 nm. Further details

of the growth methodologies are reported elsewhere [171,214,271].

The InGaN and undoped InAlN alloy compositions were determined else-

where by x-ray diffraction (XRD) using the GaN (0002) or AlN (0002) buffer layer

peak as a reference peak and assuming a linear dependence of the lattice constant,
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Figure 7.3: Valence-band XPS spectra for (a) undoped and (b) Mg-doped InxGa1−xN alloys with
respect to the Fermi level, EF .

c, on alloy composition (Vegard’s law)

c
[
Inx(Ga/Al)1−x N

]
= c [(Ga/Al)N]− x {c [(Ga/Al)N]− c [InN]} . (7.2)

The compositions determined from XRD also agreed well with those determined

elsewhere from Rutherford Backscattering (RBS) measurements. The Mg-doped

InAlN alloy compositions were all determined from RBS measurements.

Single-field Hall effect and XPS measurements were performed as described

in Chapter 3. However, the Al-rich samples were insulating and so required charge

compensation during the XPS measurements via a low-energy electron flood gun.

For these alloys, the calibration of the Fermi level was achieved via a referencing

of the binding energy of the C 1s core-level peak (from physisorbed carbon) to the

average C 1s binding energy for the In-rich InAlN samples where no flood gun had

been used.

7.3 InGaN Alloys

7.3.1 Results and Analysis

The position of the surface Fermi level as a function of alloy composition was inves-

tigated using valence band XPS measurements, shown in Fig. 7.3. For the undoped
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InxGa1−xN samples, an increase in VBM to surface Fermi level separation is ob-

served with increasing Ga-fraction, although no such monotonic trend is observed

for the Mg-doped alloys. However, it is also necessary to consider the effects of the

increasing band gap upon moving from In-rich to Ga-rich alloys. This is achieved

by determining the barrier height, ΦB (analogous to the n-type Schottky barrier

height of a semiconductor-metal junction), defined as the conduction band mini-

mum (CBM) to surface Fermi level separation, shown in Fig. 7.4. A clear trend in

barrier height is evident across the composition range for both undoped and Mg-

doped alloys, with the Mg-doped alloys exhibiting higher values of ΦB compared

to the undoped alloys for all alloy compositions, with the largest differences for

Ga-rich alloys. This difference in barrier height provides initial evidence that Mg-

doping is acting to induce a bulk p-type conductivity across the entire InGaN alloy

composition range.

The bulk carrier density in the undoped samples was measured by the single-

field Hall effect, and these values were used to determine (via non-parabolic carrier

statistics calculations) the position of the bulk Fermi level. The surface and bulk

Fermi level positions relative to the semiconductor band edges and the CNL are

shown in Fig. 7.5.

For the most In-rich alloys, the surface Fermi level position is pinned well

above the bulk Fermi level, indicating an extreme electron accumulation as for
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Figure 7.5: Surface (filled circles) and bulk (open squares) Fermi level (EF ) for undoped
InxGa1−xN alloys relative to the CNL (ECNL), and InGaN band edges (EC , EV ) and mid-gap
position (Emid). The CNL is located 1.83 eV above the VBM in InN (Section 5.3). The variation
in valence band edge is assumed to be linear after Mönch [21], with the measured valence band
offset of 0.58 eV (Section 7.1.1) and a band gap bowing parameter of 1.4 eV [266] (entirely in the
conduction band due to the linear variation of the valence band edge) used to define the band
edges relative to the CNL.

InN. In contrast, for the Ga-rich alloys, the surface Fermi level is pinned below the

bulk Fermi level, indicating an upward band bending and electron depletion at the

surface, as known for GaN [189]. For alloys closer to the middle of the composition

range, the surface and bulk Fermi level positions move closer together, leading to a

reduction in the degree of space-charge characteristics towards flat-band conditions.

This is illustrated by Poisson-MTFA calculations, shown in Fig. 7.6, which show a

pronounced electron accumulation for InN, virtually no electron accumulation for

In0.5Ga0.5N and a large electron depletion layer for GaN.

The surface Fermi level positions determined from the XPS measurements

for the Mg-doped alloys, along with those for the undoped alloys, are shown in

Fig. 7.7. The pinning position of the surface Fermi level for the Mg-doped and

undoped material diverges with increasing Ga-content, as seen from the barrier

heights discussed above. Accurate determination of the bulk carrier density is not

possible due to the inversion layers for In-rich alloys. However, assuming that Mg-

doping causes bulk p-type conductivity, the bulk Fermi level will be located close

to the VBM. Consequently, the surface Fermi level is located above the bulk Fermi
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Figure 7.7: Surface Fermi level (EF ) for undoped (circles) and Mg-doped (triangles) InxGa1−xN
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The band edges are constructed as in Fig. 7.5. A schematic representation of the space-charge
characteristics of each of the end points is also shown.
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level across the composition range, indicating that downward band bending occurs

for all alloy compositions. For the Ga-rich alloys, this leads to a hole depletion layer

occurring at the surface, as shown schematically in Fig. 7.7. However, for the In-

rich alloys, the surface Fermi level is pinned above the mid-gap position; electrons

are the dominant carrier species at the surface, creating an inversion layer where

the p-type bulk is separated from an n-type surface region by a depletion layer, as

represented schematically in Fig. 7.7.

7.3.2 Discussion

The space-charge regions discussed above are consistent with the theory of virtual

gap states (ViGS) and the variation of the CNL position relative to the band edges

across the alloy system. The Fermi level approaches the CNL from below for both n-

and p-type InN bulk conductivities. Consequently, the surface Fermi level pinning

position is similar in both cases. This leads to extreme electron accumulation at

the surface of both n- and p-type InN, which balances a positive surface charge due

to unoccupied donor ViGS. For p-type InN, this electron accumulation leads to the

formation of an inversion layer, as discussed in Section 6.5.

With increasing Ga fraction, the surface Fermi level for the n-type alloys

remains pinned close to the CNL. However, as the CBM approaches, and typical

Fermi levels move above, this energy, the surface Fermi level becomes pinned above

the CNL (Fig. 7.5), causing some acceptor ViGS to be occupied and hence negatively

charged. This surface charge is balanced by a reduction in near-surface electron

density manifested as an upward bending of the bands with respect to the Fermi

level. Thus, Ga-rich n-type alloys have electron depletion regions at the surface,

as represented schematically in Fig. 7.7. The InxGa1−xN composition marking the

transition from surface electron accumulation (In-rich alloys) to electron depletion

(Ga-rich alloys) can be estimated, to first order, as the crossing of the surface Fermi

level pinning position and the CNL. From Fig. 7.7, this is estimated to occur at

x ≈ 0.41, although this will show some variation dependent on exact bulk Fermi

levels in individual samples. Further, if an element is deposited on the surface (for
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example if making a metal/semiconductor contact), charge transfer between the

semiconductor and the metal will cause the Fermi level pinning position to vary

somewhat dependent on their relative electronegativities.

The behaviour of the Mg-doped alloys is rather different (Fig. 7.7). The

surface Fermi level is pinned below the CNL across the composition range, indicat-

ing that unoccupied (and hence negatively charged) ViGS are present, leading to

downward band bending for all alloy compositions. With increasing Ga fraction,

the VBM and hence the Fermi level in the p-type bulk, move further away from the

CNL, requiring the surface Fermi level to pin at lower energies to maintain charge

neutrality. The large difference between the n- and p-type surface Fermi level pin-

ning positions for Ga-rich alloys can be attributed to the Fermi level approaching

the CNL from above for n-type alloys and below for p-type alloys. The measured

differences in GaN are consistent with previous results [189, 272]. For the Ga-rich

alloys, the positively charged donor surface states are compensated by the back-

ground negatively charged acceptors in the hole depletion region. For the In-rich

alloys, however, the CNL is above the CBM, allowing the ViGS to donate elec-

trons directly into the conduction band, leading to a large accumulation of electrons

causing an inversion layer at the surface. The transition from inversion (In-rich)

to hole depletion (Ga-rich) surface space-charge regions occurs, to first order, when

the surface Fermi level crosses the mid-gap position, and electrons are no longer the

dominant carrier species at the surface. From Fig. 7.7, this can be estimated to

occur at an InxGa1−xN alloy fraction of x ≈ 0.59. This p-type transition is, how-

ever, somewhat different from the n-type transition. In the former case, downward

band bending occurs across the composition range, the transition simply marking a

change in relative magnitude of the band bending leading to a change in the dom-

inant surface carrier type. Conversely, in the latter case, the transition marks a

change in the direction of band bending and hence a change in the type of contact

(that is, Schottky or Ohmic) that could be made at the surface.
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Figure 7.8: Valence-band XPS spectra for (a) undoped and (b) Mg-doped InxAl1−xN samples
with respect to the Fermi level, EF .

7.4 InAlN Alloys

7.4.1 Results and Analysis

Valence band photoemission spectra from undoped and Mg-doped InAlN samples are

shown in Fig. 7.8. Again, the leading edge of the valence band photoemission shifts

to higher binding energies with increasing Al-content for the undoped InAlN alloys,

indicating an increase in the VBM to surface Fermi level separation with increasing

Al-content. However, as for the InGaN:Mg alloys, the change in VBM to surface

Fermi level separation is non-monotonic with alloy composition for the InAlN:Mg

alloys. The barrier heights, ΦB, are also shown in Fig. 7.9. A similar difference in

the barrier height between the undoped and Mg-doped InAlN samples is seen here

for In-rich alloy compositions, as was observed for the InGaN alloys (Fig. 7.4), again

suggesting that Mg-doping is causing bulk p-type conductivity in the In-rich InAlN

alloys. However, the barrier height for the Mg-doped and undoped samples become

very similar for Al-rich alloys, suggesting that p-type bulk conductivity has not been

achieved in these samples.

The surface Fermi level positions, determined from the XPS measurements,

are shown relative to the semiconductor band edges and the CNL in Fig. 7.10.

The carrier density, from single-field Hall effect measurements, was again used to
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Figure 7.9: Barrier height,
ΦB , for undoped and Mg-doped
InxAl1−xN samples.

determine the bulk Fermi level, which is shown for the In-rich samples in Fig. 7.10.

The Al-rich samples were insulating from single-field Hall effect measurements, and

so, although a precise value of the bulk Fermi level could not be determined, it

is expected to lie significantly below the CBM, approaching the mid-gap position.

The insulating nature of the Al-rich samples was confirmed by the necessity of

using a low-energy electron flood gun to achieve charge compensation in the XPS

measurements.

For the most In-rich samples, the surface Fermi level lies significantly above

the bulk Fermi level, implying an extreme electron accumulation is present at the

surface. However, the surface and bulk Fermi levels do move closer together with

increasing Al-content, indicating a reduction in the amount of band bending and

hence a reduction in the degree of electron accumulation at the surface, as is clearly

evident from comparing the Poisson-MTFA calculations for InN and In0.83Al0.17N,

shown in Fig. 7.11. On further increase of the Al content to 41% (In0.59Al0.41N), the

bulk and surface Fermi levels are virtually coincident in energy, leading to almost no

electron accumulation as shown in Fig. 7.11. A reduction of the amount of electron

accumulation upon increasing the Al-content in In-rich n-InAlN alloys has therefore

been observed, as was observed above upon increasing the Ga-content in In-rich

n-InGaN alloys.

With further increase in Al-content, the samples become insulating. The bulk
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Fermi level is expected to lie close to the mid-gap position, and as evident from

Fig. 7.10, the surface Fermi levels also tend towards the mid-gap energy, suggesting

approximately flat-band behaviour for the Al-rich samples. Small amounts of band

bending may be present at these surfaces dependent on the exact relative position

of the bulk and surface Fermi levels, but this is not expected to be a large effect.

The surface Fermi level positions determined from the XPS measurements

for the Mg-doped alloys, along with the undoped values, are shown in Fig. 7.12.

For InN, an inversion layer exists as discussed above. However, similar to InGaN,

a reduction in the surface Fermi level to below the mid-gap position, resulting in

hole depletion, occurs with increase of Al-content. From Fig. 7.12, this is estimated

to occur at an alloy composition of x ∼ 0.7. With further increase in Al-content,

however, the surface Fermi level pins close to that of the undoped alloys, and the

samples are insulating giving rise to approximately flat-band conditions, as repre-

sented schematically in Fig. 7.12.

7.4.2 Discussion

As for the InGaN alloys, the surface Fermi level pins somewhat below the CNL

for In-rich InAlN alloys, leading to a number of unoccupied donor ViGS, a positive
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surface charge, and hence downward band bending to maintain charge neutrality.

As the Al-content is increased, the CNL moves towards the CBM. The resulting

decrease in the density of states around the CNL energy causes the surface and bulk

Fermi levels to move closer together, as was observed experimentally.

The insulating nature of the Al-rich samples can also be understood by con-

sidering the CNL position relative to the band edges. Within the amphoteric defect

model introduced in Section 1.4 [45], the favourable charge state of native defects

is determined by the position of the Fermi level relative to the CNL, so that na-

tive defects act to drive the Fermi level towards the CNL. As the Al-composition

increases, the CNL moves closer towards the middle of the direct band gap. Native

defects therefore drive the Fermi level lower in the band gap, leading to insulating

samples. Theoretical calculations [273] for Mg acting as an acceptor in AlN also

show a pronounced increase in formation energy as the Fermi level moves towards

the valence band; the resulting formation energy lies above that of the triply charged

donor nitrogen vacancy, indicating donor-type native defects will act to compensate

the Mg-doped samples, again leading to insulating samples. The approximately flat-

band behaviour observed for the Al-rich samples can be considered as a compromise

between, as was observed for InGaN, pinning of the surface Fermi level above the

CNL, close to the CBM, for n-type alloys and pinning of the surface Fermi level well

below the CNL, close to the VBM, for p-type alloys.

7.5 Conclusions

The surface electronic properties of undoped and Mg-doped InxGa1−xN alloys have

been investigated. The surface Fermi level pinning position for the undoped and

Mg-doped alloys was seen to diverge with increasing Ga content, explained within

the concept of virtual gap states, which gives evidence that Mg-doping induces a

p-type bulk conductivity across the composition range. This divergence indicates a

stronger pinning of the surface Fermi level in In-rich alloys due to the high location

of the CNL relative to the CBM. A change in band bending direction causing a

transition from surface electron accumulation (In-rich) to depletion (Ga-rich) oc-



7.5. Conclusions 132

curs at x ≈ 0.41 for n-type alloys, whereas downward band bending occurs across

the composition range for p-type alloys with a transition from surface inversion to

hole depletion at x ≈ 0.59. A similar investigation for InxAl1−xN alloys revealed

the surface electron accumulation reduced with increasing Al-content for the In-rich

alloys, with approximately flat bands observed for x = 0.59. Upon further increase

in Al-content, the samples became insulating resulting in the surface Fermi level

pinning close to the mid-gap energy with little surface space-charge characteristics.

For Mg-doped In-rich alloys, a transition from inversion to hole depletion was in-

ferred at an alloy composition of x ∼0.7. For Al-rich alloys, the surface Fermi level

pinning position tended to that of insulating undoped samples due to the difficulty

of p-type doping Al-rich InAlN alloys because of the increasing formation energy

of Mg-acceptors and compensation by native point defects. The charge neutrality

level was identified as crucial for understanding both the bulk and surface electronic

properties of In(Ga,Al)N alloys across the composition range.



Chapter 8

Surface electron accumulation and the charge
neutrality level in In2O3

8.1 Introduction

Transparent conducting oxides (TCOs), such as In2O3, SnO2, ZnO, and indeed

CdO (discussed in Chapter 4), along with their alloys, represent an important class

of materials with applications including transparent electronics, contacts for pho-

tovoltaic devices, liquid crystal displays, light emitting diodes and chemical sen-

sors [9, 274–276]. Recently, there has been increased interest in considering single-

crystalline thin-film and nanostructured TCO materials as semiconductors in their

own right, with potential applications in electronic, short wavelength photonic, and

chemical and biological sensor devices [104, 277–282]. In2O3, the ubiquitous TCO

material, has received much attention, and indeed implementation [9]; however, even

basic material quantities such as its fundamental band gap have proved controversial.

Its direct band gap was long thought to be ∼ 3.75 eV from the onset of significant

optical absorption, with a low intensity onset of absorption attributed to indirect

optical transitions [283, 284]. This indirect band gap hypothesis was not, however,

supported by theoretical calculations, which found no significant indirect nature of

the band gap [285–289]. These experimental and theoretical results have recently

been reconciled [288, 289], with In2O3 shown to have a direct band gap Eg . 3 eV.

The weak nature of optical absorption around this energy can be attributed to tran-

sitions between the highest valence band states and states at the conduction band

minimum (CBM) being dipole forbidden or having only minimal dipole-intensity.

While the direct band gap of In2O3 is now known to be much smaller than pre-

viously thought, an accurate determination of its value is still required. This is

performed here from a comparison of measured and calculated optical absorption

coefficients.

In order to fully realise the range of potential device applications, in particular
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for its use as contacts, sensors and in nanoscale material where the surface to bulk

ratio is much higher than in conventional films, it is also crucial to understand the

surface electronic properties of this material. In2O3 has been reported to exhibit

a pronounced depletion of electrons at the surface [290, 291]. However, following

the revision of the fundamental band gap and improvements in growth resulting in

high-quality single-crystalline In2O3 films [292, 293], these surface space-charge re-

gions need to be reinvestigated. This chapter reports an investigation of the surface

electronic properties of epitaxial undoped and Sn-doped In2O3 using a combination

of high-resolution x-ray photoemission spectroscopy (XPS), single-field Hall effect,

and infrared (IR) reflectivity measurements, combined with space-charge layer cal-

culations. In contrast to previous results, electron accumulation is identified at the

surface of undoped In2O3 films. Additionally, from a combination of measurements

performed on undoped and heavily Sn-doped samples, the charge neutrality level

(CNL) is shown to lie ∼ 0.65 eV above the CBM in In2O3, explaining the electron

accumulation at the surface of undoped material, the propensity for n-type conduc-

tivity, and the ease of n-type doping In2O3, and hence its use as a TCO material.

Finally, the implications of the CNL position on the electrical behaviour of hydrogen

in In2O3 are investigated via muon spin rotation and relaxation (µSR) spectroscopy.

8.1.1 Crystal and electronic structure and band parameters

The stable structure of In2O3 is the body centred cubic (bcc) bixbyite structure with

space group Ia3̄, shown in Fig. 8.1(a), with a lattice parameter of a = 10.1 Å. The

corresponding Brillouin zone is shown in Fig. 8.1(b). The band structure of bixbyite

In2O3, from density-functional theory (DFT) calculations [289], is shown in Fig. 8.2.

Due to the large number of atoms within the unit cell (each cell containing sixteen

units of In2O3), the band structure is rather complex. Of particular note, however,

is the single, rapidly dispersing conduction band state around the CBM, and the fact

that both the top valence band and bottom conduction band states are of the same

parity [288]. This is important for the optical properties of this material, discussed

below. The conduction band minimum effective mass of 0.35m0, and the static and
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Figure 8.1: (a) Unit cell of the bixbyite crystal structure of In2O3, and (b) Brillouin zone of the
bcc lattice.
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high frequency dielectric constants are 8.9 and 4.0, respectively, are used here from

Ref. [275].

In addition, by judicious choice of substrate, trimethylindium flow rate, and

growth temperature during metal-organic vapour phase epitaxy (MOVPE), growth

of the metastable rhombohedral (rh) phase of In2O3 has been demonstrated [294].

The crystal and electronic structure of this polymorph of In2O3 are shown in Fig. 8.3.

While slightly simpler, due to the smaller number of atoms in the unit cell (30 rather

than 80), the electronic structure is similar to that of the bcc polymorph.
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Figure 8.3: (a) Crystal structure of rh–In2O3, showing the unit cell, and (b) corresponding band
structure from DFT calculations [289].

8.2 Experimental and theoretical details

Undoped and Sn-doped bcc–In2O3(001), and undoped bcc–In2O3(111) samples were

grown at the University of Oxford, UK, by oxygen plasma-assisted molecular beam

epitaxy (PAMBE) at a growth temperature of 650◦C on yttria stabilized cubic-

zirconia (YSZ) (001) and (111) substrates, respectively. The In2O3 layer thicknesses

were 120 nm determined from growth rate calculations, which were themselves

calibrated from cross-sectional transmission electron microscopy (TEM) measure-

ments of films grown under identical conditions. No evidence of secondary phases

was observed from TEM measurements. Further details of the growth and struc-

tural characterisation are reported elsewhere [293]. Undoped bcc–In2O3(111) and

rh–In2O3(0001) films were grown at Technical University Ilmenau, Germany, by

MOVPE. Trimethylindium and H2O were used as growth precursors. The bcc–In2O3

was grown at 400◦C on a sapphire substrate incorporating InN, GaN and AlN buffer

layers. The rh–In2O3 was grown at 600◦C directly on a sapphire substrate, and was

estimated to contain less than 10% cubic inclusions. Further details of the growth

and structural characterisation are reported elsewhere [292, 294]. Single-field Hall

effect, XPS, optical absorption and IR reflectivity measurements were performed as

described in Chapter 3. These measurements were performed at room temperature.

µSR measurements were performed using the EMU spectrometer on the
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pulsed muon beamline at ISIS, Rutherford Appleton Laboratory, UK. Muons are

generated from the decay of pions, following the interaction of a proton beam with a

graphite target. The muon beam is 100% spin-polarised prior to being injected into

the sample (a 99.999% purity In2O3 powder). The sample was mounted in a closed-

cycle refrigerator, which was subsequently placed in a transverse magnetic field of

10 mT. Measurements were performed over the temperature range of 10–150 K.

DFT calculations were performed elsewhere, as described in Section 2.1.2.

The large size of the In2O3 unit cell, especially for the bcc polymorph, made this sys-

tem very computationally expensive. The valence band density of states (VB-DOS)

was therefore calculated using the HSE03 functional, but neglecting quasiparticle

(QP) effects. For comparison with the photoemission measurements, the calcu-

lated VB-DOS was convolved with a 0.4 eV full width at half maximum (FWHM)

Gaussian and a 0.4 eV FWHM Lorentzian to account for instrumental and lifetime

broadening, respectively. For the rh polymorph, the theoretical band gap was calcu-

lated by employing G0W0 QP corrections to the HSE03 eigenvalues. However, this

proved too computationally expensive for the bcc–In2O3 polymorph. Consequently,

the gap opening caused by QP corrections for the rh polymorph was applied as

a rigid shift for the bcc polymorph, therefore approximately including QP effects.

Optical spectra were calculated from the band structure determined within the lo-

cal density approximation, treated within the independent QP approximation using

scissor shifts to correct the band gap to that obtained from the HSE+QP calcula-

tions. Further details of the calculations are described elsewhere [289].

8.3 Band gap

The measured optical absorption coefficient from bcc–In2O3 is shown in Fig. 8.4(a).

Significant onset of absorption in the measured spectrum occurs above ∼ 3.5 eV,

consistent with previous observations [283, 294]. A pronounced low energy tail is

seen below this absorption edge. In previous reports, this was attributed to indirect

optical absorption [283], in contrast to the results of theoretical band structure

calculations [285–287]. However, as discussed in the introduction, an alternative
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The calculated absorption coefficient
for each polymorph is shown inset.

explanation has recently emerged. Walsh et al. [288] and Fuchs and Bechstedt [289]

showed that, due to the symmetry of the bixbyite crystal structure and equal parity

of the electronic states around the band extrema, optical transitions from the valence

band maximum (VBM) to the CBM are forbidden within the dipole approximation.

Furthermore, transitions from the valence bands somewhat below the VBM to the

conduction band are also either forbidden, or have only very weak optical transition

matrix elements. The result is evident in the calculated optical absorption spectrum,

shown inset in Fig. 8.4(a), where a significant increase in the absorption coefficient

is only observed at energies ∼0.5 to 1 eV above the fundamental band gap.

Consequently, experimental investigations have consistently reported a band

gap of bcc–In2O3 that is significantly too high. Here, the term ‘optical gap’ is defined

as the energy corresponding to the onset of significant optical absorption. This is

determined by extrapolating the leading edge of the optical absorption coefficient

to the baseline, as shown in Fig. 8.4(a), giving a value of E
(exp)
opt = 3.55± 0.05 eV for

the experimentally determined room-temperature optical gap of the bcc polymorph.
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This is slightly lower than the value of & 3.7 eV typically reported in previous

studies. This difference is attributed largely to the different methods of analysis used

in various cases. For example, performing, as is often done, an extrapolation of the

square of the absorption coefficient for this sample to the baseline (not shown) gives

a value of 3.68±0.05 eV, in approximate agreement with the lower limit of frequently

determined values for the In2O3 optical gap. However, as this absorption onset is

not due to interband transitions around the band extrema, there is no justification

for using an α2 extrapolation in this case, and the onset of significant absorption

is therefore based here on the actual absorption coefficient, as described above. It

is also necessary to point out that, from carrier statistics calculations including a

non-parabolic conduction band dispersion, the Fermi level was estimated to lie only

0.02 eV above the CBM in this sample, in contrast to the often highly degenerate

nature of this material. Consequently, the Moss-Burstein effect, which causes a

shift of the onset of optical absorption to higher energies due to band filling, can be

neglected here. This was not the case in all previous studies.

The same analysis was applied to the calculated absorption spectrum, shown

inset in Fig. 8.4(a), giving an optical gap of E
(th)
opt = 3.72 ± 0.10 eV. This lies

0.62 eV above the calculated fundamental band gap of E
(th)
g = 3.10 eV, indicating

the effects of crystal symmetry on the dipole transition matrix elements discussed

above. Applying the same difference between the optical and fundamental energy

gaps for the experimental results, this allows the fundamental energy gap of bcc–

In2O3 to be estimated as E
(exp)
g = 2.93±0.15 eV. From Fig. 8.4(a), this energy agrees

well with the weak onset of absorption of this sample, supporting this determination

of the fundamental band gap. Note, Walsh et al. [288] reported that the onset of

optical absorption does not occur until energies 0.81 eV above the fundamental

band gap, suggesting a slightly larger shift between the fundamental and optical

band gaps than determined here. However, lifetime broadening was not applied

in the optical absorption coefficient calculations of Walsh et al., as was included

here, which decreases the value of the optical gap slightly. Consequently, a similar

shift between the fundamental band gap and the onset of optical absorption as that
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determined here would be expected.

The following points should be noted about this determination. First, due

to the complexity of this system, the theoretical calculations of the absorption co-

efficient do not include QP effects, besides a rigid gap opening, or excitonic effects.

While the experimental spectra do not show any indications of bound excitons,

these effects could still cause a slight red-shift of the absorption edge. In contrast,

QP effects would tend to cause a slight ‘stretching’ of the conduction and valence

band electronic structure around the band gap [289], leading to a slight blue-shift

of the absorption edge. The combination of these effects lead to some uncertainty

in the determined fundamental band gap, as represented by the error given on this

quantity. Additionally, the calculations are for a zero temperature limit, whereas

the measurements were performed at room temperature. Broadening of the spectral

features due to lifetime effects has been included in the calculations, but the band

gap of semiconductors is also known to reduce in size with increasing temperature

due to a mixture of lattice dilation effects and electron-phonon interactions [295].

Indeed, for the similar material SnO2, the shift of the band gap between 0 K and

room temperature is ∼0.2 eV [296]. Such a shift is not included in the independent

QP approximation used to correct the band gap for calculating the theoretical ab-

sorption coefficient here. The above treatment, however, is not sensitive to the exact

calculated band gap value; rather the comparison of the experiment with the theo-

retical calculations serves to account for the variation of transition matrix elements

on the onset of optical absorption. The determination of the room-temperature

band gap would therefore still be expected to hold. Indeed, the experimental value

determined here being slightly lower than the calculated fundamental band gap is

consistent with a reduction in band gap with increasing temperature.

The fundamental band gap determined here is slightly higher than the weak

onset of absorption identified by Weiher and Ley [283] as due to indirect transitions,

but which can now be understood as due to dipole forbidden or minimal dipole inten-

sity transitions. However, Weiher and Ley analysed this absorption edge assuming

that it had the spectral shape associated with indirect transitions in a parabolic



8.3. Band gap 141

band semiconductor – both of these assumptions are not true for this absorption in

In2O3, which could lead to significant inaccuracies in the extrapolated value for the

onset of absorption. Also, the effects of Urbach tailing and lifetime broadening on

this absorption onset, which could cause a pronounced shift between the extrapo-

lated onset of such a weak absorption feature and the fundamental band gap, were

not considered. These effects would lead to optical absorption at lower energies than

would be expected from the band structure alone, further explaining why the weak

onset of optical absorption determined previously is below the fundamental band

gap value determined here. For degenerate samples with high concentrations of free

electrons (∼1020− 1021 cm−3) the weak absorption onset at low energies (∼2.6 eV)

observed previously has also been attributed to interconduction band transitions, as

discussed in Ref. [289], providing a further possible mechanism to explain differences

with some previous results.

The equivalent investigation for rh–In2O3 was also performed, as shown in

Fig. 8.4(b). While the rh structure does not result in symmetry forbidden optical

transitions around the band gap, the DOS close to the bottom of the conduction

band is very small and the conduction band dispersion is non-parabolic [289], re-

sulting in a more gradual onset of optical absorption than would be expected for

a conventional direct band gap semiconductor characterised by parabolic disper-

sion relations. Indeed, performing the same analysis as for the bcc case discussed

above, the optical gap is determined from the calculated absorption coefficient

as E
(th)
opt = 3.40 ± 0.10 eV, 0.14 eV above the calculated fundamental band gap

value of E
(th)
g = 3.26 eV. Consequently, the experimentally observed optical gap of

E
(exp)
opt = 3.16±0.05 eV suggests a fundamental band gap of E

(exp)
g = 3.02±0.15 eV,

in reasonable agreement with previous studies [294]. Despite the large differences

in the onset of optical absorption, the fundamental band gaps of bcc– and rh–In2O3

are therefore rather similar, consistent with theoretical predictions [289].
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8.4 Surface electronic properties

8.4.1 Results and analysis

Valence band photoemission spectra of undoped and Sn-doped bcc–In2O3(001), un-

doped bcc–In2O3(111), and undoped rh–In2O3(0001) are shown in Fig. 8.5. Some

weak emission is also observed close to the Fermi level, above the valence band on-

set. This intensity has previously been attributed to emission from bulk conduction

band states [288], and this is attributed here as the cause of the large peak in the

heavily Sn-doped sample. However, the other samples investigated are nearly, or

in fact are, non-degenerate in the bulk (see below), and so it is likely that there

would be insufficient density of filled conduction band states in the bulk alone to
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give rise to such a feature in the photoemission spectra. Further, due to the sur-

face specificity of XPS, conduction band emission would not likely be visible if a

pronounced depletion of carriers is present at the surface, as suggested in previous

reports [290, 291]. If, however, the carrier density at the surface is higher than in

the bulk, a peak would be expected in the photoemission spectra, as observed here,

corresponding to conduction band emission from the near-surface region. This pro-

vides initial evidence that an accumulation of electrons may occur at the surface of

both bcc– and rh–In2O3.

The VB-DOS from DFT calculations is also shown in Fig. 8.5. Due to the

very shallow dispersion of the top valence band (see Figs. 8.2 and 8.3), there is a

very sharp onset to the VB-DOS. However, this is considerably less steep in the

experimental spectrum due to the effects of instrumental and lifetime broadening.

Consequently, using a linear extrapolation of the leading edge of the valence band

photoemission to determine the VBM to surface Fermi level separation, as has been

performed in a number of previous investigations of In2O3 [288,290,291], results in a

large underestimation. A more accurate determination of the VBM to surface Fermi

level separation can therefore be obtained by comparisons of the positions of spectral

features with those of the calculated VB-DOS which has been suitably broadened,

provided that good agreement can be achieved between the photoemission spectrum

and the broadened calculations with only a rigid shift of the binding energy scale

to account for Fermi level differences. This is true here, as discussed in detail

elsewhere [297]. Using this method of analysis, the VBM to surface Fermi level

separation was estimated as 3.40± 0.05 eV for the undoped bcc samples, and 3.55±
0.05 eV for the heavily Sn-doped bcc sample. The difference in spectral shape of

the valence band photoemission between the undoped and Sn-doped sample can

be attributed to the influence of Sn 5s states on the VB-DOS. Taking a band gap

of 2.93 eV, as determined above, the Fermi level therefore lies 0.47 eV (0.62 eV)

above the CBM in the undoped (heavily Sn-doped) bcc–In2O3. Performing the same

procedure for the rh–In2O3(0001) (Fig. 8.5(b)), the Fermi level was determined to

lie 3.50 ± 0.05 eV above the VBM at the surface. While this is slightly higher
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above the VBM than for the bcc case, the bulk band gap of the rh polymorph

was also determined to be ∼ 0.1 eV larger than that of bcc–In2O3 in Section 8.3.

Consequently, the Fermi level pins at a very similar position into the conduction

band (0.48 eV above the CBM) at the surface of the rh–In2O3 as it does for the

undoped bcc–In2O3 samples.

To understand the surface electronic properties in detail, it is crucial to

characterise those of the bulk. Hall effect measurements revealed an electron den-

sity (mobility) of 1.5 × 1018 cm−3 (11 cm2V−1s−1) for the undoped PAMBE bcc–

(111), 7.5 × 1018 cm−3 (32 cm2V−1s−1) for the undoped PAMBE bcc–In2O3(001),

4.2 × 1020 cm−3 (27 cm2V−1s−1) for the Sn-doped PAMBE bcc–In2O3(001), and

6.2× 1018 cm−3 (55 cm2V−1s−1) for the undoped MOVPE rh–In2O3(0001) samples.

Single-field Hall effect results could not, however, be used to determine the carrier

density in the MOVPE bcc–(111) sample due to the conducting buffer layer struc-

ture employed. IR reflectivity spectra were also measured, shown for undoped and

Sn-doped bcc–In2O3(001), and undoped rh–In2O3(0001) in Fig. 8.6. The extended

tail on the reflectivity from the Sn-doped sample is attributed to a heavily damped

conduction electron plasmon, indicating a much higher plasma frequency in the Sn-

doped than the undoped samples. The lack of observable Fabry-Pérot interference

fringes within the measured spectral range for the bcc–samples is consistent with the

120 nm sample thickness, while the Fabry-Pérot fringes evident for the rh–sample

allow a film thickness of 520 nm to be determined in this case. The reflectivity

spectra of all samples were simulated using a two-oscillator dielectric theory model

to account for lattice and free-carrier contributions. The transfer-matrix method

discussed in Section 3.3 was used to model transmission through the In2O3 epilayer

and buffer layers, reflections at the air/In2O3, buffer layer and substrate interfaces,

and incoherent reflections within the substrate. The dielectric theory simulations

showed good agreement with the experimental data (see Fig. 8.6), and from these

the plasma frequency was determined to be 85 meV and 600 meV for the undoped

and Sn-doped bcc–(001) samples, respectively, 140 meV for the MOVPE bcc–(111)

sample, 50 meV for the PAMBE bcc–(111) sample, and 110 meV for the rh–(0001)
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sample. These correspond to electron densities of 7× 1018 cm−3 and 4× 1020 cm−3

for the undoped and Sn-doped bcc–(001) samples, respectively, 2 × 1019 cm−3 for

the MOVPE bcc–(111) sample, 2 × 1018 cm−3 for the PAMBE bcc–(111) sample,

and 1× 1019 cm−3 for the rh sample. These are in good general agreement with the

Hall effect results. Non-parabolicity cannot be neglected for the conduction band

dispersion of In2O3 [289]. Consequently, non-parabolic carrier statistics calculations

(as discussed in Section 2.1.1) have been used to locate the bulk Fermi level 0.02 eV

and 0.54 eV above the CBM for the undoped and Sn-doped bcc–In2O3(001) samples,

respectively, 0.07 eV above the CBM for the undoped MOVPE bcc–(111) sample,

0.03 eV below the CBM for the undoped PAMBE bcc–(111) sample, and 0.03 eV

above the CBM for the rh sample. Except for the deliberately Sn-doped sample,

these are all almost, or actually are, non-degenerate, as stated above.
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8.4.2 Discussion

The above measurements indicate that the VBM to Fermi level separation is much

larger at the surface than in the bulk of the undoped bcc– and rh–In2O3. This

indicates a downward bending of the conduction and valence bands at the surface,

leading to an increase in electron density in the near-surface region. The band bend-

ing and carrier concentration profiles as a function of depth below the surface have

been calculated by solving Poisson’s equation within a modified Thomas-Fermi ap-

proximation (MTFA), incorporating a non-parabolic conduction band, as described

in Chapter 2.2.2. These are shown in Fig. 8.7, revealing a pronounced accumulation

of electrons close to the surface, although as always, the carrier concentration still

tends to zero right at the surface, as the wavefunctions must decay to zero amplitude

here due to the potential barrier that the surface imposes. From the considerations

presented in previous chapters, the surface electron accumulation observed here for

undoped In2O3 results from a screening of the positive charge of unoccupied donor-

like surface states. Indeed, the Poisson-MTFA calculations reveal a large positive

surface state density of (1.3±0.1)×1013 cm−2 and ∼1.2×1013 cm−2 for the bcc and
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rh polymorphs, respectively, associated with the electron accumulation. It should

be noted that parameters such as the effective mass are not well known for rh–In2O3.

The same ones as for bcc–In2O3 have been used here as a first approximation, but

these numerical answers should be treated as somewhat approximate. Irrespective

of this, however, these results provide clear evidence for an accumulation of electrons

at the (0001) surface of undoped rh–In2O3, as well as at the (001) and (111) surface

of undoped bcc–In2O3, and that this electron accumulation is not dependent on the

growth technique, being present for both PAMBE and MOVPE-grown samples.

The surface electron accumulation observed here is in contrast to the deple-

tion of electrons reported previously at In2O3 surfaces [290,291]. The recent revision

of the band gap is an important factor in allowing the identification of electron accu-

mulation; however, fundamentally, it is the comparatively low electron density in the

bulk, resulting from the high growth quality, which means that the bulk Fermi level

is sufficiently low to allow the intrinsic electron accumulation to be clearly observed

here in In2O3. Without detailed information on the bulk Fermi level positions in the

samples investigated in Refs. [290] and [291], it is not possible to comment further

on whether any of those specific samples had low enough carrier densities to exhibit

indium oxide’s intrinsic electron accumulation.

8.5 The charge neutrality level

As discussed in previous chapters, the demarcation between surface states that are

predominantly donor-like and acceptor-like can be identified as the CNL of the semi-

conductor. The existence of unoccupied donor-like surface states in this case means

that the Fermi level is pinned slightly below the CNL at the surface. Consequently,

the CNL must be located high relative to the band extrema in In2O3, > 0.47 eV

above the CBM. This high relative location can be understood by considering the

bulk band structure of In2O3. As for InN and CdO, also considered in this thesis,

the band structure of In2O3 exhibits a particularly low Γ-point CBM compared to

the average conduction band edge across the Brillouin zone, while it additionally

possesses a shallow dispersion of the valence bands, as shown in Figs. 8.2 and 8.3.
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As discussed in Chapter 4, the CNL is located close to the midgap energy averaged

across the Brillouin zone, and would therefore be expected, from the calculated band

structure, to lie above the CBM in In2O3, as inferred here experimentally.

To explore the position of the CNL further, Sn-doped bcc–In2O3(001) was

investigated, in order to move the bulk Fermi level up towards the CNL. From the

considerations of Chapter 5, the surface Fermi level must then pin closer to the CNL

resulting in a smaller positive surface charge to maintain charge neutrality with the

reduced space charge. As shown in Fig. 8.7, the heavily Sn-doped sample has a much

reduced electron accumulation – the calculated surface-state density is an order of

magnitude smaller than for the equivalent undoped sample – and the surface Fermi

level is pinned higher than for the undoped samples. In this case, the surface Fermi

level would be expected to be pinned only very slightly below the CNL, allowing an

experimental estimate to be given for the location of the CNL: ECNL ∼3.6 eV above

the VBM, and so consequently ∼ 0.65 eV above the CBM in bcc–In2O3. A larger

set of samples with a greater variation of bulk doping levels would be required to

make a more accurate determination. The similarity of the bulk band structure of

the bcc and rh polymorphs (see Figs. 8.2 and 8.3) will result in the CNL lying in a

similar location for both cases, explaining the similar pinning position of the surface

Fermi level above the CBM for both the bcc and rh polymorphs. This is supported

by recent first-principles calculations which locate the CNL 0.54 eV above the CBM

in rh–In2O3 [298].

The CNL lying above the CBM is unusual amongst conventional semiconduc-

tors. Consequently, surface electron accumulation is also unusual, and has in fact

only previously been reported as an intrinsic property of the surface for InAs [39],

InN [7], and CdO (this work, Chapter 4). It is interesting to compare the situation

in the three In-containing materials which have been shown to exhibit electron ac-

cumulation; the band extrema relative to the CNL estimated here for In2O3, and

those for these common-cation semiconductors are shown in Fig. 8.8(a). In In2O3,

the CBM lies further below the CNL than in InAs, but not as far below as in InN,

resulting in an areal density of unoccupied donor surface states associated with
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the electron accumulation between those typical for InAs and InN, as shown in

Fig. 8.8(b). An important factor explaining the CBM lying below the CNL in all of

these In-containing compounds is the large size of the In atom, leading to a small

s–s repulsion between the cation and anion s–orbitals due to the large cation-anion

bond length. This, coupled with the large s–orbital energy separation, particularly

with N and O, results in a low-lying cation s-like CBM compared to the average

band edge across the Brillouin zone, resulting in the CBM lying below the CNL

(cf. the chemical trends discussed in Section 5.4). Similar considerations would be

expected to apply to other materials with a large size and electronegativity mis-

match between the constituent cation and anion. In this thesis, this has been shown

to hold for the II-O semiconductor CdO, but would also be expected for materials

such as ZnO and SnO2. Consequently, surface electron accumulation may also be

expected in these materials, explaining a number of previous results [299,300].

The position of the CNL relative to the band extrema also has implications

for the bulk electronic properties of In2O3. As discussed in Chapter 4, native defects

tend to drive the Fermi level in the bulk towards the CNL. As the CBM lies well

below the CNL in In2O3, native defects favourably form as donors, increasing the

Fermi level, while compensating acceptor defects will have higher formation energies.

This is consistent with the formation energy calculations for native defects in In-

rich In2O3 of Lany and Zunger [301], and provides an overriding band structure
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explanation of the propensity for In2O3 to have a high background electron density

even when nominally undoped. The range of Fermi level positions attainable by

extrinsic doping is also intimately related to the CNL due to an increasing tendency

for native defects to form compensating centres as the Fermi level moves away from

the CNL. In In2O3, the n-type doping limit, with the Fermi level some way above

the CNL, will therefore lie well above the CBM, meaning that it is possible to

achieve extremely high n-type conductivities in this material by extrinsic doping

(for example, n ∼ 1021 cm−3 for In2O3:Sn [9]). Thus, the CBM being located

below the CNL in In2O3, combined with its relatively large fundamental band gap

and dipole forbidden (minimal intensity) optical transitions between the CBM and

VBM (high-lying valence bands) [288], explains the ability to obtain In2O3 with the

usually contradictory properties of transparency and high conductivity, and hence

its use as a TCO material.

8.6 Muonium in In2O3

From the considerations presented in this, and previous, chapters, hydrogen would

also be expected to act as a shallow donor in In2O3. To test this prediction, a

µSR study has been undertaken. In this experiment, a 100% spin-polarised beam

of positive muons is implanted into the sample, which is held in a transverse mag-

netic field. The muon spin precesses in this field at the Larmor frequency, νL. The

muon has a well defined lifetime of 2.2 µs, and decays into positrons preferentially

in the direction of its spin. The muon precession can therefore be monitored by the

‘forward-backward asymmetry’ of the detected positrons. In addition, depolariza-

tion of the muon spins due to nuclear dipolar coupling can be probed. The finite

lifetime of the muon limits the information attainable in practice to less than 15 µs,

which results in information generally being obtained on isolated defect centres.

In addition to this diamagnetic signal, when a positive muon is implanted

into a semiconductor, it can bind with an electron to form neutral muonium, Mu0 =

[µ+, e−]. This can be treated as a light isotope analogue of hydrogen (mMu/mH ≈
1/9), with the advantage that the muon has very well defined creation and decay
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Figure 8.9: Time-domain asymmetry of the positron decay from a muon-implanted In2O3 powder
sample at 10 K.

properties. Consequently, spectroscopic studies of muonium via muon spin rota-

tion and relaxation (µSR) spectroscopy have emerged as a powerful tool to develop

an understanding of the microscopic behaviour of hydrogen in materials [302–304].

The paramagnetic component, Mu0, experiences a hyperfine field in addition to

the applied transverse field, resulting in components that precess about the applied

magnetic field at a frequency νL± A
2
, where A is the hyperfine splitting, in addition

to the contribution from the diamagnetic state. The total measured asymmetry is

the sum of these three components. In certain cases, this results in a clear beat

pattern in the asymmetry as a function of time delay [302]. However, it is more

usual that the paramagnetic component causes changes to the time-domain signals

in a more subtle way that can only be elucidated by curve-fitting.

An example of the time-domain asymmetry data recorded from an In2O3 pow-

der sample at 10 K is shown in Fig. 8.9. The measured asymmetries were simulated

with three component fits to account for both positive and neutral muonium and

depolarization (gaussian relaxation) effects. A small, but non-negligible, amplitude

associated with Mu0 was observed, with a hyperfine constant equal to 0.17 MHz.

The amplitudes associated with the paramanetic Mu0 and diamagnetic Mu+ compo-

nents, as a function of temperature, are shown in Fig. 8.10. As the signal associated
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with the Mu0 component is quenched at around 50 K, this indicates that it is a shal-

low centre. In an ionization model [304], the fraction of ionized (f) and unionized

(1− f) Mu can be fit by the functions

f =

N exp

(
− Ea

kBT

)

1 + N exp

(
− Ea

kBT

) (8.1a)

1− f =
1

1 + N exp

(
− Ea

kBT

) (8.1b)

where Ea is the activation energy and N is a density of states factor. Fitting the

ampliludes in Fig. 8.10 according to this model yields an activation energy of only

Ea = 47 ± 6 meV. From thermal equilibrium arguments, this corresponds to a

donor depth of Ed = 2Ea = 94 ± 12 meV. However, it is unlikely that the electron

occupations for Mu0 and the conduction band reach a local equilibrium within a

muon lifetime, and so the effective donor depth should be between these two values,

47≤Ed ≤ 94 meV.

The values determined from the fitting of the µSR data can be compared

to simple estimates for a shallow donor within a hydrogenic model. The effective
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shallow donor binding energy can be estimated from

R∗ =
(m∗/m0)

[ε(0)]2
Ryd, (8.2)

where Ryd = 13.6 eV is the Rydberg constant for hydrogen, to be 60 meV, in

good agreement with the determined donor binding energy. Similarly, the effective

shallow-donor radius can be estimated from

a∗ =
ε(0)

(m∗/m0)
a0, (8.3)

where a0 = 0.53 Å is the Bohr radius, to be 1.35 nm. The expected hyperfine

constant can be scaled from the value for free muonium of A0 = 4463 MHz by

A∗ =
(a0

a∗

)3

A0, (8.4)

giving an effective hyperfine splitting of 0.27 MHz. These simple estimates for the

hyperfine splitting and donor binding energy are within a factor of two of those ob-

tained from the experiment, strongly supporting the assignment of the Mu0 signal as

due to a shallow donor with a very extended wavefunction. Consequently, muonium,

and by analogy hydrogen, form a shallow donor centre in In2O3, consistent with the

expectations from the CNL position determined above. Hydrogen must therefore

be considered as an additional potential cause of the propensity towards high n-

type conductivity in In2O3, and indeed other TCOs. In fact, analysis of µSR data

recorded from a SnO2 sample revealed a very similar behaviour of muonium [305].

As for In2O3, a shallow donor centre was identified, although the activation energy

of 18± 3 meV, and hyperfine splitting of 0.09± 0.02 MHz, were slightly lower than

the values for In2O3, in agreement with the trends expected from simple model

calculations within a hydrogenic model.

8.7 Conclusions

From comparisons of theoretical calculations and experimental measurements of

the absorption coefficient, the fundamental band gap of bcc– and rh–In2O3 was

determined as 2.93± 0.15 eV and 3.02± 0.15 eV, respectively. Using a combination

of high-resolution XPS, IR reflectivity and Hall effect measurements, combined with
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semiconductor space-charge calculations, single-crystalline undoped In2O3 has been

shown to exhibit a pronounced electron accumulation at its surface, in contrast to

the majority of other semiconductors. This was explained in terms of the low Γ-point

CBM in In2O3 lying below the charge neutrality level. Increasing the bulk Fermi

level towards the CNL by Sn-doping resulted in a drastic reduction of the electron

accumulation, allowing the CNL to be located approximately 0.65 eV above the

CBM. This explains not only the surface electron accumulation, but also both the

propensity for n-type conductivity in undoped material and the ease of extrinsic

n-type doping, providing an understanding of the normally conflicting properties of

transparency and conductivity in In2O3. By investigations of the muonium analogue

via µSR spectroscopy, hydrogen was also shown to be a donor in In2O3. This is

consistent with the determined CNL position, and suggets hydrogen as another

potential cause of the n-type conductivity in In2O3. The conclusions of this work

extend to other transparent conducting oxide materials such as SnO2 and ZnO.



Chapter 9

Quantized electron accumulation layers

9.1 Introduction

Throughout this thesis, it has been shown that if the charge neutrality level (CNL)

lies above the conduction band minimum (CBM), the intrinsic state of the material

is characterised by an accumulation of electrons at the surface, associated with a

downward bending of the conduction and valence bands. This has been treated in a

one-electron semi-classical manner, using the formalism discussed in Section 2.2.2.

However, if the downward band bending is sufficiently deep and narrow, the re-

sulting potential well causes the conduction band states normal to the surface to

become quantized into a number of discrete levels [31]. This was first demonstrated

from magnetoresistance measurements of an electron accumulation layer artificially

created by applying a bias to a Si metal-oxide-semiconductor (MOS) system [306],

and later confirmed by far-infrared inter-subband optical absorption measurements

of this system [307]. Quantized states have also been observed in InAs and InN

MOS structures by Tsui [308–310] and Veal et al. [311,312], and have been observed

in native electron accumulation layers at InAs and InN surfaces by angle resolved

photoemission spectroscopy (ARPES) measurements [313, 314]. As the downward

band bending is in the direction normal to the surface, the quantization is in this

direction only; the motion of carriers in the plane of the surface therefore remains

free, and the subbands that form are two-dimensional. ARPES can then be used to

image the parallel dispersion of these subband states [313].

The effective one-electron potential at a semiconductor surface, and corre-

sponding variation in carrier density, is strictly described by a self-consistent so-

lution of the Poisson and Schrödinger (PS) equations [315]. As the solution of

the Schrödinger equation is dependent on the potential derived from a solution of

Poisson’s equation, this procedure is highly non-linear. Several methods have pre-

viously been employed to assist convergence of the self-consistent iteration. Baraff
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and Appelbaum [315] and Ehlers and Mills [316] performed self-consistent Poisson-

Schrödinger Hartree calculations employing a parameterized Morse potential, which

allows a series solution of the Schrödinger equation to be made, without the need

for full numerical solutions. Streight and Mills [317] employed a Fourier and a

finite-difference method to determine self-consistent PS Hartree solutions for an

electrically neutral finite semiconductor slab. The finite geometry of the slab makes

achieving self-consistency easier, although the solutions do not necessarily apply to

semi-infinite systems. The above schemes also assumed parabolic dispersion of the

semiconductor bands.

Inaoka [318] employed a local-density-approximation (LDA) calculation within

a semiconductor slab thick enough to ensure that the potential and carrier distri-

bution at the surface of the slab is equivalent to that for a semi-infinite system.

Non-parabolicity of the conduction band was approximated by modifying the value

of the effective mass to that at the Fermi level for a non-parabolic (NP) disper-

sion. This approach was subsequently extended to include full conduction band

non-parabolicity in self-consistent PS LDA solutions [319]. The incorporation of

non-parabolicity, however, makes these calculations very computationally intensive.

As used in previous chapters of this work, an alternative approach to full

self-consistent PS solutions is to solve Poisson’s equation within a modified Thomas-

Fermi approximation (MTFA), as discussed in Section 2.2.2. The MTFA approxi-

mation has been shown to be in excellent agreement with full self-consistent PS so-

lutions for parabolic conduction-band dispersions [66, 320]. However, although this

method generates one-electron potentials and charge profiles that are very similar

to self-consistent PS solutions, it does not contain any information on the subband

structure present when strong band bending at the semiconductor surface causes

the conduction-3band states to become quantized. Here, a method combining the

Poisson-MTFA formalism with a numerical solution of the Schrödinger equation for

the resulting one-electron potential, to yield the conduction subband structure in-

corporating non-parabolicity, is derived. The calculations can be performed with

relatively little computational cost, and these are shown to yield results in good
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agreement with full self-consistent NP PS calculations. This is still a one-electron

approximation. However, the carrier density in the electron accumulation layer can

be very high, as seen in previous chapters. This raises the question of whether many-

body effects are important for these quantized states. This chapter also presents

initial investigations into these effects from a combination of ARPES measurements

and theoretical calculations.

9.2 Experimental details

Single-crystalline InAs(111) samples were grown at the University of Sheffield, UK,

to a thickness of 2 µm by molecular beam epitaxy (MBE) on GaAs(111)B. The

InAs was doped with Si to a concentration of n = 6 × 1017 cm−3. The samples

were capped with a ∼ 100 nm thick layer of amorphous As before being removed

from the growth chamber. Decapping was achieved in an ultra-high vacuum (UHV)

preparation chamber connected to the ARPES spectrometer chamber by annealing

the samples at ∼375◦C for 1 h, following which a sharp (2× 2) low energy electron

diffraction (LEED) pattern was observed over a wide range of incident electron

energies (∼25 to 100 eV). The (2× 2) reconstruction is known to be the favourable

reconstruction of the clean InAs(111)B surface immediately following MBE growth,

and can be described by a vacancy-buckling model [321].

Single-crystalline CdO(001) samples were grown at the Universitat de València,

Spain, to a thickness of 500 nm by metal-organic vapour phase epitaxy on r-plane

(11̄02) sapphire substrates at a growth temperature of 400◦C. Further details of the

growth and materials characterisation are reported elsewhere [108]. The bulk carrier

density (mobility) of the sample considered here was determined from single-field

Hall effect and infrared (IR) reflectivity to be 2.0 × 1019 cm−3 (150 cm2V−1s−1).

Surface preparation was achieved by annealing in UHV in a preparation chamber

connected to the ARPES spectrometer chamber for 2 h at 575◦C. Following this,

a sharp (2 × 2) LEED pattern was observed over a wide range of incident elec-

tron energies (∼ 25 to 200 eV). The details of this reconstruction require further

investigation.
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ARPES measurements were performed as described in Chapter 3. A variety

of photon energies and temperatures, within the range 16 to 60 eV and 60 to 450 K,

respectively, were employed for the measurements.

9.3 Coupled Poisson-Schrödinger calculations

The bulk conduction band dispersion relations are calculated within the Kane [58]

k · p non-parabolic scheme, as discussed in Section 2.1.1. The one-electron band

bending potential is calculated within the Poisson-MTFA framework, discussed in

Section 2.2.2, incorporating this non-parabolic conduction-band dispersion. The nu-

merical solution of the Schrödinger equation for this one-electron potential proceeds

via a Fourier-series representation [317, 319]. The band bending potential destroys

the translational symmetry of the crystal. It is therefore appropriate to express the

Schrödinger equation in terms of envelope functions made up of Wannier functions

Ψ(r‖, z) where r‖ [z] is the parallel [normal] component of the position vector. In

this representation, the Schrödinger equation is given by [319,322]

[Ec(−i∇) + V (z)] Ψ(r‖, z) = EΨ(r‖, z), (9.1)

where the eigenfunction for a subband j and a given parallel wavevector k‖

Ψk‖,j(r‖, z) =
1√
A

exp(ik‖ · r‖)ψk‖,j(z), (9.2)

where A is a normalization factor and ψk‖,j(z) is the component of the eigenfunction

normal to the surface for a given subband and parallel wavevector. Ec is the NP

conduction band dispersion.

Imposing the boundary condition that the wavefunctions vanish at the surface

(z = 0), and assuming a system of some length `, such that the wavefunctions of

the bound states have also decayed to zero by z = `, ψk‖,j(z) can be expanded as a

Fourier sine series

ψk‖,j(z) =
∞∑

ν=1

√
2

`
a
k‖,j
ν sin

(νπ

`
z
)

. (9.3)

Substituting this into the Schrödinger equation (Eqn. 9.1) gives the matrix repre-

sentation of the problem for a given k‖

Mk‖ak‖ = Ek‖ak‖ (9.4a)
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where the matrix elements are given by

[M]νν′ = Ec(kν)δνν′ +
2

`

∫ `

0

dz V (z) sin
(νπ

`
z
)

sin

(
ν ′π
`

z

)
(9.4b)

where kν =
√

k2
‖ + (νπ/`)2 and δνν′ is the Kronecker delta function. The eigenvalues

and eigenfunctions of M can therefore be used to determine the confined subband

energies and wavefunctions normal to the surface for a given one-electron potential,

itself resulting from Poisson-MTFA calculations. In practice, the infinite sum in

Eqn. 9.3 is truncated after an order νmax, giving a νmax × νmax matrix in Eqn. 9.4.

The value of νmax required to ensure convergence of the eigenvalues is dependent on

the depth and width of the surface potential well. Setting νmax = 500 was found to

be sufficient for all cases considered here.

The Schrödinger equation has to be solved numerically for each value of par-

allel wavevector due to the conduction band non-parabolicity. However, in this

method, this only has to be performed once for the one-electron potential calcu-

lated from the Poisson-MTFA formalism. This is in contrast to full self-consistent

NP solutions where the Schrödinger equation has to be solved numerically (for each

parallel wavevector) for multiple one-electron potentials in order to iteratively pro-

ceed towards a self-consistent solution, therefore proving significantly more compu-

tationally intensive than the coupled method presented here.

9.3.1 Verification of model

To verify the model developed here, the one-electron potential for a variety of

surface-state densities and a set of subband dispersions calculated by this model

for the electron accumulation layer at an InAs surface are compared to full self-

consistent NP PS calculations of Abe et al. [319] in Fig. 9.1. The InAs parameters

used are those employed by Abe et al. in their calculations.

The one-electron potentials and subband dispersions agree very well between

the two calculation methods, confirming the validity of the NP coupled Poisson-

MTFA/Schrödinger method as a good approximation to full self-consistent NP PS

calculations. The calculations presented in the remainder of this chapter include

higher surface-state densities than those considered by Abe et al. [319], as compared
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Figure 9.1: The one-electron potential, V (z), as a function of depth below the surface, z, for
InAs, using the material parameters in Ref. [319]. Self-consistent Poisson-Schrödinger (SCPS)
calculations (solid lines, Abe et al. [319]) and Poisson-MTFA calculations (dashed lines, this work)
are shown for surface sheet densities Nss = 0.0×1012, 0.4×1012, 0.8×1012, 1.2×1012 and 1.6×1012

cm−2, and a bulk carrier density n = 1.3×1016 cm−3. For a surface sheet density Nss = 1.6×1012,
the calculated (SCPS and MTFA-Schrödinger approximation) subband dispersions are shown inset.

to here. However, comparison of the one-electron potentials shown in Fig. 9.1 does

not show signs of increased deviation as the surface-state density is increased by

over an order of magnitude. The agreement between the self-consistent NP PS

calculations and the calculations presented here is therefore expected to hold for the

higher surface-state densities used in the remainder of this work.

9.3.2 Example calculations for InN

As an illustration of the above model, the properties of a quantized electron accumu-

lation layer in moderately doped (nb = 2.5× 1018 cm−3) InN, for a typical surface-

state density of Nss = 1.6× 1013 cm−2 (see Section 6.3), have been calculated here,

as shown in Fig. 9.2. Two quantized states are obtained. The normal component

of the eigenfunctions are shown superimposed on the subbands in Fig. 9.2(a). The

wavefunctions are equal to zero at the surface (z = 0) due to the imposed boundary

condition here. Also, the wavefunctions decay into the potential barrier, such that a

long way from the surface they have zero amplitude. It is the peak of these wavefunc-

tions close to the surface that is responsible for the peak in the carrier concentration

in the accumulation layer (Fig. 9.2(b)). The parallel dispersion of the subbands is
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also obtained from the model (Fig. 9.2(c)). Indeed, as the confining potential is

only in the direction normal to the surface, the dispersions of the subbands actually

form cones of the form shown in Fig. 9.4. The calculated dispersions become rather

linear with increasing k||, indicating a distinct non-parabolicity. However, this non-

parabolicity is not simply described by a Kane-like dispersion, instead requiring the

full numerical solution of the Schrödinger equation for different values of k||.

Although the Fermi level is strongly pinned at clean InN surfaces, it is possible

to induce changes in the pinning position in a number of ways. A large increase

in bulk doping level increases the Fermi level pinning position (see Chapter 5), in

order to maintain charge neutrality. The changes in measured conductivity of InN

when exposed to a number of solvents and gases has been attributed to changes

in the surface electronic properties [133, 323]. Additionally, the deposition on the

surface of metals of varying electronegativity can cause a variation in the Fermi

level pinning position [4]. For example, the deposition of small amounts of Cs on

InAs(110) surfaces has been shown [324] to lead to a large enhancement of the

electron accumulation. The variation in surface-state density and corresponding

downward band bending associated with these modifications to the clean surface
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will cause a pronounced variation in the number and confinement energies of the

subbands. This is represented by the variation in subband energy minima calculated

for a variety of surface-state densities and bulk carrier densities, shown in Fig. 9.3.

With increasing surface-state density, the amount of downward band bending

increases, and so the potential well becomes deeper at the surface. This causes

the number of subbands bound within the well to increase, and the subbands to

become confined deeper within the well. Conversely, with increasing bulk doping,

fewer subbands are confined for a given amount of band bending. As the bulk

doping level increases, the screening length becomes shorter, and so the potential

well formed at the surface becomes narrower. This acts to increase the energy of

the subband minima within the potential well, leading to fewer bound subbands for

a given amount of downward band bending. By control of both the surface Fermi

level pinning position and the bulk doping, it is therefore possible to control the
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Figure 9.4: ARPES photocurrent intensity map of the parallel dispersion of two subbands in InN
at 60 K (data from Colakerol et al. [314]). Sample preparation involved two 10 minute cycles of
500 eV Ar+ ion bombardment and annealing at 300◦C. The Fermi level is at 0 eV. Simulated non-
parabolic (NP) subband dispersions for InN with a surface-state density of Nss = 8.1× 1013 cm−2

and bulk density of nb = 3.7× 1019 cm−3, corresponding to a downward band bending of 1.8 eV,
are shown (full two-dimensional dispersion shown on right, dispersion through measured energy-
momentum cut shown on left as black dotted lines). The photoemission intensity is plotted on a
false colour scale (shown above the photocurrent intensity map).

number and binding energies of the subbands within the potential well.

9.3.3 Comparison with experiment

Initially, this calculation scheme is used here to model previous experimental data.

Colakerol et al. [314] have mapped the dispersion of subband states at InN surfaces

using high-resolution ARPES. A photocurrent intensity map of the subband parallel

dispersion is shown in Fig. 9.4. Simulations for InN with a surface-state density of

Nss = 8.1× 1013 cm−2 and bulk density of nb = 3.7× 1019 cm−3, corresponding to a

downward band bending of 1.8 eV, result in two confined subbands with their min-

ima located 0.80 eV and 0.51 eV below the Fermi level at the surface, in agreement

with the experimental results.

The full two-dimensional dispersions resulting from these calculations, along

with the parallel dispersions relative to the experimental ones, are shown in Fig. 9.4.

At low parallel wavevector, there is good agreement between the calculated and ex-

perimental dispersions, although these diverge somewhat at higher wavevector. This

may be due to small errors in the bulk conduction band-edge effective mass used,
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failure of the Kane k ·p bulk dispersion relations at higher wavevector, or neglecting

the (albeit small) anisotropy of the conduction band dispersion in wurtzite InN. In

addition, many-body effects may play an important role as discussed in detail below.

Despite the slight divergence of the calculated and experimental dispersion at high

parallel wavevectors, a distinct non-parabolicity is evident in both the experimental

and model dispersions. The subband minimum momentum effective mass, deter-

mined from the calculated subband dispersions, is 0.080m0 and 0.055m0 for the first

(E1) and second (E2) subbands, respectively.

It should be noted that, while good agreement was obtained between the mea-

sured and calculated dispersions, the required amount of downward band bending,

and consequently the surface-state density, is significantly higher than that typically

observed at clean InN surfaces (see Chapter 6). The reasons for this may be partly

due to the surface preparation method, which involved Ar+ ion bombardment and

annealing at 300◦C. Ar+ ion bombardment has been shown [325] to preferentially

sputter N, leading to an In-enrichment of the surface. Such an In-enrichment has

been shown [326], in the similar case of InAs, to lead to an increase in the near

surface carrier density; similar effects would be expected for InN, which may there-

fore increase the surface-state density over that of a clean surface prepared without

ion bombardment and annealing. However, the required surface-state density to get

agreement between these calculations and ARPES data was also rather large for

another sample investigated by Colakerol et al. [314], which was prepared only by

annealing. This suggests a more fundamental origin to the differences between the

surface-state densities determined by different methods, stimulating the following

investigation.

9.4 ARPES studies

The quantized conduction band states in a native electron accumulation layer are

not only occupied, but also localized right at the surface of the semiconductor. This

makes them ideally suited to being studied by ARPES, as evident from Fig. 9.4.

Here, such measurements of the quantized surface electron accumulation layers of
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InAs and CdO are reported.

A series of energy distribution curves (EDCs), recorded at room temperature

in normal emission geometry from an InAs(111) surface as a function of incident

photon energy, are shown in Fig. 9.5. As these spectra are taken in normal emission,

the Γ̄ point of the surface Brillouin zone is probed for all cases (see Section 3.1).

However, with varying photon energy, the component of k⊥ changes, and so these

spectra effectively probe the Γ–L–Γ direction of the bulk BZ. Previous investigations

have determined that photon energies of ∼20 eV and ∼44 eV probe the Γ-point of

the bulk BZ for an InAs(111) sample [38, 321]. Of particular interest here are the

states observable above the valence band maximum (VBM), represented by shading

in Fig. 9.5. Similar features were previously observed by Olsson et al. [38], although

only at photon energies very close to those probing the Γ-point of the bulk BZ. These

features were interpreted as photoemission from states in the electron accumulation

layer of InAs, but attributed to excitation from the centre of the bulk BZ. Here,
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these states can be observed at almost all photon energies, indicating that they

are not localized in k⊥. This is further confirmed by their lack of dispersion with

k⊥, indicating their two-dimensional character. However, their amplitude is clearly

enhanced close to the centre of the bulk BZ. The quantized electron accumulation

layer states shown in Fig. 9.2 are only quasi-two-dimensional – they still ‘see’ a k⊥

component due to the finite width of the potential well formed by band bending

at the surface. Consequently, it is to be expected that some intensity variation

occurs as a function of probing different k⊥ in the photoemission measurements,

with the highest cross-section for photoemission when probing close to the centre of

the bulk BZ. These features are therefore ascribed here to emission from quantized

conduction band states in the quasi-two-dimensional electron gas (Q2DEG) at the

surface of InAs.

To investigate these states in detail, high-resolution ARPES measurements

were performed at a photon energy of hν = 20 eV as a function of emission angle,

and therefore, of parallel wavevector. The corresponding photocurrent intensity map

is shown in Fig. 9.6. Two features can be observed - a clearly resolved lower band,

and a rather diffuse inner band. The lower band is identified as a quantized subband

state. The upper band may be a second quantized, but only weakly bound, subband

state, or could be associated with photoemission from bulk conduction band states,

as discussed further below. It is also possible that both of these features may be

present, giving rise to the rather broad nature of this feature.

Using the model described in Section 9.3, it is possible to obtain subbands

whose binding energies and dispersions accurately follow the experimental features.

However, this requires a downward band bending of 0.4 eV, corresponding to a

surface-state density of Nss = 6.1×1012 cm−2. This is very high in comparison with

typical surface-state densities previously reported for InAs surface electron accumu-

lation layers [39]. Indeed, from the onset of intensity in the normal emission spectra

shown in Fig. 9.5 probing the Γ-point of the BZ, the VBM can be estimated to occur

∼ 0.6 eV below the Fermi level at the surface, which corresponds to a downward

band bending of only 0.1 eV, and a surface-state density of Nss = 1.0× 1012 cm−2,
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Figure 9.6: ARPES photocurrent intensity map of the parallel dispersion of quantized conduction
band states at the surface of InAs(111), recorded at 60K. The Fermi level is at 0 eV. The photoe-
mission intensity is plotted on a false colour scale (shown below the photocurrent map). Simulated
NP subband dispersions for a surface-state density of Nss = 6.1× 1012 cm−2 and bulk density of
nb = 6×1017 cm−3, corresponding to a downward band bending of 0.4 eV (shown in (b), solid blue
lines) are plotted on top of the experimental dispersions (red lines). A downward band bending
of the valence band of 0.1 eV, corresponding to the onset of valence band photoemission and the
position of the In 4d core-levels, is also shown (dashed blue line).

significantly smaller than that required to simulate the ARPES dispersions. Such a

downward band bending is represented in the valence band in Fig. 9.6(b).

This is also consistent with the core-level peak positions. The In 4d core

levels, recorded in ‘angle-integrated mode’ at a photon energy of 70 eV, are shown

in Fig. 9.7. The peak was fitted by two spin-orbit split d components (∆Eso =

0.855 eV) to account for the bulk core-level peak, and a surface core-level shift. The

separation of the bulk and surface components was 0.28 eV, in agreement with pre-

vious studies of InAs(111)B–(2× 2) [321]. The bulk component occurs at a binding

energy of 17.46 ± 0.05 eV. Comparison with the VBM to In 4d separation deter-

mined previously [321] allows the Fermi level to be located 0.56 ± 0.05 eV above

the VBM at the surface in this case, in agreement with the value determined from

the normal-emission valence band EDCs. Consequently, there is a large discrepancy
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between the amount of downward band bending determined from core-level and va-

lence band features and from simulation of the conduction subband features. While

this may in part be due to the approximations made within the model (for example,

the validity of the k · p dispersions in the degenerate electron accumulation layer),

other effects, such as many-body interactions, may also be important. These are

discussed further below.

An equivalent investigation was performed for the CdO(001) surface. From

previous normal-emission measurements [327], photon energies of ∼ 30 eV and

∼85 eV can be taken as probing the Γ-point of the bulk BZ. High-resolution mea-

surements are made here at the lowest of these two values, to ensure the highest

k‖-resolution. Quantized conduction band features were again observed, and an

example measurement, performed at 80 K, is shown in Fig. 9.8. In this case, the

dispersions extend over a larger binding energy, and the inner band has a more

well defined dispersion, than was observed for InAs. It was possible to get rea-

sonable agreement between calculated and measured dispersion relations using the

model described above, as shown in Fig. 9.8. The agreement is not, however, as

good as for InAs (Fig. 9.6), or indeed InN (Fig. 9.4), but it should be noted that

the low-temperature band parameters are less well known for CdO than for these

other materials. The calculations in this case required a downward band bending

of 1.1 eV, corresponding to a surface-state density of Nss = 7.0 × 1013 cm−2. This

is much higher than the values determined from valence band x-ray photoemission
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spectroscopy (XPS) measurements presented in Section 4.5 from another piece of

the same sample, prepared under very similar conditions. This again suggests that

other effects, such as many-body interactions, may play an important role here.

9.5 Many-body effects in an electron accumulation layer

As seen throughout this thesis, the electron density in a semiconductor surface

electron accumulation layer can be very high. It therefore seems plausible that

many-body interactions, such as electron-electron (e-e) and electron-phonon (e-ph)

coupling, may become important. In particular, e-e interactions are known to lead

to a reduction in the band gap of a semiconductor for highly degenerate bulk carrier

concentrations [328]. In a two-dimensional system, many-body interactions can be

much more important [329], as has previously been observed in optical investigations

of semiconductor quantum well structures [329–331]. As discussed in Section 3.1.2,

ARPES measures the quasiparticle electronic structure, and so many-body effects

must be considered in the analysis of such data. In contrast, the valence band re-

mains empty of holes both in the bulk and in the accumulation layer – it might there-

fore be expected that there is minimal change in many-body interactions between

the bulk and surface for the valence band. In the previous section, it was shown

that the amount of band bending in a semiconductor electron accumulation layer

determined from an analysis of the relative positions of the VBM at the surface and
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Figure 9.9: Bending of the CBM and VBM (solid blue lines) in (a) InAs, (b) CdO, and (c) InN,
within the Hartree approximation, at 60 K, 80 K, and 177 K, respectively. The amount of band
bending is determined from the VB onset in normal emission ARPES spectra and the position
of the In 4d core levels for InAs, from XPS measurements of a sample prepared under identical
conditions as for the ARPES measurements for CdO, and from XPS measurements of typical InN
samples. The position of the calculated subband feature in each case is shown as a solid red
line. The binding energies of the experimental subband features at Γ̄ observed in the APRES
spectra (measured here for InAs and CdO, from Ref. [314] for InN) are shown as dashed red lines.
A schematic representation of the CBM bending, in the presence of many-body interactions, is
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in the bulk drastically underestimates the amount of band bending required to give

quantized states at the binding energies identified by ARPES measurements. The

following model is proposed here to explain these discrepancies: the VBM to surface

Fermi level separation, and the subsequent solution of the band bending within the

Poisson-MTFA formalism, defines the Hartree potential, that is, the band bending

potential neglecting many-body effects on the conduction band. These many-body

effects cause an increase in the binding energy of the quantized subband features by

the electron self-energy, Σ(k = 0) – the many-body interactions effectively cause a

band gap shrinkage within the electron accumulation layer, which causes the quan-

tized state to occur deeper in the potential well than would be expected from the

Hartree potential alone. This is represented in Fig. 9.9. It should be noted that

this model is somewhat preliminary, and needs further experimental and theoretical

verification. The results of initial measurements and calculations into this effect are,

however, presented below.
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9.5.1 Electron-electron interactions

To determine the Hartree potential for the InAs sample investigated above, the

VBM to surface Fermi level separation was determined from the normal emission

photoemission spectra, and the position of the In 4d levels, as discussed above.

Calculations for this band bending are shown in Fig. 9.9(a), and result in a single

quantized state ∼0.1 eV below the Fermi level. Two spectral features are observed

in the ARPE spectra (Fig. 9.6(a)), and the positions of these at Γ̄ are shown in

Fig. 9.9(a) as dashed red lines. The topmost feature occurs at an energy very

close to the calculated CBM position in the bulk of the semiconductor, and this is

therefore attributed to emission from bulk conduction band states. The more deeply

bound feature is associated with photoemission from a quantized state within the

InAs accumulation layer. This state occurs 0.1 eV below the calculated subband

feature for the Hartree potential. In the proposed model, this therefore corresponds

to a subband renormalization by an electron self-energy of Σ(k = 0) = 0.1 eV.

As discussed in Section 3.1.2, the measured ARPES intensity is directly re-

lated to the spectral function of the material. In particular, the Lorentzian linewidth

of a momentum distribution curve (MDC) is directly proportional to the imaginary

component of the self-energy. It is therefore of interest to investigate the properties

of the MDCs here in some detail. A selection of MDCs of the states of interest are

shown in Fig. 9.10(b). While the outer band is strong, the inner band shows only

very weak features, as expected from the photocurrent intensity map. The following

discussion is therefore limited to MDCs of the outer band. In particular, MDCs

within the red boundary shown in Fig. 9.10(a) were considered in detail. In each

case, a linear background was removed, following which the MDC was fitted by a

single Lorentzian peak. The peak position and FWHM are shown in Fig. 9.10(c)

and (d), respectively.

A small kink in the dispersion, can be seen in the MDC peak positions at

around 0.1 eV below the Fermi level. At around this energy, there is also a slight

peak, followed by a dip, in the MDC linewidth. This is somewhat analogous to

the changes in MDC linewidth that have previously been associated with electron-
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Figure 9.10: (a) ARPES photocurrent intensity map of the parallel dispersion of quantized
conduction band states at the surface of InAs(111) at 60K, shown in Fig. 9.6(a). (b) A set of
MDCs within the orange rectangle shown in (a). (c) Peak position and (d) Lorentzian FWHM of
the MDCs in the red region of (a).

plasmon interactions in graphene [332]. Here, they are taken as evidence for an e-e

interaction. Assuming no k-dependence of the electron self-energy (see below), the

MDC analysis suggests a self-energy contribution of ∼0.1 eV from e-e interactions,

in agreement with the value determined above from comparisons of the spectral

features and model calculations.

A similar analysis was performed for CdO. From the VBM to surface Fermi

level separation from XPS measurements (Chapter 4), the Hartree potential was

calculated, as shown in Fig. 9.9(b). As for InAs, a single bound state within the

surface quantum well was found, now slightly more deeply bound at 0.19 eV below

the Fermi level. This is in contrast to the two clear spectral features observed in

the experiment (Fig. 9.8), shown as red dotted lines in Fig. 9.9(b). However, as

for InAs, the topmost feature occurs approximately at the CBM in the bulk, and

is therefore attributed to photoemission from bulk states. The more deeply bound

feature is ascribed to the quantized conduction band state, which lies ∼ 0.27 eV

below the calculated state. An MDC analysis is also shown in Fig. 9.11. While
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Figure 9.11: (a) Peak position and (b) Lorentzian width of MDCs of the outer subband feature
from 0.33 eV binding energy to the Fermi level in CdO(001) at 80 K (see Fig. 9.8).

the data is more noisy than for the InAs case, an increase in width of the MDCs

is just observable at ∼ 0.25 eV below the Fermi level. This, and the comparison

of the calculated and measured positions of the subband feature, both suggest a

self-energy of ∼0.25 eV associated with e-e interactions in this case. This is higher

than for InAs, as might be expected due to the higher density of carriers within the

electron accumulation layer in CdO as compared to InAs.

Finally InN is considered. From the typical VBM to surface Fermi level

separation determined in Chapter 6, the Hartree potential, for a bulk doping of

n = 6 × 1018 cm−3, is defined as shown in Fig. 9.9(c). At 177 K, this again gives

one quantized state, located ∼ 0.3 eV below the Fermi level. The ARPES results

of Colakerol et al. [314], measured at 177 K from a sample (n = 6 × 1018 cm−3)

that was only annealed and not ion bombarded, gives measured spectral features

0.2 eV and 0.6 eV below the Fermi level at Γ̄. The topmost feature can again be

associated with photoemission from bulk conduction band states, while the shift in

energy between the quantized state in the calculations and the experiment allows

a self-energy of 0.3 eV to be estimated. This is the highest of all the materials

considered, consistent with the highest surface-state density for InN, in comparison

to CdO and InAs.

To validate the above considerations, it is of interest to calculate the expected
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magnitude of the contribution from e-e interactions to the electron self-energy. The

calculations here are based upon the formalism of Vinter [333, 334], originally de-

veloped to describe e-e interactions within the 2DEG of a Si MOSFET. Within the

random phase approximation (RPA), the self-energy

Σ(k, E) = i

∫∫∫
d2q dω

(2π)3

e2

2ε0ε(∞)q

ε(∞)

ε(q, ω)
G0(k− q, E − ω), (9.5)

where ε(∞) describes the effective permittivity of the medium, and the permittivity

function ε(q, ω)/ε(∞) is derived from the polarizability of a 2DEG determined by

Stern [335]. To account for image charge effects, the effective permittivity of the

medium is assumed to be the mean of those in the semiconductor and the vacuum,

as these calculations are being used here for a surface electron accumulation layer.

The single-particle Green’s function

G0(k, E) =
θ(|k| − kF )

E − ξ(k) + iδ(0+)
+

θ(kF − |k|)
E − ξ(k)− iδ(0+)

(9.6)

where θ is the heaviside step function and ξ(k) = ~2(k2 − k2
F )/2m∗

‖. In Vinter’s

approach, a plasmon-pole approximation is introduced, where the self-energy is sep-

arated into separate components to account for exchange (an unscreened term) and

correlation effects

Σ(k,E) = Σx(k) + Σc(k, E). (9.7)

The details of this approximation are presented elsewhere [334]. The resulting ex-

change energy takes the form calculated by Stern [336], and is given by

Σx(k) =





∫ kF−k

0
dq e2

4πε0ε(∞)
− ∫ kF +k

kF−k
dq e2

(2π)2ε0ε(∞)

[
π
2
− sin−1

(
k2+q2−k2

F

2kq

)]
, k < kF

∫ k+kF

k−kF
dq e2

(2π)2ε0ε(∞)

[
π
2
− sin−1

(
k2+q2−k2

F

2kq

)]
, k > kF

(9.8)

which is dependent on the sheet density of the 2DEG, N = k2
F /2π. The correlation
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energy

Σc(k,E) =





− ∫ kF +k

kF−k
dq Ω(q) {H [k2

F , p+] + H [(k + q)2, p−]−H [k2
F , p−]}

− ∫ kF−k

0
dq Ω(q)H [(k + q)2, p+]

− ∫∞
kF +k

dq Ω(q)H [(k + q)2, p−] ,

k < kF

− ∫ k+kF

k−kF
dq Ω(q) {H [k2

F , p+] + H [(k + q)2, p−]−H [k2
F , p−]}

− ∫ k−kF

0
dq Ω(q)H [(k + q)2, p−]

− ∫∞
k+kF

dq Ω(q)H [(k + q)2, p−] ,

k > kF

(9.9)

where

Ω(q) =
2m∗

‖e
2

(2π)2ε0ε(∞)~
ω2

p

ωq

, (9.10)

p± = −
2m∗

‖(E ± ~ωq)

~2
− k2

F . (9.11)

The plasmon frequency [335]

ωp =

[
qNe2

2ε0ε(∞)m∗
‖

] 1
2

. (9.12)

and

ω2
q = − ω2

p

(ε0ε(∞)/ε(q, 0))− 1
. (9.13)

The two-dimensional RPA result of Stern [335] is used to give

ε(q, 0)

ε(∞)
=





1 +
e2m∗

‖
2πε0ε(∞)~2

1

q
, q ≤ 2kF

1 +
e2m∗

‖
2πε0ε(∞)~2

1

q


1−

√
1−

(
2kF

q

)2

 , q > 2kF .

(9.14)

For k = kF , the correlation energy can be easily determined. However, for k 6= kF ,

the calculation proceeds via a graphical solution of the Dyson equation [333]

E + µ = ξ(k) + Σ(k, E), (9.15)

where the quasiparticle energy, E, is given relative to the chemical potential, µ.

Example calculations for the wavevector and density dependence of the elec-

tron self-energy in a 2DEG at an InAs surface are shown in Fig. 9.12. The total
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self energy varies by only ∼10 meV between the Γ̄-point and the Fermi wavevector,

validating the k-independence of the self-energy assumed above. The density of the

Q2DEG in the current case can be estimated directly from the measured disper-

sions: the Fermi wavevector can be determined from the MDC peak position at the

Fermi level (see Fig. 9.10(c)), and this can be converted into a 2DEG density via

the relation

N =
k2

f

2π
. (9.16)

For the InAs sample investigated here, this corresponds to a 2DEG density of

N = 4× 1012 cm−2. The electron self-energy for this 2DEG can be calculated to be

0.08 eV. This is in good agreement with the value of 0.1 eV determined experimen-

tally above, particularly considering the approximations involved in this calculation

scheme. Note, the experimental density of the Q2DEG is somewhat higher than

the surface-state density resulting from Poisson-MTFA calculations for the Hartree

potential. This is due to the lack of many-body interactions included within the

calculation of the Hartree potential – the e-e interactions cause a shrinkage of the

fundamental band gap, resulting in the bound subband lying further below the Fermi

level. The carrier density associated with electron states in this subband is therefore

higher than would be expected when neglecting the e-e interactions, leading to a

higher density in the 2DEG, and correspondingly, a higher surface-state density to

maintain charge neutrality.
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From Fig. 9.11(a), the density of the Q2DEG in the CdO sample investi-

gated here can be estimated as N = 3.6× 1013 cm−2, while from the measurements

of Colakerol et al. [314], the density of the Q2DEG in InN can be estimated as

N ≈ 5 × 1013 cm−2. Using the above method, the calculated electron self-energy

is 0.41 eV and 0.50 eV for CdO and InN, respectively. These are both within a

factor of two of the self-energy estimated from the experimental measurements pre-

sented above, providing some validation of the explanations presented here. Finally,

it should be noted that the conclusions on electron accumulation presented in the

preceding chapters of this thesis still hold. However, the reported downward band

bending values and surface state densities are within the Hartree limit - the down-

ward bending of the conduction band and density of electrons within the Q2DEG

will therefore be slightly higher in the quasiparticle picture than the values that

were reported.

9.5.2 Electron-phonon interactions

Given that e-e interactions seem to be important in the high carrier densities of sur-

face electron accumulation layers, it seems likely that e-ph interactions would also

be important. Electron-phonon interactions lead to a kink in the quasiparticle dis-

persion at an energy equal to the phonon energy below the Fermi level, and also lead

to a narrowing of the MDC linewidth due to a decrease in the imaginary component

of the self-energy close to the Fermi level [337]. In principle, it is therefore possible

to extract information on e-ph coupling directly from the measured dispersion and

MDC linewidths. However, from Figs. 9.10 and 9.11, these indications are not clear

in this case.

It is also possible to obtain information on the e-ph coupling from the tem-

perature dependence of the EDC linewidth of spectral features in the ARPES mea-

surements [338]. It is generally assumed that the linewidth contribution from e-e

interactions, and also e-ion or e-defect interactions, are independent of tempera-

ture. At a turning point in the electronic structure, the group velocity is zero, and

the measured EDC linewidth directly gives the initial state linewidth [339]. The
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Figure 9.13: Temperature depen-
dence of the Lorentzian width of
EDCs of the quantized subband in
CdO at Γ̄, and a fit according to
the Cardona model (Eqn. 9.17).

linewidths of the EDC at Γ̄ in CdO are therefore considered here as a function of

temperature, shown in Fig. 9.13.

As expected for e-ph coupling, the linewidth increases with increasing tem-

perature. Cardona et al. [340, 341] have developed a model for the temperature

dependence of the band gap in semiconductors due to e-ph interactions, and have

extended this model to the temperature dependence of the linewidth that would be

observed in ARPES measurements. In this model, the initial state linewidth

Γ(T ) = Γ(0) +
2σ(0)

eΘ/T − 1
. (9.17)

where Γ(0) is the linewidth at T = 0, accounting for the temperature-independent

linewidth contribution from e-e, e-d, and e-i interactions, σ(0) is the linewidth con-

tribution from zero-point phonons, and Θ is an effective average Debye tempera-

ture for acoustic and optical phonons. Fitting the temperature dependence of the

CdO state linewidths using this model, shown in Fig. 9.13, gives the parameters

Γ(0) = 0.28 eV, σ(0) = 0.05 eV, and Θ = 370 K.

There are two particular points of interest. First, the zero-temperature

linewidth is much larger than for InAs. While a full temperature-dependent analysis

was not performed for InAs, the EDC linewidth at 60 K is only ∼0.07 eV. While it

may be lower due to a lower density of defects and impurities, it is also consistent

with a lower degree of e-e interactions, as found from the above analysis. Second,

the effective Debye temperature of 370 K is similar, although slightly higher, than

the bulk Debye temperature in CdO of ∼250 K [342].
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Figure 9.14: Temperature depen-
dence of the Lorentzian width of
EDCs of the quantized subband in
CdO at Γ̄, and a fit according to
the Eliashberg model, within the
Debye approximation (Eqns. 9.18
to 9.20), assuming a Debye tem-
perature of 250 K and 370 K.

An alternative model often employed to describe e-ph interactions in solids,

in particular metals [343], is the Eliashberg coupling function, α2F (ω). Within this

model, the temperature dependent linewidth in the ARPE spectra is given by [338]

Γ(ω, T ) = Γ(0)+2π~
∫ ωm

0

dω′ α2F (ω′) [1− f(ω − ω′) + 2n(ω′) + f(ω + ω′)] (9.18)

where ω corresponds to the binding energy of the feature of interest, ωm is the max-

imum phonon frequency, f(ω) is the Fermi-Dirac distribution function (Eqn. 2.22),

and n(ω) is the Bose-Einstein distribution function

n(ω) =
1

exp [β(ω − ωF )]− 1
, (9.19)

where ωF = 0 for the Fermi level at 0 eV of the binding energy scale. Assuming

the temperature is not too high, the Debye model can be used for the phonon

spectrum [338], giving the Eliashberg coupling function

α2F (ω) = λ

(
ω

ωD

)2

, ω < ωD, (9.20)

where ωD is the Debye frequency (corresponding to the Debye temperature), and λ

is the electron-phonon coupling parameter, or mass-enhancement parameter. Above

ωD, the Eliahsberg function is zero.

The temperature dependence of the CdO EDC linewidth fitted using this

model is shown in Fig. 9.14. A robust fit could not simultaneously be established

for both the Debye temperature and e-ph coupling parameter. However, fixing the

Debye temperature to that of the bulk (250 K) gives a zero temperature linewidth
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and e-ph coupling parameter of Γ(0) = 0.250 ± 0.003 eV and λ = 0.40 ± 0.02,

respectively. Instead, using the Debye temperature determined from the Cardona

model discussed above (370 K), the fitted zero temperature linewidth and e-ph

coupling parameter of Γ(0) = 0.242 ± 0.003 eV and λ = 0.43 ± 0.02, respectively,

are very similar to those obtained using the bulk Debye temperature. This follows

as the Debye temperature is not too high for CdO, so that the temperatures used in

the measurements generally satisfy T > 1/3TD, in which case the linewidth varies

approximately linearly with temperature [338]

Γ(T > 1/3TD) = Γ(0) + 2πλkBT, (9.21)

independent of the Debye temperature. Consequently, the fits of the full Eliashberg

coupling function within the Debye model are not sensitive to small changes in Debye

temperature. Independent, therefore, of the Debye temperature used, the derived

e-ph coupling parameter is reasonably strong, indicating that e-ph, in addition to

e-e, interactions play a significant role in the quasiparticle electronic structure of a

quantized semiconductor electron accumulation layer.

From the considerations presented here, these Q2DEGs present a novel system

for investigating fundamental properties of many-body interactions. These systems

also offer considerable flexibility. In the materials investigated in this thesis, the

density of electrons in the Q2DEG varies by over an order of magnitude, providing

the opportunity to probe many-body effects in a variety of different environments.

Further, the density of electrons in the Q2DEG is known to be highly sensitive to

adsorption of small quantities of elements such as Cs [324] or S [344] on the surface.

This can even cause a Q2DEG to form where previously a carrier depletion layer

existed [345]. This allows a unique opportunity to probe the carrier dependence of

e-e and e-ph interactions by ARPES measurements without changing the properties

of the host material (that is, Debye temperature, dielectric constant, band gap and

band-edge effective mass). Such an investigation should be the subject of detailed

further study.
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9.6 Conclusions

The downward band bending of a surface electron accumulation layer was shown to

lead to a confining potential, causing conduction band states to become quantized

into two-dimensional subbands. A combined Poisson and Schrödinger calculation

scheme, incorporating the effects of band non-parabolicity, was developed to describe

the binding energy and dispersions of these quantized states within the Hartree

limit. Angle-resolved photoemission spectroscopy measurements were made of these

states at InAs and CdO surfaces. Many-body interactions, in particular electron-

electron and electron-phonon coupling, were shown to be important in the electron

accumulation layers, and were investigated via a combination of ARPES lineshape

analysis and model calculations. This reconciles an apparent contradiction between

the amount of band bending determined from analysis of the valence band maximum

position at the surface and in the bulk, and the position and dispersion of quantized

conduction subbands determined by ARPES. This work also demonstrates that

quantized electron accumulation layers are a novel example quasi-two-dimensional

system within which to investigate fundamental physics of many body interactions.



Chapter 10

Summary

This thesis has focussed on the electronic properties of a class of semiconductors

identified here as significantly cation-anion mismatched semiconductors (SCAMS),

due to the large size and electronegativity difference between the constituent cation

and anion. Of potential cations for II-VI, III-V, and III-VI semiconductors, Cd and

In have some of the highest atomic radii and lowest electronegativities, while O and

N atoms are very small and highly electronegative. Consequently, combinations of

these atomic species can be considered as model SCAMS, and three such compounds,

CdO, In2O3, and InN, constitute the main materials investigated here.

The charge neutrality level (CNL) has been shown to be an important energy

level in determining the electronic properties of defects, impurities and surfaces in

these materials. In most conventional semiconductors, such as Si or GaAs, the

CNL is located within the fundamental band gap (see Fig. 10.1). However, in CdO,

In2O3, and InN, the CNL was shown here to be located within the conduction band,

0.39 eV, ∼ 0.65 eV, and 1.19 eV above the conduction band minimum (CBM),

respectively, as shown in Fig. 10.1. This seemingly unusual location was explained

from the band structure of typical SCAMS – the combination of a large cation and a

small electronegative anion results in a very low CBM compared to the conduction

band edge across the rest of the Brillouin zone. The CNL lies close to the mid-gap

energy averaged across the Brillouin zone, and therefore above the CBM in these

materials. For the specific case of InN, its position was rationalised within the

chemical trends of common-cation and common-anion semiconductors. As a result

of the low Γ-point CBM, lying below the CNL, the electronic properties of SCAMS

are rather different to those of conventional semiconductors, as summarised below.

10.1 Native defects

Within the amphoteric defect model of Walukiewicz [51], native defects tend to

drive the Fermi level towards an energy level termed the Fermi level stabilization
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Figure 10.1: Band lineup of a number of semiconductors relative to the CNL. SCAMS are
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offsets for ZnO [346], and from calculations for SnO2 and CuAlO2 [347].

energy. It was argued here that this energy should be equal to the CNL, as it

is virtual gap states (ViGS) that ultimately determine the charge state of deep

defects, and the CNL lies at the branch point of these ViGS. Consequently, in

conventional semiconductors, where the CNL lies within the band gap, native defects

will tend to lower (raise) the Fermi level in n-type (p-type) material, as represented in

Fig. 10.2. In contrast, for SCAMS where the CNL is located within the conduction

band, the formation energy for donor-type native defects will remain lower than

that of acceptor-type native defects until the Fermi level moves above the CNL

(see Fig. 10.2). Consequently, native defects can be donors even in already n-

type SCAMS. This was shown to be the case in CdO when native defects were

deliberately introduced into n-type material by high-energy particle irradiation. The

CNL positions determined here were also shown to be consistent with previous

particle irradiation experiments in InN [177], and previous theoretical calculations

for the formation energies of native defects in InN [190] and In2O3 [301].
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10.2 Hydrogen

The donor/acceptor transition level for hydrogen [H(+/−)] was shown to be equiv-

alent to the CNL, in agreement with previous theoretical arguments [25]. Conse-

quently, as for native defects, H can be a donor even in n-type SCAMS, whereas

the compensating charge state generally has the lowest formation energy in conven-

tional semiconductors (see Fig. 10.2). Hydrogen was shown to be a donor in n-type

CdO, while muon spin rotation spectroscopy measurements were used to show that

muonium (Mu), and by analogy hydrogen, is a shallow donor in n-type In2O3. The

CNL positions determined here are also consistent with previous measurements that

H and Mu are both donors in InN [196,197], and that Mu is a donor in CdO [117].

10.3 Surface electron accumulation

The surface electronic properties can differ markedly from those of the bulk. In

the majority of semiconductors, a depletion of carriers results in the near surface
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region. However, in SCAMS, the surface Fermi level pins slightly below the CNL,

well into the conduction band. Consequently, a number of donor-type surface states

will be unoccupied, and hence positively charged. In order to maintain charge neu-

trality, an increase in electron density, that is, an electron accumulation, occurs at

the surface. This was shown to be the case in CdO, InN, and In2O3 investigated

here. Furthermore, the low CBM, lying well below the CNL, was shown to lead to

a strong pinning of the surface Fermi level, with a remarkable independence of the

degree of surface electron accumulation observed as a function of surface orientation

or bulk doping level, except for very high bulk concentrations. Electron accumula-

tion was also shown to occur independent of the bulk polymorph of the material.

For the InGaN system, where the CNL lies above the CBM in InN but below the

CBM in GaN, a change from electron accumulation to depletion was observed with

increasing Ga-composition. Similar changes were observed for the InAlN system.

The electron accumulation was shown to persist at the surface of p-type InN, giving

rise to an inversion layer, making it difficult to characterise the p-type bulk. Such an

inversion layer would be expected at the surface of all p-type SCAMS. The strong

downward band bending in the electron accumulation layer creates a confining po-

tential well which was shown to result in quantized conduction band states. From a

combination of angle-resolved photoemission spectroscopy measurements and model

calculations, many-body interactions were shown to be important in the electron ac-

cumulation layer, where very high carrier densities can exist. Further work is needed

to characterise these many-body effects in more detail.

10.4 Propensity for n-type conductivity

A combination of native defects tending to be donors, hydrogen acting as a donor,

and a build up of carriers at the surface all contribute to the propensity for SCAMS

to exhibit high unintentional n-type conductivity. Further, in InN, an increase in

electron density approaching the InN/buffer layer interface was shown to be an addi-

tional source of conductivity, giving rise to a pronounced film-thickness dependence

of single-field Hall effect results. In all cases, the CNL lying above the CBM can
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be seen as the overriding reason for the unintentional n-type conductivity of these

materials. In particular, for the relatively wide band gap oxide materials studied,

this explains why they can be conducting while still being optically transparent,

two normally conflicting properties, and hence their conventional use as transparent

conducting oxides.

10.5 Consequences for other materials

While the position of the CNL does not guarantee a particular microscopic defect

or surface state exists, it does describe tendencies for the charge character of the

microscopic centres that are present. This is a particularly powerful guide when

the CNL lies within one of the semiconductor bands, such as for SCAMS, and can

therefore be used as a predictive tool. The band alignment of two further SCAMS,

ZnO and SnO2, determined from measured valence band offsets [346] and theoretical

calculations [347], are shown in Fig. 10.1. In both of these cases, the CNL lies within

the conduction band, as for the other SCAMS investigated here. This explains re-

ported properties of these materials, such as their high unintentional conductivities,

donor nature of H and Mu, and surface electron accumulation [102,300,302,305], as

for the other SCAMS investigated here. As a contrasting example, the CNL can be

located at or below the VBM, such as in GaSb, shown in Fig. 10.1, explaining its

propensity for unintentional p-type conductivity, surface hole accumulation and the

predictions of the acceptor nature of hydrogen even in p-type material [103,122]. Fi-

nally, while the oxides considered here all show a propensity for n-type conductivity,

p-type conducting samples of CuAlO2 have been realised [123]. Calculations locate

the CNL in the lower half of the fundamental band gap for this material [347] (see

Fig. 10.1), explaining why p-type conduction is achievable, in contrast to the other

oxide materials investigated here. These results show that the CNL is a powerful

tool for both explaining and predicting the electronic properties of a wide range of

materials.
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[27] Ç. Kılıç and A. Zunger, Appl. Phys. Lett. 81, 73 (2002).

[28] I. E. Tamm, Physikal. Z. Sowjetunion 1, 733 (1932), discussed in [12].

[29] W. Shockley, Phys. Rev. 56, 317 (1939), discussed in [12].

[30] A. W. Maue, Z. Physik 94, 717 (1935), discussed in [12].
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[219] S. Lazić, E. Gallardo, J. M. Calleja, F. Agulló-Rueda, J. Grandal, M. A.
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Glans, T. Learmonth, A. Federov, T. D. Veal, F. Fuchs, V. Muñoz-Sanjosé,
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