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Abstract

Bayesian nonparametric modelling has recently attracted a lot of attention, mainly due to the ad-
vancement of various simulation techniques, and especially Monte Carlo Markov Chain (MCMC)
methods. In this thesis I propose some Bayesian nonparametric models for grouped data, which
make use of dependent random probability measures. These probability measures are constructed
by normalising infinitely divisible probability measures and exhibit nice theoretical properties. Im-
plementation of these models is also easy, using mainly MCMC methods. An additional step in
these algorithms is also proposed, in order to improve mixing. The proposed models are applied
on both simulated and real-life data and the posterior inference for the parameters of interest are
investigated, as well as the effect of the corresponding simulation algorithms. A new, n-dimensional
distribution on the unit simplex, that contains many known distributions as special cases, is also
proposed. The univariate version of this distribution is used as the underlying distribution for mod-
elling binomial probabilities. Using simulated and real data, it is shown that this proposed model is

particularly successful in modelling overdispersed count data.
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Notation

The following notation is used throughout this thesis, unless otherwise stated. We usually use normal

font type for scalars and bold font type for vectors, unless otherwise stated.

N The set of natural numbers

R The set of real numbers

1] The null set

Oy Dirac measure

B° The compliment set of a set B

|| The absolute value of a number z

4 Equality in distribution, i.e. identically distributed
A~!  The inverse of a matrix A
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Chapter 1

Introduction

Bayesian nonparametric modelling has recently attracted a lot of attention, partly because of the
advancement of simulation methods, and especially Monte Carlo Markov chain (MCMC) methods.
These models offer a flexible prior specification of the distribution of some data and can therefore
be particularly useful in cases where it is preferred not to impose much prior structure on the
distribution of those data. Bayesian nonparametric models can also be used in a variety of ways in

modelling two or more correlated data sets (for example spatial data).

1.1 Bayesian Nonparametric Modelling

The term “Bayesian nonparametric model” refers to a probability model with infinitely many pa-
rameters (Bernardo and Smith, 1994), which results in inference which is directly comparable to
classical nonparametric models. These methods have attracted a lot of attention recently, especially
because of the recent advances in some simulation techniques, and especially Monte Carlo Markov
chain methods, which facilitate the simulation of the posterior distributions of the parameters of
interest. These models can be particularly useful in cases when there is uncertainty about the un-
derlying distribution of some data, so modelling this distribution in a flexible way is desirable. As
a result, they can be naturally applied to density estimation and regression models.

There are many classes of Bayesian nonparametric models. For the density estimation problem,
i.e. the problem of estimating the underlying distribution(s) of some data, it is assumed that the
data, say Y1,Ys,...,Y,, come from a distribution F' or, more generally, each Y; ~ F;. In the
Bayesian nonparametric setting, one considers these distributions also as random and assigns prior

distributions to them. Some examples of these models are species sampling models, introduced



by Pitman (1996), Pdlya trees (introduced by Ferguson (1974) and developed by Lavine (1992,
1994)), Bernstein polynomials and the very general class of Random Probability Measures (RPMs
- see e.g. Crauel (2002)). We also note an interesting and very rich subclass of the RPM, the
normalised random measures, which will be described in Section 1.2.3. For the regression problem
yi = g(x;) + €, i =1,2,...,n (where the bold symbols denote vectors), many approaches include
some collection of distributions, say B = {f1, f2,...}, and write g = > -, by fi, for some basis
coefficients by, bs,.... Popular choices for this collection B include spline, Fourier and wavelet
models. For a more detailed review of the aforementioned (and more) Bayesian nonparametric
methods, see Miiller and Quintana (2004).

At this point something more about the RPMs needs to be said, since they are not only a very
rich class of models, but also the one mostly used in practise. As the name indicates, a RPM is a
probability measure that is itself taken to be random. Alternatively, as stated in Ferguson (1974),
it can be thought of as a random variable whose values are probability measures. A more formal

definition is the following:

Definition 1. Let X be a Polish space and B denote its c—algebra. Let also (0, F, P) denote a
probability space. A map
uw o BxQ —[0,1]

(B,w) — pw(B)
satisfying
1. V¥V B € B, u,(B) (as a function of w) is measurable,
2. for P-almost every w € Q, u,(B) (as a function of B) is a Borel probability measure

is said to be a random probability measure on X.

Within the Bayesian framework, a prior distribution is assigned to a RPM (i.e. a prior distribution
of the random distribution). The most widely used prior specification for this random probability
measure in the literature is the Dirichlet process (DP), introduced by Ferguson (1973). Other
choices include the normalised inverse-Gaussian process (N-IGP) advocated by Lijoi et al. (2005),
the invariant DP (Dalal, 1979) and the aforementioned Pélya trees.

Finally, note that these random measures fit naturally in a standard hierarchical model, for
example:

Y~ f(Yi;0:), i=1,2,....n

0: ¥ G



G ~ RPM(¢))

Y ~ h(dh).

This setup can be useful in cases where the realisations of the RPM used are discrete distributions,
whereas the data under consideration are continuous. This will be demonstrated using the DP as

the underlying RPM in the next subsection.

1.1.1 The Dirichlet process

First, the Dirichlet (Dir) distribution is defined:

Definition 2. An n-dimensional random variable X = (X1, Xa, ..., X,) defined on the unit simplex
is said to follow a Dirichlet distribution with parameters ay,as, ..., an41 > 0, denoted Dir(ay, as, ..., Gni1),

if its density with respect to the Lebesque measure is:

D(ag +az + -+ ant1) 1 - -
1 2T ntl a;—1 ant1—1

A 17 N\an41 n>0; <]_
fx () = T(a1)T(az) -~ C(ant) J |193Z ( j§1xj) » L1,L250 3 Tn = kgllﬂk hS

In the above definition I' denotes the gamma function, I'(z) = fooo t*~le~tdt. Notice that the

univariate Dirichlet distribution is the known beta (Be) distribution:

Definition 3. A random variable X defined on [0,1] is said to follow a beta distribution with
parameters a1 > 0 and az > 0, a1 + a2 > 0, denoted Be(a1,az), if its density with respect to the

Lebesque measure is:

['(a1 +a2) pai—1

W (1*1’)‘1271, OSLL’S].

fx(z) =
If a1 =0, then X =0 almost surely and if as =0, X =1 almost surely.

A simple definition of the Dirichlet process is then the following;:

Definition 4. A random probability function F is said to follow a Dirichlet process with parameters
M and Hy if for any partition (A1, Aa, ..., Ar) of the probability space Q, such that all A; € F,
the o—algebra of , the vector of random probabilities (F (A1), F(Asz), ..., F(Ax)) follows a Dirichlet
distribution with parameters M Ho(A1), M Ho(As), ..., MHy(Ag).

Symbolically:

F ~ DP(M, Hyp) iléfv partition (A1, As,...,Ag) of Q, A1, As,..., A €F

(F(Al),F(AQ), cee ,F(Ak)) ~ DiT(MHQ(Al),MHo(AQ), cee ,MHQ(Ak)) .



As shown in Lemma 1 of Ferguson (1973), the existence of such a process is verified by showing that
the Kolmogorov consistency conditions hold.

As seen from the definition, there are two parameters characterizing the DP: Hy and M.
Hy is a distribution function and is called the base or centering distribution of the DP. It can be

seen as the centre of the process, since
V BeF, E(F(B))=HyB). (1.1.1)

The parameter M > 0 is a scalar called the concentration or precision parameter of the process, and
it controls the variability of the process around Hy, since

_ Ho(B) (1 - H(B))

V B € F,Var (F(B)) Y

(1.1.2)

So, intuitively, M can also be seen as a measure of our belief in the base distribution Hy.
In fact, in his seminal paper, Ferguson (1973) uses a non-null finite measure « as the parameter of
the DP. Then, by considering the parametrisation M = «(Q2) and Hy = (> We get the definition
above and a better understanding of the role played by this measure a.
The reason for the popularity of the Dirichlet process is its mathematical properties, which lead to
algebraic and computationally convenient expressions, therefore allowing for relatively easy posterior
inference when combined with MCMC techniques. These properties include simple expressions for
the expectation and variance of its realisations, as seen in (1.1.1) and (1.1.2).

The DP can also be represented using a stick-breaking representation (Sethuraman and Tiwari,
1982; Sethuraman, 1994): If F ~ DP(M, Hy), then

o0
F() =Y wide:(-), where 07 * Ho, w; = V; [J(1 = V}), where V; % Be(1, M) (1.1.3)
i=1 J<i

where §, denotes the Dirac measure giving mass 1 to the value z.
As can be seen from (1.1.3), any realisation of the DP is, with probability 1, a discrete distribution.
This is an obvious drawback when one wants to model data from continuous distributions. On the
other hand, this discreteness allows for clustering the values of a random distribution following a
DP:
Let F ~ DP(M, Hy), where Hy is a continuous distribution and assume a sample 61, 6s, ..., 6, from
F. The number of discrete 0; (denoted by 67), will be K < n. The distribution of K is given in
Escobar and West (1995):

I'(M)
(M +n)’

where ¢, (k) = P(K = k|M = 1,n), not involving M.

P(K = k|M,n) = c,(k)n!M* =1,2,...,n (1.1.4)

In the above we want Hy to be a continuous distribution, in order to have all the 8} being different.



If, on the other hand, Hy was discrete, we would again have discrete values, but now there is the
possibility that some of the clusters created by the discreteness of the DP (not of Hp) would be
located at the same values.

Notice also that, as (1.1.4) suggests, for higher values of the concentration parameter, higher
probabilities are given to larger number of clusters. The intuition for this is that higher values of
M indicate less variation from the base distribution Hy, i.e. more belief in Hy. As a result, more
observations from the DP will actually be taken from this base distribution. The above observations
are consistent with (and complemented by) equation (1.1.5) below.

Next, the Pélya-urn representation of the DP are presented, i.e. an expression of the possible
allocations of a new observation from the DP, given previous observations from the same DP. This
representation was noted by Blackwell and MacQueen (1973) and has also a simple form: having
observed 01,6s,...,0, from F ~ DP(M, Hy), the (posterior) distribution of a new observation 6,1

is as follows:

M 1

VAECF, POnsr € Aldr, 02, 00) = 5 HolA) + 37— > 60,(A). (1.1.5)
i=1

This means that any new value will be set equal to one of the previous values 6; (with probability

1
M+n

for each 6;) or will be a new draw from the base distribution (with probability ML_M) Again,
notice that for higher values of M, more clusters are expected to be created for a specific data size.

A similar expression to the Pélya-urn representation is the so-called Chinese restaurant repre-
sentation (Aldous, 1985; Pitman, 1996). Before explaining this algorithm, let us define the indicator
functions s;, i =1,2,...,n, such that

si=je0,=0;, j=12,... K,

where (61,0z . ..,0y) is asample from a DP(M, Hy)-distributed random distribution F and (07,03, ..., 60%)
is the vector of discrete values (clusters) of these data.

The Chinese restaurant representation now gives the probabilities of all possible values of a new
indicator s,41, corresponding to a new observation from F|61,6s,...,0,. It is clear that s,41 takes
values in the set {1,2,..., K + 1}, where the first K values correspond to the already existing clusters

and the last value corresponds to a new cluster being created. These probabilities are as follows:

ny -
) , J=12,....K
n+M J=K+1,

where n; is the size of cluster j, i.e. how many of the 6, are assigned to this cluster (i.e equal to 9;‘)



Using the Poélya-urn scheme for a single DP with parameter M, it is easy to derive the Ex-
changeable Product Partition Formula (EPPF) for this model:

K

L'(M)
M)=MF—"_1[I(n; 1.1.6
plold0) =M s TTE (116)
where s = (s1, 82, ..., Sp) is the vector of all allocation parameters.

Finally, the property that, in fact, characterizes the DP, is its conjugacy: given 61,60s,...,0,
from F' ~ DP(M, Hy), the posterior distribution of F' is again a DP with parameters M + n and
Ho+ 320 do, -

F|0:1,0s,...,0, ~DP <M+H,Ho+i5ei> .

i=1
Apart from its obvious advantages stated above, there is the quite unpleasant feature of the

DP that its realisations are always discrete distributions. As a result, modelling continuous data

using the DP as the distribution of their distribution would be inappropriate.

The usual solution to this problem is to add an additional level in the model, by assuming that

the data come from a continuous distribution with parameters @ and set the distribution of the

parameters 0 to follow a DP (Ferguson, 1983; Lo, 1984):

YtLNf(YtL,O'LaC)a 7::172a"'an

0, "4 ¢

G ~ DP (M, Ho(3)) (1.1.7)

M ~ hy(M), ¢~ ha(C), ¥ ~ hz(ap)

where ¢ are any other parameters in the likelihood f not modeled using the DP and 1 are the
parameters of the base distributions (if any).
This setup is referred to as mixture of Dirichlet process (MDP) model, and was introduced by
Antoniak (1974). Note also that the distribution of each Y; (given ¢) is given by convolving f with
G ~ DP:

f(Yi:¢) = /f(Yi;O,C)dG(Oi), where G ~ DP(M, Hy(v))

and this, together with the discrete nature of the realisations of the DP, will lead to a mixture model

for Y; (given ¢) (Antoniak, 1974).

1.1.2 Computational issues

For models with many parameters, the joint posterior distribution of all parameters is usually ex-

tremely complicated to calculate, let alone to simulate from. Bayesian nonparametric models usually



fall in this category. Therefore, most inference using these models involves advanced computational
methods, and mostly Monte Carlo Markov Chain (MCMC) methods are used. Other simulation
methods are also applicable, like sequential importance sampling (see, for example, MacEachern
et al., 1999; Fearnhead, 2004) and variational inference methods (Beal and Ghahramani, 2003).

MCMC methods consist of constructing a Markov Chain (i.e. a chain where each updating
step depends only on the previous iteration of the chain) that has the desired posterior distribution
of all parameters in the model as its stationary distribution.

The mostly used MCMC method is the Gibbs sampling. According to this method, we start
with some initial values for our parameters. Then, in each step of the chain, each parameter in
the model is sequentially simulated from its full conditional distribution, i.e. the distribution of
the specific parameter given the data and all the other parameters. In each case the values of
the parameters of interest are recorded and at the end some initial part of the chain is discarded
as burn-in. The rest of the output consists of samples from the joint posterior distribution of all
parameters. From this output the values of a specific parameter can also be taken, and those
values will be samples from the posterior distribution of this parameter. In this method, if a full
conditional distribution is of known form, for example if it is a beta distribution, simulating from it
is straightforward. If, on the other hand, simulating from a full conditional distribution directly is
not possible, Metropolis-Hastings (MH) steps or slice sampling can be used instead.

MH updating steps consist of proposing a value for the parameter that is to be updated and
calculating the acceptance probability of the proposed value. This acceptance probability takes into
account both the full conditional distribution of the parameter and the probability of the transition
from the existing value of the parameter to the one proposed. More specifically, the acceptance
probability « for moving a parameter ¢ from its current value ¥y to a new value ¥’ is:

(@) g, )
oldo. ) = mm{l’ F(0e) (00,9 } '

where f is the full conditional distribution of ¥ and ¢(a, b) is the transition probability from a value
a to a value b, and depends on the method of proposing these new values. Then, with probability
a9, ¥), the value of ¥ is changed to ¢, otherwise it remains unchanged: ¢ = ¥y.

Popular choices for proposing new values in a MH step include independence MH steps (when
the proposed value is taken independently of the current value) and the random walk Metropolis-
Hastings steps (RWMH), when the proposed value is the sum of the existing value and a value from
a zero-mean random variate. Roberts and Rosenthal (2001) discuss monitoring of RWMH updating
steps, in order to optimise mixing. In the following, RWMH steps will mostly be used when the full

conditional distributions are not of known form.



Slice sampling is a parameter augmentation technique, in which the parametric space is ex-
tended to include some auxiliary variables (see, for example, Damien et al., 1999; Neal, 2003). Sup-
pose that we want to sample from a distribution f(z). If this distribution is difficult to sample from,
we can extend f(z) to g(z,u), where u is an auxiliary variable and g is such that [ g(z,u)du = f(x)
and g(u|r) = %

example, using inverse transformation methods). The joint density g is also chosen such that g(x|u)

is a uniform distribution on a set (and therefore easy to sample from, for

is also easy to sample from. We can then iteratively sample from g(z|u) and g(u|z), and the value
of x obtained will be a draw from f(z). As a simple example, consider f(z) = ze~®". We can then

set g(x,u) x xl( where the indicator function 1( ) takes the value 1 if the expression in

O<u<e==?)>
the subscript is true, and 0 otherwise. Then g(u|x) is the uniform distribution in (O7 e“”2), whereas
9(xu) = 21(jz|<—1og(u)), and therefore easy to sample from.

Since the MDP Model (1.1.7) is the one mostly used in Bayesian nonparametric inference, it

would be useful to present the basic methods of implementation using MCMC methods. This will
also provide a first introductory insight to the algorithms that will be presented in the next sections,
since more or less the same principles apply. For simplicity, it is assumed that each 0; is scalar,
there are no extra parameters ¢ in the likelihood and the parameters of the base distribution v are
fixed. Usually, in the more general case where additional parameters are introduced in the model,
their full conditional distributions are explicitly known and easy to sample from.
As mentioned before, due to the infinite number of point masses and weights of any realisation of
the Dirichlet process (as seen by the stick-breaking representation), it is impossible to simulate from
the DP directly. However, in cases where one is not directly interested in the unknown random
distribution itself, but rather in the posterior distributions of some parameters of the model (which
is very common in practice), a sample from those posterior distributions can be obtained using
MCMC methods. It is also possible to get samples from the predictive distribution of a parameter
whose distribution is DP-distributed.

There are two main approaches in simulating Model (1.1.7). One approach is to use marginal
methods, which consist of integrating the unknown distribution out of the posterior distributions
and using the Polya-urn representation of the Dirichlet process. The second approach is to use

conditional methods, which consider the DP as part of the MCMC algorithm.

Marginal methods

This is the method mostly used in the literature. Usually this algorithm uses a Gibbs sampler,
especially when the likelihood f(Y’;6) and the base distribution Hy(f) form a conjugate pair for 4

(i.e. their product as a function of 6 has the functional form of a known distribution). Most of the



algorithms concerning the marginal method are based on the seminal paper of Escobar and West
(1995), which is itself based on the work of Escobar (1988, 1994). Very good descriptions of some
marginal algorithms can be found in Escobar and West (1998) and MacEachern (1998).

In order to implement the Gibbs algorithm, the full conditional distributions of all parame-
ters in the model, i.e. the distributions of each parameter given all the other parameters and the
data Y7, Ys,...,Y,, need to be calculated. The conditional independence relationships between the
parameters that the hierarchical structure of this model expresses also enhance these calculations.
Regarding the full conditional distribution of each 6;, the Pélya-urn representation of the DP (1.1.5)
can be used in order to integrate out the unknown distribution. The exchangeability of ; in this
expression leads to the following posterior distribution for 6;:

F(Yil0:)ho(8:]%p)
p(O:il0—i, Y, M,4p) = O T R B (611) +Zq]59 (1.1.8)

where ho(6i]yp) = 2LUY) s the pdf of Hy, Y is the data set, 0_; = (1,...,0;1,0i1,...,0),
qo o< M [ f(Y;10;)dHo(6;]4), q; o< f(Y;|6;) and the factors of proportionalities are the same for each
weight and such that the weights add to 1. This structure indicates how easy it is to simulate each
0; given all the others. What is needed is to calculate the weights ¢o and ¢;, j # ¢ and then assign
0; to one of the other 6; with probabilities ¢;, j # %, or draw a new value from the base distribution
Hy, with probability go. The tricky part is calculating the integral appearing in the expression for
go- On the other hand, when the base distribution Hy and the likelihood f form a conjugate pair,
this integral will be trivial.

As far as the precision parameter M is concerned, it was demonstrated in Escobar and West
(1995) that it is better to consider it as a random variable and impute it in the MCMC algorithm.
In the same article, the authors give a Ga(a, ) prior distribution to M and propose a very simple

way to update this quantity, using a fine algebraic trick.

Definition 5. A random variable X is said to follow a gamma distribution with parameters o >
0 and 8 > 0, denoted by Ga(a, 3), if its density with respect to the Lebesque measure is:

L

a—1_—z/3
F(a)x e , >0.

fx(z) =

The full conditional distribution of M in the specific model is proportional to its prior and to the dis-

tribution of the number of cluster, K, shown in (1.1.4). Therefore, f(M|---) oc Mo+E—1e=M/5 F(F]\(ﬁ?n)

and the last fraction can be substituted using the formula

r) (M A4n)B(M+1,n)
(M +n) MT(n) ’




where B(a,b) = fol 227 1(1 — 2)°~Ldx is the usual beta function. This leads to:

M +n)B(M +1,n)
M

f(M|) o Ma-i—K—le—M/B(

1
= M‘”‘K_Qe_M/B(M—i—n)/ M1 — )" da.
0

The last expression can now be seen as the marginal distribution of the joint distribution of M and
an auxiliary variable in (0,1), say &, where f(M,&|---) oc MOHE=2e=M/B(Mf 4 n)eM (1 — &)1,

The full conditionals of each of those quantities are as follows:

FMIE, ) oo MOTE=2e=MQA/B-Is©) (N 4 p)

MoTE—1,—M(1/B~log(€)) | nMaJrK*?e*M(l/ﬁflog(&))(M +n).

(i.e a mixture of gamma distributions), and
f(§|Ma o ) = Be(M+ ].,Tl).

What one needs to do in order to simulate from M in each step in the MCMC algorithm is to
simulate from both f(¢|M,---) and f(M|E,---) sequentially. Each value of £ can be discarded after
M is simulated, as it is just an auxiliary variable, whereas the values of M will be kept and used in
the rest of the algorithm and in posterior inference.

Finally, it is also straightforward to include an additional step in the MCMC algorithm that
approximates the predictive distribution p(Y,41|Y1,Y2,...,Yy) :

p(Yn+1|Y1,}/2,...,Yn) = //~~/p(Yn+1,91,92,...,9n|Y1,Y2,...,Yn)d91d92...d9n

= ///p(yn+1|91770nayla7Yn)f(91a79n|Yla7Yn)d91d9n

//---/p(Yn+1|91,92,...,Hn)f(t?l,@g,...,9n|Y1,Y2,...,Yn)d91d92...d9n.

In words, the predictive distribution can be expressed as an expectation of the random vector
(01,...,6,) from its posterior distribution. This expression is very complicated to calculate analyti-
cally. On the other hand, this expectation can be approximated using Monte Carlo (MC) methods:
in each step of the MCMC algorithm after the burn-in period, a sample from these 6;’s is obtained.
These samples are actually samples from the posterior distribution of (61,...,6,). So, in each step
p(Yoi1)0%,0%,...,6%) (which will be a simple mixture distribution) is calculated, where the values

for the 6!’s are the values in the ¢-th cycle of the chain. By then calculating the mean of those

10



expressions over all the MCMC cycles after burn-in, we get an approximation of the predictive
distribution.

An improvement to this algorithm was proposed by MacEachern (1994) and is almost always
used in this type of models, as it is easy to implement and improves the mixing of the chain. It
exploits the clustering of the values of a sample from a random distribution following a DP, as
mentioned before. Instead of using the actual values (01,0,...,0,), it uses the reparametrisa-
tion (67,03,...,0%,51,52,...,5n), where the quantities are as defined before. The reason for this
reparametrisation is that now the discrete values 9]*- are also updated, resulting in better mixing of
the Markov chain. Note that the prior distribution of the 67’s is the base distribution Ho, so the full
conditional distribution for each 0] will be proportional to the product of Hy and of the product of
the likelihood of the data that are associated with it, Ho(67) [];.,,—; p(Y;:07). As for the updating
of the indicators, this will be the same as (1.1.8), with s replacing 6.

Apart from the above method of improving the calculations, other tricks have been proposed

(see e.g. MacEachern (1998)). Some of them are:

1. Collapsing of the state space: The idea here is that, since we use simulation to avoid dif-
ficult integrals, one should try to evaluate as many integrals as possible before starting the
simulation. So, if possible, we integrate out some parameters from our model before the

simulations.

2. Blocking: The basic idea is to update parameters that are a posteriori highly correlated

together, and therefore improve the mixing of the chain.

3. Rao-Blackwellization: Proposed by Gelfand and Smith (1990), this technique suggests replac-
ing values generated as part of the simulation with appropriate conditional expectations. In

this way, one can benefit from conditional distributions, if they are of known form.

The nonconjugate case

This is the case where the likelihood f and the base distribution Hy do not form a conjugate pair.
As a result, calculations of some integrals become nontrivial. For example, in the update of 6; (or
of the s;), we have the integral [ f(y;6;)dHo(6;). If f and Hy are not conjugate, calculating these
integrals can be very difficult or even impossible. Although in nonparametric models a variety of
base distributions can be used, since these models are quite flexible and will adapt to the specific
choice (for example, a DP prior with M small can be used), there are cases where it seems more

logical to use a specific base distribution, which is not conjugate to the likelihood. This case is
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discussed, among others, in West et al. (1994), MacEachern and Miiller (1998), Neal (2000) and
Jain and Neal (2005) (all in the case of the MDP model).

The first paper provides the first algorithm designed for the nonconjugate case. The authors
here propose an MCMC scheme for simulating from the posterior distributions of the parameters in
the model. Their solution to the problematic integral [ f(Y;|0;)dHo(6;) is to approximate it using
Monte Carlo approximation or, in the special case where only one of these MC samples is used, to
replace it by f(Y;|6"), where ¢ is a draw from Hy. However, as MacEachern and Miiller (1998) note,
this approximation fails theoretically, as the resulting Markov chain might converge to a stationary
distribution that is not the same as the posterior distribution. Another issue about this method
is that it is not easy to evaluate the accuracy of the approximation, as this approximation occurs
within acceptance probabilities.

In the second reference the authors propose the so-called “no gaps algorithm”. This method
consists of augmenting the vector of discrete values (67,05,...,0%) to (07,05,...,0%,0% ., 1,...,0;).
The name of this method comes from the fact that the first K values of the full vector of the 8;’s
correspond to those clusters that are associated with at least one observation. As a result, there are
no gaps in the values of the indicators s;, ¢ = 1,2,...,n. Using this augmentation, the problematic
integral disappears and it is replaced by simple likelihood evaluations, since now all the new clusters
that might be used are associated with some value (6% ,, to 6},).

In Neal (2000), two methods are proposed. The first one involves MH proposals for the update
of the allocations s;, ¢ = 1,2,...,n, whereas the second method is very similar to the “no gaps”
algorithm of MacEachern and Miiller (1998), but slightly more general.

Finally, in the last approach, Jain and Neal (2005) propose an MCMC algorithm, which in each
iteration proposes mix or split steps. More specifically, each mixing proposal consists of merging
two clusters of discrete values of 6 into one, and each splitting proposal suggests splitting one cluster
of 6* into two separate ones. This algorithm is computationally expensive, but with good mixing
properties and can be a good choice in the nonconjugate case, if the other approaches fail to reach

equilibrium in a sensible amount of time.

Conditional methods

Conditional methods can be particularly useful when it is not easy to integrate the random proba-
bility measure out of the joint posterior distribution of all parameters in a model. The basic idea in
these methods is to impute the RPM in the parameter space and update it in the MCMC algorithm,
as well as the other parameters. However, this involves an infinite number of parameters, making

it practically impossible. Consider, for example, the discrete RPMs of the form Zil wi593(~). In
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order to simulate from such a representation, an infinite number of weights w; and point masses 67
needs to be simulated. In practice, we need a finite version of this, and a suggested solution is using
some form of truncation, for example replacing the infinite sum in (1.1.3) with Ziv=1 w;dg: (+), for N
large enough (Ishwaran and Zarepour, 2000). Although the error produced by such approximations
can be controlled (Ishwaran and James, 2001), it would be preferable to avoid such approximations
completely. In the case of the DP as the distribution of the RPM, updates of the latter can be per-
formed using its stick-breaking representation (1.1.3). Papaspiliopoulos and Roberts (2008) show
that the approximation can be completely avoided, using a technique called retrospective sampling,
which will be demonstrated in the case of a DP-distributed RPM, as is the case for Model (1.1.7):

Suppose we want to create a sample 61,6s,...,60, from F ~ DP(M, Hp). According to (1.1.3), if we
could create an infinite number of pairs (w;, 93’»‘), we would then assign each #; = 67 with probability

w;. This could be done using U; ~ U(0, 1) and setting 6; = 67 iff:

j—1 J
Sun<ti<Y (119)
k=0 k=0

where wg = 0. It is clear that, for a finite number of draws from F', only a finite number of pairs
of weights and point masses is needed. Retrospective sampling method, now, simply exchanges the

order of simulation between the pairs (w;,67) and the U,’s: we create a finite number of these pairs,

J
and then check (1.1.9) for each U; simulated. If for some of those U;’s, (1.1.9) is not satisfied, we go
back and simulate more of these pairs, until (1.1.9) is satisfied for some j.

Retrospective sampling for the simple MDP model:

By replacing the DP by its equivalent expression (1.1.3), the MDP model can be written as follows:

Y~ f(Yi05,.€), i=1,2,...,n

S5

8; ~ ijéj, where w; =Vj H(l — V&), where V; “ Be(1, M)

Jj=1 k<j

6% ~ Ho(h) (1.1.10)

M ~ hy (M), ¢~ hy(C), ¥ ~ hs(9).

As in the marginal method, it is assumed that we do not have any additional parameters ¢ in the
likelihood and the parameters 1 are fixed.

As mentioned above, since we just need a finite number of 0; = ¢, only a finite number of weights
and point masses is needed. So, we start with a large number of them, and if at some point in the
simulation more are needed, we create them retrospectively. Another issue in this algorithm is that,

in the full conditional distribution of each indicator s;, ¢ = 1,2,...,n, the intractable expression
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S =1 Wj f(v; j) appears as a normalising constant. As a result, we cannot simulate from these
distributions directly. Papaspiliopoulos and Roberts (2008) propose a MH updating step in order
to overcome this problem. To sum up, the proposed iterative steps in the MCMC algorithm (given

an initial allocation s = (s1, 89, ..., s,) and setting N = max {s}) are the following;:
1. Simulate 67, j =1,2,..., N from their full conditional distributions.

2. Simulate V;, j =1,2,..., N from their full conditional distributions and calculate the weights
w; =Vme<j(1 - V), j=1,2,...,N.

3. Fori=1,2,...,n, simulate U; ~ U(0, 1).

(a) Check if (1.1.9) is satisfied for some j < N. If yes, propose to update s; using a MH
update. If this proposed step is accepted, perform the change, otherwise keep the same

value for s;.

(b) If, on the other hand, (1.1.9) is not satisfied for any j < N, simulate a pair (V41,03 )
from its prior distribution. Calculate wyy1 = Vi1 ngN(l — Vi), set N = N+1 and
go Step (3a).

4. Set N = max {s}.

5. Update M from its full conditional distribution, having first marginalised over the pairs

(wj,07) not associated with any observation.

The above full conditional distributions are simple expressions and can be seen in Proposition 1 of
Papaspiliopoulos and Roberts (2008). Notice also that, without the marginalisation mentioned in
the update of M, one will not be able to perform this step, as the number of unused pairs is infinite.

Another method of overcoming the infinite number of parameters appearing in the stick-
breaking representation of some RPMs (for example, those following a DP) without confronting to
any approximation is the slice sampler, as demonstrated in Walker (2007). Counsider, for example,
Model (1.1.10), with the same simplifications mentioned above. Using (1.1.3), it is straightforward
to see that the conditional likelihood of each data Y; will be

f(Yi|w, 8%) ijf 507) (1.1.11)
By introducing a latent parameter u;, (1.1.11) can be written as:
1Y, uiw, 0%) Z L (s <o) f (Y35 05). (1.1.12)

By integrating out u; we get (1.1.11), whereas this expression can be used to derive the full con-

ditional distribution of each w; (a uniform distribution on (0,w;), where j is the cluster associated
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with observation Y;), when those parameters are embedded at the parametric space of our model.
On the other hand, given these u;’s, the model will now have only a finite number of parameters,
therefore allowing for exact simulation from their full conditional distributions. As for the unused
pairs of (wy, 07
out. More details are given in Walker (2007).

), they need not be considered in the MCMC algorithm, as they can be integrated

1.1.3 The normalised inverse-Gaussian process

The normalised inverse-Gaussian process (N-IGP) seems to be a very good alternative to the Dirichlet
process. It was introduced by Lijoi et al. (2005), similarly to the way Ferguson (1973) introduces the
DP. One possible definition makes use of the normalised inverse-Gaussian distribution in the same

way the Dirichlet distribution is used in the DP:

Definition 6. A random variable X is said to have the inverse-Gaussian distribution with shape
parameter o > 0 and scale parameter v > 0, symbolically X ~ IG(«, ), if its density with respect

to the Lebesque measure is the following:

1 2
fx(z) = \/%x_3/2 exp [5 (% +72:c) +'ya} , x>0, fora>0

and X = 0 almost surely for a = 0.
In the following assume, without loss of generality, that v = 1 (since it is a scale parameter).

Definition 7. Let X;,Xs,..., X, be independent random wvariables with X; ~ IG(ay,1), i =

1,2,...,n, with all «; > 0. Then, the random vector W = (Wy, Wa, ..., W,,), where W; = ﬁ, 1=
j=1°%j

1,2,...,nis said to follow a normalised inverse-Gaussian distribution with parameters ay, g, . . ., Q.

Symbolically, W ~ N-IG (a1, aa,...,ap).

Another way to define the N-IG distribution is using the derived probability density function. More
specifically, if W = (W1, Wa, ..., W,,) ~ N-1G (a1, e, . . ., o), its pdf will be:

JAe n
621:1 K Hi:l ai

a/y ~1
/a2 K_, /2 ( Ay (wy,. .. ,wn)) (w‘f/ng/Q w2 A (wr, .. ,wn)]"/4)

fw(w) =

where A, (wy,...,w,) = > 1" i and K denotes the modified Bessel function of the third type.

i=1 w;

Definition 8. A random probability measure F is said to follow a normalised inverse-Gaussian pro-
cess with parameters M and Hy if for any partition (A1, Aa, ..., Ag) of the probability space 2, such
that all A; € F, the o—algebra of 2, the vector of random probabilities (F (A1), F(As), ..., F(Ax))
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follows a normalised inverse-Gaussian distribution with parameters M Hy(A1), M Ho(Az), ..., M Hy(Ay).

Symbolically:
F ~ N-IGP(M, Hy) C(i:(ifv partition (A1, As, ..., Ar) of Q, A1, As,... A € F,
(F(A1), F(As), ..., F(Ag)) ~ N-1IG(MHo(A1), MHo(Az), ..., MHo(Ag)).

In the original definition of Lijoi et al. (2005), instead of M and Hj there is only a nun-null finite
measure a. For M = «(Q2) > 0 and Hy(:) = %, we can see that this is just a reparametrisation.
In the same article, the authors use Proposition 3.9.2 of Regazzini (2001), in order to show that the
N-IGP is well defined.

The N-IGP has many similarities with the DP. The first obvious one is the parametrisation.
Again, there is a distribution, Hy and a positive scalar, M, and by studying the expressions of the
expectation and variance of any realisation of the N-IGP, one will see that those two parameters

have the same intuitive interpretation as the corresponding parameters of the DP. More specifically,

if F ~ N-IGP(M, Hy), we have:
Y B e F, E(F(B)) = Ho(B) and Var (F(B)) = Ho(B) (1 — Ho(B)) M2eMT(—2, M)

where I'(a, z) = f;o et 1dt is the incomplete gamma function. As before, Hy can be seen as the
centre of the process and M as a measure of our belief in this centre. Another common property of
the N-IGP and the DP is the almost sure discreteness of their realisations. This can be a problem
when modelling continuous data, but again this can be resolved using mixtures of N-IG processes,
as in the case of MDPs.
It is also worth mentioning that the N-IGP and the DP are the only known processes whose finite
dimensional distributions are known explicitly.

The Poélya-urn representation of the N-IGP is also known. The structure is similar to the
expression for the DP, with more complicated expressions for the weights:

Given data 61,60s,...,0, from F ~ N-IGP(M, Hp),
K 1
VAEF, P(Ons1 € Alf1,02,...,0n) = woHo(A) +wy Y <nj - 5) 8o (A)
j=1

where 07, j=1,2,..., K are the discrete values of 61,05, ...,60,, K is the number of those discrete
values, n; = #{0; = 9;‘7}, 7 =1,2,..., K is the number of 6;’s that are equal to the discrete value
0,

n -
S, (=M2) 7T (K 4 14 2r — 2n, M)
T
W =
n—1 n—1 on—"
2ny ", (=M?)""T(K+2+2r—2n,M)
r
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and

n
S (—M*)'"T(K + 2r — 2n, M)

ny ") (=M?2)="T(K + 2+ 2r — 2n, M)

As before, the Chinese restaurant representation has a simple form. More specifically, using the
same notation as above, together with the indicators s;, ss,...,s,, where s; = j < 6, = 9}‘, the

posterior probabilities for the assignment of a new value 6,11 are as follows:

wl(nj71/2) y j:1,2,...,K
Wo , j=K+1.

P(spnt1=7J) =

As Lijoi et al. (2005) discuss, the specific structure of the weights seems more sensible than the
one of the DP, since this one also takes into account the total number of ties in the sample. The
mechanism also indicates more elaborate allocation of weights in the clusters 07’s and, according
to the authors, is more aggressive in detecting or reducing clusters for the data. They also discuss
that, in general, the N-IGP is less informative than the DP prior.
On the other hand, unlike the DP, the stick-breaking representation for the N-IGP is not yet known,
nor is this process conjugate.

Finally, note that the computational implementation for the models using the N-IGP is straight-
forward, and very similar to the corresponding models which use the DP. The process can again be

integrated out, using its Pélya-urn representation.

1.2 Combining Inference

1.2.1 Literature review

Assume now that we want to model dependent data, denoted by Y’s here. This dependence can be
introduced in a variety of ways.

A first way to model such data is using mixture models. In general, mixture models are used in
cases where we assign each mixture component to represent a different subgroup in a heterogenous
population or as parsimonious models for flexible density estimation. In the Bayesian context two
such models are given in Richardson and Green (1998) and Fernandez and Green (2002). In the
former the authors propose the mixture model p(Y;|K,w, ) = 2511 w; f(YilA), i =1,2,...,n,
where Y;, i = 1,2,...,n are the data and w and A denote the vectors of all weights and component-

specific parameters \;, respectively. They also assume that the number of mixture components, K,
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is also allowed to vary. In the latter, the proposed mixture model for spatial data is p(Y;| K, w, X) =
Z;il wif(YilA;), ©« = 1,2,...,n, where Y;, i = 1,2,...,n are the data and w and A denote
the vectors of all weights and component-specific parameters \;, respectively. Spatial correlation
is captured through the prior of the weights, and the authors propose two alternative choices for
this prior: the logistic normal and the group continuous model. Again, the number of mixture
components is considered random, so reversible jump MCMC (RJMCMC) methods (Green, 1995)

are used in both models to simulate from the posterior distribution of all parameters of interest.

Apart from mixture models, dependence between data can also be introduced in a variety of
ways, even within only the Bayesian nonparametric context. These models can be especially useful
when we want to model some data (and the type of dependence among them) in a flexible way. The

various models will be demonstrated using the DP as the distribution of the random distributions.

A first way of introducing dependence in the DP-distributed underlying distributions of the
data, given covariates @ (say, Fy’s) is through their stick-breaking representation (1.1.3). More
specifically, MacEachern (1999) introduces the Dependent Dirichlet process, where it is assumed
that the weights w; , and/or the atoms ¢}, depend on covariates & and are thought to follow a
stochastic process across the correlated F,’s (i.e. across the values of @, for each i = 1,2,...). On
the other hand, the vector of weights is assumed independent from the vector of atoms in each F
(i.e. for each x). Griffin and Steel (2006), on the other hand, again use covariates, and assume that
the random variables V; creating the weights in (1.1.3) depend on these covariates. Dependence is
now introduced through the ordering of the covariates. They call this construction the order-based
dependent Dirichlet process. Dunson and Park (2008) construct the so-called kernel stick-breaking
prior, where they assume that, at each covariate value x, F, has a stick-breaking prior with atoms
being RPMs (for example, DP-distributed) and V; 5 is the product of a beta-distributed random
variable and of a covariate-dependent kernel values at random locations. Finally, note that the
methods introduced in the last three articles can be naturally extended to other stick-breaking

priors.

All the models presented above introduce dependence through the dependence of some covari-
ates. Another way would be to impute this dependence through the dependence of some hyper-
parameters in the random distributions of the data. In this PhD thesis, however, another form of
dependent data will be considered. More specifically, I will deal with grouped data, i.e. data that
are clustered in distinct (usually few) categories. A natural way to model grouped data is to assume
that the data are clustered in a few categories and that in each of this categories to assume a random

underlying distribution. Dependence can then be introduced in those RPMs. As a first example,
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consider the following structure:

}/ﬂNF]*(Y}Z), i:1,2,...,nj, j:1,2,...,<]

F; ~DP(M, Hy,;), where Ho ; = f(X\;), j=1,2,...,J
()\1))‘2)"'7)\])Np()\la)\27"-7)\J)

and the hyperparameters A1, Ao, ..., A\s are assumed a priori not independent. This model is called
a Product of Dirichlet Processes (PDP) and was introduced by Cifarelli and Regazzini (1978). In
this model, as well as the hierarchical Dirichlet process presented below, the discrete nature of the
realisations of the DP results in the grouping of the data Yj;, i =1,2,...,n;,foreachj =1,2,...,J.
Apart from the clustering, dependence among the data is also introduced through the dependence
of the correlated distributions F', due to the dependent structure of their hyperparameters \;, j =
1,2,...,J.

Teh et al. (2006) proposed a model called Hierarchical Dirichlet process, where it is assumed
that all the RPMs follow the same DP prior and the base distribution of the latter is again modelled
through a DP:

Vi~ FY(Yji), i=1,2,...m5, j=1,2,...,J

Ff ~DP(M,H), i=1,2,...,J
H ~ DP(My, Hy).

Another method of modelling grouped data is to assume that within each data set the data are iden-
tically distributed and independent from a random distribution £, j =1,2,...,J, and additionally
assume that each correlated random distribution F; consists of a common part shared by all of the
F}’s, Fo, and an idiosyncratic part, Fj. A general model of the last form was given by Miiller et al.

(2004).

1.2.2 The model of Miiller et al. (2004)

Assume that there are J data sets Yj;, 1 =1,2,...,N;,7 =1,2,...,J, each from a distribution F;.
If we can assume that each of the distributions F’s consists of a common part, shared by all of

them, and an idiosyncratic part, the model of Miiller et al. (2004) can be used:
Yii~ f(Yji;05i,%), i =1,2,...,N;, j=1,2,...,J
Oji ~ F}, where F = eFy + (1-¢)F}, j=1,2,...,J
F; %' DP(M;, H(N)), j=0,1,2,...,J (1.2.13)
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7T(E) = 7T0(50(E) + 7T1(51(E) + (1 — o — ﬂl)Be(aE,ba)
My, My, Mz, ..., My % Ga(ag, bo), ¥ ~ m(1h), A~ m(X)

where 0 < 1y < 1, 0 < 7y < 1 —mg and the rest are as defined before. The vector A is used to denote
the vector of unknown parameters of the base distribution H, and v any additional parameters in
the likelihood f.
The component distributions Fy, Fy, Fb, ..., Fy are assigned independent Dirichlet process prior, re-
sulting in a flexible model, even though the base distribution is common in all and what distinguishes
their prior distributions are the concentration parameters M;, j = 0,1,...,J. The concentration
parameters are themselves given a gamma prior distribution, as is often the case in the literature.

Dependence among the random distributions F’s is introduced by the common part Fy and
the common weight assigned to this common part, €. This weight can also be seen as the level of
borrowing strength across the different distributions. The model assigns a quite general prior for
this weight, giving positive probability to the extreme events ¢ = 0 and € = 1. The former case
corresponds to the event that the correlated distributions have no common part (and therefore,
they are not actually correlated!) and the latter corresponds to the case when all the distributions
are the same. Note also that the fact that there is a single weight in all distributions F’s is not
as restrictive as it looks, because of the flexible prior distribution of Fy, Fi,..., F. In cases where
two different allocations for € and the component distributions Fy, F;, 7 = 1,2,...,J fit the data
equally well, then the Bayesian approach will tend to favor the most parsimonious model over the
more complicated one, i.e. the model with less parameters. This is a direct implementation of
Ockham’s razor (Jefferys and Berger, 1992) in posterior inference and, as Miiller et al. (2004) argue,
it can be justified by the fact that, in the more complicated model, the (roughly the same) prior
probability must be distributed over a larger number of parameters, and therefore the marginal
probabilities will be smaller.

Computational implementation of Model (1.2.13) can be achieved again using MCMC methods.
In fact, one can take the algorithm developed for the simple MDP model and just change a few
things. The basic difference (apart from the obvious updating of parameters not present in the
MDP model, for example, €) will be the use of a second set of binary indicators, say 7,1 =
1,2,...,n,,5 = 1,2,...,J, denoting if a specific 8;; belongs to the common part Fy (if rj; = 0)
or to the idiosyncratic part F; (if rj; = 1). Using these indicators, together with the indicators
sji,t = 1,2,...,n;,5 = 1,2,...,J, which will denote the specific cluster (now within Fy or Fj,
according to the value of the related rj;), 6;:,9=1,2,...,n;,j =1,2,...,J can be reparameterised
to rji, 85,1 = 1,2,...,n5,j = 1,2,...,J and 9;-‘1-,2' =12,...,K;,57 =0,1,2,...,J, where Kj is

the number of the discrete values 67;,7 = 0,1,2,...,J within component distribution Fo, F1, ..., Fy
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respectively. As before, updating those discrete values can increase the efficacy of the algorithm. As
for posterior inference, the basic quantities of interest will be the predictive distributions for each
data set, p(Yjn,+11Yj1,---,Yjn,;),J = 1,2,...,J, the corresponding predictive distributions in the
common and the idiosyncratic component distributions and the posterior distributions of the M;’s
and e. As an illustration of the above, consider the model of Miiller et al. (2004) for the case of

normal likelihood and normal base distribution for two correlated distributions:
Yji ~ N(u;s,S5), i=1,2,...,N;, j=1,2
pji ~ F, where F = el + (1 —¢)Fj;, j=1,2
Fy ~DP(My, H), F; i DP(M;, H), for H= N(m,B)
m(e) = modo(e) + md1(e) + (1 — o — 71)Be(ae, be) (1.2.14)
Mgy, My, Mo (S Ga(ag,bo), S ~1Ga(q,1/qR)
(m, B) ~ N(mg, A) x IGa(c,1/cC)

where 1Ga(a,b) denotes the inverse gamma distribution with with shape parameter a and scale
parameter b and N (u,0?) denotes the normal distribution with mean p and variance o2, as defined

below.

Definition 9. A random wvariable X is said to follow an inverse gamma (IGa) distribution with

parameters a > 0 and 3 > 0, denoted IGa(w, ), if its density with respect to the Lebesque measure

18:
fx(@) = (@) exp( Gz}, x> 0.
I'()
The mean of this distribution is %, if @ > 1 and the variance is #@72), if « > 2. It also

holds that, if X ~ IGa(w, 8), then 1/X ~ Ga(a, 1/0).

Definition 10. A random variable X is said to follow a normal distribution with parameters p €

R and 02 > 0,, denoted by N(u,c?), if its density with respect to the Lebesque measure is:

202

fxla) = —= exp{(x“)Q}, reR

The joint posterior distribution of all parameters, using the parametrisation of the discrete values

(say, ¢j; here) and the indicators, will be the following:
f(s,r,¢,€,m,B,S,MO,M1,M2|Y) X Hf(}/}i|rji;5ji;¢a S)f(m)f(B)f(M(JaMlaMQ)f(S)f(E)

J5?
x [1F@slm, BYT] f(rjsle) f (sl Mo, My, M)
Jri Jri
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where the bold letters denote the vector of all parameters indicated (for example, s denotes all the
indicator variables sj;, i =1,2,...,N;, j=1,2 and Y denotes all the data).
The full conditional distribution of each parameter (i.e. the distribution given all the other param-

eters) is as follows:

moB+AY . dji
o m| -~ N( o Fa 77’A;EB)’

where K = Ko+ K1+ K> is the total number of discrete values in all component distributions.
o Bl ~1Ga(c+ K/2,1/cC+1/237, (¢ji —m)?).
o S|---~1Ga(¢g+ N/2,1/qR+1/2 Z“(sz — 1151)?), where N = Ny + No.

0 » WP Tol(s rj=n)
o g x 1 , W.p. Ty =0

Be(ae +N* eriabe +Z7"ji) , W.D. (]. — 7o 7’/T1)B((15 +N* eriabe +eri)/B(aE,b€).

o f(Mp| ) x M(t)zo+Ko—1e—M0b0 - I'(Mo)

(Mo+no)?’
F(My]---) oc MotEi=1e—Mibo 7F(§/(va_[ﬁ7)“) and
Ko—1 _ (M.
F(Mp]---) oc MyoHHate=Mabo LM

where n; is the number of data allocated to component distribution F}, j =0,1,2.

mS+BY Yji

Jritri;=0,8 ;=1 SB .
o oo -~ N( s ’S+Bnoz)’l71’2""’KOand
mSJ"BZ =1 .,vflytji
dirii=1,8,= SB - -
¢]l|NN( S+§nﬂ - ’S+anl)’ l_172a"'7Kj7.7_1725

where n;; is the number of data allocated to the i-th cluster of component distribution F}, ¢ =

1,2,...,K;, j=0,1,2.

o f(s,x| ) oc L, f(Yiilrji, 850, @, S) f(rle) f(s|r, Mo, My, M>)
min,h=1,2,... ) K;, [ =1
Ton s h=12..., Ky, I=0 ,
= P(sjy =h,rjp=1---)= ,t=1,...,N;,j=1,2
i  h=K;+1 1=1
g ,h=Ko+1,1=0

where 7, & (1 —€)o(Yji; djn, S)n;h/(Mj + n;), mon < €9(Yiii don, S)ngy, /(Mo + ng ),

7 o< (1 —e)p(Yji;m, S+ B)M;/(M; +n; ), and w5 oc ep(Yji;m, S+ B)Mo /(Mo +ng ), where
the superscript — means that the corresponding quantity is taken without counting the quan-
tity associated with the (j4) point, ¢ is the pdf of the normal distribution and the above
probabilities are all proportional to the same constant, which is such that the probabilities
sum up to 1. Finally, note that in the last two cases for (s;i,7j;|---), a new value should be

BY,tmS _BS )

created. This is a draw from N( 515 > Bis)-
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We can directly simulate from all the above full conditional distributions, except from the ones of
the precision parameters My, M1 and M>. On the other hand, for each of those three parameters
the simple trick explained in Escobar and West (1995) can be applied.

Finally, the predictive distributions for the two data sets are as follows:

Ko
My 1
Vi noa1lY — _N(m,B+S)+e—- N(doa, S
p(Yj N, +1]Y) A (m ) 5M0+ﬂ0;n0d (¢oa, S)
M 1
l—e)—2 Nm,B+8)+(1—¢)— AN (dia,S), 1=1,2.
+ ( E)Mj—i-nj (mv + )+( E)Mj"f‘n]‘;njd (¢jd; )7.7 )

To sum up, the model introduced by Miiller et al. (2004) is a very general model for correlated
distributions which have a common and an idiosyncratic part. As a nonparametric mixture model,
it is a very flexible model, although the weight of the common part is the same a priori for all the
correlated distributions. It is also easily implemented using MCMC methods and its clear structure
allows for direct posterior inference of the parameters of interest. On the other hand, the fact that
there is a common weight € and the same base distribution H does not seem very sensible and it

might be worth considering indexing either or both of them by j.

1.2.3 Normalising random measures

It is well known that, under mild conditions, one can construct random probability measures by
normalising other random measures (see, for example, James et al., 2005). This class of measures is
called normalised random measures (NRMs) and is a particularly rich one. Apart from the Dirichlet
process (Ferguson, 1973), it also contains the N-IGP (a normalised inverse-Gaussian process, see for
example Lijoi et al., 2005) and the Pitman-Yor process. As an example, consider the normalisation

of the gamma Process:

Definition 11. Let Q) denote a probability space and F the c—algebra of ). It is said that a random
measure G follows a Gamma process (T'P) with parameters M and Hy, where M > 0 and Hy is
a probability measure iff for any partition A = {A1, Aa,..., A} of Q, such that all A; € F, the
random probabilities G(A1), G(Az),...,G(Ak) are mutually independent and each G(A;) follows a

gamma distribution with shape parameter M Ho(A;) and scale parameter 1.

Ferguson (1973) defined the Dirichlet process by:

F~DP(M,H) &Y BeF, F(B) = (G;Egi = G(B)GJ(FBG)(BC), where G ~ T'P(M, H).

B¢ denotes the compliment set of B, and the denominator of the expression on the right highlights

the dependence of G(B) and G(£2), since they come from the same process. We also note that the
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parameters of the DP, i.e. the concentration parameter M and the base distribution H are the same
as the equivalent parameters of the underlying I'P.

The basic idea is that one can exploit the infinite divisibility of some random measure, in order to
create (by normalising this measure) random probability measures that have the same distribution,

but are not independent. This idea will be demonstrated in Section 2.1.1.

1.3 My Contribution

My contribution to Bayesian nonparametric modelling consists of proposing a new, general method
of constructing models with dependent random distributions for grouped data. Two examples of
these models for modelling data from two different groups are given. Generalisations for more than
two correlated groups for these models, as well as for the model proposed in Miiller et al. (2004),
are also investigated. These models are also embedded in the stochastic frontier setting and used
to construct a model for the efficiency of firms. In implementing the proposed models, I observed
some problems in mixing, so an additional split-merge step in the MCMC algorithms is proposed.
This algorithm is seen to improve mixing of the chains and can also be used in a variety of models.

Apart from my contribution to nonparametric models, I also propose models for parametric
inference. More specifically, I introduce a general class of n-dimensional distributions, which includes
the Dirichlet and the inverse-Gaussian distribution as special cases. The general formulae for the
moments and cross-moments for this class of distributions are also derived (Mathematica codes for
these expressions will be soon made available on the web). I apply this distribution to the underlying
probabilities of success for binomial data and use the derived structure to model overdispersed count

data.

1.4 Outline

This PhD thesis will proceed as follows: In Section 2 I describe a general class of models with depen-
dent random distributions, as well as a new way of constructing such models. This is demonstrated
by constructing two models in the two-dimensional case. The intuition and the theoretical proper-
ties of the derived models are discussed and I give some general ideas and concepts for generalising
those models, as well as the model of Miiller et al. (2004) in higher dimensions (higher number of
dependent random distributions). The computational implementation of the models presented in
this section are described in Section 3, with an illustration of the related algorithms using three sim-

ulated data sets. In Section 4 some models are applied to real-life data. At first my basic proposed
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model and the model of Miiller et al. (2004) are applied to financial data. Next, I embed those two
models, together with a modification of my model (N-IGP priors for the RPMs in each component,
instead of DP priors) to the stochastic frontier (SF) setting. Finally, the three models are applied
to hospital cost frontier data. In Chapter 5 a general class of n-dimensional distribution in the unit
simplex is proposed. Some theoretical properties of this class of distributions are discussed and the
formula for its moments is derived. I then consider the univariate version of this distribution as the
underlying distribution of the probability of success of binomial data. The derived model can be
then used to model overdispersed count data. Finally, this model is applied to both simulated and
real data (mice fetal mortality data) and the results for the mice data are compared to the results
of other models in the literature. In Chapter 6 I provide a summary of what was done in this thesis,

as well as possible future directions.

25






Chapter 2

A General Class of Models for

Correlated Distributions

In this section I consider a general class of models for pairs of correlated distributions. I focus on
two of those models, which I will be mainly using in the rest of the thesis. Some more general models

are also considered, which incorporate a higher number of dependent distributions.

2.1 The Models For Two Correlated Distributions

As mentioned in the introduction, a common way of inducing dependence between data from different
studies is to assume that their underlying distributions are correlated. In order to add extra flexibility
to these models, it also assumed that those distributions are random, therefore creating a Bayesian
nonparametric model.

In the simplest case of two correlated random distributions, say F}" and F5, a general model

of this type is the following:
Fl* = ElFO + (1 — El)Fl

F} =eoFy + (1 — EQ)FQ

where Fy, F1 and F5 are independent random probability measures and 1, 5 are random variables
in the unit interval. In this structure Fy can be seen as the common part shared by F} and Fy,
whereas F7 and F> can be interpreted as idiosyncratic parts. The two correlated distributions can
then be naturally embedded at an intermediate level of a larger hierarchical model. If the DP is

assigned as the prior distribution of Fy, F1 and F5, the discreteness of its realisations can be overcome
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by assuming that the data follow a continuous distribution f with some of its parameters following
Frand F5:
}/}'i ~ f(}/}z,eﬂ,’l,b), Z: 1,2,...,Nj, ] = 1,2

Oji ~ F}, where Fj' = ¢;Fy + (1 —¢;)Fj, j=1,2
Fy ~DP(M;, H(X)), j=0,1,2 (2.1.1)
e ~le;), §=1,2
M; * (M), §=0,1,2, ¢ ~ (), A~ m(N).

In the above, Y}; are data from two different groups of sizes N1 and N, 6;; are the parameters to
be flexibly modelled using nonparametric, correlated distributions and ) are (potential) additional
parameters in the distribution of the data. Different concentration parameters for the three DPs
are assumed, but the same centering distribution, H, with some parameters A. In this way, the two
distributions F}* and Fj share information, not only through Fp, but also through the common base
distribution H, and their common parameter .
It can be easily seen that the model of Miiller et al. (2004) for J = 2 is a special case of Model
(2.1.1), where €1 = €9, and a certain prior distribution is given to the common weight. On the other
hand, the form of the above model offers other attractive options.

One such option is to have two concentration parameters, by setting M; = M, and a common
weight e, but with a Be(Mj, M;) prior. In this way, F;" and F; are identically, a priori Dirichlet
Process-distributed:

Ff, Fy ~ DP(My + My, H(X)).

This will be shown in more details in Section 2.1.3.
In this case, borrowing strength between the dependent distributions is also achieved through the
common weight and the common concentration parameter for the idiosyncratic part, Mj.

A question that arises naturally is whether having the prior for the weights depending on the
precision parameters of the DP followed by the random probability measures is sensible. In other
words, does the prior £ ~ Be(Mp, M) make sense? At first sight, it might seem that the answer
is no. Also, one might argue that having the same base distribution H for all Fy, Fi and F5 is not
sensible, either. However, the combination of those two seemingly peculiar facts might be explained
as follows: the proportion of information carried from the common part of F}* and Fy regarding the
common base distribution H should be positively associated with the proportion of this common
part in the models. This proportion can be expressed by ﬁ, since My and M; are parameters

controlling how close we are to the base distribution (for example, if most observations come from
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the common part, then the base distribution should be “close” to this common part, so My should
be significantly larger than M; and the ratio should be large). On the other hand, this proportion

of information of Fy to H must be also positively associated to the weight ¢, since this is the weight

Mo
Mo+M; *

of Fy in both F} and F3j. However, the prior mean of the weight is exactly the ratio
As a result, the prior distribution of €, involving My and M7, together with having the same base

distribution for all Fy, F; and F5 can be justified.

A second interesting model of the form (2.1.1) could be one similar to the one above, with the
difference that now there are two weights, €1 and €3, which are identically distributed as Be(Mp, M)
a priori, but not independent. This model is constructed using the normalisation ideas of Section
1.2.3, i.e. using a different and quite general method, through which the prior distributions and
the correlation structures between the parameters are set. This method is described in the next

subsection where dependent and identically distributed Dirichlet processes are constructed.

2.1.1 The model via direct normalisation

Let G; "' TP(M;, H),i=1,2,....k and M = ¥*_| M;, and define G*(B) = ¥, G4(B),
V B € F. Then,

G*(-) ~ TP(M, H). (2.1.2)

This property is called infinite divisibility and is inherited to the gamma process from the underlying
gamma distribution. It states that a gamma process (actually, any realisation of it) can be divided

in as many (other) gamma processes as one wants:

Definition 12. A distribution F is called infinite divisible if and only if V n € IN, 3 a distribution
F,, such that F' is equal to the convolution of n times F,.

In other words, F is called infinitely divisible if and only if V n € IN, it can be represented as the
distribution of the sum Sy, = X1, + Xon + -+ + Xn.pn, where X1 5, Xon, ..., Xnn are independent

random variables, each following the same distribution, say F,.

By normalising G*, it is found that F*(-) follows a Dirichlet process:
Let B€ F and F* ~DP(M,H), F; i DP(M;,H),i=1,2,... k.
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Then,

G*(B)
G*(Q)
(212 b, Gi(B)

F*(B) =

Y G(Q)
. GiQ)  GuB)
N Zz;;lejm) Gi(Q)

=1

Gi(Q)
SE G

j=1

k
= ZgiFi(B), where g; =
i=1

So, any DP with parameters M and H can be written as a weighted sum of k independent DPs

with the same base distribution H and precision parameters M;, such that Zle M; = M. The

Gi(©)
?:1 Gj (Q) ’

distributed as Ga(M;, 1)). In fact, those weights follow a Dirichlet distribution:

corresponding weights are given by ¢; = depending only on the M; (since each G;(Q) is

(e1,€2,...,€) ~ Dir(My, Ma, ..., My). (2.1.3)

Let now Fy ~ DP(My, H), Fi,F» ~ DP(My, H). By normalising the underlying gamma process of
the sum of Fy and Fi, we get:
Fl* = €1F0 -+ (]. — El)Fl

where F}* now follows a DP(My + My, H) and €1 ~ Be(My, M;). Similarly, by normalising the

gamma processes corresponding to Fy and F5, we get:
FQ* =eoFy + (]. — EQ)FQ

where Fy follows also a DP(My + My, H) and €3 ~ Be(My, M7).
So, F} and Fj are identically DP-distributed, but obviously not independent, due to the common
part Fy. The same holds for the two weights, which are both beta-distributed, but are not inde-
pendent. In fact, notice that ¢ = #(QG)I(Q) and g5 = #(QGL(Q) and their joint distribution
is:

T(Mo + 2M;) e}0™71 (1 — g)Mi—tellotMi=l(] _ gy)Mi—1
(M) [T (M7)]? (1 + &9 — g169)Mot2Mn

f€1,62(€1752): , 0<er,e0 < 1.

Proof:

Let 21 = Go(Q) ~ Ga(Mo, 1),z2 = G1(2) ~ Ga(M;,1) and z3 = G2(2) ~ Ga(Maz,1). Consider

x1 — Z1 —
11+$2’€2 = Tifes Y = 21

now the reparametrised vector (€1, e2,y), where 61 =
By applying the formula for the distribution of a transformed random vector, and then integrate

out y, we arrive at the above result. O
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Finally, it is also worth mentioning that by repeating the same procedure as above, but now with

normalising an inverse-Gaussian process (which is also infinite divisible), one can construct the
same model, but now with normalised inverse-Gaussian processes (Lijoi et al., 2005) as the priors
of Fy, F1 and F», as well as of F}* and F. In this case, the weights will have normalised inverse-
Gaussian distributions as priors, with parameters My and M, where the latter are the concentration

parameters of the corresponding N-IGP priors of Fy and Fy (or F5).

2.1.2 The basic proposed model

The main model of consideration and comparison with the Miiller et al. (2004) model is a simplified
version of the above model for the DP case, where a common weight € is assumed. This simplification
allows for more direct sharing of information between the two distributions (since the weights now
are the same, and not just correlated). This sharing of information can be particularly useful in cases
of few observations from one or both dependent distributions. On the other hand, unless someone
is particularly interested in inferring the weights in both distributions, not much is lost by having
the same weight, because of the nonparametric, flexible modelling of Fy, F; and F>. Most of the
posterior mass for the weight will be assigned to the minimum of the weights creating the data and
a (usually small) proportion will be assigned to values very close to zero. In order to illustrate this,

consider the following example:

Example 1:
Vi 2 TN S N(=10,1), i=1,2,..., N
14 10 ’ 10 ) ’ — Ly &y 4V]
iid 3 7 ,
Yo % 2 N(1,1) 4+ =N(8,1), i =1,2,..., Ny.
2 0 ( )+10 (8,1), i 2

The dependent DPs, as described above, are used as the prior distribution of the distributions of the
means of the above normal distributions. In order to simulate from the posterior distributions of all
the parameters of interest, MCMC methods are 