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Abstract

Bayesian nonparametric modelling has recently attracted a lot of attention, mainly due to the ad-

vancement of various simulation techniques, and especially Monte Carlo Markov Chain (MCMC)

methods. In this thesis I propose some Bayesian nonparametric models for grouped data, which

make use of dependent random probability measures. These probability measures are constructed

by normalising infinitely divisible probability measures and exhibit nice theoretical properties. Im-

plementation of these models is also easy, using mainly MCMC methods. An additional step in

these algorithms is also proposed, in order to improve mixing. The proposed models are applied

on both simulated and real-life data and the posterior inference for the parameters of interest are

investigated, as well as the effect of the corresponding simulation algorithms. A new, n-dimensional

distribution on the unit simplex, that contains many known distributions as special cases, is also

proposed. The univariate version of this distribution is used as the underlying distribution for mod-

elling binomial probabilities. Using simulated and real data, it is shown that this proposed model is

particularly successful in modelling overdispersed count data.
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Notation

The following notation is used throughout this thesis, unless otherwise stated. We usually use normal

font type for scalars and bold font type for vectors, unless otherwise stated.

IN The set of natural numbers

IR The set of real numbers
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δx Dirac measure
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|x| The absolute value of a number x
d
= Equality in distribution, i.e. identically distributed

A−1 The inverse of a matrix A

1() The indicator function
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Chapter 1

Introduction

Bayesian nonparametric modelling has recently attracted a lot of attention, partly because of the

advancement of simulation methods, and especially Monte Carlo Markov chain (MCMC) methods.

These models offer a flexible prior specification of the distribution of some data and can therefore

be particularly useful in cases where it is preferred not to impose much prior structure on the

distribution of those data. Bayesian nonparametric models can also be used in a variety of ways in

modelling two or more correlated data sets (for example spatial data).

1.1 Bayesian Nonparametric Modelling

The term “Bayesian nonparametric model” refers to a probability model with infinitely many pa-

rameters (Bernardo and Smith, 1994), which results in inference which is directly comparable to

classical nonparametric models. These methods have attracted a lot of attention recently, especially

because of the recent advances in some simulation techniques, and especially Monte Carlo Markov

chain methods, which facilitate the simulation of the posterior distributions of the parameters of

interest. These models can be particularly useful in cases when there is uncertainty about the un-

derlying distribution of some data, so modelling this distribution in a flexible way is desirable. As

a result, they can be naturally applied to density estimation and regression models.

There are many classes of Bayesian nonparametric models. For the density estimation problem,

i.e. the problem of estimating the underlying distribution(s) of some data, it is assumed that the

data, say Y1, Y2, . . . , Yn, come from a distribution F or, more generally, each Yi ∼ Fi. In the

Bayesian nonparametric setting, one considers these distributions also as random and assigns prior

distributions to them. Some examples of these models are species sampling models, introduced
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by Pitman (1996), Pólya trees (introduced by Ferguson (1974) and developed by Lavine (1992,

1994)), Bernstein polynomials and the very general class of Random Probability Measures (RPMs

- see e.g. Crauel (2002)). We also note an interesting and very rich subclass of the RPM, the

normalised random measures, which will be described in Section 1.2.3. For the regression problem

yi = g(xi) + ǫi, i = 1, 2, . . . , n (where the bold symbols denote vectors), many approaches include

some collection of distributions, say B = {f1, f2, . . .}, and write g =
∑∞

k=1 bkfk, for some basis

coefficients b1, b2, . . .. Popular choices for this collection B include spline, Fourier and wavelet

models. For a more detailed review of the aforementioned (and more) Bayesian nonparametric

methods, see Müller and Quintana (2004).

At this point something more about the RPMs needs to be said, since they are not only a very

rich class of models, but also the one mostly used in practise. As the name indicates, a RPM is a

probability measure that is itself taken to be random. Alternatively, as stated in Ferguson (1974),

it can be thought of as a random variable whose values are probability measures. A more formal

definition is the following:

Definition 1. Let X be a Polish space and B denote its σ−algebra. Let also (Ω,F ,P) denote a

probability space. A map

µ : B × Ω → [0, 1]

(B,ω) → µω(B)

satisfying

1. ∀ B ∈ B, µω(B) (as a function of ω) is measurable,

2. for P-almost every ω ∈ Ω, µω(B) (as a function of B) is a Borel probability measure

is said to be a random probability measure on X.

Within the Bayesian framework, a prior distribution is assigned to a RPM (i.e. a prior distribution

of the random distribution). The most widely used prior specification for this random probability

measure in the literature is the Dirichlet process (DP), introduced by Ferguson (1973). Other

choices include the normalised inverse-Gaussian process (N-IGP) advocated by Lijoi et al. (2005),

the invariant DP (Dalal, 1979) and the aforementioned Pólya trees.

Finally, note that these random measures fit naturally in a standard hierarchical model, for

example:

Yi ∼ f(Yi;θi), i = 1, 2, . . . , n

θi
iid∼ G
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G ∼ RPM(ψ)

ψ ∼ h(ψ).

This setup can be useful in cases where the realisations of the RPM used are discrete distributions,

whereas the data under consideration are continuous. This will be demonstrated using the DP as

the underlying RPM in the next subsection.

1.1.1 The Dirichlet process

First, the Dirichlet (Dir) distribution is defined:

Definition 2. An n-dimensional random variable X = (X1, X2, . . . , Xn) defined on the unit simplex

is said to follow a Dirichlet distribution with parameters a1, a2, . . . , an+1 > 0, denoted Dir(a1, a2, . . . , an+1),

if its density with respect to the Lebesque measure is:

fX(x) =
Γ(a1 + a2 + · · · + an+1)

Γ(a1)Γ(a2) · · ·Γ(an+1)

n∏

i=1

xai−1
i (1 −

n∑

j=1

xj)
an+1−1, x1, x2, . . . , xn ≥ 0,

n∑

k=1

xk ≤ 1.

In the above definition Γ denotes the gamma function, Γ(x) =
∫∞
0 tx−1e−tdt. Notice that the

univariate Dirichlet distribution is the known beta (Be) distribution:

Definition 3. A random variable X defined on [0, 1] is said to follow a beta distribution with

parameters a1 ≥ 0 and a2 ≥ 0, a1 + a2 > 0, denoted Be(a1, a2), if its density with respect to the

Lebesque measure is:

fX(x) =
Γ(a1 + a2)

Γ(a1)Γ(a2)
xa1−1(1 − x)a2−1, 0 ≤ x ≤ 1.

If a1 = 0, then X = 0 almost surely and if a2 = 0, X = 1 almost surely.

A simple definition of the Dirichlet process is then the following:

Definition 4. A random probability function F is said to follow a Dirichlet process with parameters

M and H0 if for any partition (A1, A2, . . . , Ak) of the probability space Ω, such that all Ai ∈ F ,
the σ−algebra of Ω, the vector of random probabilities (F (A1), F (A2), . . . , F (Ak)) follows a Dirichlet

distribution with parameters MH0(A1),MH0(A2), . . . ,MH0(Ak).

Symbolically:

F ∼ DP(M,H0)
def⇔ ∀ partition (A1, A2, . . . , Ak) of Ω, A1, A2, . . . , Ak ∈ F

(F (A1), F (A2), . . . , F (Ak)) ∼ Dir (MH0(A1),MH0(A2), . . . ,MH0(Ak)) .
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As shown in Lemma 1 of Ferguson (1973), the existence of such a process is verified by showing that

the Kolmogorov consistency conditions hold.

As seen from the definition, there are two parameters characterizing the DP: H0 and M.

H0 is a distribution function and is called the base or centering distribution of the DP. It can be

seen as the centre of the process, since

∀ B ∈ F , E (F (B)) = H0(B). (1.1.1)

The parameter M > 0 is a scalar called the concentration or precision parameter of the process, and

it controls the variability of the process around H0, since

∀ B ∈ F ,Var (F (B)) =
H0(B) (1 −H0(B))

1 +M
. (1.1.2)

So, intuitively, M can also be seen as a measure of our belief in the base distribution H0.

In fact, in his seminal paper, Ferguson (1973) uses a non-null finite measure α as the parameter of

the DP. Then, by considering the parametrisation M = α(Ω) and H0 = α
α(Ω) , we get the definition

above and a better understanding of the role played by this measure α.

The reason for the popularity of the Dirichlet process is its mathematical properties, which lead to

algebraic and computationally convenient expressions, therefore allowing for relatively easy posterior

inference when combined with MCMC techniques. These properties include simple expressions for

the expectation and variance of its realisations, as seen in (1.1.1) and (1.1.2).

The DP can also be represented using a stick-breaking representation (Sethuraman and Tiwari,

1982; Sethuraman, 1994): If F ∼ DP(M,H0), then

F (·) =

∞∑

i=1

wiδθ∗i (·), where θ∗i
iid∼ H0, wi = Vi

∏

j<i

(1 − Vj), where Vi
iid∼ Be(1,M) (1.1.3)

where δx denotes the Dirac measure giving mass 1 to the value x.

As can be seen from (1.1.3), any realisation of the DP is, with probability 1, a discrete distribution.

This is an obvious drawback when one wants to model data from continuous distributions. On the

other hand, this discreteness allows for clustering the values of a random distribution following a

DP:

Let F ∼ DP(M,H0), where H0 is a continuous distribution and assume a sample θ1, θ2, . . . , θn from

F. The number of discrete θi (denoted by θ∗i ), will be K ≤ n. The distribution of K is given in

Escobar and West (1995):

P (K = k|M,n) = cn(k)n!Mk Γ(M)

Γ(M + n)
, k = 1, 2, . . . , n (1.1.4)

where cn(k) = P (K = k|M = 1, n), not involving M .

In the above we want H0 to be a continuous distribution, in order to have all the θ∗i being different.
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If, on the other hand, H0 was discrete, we would again have discrete values, but now there is the

possibility that some of the clusters created by the discreteness of the DP (not of H0) would be

located at the same values.

Notice also that, as (1.1.4) suggests, for higher values of the concentration parameter, higher

probabilities are given to larger number of clusters. The intuition for this is that higher values of

M indicate less variation from the base distribution H0, i.e. more belief in H0. As a result, more

observations from the DP will actually be taken from this base distribution. The above observations

are consistent with (and complemented by) equation (1.1.5) below.

Next, the Pólya-urn representation of the DP are presented, i.e. an expression of the possible

allocations of a new observation from the DP, given previous observations from the same DP. This

representation was noted by Blackwell and MacQueen (1973) and has also a simple form: having

observed θ1, θ2, . . . , θn from F ∼ DP(M,H0), the (posterior) distribution of a new observation θn+1

is as follows:

∀ A ∈ F , P (θn+1 ∈ A|θ1, θ2, . . . , θn) =
M

M + n
H0(A) +

1

M + n

n∑

i=1

δθi(A). (1.1.5)

This means that any new value will be set equal to one of the previous values θi (with probability

1
M+n for each θi) or will be a new draw from the base distribution (with probability M

M+n ). Again,

notice that for higher values of M , more clusters are expected to be created for a specific data size.

A similar expression to the Pólya-urn representation is the so-called Chinese restaurant repre-

sentation (Aldous, 1985; Pitman, 1996). Before explaining this algorithm, let us define the indicator

functions si, i = 1, 2, . . . , n, such that

si = j ⇔ θi ≡ θ∗j , j = 1, 2, . . . ,K,

where (θ1, θ2 . . . , θn) is a sample from a DP(M,H0)-distributed random distribution F and (θ∗1 , θ
∗
2 , . . . , θ

∗
K)

is the vector of discrete values (clusters) of these data.

The Chinese restaurant representation now gives the probabilities of all possible values of a new

indicator sn+1, corresponding to a new observation from F|θ1, θ2, . . . , θn. It is clear that sn+1 takes

values in the set {1, 2, . . . ,K + 1}, where the firstK values correspond to the already existing clusters

and the last value corresponds to a new cluster being created. These probabilities are as follows:

P (sn+1 = j) =







nj

n+M , j = 1, 2, . . . ,K

M
n+M , j = K + 1,

where nj is the size of cluster j, i.e. how many of the θi are assigned to this cluster (i.e equal to θ∗j ).
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Using the Pólya-urn scheme for a single DP with parameter M , it is easy to derive the Ex-

changeable Product Partition Formula (EPPF) for this model:

p(s|M) = Mk Γ(M)

Γ(M + n)

K∏

i=1

Γ(ni) (1.1.6)

where s = (s1, s2, . . . , sn) is the vector of all allocation parameters.

Finally, the property that, in fact, characterizes the DP, is its conjugacy: given θ1, θ2, . . . , θn

from F ∼ DP(M,H0), the posterior distribution of F is again a DP with parameters M + n and

H0 +
∑n
i=1 δθi :

F |θ1, θ2, . . . , θn ∼ DP

(

M + n,H0 +

n∑

i=1

δθi

)

.

Apart from its obvious advantages stated above, there is the quite unpleasant feature of the

DP that its realisations are always discrete distributions. As a result, modelling continuous data

using the DP as the distribution of their distribution would be inappropriate.

The usual solution to this problem is to add an additional level in the model, by assuming that

the data come from a continuous distribution with parameters θ and set the distribution of the

parameters θ to follow a DP (Ferguson, 1983; Lo, 1984):

Yi ∼ f(Yi;θi, ζ), i = 1, 2, . . . , n

θi
iid∼ G

G ∼ DP (M,H0(ψ)) (1.1.7)

M ∼ h1(M), ζ ∼ h2(ζ), ψ ∼ h3(ψ)

where ζ are any other parameters in the likelihood f not modeled using the DP and ψ are the

parameters of the base distributions (if any).

This setup is referred to as mixture of Dirichlet process (MDP) model, and was introduced by

Antoniak (1974). Note also that the distribution of each Yi (given ζ) is given by convolving f with

G ∼ DP:

f(Yi; ζ) =

∫

f(Yi;θ, ζ)dG(θi), where G ∼ DP (M,H0(ψ))

and this, together with the discrete nature of the realisations of the DP, will lead to a mixture model

for Yi (given ζ) (Antoniak, 1974).

1.1.2 Computational issues

For models with many parameters, the joint posterior distribution of all parameters is usually ex-

tremely complicated to calculate, let alone to simulate from. Bayesian nonparametric models usually
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fall in this category. Therefore, most inference using these models involves advanced computational

methods, and mostly Monte Carlo Markov Chain (MCMC) methods are used. Other simulation

methods are also applicable, like sequential importance sampling (see, for example, MacEachern

et al., 1999; Fearnhead, 2004) and variational inference methods (Beal and Ghahramani, 2003).

MCMC methods consist of constructing a Markov Chain (i.e. a chain where each updating

step depends only on the previous iteration of the chain) that has the desired posterior distribution

of all parameters in the model as its stationary distribution.

The mostly used MCMC method is the Gibbs sampling. According to this method, we start

with some initial values for our parameters. Then, in each step of the chain, each parameter in

the model is sequentially simulated from its full conditional distribution, i.e. the distribution of

the specific parameter given the data and all the other parameters. In each case the values of

the parameters of interest are recorded and at the end some initial part of the chain is discarded

as burn-in. The rest of the output consists of samples from the joint posterior distribution of all

parameters. From this output the values of a specific parameter can also be taken, and those

values will be samples from the posterior distribution of this parameter. In this method, if a full

conditional distribution is of known form, for example if it is a beta distribution, simulating from it

is straightforward. If, on the other hand, simulating from a full conditional distribution directly is

not possible, Metropolis-Hastings (MH) steps or slice sampling can be used instead.

MH updating steps consist of proposing a value for the parameter that is to be updated and

calculating the acceptance probability of the proposed value. This acceptance probability takes into

account both the full conditional distribution of the parameter and the probability of the transition

from the existing value of the parameter to the one proposed. More specifically, the acceptance

probability α for moving a parameter ϑ from its current value ϑ0 to a new value ϑ′ is:

α(ϑ0, ϑ
′) = min

{

1,
f(ϑ′)

f(ϑ0)

q(ϑ′, ϑ0)

q(ϑ0, ϑ′)

}

.

where f is the full conditional distribution of ϑ and q(a, b) is the transition probability from a value

a to a value b, and depends on the method of proposing these new values. Then, with probability

α(ϑ0, ϑ
′), the value of ϑ is changed to ϑ′, otherwise it remains unchanged: ϑ = ϑ0.

Popular choices for proposing new values in a MH step include independence MH steps (when

the proposed value is taken independently of the current value) and the random walk Metropolis-

Hastings steps (RWMH), when the proposed value is the sum of the existing value and a value from

a zero-mean random variate. Roberts and Rosenthal (2001) discuss monitoring of RWMH updating

steps, in order to optimise mixing. In the following, RWMH steps will mostly be used when the full

conditional distributions are not of known form.
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Slice sampling is a parameter augmentation technique, in which the parametric space is ex-

tended to include some auxiliary variables (see, for example, Damien et al., 1999; Neal, 2003). Sup-

pose that we want to sample from a distribution f(x). If this distribution is difficult to sample from,

we can extend f(x) to g(x, u), where u is an auxiliary variable and g is such that
∫
g(x, u)du = f(x)

and g(u|x) = g(u,x)
∫
g(x,u)du

is a uniform distribution on a set (and therefore easy to sample from, for

example, using inverse transformation methods). The joint density g is also chosen such that g(x|u)
is also easy to sample from. We can then iteratively sample from g(x|u) and g(u|x), and the value

of x obtained will be a draw from f(x). As a simple example, consider f(x) = xe−x
2

. We can then

set g(x, u) ∝ x1(0<u<e−x2), where the indicator function 1( ) takes the value 1 if the expression in

the subscript is true, and 0 otherwise. Then g(u|x) is the uniform distribution in
(

0, e−x
2
)

, whereas

g(x|u) = x1(|x|<− log(u)), and therefore easy to sample from.

Since the MDP Model (1.1.7) is the one mostly used in Bayesian nonparametric inference, it

would be useful to present the basic methods of implementation using MCMC methods. This will

also provide a first introductory insight to the algorithms that will be presented in the next sections,

since more or less the same principles apply. For simplicity, it is assumed that each θi is scalar,

there are no extra parameters ζ in the likelihood and the parameters of the base distribution ψ are

fixed. Usually, in the more general case where additional parameters are introduced in the model,

their full conditional distributions are explicitly known and easy to sample from.

As mentioned before, due to the infinite number of point masses and weights of any realisation of

the Dirichlet process (as seen by the stick-breaking representation), it is impossible to simulate from

the DP directly. However, in cases where one is not directly interested in the unknown random

distribution itself, but rather in the posterior distributions of some parameters of the model (which

is very common in practice), a sample from those posterior distributions can be obtained using

MCMC methods. It is also possible to get samples from the predictive distribution of a parameter

whose distribution is DP-distributed.

There are two main approaches in simulating Model (1.1.7). One approach is to use marginal

methods, which consist of integrating the unknown distribution out of the posterior distributions

and using the Pólya-urn representation of the Dirichlet process. The second approach is to use

conditional methods, which consider the DP as part of the MCMC algorithm.

Marginal methods

This is the method mostly used in the literature. Usually this algorithm uses a Gibbs sampler,

especially when the likelihood f(Y ; θ) and the base distribution H0(θ) form a conjugate pair for θ

(i.e. their product as a function of θ has the functional form of a known distribution). Most of the

8



algorithms concerning the marginal method are based on the seminal paper of Escobar and West

(1995), which is itself based on the work of Escobar (1988, 1994). Very good descriptions of some

marginal algorithms can be found in Escobar and West (1998) and MacEachern (1998).

In order to implement the Gibbs algorithm, the full conditional distributions of all parame-

ters in the model, i.e. the distributions of each parameter given all the other parameters and the

data Y1, Y2, . . . , Yn, need to be calculated. The conditional independence relationships between the

parameters that the hierarchical structure of this model expresses also enhance these calculations.

Regarding the full conditional distribution of each θi, the Pólya-urn representation of the DP (1.1.5)

can be used in order to integrate out the unknown distribution. The exchangeability of θi in this

expression leads to the following posterior distribution for θi:

p (θi|θ−i,Y ,M,ψ) = q0
f(Yi|θi)h0(θi|ψ)

∫
f(Yi|θi)dH0(θi|ψ)

+
∑

j 6=i
qjδθj(θi) (1.1.8)

where h0(θi|ψ) = dH0(θi|ψ)
dθi

is the pdf of H0, Y is the data set, θ−i = (θ1, . . . , θi−1, θi+1, . . . , θn) ,

q0 ∝M
∫
f(Yi|θi)dH0(θi|ψ), qj ∝ f(Yi|θj) and the factors of proportionalities are the same for each

weight and such that the weights add to 1. This structure indicates how easy it is to simulate each

θi given all the others. What is needed is to calculate the weights q0 and qj , j 6= i and then assign

θi to one of the other θj with probabilities qj , j 6= i, or draw a new value from the base distribution

H0, with probability q0. The tricky part is calculating the integral appearing in the expression for

q0. On the other hand, when the base distribution H0 and the likelihood f form a conjugate pair,

this integral will be trivial.

As far as the precision parameter M is concerned, it was demonstrated in Escobar and West

(1995) that it is better to consider it as a random variable and impute it in the MCMC algorithm.

In the same article, the authors give a Ga(α, β) prior distribution to M and propose a very simple

way to update this quantity, using a fine algebraic trick.

Definition 5. A random variable X is said to follow a gamma distribution with parameters α >

0 and β > 0, denoted by Ga(α, β), if its density with respect to the Lebesque measure is:

fX(x) =
β−α

Γ(α)
xα−1e−x/β, x > 0.

The full conditional distribution of M in the specific model is proportional to its prior and to the dis-

tribution of the number of cluster,K, shown in (1.1.4). Therefore, f(M | · · · ) ∝Mα+K−1e−M/β Γ(M)
Γ(M+n)

and the last fraction can be substituted using the formula

Γ(M)

Γ(M + n)
=

(M + n)B(M + 1, n)

MΓ(n)
,
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where B(a, b) =
∫ 1

0
xa−1(1 − x)b−1dx is the usual beta function. This leads to:

f(M | · · · ) ∝ Mα+K−1e−M/β (M + n)B(M + 1, n)

M

= Mα+K−2e−M/β(M + n)

∫ 1

0

xM (1 − x)n−1dx.

The last expression can now be seen as the marginal distribution of the joint distribution of M and

an auxiliary variable in (0, 1), say ξ, where f(M, ξ| · · · ) ∝ Mα+K−2e−M/β(M + n)ξM (1 − ξ)n−1.

The full conditionals of each of those quantities are as follows:

f(M |ξ, · · · ) ∝ Mα+K−2e−M(1/β−log(ξ))(M + n)

= Mα+K−1e−M(1/β−log(ξ)) + nMα+K−2e−M(1/β−log(ξ))(M + n).

(i.e a mixture of gamma distributions), and

f(ξ|M, · · · ) ≡ Be(M + 1, n).

What one needs to do in order to simulate from M in each step in the MCMC algorithm is to

simulate from both f(ξ|M, · · · ) and f(M |ξ, · · · ) sequentially. Each value of ξ can be discarded after

M is simulated, as it is just an auxiliary variable, whereas the values of M will be kept and used in

the rest of the algorithm and in posterior inference.

Finally, it is also straightforward to include an additional step in the MCMC algorithm that

approximates the predictive distribution p(Yn+1|Y1, Y2, . . . , Yn) :

p(Yn+1|Y1, Y2, . . . , Yn) =

∫ ∫

· · ·
∫

p(Yn+1, θ1, θ2, . . . , θn|Y1, Y2, . . . , Yn)dθ1dθ2 . . . dθn

=

∫ ∫

· · ·
∫

p(Yn+1|θ1, . . . , θn, Y1, . . . , Yn)f(θ1, . . . , θn|Y1, . . . , Yn)dθ1 . . . dθn

=

∫ ∫

· · ·
∫

p(Yn+1|θ1, θ2, . . . , θn)f(θ1, θ2, . . . , θn|Y1, Y2, . . . , Yn)dθ1dθ2 . . . dθn.

In words, the predictive distribution can be expressed as an expectation of the random vector

(θ1, . . . , θn) from its posterior distribution. This expression is very complicated to calculate analyti-

cally. On the other hand, this expectation can be approximated using Monte Carlo (MC) methods:

in each step of the MCMC algorithm after the burn-in period, a sample from these θi’s is obtained.

These samples are actually samples from the posterior distribution of (θ1, . . . , θn). So, in each step

p(Yn+1|θt1, θt2, . . . , θtn) (which will be a simple mixture distribution) is calculated, where the values

for the θti ’s are the values in the t-th cycle of the chain. By then calculating the mean of those
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expressions over all the MCMC cycles after burn-in, we get an approximation of the predictive

distribution.

An improvement to this algorithm was proposed by MacEachern (1994) and is almost always

used in this type of models, as it is easy to implement and improves the mixing of the chain. It

exploits the clustering of the values of a sample from a random distribution following a DP, as

mentioned before. Instead of using the actual values (θ1, θ2, . . . , θn), it uses the reparametrisa-

tion (θ∗1 , θ
∗
2 , . . . , θ

∗
K , s1, s2, . . . , sn), where the quantities are as defined before. The reason for this

reparametrisation is that now the discrete values θ∗j are also updated, resulting in better mixing of

the Markov chain. Note that the prior distribution of the θ∗j ’s is the base distribution H0, so the full

conditional distribution for each θ∗i will be proportional to the product of H0 and of the product of

the likelihood of the data that are associated with it, H0(θ
∗
i )
∏

j:sj=i p(Yj ; θ
∗
i ). As for the updating

of the indicators, this will be the same as (1.1.8), with s replacing θ.

Apart from the above method of improving the calculations, other tricks have been proposed

(see e.g. MacEachern (1998)). Some of them are:

1. Collapsing of the state space: The idea here is that, since we use simulation to avoid dif-

ficult integrals, one should try to evaluate as many integrals as possible before starting the

simulation. So, if possible, we integrate out some parameters from our model before the

simulations.

2. Blocking: The basic idea is to update parameters that are a posteriori highly correlated

together, and therefore improve the mixing of the chain.

3. Rao-Blackwellization: Proposed by Gelfand and Smith (1990), this technique suggests replac-

ing values generated as part of the simulation with appropriate conditional expectations. In

this way, one can benefit from conditional distributions, if they are of known form.

The nonconjugate case

This is the case where the likelihood f and the base distribution H0 do not form a conjugate pair.

As a result, calculations of some integrals become nontrivial. For example, in the update of θi (or

of the si), we have the integral
∫
f(y; θi)dH0(θi). If f and H0 are not conjugate, calculating these

integrals can be very difficult or even impossible. Although in nonparametric models a variety of

base distributions can be used, since these models are quite flexible and will adapt to the specific

choice (for example, a DP prior with M small can be used), there are cases where it seems more

logical to use a specific base distribution, which is not conjugate to the likelihood. This case is
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discussed, among others, in West et al. (1994), MacEachern and Müller (1998), Neal (2000) and

Jain and Neal (2005) (all in the case of the MDP model).

The first paper provides the first algorithm designed for the nonconjugate case. The authors

here propose an MCMC scheme for simulating from the posterior distributions of the parameters in

the model. Their solution to the problematic integral
∫
f(Yi|θi)dH0(θi) is to approximate it using

Monte Carlo approximation or, in the special case where only one of these MC samples is used, to

replace it by f(Yi|θ′), where θ′ is a draw from H0. However, as MacEachern and Müller (1998) note,

this approximation fails theoretically, as the resulting Markov chain might converge to a stationary

distribution that is not the same as the posterior distribution. Another issue about this method

is that it is not easy to evaluate the accuracy of the approximation, as this approximation occurs

within acceptance probabilities.

In the second reference the authors propose the so-called “no gaps algorithm”. This method

consists of augmenting the vector of discrete values (θ∗1 , θ
∗
2 , . . . , θ

∗
K) to (θ∗1 , θ

∗
2 , . . . , θ

∗
K , θ

∗
K+1, . . . , θ

∗
n).

The name of this method comes from the fact that the first K values of the full vector of the θ∗i ’s

correspond to those clusters that are associated with at least one observation. As a result, there are

no gaps in the values of the indicators si, i = 1, 2, . . . , n. Using this augmentation, the problematic

integral disappears and it is replaced by simple likelihood evaluations, since now all the new clusters

that might be used are associated with some value (θ∗K+1 to θ∗n).

In Neal (2000), two methods are proposed. The first one involves MH proposals for the update

of the allocations si, i = 1, 2, . . . , n, whereas the second method is very similar to the “no gaps”

algorithm of MacEachern and Müller (1998), but slightly more general.

Finally, in the last approach, Jain and Neal (2005) propose an MCMC algorithm, which in each

iteration proposes mix or split steps. More specifically, each mixing proposal consists of merging

two clusters of discrete values of θ into one, and each splitting proposal suggests splitting one cluster

of θ∗ into two separate ones. This algorithm is computationally expensive, but with good mixing

properties and can be a good choice in the nonconjugate case, if the other approaches fail to reach

equilibrium in a sensible amount of time.

Conditional methods

Conditional methods can be particularly useful when it is not easy to integrate the random proba-

bility measure out of the joint posterior distribution of all parameters in a model. The basic idea in

these methods is to impute the RPM in the parameter space and update it in the MCMC algorithm,

as well as the other parameters. However, this involves an infinite number of parameters, making

it practically impossible. Consider, for example, the discrete RPMs of the form
∑∞

i=1 wiδθ∗i (·). In
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order to simulate from such a representation, an infinite number of weights wj and point masses θ∗j

needs to be simulated. In practice, we need a finite version of this, and a suggested solution is using

some form of truncation, for example replacing the infinite sum in (1.1.3) with
∑N

i=1 wiδθ∗i (·), for N

large enough (Ishwaran and Zarepour, 2000). Although the error produced by such approximations

can be controlled (Ishwaran and James, 2001), it would be preferable to avoid such approximations

completely. In the case of the DP as the distribution of the RPM, updates of the latter can be per-

formed using its stick-breaking representation (1.1.3). Papaspiliopoulos and Roberts (2008) show

that the approximation can be completely avoided, using a technique called retrospective sampling,

which will be demonstrated in the case of a DP-distributed RPM, as is the case for Model (1.1.7):

Suppose we want to create a sample θ1, θ2, . . . , θn from F ∼ DP(M,H0). According to (1.1.3), if we

could create an infinite number of pairs (wj , θ
∗
j ), we would then assign each θi = θ∗j with probability

wj . This could be done using Ui ∼ U(0, 1) and setting θi = θ∗j iff:

j−1
∑

k=0

wk < Ui ≤
j
∑

k=0

wk, (1.1.9)

where w0 = 0. It is clear that, for a finite number of draws from F , only a finite number of pairs

of weights and point masses is needed. Retrospective sampling method, now, simply exchanges the

order of simulation between the pairs (wj , θ
∗
j ) and the Ui’s: we create a finite number of these pairs,

and then check (1.1.9) for each Ui simulated. If for some of those Ui’s, (1.1.9) is not satisfied, we go

back and simulate more of these pairs, until (1.1.9) is satisfied for some j.

Retrospective sampling for the simple MDP model:

By replacing the DP by its equivalent expression (1.1.3), the MDP model can be written as follows:

Yi ∼ f(Yi; θ
∗
si
, ζ), i = 1, 2, . . . , n

si ∼
∞∑

j=1

wjδj , where wj = Vj
∏

k<j

(1 − Vk), where Vi
iid∼ Be(1,M)

θ∗j ∼ H0(ψ) (1.1.10)

M ∼ h1(M), ζ ∼ h2(ζ), ψ ∼ h3(ψ).

As in the marginal method, it is assumed that we do not have any additional parameters ζ in the

likelihood and the parameters ψ are fixed.

As mentioned above, since we just need a finite number of θi ≡ θ∗si
, only a finite number of weights

and point masses is needed. So, we start with a large number of them, and if at some point in the

simulation more are needed, we create them retrospectively. Another issue in this algorithm is that,

in the full conditional distribution of each indicator si, i = 1, 2, . . . , n, the intractable expression
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∑∞
j=1 wjf(Yi; θ

∗
j ) appears as a normalising constant. As a result, we cannot simulate from these

distributions directly. Papaspiliopoulos and Roberts (2008) propose a MH updating step in order

to overcome this problem. To sum up, the proposed iterative steps in the MCMC algorithm (given

an initial allocation s = (s1, s2, . . . , sn) and setting N = max {s}) are the following:

1. Simulate θ∗j , j = 1, 2, . . . , N from their full conditional distributions.

2. Simulate Vj , j = 1, 2, . . . , N from their full conditional distributions and calculate the weights

wj = Vj
∏

m<j(1 − Vm), j = 1, 2, . . . , N .

3. For i = 1, 2, . . . , n, simulate Ui ∼ U(0, 1).

(a) Check if (1.1.9) is satisfied for some j ≤ N . If yes, propose to update si using a MH

update. If this proposed step is accepted, perform the change, otherwise keep the same

value for si.

(b) If, on the other hand, (1.1.9) is not satisfied for any j ≤ N , simulate a pair (VN+1, θ
∗
N+1)

from its prior distribution. Calculate wN+1 = VN+1

∏

m≤N(1−Vm), set N = N +1 and

go Step (3a).

4. Set N = max {s}.

5. Update M from its full conditional distribution, having first marginalised over the pairs

(wj , θ
∗
j ) not associated with any observation.

The above full conditional distributions are simple expressions and can be seen in Proposition 1 of

Papaspiliopoulos and Roberts (2008). Notice also that, without the marginalisation mentioned in

the update of M , one will not be able to perform this step, as the number of unused pairs is infinite.

Another method of overcoming the infinite number of parameters appearing in the stick-

breaking representation of some RPMs (for example, those following a DP) without confronting to

any approximation is the slice sampler, as demonstrated in Walker (2007). Consider, for example,

Model (1.1.10), with the same simplifications mentioned above. Using (1.1.3), it is straightforward

to see that the conditional likelihood of each data Yi will be

f(Yi|w,θ∗) =

∞∑

j=1

wjf(Yi; θ
∗
j ). (1.1.11)

By introducing a latent parameter ui, (1.1.11) can be written as:

f(Yi, ui|w,θ∗) =

∞∑

j=1

1(ui<wj)f(Yi; θ
∗
j ). (1.1.12)

By integrating out ui we get (1.1.11), whereas this expression can be used to derive the full con-

ditional distribution of each ui (a uniform distribution on (0, wj), where j is the cluster associated

14



with observation Yi), when those parameters are embedded at the parametric space of our model.

On the other hand, given these ui’s, the model will now have only a finite number of parameters,

therefore allowing for exact simulation from their full conditional distributions. As for the unused

pairs of (wj , θ
∗
j ), they need not be considered in the MCMC algorithm, as they can be integrated

out. More details are given in Walker (2007).

1.1.3 The normalised inverse-Gaussian process

The normalised inverse-Gaussian process (N-IGP) seems to be a very good alternative to the Dirichlet

process. It was introduced by Lijoi et al. (2005), similarly to the way Ferguson (1973) introduces the

DP. One possible definition makes use of the normalised inverse-Gaussian distribution in the same

way the Dirichlet distribution is used in the DP:

Definition 6. A random variable X is said to have the inverse-Gaussian distribution with shape

parameter α ≥ 0 and scale parameter γ > 0, symbolically X ∼ IG(α, γ), if its density with respect

to the Lebesque measure is the following:

fX(x) =
α√
2π
x−3/2 exp

[

−1

2

(
α2

x
+ γ2x

)

+ γα

]

, x ≥ 0, for α > 0

and X = 0 almost surely for α = 0.

In the following assume, without loss of generality, that γ = 1 (since it is a scale parameter).

Definition 7. Let X1, X2, . . . , Xn be independent random variables with Xi ∼ IG(αi, 1), i =

1, 2, . . . , n, with all αi > 0. Then, the random vectorW = (W1,W2, . . . ,Wn), where Wi = Xi∑
n
j=1Xj

, i =

1, 2, . . . , n is said to follow a normalised inverse-Gaussian distribution with parameters α1, α2, . . . , αn.

Symbolically, W ∼ N-IG (α1, α2, . . . , αn).

Another way to define the N-IG distribution is using the derived probability density function. More

specifically, if W = (W1,W2, . . . ,Wn) ∼ N-IG (α1, α2, . . . , αn), its pdf will be:

fW (w) =
e
∑n

i=1 αi
∏n
i=1 αi

2n/2−1πn/2
K−n/2

(√

An(w1, . . . , wn)
)(

w
3/2
1 w

3/2
2 · · ·w3/2

n [An(w1, . . . , wn)]
n/4
)−1

where An(w1, . . . , wn) =
∑n
i=1

α2
i

wi
and K denotes the modified Bessel function of the third type.

Definition 8. A random probability measure F is said to follow a normalised inverse-Gaussian pro-

cess with parameters M and H0 if for any partition (A1, A2, . . . , Ak) of the probability space Ω, such

that all Ai ∈ F , the σ−algebra of Ω, the vector of random probabilities (F (A1), F (A2), . . . , F (Ak))
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follows a normalised inverse-Gaussian distribution with parameters MH0(A1),MH0(A2), . . . ,MH0(Ak).

Symbolically:

F ∼ N-IGP(M,H0)
def⇔ ∀ partition (A1, A2, . . . , Ak) of Ω, A1, A2, . . . , Ak ∈ F ,

(F (A1), F (A2), . . . , F (Ak)) ∼ N-IG (MH0(A1),MH0(A2), . . . ,MH0(Ak)) .

In the original definition of Lijoi et al. (2005), instead of M and H0 there is only a nun-null finite

measure α. For M = α(Ω) > 0 and H0(·) = α(·)
α(Ω) , we can see that this is just a reparametrisation.

In the same article, the authors use Proposition 3.9.2 of Regazzini (2001), in order to show that the

N-IGP is well defined.

The N-IGP has many similarities with the DP. The first obvious one is the parametrisation.

Again, there is a distribution, H0 and a positive scalar, M , and by studying the expressions of the

expectation and variance of any realisation of the N-IGP, one will see that those two parameters

have the same intuitive interpretation as the corresponding parameters of the DP. More specifically,

if F ∼ N-IGP(M,H0), we have:

∀ B ∈ F , E (F (B)) = H0(B) and Var (F (B)) = H0(B) (1 −H0(B))M2eMΓ(−2,M)

where Γ(a, x) =
∫∞
x e−tta−1dt is the incomplete gamma function. As before, H0 can be seen as the

centre of the process and M as a measure of our belief in this centre. Another common property of

the N-IGP and the DP is the almost sure discreteness of their realisations. This can be a problem

when modelling continuous data, but again this can be resolved using mixtures of N-IG processes,

as in the case of MDPs.

It is also worth mentioning that the N-IGP and the DP are the only known processes whose finite

dimensional distributions are known explicitly.

The Pólya-urn representation of the N-IGP is also known. The structure is similar to the

expression for the DP, with more complicated expressions for the weights:

Given data θ1, θ2, . . . , θn from F ∼ N-IGP(M,H0),

∀ A ∈ F , P (θn+1 ∈ A|θ1, θ2, . . . , θn) = w0H0(A) + w1

K∑

j=1

(

nj −
1

2

)

δθ∗j (A)

where θ∗j , j = 1, 2, . . . ,K are the discrete values of θ1, θ2, . . . , θn, K is the number of those discrete

values, nj = #{θi = θ∗j }, j = 1, 2, . . . ,K is the number of θi’s that are equal to the discrete value

θ∗j ,

w0 =

∑n
r=0




n

r




(
−M2

)1−r
Γ (K + 1 + 2r − 2n,M)

2n
∑n−1
r=0




n− 1

r



 (−M2)
−r

Γ (K + 2 + 2r − 2n,M)
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and

w1 =

∑n
r=0




n

r



 (−M2)1−rΓ(K + 2r − 2n,M)

n
∑n−1
r=0




n− 1

r



 (−M2)−rΓ(K + 2 + 2r − 2n,M)

.

As before, the Chinese restaurant representation has a simple form. More specifically, using the

same notation as above, together with the indicators si, s2, . . . , sn, where si = j ⇔ θi = θ∗j , the

posterior probabilities for the assignment of a new value θn+1 are as follows:

P (sn+1 = j) =







w1(nj − 1/2) , j = 1, 2, . . . ,K

w0 , j = K + 1.

As Lijoi et al. (2005) discuss, the specific structure of the weights seems more sensible than the

one of the DP, since this one also takes into account the total number of ties in the sample. The

mechanism also indicates more elaborate allocation of weights in the clusters θ∗j ’s and, according

to the authors, is more aggressive in detecting or reducing clusters for the data. They also discuss

that, in general, the N-IGP is less informative than the DP prior.

On the other hand, unlike the DP, the stick-breaking representation for the N-IGP is not yet known,

nor is this process conjugate.

Finally, note that the computational implementation for the models using the N-IGP is straight-

forward, and very similar to the corresponding models which use the DP. The process can again be

integrated out, using its Pólya-urn representation.

1.2 Combining Inference

1.2.1 Literature review

Assume now that we want to model dependent data, denoted by Y ’s here. This dependence can be

introduced in a variety of ways.

A first way to model such data is using mixture models. In general, mixture models are used in

cases where we assign each mixture component to represent a different subgroup in a heterogenous

population or as parsimonious models for flexible density estimation. In the Bayesian context two

such models are given in Richardson and Green (1998) and Fernández and Green (2002). In the

former the authors propose the mixture model p(Yi|K,w,λ) =
∑K
j=1 wjf(Yi|λj), i = 1, 2, . . . , n,

where Yi, i = 1, 2, . . . , n are the data and w and λ denote the vectors of all weights and component-

specific parameters λj , respectively. They also assume that the number of mixture components, K,
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is also allowed to vary. In the latter, the proposed mixture model for spatial data is p(Yi|K,w,λ) =
∑K

j=1 wjif(Yi|λj), i = 1, 2, . . . , n, where Yi, i = 1, 2, . . . , n are the data and w and λ denote

the vectors of all weights and component-specific parameters λj , respectively. Spatial correlation

is captured through the prior of the weights, and the authors propose two alternative choices for

this prior: the logistic normal and the group continuous model. Again, the number of mixture

components is considered random, so reversible jump MCMC (RJMCMC) methods (Green, 1995)

are used in both models to simulate from the posterior distribution of all parameters of interest.

Apart from mixture models, dependence between data can also be introduced in a variety of

ways, even within only the Bayesian nonparametric context. These models can be especially useful

when we want to model some data (and the type of dependence among them) in a flexible way. The

various models will be demonstrated using the DP as the distribution of the random distributions.

A first way of introducing dependence in the DP-distributed underlying distributions of the

data, given covariates x (say, Fx’s) is through their stick-breaking representation (1.1.3). More

specifically, MacEachern (1999) introduces the Dependent Dirichlet process, where it is assumed

that the weights wi,x and/or the atoms θ∗i,x depend on covariates x and are thought to follow a

stochastic process across the correlated Fx’s (i.e. across the values of x, for each i = 1, 2, . . .). On

the other hand, the vector of weights is assumed independent from the vector of atoms in each Fx

(i.e. for each x). Griffin and Steel (2006), on the other hand, again use covariates, and assume that

the random variables Vi creating the weights in (1.1.3) depend on these covariates. Dependence is

now introduced through the ordering of the covariates. They call this construction the order-based

dependent Dirichlet process. Dunson and Park (2008) construct the so-called kernel stick-breaking

prior, where they assume that, at each covariate value x, Fx has a stick-breaking prior with atoms

being RPMs (for example, DP-distributed) and Vi,x is the product of a beta-distributed random

variable and of a covariate-dependent kernel values at random locations. Finally, note that the

methods introduced in the last three articles can be naturally extended to other stick-breaking

priors.

All the models presented above introduce dependence through the dependence of some covari-

ates. Another way would be to impute this dependence through the dependence of some hyper-

parameters in the random distributions of the data. In this PhD thesis, however, another form of

dependent data will be considered. More specifically, I will deal with grouped data, i.e. data that

are clustered in distinct (usually few) categories. A natural way to model grouped data is to assume

that the data are clustered in a few categories and that in each of this categories to assume a random

underlying distribution. Dependence can then be introduced in those RPMs. As a first example,
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consider the following structure:

Yji ∼ F ∗
j (Yji), i = 1, 2, . . . , nj , j = 1, 2, . . . , J

F ∗
j ∼ DP(M,H0,j), where H0,j ≡ f(λj), j = 1, 2, . . . , J

(λ1, λ2, . . . , λJ) ∼ p(λ1, λ2, . . . , λJ )

and the hyperparameters λ1, λ2, . . . , λJ are assumed a priori not independent. This model is called

a Product of Dirichlet Processes (PDP) and was introduced by Cifarelli and Regazzini (1978). In

this model, as well as the hierarchical Dirichlet process presented below, the discrete nature of the

realisations of the DP results in the grouping of the data Yji, i = 1, 2, . . . , nj , for each j = 1, 2, . . . , J.

Apart from the clustering, dependence among the data is also introduced through the dependence

of the correlated distributions F ∗
j , due to the dependent structure of their hyperparameters λj , j =

1, 2, . . . , J .

Teh et al. (2006) proposed a model called Hierarchical Dirichlet process, where it is assumed

that all the RPMs follow the same DP prior and the base distribution of the latter is again modelled

through a DP:

Yji ∼ F ∗
j (Yji), i = 1, 2, . . . , nj , j = 1, 2, . . . , J

F ∗
j ∼ DP(M,H), i = 1, 2, . . . , J

H ∼ DP(M0, H0).

Another method of modelling grouped data is to assume that within each data set the data are iden-

tically distributed and independent from a random distribution F ∗
j , j = 1, 2, . . . , J, and additionally

assume that each correlated random distribution F ∗
j consists of a common part shared by all of the

F ∗
j ’s, F0, and an idiosyncratic part, Fj . A general model of the last form was given by Müller et al.

(2004).

1.2.2 The model of Müller et al. (2004)

Assume that there are J data sets Yji, i = 1, 2, . . . , Nj , j = 1, 2, . . . , J , each from a distribution F ∗
j .

If we can assume that each of the distributions F ∗
j ’s consists of a common part, shared by all of

them, and an idiosyncratic part, the model of Müller et al. (2004) can be used:

Yji ∼ f(Yji; θji,ψ), i = 1, 2, . . . , Nj, j = 1, 2, . . . , J

θji ∼ F ∗
j , where F ∗

j = εF0 + (1 − ε)Fj , j = 1, 2, . . . , J

Fj
ind∼ DP(Mj , H(λ)), j = 0, 1, 2, . . . , J (1.2.13)
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π(ε) = π0δ0(ε) + π1δ1(ε) + (1 − π0 − π1)Be(aε, bε)

M0,M1,M2, . . . ,MJ
iid∼ Ga(a0, b0), ψ ∼ π(ψ), λ ∼ π(λ)

where 0 ≤ π0 < 1, 0 ≤ π1 < 1−π0 and the rest are as defined before. The vector λ is used to denote

the vector of unknown parameters of the base distribution H , and ψ any additional parameters in

the likelihood f .

The component distributions F0, F1, F2, . . . , FJ are assigned independent Dirichlet process prior, re-

sulting in a flexible model, even though the base distribution is common in all and what distinguishes

their prior distributions are the concentration parameters Mj, j = 0, 1, . . . , J . The concentration

parameters are themselves given a gamma prior distribution, as is often the case in the literature.

Dependence among the random distributions F ∗
j ’s is introduced by the common part F0 and

the common weight assigned to this common part, ε. This weight can also be seen as the level of

borrowing strength across the different distributions. The model assigns a quite general prior for

this weight, giving positive probability to the extreme events ε = 0 and ε = 1. The former case

corresponds to the event that the correlated distributions have no common part (and therefore,

they are not actually correlated!) and the latter corresponds to the case when all the distributions

are the same. Note also that the fact that there is a single weight in all distributions F ∗
j ’s is not

as restrictive as it looks, because of the flexible prior distribution of F0, F1, . . . , FJ . In cases where

two different allocations for ε and the component distributions F0, Fj , j = 1, 2, . . . , J fit the data

equally well, then the Bayesian approach will tend to favor the most parsimonious model over the

more complicated one, i.e. the model with less parameters. This is a direct implementation of

Ockham’s razor (Jefferys and Berger, 1992) in posterior inference and, as Müller et al. (2004) argue,

it can be justified by the fact that, in the more complicated model, the (roughly the same) prior

probability must be distributed over a larger number of parameters, and therefore the marginal

probabilities will be smaller.

Computational implementation of Model (1.2.13) can be achieved again using MCMC methods.

In fact, one can take the algorithm developed for the simple MDP model and just change a few

things. The basic difference (apart from the obvious updating of parameters not present in the

MDP model, for example, ε) will be the use of a second set of binary indicators, say rji, i =

1, 2, . . . , nj, j = 1, 2, . . . , J , denoting if a specific θji belongs to the common part F0 (if rji = 0)

or to the idiosyncratic part Fj (if rji = 1). Using these indicators, together with the indicators

sji, i = 1, 2, . . . , nj , j = 1, 2, . . . , J , which will denote the specific cluster (now within F0 or Fj ,

according to the value of the related rji), θji, i = 1, 2, . . . , nj , j = 1, 2, . . . , J can be reparameterised

to rji, sji, i = 1, 2, . . . , nj , j = 1, 2, . . . , J and θ∗ji, i = 1, 2, . . . ,Kj, j = 0, 1, 2, . . . , J , where Kj is

the number of the discrete values θ∗ji, j = 0, 1, 2, . . . , J within component distribution F0, F1, . . . , FJ
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respectively. As before, updating those discrete values can increase the efficacy of the algorithm. As

for posterior inference, the basic quantities of interest will be the predictive distributions for each

data set, p(Yj,nj+1|Yj,1, . . . , Yj,nj ), j = 1, 2, . . . , J , the corresponding predictive distributions in the

common and the idiosyncratic component distributions and the posterior distributions of the Mj’s

and ε. As an illustration of the above, consider the model of Müller et al. (2004) for the case of

normal likelihood and normal base distribution for two correlated distributions:

Yji ∼ N(µji, S), i = 1, 2, . . . , Nj, j = 1, 2

µji ∼ F ∗
j , where F ∗

j = εF0 + (1 − ε)Fj , j = 1, 2

F0 ∼ DP(M0, H), Fj
ind∼ DP(Mj , H), for H ≡ N(m,B)

π(ε) = π0δ0(ε) + π1δ1(ε) + (1 − π0 − π1)Be(aε, bε) (1.2.14)

M0,M1,M2
iid∼ Ga(a0, b0), S ∼ IGa(q, 1/qR)

(m,B) ∼ N(m0, A) × IGa(c, 1/cC)

where IGa(a, b) denotes the inverse gamma distribution with with shape parameter a and scale

parameter b and N(µ, σ2) denotes the normal distribution with mean µ and variance σ2, as defined

below.

Definition 9. A random variable X is said to follow an inverse gamma (IGa) distribution with

parameters α > 0 and β > 0, denoted IGa(α, β), if its density with respect to the Lebesque measure

is:

fX(x) =
βα

Γ(α)
x−(α+1) exp{−β/x}, x > 0.

The mean of this distribution is β
α−1 , if α > 1 and the variance is β2

(α−1)2(α−2) , if α > 2. It also

holds that, if X ∼ IGa(α, β), then 1/X ∼ Ga(α, 1/β).

Definition 10. A random variable X is said to follow a normal distribution with parameters µ ∈
IR and σ2 > 0,, denoted by N(µ, σ2), if its density with respect to the Lebesque measure is:

fX(x) =
1

σ
√

2π
exp

{−(x− µ)2

2σ2

}

, x ∈ IR.

The joint posterior distribution of all parameters, using the parametrisation of the discrete values

(say, φji here) and the indicators, will be the following:

f(s, r,φ, ε,m,B, S,M0,M1,M2|Y) ∝
∏

j,i

f(Yji|rji, sji,φ, S)f(m)f(B)f(M0,M1,M2)f(S)f(ε)

×
∏

j,i

f(φji|m,B)
∏

j,i

f(rji|ε)f(s|r,M0,M1,M2)
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where the bold letters denote the vector of all parameters indicated (for example, s denotes all the

indicator variables sji, i = 1, 2, . . . , Nj, j = 1, 2 and Y denotes all the data).

The full conditional distribution of each parameter (i.e. the distribution given all the other param-

eters) is as follows:

• m| · · · ∼ N(
m0B+A

∑

j,i φji

AK+B , AB
AK+B ),

where K = K0+K1+K2 is the total number of discrete values in all component distributions.

• B| · · · ∼ IGa(c+K/2, 1/cC + 1/2
∑

j,i(φji −m)2).

• S| · · · ∼ IGa(q +N/2, 1/qR+ 1/2
∑

j,i(Yji − µji)
2), where N = N1 +N2.

• ε| · · · ∝







0 , w.p. π01(
∑
rji=N)

1 , w.p. π11(
∑
rji=0)

Be(aε +N −∑ rji, bε +
∑
rji) , w.p. (1 − π0 − π1)B(aε +N −∑ rji, bε +

∑
rji)/B(aε, bε).

• f(M0| · · · ) ∝Ma0+K0−1
0 e−M0b0 Γ(M0)

Γ(M0+n0) ,

f(M1| · · · ) ∝Ma0+K1−1
1 e−M1b0 Γ(M1)

Γ(M1+n1) and

f(M2| · · · ) ∝Ma0+K2−1
2 e−M2b0 Γ(M2)

Γ(M2+n2) ,

where nj is the number of data allocated to component distribution Fj , j = 0, 1, 2.

• φ0l| · · · ∼ N(
mS+B

∑

j,i:rji=0,sji=l Yji

S+Bn0l
, SB
S+Bn0l

), l = 1, 2, . . . ,K0 and

φjl| · · · ∼ N(
mS+B

∑

i:rji=1,sji=l Yji

S+Bnjl
, SB
S+Bnjl

), l = 1, 2, · · · ,Kj, j = 1, 2,

where nji is the number of data allocated to the i-th cluster of component distribution Fj , i =

1, 2, . . . ,Kj, j = 0, 1, 2.

• f(s, r| · · · ) ∝∏j,i f(Yji|rji, sji,φ, S)f(r|ε)f(s|r,M0,M1,M2)

⇒ P (sji = h, rji = l| · · · ) =







πjh , h = 1, 2, . . . ,Kj, l = 1

π0h , h = 1, 2, . . . ,K0, l = 0

π∗
j , h = Kj + 1, l = 1

π∗
0 , h = K0 + 1, l = 0

, i = 1, . . . , Nj , j = 1, 2

where πjh ∝ (1 − ε)ϕ(Yji;φjh, S)n−
jh/(Mj + n−

j ), π0h ∝ εϕ(Yji;φ0h, S)n−
0h/(M0 + n−

0 ),

π∗
j ∝ (1− ε)ϕ(Yji;m,S+B)Mj/(Mj +n−

j ), and π∗
0 ∝ εϕ(Yji;m,S+B)M0/(M0 +n−

0 ), where

the superscript − means that the corresponding quantity is taken without counting the quan-

tity associated with the (ji) point, ϕ is the pdf of the normal distribution and the above

probabilities are all proportional to the same constant, which is such that the probabilities

sum up to 1. Finally, note that in the last two cases for (sji, rji| · · · ), a new value should be

created. This is a draw from N(
BYji+mS
B+S , BS

B+S ).
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We can directly simulate from all the above full conditional distributions, except from the ones of

the precision parameters M0,M1 and M2. On the other hand, for each of those three parameters

the simple trick explained in Escobar and West (1995) can be applied.

Finally, the predictive distributions for the two data sets are as follows:

p(Yj,Nj+1|Y) = ε
M0

M0 + n0
N(m,B + S) + ε

1

M0 + n0

K0∑

d=1

n0dN(φ0d, S)

+ (1 − ε)
Mj

Mj + nj
N(m,B + S) + (1 − ε)

1

Mj + nj

Kj∑

d=1

njdN(φjd, S), j = 1, 2.

To sum up, the model introduced by Müller et al. (2004) is a very general model for correlated

distributions which have a common and an idiosyncratic part. As a nonparametric mixture model,

it is a very flexible model, although the weight of the common part is the same a priori for all the

correlated distributions. It is also easily implemented using MCMC methods and its clear structure

allows for direct posterior inference of the parameters of interest. On the other hand, the fact that

there is a common weight ε and the same base distribution H does not seem very sensible and it

might be worth considering indexing either or both of them by j.

1.2.3 Normalising random measures

It is well known that, under mild conditions, one can construct random probability measures by

normalising other random measures (see, for example, James et al., 2005). This class of measures is

called normalised random measures (NRMs) and is a particularly rich one. Apart from the Dirichlet

process (Ferguson, 1973), it also contains the N-IGP (a normalised inverse-Gaussian process, see for

example Lijoi et al., 2005) and the Pitman-Yor process. As an example, consider the normalisation

of the gamma Process:

Definition 11. Let Ω denote a probability space and F the σ−algebra of Ω. It is said that a random

measure G follows a Gamma process (ΓP) with parameters M and H0, where M > 0 and H0 is

a probability measure iff for any partition A = {A1, A2, . . . , Ak} of Ω, such that all Ai ∈ F , the

random probabilities G(A1), G(A2), . . . , G(Ak) are mutually independent and each G(Ai) follows a

gamma distribution with shape parameter MH0(Ai) and scale parameter 1.

Ferguson (1973) defined the Dirichlet process by:

F ∼ DP(M,H) ⇔ ∀ B ∈ F , F (B) =
G(B)

G(Ω)
=

G(B)

G(B) +G(Bc)
, where G ∼ ΓP(M,H).

Bc denotes the compliment set of B, and the denominator of the expression on the right highlights

the dependence of G(B) and G(Ω), since they come from the same process. We also note that the
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parameters of the DP, i.e. the concentration parameter M and the base distribution H are the same

as the equivalent parameters of the underlying ΓP.

The basic idea is that one can exploit the infinite divisibility of some random measure, in order to

create (by normalising this measure) random probability measures that have the same distribution,

but are not independent. This idea will be demonstrated in Section 2.1.1.

1.3 My Contribution

My contribution to Bayesian nonparametric modelling consists of proposing a new, general method

of constructing models with dependent random distributions for grouped data. Two examples of

these models for modelling data from two different groups are given. Generalisations for more than

two correlated groups for these models, as well as for the model proposed in Müller et al. (2004),

are also investigated. These models are also embedded in the stochastic frontier setting and used

to construct a model for the efficiency of firms. In implementing the proposed models, I observed

some problems in mixing, so an additional split-merge step in the MCMC algorithms is proposed.

This algorithm is seen to improve mixing of the chains and can also be used in a variety of models.

Apart from my contribution to nonparametric models, I also propose models for parametric

inference. More specifically, I introduce a general class of n-dimensional distributions, which includes

the Dirichlet and the inverse-Gaussian distribution as special cases. The general formulae for the

moments and cross-moments for this class of distributions are also derived (Mathematica codes for

these expressions will be soon made available on the web). I apply this distribution to the underlying

probabilities of success for binomial data and use the derived structure to model overdispersed count

data.

1.4 Outline

This PhD thesis will proceed as follows: In Section 2 I describe a general class of models with depen-

dent random distributions, as well as a new way of constructing such models. This is demonstrated

by constructing two models in the two-dimensional case. The intuition and the theoretical proper-

ties of the derived models are discussed and I give some general ideas and concepts for generalising

those models, as well as the model of Müller et al. (2004) in higher dimensions (higher number of

dependent random distributions). The computational implementation of the models presented in

this section are described in Section 3, with an illustration of the related algorithms using three sim-

ulated data sets. In Section 4 some models are applied to real-life data. At first my basic proposed
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model and the model of Müller et al. (2004) are applied to financial data. Next, I embed those two

models, together with a modification of my model (N-IGP priors for the RPMs in each component,

instead of DP priors) to the stochastic frontier (SF) setting. Finally, the three models are applied

to hospital cost frontier data. In Chapter 5 a general class of n-dimensional distribution in the unit

simplex is proposed. Some theoretical properties of this class of distributions are discussed and the

formula for its moments is derived. I then consider the univariate version of this distribution as the

underlying distribution of the probability of success of binomial data. The derived model can be

then used to model overdispersed count data. Finally, this model is applied to both simulated and

real data (mice fetal mortality data) and the results for the mice data are compared to the results

of other models in the literature. In Chapter 6 I provide a summary of what was done in this thesis,

as well as possible future directions.
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Chapter 2

A General Class of Models for

Correlated Distributions

In this section I consider a general class of models for pairs of correlated distributions. I focus on

two of those models, which I will be mainly using in the rest of the thesis. Some more general models

are also considered, which incorporate a higher number of dependent distributions.

2.1 The Models For Two Correlated Distributions

As mentioned in the introduction, a common way of inducing dependence between data from different

studies is to assume that their underlying distributions are correlated. In order to add extra flexibility

to these models, it also assumed that those distributions are random, therefore creating a Bayesian

nonparametric model.

In the simplest case of two correlated random distributions, say F ∗
1 and F ∗

2 , a general model

of this type is the following:

F ∗
1 = ε1F0 + (1 − ε1)F1

F ∗
2 = ε2F0 + (1 − ε2)F2

where F0, F1 and F2 are independent random probability measures and ε1, ε2 are random variables

in the unit interval. In this structure F0 can be seen as the common part shared by F ∗
1 and F ∗

2 ,

whereas F1 and F2 can be interpreted as idiosyncratic parts. The two correlated distributions can

then be naturally embedded at an intermediate level of a larger hierarchical model. If the DP is

assigned as the prior distribution of F0, F1 and F2, the discreteness of its realisations can be overcome
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by assuming that the data follow a continuous distribution f with some of its parameters following

F ∗
1 and F ∗

2 :

Yji ∼ f(Yji; θji,ψ), i = 1, 2, . . . , Nj , j = 1, 2

θji ∼ F ∗
j , where F ∗

j = εjF0 + (1 − εj)Fj , j = 1, 2

Fj ∼ DP(Mj , H(λ)), j = 0, 1, 2 (2.1.1)

εj ∼ π(εj), j = 1, 2

Mj
ind∼ π(Mj), j = 0, 1, 2, ψ ∼ π(ψ), λ ∼ π(λ).

In the above, Yji are data from two different groups of sizes N1 and N2, θji are the parameters to

be flexibly modelled using nonparametric, correlated distributions and ψ are (potential) additional

parameters in the distribution of the data. Different concentration parameters for the three DPs

are assumed, but the same centering distribution, H , with some parameters λ. In this way, the two

distributions F ∗
1 and F ∗

2 share information, not only through F0, but also through the common base

distribution H , and their common parameter λ.

It can be easily seen that the model of Müller et al. (2004) for J = 2 is a special case of Model

(2.1.1), where ε1 = ε2, and a certain prior distribution is given to the common weight. On the other

hand, the form of the above model offers other attractive options.

One such option is to have two concentration parameters, by setting M1 = M2, and a common

weight ε, but with a Be(M0,M1) prior. In this way, F ∗
1 and F ∗

2 are identically, a priori Dirichlet

Process-distributed:

F ∗
1 , F

∗
2 ∼ DP(M0 +M1, H(λ)).

This will be shown in more details in Section 2.1.3.

In this case, borrowing strength between the dependent distributions is also achieved through the

common weight and the common concentration parameter for the idiosyncratic part, M1.

A question that arises naturally is whether having the prior for the weights depending on the

precision parameters of the DP followed by the random probability measures is sensible. In other

words, does the prior ε ∼ Be(M0,M1) make sense? At first sight, it might seem that the answer

is no. Also, one might argue that having the same base distribution H for all F0, F1 and F2 is not

sensible, either. However, the combination of those two seemingly peculiar facts might be explained

as follows: the proportion of information carried from the common part of F ∗
1 and F ∗

2 regarding the

common base distribution H should be positively associated with the proportion of this common

part in the models. This proportion can be expressed by M0

M0+M1
, since M0 and M1 are parameters

controlling how close we are to the base distribution (for example, if most observations come from
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the common part, then the base distribution should be “close” to this common part, so M0 should

be significantly larger than M1 and the ratio should be large). On the other hand, this proportion

of information of F0 to H must be also positively associated to the weight ε, since this is the weight

of F0 in both F ∗
1 and F ∗

2 . However, the prior mean of the weight is exactly the ratio M0

M0+M1
.

As a result, the prior distribution of ε, involving M0 and M1, together with having the same base

distribution for all F0, F1 and F2 can be justified.

A second interesting model of the form (2.1.1) could be one similar to the one above, with the

difference that now there are two weights, ε1 and ε2, which are identically distributed as Be(M0,M1)

a priori, but not independent. This model is constructed using the normalisation ideas of Section

1.2.3, i.e. using a different and quite general method, through which the prior distributions and

the correlation structures between the parameters are set. This method is described in the next

subsection where dependent and identically distributed Dirichlet processes are constructed.

2.1.1 The model via direct normalisation

Let Gi
ind∼ ΓP(Mi, H), i = 1, 2, . . . , k and M =

∑k
i=1Mi, and define G∗(B) =

∑k
i=1Gi(B),

∀ B ∈ F . Then,

G∗(·) ∼ ΓP(M,H). (2.1.2)

This property is called infinite divisibility and is inherited to the gamma process from the underlying

gamma distribution. It states that a gamma process (actually, any realisation of it) can be divided

in as many (other) gamma processes as one wants:

Definition 12. A distribution F is called infinite divisible if and only if ∀ n ∈ IN, ∃ a distribution

Fn such that F is equal to the convolution of n times Fn.

In other words, F is called infinitely divisible if and only if ∀ n ∈ IN, it can be represented as the

distribution of the sum Sn = X1,n +X2,n + · · · +Xn,n, where X1,n, X2,n, . . . , Xn,n are independent

random variables, each following the same distribution, say Fn.

By normalising G∗, it is found that F ∗(·) follows a Dirichlet process:

Let B ∈ F and F ∗ ∼ DP(M,H), Fi
ind∼ DP(Mi, H), i = 1, 2, . . . , k.
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Then,

F ∗(B) =
G∗(B)

G∗(Ω)

(2.1.2)
=

∑k
i=1Gi(B)

∑k
j=1Gj(Ω)

=

k∑

i=1

Gi(Ω)
∑k

j=1Gj(Ω)

Gi(B)

Gi(Ω)

=

k∑

i=1

εiFi(B), where εi =
Gi(Ω)

∑k
j=1Gj(Ω)

.

So, any DP with parameters M and H can be written as a weighted sum of k independent DPs

with the same base distribution H and precision parameters Mi, such that
∑k

i=1Mi = M. The

corresponding weights are given by εi = Gi(Ω)
∑k

j=1 Gj(Ω)
, depending only on the Mi (since each Gi(Ω) is

distributed as Ga(Mi, 1)). In fact, those weights follow a Dirichlet distribution:

(ε1, ε2, . . . , εk) ∼ Dir(M1,M2, . . . ,Mk). (2.1.3)

Let now F0 ∼ DP(M0, H), F1, F2 ∼ DP(M1, H). By normalising the underlying gamma process of

the sum of F0 and F1, we get:

F ∗
1 = ε1F0 + (1 − ε1)F1

where F ∗
1 now follows a DP(M0 + M1, H) and ε1 ∼ Be(M0,M1). Similarly, by normalising the

gamma processes corresponding to F0 and F2, we get:

F ∗
2 = ε2F0 + (1 − ε2)F2

where F ∗
2 follows also a DP(M0 +M1, H) and ε2 ∼ Be(M0,M1).

So, F ∗
1 and F ∗

2 are identically DP-distributed, but obviously not independent, due to the common

part F0. The same holds for the two weights, which are both beta-distributed, but are not inde-

pendent. In fact, notice that ε1 = G0(Ω)
G0(Ω)+G1(Ω) and ε2 = G0(Ω)

G0(Ω)+G2(Ω) and their joint distribution

is:

fε1,ε2(ε1, ε2) =
Γ(M0 + 2M1)

Γ(M0)[Γ(M1)]2
εM0+M1−1
1 (1 − ε1)

M1−1εM0+M1−1
2 (1 − ε2)

M1−1

(ε1 + ε2 − ε1ε2)M0+2M1
, 0 < ε1, ε2 < 1.

Proof:

Let x1 = G0(Ω) ∼ Ga(M0, 1), x2 = G1(Ω) ∼ Ga(M1, 1) and x3 = G2(Ω) ∼ Ga(M2, 1). Consider

now the reparametrised vector (ε1, ε2, y), where ε1 = x1

x1+x2
, ε2 = x1

x1+x3
, y = x1.

By applying the formula for the distribution of a transformed random vector, and then integrate

out y, we arrive at the above result. �
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Finally, it is also worth mentioning that by repeating the same procedure as above, but now with

normalising an inverse-Gaussian process (which is also infinite divisible), one can construct the

same model, but now with normalised inverse-Gaussian processes (Lijoi et al., 2005) as the priors

of F0, F1 and F2, as well as of F ∗
1 and F ∗

2 . In this case, the weights will have normalised inverse-

Gaussian distributions as priors, with parametersM0 and M1, where the latter are the concentration

parameters of the corresponding N-IGP priors of F0 and F1 (or F2).

2.1.2 The basic proposed model

The main model of consideration and comparison with the Müller et al. (2004) model is a simplified

version of the above model for the DP case, where a common weight ε is assumed. This simplification

allows for more direct sharing of information between the two distributions (since the weights now

are the same, and not just correlated). This sharing of information can be particularly useful in cases

of few observations from one or both dependent distributions. On the other hand, unless someone

is particularly interested in inferring the weights in both distributions, not much is lost by having

the same weight, because of the nonparametric, flexible modelling of F0, F1 and F2. Most of the

posterior mass for the weight will be assigned to the minimum of the weights creating the data and

a (usually small) proportion will be assigned to values very close to zero. In order to illustrate this,

consider the following example:

Example 1:

Y1i
iid∼ 7

10
N(1, 1) +

3

10
N(−10, 1), i = 1, 2, . . . , N1

Y2i
iid∼ 3

10
N(1, 1) +

7

10
N(8, 1), i = 1, 2, . . . , N2.

The dependent DPs, as described above, are used as the prior distribution of the distributions of the

means of the above normal distributions. In order to simulate from the posterior distributions of all

the parameters of interest, MCMC methods are used, which are discussed in the next section. For

now, I will focus on the implications of applying the basic proposed model to this type of data. The

data sizes used were N1 = N2 = 100. As can be seen from Figure 2.1, the posterior distribution of the

weight puts most of its mass on values around 0.3 (which is the minimum of 0.7 and 0.3). Under this

value for ε, F0 will be concentrated around the (correct) value 1 (the form of this posterior for F0 will

also depend on the base distribution H , but for simplicity let’s assume that this is a fairly smooth

and unimodal distribution, for example a normal distribution), F2 will be concentrated around 8

and F1 will be bimodal, with about 57% of the mass around 1 and the rest around -10:

For ε ≃ 0.3, F0 = N(1, 1), F1 =
4

7
N(1, 1) +

3

7
N(−10, 1) and F2 = N(8, 1).
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Figure 2.1: Kernel density estimate for the posterior of the weight ε for Model (2.1.4) for
the first simulated data set.

The above interpretation for F1 and F2 are derived after we take out the common part F0 from the

two dependent distributions F ∗
1 and F ∗

2 . This assignment of the parameters creates four distinct

clusters for the values of the means: one for each F0 and F2 and two for F1. On the other hand, any

value for the weight between 0 and 0.3 will produce a consistent assignment for F0, F1 and F2 (in

the sense that it locates correctly the mode of the common part, which is more crucial than locating

the idiosyncratic parts), but with five clusters of values: one of F0 and two for each Fj , j = 1, 2. The

special case ε = 0, where it is assumed that F ∗
1 and F ∗

2 have no common part is also an economic

option, as the number of clusters will only be four (two for each of F1, F2), and this is the reason

why there is also posterior mass there:

For ε ≃ 0, F0 = ∅, F1 =
7

10
N(1, 1) +

3

10
N(−10, 1) and F2 =

3

10
N(1, 1) +

7

10
N(8, 1).

where ∅ denotes the empty set.

The reason that the posterior mass around 0 is usually smaller than at 0.3 is that the latter correctly

discovers the common part and shares information more efficiently than in the former case, where

there is no sharing of information regarding F0. The other special case, ε = 1, where it is assumed

that F ∗
1 and F ∗

2 are the same is not a valid one, since the form of the data suggests that this is not

the case (if, on the other hand, the idiosyncratic distributions of the underlying distributions of the

data were close, there would be some posterior mass for ε close to 1). The same holds for other

values of the weight between 0.3 and 1. As a result of all the above, and as implied by the application

of Ockham’s razor, the posterior distribution for the weight will be mostly concentrated at 0.3, with

another mode around 0. It is also evident that, as the number of data increases, the posterior mass
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for ε at 0.3 will also increase. More details of the above and other concepts are presented in the

analysis of simulated data in Chapter 3.

By embedding my proposed model for J = 2 in a hierarchical setting, similar to the one in

Section 1.2.2 for the model of Müller et al. (2004), I get the following model:

Yji ∼ f(Yji; θji,ψ), i = 1, 2, . . . , Nj , j = 1, 2

θji ∼ F ∗
j , where F ∗

j = εF0 + (1 − ε)Fj , j = 1, 2

F0 ∼ DP(M0, H(λ)), F1, F2
iid∼ DP(M1, H(λ)) (2.1.4)

ε ∼ Be(M0,M1)

M0,M1
iid∼ Ga(a0, b0), ψ ∼ π(ψ), λ ∼ π(λ).

Of course, other options for the priors of the concentration parameters are also available. Alterna-

tively, one can also use the alternative pair of x = M0 +M1 and y = M0

M0+M1
. In this setting y can

be interpreted as the prior expectation of the weight ε and x as a precision parameter of it (since

Var(ε) = y(1−y)
x+1 ). Based on the results of Theorem (2.1.1), y can also be interpreted as the prior

correlation between F ∗
1 (A) and F ∗

2 (A) and x as a precision parameter of the prior distributions of

F ∗
1 (A) and F ∗

2 (A). This reparametrisation is helpful when we have some prior beliefs about those

two quantities, x and y, and so it is more reasonable to model them, instead of M0 and M1. For

example, a U(0, 1) prior for y and a Ga(λ1, λ2) for x, for some hyperparameters λ1, λ2 > 0 can be

used.

Properties of the proposed model

The proposed model has some very nice properties, both theoretical and computational, most of

them a direct consequence of the way it was constructed. In this part the theoretical properties will

be presented, whereas the computational implementation of the model is discussed in Chapter 3.

The marginal distributions of F ∗
1 and F ∗

2 are DP-distributed, because of the prior of the weight

(which was inspired by the prior of the weights in the model via direct normalisation):

F ∗
1 (·), F ∗

2 (·) iid∼ DP(M0 +M1, H). (2.1.5)
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Proof of (2.1.5):

LEt A ∈ F . For F ∗
1 (A), we have that:

F ∗
1 (A) = εF0(A) + (1 − ε)F1(A)

=
a

a+ b

G0(A)

G0(Ω)
+

b

a+ b

G1(A)

G1(Ω)
, where a ∼ Ga(M0, 1), b ∼ Ga(M1, 1)

d
=

G0(A) +G1(A)

a+ b
, since also G0(Ω) ∼ Ga(M0, 1), G1(Ω) ∼ Ga(M1, 1)

d
=

G0(A) +G1(A)

(G0 +G1)(Ω)
, since (G0 +G1)(Ω)

d
= a+ b

∼ DP(M0 +M1, H(A))

In the above,
d
= denotes equality in distribution.

The same procedure can be used for F ∗
2 (A). �

Next, using the distributions of F ∗
1 , F

∗
2 , F0, F1, F2 and ε and the (conditional on M0,M1) indepen-

dence of ε with the Fj , j = 0, 1, 2, it is straightforward to derive the following moment results:

Theorem 2.1.1. Let Ω denote a probability space and F to be the σ−algebra of Ω. Let also F ∗
j =

εF0 + (1 − ε)Fj , j = 1, 2, F0 ∼ DP(M0, H), F1, F2
iid∼ DP(M1, H) and ε ∼ Be(M0,M1)

Then, ∀ A ∈ F ,
E(F ∗

1 (A)) = E(F ∗
2 (A)) = H(A)

Var(F ∗
1 (A)) = Var(F ∗

2 (A)) =
H(A)[1 −H(A)]

M0 +M1 + 1

Corr(F ∗
1 (A), F ∗

2 (A)) =
M0

M0 +M1
.

Proof:

The first two expressions are a direct result of the fact that both F ∗
1 and F ∗

2 are distributed as

DP(M0 +M1, H).

For the last expression, I first obtain the covariance between the two:

Cov(F ∗
1 (A), F ∗

2 (A)) = Cov(εF0(A) + (1 − ε)F1(A), εF0(A) + (1 − ε)F2(A))

= Var(εF0(A)) + Cov(εF0(A), (1 − ε)F2(A))

+Cov((1 − ε)F1(A), εF0(A)) + Cov((1 − ε)F1(A), (1 − ε)F2(A))

= Var(εF0(A)) + 2Cov(εF0(A), (1 − ε)F2(A)) + Cov((1 − ε)F1(A), (1 − ε)F2(A))

=
M0H(A)(1 −H(A))

(M0 +M1)(M0 +M1 + 1)
.
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In the above, I used the fact that F1 and F2 are identically distributed. For the calculations not

shown, the basic first two moments of Dirichlet and beta distribution were used, as well as the

independence of F0, F1, F2 and ε, for example:

Var(εF0(A)) = E(ε2F 2
0 (A)) − (E(εF0(A)))2 = E(ε2)E(F 2

0 (A)) − (E(ε))2(EF0(A))2.

Finally, by dividing the expression above with the product of the standard deviations of F ∗
1 (A) and

F ∗
2 (A), we get the desired expression. �

The last expression is actually a pleasant result, as it indicates that the correlation between two

realisations of F ∗
1 and F ∗

2 over the same set A do not depend on A itself. So, this expression can be

thought of as “the” correlation between F ∗
1 and F ∗

2 (although there is not actually a strict definition

of the correlation between two processes).

Next, the exchangeable product partition formula (EPPF), the Chinese restaurant and the

Pólya-urn representations for Model (2.1.4) are derived. In order to do this, I first introduce two

sets of indicators, rji and sji, i = 1, 2, . . . , Nj , j = 1, 2, where N1 and N2 are the data sizes from

the two studies. The rji are binary indicators, taking values 0 and 1, depending on whether the

underlying parameter θji, associated with the (j, i)−th observation belongs to the common part or

to the idiosyncratic part:

rji =







0 , if θji ∈ F0

1 , if θji ∈ Fj ,

for i = 1, 2, . . . , Nj, j = 1, 2.

Then, the indicators sji assign each observation Yji (or, equivalently, the underlying θji) to one of

the discrete clusters in each component distribution Fj , j = 0, 1, 2 (given the value of rji).

sji = k ⇔







θji = φ0k , if rji = 0

θji = φjk , if rji = 1

where φji, i = 1, 2, . . . ,Kj, j = 0, 1, 2 are the discrete values in each Fj and Kj is the corresponding

number of those clusters in use.

Notice that the indicators of the clusters make sense in this case, because of the discreteness of

F0, F1 and F2, and therefore there is a positive probability that any two observations within each of

them being equal.

Proposition 2.1.1. The EPPF for Model (2.1.4) is:

p(s, r|M) =
Γ(M0 +M1)

Γ(M0 +M1 +N)
MK0

0 MK1+K2
1

Γ(M1 + n1 + n2)Γ(M1)

Γ(M1 + n1)Γ(M1 + n2)

2∏

j=0

Kj∏

i=1

Γ(nj,i) (2.1.6)

where s denotes the vector of all sji, r is the vector of all rji, M = (M0,M1), N = N1 +N2 is the

total data size, Kj is the number of clusters in component distribution j, nj,i is the number of data
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allocated to the i-th cluster of component distribution Fj and nj =
∑Kj

i=1 nj,i is the number of data

allocated to component j ∈ {0, 1, 2}.

Proof:

The probability mass function of the indicator, given M0 and M1, and after having integrated out

the weight is:

p(s, r|M0,M1) =

∫ 1

0

p(s, r, ε|M)dε

=

∫ 1

0

p(s, r|ε,M)f(ε|M)dε

=

∫ 1

0

p(s|ε, r,M)p(r|ε)f(ε|M)dε

= p(s|r,M)

∫ 1

0

p(r|ε)f(ε|M)dε

= p(s|r,M)

∫ 1

0

εn0(1 − ε)n1+n2
Γ(M0 +M1)

Γ(M0)Γ(M1)
εM0−1(1 − ε)M1−1dε

= p(s|r,M)
Γ(M0 +M1)Γ(M0 + n0)Γ(M1 + n1 + n2)

Γ(M0)Γ(M1)Γ(M0 +M1 +N)
.

Using the independence of sji in the three components (given the indicators rji) and applying

expression (1.1.6) to each of them, the EPPF for Model (2.1.4) can be derived. �

This equation can now be used to derive the Chinese restaurant representations for this model:

Proposition 2.1.2. Assume that we have data from both F ∗
1 and F ∗

2 in model (2.1.4), with cor-

responding indicators c11, c12, . . . , c1N1 ∼ F ∗
1 , c21, c22, . . . , c2N2 ∼ F ∗

2 , where cji = (sji, rji) . The

Chinese restaurant representations will then be as follows:

P (s1,N1+1 = K0 + 1, r1,N1+1 = 0|D,M0,M1) = M0

M0+M1+N ,

P (s1,N1+1 = j, r1,N1+1 = 0|D,M0,M1) =
n0,j

M0+M1+N
, j = 1, 2, . . . ,K0,

P (s1,N1+1 = K1 + 1, r1,N1+1 = 1|D,M0,M1) = M1(M1+n1+n2)
(M1+n1)(M0+M1+N) ,

P (s1,N1+1 = j, r1,N1+1 = 1|D,M0,M1) =
n1,j(M1+n1+n2)

(M1+n1)(M0+M1+N) , j = 1, 2, . . . ,K1,

P (s2,N2+1 = K0 + 1, r2,N2+1 = 0|D,M0,M1) = M0

M0+M1+N ,

P (s2,N2+1 = j, r2,N2+1 = 0|D,M0,M1) =
n0,j

M0+M1+N
, j = 1, 2, . . . ,K0,

P (s2,N2+1 = K2 + 1, r2,N2+1 = 1|D,M0,M1) = M1(M1+n1+n2)
(M1+n2)(M0+M1+N) ,

P (s2,N2+1 = j, r2,N2+1 = 1|D,M0,M1) =
n2,j(M1+n1+n2)

(M1+n2)(M0+M1+N) , j = 1, 2, . . . ,K2,
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where D denotes the set of all data (c11, c12, . . . , c1N1 , c21, c22, . . . , c2N2) and the rest are as defined

in Proposition 2.1.1.

Proof:

Using the conditional probability formula, we get:

p(cnew|c11, c12, . . . , c1N1 , c21, c22, . . . , c2N2 ,M0,M1) =
p(cnew,c11,c12,...,c1N1 ,c21,c22,...,c2N2 ,M0,M1)

p(c11,c12,...,c1N1 ,c21,c22,...,c2N2 ,M0,M1)

(2.1.6)⇒ p(cnew|c11, c12, . . . , c1N1 , c21, c22, . . . , c2N2 ,M0,M1) = M
K′

0−K0

0 M
K′

1+K
′
2−K1−K2

1
Γ(M0+M1+N)

Γ(M0+M1+N+1)×

Γ(M1+n′
1+n′

2)Γ(M1+n1)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n′

1)Γ(M1+n′
2)

∏2
j=0

∏K′
j

i=1 Γ(n′
j,i)

∏2
j=0

∏Kj
i=1 Γ(nj,i)

.

where the superscript ′ denotes the corresponding quantities when the new allocation is included.

The rest follows immediately. �

Finally, the Pólya-urn representations for the same model can be now derived:

Proposition 2.1.3. Assume that we have data θ1,1, θ1,2, . . . , θ1,N1 from F ∗
1 and θ2,1, θ2,2, . . . , θ2,N2

from F ∗
2 . The Pólya-urn representations for Model (2.1.4) will be as follows:

∀ A ∈ F ,

P
(
θj,Nj+1 ∈ A|D

)
=

M0(M1 + nj) +M1(M1 + n1 + n2)

(M0 +M1 +N)(M1 + nj)
H0(A) +

1

M0 +M1 +N

K0∑

i=1

n0iδθ∗0i
(A)

+
M0 +M1 + nj

(M0 +M1 +N)(M1 + nj)

Kj∑

i=1

njiδθ∗ji
(A), j = 1.2.

where D denotes the set of all data, N = N1 +N2 is the total data size, θ∗ji are the discrete values

(clusters) of the data in component distribution Fj , Kj is the number of these discrete values in each

Fj , nj,i is the number of data allocated to the i-th cluster of Fj and nj =
∑Kj

i=1 nj,i is the number

of data allocated to Fj , j ∈ {0, 1, 2}.

Proof:

Straightforward, by adding the corresponding probabilities from Proposition 2.1.2. �

Another interesting and intriguing result arises when one uses x and y instead of M0 and M1 in

equation (2.1.6):

p(s, r|x, y) =
Γ(x)

Γ(x+N)
xK0+K1+K2

2∏

j=0

Kj∏

i=1

Γ(nj,i)y
K0(1−y)K1+K2

Γ(x(1 − y) + n1 + n2)Γ(x(1 − y))

Γ(x(1 − y) + n1)Γ(x(1 − y) + n2)
.

(2.1.7)
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We can see now that the first part of (2.1.7)
(

Γ(x)
Γ(x+N)x

K0+K1+K2
∏2
j=0

∏Kj

i=1 Γ(nj,i)
)

, is the same

as the p(s|x), if there was only one DP with precision parameter x = M0 + M1. The second part
(
yK0(1 − y)K1+K2

)
is like “splitting” the discrete values from this joint DP to the common part and

to the idiosyncratic parts, with corresponding probabilities y = M0

M0+M1
and 1 − y. Finally, the last

part is like “splitting” the data not allocated to the common part into the two idiosyncratic parts.

Comparison of my proposed model with the model of Müller et al. (2004)

The two models that will be considered and compared will be my basic proposed model (2.1.4) and

the model proposed in Müller et al. (2004). Although constructed using different approaches, the

two models look very similar. There are only two differences:

1. In the first model (2.1.4) there are only two concentration parameters, M0 and M1, whereas

in the second there includes three concentration parameters, M0,M1 and M2.

2. The prior of the common weight also depends on the concentration parameters in my proposed

model. In the model of Müller et al. (2004) the prior of the weight only depends on some

other hyperparameters.

The aforementioned differences between the two models seem to be minor. However, they result in

some notable differences in their behaviour and their properties. The reason for that is exactly the

way these two models were constructed. In general, one can argue that the model of Müller et al.

(2004) is more flexible, since the construction of the prior distribution for ε is a more general one,

and there is one extra parameter (M2). On the other hand, the construction method used here is a

more systematic one, and induces some nice properties for my model. In Model (2.1.4) these random

distributions F ∗
1 and F ∗

2 are DP-distributed, whereas this is not true in the case of the other model

(in general). As for the first two central moments and the correlation structure, the expressions are

very simple and easy to use. The corresponding quantities for the model of Müller et al. (2004) are:

E(F ∗
1 (A)) = E(F ∗

2 (A)) = H(A)

Var(F ∗
1 (A)) =

H(A)[1 −H(A)]

(1 +M0)(1 +M1)

[

(1 +M1)

(

π1 +
π2aε(aε + 1)

cε(cε + 1)

)

+ (1 +M0)

(

π0 +
π2bε(bε + 1)

cε(cε + 1)

)]

Var(F ∗
2 (A)) =

H(A)[1 −H(A)]

(1 +M0)(1 +M2)

[

(1 +M2)

(

π1 +
π2aε(aε + 1)

cε(cε + 1)

)

+ (1 +M0)

(

π0 +
π2bε(bε + 1)

cε(cε + 1)

)]

Corr(F ∗
1 (A), F ∗

2 (A)) =
d1

√

(1 +M1)(1 +M2)
√

[(1 +M1)d1 + (1 +M0)d2][(1 +M2)d1 + (1 +M0)d2]

where π2 = 1 − π0 − π1, cε = aε + bε, d1 = π1bε(bε + 2aε + 1) + (1 − π0)aε(aε + 1) and

d2 = π0aε(aε + 2bε + 1) + (1 − π1)bε(bε + 1) Again, the correlation does not depend on A itself, but
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the expressions here are more complicated.

The same holds for the Pólya-urn representations and the expression of the pdf for the indicators

s, r, whose expressions are too complicated to state (although quite simple to derive).

Another nice feature of my model is the nice intuitive form of expression (2.1.7), i.e p(s, r|x, y). On

the other hand, since there are three M ’s in the model of Müller et al. (2004), the parameters x and

y do not even have a natural interpretation.

The issue of whether it makes sense to have the prior for the weight depending on the concentration

parameters of the DP priors of F0, F1 and F2 is discussed at the beginning of this chapter.

Finally, as will be explained in the next subsection, the basic proposed model, due to its method of

construction, offers a more straightforward and systematic way of extending it to higher dimensions.

Apart from the two major models, one can consider some variations of them. The most

straightforward is by assigning different weights ε1 and ε2 to F ∗
1 and F ∗

2 , respectively. This variation

can be considered for both models. In the case of my proposed model, if this is done using the

normalisation technique described above, we just get the model discussed in Section 2.1.1. On the

other hand, the dependence of the weights and the dependence of the weights with F0, F1 and F2

(which is a consequence of the construction method) causes some problems in the calculation of

moments and other theoretical properties of the model. Another variation of the models could

include introducing additional dependence through the hyperparameters of the prior of the weights,

for example ε1, ε2
iid∼ Be(aε, bε), (aε, bε) ∼ π(aε, bε). In such a setting, the weights are independent

conditional on aε and bε, but marginally they are not independent.

2.2 Generalisations in Three Dimensions

2.2.1 General concepts

��
��

��
��

��
��

F ∗
1

F ∗
2 F ∗

3

@
@

@
@
@ �

�
�

�
�

F12

F23

F13

F123

F1

F2 F3

Graph 1: The basic structure of the 3-d models.

An interesting extension of the models analysed in the previous section is to cases of more than

two correlated distributions. For example, consider the case of three distributions, F ∗
1 , F

∗
2 and F ∗

3 .

One can model the correlation between them by considering a part which is shared in all three

F ∗
j ’s, say F123 (“similar” to F0 in the simpler case), and additionally, for each pair F ∗

i , F
∗
j , i 6= j,
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assume a shared part, say Fji. We can also assume an idiosyncratic part Fj for each corresponding

F ∗
j , j = 1, 2, 3 and, as in the 2-dimensional case, a nonparametric prior is assigned to each of

the component distributions F123, Fji, Fj . So, each distribution will be a weighted sum of the above

nonparametric distributions and dependence is introduced using the common ones, F123 and Fji, and

in some cases through also the weights. This basic structure can also be seen in Graph 1 (which is

just to get the basic idea, not formally a graphical model).

Some general properties that such generalised models would preferably have are the following:

1. To provide a natural way of generalising some of the models presented in the previous section.

2. To assure first and second moments of the F ∗
j ’s that are not changing much when the number

of components is increased (e.g. more than three component distributions).

3. Dimensional Coherence, meaning that, when we take a (proper) subset of our model, we

would have the same model as if we had modelled it directly, using the same structure (but

of course in a setting with fewer components).

A more formal definition of dimensional coherence, could be the following:

Define Tk as the class of all models for data of dimension k. By dimensional coherence we mean that,

if a model for F1, F2, . . . , Fk belongs to Tk and C is a subset of {1, 2, . . . , k} of dimension k′ < k,

then the model for {Fi}i∈C belongs to Tk′ .

However, in practice I noticed that for the third condition to hold, some form of interaction

between the weights and the component distributions or between the weights and the precision

parameters of the distributions of F ’s is needed a priori. Therefore, in some cases I decided to

relax this requirement and just ask for dimensional coherence regarding the prior distribution of the

weights.

In the rest of this chapter I will consider generalisations of the models to three groups and the

use of Dirichlet process priors for the common and idiosyncratic parts. In other words, the models

will be of the form:

θji ∼ F ∗
j =

∑

k∈Rj

ε
(j)
k Fk, i = 1, 2, . . . , Nj, j = 1, 2, 3

F123 ∼ DP(M123, H(λ)), F12 ∼ DP(M12, H(λ)), F13 ∼ DP(M13, H(λ)), F23 ∼ DP(M12, H(λ)),

F1 ∼ DP(M1, H(λ)), F2 ∼ DP(M2, H(λ)), F3 ∼ DP(M3, H(λ))

ε(j) ∼ π(ε(j)), j = 1, 2, 3 (2.2.8)

M ∼ π(M).

In the above ε(j) is the vector of all weights involved in F ∗
j , M is the vector of all M ’s and Rj

denotes the subset of the powerset of {1, 2, 3} of all sets that include the specific j, j = 1, 2, 3. As in
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the previous models, the above structure can be embedded in a hierarchical setting, basically adding

a likelihood function f(Y ; θ,ψ) for our data and priors for ψ and λ.

The ideas can be extended, of course, in higher dimensions, but this implies additional com-

plexity arising from the increase in dimension, both in notation, as well as in theoretical calculations

and computational burden.

As an illustration of the above, consider the indicator variables (sji, rji) in the two-dimensional

models. The way they were defined was very simple and straightforward, especially for the rji, which

were just binary quantities. In the case of the three-dimensional models, however, things become

much more complicated, for example, the rji will now be case-specific. The easiest way of defining

those indicators here is then:

r1i =







0 , if θ1i ∈ F123

1 , if θ1i ∈ F1

2 , if θ1i ∈ F12

3 , if θ1i ∈ F13

, r2i =







0 , if θ2i ∈ F123

1 , if θ2i ∈ F2

2 , if θ2i ∈ F12

3 , if θ2i ∈ F23

, r3i =







0 , if θ3i ∈ F123

1 , if θ3i ∈ F3

2 , if θ3i ∈ F13

3 , if θ3i ∈ F23

and

s1i = k ⇔ θ1i =







φ123,k , if r1i = 0

φ1,k , if r1i = 1

φ12,k , if r1i = 2

φ13,k , if r1i = 3

, s2i = k ⇔ θ2i =







φ123,k , if r2i = 0

φ2,k , if r2i = 1

φ12,k , if r2i = 2

φ23,k , if r2i = 3

and

s3i = k ⇔ θ3i =







φ123,k , if r3i = 0

φ3,k , if r3i = 1

φ13,k , if r3i = 2

φ23,k , if r3i = 3

.

As before, the parameters φji,k denote the discrete values in Fji, i ∈ Pj , where Pj is the powerset

of {1, 2, 3}\{j}, j = 1, 2, 3.

2.2.2 The extension of my proposed model (2.1.4)

As mentioned above, the normalisation technique allows for straightforward construction of models

similar to the ones presented above in three (or even more) dimensions. In the case of normalising

gamma processes, Dirichlet processes are created, which can then be used as prior distributions of

some correlated distributions:

Let G123 ∼ ΓP(M123, H), Gi ∼ ΓP(Mi, H), i = 1, 2, 3, Gji ∼ ΓP(Mji, H), i, j ∈ {1, 2, 3}, i 6= j and

all of them being independent.

It is also assumed that Gij ≡ Gji with Mij = Mji, which is a reasonable assumption in the
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following setting. This assumption says that the interaction between any two distributions is the

same both ways, which makes sense here, since we want to model the correlation between correlated

distributions.

Also denote

G∗
1 = G123 +G1 +G12 +G13 ,

G∗
2 = G123 +G2 +G12 +G23 and

G∗
3 = G123 +G3 +G13 +G23.

From the additivity of the ΓP, it holds that:

G1 ∼ ΓP(M123 +M1 +M12 +M13, H),

G∗
2 ∼ ΓP(M123 +M2 +M12 +M23, H) and

G∗
3 ∼ ΓP(M123 +M3 +M13 +M23, H).

By normalizing those G∗
j ’s, we get:

F ∗
1 (·) =

G∗
1(·)

G∗
1(Ω) ∼ DP(M123 +M1 +M12 +M13, H),

F ∗
2 (·) =

G∗
2(·)

G∗
2(Ω) ∼ DP(M123 +M2 +M12 +M23, H) and

F ∗
3 (·) =

G∗
3(·)

G∗
3(Ω) ∼ DP(M123 +M3 +M13 +M23, H).

On the other hand, by rewriting the F ∗
j ’s as weighted sums of the Dirichlet processes derived by

normalising each of the ΓP-distributed G’s, we get:

F ∗
1 (·) =

∑

j∈P1

G1j(·)
∑

k∈P1
G1k(Ω)

=
∑

j∈P1

G1j(·)
G1j(Ω)
︸ ︷︷ ︸

F1j∼DP(M1j ,H)

G1j(Ω)
∑

k∈P1
G1k(Ω)

︸ ︷︷ ︸

ε
(1)
1j

.

So,

F ∗
1 = ε

(1)
123F123 + ε

(1)
12 F12 + ε

(1)
13 F13 + (1 − ε

(1)
123 − ε

(1)
12 − ε

(1)
13 )F1 (2.2.9)

where, for simplicity and visual consistency, I used the same subscripts that were used for the G’s

to the F ’s
(

for example, F123(·) = G123(·)
G123(Ω)

)

.

It also holds that (ε
(1)
123, ε

(1)
12 , ε

(1)
13 ) ∼ Dir(M123,M12,M13,M1) , and marginally each

ε
(1)
1j ∼ Be(M1j ,

∑

k∈P1
M1k −M1j) and each F1j ∼ DP(M1j , H).

Note that the F ’s are independent here, whereas the weights are not.

Similarly, by normalising G∗
2 and G∗

3, we get:

F ∗
2 = ε

(2)
123F123 + ε

(2)
12 F12 + ε

(2)
23 F23 + (1 − ε

(2)
123 − ε

(2)
12 − ε

(2)
23 )F2 (2.2.10)

and

F ∗
3 = ε

(3)
123F123 + ε

(3)
13 F13 + ε

(3)
23 F23 + (1 − ε

(3)
123 − ε

(3)
13 − ε

(3)
23 )F3 (2.2.11)

and similar prior distributions for the weights as for the weights in F ∗
1 .

The F ’s are the same in expressions (2.2.9)-(2.2.11) and they are mutually independent. On the
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other hand, the weights in these expressions are case-specific, and that is why an extra superscript

was used. They are not independent neither within nor across the three distributions F ∗
1 , F

∗
2 , F

∗
3 ,

but some of them are identically distributed (e.g. ε
(1)
123, ε

(2)
123 and ε

(3)
123).

The distributions F ∗
j ’s are, of course, not independent. Dependence is expressed through the

common parts F123 and Fji and through the weights.

For M1 = M2 = M3, M12 = M13 = M23, F
∗
j ∼ DP(M123 + 2M12 + M1, H), j = 1, 2, 3, so they

are identically distributed and dependent (as in the two-dimensional case). The weights are not

independent in any case, but some of them are identically distributed (conditional on the M ’s).

Also, F1
d
= F2

d
= F3 and F12

d
= F13

d
= F23.

More generally, the F ∗
j ’s are also identically distributed for any combination ofM ’s > 0 that satisfies:

M1 +M13 = M2 +M23

M1 +M12 = M3 +M23

M2 +M12 = M3 +M13.

The last equation above is derived from the first two, so it can be dropped.

Another special case would be to have M1
d
= M2

d
= M3 and M12

d
= M13

d
= M23. Marginally,

F1
d
= F2

d
= F3, F12

d
= F13

d
= F23 and F ∗

1
d
= F ∗

2
d
= F ∗

3 . The weights are not independent, but some

of them are marginally identically distributed (e.g. ε
(1)
12 and ε

(3)
13 ).The same results hold if we just

assume that all the M ’s are independent and identically distributed (usually having a Ga(a0, b0)

distribution).

The notation used here is very convenient, since it keeps the same subscripts for the related

F and G (and, of course, for the F ∗
j ’s and the normalised G∗

j , j = 1, 2, 3), but also associates the

weights with the Gji (for example, ε
(1)
123 = G123(Ω)

G123(Ω)+G12(Ω)+G13(Ω)+G1(Ω) ).

Alternative notation could extend the idea of Lavine (1992) for Pólya trees. For example, the

vector of weights in F ∗
1 will be

(

ε
(1)
11 , ε

(1)
10 , ε

(1)
01 , ε

(1)
00

)

, where the sum of those weights is 1. This

notation would be convenient when splitting parts of our model to smaller ones, for example F0 in

the two-dimensional model into F01 and F02. So, as we continue splitting the components, the new

notation arises straightforwardly, especially when each component is split into exactly two parts,

and in which case only zeros and ones are needed. This notation would also be convenient if one

follows the opposite route and clusters some components that share some property (e.g. those

created from splitting a specific component). On the other hand, this notation would not provide

a direct association between the weights and the components (or the component distributions), as

the notation used here does.
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A far more important issue than the distributions (or the equality) of some of the concentration

parameters in this structure is the distributions (or equality) of the weights. As in the 2-d case,

directly using the F ∗
j ’s constructed using the normalisation method causes some algebraic compli-

cations, due to the dependence of the component distributions and the weights. I therefore tried

some simpler models, starting with the much simpler case of assuming non case-specific weights

(i.e. without superscripts) and independent of the Fi. Surprisingly, although simple, this structure

appeared to be an inconvenient one. This is because Dirichlet priors for each triplet of weights is not

appropriate, because of the common weights in the three triplets. A possible solution would have

been to set ε12 = ε13 = ε23 and set (ε123, 2ε12) ∼ Dir(λ1, λ2, λ3) a priori. This solution, however,

causes other problems, both intuitive (is the assumption that, a priori, an observation has equal

probabilities of being assigned to two distinct component distributions sensible?) and algebraic (the

factor 2 in the prior of the weights, actually, causes these problems).

As a result of the above, I adopted a slightly more complicated model: the weights were considered

to be case-specific, independent of the F ’s, independent across the correlated distributions F ∗
j ’s and

each triplet of them was assigned a Dirichlet prior. This prior of the weights will, of course, still

depend on the concentration parameters. As will be shown, this kind of structure works very well.

So, a model of this form is be the following:

θji ∼ F ∗
j , where F ∗

j are as in (2.2.9)-(2.2.11)

F123 ∼ DP(M123, H(λ)), F12, F13, F23
iid∼ DP(M12, H(λ)), F1, F2, F3

iid∼ DP(M1, H(λ)) (2.2.12)

(ε
(1)
123, ε

(1)
12 , ε

(1)
13 ), (ε

(2)
123, ε

(2)
12 , ε

(2)
23 ), (ε

(3)
123, ε

(3)
13 , ε

(3)
23 )

iid∼ Dir(M123,M12,M12,M1)

M123,M12,M1
iid∼ Ga(a0, b0).

The above is a special case of Model (2.2.8) for M1 = M2 = M3 and M12 = M13 = M23, and all

of them given the same Ga(a0, b0) prior. The weights are independent across F ∗
j and each triplet

is given a Dirichlet prior distribution, with parameters the M ’s. Notice that the above conditions

for the concentration parameters results in the same Dirichlet process distribution for the three

correlated distributions:

F ∗
1 , F

∗
2 , F

∗
3
id∼ DP(M123 + 2M12 +M1, H(λ)).

Moments

Theorem 2.2.1. Let Ω denote a probability space and F to be the σ−algebra of Ω. Let also F ∗
j , j =

1, 2, 3 be distributed as in (2.2.12).

Then, ∀ A ∈ F ,
E(F ∗

1 (A)) = E(F ∗
2 (A)) = E(F ∗

3 (A)) = H(A)
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Var(F ∗
1 (A)) = Var(F ∗

2 (A)) = Var(F ∗
3 (A)) =

H(A)[1 −H(A)]

M123 + 2M12 +M1 + 1

Corr(F ∗
i (A), F ∗

j (A)) =
M123 + 2M12 +M1 + 1

(M123 + 2M12 +M1)2

(
M2

123

1 +M123
+

M2
12

1 +M12

)

, i 6= j.

Proof:

The first two results are straightforward, since all F ∗
j ∼ DP(M123 + 2M12 +M1, H)

For the last result, it is enough to show that:

Cov(F ∗
i (A), F ∗

j (A)) =
H(A)(1 −H(A))

(M123 + 2M12 +M1)2

(
M2

123

1 +M123
+

M2
12

1 +M12

)

, i 6= j.

For the last equation notice that, due to the independence of each triplet of weights and the indepen-

dence of the weights and the F ’s, the only terms that will not be zero will be Cov(ε
(i)
123F123, ε

(j)
123F123)

and Cov(ε
(i)
ij Fij , ε

(j)
ij Fij). Using again the independence between the parameters in this model, we

get:

Cov(ε
(i)
123F123, ε

(j)
123F123) = E(ε

(i)
123F123ε

(j)
123F123) − E(ε

(i)
123F123)E(ε

(j)
123F123)

= E(ε
(i)
123)E(ε

(i)
123)E(F 2

123) − E(ε
(i)
123)E(ε

(j)
123)E

2(F123)

= E(ε
(i)
123)E(ε

(j)
123)Var(F123)

=
M2

123

(M123 + 2M12 +M1)2
H(A)(1 −H(A))

1 +M123

Cov(ε
(i)
ij Fij , ε

(j)
ij Fij) = E(ε

(i)
ij Fijε

(j)
ij Fij) − E(ε

(i)
ij Fij)E(ε

(j)
ij Fij)

= E(ε
(i)
ij )E(ε

(i)
ij )E(F 2

ij) − E(ε
(i)
ij )E(ε

(j)
ij )E2(Fij)

= E(ε
(i)
ij )E(ε

(j)
ij )Var(Fij)

=
M2

12

(M123 + 2M12 +M1)2
H(A)(1 −H(A))

1 +M12
.

By adding those two, we get the desired result for the covariance, and by dividing with the square

root of the product of the variances of F ∗
i (A) and F ∗

j (A) , we get the above formula for the

correlation. �

Note that, as in the two-dimensional model, the correlation between any pair of F ∗
j ’s is independent

of the set A, which is indeed a very pleasant result.

Dimensional Coherence

Without loss of generality, consider F ∗
1 and F ∗

2 :

F ∗
1 = ε

(1)
123F123 + ε

(1)
12 F12 + ε

(1)
13 F13 + (1 − ε

(1)
123 − ε

(1)
12 − ε

(1)
13 )F1
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F ∗
2 = ε

(2)
123F123 + ε

(2)
12 F12 + ε

(2)
23 F23 + (1 − ε

(2)
123 − ε

(2)
12 − ε

(2)
23 )F2.

The common parts (actually, the parts corresponding to common component distributions F123 and F12)

are

ε
(1)
123F123 + ε

(1)
12 F12 and ε

(2)
123F123 + ε

(2)
12 F12 and the two idiosyncratic ones are

ε
(1)
13 F13 + (1 − ε

(1)
123 − ε

(1)
12 − ε

(1)
13 )F1 and ε

(2)
23 F23 + (1 − ε

(2)
123 − ε

(2)
12 − ε

(2)
23 )F2, respectively.

Dimensional coherence here means that the common parts should be of the form (ε
(j)
123 + ε

(j)
12 )F ′

0 and

the other two of the form (1 − ε
(j)
123 − ε

(j)
12 )F ′

j , j = 1, 2. We also want F ′
0, F

′
1 and F ′

2 to be Dirichlet

process distributed. In other words, we want this “parametrisation” to be a special case of the

corresponding two-dimensional model:

1. ε
(1)
123F123 + ε

(1)
12 F12 = (ε

(1)
123 + ε

(1)
12 )F ′

0

2. ε
(2)
123F123 + ε

(2)
12 F12 = (ε

(2)
123 + ε

(2)
12 )F ′

0

3. ε
(1)
13 F13 + (1 − ε

(1)
123 − ε

(1)
12 − ε

(1)
13 )F1 = (1 − ε

(1)
123 − ε

(1)
12 )F ′

1

4. ε
(2)
23 F23 + (1 − ε

(2)
123 − ε

(2)
12 − ε

(2)
23 )F2 = (1 − ε

(2)
123 − ε

(2)
12 )F ′

2.

Equivalently, we want:

1.
ε
(1)
123

ε
(1)
123+ε

(1)
12

F123 +
ε
(1)
12

ε
(1)
123+ε

(1)
12

F12 = F ′
0 ∼ DP(M ′

0, H
′)

2.
ε
(2)
123

ε
(2)
123+ε

(2)
12

F123 +
ε
(2)
12

ε
(2)
123+ε

(2)
12

F12 = F ′
0 ∼ DP(M ′

0, H
′)

3.
ε
(1)
13

1−ε(1)123−ε
(1)
12

F13 +
1−ε(1)123−ε

(1)
12 −ε(1)13

1−ε(1)123−ε
(1)
12

F1 = F ′
1 ∼ DP(M ′

1, H
′)

4.
ε
(2)
23

1−ε(2)123−ε
(2)
12

F23 +
1−ε(2)123−ε

(2)
12 −ε(2)23

1−ε(2)123−ε
(2)
12

F2 = F ′
2 ∼ DP(M ′

2, H
′),

respectively.

Due to the priors of the weights, the above conditions are satisfied and H ′ ≡ H,M ′
0 = M123 +

M12,M
′
1 = M ′

2 = M12 +M1. However, the common F ′
0 produced in the two first conditions is not

exactly the same, because of the different weights. If the same triplet of weights was used in both

F ∗
1 and F ∗

2 , then there would be no problem. However, since we want the dimensional coherence to

hold for all three pairs among F ∗
1 , F

∗
2 and F ∗

3 , we will then have to assume the same weights for all

three models, which, as mentioned above, causes other types of problems and was rejected already.

This case highlights my previous comment that dimensional coherence is quite a strong assumption

and trying to satisfy it can result in placing strict assumptions in the structure of the model. So,

let us consider dimensional coherence of the prior of the weights:

Consider again the first two correlated distributions. Dimensional coherence of the weights means

that the weights that would be the common ones and those that would be the idiosyncratic ones in
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a lower-dimensional model would have a Dirichlet distribution. More exactly, a beta distribution,

as now we will be in two dimensions. In other words, we want:

1. ε
(1)
123 + ε

(1)
12 ∼ Be(a1, a2) for a1, a2 > 0

2. ε
(2)
123 + ε

(2)
12 ∼ Be(a3, a4) for a3, a4 > 0.

It is easy to see that this holds in this case, because of the Dirichlet prior distribution for each triplet

of weights, and a1 = a3 = M123 +M12, a2 = a4 = M12 +M1.

It is also straightforward that, since there is only one weight for each component distribution, there

is no need to check if the above holds for the weights of the idiosyncratic parts (as those will be just

1 - (the weights for the common part)).

Similar results are derived by considering the pairs F ∗
1 and F ∗

3 and F ∗
2 and F ∗

3 , so it can be said

that dimensional coherence for the prior of the weights does hold in this model.

2.2.3 Extensions of the model of Müller et al (2004)

Similar to the model suggested in Müller et al. (2004), which is constructed in a general, but perhaps

less systematic way, its extensions can also be constructed in many ways. In this subsection two

of them will be considered, one having case-specific weights (which can be therefore compared with

the model developed in the previous section) and a model with weights specific to the number

of components included, i.e. ε123 is the same for all three F ∗
j ’s, and ε12 = ε13 = ε23 (although

this model will have the problems discussed in the previous subsections - I present it here for

completeness). In both cases, zero probability is assigned to some weights being equal to 0 or 1,

merely for algebraic and computational simplicity, as including those two probabilities increases the

size of derived expressions considerably.

First extension

As in the previous model, it is assumed that the weights are case-specific, independent of the F ’s,

and each triplet of weights is independent and follows a Dirichlet prior distribution:

F ∗
1 = ε

(1)
123F123 + ε

(1)
12 F12 + ε

(1)
13 F13 + (1 − ε

(1)
123 − ε

(1)
12 − ε

(1)
13 )F1 (2.2.13)

F ∗
2 = ε

(2)
123F123 + ε

(2)
12 F12 + ε

(2)
23 F23 + (1 − ε

(2)
123 − ε

(2)
12 − ε

(2)
23 )F2 (2.2.14)

F ∗
3 = ε

(3)
123F123 + ε

(3)
13 F13 + ε

(3)
23 F23 + (1 − ε

(3)
123 − ε

(3)
13 − ε

(3)
23 )F3 (2.2.15)

(

ε
(1)
123, ε

(1)
12 , ε

(1)
13

)

∼ Dir(α1,11, α1,10, α1,01, α1,00) (2.2.16)

(

ε
(2)
123, ε

(2)
12 , ε

(2)
23

)

∼ Dir(α2,11, α2,10, α2,01, α2,00) (2.2.17)
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(

ε
(3)
123, ε

(3)
13 , ε

(3)
23

)

∼ Dir(α3,11, α3,10, α3,01, α3,00). (2.2.18)

A fully hierarchical model would then be the following:

θji ∼ F ∗
j , where F ∗

j is as in (2.2.13)-(2.2.15)

F123 ∼ DP(M123, H(λ)), F12, F13, F23
iid∼ DP(M12, H(λ)), F1, F2, F3

iid∼ DP(M1, H(λ)) (2.2.19)
(

ε
(1)
123, ε

(1)
12 , ε

(1)
13

)

,
(

ε
(2)
123, ε

(2)
12 , ε

(2)
23

)

,
(

ε
(3)
123, ε

(3)
13 , ε

(3)
23

)

are as in (2.2.16)-(2.2.18) and independent

M123,M12,M1
iid∼ Ga(a0, b0).

Model (2.2.19) is again a special case of Model (2.2.8) for M1 = M2 = M3 and M12 = M13 = M23,

and all of them given the same Ga(a0, b0) prior. The difference of this model from model (2.2.12)

is the parameters in the prior distributions of the weights. In this model we have a more general

allocation for these parameters (αj,11, αj,10, αj,01, αj,00, j = 1, 2, 3), whereas before those parameters

were the concentration parameters of the priors of the F ’s. None the less, by having the same

concentration parameters for all Fj (M1) and the same for all Fji (M12), it is guaranteed that all

the F ∗
j , j = 1, 2, 3 are identically distributed (marginally, since each triplet of weights has the same

prior). However, it cannot be guaranteed that they are also DP-distributed, a result that would

have provided some nice properties.

Moments

Theorem 2.2.2. Let Ω denote a probability space and F to be the σ−algebra of Ω. Let also F ∗
j , j =

1, 2, 3 be distributed as in (2.2.19).

Then, ∀ A ∈ F ,
E(F ∗

1 (A)) = E(F ∗
2 (A)) = E(F ∗

3 (A)) = H(A)

Var(F ∗
j (A)) =

H(A)[1 −H(A)]

α∗
j (α

∗
j + 1)

[
αj,11(αj,11 + 1)

1 +M123
+
αj,10(αj,10 + 1) + αj,01(αj,01 + 1)

1 +M12
+
αj,00(αj,00 + 1)

1 +M1

]

,

j = 1, 2, 3

Corr(F ∗
1 (A), F ∗

2 (A)) =

√

α∗
1 + 1

α∗
1

· α
∗
2 + 1

α∗
2

1√
d1d2

[
α1,11α2,11

1 +M123
+
α1,10α2,10

1 +M12

]

Corr(F ∗
1 (A), F ∗

3 (A)) =

√

α∗
1 + 1

α∗
1

· α
∗
3 + 1

α∗
3

1√
d1d3

[
α1,11α3,11

1 +M123
+
α1,01α3,10

1 +M12

]

Corr(F ∗
2 (A), F ∗

3 (A)) =

√

α∗
2 + 1

α∗
2

· α
∗
3 + 1

α∗
3

1√
d2d3

[
α2,11α3,11

1 +M123
+
α2,01α3,01

1 +M12

]

where α∗
j = αj,11 + αj,10 + αj,01 + αj,00 and

dj =
αj,11(αj,11+1)

1+M123
+

αj,10(αj,10+1)+αj,01(αj,01+1)
1+M12

+
αj,00(αj,00+1)

1+M1
, j = 1, 2, 3.
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Notice also that again, the correlation structure between F ∗
i , F

∗
j , i 6= j is independent of the set A

chosen.

Proof:

I first derive the above moments conditional on the weights and the precision parameters:

E(F ∗
1 (A)|ε) = E(F ∗

2 (A)|ε) = E(F ∗
3 (A)|ε) = H(A) (2.2.20)

Var(F ∗
j (A)|ε) = H(A)[1 −H(A)]cj , j = 1, 2, 3 (2.2.21)

Corr(F ∗
i (A), F ∗

j (A)|ε) =
1

√
cicj

[

ε
(i)
123ε

(j)
123

1 +M123
+

ε
(i)
ij ε

(j)
ij

1 +M12

]

, i, j = 1, 2, 3, i 6= j (2.2.22)

where ε is the vector of all weights in the model and

c1 =
ε
(1)2
123

1 +M123
+
ε
(1)2
12 + ε

(1)2
13

1 +M12
+

(1 − ε
(1)
123 − ε

(1)
12 − ε

(1)
13 )2

1 +M1
,

c2 =
ε
(2)2
123

1 +M123
+
ε
(2)2
12 + ε

(2)2
13

1 +M12
+

(1 − ε
(2)
123 − ε

(2)
12 − ε

(2)
13 )2

1 +M1
and

c3 =
ε
(3)2
123

1 +M123
+
ε
(3)2
13 + ε

(3)2
23

1 +M12
+

(1 − ε
(3)
123 − ε

(3)
13 − ε

(3)
23 )2

1 +M1
.

Given the weights, the above calculations are straightforward, using the independence of the weights

across the distributions F ∗
j ’s, the independence of the component distributions F ’s and the simple

forms for the first two moments for the F ’s, since they are DP-distributed.

Next, expressions (2.2.20)- (2.2.22) (which are conditional on the weights) are used, together with

some known theoretical results, in order to derive the formulae in Theorem 2.2.2:

It is well known that

E(X) = E(E(X |Y )). (2.2.23)

Applying it to (2.2.20), we have that

E(F ∗
1 (A)) = Eε1(E(F ∗

1 (A)|ε1)), where ε1 = (ε1,11, ε1,10, ε1,01)

= Eε1(H(A))

= H(A), since the expression H(A) does not include the weights.

The same calculation can be done for the expectation of F ∗
2 and F ∗

3 .

For the variances, we can use the identity

Var(X) = Var(E(X |Y )) + E(Var(X |Y )). (2.2.24)
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For example, for j = 1, we have:

Var(F ∗
1 (A)) = Varε1(E(F ∗

1 (A)|ε1)) + Eε1(Var(F ∗
1 (A)|ε1))

= Eε1(Var(F ∗
1 (A)|ε1)), since E(F ∗

1 (A)|ε1) = H(A), not involving the weights

(2.2.21)
= Eε1

(

H(A)(1 −H(A))(
ε
(1)2
123

1 +M123
+
ε
(1)2
12 + ε

(1)2
13

1 +M12
+

(1 − ε
(1)
123 − ε

(1)
12 − ε

(1)
13 )2

1 +M1
)

)

= H(A)(1 −H(A))

(

E(ε
(1)2
123 )

1 +M123
+

E(ε
(1)2
12 ) + E(ε

(1)2
13 )

1 +M12
+

E(1 − ε
(1)
123 − ε

(1)
12 − ε

(1)
13 )2

1 +M1

)

=
H(A)[1 −H(A)]

α∗
1(α

∗
1 + 1)

[
α1,11(α1,11 + 1)

1 +M123
+
α1,10(α1,10 + 1) + α1,01(α1,01 + 1)

1 +M12
+
α1,00(α1,00 + 1)

1 +M1

]

.

For the variances of F ∗
1 (A) and F ∗

2 (A) the same procedure can be followed.

Finally, for the covariances we can use the formula

Cov(F ∗
i (A), F ∗

j (A)) = E
(
Cov(F ∗

i (A), F ∗
j (A)|ε)

)
, i 6= j. (2.2.25)

Proof of (2.2.25):

Cov(F ∗
i (A), F ∗

j (A)) = E(F ∗
i (A) · F ∗

j (A)) − E(F ∗
i (A))E(F ∗

j (A))

= E[E(F ∗
i (A) · F ∗

j (A)|ε)] −H2(A)

= E(Cov(F ∗
i (A), F ∗

j (A)|ε)) + E
(
E(F ∗

i (A)|ε)E(F ∗
j (A)|ε)

)
−H2(A)

= E(Cov(F ∗
i (A), F ∗

j (A)|ε)) +H2(A) −H2(A)

= E(Cov(F ∗
i (A), F ∗

j (A)|ε)). �

So, using (2.2.20)-(2.2.22) and the priors of the weights, we get the stated result for the correlations. �

Dimensional Coherence

The notion and method of study of dimensional coherence will be the same as before. Unfortunately,

the issue that the produced common part from two different cases will not be exactly the same is

also present here. This is due to the fact that, again, the weights are case-specific. So, again, di-

mensional coherence regarding the prior distribution of the weights is studied. For this model, we

want to check whether sums like ε
(1)
123 + ε

(1)
12 (or ε

(1)
123 + ε

(1)
13 ) have also a Dirichlet distribution (which,

in two dimensions, is the beta distribution). This is trivial, though, due to the divisibility of the

Dirichlet distribution. In fact, the method to show this is the same as in the previous model, with

the parameters αj,11 replacing M123, αj,10 and αj,01 replacing M12 and αj,00 replacing M1.

So, we can say that in this model, as in the previous model, dimensional coherence regarding the

priors of the weights holds.
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Second extension

In this extented model it is assumed that weights that are involved with the same number of com-

ponents are the same in all three distributions. For example, three components are involved in each

F123, since F123 is the part that expresses the common part of all three correlated distributions, so

it is assumed that the weight corresponding to F123 is the same in all F ∗
j . As a result, there wiill

only be three distinct weights in this model, one corresponding to F123, the second corresponding to

Fij , i, j = 1, 2, 3, i 6= j and the last corresponding to Fj , j = 1, 2, 3. Again, it is assumed that the

weights are independent of the component distributions (the F ’s), and a Dirichlet prior is assigned

to them:

F ∗
1 = ε123F123 + ε12F12 + ε12F13 + (1 − ε123 − 2ε12)F1 (2.2.26)

F ∗
2 = ε123F123 + ε12F12 + ε12F23 + (1 − ε123 − 2ε12)F2 (2.2.27)

F ∗
3 = ε123F123 + ε12F13 + ε12F23 + (1 − ε123 − 2ε12)F3 (2.2.28)

(ε123, 2ε12) ∼ Dir(α123, α12, α1).

The weight corresponding to the idiosyncratic parts, Fj , can be found by ε1 = 1− ε123 − 2ε12. Note

also that, the factor 2 of the second weight in the prior distribution of the weights is added in order

for the weights to sum to one.

Only three concentration parameters are used, M123,M12 and M1. In this case, this assures that the

F ∗
j ’s are identically distributed. Unfortunately, in general they are not DP-distributed.

The basic problem of this model, however, is the counter-intuitive convention that the proba-

bility of an observation belonging to any of the two common component distributions (excluding the

overall common F123) is the same. This also causes the factor 2 in the prior of the weights, which

causes many complications in the algebraic calculations. However, I decided to present this model

for completeness purposes.

The hierarchical model constructed in the previous cases now becomes:

θji ∼ F ∗
j , where F ∗

j is as in (2.2.26)-(2.2.28)

F123 ∼ DP(M123, H(λ)), F12, F13, F23
iid∼ DP(M12, H(λ)), F1, F2, F3

iid∼ DP(M1, H(λ)) (2.2.29)

(ε123, 2ε12) ∼ Dir(α123, α12, α1)

M123,M12,M1
iid∼ Ga(a0, b0).

This model is a special case of Model (2.2.8) for (again) M1 = M2 = M3 and M12 = M13 = M23,

and all of them given the same Ga(a0, b0) prior distribution. The weights used are only two and

they are the same across F ∗
j , with the specific Dirichlet prior for them.

Moments
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Theorem 2.2.3. Let Ω denote a probability space and F to be the σ−algebra of Ω. Let also F ∗
j , j =

1, 2, 3 be distributed as in (2.2.29).

Then, ∀ A ∈ F ,

E(F ∗
1 (A)) = E(F ∗

2 (A)) = E(F ∗
3 (A)) = H(A)

Var(F ∗
j (A)) =

H(A)[1 −H(A)]

α∗(α∗ + 1)

[
α123(α123 + 1)

1 +M123
+
α12(α12 + 1)

2(1 +M12)
+
α1(α1 + 1)

1 +M1

]

, j = 1, 2, 3

Corr(F ∗
i (A), F ∗

j (A)) =

[
α123(α123+1)

1+M123
+ α12(α12+1)

4(1+M12)

]

[
α123(α123+1)

1+M123
+ α12(α12+1)

2(1+M12) + α1(α1+1)
1+M1

] , i 6= j

where α∗ = α123 + α12 + α1.

Once again, the correlation between F ∗
i (A) and F ∗

j (A), i 6= j is independent of the set A chosen.

Notice also that all F ∗
j have the same expectation and variance and each pair of them has the same

correlation. This is something trivial, since they are identically distributed, and with the same

covariance structure among them!

Proof:

The proof is similar to the first extension. We first derive the moments conditional on the weights:

E(F ∗
1 (A)) = E(F ∗

2 (A)) = E(F ∗
3 (A)) = H(A)

Var(F ∗
j (A)) = H(A)[1 −H(A)]B, j = 1, 2, 3

Corr(F ∗
i (A), F ∗

j (A)) =
1

B

[
ε2123

1 +M123
+

ε212
1 +M12

]

]

, i 6= j

where B =
ε2123

1+M123
+

2ε212
1+M12

+ (1−ε123−2ε12)2

1+M1
.

The above formulae are very easy to show, using the independence of the F ’s and since the weights

are considered fixed.

The relationships (2.2.23)- (2.2.25) can then be used (the first two formulae hold in general, whereas

(2.2.25) can be proven to hold in this case, too) and the stated results follow immediately. �

Dimensional Coherence

Since the weight for all the idiosyncratic parts is common, and since this is true for the parts between

any two component distributions (F12, F13, F23), in this case there is no problem of identifiability

of the common part between any two of F ∗
j , j = 1, 2, 3. For example, the common part between

F ∗
1 and F ∗

2 will be (ε123)F123 + ε12F12 = (ε123 + ε12)F0, for some F0. For dimensional coherence, it
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should hold that F0 = ε123
ε123+ε12

F123 + ε12
ε123+ε12

F12 is DP-distributed. Given the DP prior of the F ′s,

this holds if and only if
ε123

ε123 + ε12
∼ Be(M123,M12).

Unfortunately, the distribution of ε123
ε123+ε12

, cannot be found in closed form, and it is (of course)

not a beta distribution. The reason for this is the factor 2 in the prior of the weights. As a

result, dimensional coherence cannot be established. What’s more, the same reason prevents us

from deriving the distribution of, say, ε123 + ε12, so dimensional coherence of the prior distribution

of the weights does not hold, either.

Finally, let us just mention that the Pólya-urn representations for all three extended models

presented here are easily derived. This is done using the corresponding Chinese restaurant repre-

sentations, which are also easy to derive.

2.3 Summary

In this chapter a general class of correlated distributions that can be naturally applied to modelling

grouped data was introduced. A model of this form can be constructed by normalising dependent

random measures. This was demonstrated using the gamma process as distribution of the underlying

random measure, and the derived dependent distributions are DP-distributed. Apart from this

model, a similar but simpler model is considered, and both these models are compared with the

model introduced in Müller et al. (2004). The two new models and the model of Müller et al. (2004),

although constructed using different methods, were also very similar. The proposed models are

intuitively appealing, since they are constructed in a systematic way, and also have good theoretical

properties (for example, the expressions for the first two moments are very simple ones). Notice

also that, due to the way they are constructed, the proposed models (especially the one constructed

using the normalisation method) can be naturally generalised in higher dimensions (meaning higher

number of dependent random distributions). Such an extension, together with two generalisations

of the model of Müller et al. (2004) are considered in the case of three dependent distributions.

Some theoretical properties of the extended models are considered, with particular attention to

dimensional coherence. The last condition is not easy to satisfy, and none of the three models did

satisfy it. However, I was able to establish dimensional coherence of the prior distribution of the

weights in the extension of my model and in one of the extensions of the Müller et al. (2004) model.
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Chapter 3

Computational Implementation

In this section I deal with the computational implementation of the models presented in the previous

section, and especially Model (2.1.4) and the model arising from direct normalisation. I first discuss

the implementation of my basic model (2.1.4) and suggest an additional step that can be used in

most of the algorithms, in which we propose splitting or merging some clusters in the components.

Some techniques presented here can also be used in the simulation of the posterior distributions

of the parameters in the model proposed in Müller et al. (2004). Implementation for the three

models in three dimensions presented are also discussed, as well as for a model similar to my basic

proposed model, but with N-IGP priors, instead of DPs. Finally, in the case of the model via direct

normalisation, a data augmentation scheme will allow us to perform slice sampling for simulating

from the full conditional distributions of some parameters in a natural way.

3.1 General Concepts

In order to demonstrate the computational implementation of these models, I will assume that the

likelihood f(Yji; θji, S) is a normal distribution with mean µji and variance S and that µji ∼ F ∗
j ,

where F ∗
j are as defined in each model. The base distribution H is also a normal distribution,

say N(m,B). The mean m is assigned a normal prior with parameters m0 and A, the vari-

ance B is assigned an inverse gamma distribution with shape parameter c and scale parameter

(cC)−1, IGa(c, (cC)−1). Finally, the variance S also has an inverse gamma distribution with pa-

rameters q and (qR)−1. Notice that the priors used for S,m, and B are the same as the ones used

in Müller et al. (2004).

As in the model of Müller et al. (2004), the main parameters of interest will be the weight
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(or weights) of the common and idiosyncratic parts, the concentration parameters of the Dirichlet

processes and the predictive distributions for the correlated distributions F ∗
j , j = 1, 2, as well as

those of the component distributions Fj , j = 0, 1, 2.

As mentioned in the introduction, as in almost all the cases of Bayesian nonparametric models,

in order to simulate from the posterior distribution of the parameters of interest, we use MCMC

methods, with mostly Gibbs and Metropolis-Hastings sampling steps. We also use the marginal

approach for simulating from Dirichlet processes, described in Section 1.1.2. The conjugacy of the

likelihood and the base distribution means that the standard samplers for conjugate DPs can be

used. The alternative approach, would be the conditional method, also described in Section 1.1.2.

Additionally, in order to increase the efficiency of the MCMC algorithm, in each cycle of the algorithm

the clusters of discrete values of the µji are also updated, as suggested in MacEachern (1998).

3.2 The Proposed Algorithm for Model (2.1.4)

My basic model (2.1.4), together with the distributions mentioned above, becomes:

Yji ∼ N(µji, S), i = 1, 2, . . . , Nj, j = 1, 2

µji ∼ F ∗
j , where F ∗

j = εF0 + (1 − ε)Fj

F0 ∼ DP (M0, H), Fj
iid∼ DP (M1, H), where H ≡ N(m,B)

ε ∼ Be(M0,M1)

M0,M1
iid∼ Ga(a0, b0), (m,B) ∼ N(m0, A) × IGa(c, 1/cC), S ∼ IGa(q, 1/qR).

Let φji, i = 1, 2, . . . ,Kj, j = 0, 1, 2 denote the discrete values of the µji in each component

distribution Fj , j = 0, 1, 2. As in Müller et al. (2004), the auxiliary indicator variables sji, and rji

are used:

rji =







0 , if µji ∈ F0

1 , if µji ∈ Fj ,
sji = k ⇔







µji = φ0k , if rji = 0

µji = φjk , if rji = 1.
, i = 1, 2, . . . , Nj , j = 1, 2.

Instead of using the parameters µji and φji, we can therefore use the equivalent parametrisation

sji, rji, φji.

The full set of parameters in this model is (s, r,φ, ε,M0,M1,m,B, S), where the bold symbols

denote the vector of all indicated parameters (e.g. s denotes all sji, i = 1, 2, . . . , Nj , j = 1, 2).

Let also Y denote the vector of observations (Y11, Y12, . . . , Y1,N1 , Y21, Y22, . . . , Y2,N2), n0, n1 and n2

are the number of observations assigned in each component distribution F0, F1 and F2, respectively
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and nji, i = 1, 2, . . . ,Kj , j = 0, 1, 2 are the number of data allocated to cluster i in component

distribution Fj , j = 0, 1, 2. Then,

f(s, r,φ, ε,m,B, S,M0,M1|Y) ∝
∏

j,i

f(Yji|rji, sji,φ, S)f(m)f(B)f(M0,M1)f(S)f(ε|M0,M1)

×
∏

j,i

f(φji|m,B)
∏

j,i

f(rji|ε)f(s|r,M0,M1).

The full conditional distribution of each parameter (i.e. the distribution given all the other param-

eters) is as follows:

• m| · · · ∼ N(
m0B+A

∑

j,i φji

AK+B , AB
AK+B ),

where K = K0 +K1 +K2 is the total number of discrete values in all components.

• B| · · · ∼ IGa(c+K/2, 1/cC + 1/2
∑

j,i(φji −m)2).

• S| · · · ∼ IGa(q +N/2, 1/qR+ 1/2
∑

j,i(Yji − µji)
2), where N = N1 +N2.

• ε| · · · ∼ Be(M0 +N −∑j,i rji,M1 +
∑

j,i rji).

• f(M0,M1| · · · ) ∝Ma0+K0−1
0 e−M0[b0−log(ε)]Ma0+K1+K2−1

1 e−M1[b0−log(1−ε)] Γ(M1)Γ(M1+M0)
Γ(M1+n0)Γ(M1+n1)Γ(M1+n2)

.

So,

f(M0| · · · ) ∝Ma0+K0−1
0 e−M0[b0−log(ε)] Γ(M0+M1)

Γ(M0+n0) and

f(M1| · · · ) ∝Ma0+K1+K2−1
1 e−M1[b0−log(1−ε)] Γ(M1)Γ(M0+M1)

Γ(M1+n1)Γ(M1+n2) .

• φ0l| · · · ∼ N(
mS+B

∑

j,i:rji=0,sji=l Yji

S+Bn0l
, SB
S+Bn0l

), l = 1, 2, . . . ,K0 and

φjl| · · · ∼ N(
mS+B

∑

i:rji=1,sji=l Yji

S+Bnjl
, SB
S+Bnjl

), l = 1, 2, · · · ,Kj, j = 1, 2.

• P (sji = h, rji = l| · · · ) =







πjh , h = 1, 2, . . . ,Kj, l = 1

π0h , h = 1, 2, . . . ,K0, l = 0

π∗
j , h = Kj + 1, l = 1

π∗
0 , h = K0 + 1, l = 0

, i = 1, 2, . . . , Nj, j = 1, 2.

where πjh ∝ (1 − ε)ϕ(Yji;φjh, S)n−
jh/(M1 + n−

j ), π0h ∝ εϕ(Yji;φ0h, S)n−
0h/(M0 + n−

0 ),

π∗
j ∝ (1− ε)ϕ(Yji;m,S+B)M1/(M1 +n−

j ), and π∗
0 ∝ εϕ(Yji;m,S+B)M0/(M0 +n−

0 ), where

the superscript − means that the corresponding quantity are taken without counting the

quantity associated with the (ji) point, ϕ is the pdf of the normal distribution and the above

probabilities are all proportional to the same constant, which is such that the probabilities

sum up to 1. Finally, note that in the last two cases for (sji, rji| · · · ), a new value should be

created. This is a draw from N(
BYji+mS
B+S , BS

B+S ).
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We can directly simulate from all the above full conditional distributions, except from the ones of

the precision parameters M0 and M1, for which RWMH steps can be used, either to each one or

together. More specifically, since those quantities are defined on the positive real line, the proposals

of the RWMH are applied to their logarithms.

Finally, the predictive distributions for the two data sets are as follows:

p(Yj,Nj+1|Y) = ε
M0

M0 + n0
N(m,B + S) + ε

1

M0 + n0

K0∑

d=1

n0dN(φ0d, S)

+ (1 − ε)
M1

M1 + nj
N(m,B + S) + (1 − ε)

1

M1 + nj

Kj∑

d=1

njdN(φjd, S), j = 1, 2.

One full cycle of the MCMC algorithm consists of updating each of those parameters from their full

conditional distribution. Note that most of the steps will be the same as in the algorithm in Müller

et al. (2004). The differences will be in the full conditional distributions of ε, M0 and M1 and the

fact that M2 needs to be replaced by M1 in all the other full conditionals, since M2 = M1 here.

All the full conditionals are of known form, apart from the ones for M0 and M1. Whereas

Gibbs sampling steps can be used for the rest, MH steps can be used for the last two:

I first tried to use random walk MH steps (more precisely, applied to the logarithms of them):

For M0, we propose log(M ′
0) = log(M0) + ζ0 ⇔ M ′

0 = M0e
ζ0 , where ζ0 ∼ N(0, σ2) and accept

M ′
0 with probability

α(M0,M
′
0) = min

{

1,

(
M ′

0

M0

)a+K0

e(M0−M ′
0)(b−log(ε)) Γ(M1 +M ′

0)Γ(M0 + n0)

Γ(M1 +M0)Γ(M ′
0 + n0)

}

.

Otherwise, keep M0.

Similarly, propose log(M ′
1) = log(M1) + ζ1 ⇔ M ′

1 = M1e
ζ1 , ζ1 ∼ N(0, σ2) and accept it with

probability

α(M1,M
′
1) = min

{

1,

(
M ′

1

M1

)a+K1+K2

e(M1−M ′
1)(b−log(1−ε)) Γ(M ′

1)Γ(M0 +M ′
1)Γ(M1 + n1)Γ(M1 + n2)

Γ(M1)Γ(M0 +M1)Γ(M ′
1 + n1)Γ(M ′

1 + n2)

}

.

Otherwise, keep M1.

However, in practice I encountered a situation where the value of either M0 or M1 got stuck at

zero, since then all the proposed values will again be zero. This is a problem of the accuracy of the

program used, since in theory those two quantities are always positive. A possible solution to this is

to truncate the values for M0 and M1 produced at a very low level. In particular, when a value for

any of those two parameters produced was less than 10−8, I was setting it to be 10−8. In practise,

this solution worked well.

If we alternatively work with x = M0 + M1 and y = M0

M0+M1
, the corresponding full conditional
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distributions will be:

f(y| · · · ) ∝ yK0(1 − y)K1+K2

(
ε

1−ε

)xy
Γ(x(1−y))

Γ(xy+n0)Γ(x(1−y)+n1)Γ(x(1−y)+n2)

f(x| · · · ) ∝ xK0+K1+K2+d1−1e−d2x[εy(1 − ε)1−y]x Γ(x)Γ(x(1−y))
Γ(xy+n0)Γ(x(1−y)+n1)Γ(x(1−y)+n2)

.

The two full conditionals are not of known form, so random walk Metropolis-Hastings steps are used:

Propose logit(y′) = logit(y) + ζ1 ⇔ y′ = yeζ1

1−y+yeζ1
, ζ1 ∼ N(0, σ2

1) (i.e. random walk on the logit of

y, where logit(p) = log
(

p
1−p

)

, 0 < p < 1) and accept it with probability

α(y, y′) = min

{

1,
(
y′

y

)K0+1 (
1−y′
1−y

)K1+K2+1 (
ε

1−ε

)x(y′−y)
Γ(x(1−y′))Γ(xy+n0)Γ(x(1−y)+n1)Γ(x(1−y)+n2)

Γ(x(1−y))Γ(xy′+n0)Γ(x(1−y′)+n1)Γ(x(1−y′)+n2)

}

.

Propose log(x′) = log(x) + ζ2 ⇔ x′ = xeζ2 , ζ2 ∼ N(0, σ2
2), (i.e. random walk on the logarithm of x)

and accept it with probability

α(x, x′) = min

{

1,
(
x′

x

)K0+K1+K2+d1
ed2(x−x

′)[εy(1 − ε)1−y]x
′−x Γ(x′)Γ(x′(1−y))Γ(xy+n0)Γ(x(1−y)+n1)Γ(x(1−y)+n2)

Γ(x)Γ(x(1−y))Γ(x′y+n0)Γ(x′(1−y)+n1)Γ(x′(1−y)+n2)

}

.

Example 1 (continued):

In order to better understand the differences between my proposed model (2.1.4) and the model of

Müller et al. (2004), and also get a better insight of the proposed MCMC algorithms, I applied them

to the data mentioned in Section 2.1.2, and assuming normal likelihood and normal base distribu-

tion (i.e. as in Model (1.2.14)). The kernel density estimates for the posterior distribution of ε were

first plotted, together with the trace plots of the MCMC output for this parameters in Figures 3.1

(Müller et al. (2004) model) and 3.2 (Model (2.1.4)).
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Figure 3.1: Kernel density estimate (left) and trace plot (right) for the posterior of ε for
the model of Müller et al. (2004) for the first simulated data set.

From the two kernel density plots, it is clear that the posterior distribution of ε is bimodal at

0 and a value very close to 0.3, as expected from the discussion in Section 2.1.3. The mass at 0 is

about 9.9% for Model (1.2.13) and about 74.1% for Model (2.1.4). Notice that the kernel density

estimate for my model should have had a significantly larger mode close to 0, but this mode was
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Figure 3.2: Kernel density estimate (left) and trace plot (right) for the posterior of ε for
Model (2.1.4) for the first simulated data set.

reduced here, for better inspection of the mode at 0.3. From the corresponding trace plots, it can

be seen that the chain jumps between those two modes of the weight, and perhaps not so often as

it would have been ideal to (seen especially in the case of my proposed model).

The trace plots indicate a possible mixing problem in the algorithms used. It would be therefore

desirable to try and improve the mixing of the chain by increasing the frequency of the jumps between

the two modes of ε. In order to do so, an additional step in the algorithm for Model (2.1.4) is proposed

(which could again be used in most models of this type, for example for the model of Müller et al.

(2004)), a novel mix-split step. In this step we propose to either split a cluster from the common

part F0 to two clusters, one in each idiosyncratic part F1 and F2, or to merge two clusters, one from

each of F1 and F2 to a common cluster in F0.

3.3 The Mix-Split Step

The basic form of this extra step consists of first choosing whether we will propose a mix or a split

move (with probability 1/2 each) and then perform it. If a split step is chosen, we uniformly choose

a cluster from F0 and propose to split it into two clusters, one in F1 and one in F2 (or move it to

either F1 or F2, if this cluster contains only data from the first or second data set, respectively). If

a merge step is chosen, we uniformly choose a cluster from F1, or an empty cluster, and a cluster

from F2, or an empty cluster, and we propose to merge those two clusters (or move a cluster, if in

one of the two cases an empty cluster is chosen) to a common cluster in F0.

This split-merge step is a Metropolis-Hastings update, so the acceptance probability in each

case needs to be calculated. These probabilities will depend on the method of mix-split selected (the

basic one discussed thoroughly below or the alternative one, introduced after the description of the
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basic algorithm), on whether a split or a merge step is selected and on the existing and proposed

allocation of the indicator parameters sji, rji, i = 1, 2, . . . , Nj , j = 1, 2.

In the following, let K0,K1 and K2 denote the number of clusters in components F0, F1 and F2,

respectively, m01 and m02 denote the number of data from each data set associated with a chosen

cluster in F0 in a split step and let m1,m2 be the number of data from each data set associated with

the chosen clusters in F1, F2 respectively in a merge step. Let also n1 and n2 denote the current

(i.e. before the proposed mix or split step) number of data assigned in each idiosyncratic component

distribution, F1 and F2, respectively.

The algorithm for the (basic) mix-split step and the corresponding acceptance probabilities

α(c, c′), where c = (r, s) is the complete vector of indicators are as follows:

Basic Mix-Split Method:

1. Choose split or merge, each w.p. 1/2.

2. If a split step is selected:

(a) If K0 = 0, we do nothing (we exit the split/merge step), since there is no cluster to split

(or move to either F0 or F1).

(b) Else, we choose a cluster from the common part (F0) uniformly. We then propose to:

• move this cluster to one of the two idiosyncratic parts (F1, F2), if the data associated

with the chosen cluster come only from the first or the second data set, respectively.

• split this cluster to two clusters, one in each of the idiosyncratic parts, if the related

data come from both data sets. In such a case, the data from the first group will be

moved to the new cluster in F1 and the data from the second group will be moved

to the new cluster in F2.

Next, we calculate the acceptance probability (according to the case above that applies)

and accept the split with this probability. If the step is accepted, we transfer the data

from the first data set associated to the selected cluster (if any) to a (new) cluster to the

first idiosyncratic part and the data from the second data set allocated to the cluster to

be split (again, if any) to a (new) cluster to the second idiosyncratic part. Analytically,we

have:

i. If we propose to move a cluster from F0 to F1, say the cluster corresponding to the

d-th discrete value in F0, φ0d, the acceptance probability will be:

α(c, c′) = min
{

1, M1

M0

Γ(M1+n1+n2+m01)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n2+m01)

K0

(K1+2)(K2+1)−1

}

.

If the step is approved, we change the indicators of the data associated with the

61



removed cluster as follows:

If r1i = 0, s1i = d, we set r1i = 1 and s1i = K1 + 1 (i.e. we create a new cluster in

F1).

Additionally, since we destroy the selected cluster from F0, we must adjust the sji

of the rest of the observations from both data sets allocated in F0. What we actually

do is to reduce each sji by 1, if sji > d and rji = 0.

We also transfer the value of the selected cluster to the new cluster created, K0 is

reduced by 1 and K1 is increased by 1.

ii. If we propose to move a cluster from F0 to F2, i.e. when m01 = 0, similar things as

above apply. The acceptance probability will now be:

Case (2bii) : α(c, c′) = min
{

1, M1

M0

Γ(M1+n1+n2+m02)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n2+m02)

K0

(K1+1)(K2+2)−1

}

.

iii. If we propose to split a cluster to both F1 and F2, say the cluster corresponding to

the d-th discrete value in F0, φ0d, the acceptance probability will be:

α(c, c′) = min
{

1, M0

M2
1

Γ(M1+n1+n2−m01−m02)Γ(M1+n1)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n1−m01)Γ(M1+n2−m02)

Γ(m01+m02)
Γ(n1)Γ(m02)

×
√

(m01B+S)(m02B+S)
S[(m01+m02)B+S]

K0

(K1+2)(K2+2)−1 exp{− 1
2 [

(m01+m02)m2−2m(
∑
Y ′
1+
∑
Y ′
2 )−B

S (
∑
Y ′
1+
∑
Y ′
2 )2

(m01+m02)B+S

−m01m
2−2m

∑
Y ′
1−B

S (
∑
Y ′
1)2

m01B+S − m02m
2−2m

∑
Y ′
2−B

S (
∑
Y ′
2 )2

m02B+S ]}
}

.

If the split is accepted, we change the indicators as follows:

If r1i = 0, s1i = d, we set r1i = 1 and s1i = K1 + 1 (i.e. we create a new cluster in

F1).

If r2i = 0, s2i = d, we set r2i = 1 and s2i = K2 + 1 (i.e. we create a new cluster in

F2).

We also reduce the sji that are larger than d (and with corresponding rji = 0) by

1.

We set the new clusters equal to the value of the split cluster, K0 is reduced by 1,

and both K1 and K2 are increased by 1.

Otherwise, we do nothing.

3. If a merge step is selected:

(a) If K1 = K2 = 0, we exit, since there are no clusters to merge (or move to F0).

(b) Otherwise, if only K1 = 0, we propose to move a cluster from the second idiosyncratic

part to the common one. In other words, we propose merging a cluster from F2 with an

empty cluster from F1.

In this case, we uniformly choose a cluster from the second idiosyncratic part (corre-

sponding to the discrete, say, φ2d) and move it to the common part. We accept this step
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with probability:

α(c, c′) = min
{

1, M0

M1

(K1+1)(K2+1)−1
K0+1

}

.

If we accept the step, we do the following:

If r2i = 1, s2i = d, we set r2i = 0, s2i = K0 + 1 (i.e. we create a new cluster in F0).

Additionally, if r2i = 1, s2i > d, we reduce s2i by 1.

We set the new cluster in F0 equal to φ2d, reduce K2 by 1 and increase K0 by 1.

If the step is rejected, we do nothing.

(c) Similarly, if only K2 = 0 (with also the same acceptance probability).

(d) If both K1 and K2 are positive, we uniformly choose a cluster from F1 or an empty

cluster (in which case we just move a cluster from F2 to F0), i.e each cluster (and the

empty cluster) is chosen with probability 1
K1+1 . We similarly choose a cluster from F2 or

an empty cluster. The possibility of merging an empty cluster from F1 or F2 is needed in

order to have reversibility of the MCMC. We must also note that, if two empty clusters

are chosen, we repeat the above draw, since this merging is prohibited (again in order

to have a reversible MCMC algorithm).

i. If we (only) choose an empty cluster from F1, we propose to transfer the selected

cluster from F2 to F0 and accept it with probability:

α(c, c′) = min
{

1, M0

M1

Γ(M1+n1+n2−m2)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n2−m2)

(K1+1)(K2+1)−1
K0+1

}

.

If the step is accepted, we perform the transfer as in (b), otherwise we exit.

ii. Similarly as in (c), if an empty cluster from F2 is chosen. In this case the acceptance

probability will be:

α(c, c′) = min
{

1, M0

M1

Γ(M1+n1+n2−m1)Γ(M1+n1)
Γ(M1+n1+n2)Γ(M1+n1−m1)

(K1+1)(K2+1)−1
K0+1

}

.

iii. If two existing clusters are chosen, corresponding to, say, (φ1d, φ2b) we propose

merging the two clusters in a common cluster in F0. The acceptance probability is:

α(c, c′) = min
{

1, M0

M2
1

Γ(M1+n1+n2−m1−m2)Γ(M1+n1)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n1−m1)Γ(M1+n2−m2)

Γ(m1+m2)
Γ(n1)Γ(m2)

×
√

(m1B+S)(m2B+S)
S[(m1+m2)B+S]

(K1+1)(K2+1)−1
K0+1 exp{− 1

2 [
(m1+m2)m

2−2m(
∑
Y ′
1+
∑
Y ′
2 )−B

S (
∑
Y ′
1+
∑
Y ′
2 )2

(m1+m2)B+S

−m1m
2−2m

∑
Y ′
1−B

S (
∑
Y ′
1 )2

m1B+S − m2m
2−2m

∑
Y ′
2−B

S (
∑
Y ′
2 )2

m2B+S ]}
}

,

and if the step is accepted, we transfer the data associated with them to one com-

mon (new) cluster in the common part, as follows:

If r1i = 1, s2i = d, we set r2i = 0, s2i = K0 + 1.

If r2i = 1, s2i = b, we set r2i = 0, s2i = K0 + 1.

If r1i = 1, s1i > d, we decrease s1i by 1.
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If r2i = 1, s2i > b, we decrease s2i by 1.

We set the value of the created cluster equal to either of the two selected clusters,

decrease K1 and K2 by 1 and increase K0 by 1.

Otherwise, we do nothing.

The reason for including empty clusters when randomly picking clusters in the merge step is to

guarantee the reversibility of the MCM Chain. This is true because the act of merging an existing

cluster from, say F1, with an empty cluster (i.e. moving a cluster from F1 to F0) is the reverse of

moving a cluster from F0 to F1, which will happen if we propose to split a cluster in F0 that is

associated only with data from F ∗
1 .

Notice also that in this algorithm we might do nothing at some steps. For example if we choose

to propose a split step, but we do not have any clusters in the common component. A possible

variation of this method could be to first examine the configuration of the clusters in F0, F1 and F2

and then propose a mix or a split step, based on this configuration. For example, if there are no

clusters in F0, then with probability 1 we propose a mix step. If all components are non-empty, we

choose randomly split/merge, each w.p. 1/2. The algorithm in this case will follow the same basic

structure and updating schemes when a split or a merge step is accepted, and it is therefore very

similar to the algorithm above.

The details of the derivation of the acceptance probabilities for the basic algorithm are presented

in Section A1 of the Appendix. This subsection in the Appendix also discusses the differences in

the acceptance probabilities if the alternative mix-split method is applied (i.e. when the number of

clusters in the components are examined before proposing a split or a merge step). Finally, notice

also that these probabilities are calculated after integrating out the weight ε and the discrete values

of the clusters φji (in order to improve the efficiency of this step), so those quantities must be

updated just after this split/merge step.

3.3.1 Mix-split step for the model of Müller et al. (2004):

As mentioned before, the above step can be also used in the case of simulating from the posterior

distributions of the parameters of the model of Müller et al. (2004). The method will be the same,

as will also be the transition probabilities (since they only depend on the method of proposing mix

and split steps). The only difference will be the ratio of probabilities of the indicators with and

without the proposed step, f(c′)
f(c) :

Following the same procedure as before, it can be seen that

f(c| · · · ) ∝
∫

f(c, ε|M)dε

∫

f(Y |φ, c, S)f(φ|m,B)dφ.

64



The second integral
∫
f(Y |φ, c, S)f(φ|m,B)dφ will be the same as before, whereas the first integral

can be easily seen to be equal to f(s|r,M)
∫ 1

0 f(r|ε)f(ε)dε.

It is the part that is different from the previous model, due to the different prior of the weight and

the fact that there are three precision parameters here. In this case, this integral becomes:
∫

f(c, ε|M)dε = f(s|r,M)

∫ 1

0

f(r|ε)f(ε)dε

=
∏

i:r1i=1

f(s1i|M1)
∏

i:r2i=1

f(s2i|M2)
∏

j,i:rji=0

f(sji|M0)

∫ 1

0

f(r|ε)f(ε)dε

= · · ·

= MK0
0 MK1

1 MK2
2

Γ(M0)

Γ(M0 + n0)

Γ(M1)

Γ(M1 + n1)

Γ(M2)

Γ(M2 + n2)

K0∏

i=1

Γ(n0,i)

K1∏

i=1

Γ(n1,i)

K2∏

i=1

Γ(n2,i)

×
[

π0δ1(r) + π1δ0(r) + (1 − π0 − π1)
B(aε +N −∑ rji, bε +

∑
rji)

B(aε, bε)

]

where the terminology used is the same as in Section 1.2.2. The ratios f(c′)
f(c) are now easily calculated,

using the above equation and the results of the previous model about the integral with respect to

the φ’s:

Split proposal:

1. If m01 = 0, i.e. we move a cluster from F0 to F2:

f(csplit)
f(c) = M2

M0

Γ(M2+n2)Γ(M0+n0)
Γ(M2+n2+m02)Γ(M0+n0−m02)

g(rsplit)
g(r) .

2. If m02 = 0, i.e. we move a cluster from F0 to F1:

f(csplit)
f(c) = M1

M0

Γ(M1+n1)Γ(M0+n0)
Γ(M1+n1+m01)Γ(M0+n0−m01)

g(rsplit)
g(r) .

3. If m01 > 0, and m02 > 0, i.e. we split a cluster from F0 to both F1 and F2:

f(csplit)
f(c) = M1M2

M0

Γ(M0+n0)Γ(M1+n1)Γ(M2+n2)
Γ(M0+n0−m01−m02)Γ(M1+n1+m01)Γ(M2+n2+m02)

Γ(m01)Γ(m02)
Γ(m01+m02)

g(rsplit)
g(r)

√
S[(m01+m02)B+S]

(m01B+S)(m02B+S)×

exp{ 1
2 [

(m01+m02)m2−2m(
∑
Y ′
1+
∑
Y ′
2 )−B

S (
∑
Y ′
1+
∑
Y ′
2 )2

(m01+m02)B+S −m01m
2−2m

∑
Y ′
1−B

S (
∑
Y ′
1)2

m01B+S −m02m
2−2m

∑
Y ′
2−B

S (
∑
Y ′
2 )2

m02B+S ]}.

Merge proposal:

1. If we move a cluster from F2 to F0 (in this case, m1 = 0):

f(cmerge)
f(c) = M0

M2

Γ(M0+n0)Γ(M2+n2)
Γ(M0+n0+m2)Γ(M2+n2−m2)

g(rmerge)
g(r) .

2. If we move a cluster from F1 to F0 (m2 = 0):

f(cmerge)
f(c) = M0

M1

Γ(M0+n0)Γ(M1+n1)
Γ(M0+n0+m1)Γ(M1+n1−m1)

g(rmerge)
g(r) .

3. If we merge a cluster from F2 and a cluster from F1 to F0 :

f(cmerge)
f(c) = M0

M1M2

Γ(M0+n0)Γ(M1+n1)Γ(M2+n2)
Γ(M0+n0+m1+m2)Γ(M1+n1−m1)Γ(M2+n2−m2)

Γ(m1+m2)
Γ(m1)Γ(m2)

g(rmerge)
g(r)

√
(m1B+S)(m2B+S)
S[(m1+m2)B+S] ×

exp{− 1
2 [

(m1+m2)m2−2m(
∑
Y ′
1+
∑
Y ′
2 )−B

S (
∑
Y ′
1+
∑
Y ′
2 )2

(m1+m2)B+S −m1m
2−2m

∑
Y ′
1−B

S (
∑
Y ′
1 )2

m1B+S −m2m
2−2m

∑
Y ′
2−B

S (
∑
Y ′
2)2

m2B+S ]}.
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In all the above m01,m02,m1 and m2 are the same as in the case of my model. I also introduced the

notation g(r) =
[

π0δ1(r) + π1δ0(r) + (1 − π0 − π1)
B(aε+n0,bε+n1+n2)

B(aε,bε)

]

in order to avoid too long

expressions here.

Finally, the acceptance probabilities are, in each case, the minimum of 1 and of the number

resulting from multiplying the ratio calculated above with the ratio of the appropriate transition

probabilities q.

3.4 Simulated Data

In this section I present some of the algorithms discussed above for fitting Model (2.1.4) and the

model of Müller et al. (2004) applied to three simulated data sets.

3.4.1 The data

Example 1 (continued):

The first data set is the one used before in order to illustrate some properties of the models and the

corresponding algorithms:

p(Y1i) =
7

10
N(1, 1) +

3

10
N(−10, 1), i = 1, 2, . . . , 100

p(Y2i) =
3

10
N(1, 1) +

7

10
N(8, 1), i = 1, 2, . . . , 100.

Example 2:

The second data set was taken from the following distributions:

Y1i
iid∼ 5

10
N(1, 1) +

5

10
N(−10, 1), i = 1, 2, . . . , 100

Y2i
iid∼ 7

10
N(1, 1) +

3

10
N(8, 1), i = 1, 2, . . . , 100.

Example 3:

The last data set is taken from the same underlying distributions as in the previous example, with

the difference that now there are 200 data from each F ∗
j :

Y1i
iid∼ 5

10
N(1, 1) +

5

10
N(−10, 1), i = 1, 2, . . . , 200

Y2i
iid∼ 7

10
N(1, 1) +

3

10
N(8, 1), i = 1, 2, . . . , 200.
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The reason for considering this data set is to examine the intuition that the more data there are, the

closer our results will be to those data and the distributions that created them. This will be mostly

exhibited in the posterior distributions of ε,M0,M1,M2 (for the model of Müller et al. (2004)) and

x and y (for Model (2.1.4)).

3.4.2 Computations

I simulated from the posterior distributions of the parameters of interest using the MCMC algorithms

presented above. The main issue about the implementation of these algorithms is the additional

split/merge step, and its effect on the mixing of the chains.

Example 1:

First, consider the model of Müller et al. (2004). Figure 3.3 shows the trace plots for the weight ε

with (right) and without (left) the mix-split step. From this graph, it seems that mixing is improved

when this extra step is applied, although not too much. We arrive at the same conclusion by looking

at the rate of jumps between the two modes in the posterior of ε (0 and 0.3) of our chain, since the

mix-split step increases this percentage from 1.12% to 1.22%. The acceptance rate of the split steps

was 3.94% and the corresponding rate for the merge steps was 3.92%.
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Figure 3.3: Trace plot for the posterior of ε without (left) and with the extra mix-split step
(right) for the model of Müller et al. (2004) for the first simulated data set.

Next, we look at the same data, applied to Model (2.1.4). As can be seen from Figure 3.4, the extra

mix-split step (7.0% acceptance of split steps and 6.9% acceptance of merge steps) enhances the

mixing of the chain even more than for the previous model. This can also be seen by the difference

in the percentage of jumps between the two modes of the posterior of ε (0.23% without and 0.74%

with the extra mix-split step).

Example 2:

67



0 5 10 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 5 10 15

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 3.4: Trace plot for the posterior of ε without (left) and with the extra mix-split step
(right) for Model (2.1.4) for the first simulated data set.

For the Müller et al. (2004) model, 3.4% of split and the same percentage for merge steps were

accepted. The improvement of mixing is illustrated in Figure 3.5, and it is particularly interesting

to note that without the mix-split step, the mode at 0 is not visited at all! Therefore, we can imagine

that a case where this extra split-merge step could be particularly important is when one of the two

modes is really small and the basic algorithm (i.e. without this extra step) might miss it completely.

Finally, note that when the extra split/merge step is used, we have jumps between the two modes in

0.011% of the steps in the MCM Chain, whereas without this step this percentage is, as mentioned

above, zero.
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Figure 3.5: Trace plot for the posterior of ε without (left) and with the extra mix-split step
(right) for the model of Müller et al. (2004) for the second simulated data set.

The difference in mixing with and without the mix-split step for Model (2.1.4) is seen in Figure 3.6.

Again, there is evidently a substantial improvement in mixing caused by the 3.4% acceptance rate

of split steps and 3.4% acceptance of merge steps. This is another case where the extra mix-split
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step will be helpful, since the transitions of the chain between the two modes for ε without it are not

so frequent (only 0.0013% of all the steps, whereas when the extra step is applied, this percentage

becomes 0.22%).
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Figure 3.6: Trace plot for the posterior of ε without (left) and with the extra mix-split step
(right) for Model (2.1.4) for the second simulated data set.

Another point to be made here is that trace plots like the one without the mix-split step can be

deceiving and lead to wrong inference, especially when a small number of posterior samples is taken.

This would be the case, for example, if one only takes the first 30000 or from the 60000th to the

100000th step of our chain, since then the mode at 0 will be overestimated. This is another reason for

applying the mix-split step to the algorithms and improve the mixing of the corresponding chains.

3.4.3 Posterior inference

In this subsection I present the results for the posterior distributions of the parameters of interest

in both my basic proposed model and the model of Müller et al. (2004). Since it is clear from above

that including the additional mix-split step improves mixing, I will only present the results with this

step included in the algorithms.

Example 1:

We first apply the model of Müller et al. (2004).

The kernel density estimate of the posterior distribution of ε is shown in Figure 3.7. As mentioned

above, this distribution is bimodal: a larger mode at the minimum of the values of the weights that

created the data (i.e. 0.3 and 0.7) and a smaller one around 0. In this case, only 8.3% of the posterior

mass is close to zero (less that 0.01). As explained in Section 2, those two cases (i.e. ε ≃ 0.3 and 0)

are the two most parsimonious models that sufficiently describe the data. In the case where ε is

very close to 0, we have: F1 ≡ 7
10N(1, 1) + 3

10N(−10, 1), F2 ≡ 3
10N(1, 1) + 7

10N(8, 1) and F0 is the
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Figure 3.7: Kernel density estimate for the posterior of ε for the model of Müller et al.
(2004) for the first simulated data set.

empty set.

In the case of ε ≃ 0.3, we have: F1 ≡ 4
7N(1, 1) + 3

7N(−10, 1), F2 ≡ N(8, 1) and F0 ≡ N(1, 1).

This can be seen in the predictive densities of F1, F2 and F0 in Figure 3.8. Notice that, due to
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Figure 3.8: Predictive densities for the component distributions F1 (top), F2 (middle) and
F0 (bottom) (left) and of F ∗

1
(top) and F ∗

2
(bottom) (right) for the model of Müller et al.

(2004) for the first simulated data set.

the much higher probability of the second case (ε ≃ 0.3), these predictive densities will reflect the

representation of F0, F1 and F2 induced in this case. The effect of the other possibility (ε = 0) can

be seen in the tiny mode in the predictive density of F2 around 1.

In the same figure the predictive densities of F ∗
1 and F ∗

2 were also plotted. As one would expect,

those predictive distributions are very close (but of course, not exactly the same) to the distributions
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that created the data, since the data size is large enough.

In Figure 3.9 I have plotted the posterior distributions of the three concentration parameters

M0,M1,M2. It is also interesting to see the interaction between those parameters with the number

of clusters Kj in each component distribution Fj , j = 0, 1, 2, so those quantities were plotted in

the same graph. As one would expect, for higher values of the concentration parameter, higher

probabilities are given to larger number of clusters, as suggested in equation (1.1.4).
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Figure 3.9: Posterior distributions of M0,M1 and M2 (left) and posterior samples for
K0,K1 and K2 (right) for the model of Müller et al. (2004) for the first simulated data
set.

Finally, the posterior distributions for S,m and B are shown in Figure 3.10, whereas the mean,

median and 95% credible intervals (C.I.) for all the above parameters (except ε, since its posterior

distribution is bimodal and, therefore, it does not make much sense talking about its mean and

quantiles) are shown in Table 3.1.

M0 M1 M2 K0 K1 K2 S m B
Mean 0.250 0.695 0.175 1.183 3.535 1.347 1.067 -0.478 32.124

Median 0.0843 0.545 0.0773 1 3 1 1.060 -0.473 27.024
2.5th percentile 0.00019 0.0516 0.00016 - - - 0.828 -4.376 11.276

97.5th percentile 1.510 2.207 0.894 - - - 1.342 3.440 82.897

Table 3.1: Mean, median and 95% C.I. for the parameters in the model of Müller et al.
(2004) for the first data set (Note: I omit the 2.5-th and 97.5-th quantiles for the Kj ’s as
they are discrete quantities).

Next, Model (2.1.4) was applied to the same data. The posterior of the weight is given in

Figure 3.11, and it is seen that the better mixing of this chain results in a more visually appealing

kernel density estimate, reducing the previously huge mode at 0. The modes of this distribution are
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Figure 3.10: Posterior distributions for S (top), m (middle) and B (bottom) for the model
of Müller et al. (2004) for the first simulated data set.

the same as with the model of Müller et al. (2004), however in this case we see a higher mode at

0 (57.9% of the posterior sample for ε was less than 0.01) and a less clear (although still obvious)

discrimination of the two modes. This different behaviour, compared to the previous model, is

definitely the interaction between the weight and the M ’s, both a priori and a posteriori. The
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Figure 3.11: Kernel density estimate for the posterior of ε for Model (2.1.4) for the first
simulated data set.

interpretation of the component distributions Fj for the two modes of ε is the same as before. As a

result of the different weights of those two modes, the predictive densities of the F ’s (Figure 3.12,

left) are different, but not excessively. On the contrary, the predictive densities of F ∗
1 and F ∗

2
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(Figure 3.12, right) are the same as before, which is what one would expect due to the large enough

number of data.
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Figure 3.12: Predictive densities for the component distributions F1 (top), F2 (middle) and
F0 (bottom) (left) and of F ∗

1
(top) and F ∗

2
(bottom) (right) for the basic proposed model

for the first simulated data set.

Next, I plotted the posterior distributions of M0 and M1, as well as those of the reparametri-

sation y = M0

M0+M1
, x = M0 + M1. The results are shown in Figure 3.13, and the posteriors of

the cluster sizes Kj, j = 0, 1, 2 are shown in Figure 3.14. The posterior distributions of the other

three parameters, S,m and B were similar as before, so I omit plotting them. Again, we see a
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Figure 3.13: Posterior distributions ofM0 (top) and M1 (bottom) (left) and of y (top) and x
(bottom) (right) for Model (2.1.4) for the first simulated data set.

positive correlation between the value of M and the number of clusters in each component. The

mean, median and 95% C.I. for the parameters in this model are shown in Table 3.2.

Apart from the obvious difference that we only have two M ’s here, instead of 3 in the model of
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Figure 3.14: Posterior distributions of K0, K1 and K2 for Model (2.1.4) for the first simu-
lated data set.

M0 M1 y x K0 K1 K2 S m B
Mean 0.188 0.695 0.281 0.663 0.667 3.218 2.350 1.081 -0.241 31.416

Median 0.117 0.405 0.229 0.585 1 3 2 1.076 -0.228 26.473
2.5th percentile 0.008 0.074 0.0163 0.150 - - - 0.833 -4.139 11.013

97.5th percentile 0.771 1.274 0.779 1.626 - - - 1.358 3.618 81.055

Table 3.2: Mean, median and 95% C.I. for the parameters in Model (2.1.4) for the first data
set (I omit the 2.5-th and 97.5-th quantiles for the Kj’s as they are discrete quantities).

Müller et al. (2004), we see that the main differences here, compared to Table 3.1, are regarding

these M ’s. These differences are also due to the fact that there is interaction between those quan-

tities and the weight ε. In this spirit, it is interesting to note that the posterior mean for y is very

close to 0.3, which makes sense since y is the mean of ε a priori, and also the posterior distribution

of y is left-skewed, in order to accommodate the mode of ε at 0.

Example 2:

First I apply Model (1.2.14) to these data.

As before, the posterior distribution of ε (Figure 3.15) is bimodal: a larger mode at 0.54 and a smaller

one around 0, containing only 0.19% of the posterior mass of ε. Normally, instead of around 0.6, the

larger mode should have been at the minimum of the weights that created the data, i.e. 0.5. However,

due to the not so large data size, in fact the number of Y1i that can be assigned to the N(1, 1) cluster

was 54. As a result, in practise it is like having data Y1i
iid∼ 54

100N(1, 1)+ 46
10N(−10, 1), i = 1, 2, . . . , 100

and therefore the smaller of the two weights is 0.54.

As before, the two values, ε = 0.6 and 0 are the two most parsimonious models that sufficiently de-
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Figure 3.15: Posterior distribution of ε for the model of Müller et al. (2004) for the second
simulated data set.

scribe the data. In the case where ε is very close to 0, we have: F1 ≡ 54
100N(1, 1)+ 46

100N(−10, 1), F2 ≡
7
10N(1, 1) + 3

10N(8, 1) and F0 is the empty set. In the case of ε ≃ 0.6, we will more or less have:

F1 ≡ N(−10, 1), F2 ≡ 16
46N(1, 1) + 30

46N(8, 1) and F0 ≡ N(1, 1).

This can be seen in the predictive densities of F1, F2 and F0 in Figure 3.16. Again, due to the high

probability of the case ε = 0.6, these predictive densities are almost identical to the ones correspond-

ing in this case. The effects of the case ε = 0, can again be seen in the small mode in the predictive

density of F2 around 1.

In the right part of the same figure I plotted the predictive densities of F ∗
1 and F ∗

2 , which are very

close to the empirical distributions of the data (and not exactly the distributions that created the

data, as explained above). In Figure 3.17 the kernel density estimates of the posterior distributions

of the three concentration parameters, M0,M1,M2, are shown.

Finally, Table 3.3 states the mean, median and 95% credible intervals (C.I.) for all parameters,

except ε.

M0 M1 M2 K0 K1 K2 S m B
Mean 0.126 0.137 0.222 1.166 1.107 1.404 0.828 0.564 31.641

Median 0.0539 0.0060 0.101 1 1 1 0.823 0.585 25.266
2.5th perc 0.00012 0.00013 0.00022 - - - 0.671 -3.686 10.036

97.5th perc 0.654 0.711 1.125 - - - 1.015 4.705 91.403

Table 3.3: Mean, median and 95% C.I. for the parameters in the model of Müller et al.
(2004) for the second data set.
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Figure 3.16: Predictive densities for the component distributions F1 (top), F2 (middle) and
F0 (bottom) (left) and of F ∗

1
(top) and F ∗

2
(bottom) (right) for the model of Müller et al.

(2004) for the second simulated data set.

As can be seen from this table, the differences between the M ’s are very small, so we cannot actually

see the association between higher values of the concentration parameters and higher number of

clusters.

Consider now Model (2.1.4) for the same data. The mean, median and 95% C.I. for the

parameters in this model are shown in Table 3.4.

M0 M1 y x K0 K1 K2 S m B
Mean 0.218 0.183 0.529 0.402 1.249 1.212 1.402 0.825 0.560 31.031

Median 0.149 0.128 0.542 0.326 1 1 1 0.821 0.580 24.901
2.5th perc 0.0096 0.088 0.0596 0.046 - - - 0.666 -3.644 9.845

97.5th perc 0.833 0.672 0.951 1.191 - - - 1.012 4.655 89.424

Table 3.4: Mean, median and 95% C.I. for the parameters in Model (2.1.4) for the second
data set.

The posterior distribution of ε is given in Figure 3.18. Two modes at 0 and 0.6 are present and,

as for the first data set, the mode at 0 is larger than in the case of the model of Müller et al. (2004)

(only 0.19% were less than 0.01), but not as large as in the case of the previous data set (4.4% of

the posterior sample for ε was less than 0.01 here).

The predictive densities are shown in Figure 3.19 for the component distributions Fj (left) and

the correlated distributions F ∗
j (right). The latter are as one would expect, in particular resembling

the histogram of the data. The former are in accordance with the two modes (and the corresponding

weights) of the weight and the interpretation of the component distributions in each of them, in a

similar fashion as when the model of Müller et al. (2004) was applied to the same data. More

specifically, for F1 there is only one mode at -8, for F2 there is a large mode at 10 and a much
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smaller one at 1 (caused when ε is close to 0) and for F0 a mode at 1. Both of those graphs are

almost the same as the corresponding ones in the case of the model of Müller et al. (2004).

Next, in Figure 3.20 the posterior distributions of M0 and M1 are plotted, as well as those of

the reparametrisation y = M0

M0+M1
, x = M0 +M1.

We also see that the posterior mean for y is close to the larger posterior mode of ε at 0.6, which is

a result of the fact that y is the prior mean of ε. Also, since the mode at 0 is a very small one, we

cannot see much skewness in the posterior of y, which would otherwise account on accommodating

the mode of ε at 0.

Example 3:

For the model of Müller et al. (2004) we see that the largest mode in the posterior of ε has moved

to the more “correct” value of 0.5, whereas the mode at 0 is not affected (Figure 3.21).

For ε ≃ 0, we have: F1 ≡ 5
10N(1, 1)+ 5

10N(−10, 1), F2 ≡ 7
10N(1, 1)+ 3

10N(8, 1) and F0 is the empty

set. In the case of ε ≃ 0.5, we have: F1 ≡ N(−10, 1), F2 ≡ 2
5N(1, 1) + 3

5N(8, 1) and F0 ≡ N(1, 1).

This can be seen in the predictive densities of F1, F2 and F0 in Figure 3.22.

Notice also that the predictive densities of F ∗
1 and F ∗

2 (not shown) will now be very close not only

to the empirical distributions of the data, but also to the distributions that created the data, since

here the data sizes are large enough.

Finally, in Table 3.5 the mean, median and 95% credible intervals (C.I.) for all the main parameters

(except ε) are shown.

M0 M1 M2 K0 K1 K2

Mean 0.126 0.127 0.490 1.182 1.165 2.860
Median 0.0517 0.0557 0.369 1 1 3

2.5th perc 0.00011 0.00012 0.0306 - - -
97.5th perc 0.650 0.711 1.632 - - -

Table 3.5: Mean, median and 95% C.I. for the parameters in the model of Müller et al.
(2004) for the third data set.

In the case of Model (2.1.4), we have the same modes for ε (0 and 0.5), with the difference being

at the relative mass of those modes (Figure 3.23). Specifically, the mode at 0 is substantially larger

than in the case of the previous model, with 20.9% of the posterior values of ε being less than 0.01

(compared to the corresponding 1.0% in the case of the model of Müller et al. (2004) for the same

data).

The predictive densities for the component distributions Fj are shown in Figure 3.24, and reflect

what one would expect those component distributions to be under the two different cases, ε =

0 and ε = 0.5 and the weights of these cases. Notice that, due to the difference in the mass of ε at
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0 from the previous model, the predictive distributions for F1 and F2 are different than before. As

for the predictive densities of F ∗
1 and F ∗

2 , again those are the same as the distributions creating the

data.

Finally, the mean, median and 95% C.I. for the parameters are shown in Table 3.6.

M0 M1 y x K0 K1 K2

Mean 0.200 0.290 0.392 0.490 1.109 1.600 2.570
Median 0.139 0.241 0.373 0.426 1 1 2

2.5th percentile 0.0098 0.0386 0.329 0.097 - - -
97.5th percentile 0.749 0.817 0.853 1.239 - - -

Table 3.6: Mean, median and 95% C.I. for the parameters in Model (2.1.4) for the third
data set.
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Figure 3.17: Posterior distributions of M0,M1 and M2 for the model of Müller et al. (2004)
for the second simulated data set.
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Figure 3.18: Kernel density estimate for the posterior of ε for Model (2.1.4) for the second
simulated data set.
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Figure 3.19: Predictive densities for the component distributions F1 (top), F2 (middle) and
F0 (bottom) (left) and of F ∗

1
(top) and F ∗

2
(bottom) (right) for Model (2.1.4) for the second

simulated data set.
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Figure 3.20: Posterior distributions ofM0 (top) and M1 (bottom) (left) and of y (top) and x
(bottom) (right) for Model (2.1.4) for the second simulated data set.
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Figure 3.21: Posterior distribution of ε for the model of Müller et al. (2004) for the third
simulated data set.
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Figure 3.22: Predictive densities for the component distributions F1 (top), F2 (middle) and
F0 (bottom) for the model of Müller et al. (2004) for the third simulated data set.
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Figure 3.23: Kernel density estimate for the posterior of ε for Model (2.1.4) for the third
simulated data set.

3.5 Algorithms For the Extended Models

The MCMC algorithm described in Section 3.2 can be extended accordingly and applied to each

of the three-dimensional models presented in section 2.2. The hyperparameters can be chosen to

express any prior beliefs concerning the parameters of the model, and the additional techniques used

to improve the performance of the algorithm in the two-dimensional case, for example updating the
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Figure 3.24: Predictive densities for the component distributions F1 (top), F2 (middle) and
F0 (bottom) for the basic proposed model for the third simulated data set.

discrete values φji, can be directly applied here, too.

On the other hand, for the extended models, apart from the additional computational burden,

there is also an additional complexity in terms of notation. For example, in the previous case we

used binary indicators rji, taking the value 0 if the observation Yji was in the common part of the

correlated distributions, and 1 otherwise. Here, apart from the fact that each rji can take four

possible values (since there are four components in each distribution F ∗
j ), we also have the issue

that the same value for rji, rj′i′ , j 6= j′ might correspond to different components, since we do not

have the same components in all three distributions. However, these issues result in a small increase

in the overall complexity of the algorithm and should not be overemphasised.

Finally, another comment to be made here is that, in order to have dimensional coherence for

the prior distributions of some parameters, we might consider matching their hyperparameters with

the hyperparameters of the simpler models. For example, consider the concentration parameters in

the higher dimensional version of my proposed model (2.1.4), i.e. Model (2.2.12). If we want to have

some form of dimensional coherence, and since the equivalent to one concentration parameter in

Model (2.1.4) is the sum of two concentration parameters in the extended model, we might set a0 =

a1/2 and b0 = b1, where a0, b0 are the hyperparameters in (2.2.12) and a1, b1 are the hyperparameters

for M0 and M1 in (2.1.4). In this way, for example M123 +M12 ∼ Ga(2a0, b0) ≡ Ga(a1, b1), due to

the additive property of the gamma distribution.
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3.6 Simulating the Model Via Direct Normalisation and the

Slice Sampler

In this subsection a modification of the algorithms presented above is discussed, using slice samplers

in some steps in the MCMC algorithm. The model produced by directly using the normalisation

technique to gamma processes is ideal in presenting this method.

The aforementioned model, within the context mentioned in Section 3.1 is the following:

Yji ∼ N(µji, S), i = 1, 2, . . . , Nj, j = 1, 2

µji ∼ F ∗
j , where F ∗

j = εjF0 + (1 − εj)Fj

F0 ∼ DP (M0, H), F1, F2
iid∼ DP (M1, H), where H ≡ N(m,B)

ε1, ε2 ∼ Be(M0,M1), but not independent

M0,M1
iid∼ Ga(a0, b0), (m,B) ∼ N(m0, A) × IGa(c, 1/cC), S ∼ IGa(q, 1/qR).

In the above model, the dependence of the two weights is due to the term G0(Ω) which appears in

the expressions of both, and their joint distribution is given at the end of page 30.

On this occasion, however, a different parametrisation is used:

Set γ0 = G0(Ω), γ1 = G1(Ω) and γ2 = G2(Ω). Then, γ0 ∼ Ga(M0, 1), γ1 ∼ Ga(M1, 1) and γ2 ∼
Ga(M1, 1) and are mutually independent. Then, ε1 can be replaced by γ0

γ0+γ1
and ε2 by γ0

γ0+γ2
and

the above model becomes:

Yji ∼ N(µji, S), i = 1, 2, . . . , Nj, j = 1, 2

µji ∼ F ∗
j , where F ∗

j =
γ0

γ0 + γj
F0 +

γj
γ0 + γj

Fj , j = 1, 2

F0 ∼ DP (M0, H), Fj
iid∼ DP (M1, H), where H ≡ N(m,B) (3.6.1)

γ0 ∼ Ga(M0, 1), γ1 ∼ Ga(M1, 1) and γ2 ∼ Ga(M1, 1) and mutually independent

M0,M1
iid∼ Ga(a0, b0), (m,B) ∼ N(m0, A) × IGa(c, 1/cC), S ∼ IGa(q, 1/qR).

We can simulate this model using an MCMC algorithm similar to the one used for Model (2.1.4).

The differences will be:

1. ε in the code for Model (2.1.4) should be replaced by ε1 = γ0
γ0+γ1

or ε2 = γ0
γ0+γ2

, depending on

whether we are updating parameters related to F ∗
1 or F ∗

2 .

84



2. The full conditionals of M0 and M1, due to the different prior of the weights (actually the

priors of the γ’s), which also involve the M ’s. In this case, we have:

f(M0,M1| · · · ) ∝ f(M0)f(M1)f(s|r,M0,M1)f(γ0|M0)f(γ1|M1)f(γ2|M1)

⇒ f(M0,M1| · · · ) ∝ f(M0)f(M1)f(K0|M0)f(K1|M1)f(K2|M1)f(γ0|M0)f(γ1|M1)f(γ2|M1).

So, for M0 we get: f(M0| · · · ) ∝Ma0+K0−1
0 e−b0M0γM0

0
1

Γ(M0+n0)

and for M1 : f(M1| · · · ) ∝Ma0+K1+K2−1
1 e−b0M1γM1

1 γM1
2

1
Γ(M1+n1)Γ(M1+n2)

where Kj and nj are as before.

Since the above distributions are not of any standard form, Metropolis-Hastings updating

steps can be used to simulate from them.

3. The full conditional distributions of the γ′s, which we will simulate using slice sampling

methods.

The joint full conditional distribution for the γ’s will be:

f(γ0, γ1, γ2| · · · ) ∝ f(γ0|M0)f(γ1|M1)f(γ2|M1)f(r|γ0, γ1, γ2)

∝ γM0−1
0 e−γ0γM1−1

1 e−γ1γM1−1
2 e−γ2

∏

i:r1i=1

(
γ1

γ0 + γ1

)

×

∏

i:r1i=0

(
γ0

γ0 + γ1

)
∏

i:r2i=1

(
γ2

γ0 + γ2

)
∏

i:r2i=0

(
γ0

γ0 + γ2

)

∝ γM0−1
0 e−γ0γM1−1

1 e−γ1γM1−1
2 e−γ2 ×

(
γ1

γ0 + γ1

)∑ r1i
(

γ0

γ0 + γ1

)N1−
∑
r1i
(

γ2

γ0 + γ2

)∑ r2i
(

γ0

γ0 + γ2

)N2−
∑
r2i

.

By introducing the auxiliary variables Ui ∼ U(0, 1), i = 1, 2, . . . , 7, the above expression can be

written as follows:

f(γ0, γ1, γ2| · · · ) ∝ γM0−1
0 γM1−1

1 γM1−1
2

∫ ∫
· · ·
∫
I

(

U1 <
(

γ0
γ0+γ1

)N1−λ1
)

I

(

U2 <
(

γ1
γ0+γ1

)λ1
)

×

I

(

U3 <
(

γ0
γ0+γ2

)N2−λ2
)

I

(

U4 <
(

γ2
γ0+γ2

)λ2
)

I (U5 < e−γ0) I (U6 < e−γ1) I (U7 < e−γ2) dU1dU2 · · ·dU7

where I denotes the indicator function, λ1 =
∑
r1i is the number of data allocated to the first id-

iosyncratic part and λ2 =
∑

i r2i is the number of data allocated to the second idiosyncratic part.

By simple calculations, we find:

• U1| · · · ∼ U

(

0,
(

γ0
γ0+γ1

)N1−λ1
)

• U2| · · · ∼ U

(

0,
(

γ1
γ0+γ1

)λ1
)

• U3| · · · ∼ U

(

0,
(

γ0
γ0+γ2

)N2−λ2
)

• U4| · · · ∼ U

(

0,
(

γ2
γ0+γ2

)λ2
)
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• U5| · · · ∼ U (0, e−γ0)

• U6| · · · ∼ U (0, e−γ1)

• U7| · · · ∼ U (0, e−γ2)

• f(γ0| · · · ) ∝ γM0−1
0 I

(

max

{

γ1U
1/(N1−λ1)
1

1−U1/(N1−λ1)
1

,
γ2U

1/(N2−λ2)
3

1−U1/(N2−λ2)
3

}

< γ0 < min

{
γ1
(

1−U1/λ1
2

)

U
1/λ1
2

,
γ2
(

1−U1/λ2
4

)

U
1/λ2
4

,− log(U5)

})

• f(γ1| · · · ) ∝ γM1−1
1 I

(

γ0U
1/λ1
2

1−U1/λ1
2

< γ1 < min

{
γ0
(

1−U1/(N1−λ1)
1

)

U
1/(N1−λ1)
1

,− log(U6)

})

• f(γ2| · · · ) ∝ γM1−1
2 I

(

γ0U
1/λ2
4

1−U1/λ2
4

< γ2 < min

{
γ0

(

1−U1/(N2−λ2)
3

)

U
1/(N2−λ2)
3

,− log(U7)

})

.

Sampling from the above distributions is easy using inversion sampling, i.e. drawing a value

V ∼ U(0, 1) and then setting t = F−1(V ), where t ∈ {U1, U2, . . . , U7, γ0, γ1, γ2} and F is the

corresponding cdf. Also note that, in the case of the γ’s, the boundaries of its pdf are first calcu-

lated and then, for example, γ0 = F−1(V ) =
(

αM0
0 + V

(

βM0
0 − αM0

0

))1/M0

, where α0, β0 are those

boundaries for γ0. For the other two γ’s, the formula will be the same, with M1 instead of M0 and

with the corresponding boundaries.

Finally, notice that some care is needed in the case when one or more of the quantities λ1, λ2,

N1 − λ1 and N2 −λ2 is zero. In this case, the relationships indicated in the corresponding indicator

functions (the ones involving the quantities being zero) are redundant. So, that relationship can just

be omitted and proceed with the rest. If such a relationship is involved in the left margin of the pdf

of γ1 or γ2, this margin is set to 0. For example, if λ1 = 0, the upper limit of the full conditional

distribution of γ0 will be the minimum of
γ2
(

1−U1/λ2
4

)

U
1/λ2
4

and − log(U5) and the lower limit of the full

conditional distribution of γ1 will be 0. Similarly, if N2 = λ2, γ0 will be defined on values greater

than
γ1U

1/(N1−λ1)
1

1−U1/(N1−λ1)
1

and γ2 will be defined for values less than − log(U7).

Of course, one can alternatively use Metropolis-Hastings steps for updating the γ’s, or equiva-

lently, the weights ε1, ε2.

3.6.1 The mix-split step

As before, an additional mix-split step can be added in the MCMC algorithm, as it will improve

mixing.

The procedure will be the same as before, and in order to calculate the acceptance probabilities, we
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must calculate f(c| · · · ):

f(c| · · · ) =

∫ ∫

f(c, γ0, γ1, γ2,φ)dεdφ

∝
∫ ∫

f(Y |φ, c, S)f(c, γ0, γ1, γ2|φ, · · · )f(φ|m,B)dγ0, dγ1, dγ2dφ

=

∫ ∫

f(Y |φ, c, S)f(c, γ0, γ1, γ2|M)f(φ|m,B)dφdγ0, dγ1, dγ2

=

∫

f(c, γ0, γ1, γ2|M)dγ0, dγ1, dγ2

∫

f(Y |φ, c, S)f(φ|m,B)dφ.

In the above, I used the usual notation.

The problem is the first integral, which, apart from the factor f(s|r,M) which can be taken outside

the integral, can be evaluated as:

∫∞
0

∫∞
0

∫∞
0

(
γ0

γ0+γ1

)N1−λ1
(

γ1
γ0+γ1

)λ1
(

γ0
γ0+γ2

)N2−λ2
(

γ2
γ0+γ2

)λ2

e−γ0−γ1−γ2γM0−1
0 γM1−1

1 γM1−1
2 dγ0dγ1dγ2.

The reparametrisation x1 = γ0
γ0+γ1

, x2 = γ0
γ0+γ2

and x3 = γ0 yields the equivalent integral:

∫ 1

0

∫ 1

0

∫∞
0 xN1−λ1−M1−1

1 (1−x1)
λ1+M1−1xN2−λ2−M1−1

2 (1−x2)
λ2+M1−1xM0+2M1−1

3 e
x3− x3

x1
− x3

x2 dx1dx2dx3.

One of the problems of the integral is that one cannot guarantee for example that N1 − λ1 −M1 is

positive.

However, by integrating out x3, we get:

Γ(M0 +M1)
∫ 1

0

∫ 1

0 x
N1−λ1+M0+M1−1
1 (1 − x1)

λ1+M1−1xN2−λ2+M0+M1−1
2 (1 − x2)

λ2+M1−1

× (x1 + x2 − x1x2)
−M0−2M1 dx1dx2.

This is proportional (the constant of proportionality is known) to the expectation of

(x1 + x2 − x1x2)
−M0−2M1 , where

x1
iid∼ Be(N1 − λ1 +M0 +M1, λ1 +M1), x2

iid∼ Be(N2 − λ2 +M0 +M1, λ2 +M1) and independent.

So, one way to deal with the above integral is by approximating it using Monte Carlo approxima-

tions, i.e. using E
(
(x1 + x2 − x1x2)

−M0−2M1
)

= 1
n

∑n
i=1

(

x
(i)
1 + x

(i)
2 − x

(i)
1 x

(i)
2

)−M0−2M1

,

where (x
(i)
1 , x

(i)
2 )

iid∼ Be(N1 − λ1 + M0 + M1, λ1 + M1) × Be(N2 − λ2 + M0 + M1, λ2 + M1) and

x
(i)
1 , x

(i)
2 are independent for all i = 1, 2, . . . , n. This method is relatively easy to formulate. On the

other hand, it is an approximation, and there is a trade-off between the accuracy of this approxi-

mation and the speed of the constructed algorithm. If more samples x
(i)
1 , x

(i)
2 are used, we will get

a better approximation, but the running time will increase considerably.

The mix-split step can therefore be performed as before (using any of the two mix-split methods

described), with the integral shown here being approximated using Monte Carlo simulations. The

other quantities in the mix-split acceptance probabilities are the same as before.

An alternative way to proceed would be not to integrate out γ0, γ1 and γ2 in the mix-split step.In

such a case, we consider updating γ0, γ1, γ2, together with the update of the indicators rji and sji
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induced by the mix-split step, and only the cluster locations φji are integrated out. So, in the

MCMC algorithm, we need to update the φji’s just after the mix-split step, whereas the γ′s can

still be updated using the slice sampler, in addition to the proposed update of them in the mix-split

step.

The difficult part in this approach is not calculating an integral, but finding a sensible way to pro-

pose values for the γ’s, which will be consistent with the proposed mixing or splitting of clusters.

One way would be to set ε′1 =
γ′
0

γ′
0+γ

′
1

=
n′

1

N1
and ε′2 =

γ′
0

γ′
0+γ

′
2

=
n′

2

N2
, where the superscript ′ denotes

the situation after (and if) the mix/split step is accepted. We then need to think of an updating

proposal for either γ0, γ1 or γ2, for example γ′0 ∼ Ga(M0, 1) (i.e. like its prior). It is clear that, in

this proposal, the only stochastic proposal concerning the γ’s is the last one, the update of γ0. The

updating of ε1, ε2 is deterministic, given the indicators. This simplifies the calculation of the accep-

tance probabilities, however it can lead to poor mixing of the algorithm. A slight variation of this

would be to use some distribution for updating also ε1 and ε2, centered at
n′

1

N1
and

n′
2

N2
respectively.

Alternatively, one could propose MH updates for γ0, γ1 and γ2, independently of the proposed

split/merge of the clusters (but still within the mix-split step). Again, the calculation of the accep-

tance probabilities is easy, but the mixing also depends on the proposed values for the γ’s.

3.6.2 An alternative slice sampler

An alternative slice sampler for updating γ0, γ1 and γ2 can be constructed using the identity

∫ ∞

0

e−atdt = 1/a.

So,

f(γ0, γ1, γ2| · · · ) ∝ γM0−1
0 e−γ0γM1−1

1 e−γ1γM1−1
2 e−γ2

∫ ∫
. . .
∫
γ0e

−(γ0+γ1)U1 . . . γ0e
−(γ0+γ1)UN1−λ1 ×

γ1e
−(γ0+γ1)UN1−λ1+1 . . . γ1e

−(γ0+γ1)UN1γ0e
−(γ0+γ2)UN1+1 . . . γ0e

−(γ0+γ2)UN1+N2−λ2 ×
γ2e

−(γ0+γ2)UN1+N2−λ2+1 . . . γ1e
−(γ0+γ2)UN1+N2dU1dU2 . . . dUN1+N2 .

Therefore, consider the augmented vector of parameters (γ0, γ1, γ2, U1, U2, . . . , UN1+N2) with full

conditional distribution:

f(γ0, γ1, γ2, U1, . . . , UN1+N2 | · · · ) ∝ γM0+N1−λ1+N2−λ2−1
0 e−γ0γM1+λ1−1

1 e−γ1γM1+λ2−1
2 e−γ2 ×

e−(γ0+γ1)U1 . . . e−(γ0+γ1)UN1−λ1 e−(γ0+γ1)UN1−λ1+1 . . . e−(γ0+γ1)UN1 e−(γ0+γ2)UN1+1 . . . e−(γ0+γ2)UN1+N2−λ2×
e−(γ0+γ2)UN1+N2−λ2+1 . . . e−(γ0+γ2)UN1+N2 .
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In this case, the full conditional distributions are of known form:

Ui| · · · ∼ Exp(γ0 + γ1), i = 1, 2, . . . , N1

Ui| · · · ∼ Exp(γ0 + γ2), i = N1 + 1, N1 + 2, . . . , N1 +N2

γ0| · · · ∼ Ga(M0 +N1 − λ1 +N2 − λ2, 1 +
∑
Ui), where the sum is taken over all i

γ1| · · · ∼ Ga(M1 + λ1, 1 +
∑
Ui), where the sum is taken over i = 1, 2, . . . , N1

γ2| · · · ∼ Ga(M1 + λ2, 1 +
∑
Ui), where the sum is taken over i = N1 + 1, N1 + 2, . . . , N1 +N2.

In the above Exp(θ) denotes the exponential distribution with mean 1/θ:

Definition 13. A random variable X is said to follow an exponential distribution with parameter

θ > 0, denoted by Exp(θ), if its density with respect to the Lebesque measure is:

fX(x) = θe−θx, x > 0.

Regardless of the fact that now there are N1+N2 auxiliary variables, instead of just seven before, the

simulation time is not increased substantially, since the full conditional distributions of these auxil-

iary variables are of known form, and therefore easy to sample from. On the other hand, this slice

method has the advantage of a better mix-split step. The idea is that, by incorporating these aux-

iliary variables in the mix-split step, the problematic integral I =
∫
f(c, γ0, γ1, γ2|M)dγ0, dγ1, dγ2

will be replaced by

I ′ =
∫
f(c, γ0, γ1, γ2,U |M)dγ0, dγ1, dγ2, where U is the vector of all Ui, i = 1, . . . , N1 +N2. This

integral can now be solved analytically:

I ′ ∝
∫
f(r|γ0, γ1, γ2)f(γ0, γ1, γ2|M)f(U |γ0, γ1, γ2)dγ0, dγ1, dγ2

=
∫∞
0

∫∞
0

∫∞
0 γM0+N1+N2−λ1−λ2−1

0 γM1+λ1−1
1 γM1+λ2−1

2 e−γ0(1+
∑
Ui)e−γ1(1+

∑
Uj)e−γ2(1+

∑
Ul)dγ0dγ1dγ2

=
∫∞
0
γM0+N1+N2−λ1−λ2−1
0 e−γ0(1+

∑
Ui)dγ0

∫∞
0
γM1+λ1−1
1 e−γ1(1+

∑
Uj)dγ1

∫∞
0
γM1+λ2−1
2 e−γ2(1+

∑
Ul)dγ2

⇒ I ′ ∝ Γ(M0 +N1 +N2 − λ1 − λ2)

(1 +
∑
Ui)M0+N1+N2−λ1−λ2

Γ(M1 + λ1)

(1 +
∑
Uj)M1+λ1

Γ(M1 + λ2)

(1 +
∑
Ul)M1+λ2

.

Here, the first sum is taken over i = 1, 2, . . . , N1, N1 + 1, . . . , N1 + N2, the second one over j =

1, 2, . . . , N1 and the last one over l = N1 + 1, N1 + 2, . . . , N1 +N2. The proportionality constant is,

as before, f(s|r,M). If we include the expression for it, we will have:

I ′ =
Mk0

0 Mk1+k2
1 Γ(M0)Γ

2(M0)

(1 +
∑
Ui)M0+N1+N2−λ1−λ2(1 +

∑
Uj)M1+λ1(1 +

∑
Ul)M1+λ2

∏

ji

Γ(nji),

where nji are the cluster sizes.

It is also clear that this trick is based exactly on the definition of these auxiliary variables Ui. Notice

also that a similar approach using the auxiliary variables in the first slice sampler is not possible.
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To sum up, this proposed algorithm is superior to the ones proposed before, since now the acceptance

probabilities of each mix or split proposal can be exactly calculated. In this way, no MC estimation is

needed, which results in both error due to approximation and slowing of the algorithm, nor we need

to also propose updating of additional parameters, as when values for the γi were proposed. The

fact that we now have an extended parameter space, with the addition of the Ui’s does not change

much in terms of coding burden and computational cost, since they are only used in the update of

the γi and in the mix-split step, and even then only through the corresponding sums. Since their

full conditional distributions are exponential distributions, it is computationally not expensive. Also

notice that, since the size of these auxiliary variables is equal to the data size, there will not be any

additional problems of variant dimensionality of the parametric space.

Finally, I tested the above algorithms with the following simulated data (say, fourth simulated

data set):

Y1i ∼
3

10
N(−10, 1) +

7

10
N(1, 1), i = 1, 2, . . . , 120

Y2i ∼
7

10
N(8, 1) +

3

10
N(1, 1), i = 1, 2, . . . , 120.

As one would expect, the second slice sampler with the mix-split step where we can calculate exactly

the acceptance probabilities (say, method A) performed best, giving the expected results, with good

mixing of the chain and in a reasonable amount of time. On the other hand, the method using

Monte Carlo estimates (method C) takes a lot more time to run, because of these approximations,

and the results were not as good as in the last method shown. This could be improved by taking

more than 20000 MC samples for each integral (in each cycle of the MCMC), but this would cause

even higher running time. As for the second method proposed, i.e. not integrating out γ0, γ1 and γ2

(method B), the results were better (in terms of mixing) and the algorithm was running faster than

method C, when gamma proposals for those parameters were used, but still not as good as method

A. Another issue is that the method A does not require any kind of tuning, as is the case for the

number of MC samples in method C and of the method of proposing values for the γ’s in method

B.

As a result, I present the results when method A was used. The posterior distributions and trace

plots for the two weights are shown in Figure 3.25. It can be seen that we have a large mode at the

value indicated by the data (i.e. 0.3 for the first and 0.7 for the second data set), a smaller mode at

0 and a very small mode at 1. The mode at one might seem unjustified at first, but it makes sense

if one observes from the trace plots that it only occurs when the other weights is zero. This zero

weight in one of the two component distributions translates into no sharing of information between

the two correlated distributions, therefore allowing more flexibility to the other weight to take values

90



close to the correct weight (here: 0.7), 0 or 1. The mass at 1 would normally correspond to 0, if

there was not this non-identifiability caused by the fact that the other weight is zero.
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Figure 3.25: Posterior distributions (left) and trace plots (right) for ε1 (top), ε2 (bottom)
for the fourth simulated data set, based on results using method A.

3.7 The Model With Normalised Inverse-Gaussian Process

Priors

In this section I discuss the simulation of a model similar to my proposed model (2.1.4), but with N-

IGP priors for the component distributions F0, F1 and F2, instead of DP priors. The full hierarchical

model, corresponding to the setting of Section 3.1 above, will be:

Yji ∼ N(µji, S), i = 1, 2, . . . , Nj, j = 1, 2

µji ∼ F ∗
j , where F ∗

j = εF0 + (1 − ε)Fj , j = 1, 2

F0 ∼ N-IGP(M0, H), F1, F2
iid∼ N-IGP(M1, H), where H ≡ N(m,B) (3.7.2)

ε ∼ N-IG(M0,M1)

M0,M1
iid∼ Ga(a0, b0), (m,B) ∼ N(m0, A) × IGa(c, 1/cC), S ∼ IGa(q, 1/qR)

where N-IGP denotes the normalised inverse-Gaussian process and N-IG denoted the normalised

inverse-Gaussian distribution. Notice also that for the specific distribution of the weight, it is

guaranteed that F ∗
1 and F ∗

2 are also marginally N-IGP-distributed, with parametersM0+M1 and H.

The differences of the above model from Model (2.1.4) are the priors of the Fj , j = 0, 1, 2 and the

prior of the weight. Therefore, the differences in the MCMC algorithm will be:

1. The update of ε.

2. The updates of M0,M1, since the prior of the weight involves those two quantities.
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3. The updates of the indicator sji, rji, i = 1, 2, . . . , Nj, j = 1, 2.

4. The acceptance probabilities of the mix-split step (if we decide to include this extra step).

The first differences do not cause much additional trouble. In particular:

f(ε| · · · ) ∝ f(ε|M0,M1)f(r|ε)

∝
K−1

(√

A2(ε,M0,M1)
)

ε3/2(1 − ε)3/2
√

A2(ε,M0,M1)
εN1+N2−

∑
rji (1 − ε)

∑
rji

=
K−1

(√

A2(ε,M0,M1)
)

√

M2
0 (1 − ε) +M2

1 ε
εN1+N2−

∑
rji−1(1 − ε)

∑
rji−1

where A2(ε,M0,M1) =
M2

0

ε +
M2

1

1−ε , K−1 is the modified Bessel function of the third type and the

sums of rji are taken over all j, i.

We can see here that, unlike the beta prior for the weight in the case of the DP priors, here we do

not have conjugacy of the full conditional of ε. So, MH updates are used.

The full conditionals of the concentration parameters will be:

f(M0,M1| · · · ) ∝ f(M0,M1)f(ε|M0,M1)f(s|r,M0,M1)

∝ Ma0−1
0 e−

M0
b0 Ma0−1

1 e−
M1
b0

K−1

(√

A2(ε,M0,M1)
)

M0M1e
M0+M1

√

A2(ε,M0,M1)
×

Γ(M0)M
K0
0

Γ(M0 + n0)

Γ(M1)M
K1
1

Γ(M1 + n1)

Γ(M1)M
K2
1

Γ(M1 + n2)

= Ma0+K0
0 e−(1/b0−1)M0Ma0+K1+K2

1 e−(1/b0−1)M1

K−1

(√

A2(ε,M0,M1)
)

√

A2(ε,M0,M1)
×

Γ(M0)

Γ(M0 + n0)

Γ(M1)

Γ(M1 + n1)

Γ(M1)

Γ(M1 + n2)
.

So,

f(M0| · · · ) ∝Ma0+K0
0 e−(b0−1)M0

K−1

(√

A2(ε,M0,M1)
)

√

A2(ε,M0,M1)

Γ(M0)

Γ(M0 + n0)

and

f(M1| · · · ) ∝Ma0+K1+K2
1 e−(b0−1)M1

K−1

(√

A2(ε,M0,M1)
)

√

A2(ε,M0,M1)

Γ(M1)

Γ(M1 + n1)

Γ(M1)

Γ(M1 + n2)
.

These expressions are not of a standard distribution form, so we use MH steps to update M0 and M1.

All three full conditionals above include the modified Bessel function of the third type. This is a

standard special function, with in-built functions in Matlab, which seem to work fine.

Unfortunately, this is not the case for the incomplete gamma function Γ(a, x), when a < 0.

Such functions appear in the quantities w0 and w1, involved in the Pólya-urn representation of the
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N-IGP, as shown in Section 1.1.3. As a result, the probabilities that appear in the updating steps for

each pair of indicators (s, r) cannot be calculated efficiently. Therefore, I was not able to code the

above model in Matlab, at least not using the marginal method that I was using up to this point.

A solution to this is to use slice sampling ideas, and more specifically the ideas appearing in Walker

(2007), Kalli et al. (2008) and Griffin and Walker (2009):

Consider RPMs that can be written in an infinite sum expression of the form

G =

∞∑

j=1

wjδθj

where the weights wj are positive quantities summing up to 1. An example of such a RPM is the DP

(Sethuraman and Tiwari (1982) and Sethuraman (1994)) and, more generally, the class of normalised

random measures (see, for example, James et al. (2005)), which also includes the N-IGP. Then a

mixture model (Lo, 1984) with such a RPM as the mixing distribution will be of the form:

fG(y) =

∫

h(y|θ)dG(θ) =

∞∑

j=1

wjh(y|θj), (3.7.3)

where h is a density function (usually continuous).

The basic idea is that one can replace the weights wj appearing in the last expression with the

indicator function of an auxiliary, uniformly distributed random variable being less than this weight,

I(U < wj). This is the same as extending fG(y) above to fG(y, U) =
∑∞
j=1 1(U<wj)h(y|θj). In

the case of NRMs (in which the realisations of the N-IGP belong), the weights can be written as

wj =
Jj∑∞

i=1 Ji
, j = 1, 2, . . ., where Ji, i = 1, 2, . . . are jump sizes from a Lévy process, with finite

sum. As a result, we can now write fG(y, u) = 1
J

∑∞
j=1 1(U<Jj)h(y|θj), where J =

∑∞
i=1 Ji. The

authors then propose two more auxuliary variables: s, which is an indicator of the cluster in which

the observation is assigned (i.e. the same as the indicators sji used throughout so far) and v,

which is an exponentially-distributed auxiliary variable, used to make the algorithm more efficient

(Nieto-Barajas et al. (2004)). The joint posterior of those parameters will be:

fG(y, U, v, s) = e−vJ1(U<Js)h(y|θs).

The marginal distribution of y from this joint distribution will be, of course, (3.7.3).

The above method is a slice sampler and, since in each cycle of the MCMC only a finite number

of those weights will be needed, simulating from the posterior distributions of all parameters (except,

of course, G itself) is possible. Notice also that here the RPM G is not integrated out, so this method

is a conditional algorithm.

As an example of this method, consider simulating from the posterior distributions of the pa-

rameters in Model (3.7.2). For this model three v-like auxiliary variables are needed, say v0, v1 and v2,
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each corresponding to component distribution Fj , j = 0, 1, 2, respectively. We also need three vec-

tors of jumps, say J0,J1 and J2 (where Jj = (Jj1, Jj2, . . .) , j = 0, 1, 2), again each corresponding

to component distribution Fj , j = 0, 1, 2. Let also J denote the vector of all those jumps in all

component distributions and Jj =
∑∞

i=1 Jji, j = 0, 1, 2. Notice also that in the case of the N-IGP,

the a priori Lévy density of these jumps is

w(x) =
M√
π
x−3/2e−x. (3.7.4)

An upper truncation point for all the jumps Jji, say L, is also introduced. Using this L there will

only be a finite number of jumps involved in this algorithm, say K∗
0 ,K

∗
1 and K∗

2 for each component

distribution. As for the rest of the jumps, we can integrate them out.

The joint full conditional distribution of all parameters in the model is as follows:

f(s, r,φ,U ,J , v0, v1, v2, S,m,B, ε,M0,M1|Y ) ∝ f(Y |s, r,φ, S)f(ε|M0,M1)f(M0,M1)f(φ|m,B)

× f(J0|M0)f(J1|M1)f(J2|M1)f(U)f(r|ε)

× f(s|r,U ,J)

2∏

j=0

f(vj |s, r,Jj)f(S)f(m,B)

where the last product is proportional to
∏2
j=0

v
nj−1

j

Γ(nj)
e−vjJj , U is the vector of all Uji, i = 1, 2, . . . , Nj , j =

1, 2 and the rest is as before (see e.g. Section 3.2).

The full conditional distributions of all parameters will be as follows:

• f(ε| · · · ) ∝ εn0−1(1 − ε)n1+n2−1
K−1

(√

M2
0

ε +
M2

1
1−ε

)

√
M2

0 (1−ε)+M2
1 ε

.

• f(M0| · · · ) ∝M
a0+K

∗
0

0

K−1

(√

M2
0

ε +
M2

1
1−ε

)

√
M2

0 (1−ε)+M2
1 ε

e−M0(
∫ ∞

L
q(x)dx+

∫ L
0

(1−e−v0x)q(x)dx−1+1/b0).

•

f(M1| · · · ) ∝ M
a0+K

∗
1 +K∗

2
1

K−1

(√
M2

0

ε +
M2

1

1−ε

)

√

M2
0 (1 − ε) +M2

1 ε
×

e−M1(
∫ ∞

L
q(x)dx+

∫ L
0

(1−e−v1x)q(x)dx+
∫∞

L
q(x)dx+

∫ L
0

(1−e−v2x)q(x)dx−1+1/b0).

• For each pair (sji, rji), i = 1, 2, . . . , Nj , j = 1, 2, we have:

P (sji = k, rji = l| · · · ) ∝







εϕ(Yji;φ0l, S)1(Uji<J0l)
v0
n−

0

, k = 1, 2, . . . ,K∗
0 , l = 0

(1 − ε)ϕ(Yji;φjl, S)1(Uji<Jjl)
vj

n−
j

, k = 1, 2, . . . ,K∗
j , l = 1.

• For each vj , j = 0, 1, 2, we have:

f(vj | · · · ) ∝ v
nj−1
j e−vj

∑K∗
j

k=1 Jjke−
∫

L
0

(1−e−vj x)w(x)dx)
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• For all i = 1, 2, . . . , Ni, j = 1, 2, Uji| · · · ∼







U(0, J0,sji) , if rji = 0

U(0, Jj,sji) , if rji = 1.

• For the jumps Jjk with at least one observation allocated to it (i.e. nkl > 0), we have:

Jjk| · · · ∼ Ga(njk − 0.5, 1 + vj), j = 0, 1, 2.

For the jumps Jkl with no observations allocated to them, see Kalli et al. (2008).

• The full conditional distributions of m,B, S and φ and the corresponding updating schemes

are as in the previous models.

In the above, K−1 is the modified Bessel function of the third type, ϕ is the pdf of a normal distri-

bution and q(x) = w(x)/M , where w(x) is as in (3.7.4).

We can update Uji, (sji, rji) and the jumps with observations allocated to them using Gibbs sam-

pling. For ε,M0,M1 and vj we can use MH updating steps.

Finally, it is worth mentioning a result that arose when I was trying to calculate the acceptance

probabilities of the mix-split step. This result served as my motivation for some interesting results

that appear in the next chapter.

Specifically, when trying to integrate out the weight ε, the following integral appears:

I1 =

∫ 1

0

f(r|ε)f(ε|M0,M1)dε

∝
∫ 1

0

K−1

(√

A2(ε,M0,M1)
)

√

M2
0 (1 − ε) +M2

1 ε
εN1+N2−

∑
rji−1(1 − ε)

∑
rji−1dε.

The last integral cannot be solved analytically, except for very special cases. On the other hand,

one might notice that I1 can be written in moment form:

I1 = Eε
(
εN1+N2−λ(1 − ε)λ

)

= Eε



εN1+N2−λ
λ∑

k=0




λ

k



 (−1)kεk





=

λ∑

k=0




λ

k



 (−1)kEε
(
εN1+N2+k−λ)

where λ =
∑

j,i rji and ε follows a N-IG distribution.

So, what we just need is an expression for the moments of a N-IG-distributed random variable.

Fortunately, I was able to derive these expressions, as well as the expressions for the moments for

a more general class of distributions. The results are in Chapter 5, together with some notes on

implementing these expressions in Mathematica.
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3.8 Summary

In this chapter I described the MCMC algorithms used in order to simulate from the posterior

distribution of the parameters of the models in Section 2. For my basic proposed model the algorithm

was similar to the one described in Müller et al. (2004), whereas for the model via direct normalisation

slice sampling methods were used. By considering simulated data sets, I then observed some problems

in the mixing of the chains, so an additional step in each of these algorithms was proposed. This

extra step consists of splitting a cluster to two others or merging two clusters together. It was

shown that this extra step indeed improves mixing, especially in specific cases that were highlighted.

The idea of this extra step is quite general, therefore it can potentially be applied to other MCMC

algorithms, as well. I also discussed implementation of the models for three correlated distributions

and of the model similar to my basic proposed model, only this time with N-IGP priors, instead of

DP priors. For the latter model, the slice sampler of Griffin and Walker (2009) for simulating RPMs

that have an infinite sum representation was used.
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Chapter 4

Applications

In this chapter I apply some of the models presented in the previous chapters to real-life data. First,

some financial data are considered, which are modelled as coming from two correlated distributions,

using my basic proposed model and the model of Müller et al. (2004). Next, I embed those two

models, as well a model similar to the basic proposed model, but with N-IGP (instead of DP) priors

for the correlated distributions, in the stochastic frontiers setting. The three derived models are

then used in analysing some hospital cost frontier data.

4.1 Financial Data

4.1.1 Description of data

First, I apply some of the models discussed in Chapter 2, and especially my basic proposed model

(2.1.4) and the equivalent Müller et al. (2004) model, i.e. Model (1.2.13), to financial data. More

specifically, the data consist of the daily returns of two stocks of Dow Jones 30, Alcoa Inc. and

Exxon Mobil Corp., for the period from the 11th of November, 1999, up to and including the 4th

of November, 2003, as found in StatLib (http://lib.stat.cmu.edu/). This means that J = 2 and the

data sizes are N1 = N2 = 1000.

4.1.2 Description of the models and the MCMC algorithms

In this approach, it is assumed a priori that the marginal distributions of the daily returns of the two

stocks are identically distributed and dependent, as implied by the models used. Another approach

in modelling the correlation between these data could be to use skewed multivariate distributions,

for example see Ferreira and Steel (2007) and references therein.
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For both models normal likelihood, normal base distribution and the same priors for the hyperpa-

rameters S,m and B as in Model (1.2.14) are assumed. For the model of Müller et al. (2004) the

following values are used: π0 = π1 = 0.1 and aε = bε = 1 (so that Be(aε, bε) ≡ U(0, 1)). For both

models we set a0 = 0.5, b0 = 2, i.e. the concentration parameters follow a gamma distribution with

mean 1 and variance 2. This prior favors small values for the M ’s, which is often the case in models

of this type. The hyperparameters for m are set to m0 = 0 and A = 10, which seem sensible after

looking at the data (alternatively, m0 could had been assigned the overall mean of the data), and

the large variance ensures that the prior for m is not very informative. Next, a quite vague prior is

assigned to the variance S of the likelihood, with q = 0.01 and R = 10000, i.e. an inverse gamma

prior with parameters 0.01 and 0.01. Finally, for the variance B of the base distribution we set

c = 2.1 and C = 0.5, resulting in an inverse gamma distribution with mean 2 and variance 7.5.

In the simulations performed the auxiliary indicator variables rji and sji were used, we worked

with the concentration parameters M0 and M1 (and M2, in the case of the model of Müller et al.

(2004)), instead of their sum x = M0+M1 and the ratio y = M0

M0+M1
and the discrete values φji were

also updated. We will simulate from the two models both with and without the (basic) mix-split

step of Section 3.3, in order to examine the effect of this additional step in the performance of the

algorithm. A burn-in period of 50000 iterations was used (actually, even 40000 iterations seemed a

sufficient burn-in period), and in each simulation an additional 150000 iterations were performed.

4.1.3 Results

The main parameters of interest here are the common weight ε and the concentration parameters

of F0, F1 and F2. It is also interesting to look at the predictive distribution in each of F ∗
1 and F ∗

2 ,

as well as the predictives of the component distributions F0, F1 and F2. Secondary parameters of

interest could be m,B and S, as well as the clusters sizes K0,K1 and K2. The graphs of the posterior

distributions of the parameters of interest were created using kernel density estimators with normal

kernels and a choice of bandwidth based on trial and error.

Let us first consider the model of Müller et al. (2004), with and without the mix-split step. The

first thing to notice is the effect of the extra mix-split step. As can be seen from the trace plots in

Figure 4.1, mixing for the parameter ε is better when this extra step is applied, as one would expect.

Although the improvement in mixing is not huge here, in the following I will report the results with

this extra step. Looking at the kernel density estimate of the posterior distribution of the weight ε

(Figure 4.2), we see a large mode around 0.7 and two smaller ones around 0 and 0.1 (the sizes of the

smaller weights is actually slightly different without the mix-split step). The predictive densities

of F ∗
1 and F ∗

2 are the same in both cases, and resemble the histogram of the actual data displayed
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Figure 4.1: Trace plots for ε in Model (1.2.13), with (right) and without (left) the mix-split
step.
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Figure 4.2: Posterior distribution of ε, Model (1.2.13).

next to them in Figure 4.3. Notice that, although one data point from the second data set (Exxon

Mobil Corp) takes the value 7.88, in the predictive density of F ∗
2 we do not get a significant mode

around that point (not shown in the graph). This is because only one observation is allocated to that

(potential) cluster, and because the specific value is very far from the posterior base distribution.

The lack of mode at that point allows us to focus on the values of the predictives in the interval

(-5,7), for a better visual inspection of the results. The same reasoning applies when displaying the

predictive densities of F0, F1, F2, as well as in the other models.

The predictive densities of the component distributions are shown in Figure 4.4. For F0, this

predictive density is slightly positively skewed with one large mode around 0 and heavier than

normal tails. F2, on the other hand, seems fairly symmetric, with the same mode around 0. The
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Figure 4.3: Histograms of the data (left) and predictive densities for F ∗

1
and F ∗

2
(right).

predictive density for F1 exhibits some different features. The mode at 0 exists, but now we have

two smaller modes, one around -3 and one around 3.5. The predictive density for F1 also exhibits

positive skewness. The differences in the predictive densities of F1 and F2 highlight the differences

in the marginal distributions between the two stocks, which seem to be more extreme in the intervals

(−4,−2) and (2, 5).

Next, consider the results for the posterior distributions of the precision parametersM0,M1 and M2

(Figure 4.5). It is seen that M1 takes significantly larger values than M0 and M2. This difference

between M2 and M1 simply means that (a posteriori) F1 is closer to the (common) base distribution

H than F2, and can also be seen as another aspect in which the two idiosyncratic parts F1 and F2

differ. Also notice that the posterior distributions of all three concentration parameters look very

similar to a gamma distribution, indicating a prior-posterior accordance for these parameters. For

comparison purposes, the prior distributions for the M ’s were also plotted in the same axes.

By looking at Figure 4.6, it is clear that there are many more clusters in F1 than in F0 or F2. This

result is in accordance with the fact that M1 is larger than the other two (see, e.g. equation 10 in

Escobar and West (1995)).

Finally, the posterior mean, median and and 95% credible interval for the posterior distributions of

m,S and B are shown in Table 4.1.

Next, we investigate the use of my proposed model, Model (2.1.4), when applied to the same

data set, again with and without the extra mix-split step in the MCMC algorithm.

In this case, the improvement of mixing caused by the extra mix-split step is more obvious, although

the percentage of accepted split or merge steps was almost the same as before (10.5%). As seen in

Figure 4.7, there is a substantial improvement in the mixing of ε when the split/merge step is used
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Figure 4.4: Predictive densities for F1 (top), F2 (middle) and F0 (bottom) for Model (1.2.13).

in the algorithm. This improvement is more evident than in the case of the previous model, and I

will therefore report the results when this step was included in the code. The posterior of ε is seen

in the next graph (Figure 4.8) and it has a big mode around 0.7, and a smaller one around 0.1.

The predictive densities for F ∗
1 and F ∗

2 were very similar to the ones in the case of Model (1.2.14).

This is a sensible result, since we have 1000 data from each data set, therefore dominating the

predictive distributions.

The predictives for the component distributions F0, F1 and F2 (Figure 4.9) were also very

similar to the previous ones, especially the predictive densities for F0 and F1. The predictive density

for F0 is also unimodal at 0 and slightly positively skewed. For F1 there are three modes, a large

one around -1 and two smaller around -3 and 3.5. The predictive density for F2 is again unimodal

around 0, but now with a little negative skewness, unlike the corresponding distribution for the

model of Müller et al. (2004).

Figure 4.10 (left) shows the posterior distributions of M0 and M1 for this model. Notice that,
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Figure 4.5: Prior (dashed line) and posterior (solid lines) distributions of M0, M1 and M2

in Model (1.2.13).

without the extra step the results were similar. However, mixing was not as good as in the improved

algorithm (i.e. like in the case of ε). These posteriors look different from the ones for the precision

parametersM0,M1,M2 used in the model of Müller et al. (2004). An apparent reason for that is that

there are only two such parameters, rather than three. Another difference is the prior distribution

of the weight ε, which involves the precision parameters only in model (2.1.4). On the other hand,

the posterior distributions are gamma-like, indicating a prior-posterior accordance. It is also worth

mentioning that M0 takes smaller values than M1.

In this model, it is also interesting to look at the posterior distributions of the reparametrisation

x = M0 +M1, y = M0

M0+M1
. y can be seen as the prior mean of ε, as well as the prior correlation

between F ∗
1 (A) and F ∗

2 (A), ∀ A ∈ F . On the other hand, x can be thought of as a precision

parameters of the prior distributions of F ∗
1 (A) and F ∗

2 (A). As seen in Figure 4.10 (right), the

posterior of x is like a gamma distribution, with mean around 2.50, and y is a negatively skewed

distribution, with mean around 0.20. In the same axes the prior distribution of all these quantities

were also plotted, for prior-posterior comparison purposes.

Next, Figure 4.11 shows samples from the posterior distributions of the number of clusters in
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S m B
Mean 0.237 0.749 14.26

Median 0.236 0.740 13.38
2.5th percentile 0.189 -0.828 7.78

97.5th percentile 0.284 2.38 25.79

Table 4.1: Posterior mean, medians and 95% credible intervals for S,m and B in Model
(1.2.13).
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Figure 4.6: Posterior distributions of K0, K1 and K2 for the Müller et al. (2004) model.

each component distribution, K0,K1 and K2.

Finally, the posterior distributions of S,m and B for this model were very similar to the case

of Model (1.2.13).

I conclude by summarizing the findings and mentioning the differences when the two models

(the model of Müller et al. (2004) and model (2.1.4)) were fitted to the same data. The comments

will be about the results with the mix-split step applied to the MCMC algorithms, since it has been

shown that this extra step results in better mixing of the chain.

The predictive densities for the correlated distributions F ∗
1 and F ∗

2 were the same, as they are

dominated by the large data size. This is more or less true for the predictive densities of the

component distributions F0 and F2. On the contrary, the predictive density for F1 was not the
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Figure 4.7: Trace plots for ε in Model (2.1.4) with (right) and without (left) the mix-split
step.
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Figure 4.8: Posterior distribution of ε in Model (2.1.4).

same. However, the differences were mostly a matter of the sizes of the clusters for each component

distribution.

Regarding the posterior distribution of the weight ε, the posterior modes are more or less the same.

There are slight differences in the relative sizes of those modes. When the extra mix-split step was

used, mixing of ε was good for both models.

There were some differences in the posterior distributions of the concentration parameters, as well.

As mentioned before, direct comparison of those quantities is not straightforward, since in one model

there are three of those parameters, whereas in the other one, only two. Apart from that, one can

see that M0 has more or less the same posterior in both models, whereas M1 is much larger in the

model of Müller et al. (2004) than in Model (2.1.4). A possible reason for this is that in the former

case there are two concentration parameters for the idiosyncratic parts, M1 and M2, whereas in the
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Figure 4.9: Predictive densities for F1 (top), F2 (middle) and F0 (bottom) for Model (2.1.4).

latter case, there is only M1. So, in one sense, M1 in Model (2.1.4) accounts for both M1 and M2

of Model (1.2.13), and since M2 is much smaller than M1 there, this causes the “common” M1 in

Model (2.1.4) to take smaller values than M1 in the other model.

These differences are consistent with the differences in the number of clusters in the component

distributions, K0,K1 and K2. We see that K0 is slightly larger in Model (2.1.4), K1 is much larger

for Model (1.2.13) and K2 is significantly larger for (2.1.4). In both cases K1 is much larger than

K0 and K2, K0 is larger than K2 for Model (1.2.13), whereas the opposite holds for model (2.1.4).

The differences in the posterior medians of the precision parameters and of the number of clusters,

as well as the correspondence of the magnitude of those two sets of parameters, can also be seen in

Table 4.2.

Model M0 M1 M2 K0 K1 K2

(1.2.13) 0.49 6.46 0.19 5 28 2
(2.1.4) 0.41 1.86 - 3 17 6

Table 4.2: Posterior median values for some parameters of interest for Models (1.2.13) and
(2.1.4) applied to the financial data.

4.1.4 Comparison of the two models

In this subsection the two models are compared, both in terms of their predictive power and using

Bayes factors. The results indicate that the two models perform similarly well for the specific data.
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Figure 4.10: Prior (dashed line) and posterior (solid line) distributions of M0 (top), M1

(bottom)(left) and y (top), x (bottom)(right) in Model (2.1.4).

Predictive power

In order to quantify the predictive power of the models, an additional 500 data from each data set

(Alcoa Inc. and Exxon Mobil Corp. daily returns) were used. The test statistic will be

T = − 1

1000

2∑

j=1

1500∑

i=1001

log(p(Yji|Y )),

where Y is the vector of data used in the models and Yji, i = 1001, 1002, . . . , 1500, j = 1, 2 are

the additional data used for assessing the predictive power of each model. This statistic is using

the logarithmic score function, logS(p, ω) = log(p(ω)) (Good (1952), Gneiting and Raftery (2007)),

applied to the posterior distribution f(·|Y ). It is clear that, the smaller the value of T , the better

is a model in terms of predicting future observations. Another point to be made here is that

the MCMC output can be used in calculating T in each case. More specifically, since p(Yji|Y ) =
∫

Θ
p(Yji|θ)p(θ|Y )dθ, where θ is the full vector of parameters in the model, p(Yji|Y ) can be estimated

with 1
M

∑M
t=1 p(Yji|θ(t)), where θ(t), t = 1, 2, . . . ,M are the MCMC posterior samples and M is the

length of this chain.

Applying T to the model of Müller et al. (2004), I have found a value of 1.5885, whereas the

equivalent value for model (2.1.4) is 1.5854. This means that the latter model performs slightly

better than the former one in terms of predictive power.
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Figure 4.11: Posterior distributions of K0 (top), K1 (middle) and K2 (bottom) in Model
(2.1.4).

Bayes factors

The second method of assessing the relative performance of the two models is the Bayes factor:

The Bayes factor of a model H1 against a model H2 is the ratio of posterior to prior odds:

B =
p(Y |H1)

p(Y |H2)
,

where Y is the vector of data (Jeffreys, 1939). It is obvious that values of B much larger than 1

suggest that the model H1 fits the data better than H2, whereas the opposite is true if B is much less

than 1. Good (1952) also noted that the logarithm of the Bayes factor can be seen as the difference

of the logarithmic score function of the two models.

In order to estimate the two probabilities, use the estimator p̂4 of Newton and Raftery (1994)

is used, with δ = 0.01 and m = 150000 MCMC iterations (after the burn-in). The quantity p(x|θ(i))
appearing there is just 1

(2πS)(N1+N2)/2 e
− 1

2

∑

ji(Yji−µji)
2

, following the notation of Section 3.2.

In order to calculate p̂4, I run into very small values (due to the large data size), so I used the loga-

rithm of it. Each of these logarithms was derived using a simple iterative scheme on the appropriate

modification of equation (16) of Newton and Raftery (1994) (in order to have a similar equation with
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log(p̂4) instead of p̂4), and then use the relation log(B) = log(p(Y |H1)) − log(p(Y |H2)) mentioned

before.

The results indicate that B ≃ 0.14, where H1 denotes Model (1.2.13) and H2 denotes and

Model (2.1.4). This means that my proposed model, apart from predicting future observations

slightly better than the model of Müller et al. (2004), it is also slightly better in explaining the

current data.

4.2 Stochastic Frontier Data

In this section I apply some of the models presented before to cost frontiers for some US hospital

data.

4.2.1 Stochastic frontier models

Stochastic frontier (SF) models were introduced by Aigner et al. (1977) and Meeusen and van den

Broeck (1977), in order to model the efficiency of firms. Such a frontier can be either a production

or a cost frontier. The former corresponds to the maximum amount of output that can be produced

from a specific set of inputs, whereas the latter represents the minimum cost of producing a certain

level of output, given specific input prices. These frontiers represent the theoretical scenario where

the productivity and efficiency of a specific firm are optimal, for example when there is absolutely

no loss of profit from producing a specific product due to bad managerial decisions (for example

producing too much of this product) or reduced effort from the employees at the factory. On the

other hand, those frontiers do not account for losses due to factors that are beyond the firm’s

control, such as destroyed crops caused by bad weather. The last set of factors implies that observed

output or cost will be distributed around this maximum output or minimum cost, therefore creating

stochastic (instead of fixed) frontiers.

In real life, however, obtaining this optimal efficiency is very rare, and the inefficiency of a

firm leads to lower output (when dealing with an output frontier) or higher cost (when dealing with

a cost frontier). A natural way to measure this discrepancy is by estimating the difference of the

optimal and the actual output (or cost) observed. SF models offer a natural way to do this, by

assuming (say, for a cost frontier) that

Yit = α+X ′
itβ + ui + vit, i = 1, 2, . . . , n, t = 1, 2, . . . , T (4.2.1)

where Yit is the logarithm of cost and Xit is a vector of outputs for firm i in time period t, α is an

intercept, β is the vector of covariates and T is the time horizon. It is evident from (4.2.1) that we
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have panel data here, i.e. observations over time (and for the same time periods) for each firm.

The key parametrisation in this type of models is that of the errors vit and ui. The first set of

those errors, vit, accounts for the uncertainty due to factors outside the firms’s power (for example

weather conditions, measurement errors or machine performance), and can be either positive or

negative. On the other hand, ui are the firm-specific disturbances and represent the losses in

efficiency due to factors within the firms’s reach (for example technical or economical inefficiency

or poor performance of the employees). Naturally, those disturbances are assumed to take only

positive values, and as in Griffin and Steel (2004), it also assumed that these errors are constant

over time. For the implications of relaxing the last assumption, see Fernández et al. (1997). The two

sets of error terms are assumed to be independent of each other. For the formulation of a production

frontier, one just needs to change the sign of the ui’s in (4.2.1). Finally, the firm efficiencies ri are

defined as the exponential of the negative of the corresponding inefficiencies:

ri = exp {−ui} , i = 1, 2, . . . , n.

The first set of error terms, vit, are assumed to be symmetric, independent and identically distributed

and are usually given a normal prior distribution with zero mean. Regarding the prior of the ui’s,

many distributions have been proposed, such as the half-normal (Aigner et al., 1977), the exponential

(Meeusen and van den Broeck, 1977), the truncated normal and the gamma distributions. The

above priors were given in a parametric setting and, as discussed in Griffin and Steel (2004), all

of them cause counter-intuitive problems. More specifically, the exponential and the half-normal

distributions restrict the probability mass given to specific intervals for the efficiencies, whereas

the gamma and the truncated normal can lead to identification problems, when the data suggest

a gamma distribution that is practically indistinguishable from a normal distribution (which is the

case for the data sets examined below).

On the other hand, Griffin and Steel (2004) propose a nonparametric prior for the inefficiencies,

by assuming that they are identically distributed from a distribution F , where F is considered also

random and it is assigned a DP prior. For the centering distribution of this DP, they use gamma

distributions with fixed integer shape parameters, also known as Erlang distributions.

4.2.2 The models

In this section I employ my basic model (2.1.4), the model of Müller et al. (2004) and a model

with a similar form to basic model, but with N-IGP priors (instead of DP priors) for the correlated

distributions in the SF setting. More specifically, two panel data sets of sizes T ·N1 and T ·N2 will

be considered, say Yjit, i = 1, 2, . . . , Nj , j = 1, 2, t = 1, 2, . . . , T . In all models and for each data
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set in those models I will use the same structure as in (4.2.1), together with a N(0, σ2) distribution

for the symmetric errors vjit. Therefore, the top level of the hierarchical model will be

Yjit ∼ N(α+X ′
jitβ + uji, σ

2), i = 1, 2, . . . , Nj , j = 1, 2, t = 1, 2, . . . , T.

In the above, uji are the one-sided errors, which will be modelled using correlated distributions, say

F ∗
1 and F ∗

2 . All the other parameters are as described before.

For the case of the Müller et al. (2004) model, it is assumed that those F ∗
1 and F ∗

2 have a com-

mon part, F0, and idiosyncratic parts, F1 and F2, respectively. The weight assigned to F0,ε is given

a flexible beta prior, with some mass assigned to the special cases ε = 0 or ε = 1. F0, F1 and F2 are

assigned independent DP priors, with the same centering distribution, an exponential distribution:

Yjit
ind∼ N(a+X ′

jit · β + uji, σ
2), i = 1, 2, . . . , Nj, j = 1, 2, t = 1, 2, . . . , T

uji ∼ F ∗
j = εF0 + (1 − ε)Fj , i = 1, 2, . . . , Nj , j = 1, 2

F0 ∼ DP(M0, H), F1 ∼ DP(M1, H), F2 ∼ DP(M2, H), where H ≡ Exp(λ) and independent

π(ε) = π0δ0(ε) + π1δ1(ε) + (1 − π0 − π1)Be(aε, bε) (4.2.2)

f(a,β, σ2) ∝ σ−2, λ ∼ Exp(− log(r∗)), M0/η0,M1/η0,M2/η0
iid∼ InvBe(η, η).

A noninformative prior for (a,β, σ2) is also assumed, which however leads to a proper posterior

distribution (as shown in Fernández et al. (1997)) and an inverted beta distributions (Zellner, 1971)

for the precision parametersM0,M1 and M2 (each divided by a hyperparameter η0, which is also the

prior median), as in Griffin and Steel (2004). In statistics literature, the inverted beta distribution

is also called the gamma-gamma distribution (see, for example Bernardo and Smith, 1994, p. 120).

The distribution H is set to be an exponential distribution with mean 1/λ, and an exponential prior

with mean −1/ log(r∗) is adopter for λ.

In the case of Model (2.1.4), the same structure as above is adopted, with the difference that the

weight ε has a beta prior with parameters the precision parameters of the DP priors of F0 and F1.

We also have the same concentration parameters for the DP priors of F1 and F2, resulting also in

the last two being identically distributed:

Yjit
ind∼ N(a+X ′

jit · β + uji, σ
2), i = 1, 2, . . . , Nj, j = 1, 2, t = 1, 2, . . . , T

uji ∼ F ∗
j = εF0 + (1 − ε)Fj , i = 1, 2, . . . , Nj , j = 1, 2

F0 ∼ DP(M0, H), F1, F2
iid∼ DP(M1, H), where H ≡ Exp(λ)
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ε ∼ Be(M0,M1) (4.2.3)

f(a,β, σ2) ∝ σ−2, λ ∼ Exp(− log(r∗)), M0/η0,M1/η0
iid∼ InvBe(η, η).

Finally, the model with N-IGP priors has the same structure as in the case of the DP priors,

apart from the priors of F0, F1 and F2 (N-IGPs instead of DPs) and a N-IG prior (instead of beta)

distribution for ε:

Yjit
ind∼ N(a+X ′

jit · β + uji, σ
2), i = 1, 2, . . . , Nj, j = 1, 2, t = 1, 2, . . . , T

uji ∼ F ∗
j = εF0 + (1 − ε)Fj , i = 1, 2, . . . , Nj , j = 1, 2

F0 ∼ N-IGP(M0, H), F1, F2
iid∼ N-IGP(M1, H), where H ≡ Exp(λ)

ε ∼ N-IG(M0,M1) (4.2.4)

f(a,β, σ2) ∝ σ−2, λ ∼ Exp(− log(r∗)), M0/η0,M1/η0,M2/η0
iid∼ InvBe(η, η).

Notice also that the above models have obvious similarities with the second model used in Griffin

and Steel (2004), a PDP-type model. In that model an extra set of covariates was used to account

for firm characteristics (i.e. staff ratio and type of hospital: non-profit, for profit or government) and

the corresponding parameters were used to borrow inference between the groups. They also used a

DP prior for the distribution of the inefficiencies, with a separate distribution for each group. Links

between their nonparametric distributions were provided by a parametric centering distribution and

a common mass parameter. On the other hand, in the model proposed here, inference between the

two groups is mainly borrowed through the common nonparametric part F0 and also through the

common weight ε.

4.2.3 Computational implementation

In order to simulate from the posterior distributions of the parameters in the above models we

resort to MCMC algorithms. In the case of the last model, slice sampling ideas (together with the

auxiliary variables needed in order to perform this slice sampler) as in Walker (2007), Kalli et al.

(2008) and Griffin and Walker (2009) are also used. A mix-split step (similar to the one used in

the previous models) is also feasible for Models (4.2.2) and (4.2.3). On the other hand, as explained

below, integrating out the weight in the case of Model (4.2.4) was computationally problematic, so

I did not include it in the MCMC algorithm.

The full conditional distributions of the parameters in the above models are as follows:
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Model (4.2.2)

The posterior distribution of all parameters in the model is:

f(s, r,φ, ε, λ, σ2, α,β,M0,M1,M2|Y, X) ∝
∏

j,i,t

f(Yjit|Xjit, α,β, rji, sji,φ, σ
2)f(α,β, σ2)f(ε)f(λ)

× f(M0,M1,M2)
∏

j,i

f(φji|λ)
∏

j,i

f(rji|ε)f(s|r,M0,M1,M2)

where Y is the vector of all data, X is the table of all covariate values and s, r and φ are the

indicators and discrete values of the inefficiencies uji. Let also Kj and nj denote the number of

clusters and the number of firms (not observations) assigned to Fj , j = 0, 1, 2, respectively.

The full conditional distribution of each parameter is as follows:

• λ| · · ·Ga(K0 +K1 +K2 + 1,
∑

j,i φji − log(r∗)).

• σ−2| · · ·Ga((N1 +N2)T/2,
∑

j,i,t(Yjit − α−X ′
jitβ − uji)

2/2).

• f(ε| · · · ) = π01(
∑

j,i rji=0)δ0(ε)+π11(
∑

j,i rji=N1+N2)δ1(ε)+(1−π0−π1)Be(aε+n0, bε+n1+n2).

• For each k = 1, 2, . . . ,Kj, j = 0, 1, 2 the full conditional distribution of φjk will be a truncated

at 0 normal distribution with mean
∑

(Y (jk)−α−X(jk)′β)−λσ2

njkT
and variance σ2

njkT
,

where the superscript denotes the observations and the corresponding covariate vectors that

correspond to the specific cluster φjk and njk is the number of firms allocated to the same

cluster.

• f(s, r| · · · ): as in Griffin and Steel (2004).

• f(M0| · · · ) ∝ M
η+K0−1
0 Γ(M0)

Γ(M0+n0)(M0+η0)2η

f(M1| · · · ) ∝ M
η+K1−1
1 Γ(M1)

Γ(M1+n1)(M1+η0)2η

f(M2| · · · ) ∝ M
η+K2−1
2 Γ(M2)

Γ(M2+n2)(M2+η0)2η .

• f(α,β| · · · ) is the usual linear regression model update (see, for example, equation (A.7) of

Koop et al. (1997)).

In the above, the inefficiency terms uji, although not explicitly stated in the full parameter space,

can easily be retrieved from the discrete values and the corresponding indicators. For example, if

r12 = 0 and s12 = 3, then u12 = φ03. The reason for having uji in some of the steps above is merely

for simplicity of the expressions. I also use the indicator function 1(··· ), which is 1 if the expression

in the subscript is true, and 0 otherwise.

The full conditional distributions of the M ’s are not of known form, so we confront to RWMH

updating steps for each of them.
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Another interesting subject here is an identifiability issue regarding the intercept α: both α and

the inefficiencies uji have an additive effect, therefore identification of the those should be provided

by the prior of the latter. However, in the nonparametric setting these assumptions are not so

strong, so the usual MCMC algorithm might be moving too slowly, regarding α. A solution to this

is to use the reparametrisation α, zji = α+uji. The usual parametrisation (α, uji) is called the non-

centred and (α, zji) is the centred one. As shown in Gelfand et al. (1995), the latter parametrisation

rapidly adjusts the intercept. As a result, a mixed updating scheme for (α,β) is used: in each step

of the MCMC chain we update α and β using the usual updating step, as mentioned above (i.e.

under the non-centred parametrisation), and also conditional on the zji’s (i.e. under the centred

parametrisation). In the latter case, β| · · · can be easily calculated from the full conditional of the

regression parameter in the linear regression model, whereas for α we use the fact that min(zji)−α

follows an exponential distribution with mean ((K0 +K1 +K2)λ)
−1.

As mentioned above, an additional mix-split step can be introduced in the algorithm, and

performed in the same way as before (except, of course, from the acceptance probabilities, since the

prior distribution of the φ’s is different).

Finally, the predictive densities for F ∗
1 and F ∗

2 , as well as those of the component distributions

F0, F1 and F2 are calculated in a similar way as in Section 3.

Model (4.2.3)

The parameter space is the same as before, except for M2, and the posterior distribution of all

parameters is:

f(s, r,φ, ε, λ, σ2, α,β,M0,M1|Y, X) ∝
∏

j,i,t

f(Yjit|Xjit, α,β, rji, sji,φ, σ
2)f(α,β, σ2)f(M0,M1)

× f(ε|M0,M1)
∏

j,i

f(φji|λ)f(λ)
∏

j,i

f(rji|ε)f(s|r,M0,M1)

using the same notation as before.

The full conditional distributions of most parameters will be the same as above. The only differences

will be:

• f(M0| · · · ) ∝ εM0
M

η+K0−1
0 Γ(M0+M1)

Γ(M0+n0)(M0+η0)2η
and

f(M1| · · · ) ∝ (1 − ε)M1
M

η+K1+K2−1
1 Γ(M1)Γ(M0+M1)

Γ(M1+n1)Γ(M1+n2)(M1+η0)2η .

• ε| · · · ∼ Be(M0 + n0,M1 + n1 + n2).

• The acceptance probabilities in the mix-split step.
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As before, the full conditional distributions of M0 and M1 are not of known form, so we confront to

RWMH updates.

Model (4.2.4)

Implementing Model (4.2.4) was quite different than the previous two models. The reason, as

mentioned in Section 3.7, is that Matlab does not have good built-in functions for the incomplete

gamma function appearing in the Pólya-urn representation of the N-IGP. Therefore, I used a method

similar to the one proposed in (Griffin and Walker, 2009, and also described in Section 3.7) for

simulating such models, using slice sampling ideas. The basic idea is that, using auxiliary variables,

one can simulate from the posterior distribution of the parameters in the nonparametric mixture

model without any truncation error, using slice sampling. The basic difference in this algorithm

from the one described in Section 3.7 is that here there are N1 + N2 auxiliary variables vji, i =

1, 2, . . . , Nj, j = 1, 2, each corresponding to firm (j, i), instead of only three vj , j = 0, 1, 2 we had

before (each corresponding to component distribution Fj , j = 0, 1, 2).

More specifically, the full likelihood f(Yjit|Xjit, α,β, σ
2, sji, rji, φji) is extended to

f(Yjit, vji, Uji|Xjit, α,β, σ
2, sji, rji, Jji) =

∏

j,i,t

N(Yjit|Xjit, α,β, σ
2, sji, rji,φ)

×
∏

j,i:rji=0

1(Uji<J0sji
)

∏

i:r1i=1

1(U1i<J1s1i
)

∏

i:r2i=1

1(U2i<J2s2i
)

×
∏

j,i : rji=0

e−vjiH0

∏

j,i : rji=1

e−vjiHj

where rji, sji and φji are as before, Uji, j = 1, 2 are auxiliary variables with a U(0,∞) prior dis-

tribution, vji, i = 1, 2, . . . , Nj, j = 1, 2 are additional exponentially-distributed auxiliary variables,

used to make the algorithm more efficient (see Nieto-Barajas et al. (2004)) and Hj =
∑∞

m=1 Jjm, j =

0, 1, 2, where Jj = (Jj1, Jj2, . . .) are the (unnormalised) weights in the three component distributions

Fj , j = 0, 1, 2. The a priori density of those weights is as in (3.7.4). The infinite sums appearing in

Hj can be avoided by truncating these sums at a value K such that Jjk < L, ∀ k > K, j = 0, 1, 2.

The value L is arbitrary, and as Griffin and Walker (2009) suggest, setting this to be the minimum

of all Uji seems to work well in practise. Finally, we can then integrate over all those Jjk ≥ L,

therefore avoiding the infinite sums.

To sum up, the full parameters vector and the full conditionals are as follows:

f(α,β, σ2, s, r,φ,U ,J , vji, λ, ε,M0,M1|Y , X) ∝ f(α,β, σ2)f(M0,M1)f(λ)f(ε|M0,M1)

× f(φ|λ)f(J0|M0)f(J1|M1)f(J2|M1)f(U)f(r|ε)

× f(Y |X,α,β, σ2, s, r,φ)f(s|r,U ,J)
∏

j,i

f(vji|s, r,J)
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where the last product is proportional to
∏

j,i:rji=0 e
−vjiH0

∏

j,i:rji=1 e
−vjiHj .

Therefore, we have:

• f(ε| · · · ) ∝ εn0(1 − ε)n1+n2

K−1

(√

M2
0

ε +
M2

1
1−ε

)

ε3/2(1−ε)3/2

√

M2
0

ε +
M2

1
1−ε

⇒ f(ε| · · · ) ∝ εn0−1(1 − ε)n1+n2−1
K−1

(√

M2
0

ε +
M2

1
1−ε

)

√
M2

0 (1−ε)+M2
1 ε

.

• f(M0| · · · ) ∝ Mη−1
0

(M0+η0)2ηM0e
M0

K−1

(√

M2
0

ε +
M2

1
1−ε

)

√
M2

0 (1−ε)+M2
1 ε

M
K∗

0
0 e−M0(

∫∞
L
q(x)dx+

∫ L
0

(1−e−v0x)q(x)dx)

⇒ f(M0| · · · ) ∝ M
η+K∗

0
0

(M0+η0)2η

K−1

(√

M2
0

ε +
M2

1
1−ε

)

√
M2

0 (1−ε)+M2
1 ε

e−M0(
∫ ∞

L
q(x)dx+

∫ L
0

(1−e−v0x)q(x)dx−1).

•

f(M1| · · · ) ∝ Mη−1
1

(M1 + η0)2η
M1e

M1

K−1

(√
M2

0

ε +
M2

1

1−ε

)

√

M2
0 (1 − ε) +M2

1 ε
M

K∗
1+K∗

2
1 ×

e−M1(
∫ ∞

L
q(x)dx+

∫
L
0

(1−e−v1x)q(x)dx+
∫∞

L
q(x)dx+

∫
L
0

(1−e−v2x)q(x)dx)

⇒ f(M1| · · · ) ∝ M
η+K∗

1+K∗
2

1

(M1 + η0)2η

K−1

(√
M2

0

ε +
M2

1

1−ε

)

√

M2
0 (1 − ε) +M2

1 ε
×

e−M1(
∫ ∞

L
q(x)dx+

∫
L
0

(1−e−v1x)q(x)dx+
∫∞

L
q(x)dx+

∫
L
0

(1−e−v2x)q(x)dx−1).

• For each pair (sji, rji), i = 1, 2, . . . , Nj , j = 1, 2, we have:

P (sji = k, rji = l| · · · ) ∝







εe−vjiH0
∏

tN(Yjit|Xjit, α,β, σ
2, φ0k)1(Uji<J0k) , k = 1, . . . ,K∗

0 , l = 0

(1 − ε)e−vjiHj
∏

tN(Yjit|Xjit, α,β, σ
2, φjk)1(Uji<Jjk), k = 1, . . . ,K∗

j , l = 1.

• For each vji, i = 1, 2, . . . , Nj , j = 1, 2, we have:

f(vji| · · · ) ∝







e−vjiH0 , if rji = 0

e−vjiHj , if rji = 1.

• For all i = 1, 2, . . . , Nj , j = 1, 2, Uji| · · · ∼







U(0, J0,sji) , if rji = 0

U(0, Jj,sji ) , if rji = 1.

• For the jumps Jjk with at least one observation allocated to it (i.e. nkl > 0), we have:

Jjk| · · · ∼ Ga(njk − 0.5, 1 +
∑

i:rji=1 vji), j = 1, 2 and

J0k| · · · ∼ Ga(n0k − 0.5, 1 +
∑

i,j:rji=0 vji).

For the jumps Jkl with no observations allocated to them, see Griffin and Walker (2009) for

the full conditional distributions and below for the updating method.
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• The full conditional distributions of λ, σ2, α,β and φ, and the corresponding updating schemes

are as in the previous models.

In the above, Kj and nj are as defined in the previous models, K−1 is the modified Bessel function

of the third type and q(x) = w(x)/M .

The full conditional distributions for ε,M0 and M1 are not of known form, so we confront to RWMH

steps, proposing ε′,M ′
0 and M ′

1, respectively, where logit(ε′) ∼ N(logit(ε), σ2
ε),

log(M ′
0) = log(M0) + ζ1, ζ1 ∼ N(0, σ2

ζ1
) and log(M ′

1) = log(M1) + ζ2, ζ2 ∼ N(0, σ2
ζ2

).

Regarding the vji’s, the infinite sum appearing in the above expressions precludes updating them

directly from its full conditional distribution. On the other hand, MH steps can be used, together

with the method in Griffin and Walker (2009) for the infinite sum.

In order to update the jumps with no observations allocated to them, we simulate a Poisson process

with intensity e−Vkxw(x) on (L,∞),where w is as in (3.7.4) and Vk is the sum of all vji that belong

in Fk, k = 0, 1, 2.

Finally, similar to Griffin and Walker (2009), the predictive densities for F ∗
1 and F ∗

2 can be calculated

using an additional pair of indicators for each F ∗
j , i.e. (s1,N1+1, r1,N1+1) and (s2,N2+1, r2,N2+1).

Note: As mentioned above, I did not include a mix-split step in this algorithm, although this

is theoretically possible. In practise, though, it was not possible to integrate the weight ε out of this

step, again due to limitations of Matlab. Since not integrating ε out in extra mix-split step would

result in very little improvement in the mixing of the chains, this step was omitted completely.

4.2.4 Hospital data

The data to be analysed are the panel data of 382 nonteaching hospitals in the U.S.A. for a period

of T = 5 years, from 1987 to 1991, also analysed in Koop et al. (1997). The output consists of five

different measurements: number of cases, number of impatient days, number of beds, number of

outpatient visits and a case mix index ( say W (1) −W (5), respectively). We also consider a measure

of capital stock C and an aggregate wage index P . In the vector of covariates we also include t and

t2, in order to capture any time trend. For Y ’s we have the logarithm of cost for each firm.

Next, the hospitals are separated in six categories, based on their ownership status (for-profit,

non-profit or government) and their number of clinical workers per patient. The first characteristic is

straightforward. The second one, called “staff ratio” for simplicity from now on, is a binary variable

taking the value 1 if the average (over the years) of the ratio of the number of clinical workers over

the number of patients for a specific hospital is higher than the median of those averages of all 382

hospitals, and 0 otherwise. Doing so, the following group sizes were produced:
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Non-profit For-profit Government
Staff ratio=0 141 34 22
Staff ratio=1 127 30 28

Table 4.3: Group sizes for the six groups of hospital firms based on ownership status and
staff ratio.

Notice that Griffin and Steel (2004) used the same two characteristics (ownership status and

ratio of workers per patient) in defining similar groups of the hospitals. However, the clusters

obtained here were not exactly the same as the ones in that article, probably due to a different

way for setting the “staff ratio” index (for example, using the mean instead of the median over all

hospitals).

Finally, I applied the models of Section 4.2.2 in each pair of groups of hospitals with the same

ownership status. As seen in Table 4.3, the non-profit groups were the largest ones and will be

studied in more depth. Fortunately, those two groups were the same as in Griffin and Steel (2004).

The effect of the small sample sizes for the for-profit and the government-owned hospitals will become

apparent when they are analysed.

4.2.5 Results

I applied the three models (4.2.2)-(4.2.4) to the hospital data. In all three models a translog function

of the covariates (W (1) to W (5), C and P ) was used. Therefore, ∀ i = 1, 2, . . . , Nj, j = 1, 2 and t =

1, 2, . . . , T ,

X ′
jitβ =

5∑

k=1

βk log(W
(k)
jit ) + β6 log(Pjit) +

5∑

k=1

5∑

l=k

ξkl log(W
(k)
jit ) log(W

(k)
jit )

+

5∑

k=1

β7+k log(W
(k)
jit ) log(Pjit) + β13 log(Cjit) +

5∑

k=1

β13+k log(W
(k)
jit ) log(Cjit)

+ β19 log(Pjit) log(Cjit) + β20 (log(Cjit))
2 + β21t+ β22t

2,

where ξkl, k ≤ l, provide the remaining elements of the vector of covariates β.

I also set r∗ at the value 0.8 (as in Griffin and Steel, 2004) and η = η0 = 1. The value of r∗ implies

a prior median for the efficiency r of 0.8, whereas the values of η and η0 imply a prior median value

of 1 for both M0 and M1.

In the case of Model (4.2.2), we have π0 = π1 = 0.1 and aε = bε = 1.

In all cases the burn-in period was 40000 iterations, whereas the length of the chain used was also

long enough (ranging from 80000 to 250000 iterations).
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Non-profit hospitals

These models are first applied to the largest data sets, i.e the non-profit hospitals with low staff ratio

(data set 1), which consists of 141 firms, and the non-profit hospitals with high staff ratio (data set

2), with 127 firms in it.

Let us first consider the basic proposed model, Model (4.2.3). The acceptance rate of the split

steps in the mix-split step was around 24.0%, whereas for merge steps the corresponding rate was

around 19.8%. The mean, median, and 95% credible interval for the posterior distribution of various

quantities are shown in Table 4.4:

M0 M1 y x σ2 σ−2 λ β21 β22

Mean 6.10 1.248 0.815 7.35 0.0031 344.38 3.61 0.124 -0.0045
Median 5.58 0.865 0.869 6.80 0.0029 344.97 3.55 0.124 -0.0045

2.5th percentile 1.48 0.055 0.351 2.79 0.0025 196.09 2.20 0.111 -0.0066
97.5th percentile 13.75 4.59 0.992 14.95 0.0051 396.65 5.36 0.138 -0.0024

Table 4.4: Posterior means, medians and 95% credible intervals for various parameters in
Model (4.2.3).

In the above, y = M0

M0+M1
, x = M0 +M1 and β21, β22 are the parameters of the time trends t and

t2, respectively.

Next, consider the posterior distribution of the weight parameter ε. This is shown in Fig-

ure 4.12. As can be seen, there is a very small mode at 0 (corresponding to the case of F ∗
1 and F ∗

2

not having a common part at all) and two very big modes at 1 (the case of F ∗
1 and F ∗

2 coinciding)

and around 0.88 (roughly speaking, F ∗
1 and F ∗

2 sharing around 88% of their posterior distribution).

Furthermore, inference for this parameter also reveals the importance of the additional mix-split

step: when this step was not applied, the small mode around 0 was not captured, probably because

it is far from the other two, much bigger modes. For comparison purposes, I show the trace plots

for this parameter with and without the mix-split step in Figure 4.13. The other results presented

are those with the mix-split step applied in the algorithm.

Figure 4.14 next shows the posterior densities of M0 and M1 and of the reparametrisation

y = M1

M0+M1
, x = M0 +M1. The posterior distribution of M0 is flatter than the one of M1, which is

peaked around 1, indicating that F1 and F2 are very far from their expected centering distribution.

The posterior of x is a compromise between those two, i.e. less flat than the posterior of M0, but

also less peaked than that of M1. Finally, the posterior for y is left-skewed with a mode very close

to 1, in line with Figure 4.12.
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Figure 4.12: Posterior distribution of ε for Model (4.2.3) applied to the non-profit hospitals.
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Figure 4.13: Trace plots for ε, with (right) and without (left) the mix-split step for Model
(4.2.3) applied to the non-profit hospitals.

Another important aspect in this type of models is the predictive density of the efficiency of a

new firm in each of the two groups F ∗
1 , F

∗
2 . These predictive densities were plotted, as well as the

corresponding cumulative distribution functions (cdf) in Figure 4.15. For a better inspection of the

difference in the two groups, the predictive densities of the efficiency of a firm in the common (F0)

and in the idiosyncratic (F1, F2) parts were also plotted (Figure 4.16).

The left graph in Figure 4.15 resembles the results of Griffin and Steel (2004). For F ∗
1 , we get a

mode at 1, an antimode around 0.95, a small bump around 0.86 and two larger modes at 0.7 and

0.75 (the last two are slightly reversed in size here, compared to Griffin and Steel (2004)). The

difference in this one is the mode around 0.67 of Griffin and Steel (2004), which is transposed left,

around 0.6 and looks more like a bump. Regarding F ∗
2 , we have the same large modes at 0.7 and

0.75 and the bumps around 0.67 and 0.85. In this case, there is also a tiny mode around 0.47. The
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Figure 4.14: Posterior distributions of M0 (top), M1 (bottom)(left) and y (top), x (bot-
tom)(right) for Model (4.2.3) and the non-profit hospitals.
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Figure 4.15: Predictive densities (left) and cumulative distributions (right) for the efficiency
of firms in the low staff ratio (solid line) and the high staff ratio group (dashed line) for
Model (4.2.3) applied to the non-profit hospitals.

main difference in this graph and the one of Griffin and Steel (2004) (although not a big difference,

in any case) is the behaviour at the right end. In Griffin and Steel (2004) the mass of the predictive

density is decreasing as the efficiency approaches 1, whereas here there is a small mode around 1,

which also creates an antimode around 0.95. However, overall we might say that the results are very

similar.

The right graph of Figure 4.15 clearly demonstrates that the first group (non-profit hospitals with

low staff ratio) is more efficient than the second group (non-profit hospitals with high staff ratio). It

is also interesting that this occurs in a rather specific way with an increase of probability of about

0.06 around 0.65, and this difference is preserved with small differentiations up to 0.99, where the

two cdf’s coincide.

Another interesting point here is that, comparing the predictive densities of F ∗
1 and F ∗

2 , it becomes

clear that their main differences are in the intervals (0.6,0.7) (where F ∗
2 has more mass) and the

interval (0.8,0.9) (where the opposite is true). In other words, it can be said that the mass of F ∗
1 in

(0.8,0.9) has been moved to (0.6,0.7) for F ∗
2 . This difference is also clear from the predictive densities

of the component distributions F1, F2 and F0 in Figure 4.16. This graph is helpful in providing a
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better insight as to where the characteristics of those predictives come from: the large mode at 1

and the bump around 0.86 in F ∗
1 are due to the idiosyncratic part F1, whereas the other two around

0.7 and 0.75 and the small one around 0.6 come from the common part F0. As for F ∗
2 , the small

mode at 0.47 is due to its idiosyncratic part F2, the mode at 1 and the bump at 0.85 are due to

F0, the mode around 0.75 is mostly (but not completely) due to F0, whereas the bump around 0.67

is due to both F2 and F0. The last one might seem strange, since it is obvious that F2 has much

more mass around that point than F0 does, but it makes sense if we take into account the weights

of those two parts (i.e. ε).
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Figure 4.16: Predictive densities for the efficiency of a firm in F1 (above), F2 (centre) and
F0 (below) for Model (4.2.3) for the non-profit hospitals.

Finally, quartile plots, similar to the ones given in Figures 7 and 14 of Griffin and Steel (2004)

are given in Figure 4.17 for all the firms in the first (left) and second group (right).

As in Griffin and Steel (2004), the last two plots represent the posterior probabilities of the efficiency

of each firm falling in each quartile of the predictive efficiency distribution. More specifically, the

size of the black shading for a specific firm represents the (posterior) probability that its efficiency

falls in the lower quartile, i.e. in (0, 0.25) of the predictive efficiency distribution. Dark gray shading

corresponds to the second lower quartile (0.25, 0.5), light gray to the third one (0.5, 0.75) and the

white one to the highest quartile (0.75, 1).

121



0 20 40 60 80 100 120 140
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Firm

E
ff

ic
ie

n
c
y

0 20 40 60 80 100 120
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Firm

E
ff
ic

ie
n

c
y

Figure 4.17: Quartile plots for the efficiencies of the firms in the F ∗

1
(left) and F ∗

2
(right)

for Model (4.2.3) applied to the non-profit hospitals.

Next, Model (4.2.2) is applied to the same data sets. Overall, the results were similar to the

results of the previous models. The acceptance rate for mixing steps was around 18.9%, whereas the

same rate for split steps was 19.3%. Although mixing was not significantly improved, the results

reported will correspond to the ones with this step included in the code.

Means, medians and 95% credible interval for the posterior distribution of the same parameters as

before (except for x and y, since those two quantities do not have a natural interpretation here), as

well as M2, which was not in the previous model, are shown in Table 4.5:

It can be seen that the parameters λ, σ2, β21 and β22 are very close to the case of the previous

M0 M1 M2 σ2 σ−2 λ β21 β22

Mean 5.70 6.81 5.97 0.0031 335.02 3.61 0.124 -0.0045
Median 5.08 1.39 0.972 0.0029 345.60 3.55 0.124 -0.0045

2.5th percentile 1.28 0.042 0.031 0.0025 198.19 2.20 0.111 -0.0066
97.5th percentile 13.79 20.95 16.77 0.0050 397.27 5.36 0.138 -0.0024

Table 4.5: Posterior means, medians and 95% credible intervals for various parameters in
Model (4.2.2).

model. This is also true for M0, although not as much as for the parameters above. On the other

hand, the values of M1 and M2 are significantly larger than those of the (common) M1 in Model

(4.2.3). The reason for this is that the prior for the weight in the previous model, which involves

M0 and M1, induces lower values for M1.

Next, consider the posterior distribution of this weight ε for this model. This is shown in

Figure 4.18 and we can see the same modes at 0.85 and 1. On the other hand, in this case there is

not any mass at 0. The trace plot of this parameter are shown in Figure 4.19.

The posterior distributions of the three concentration parameters are shown in Figure 4.20. It
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Figure 4.18: Posterior distribution of ε for Model (4.2.2) for the non-profit hospitals.

is interesting to notice the similarity of M0 with before, as well as the similar shape of M1 and M2

with M1 before.

The predictive densities and cumulative distribution functions of the efficiencies in the two

groups are shown in Figure 4.21. The cdfs looks very similar to the ones of the previous model. This

is also the case for the predictive densities, although one can spot some small differences from their

graph. More specifically, there is higher difference between F ∗
1 and F ∗

2 at the mode around 0.6 and

a much higher mode at 1 for F ∗
1 .

Finally, the predictive densities for the component distributions F0, F1 and F2 are shown in

Figure 4.22. Again, these distributions are very similar to the ones derived when Model (4.2.3) was

applied to the same data. The only differences seem to be at the mass of all three predictives at 1,

which here it is more than before, especially for F2.

Next, Model (4.2.4) was applied to the same data sets. First, it is interesting to mention the

difference in the behaviour of the algorithm used for this model, compared to the algorithms in the

previous two models, since they are quite different. What I noticed is that the running time for

this algorithm was significantly longer than the corresponding time for each of the other algorithms

(around 18 times longer). This, of course, was also the case for the other two pairs of hospital groups

used. As for the mixing of the chains, this is harder to answer, since I was not able to imitate an

additional split/merge step for the last model. Additionally, the results of applying the last model

to the specific data were more different to the results of the other two models than the results of

the other two models, when compared to each other (as will be apparent later), so it is not so easy

to compare the mixing. Regardless of this, the mixing of the algorithm for this model seemed good
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Figure 4.19: Trace plot for ε for Model (4.2.2) for the non-profit hospitals.

enough. On the other hand, this difference in the results should not affect the running time much.

Concentrating on the actual results of Model (4.2.4) applied to the two bigger groups of hos-

pitals, the following mean and percentiles for some parameters were found:

M0 M1 y x σ2 σ−2 λ β21 β22

Mean 1.01 0.556 0.628 1.57 0.0026 387.72 3.67 0.125 -0.0045
Median 0.826 0.435 0.655 1.42 0.0026 387.37 3.62 0.126 -0.0045

2.5th perc 0.086 0.045 0.155 0.196 0.0024 354.55 2.43 0.113 -0.0064
97.5th perc 3.18 1.68 0.934 3.929 0.0028 422.51 5.21 0.138 -0.0027

Table 4.6: Posterior means, medians and 95% credible intervals for various parameters in
Model (4.2.4).

In the above x = M0 +M1 and y = M0

M0+M1
are as defined before. Although these parameters have

a slightly different interpretation here, y can still be seen as the prior mean of the weight ε and

x as a measure of variance in its prior distribution (although through a slightly more complicated

relationship than in the case of the beta prior distribution in Model (4.2.3)).

Again, we see that there is a consensus with the previous models regarding the posterior mean, me-

dian and 95% credible intervals for the parameters λ, σ2, β21 and β22. On the other hand, there are

significantly different values for the concentration parameters M0 and M1 and for the reparametri-

sation x and y. The reason for those differences is, of course, the different prior distribution of ε,

which involves those M ’s.

This different prior also influences significantly the posterior of ε, as seen in Figure 4.23. Here

there is only one big mode around 0.8, instead of the two large modes before. Mixing of ε was good,

as seen in Figure 4.24.
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Figure 4.20: Posterior distributions for M0,M1 and M2 for Model (4.2.2) for the non-profit
hospitals.

Next we look at the posterior distributions of the two concentration parameters, as well as

those of the reparametrisation x and y. These posteriors are shown in Figure 4.25. As mentioned

before, those parameters exhibit a significantly different behaviour than in the previous two models,

and the main reason for this is the prior ε ∼ N-IG(M0,M1).

The predictive densities and the corresponding cdfs of the efficiencies in the two groups are

shown in Figure 4.26. The densities are significantly different from the corresponding ones derived

in the previous models. For F ∗
1 we have a small mode at 0.6, two larger ones around 0.7 and 0.75

and another one around 0.85. There is also a significant amount of mass at 1. For F ∗
2 there is a tiny

mode around 0.45, a larger one at 0.65, the two largest modes at 0.7 and 0.75 (i.e. the same as the

largest modes as for F ∗
1 ) and a smaller mode at 1. There is also a small bump around 0.86. The

predictive cdfs, on the other hand, are not that different than the corresponding cdfs derived with the

previous two models. More importantly, in all three models we have higher probabilities on higher

(predictive) efficiencies in F ∗
1 than in F ∗

2 (as shown by the fact that the predictive cdf for F ∗
1 is below

the cdf for F ∗
2 ), indicating that the low staff, non-profit hospitals are more efficient than the high

staff, non-profit hospitals. Finally, in order to get a better understanding of the predictive behaviour
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Figure 4.21: Predictive densities (left) and cumulative distributions (right) for the efficiency
of firms in the low staff ratio (solid line) and the high staff ratio group (dashed line) for
Model (4.2.2) applied to the non-profit hospitals.

of my model, I have plotted the predictive densities of the component distributions F0, F1 and F2

(Figure 4.26). The predictive density for the first idiosyncratic part, F1 has a big mode around

0.85 and some mass at 1. For the second idiosyncratic part, F2, there is one mode at 0.65. For

the common part, F0, the predictive density exhibits two big clusters at 0.7 and 0.75 and a smaller

mode at 0.6.

It is also interesting to compare the predictive densities for the two groups in this model and

in the corresponding model with DP priors, i.e. Model (4.2.2). For the N-IGP model, there is an

obvious enforcement of the modes at 0.6, 0.75 and 0.85 for F ∗
1 and 0.65 and 0.75 for F ∗

2 . This is

in accordance with the intuition given in Lijoi et al. (2005) regarding the property of the N-IGP to

better detect clusters and enforce the significant ones in a more sensible way.

Government-run hospitals

The three models above were also applied to the government-run hospitals with low staff ratio

(data set 1, 22 firms) and the government-run hospitals with high staff ratio (data set 2, 28 firms).

However, when I applied the first two models, the results were not as one would expect since, for

example, I was not able to get similar predictive densities for F ∗
1 and F ∗

2 as in Griffin and Steel

(2004). On the contrary, the predictives of the model applied here (Figure 4.28) assigned most of

their mass at 1. On the other hand, by significantly reducing the effect of the mode at 1, these

predictives were much closer to the results of Griffin and Steel (2004).

Next, we turn our attention to the posterior distribution of the weight ε. As seen in Figure 4.29,

for Model (4.2.2) we have a big mode at 1 and a smaller mode at 0. For Model (4.2.3) we got the

same modes, together with another big mode around 0.75. Both distributions are rather dispersed.
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Figure 4.22: Predictive densities for the efficiency of a firm in F1 (above), F2 (centre) and
F0 (below) for Model (4.2.2) for the non-profit hospitals.

On the other hand, when Model (4.2.4) was applied to these data, the results were more

reasonable. The posterior distribution and the trace plot for ε for this model are shown in Figure 4.30.

This posterior distribution is unimodal around 0.7, and with lower variance than in the previous

two models. From the trace plot, it seems that mixing is also good.

For comparison reasons, the prior distributions for the weight in each of the three models were

also plotted (Figure 4.31).

The predictive densities of F ∗
1 and F ∗

2 are shown in Figure 4.32. From the left graph there,

we see that the predictives for the efficiencies in the two groups are close to the corresponding

distributions in Griffin and Steel (2004). On the other hand, there are also some differences such as

the small mode at 0.55 for the first group and the reversed (in size) and shifted modes at 0.75 and

0.85 for the second group. The corresponding predictive densities for the component distributions

F1, F2 and F0 are shown in the right side of Figure 4.32. In any case, the above predictive densities,

although not extremely close to the ones in Griffin and Steel (2004), are closer to them (and seem

more sensible) than those of the other two models applied to the same data. As mentioned before, the

obvious difference in the predictive densities of Model (4.2.2) against the corresponding distributions

for Models (4.2.2) and (4.2.3) is the dominating mode at 1 for the latter models. On the other hand,

notice that the difference between the efficiencies in F ∗
1 and F ∗

2 (shown, for example, by the distance

between the two lines in each graph, taking also into account which line is higher) is the same in all

graphs. Therefore, it can be said that all models perform similarly, in terms of assessing the relative

predictive efficiency of the two groups of government-run hospitals (low or high staff ratio).
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Figure 4.23: Posterior distribution of ε for Model (4.2.4) for the non-profit hospitals.

Finally, I applied the above three models to the for-profit hospitals with low and high staff

ratio. In this case, however, the results were overdispersed for all three models (and not only for the

first two, as for the government hospitals). The main reason for this is the small data sizes.
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Figure 4.24: Trace plot for ε for Model (4.2.4) for the non-profit hospitals.
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Figure 4.25: Posterior distributions of M0 (top), M1 (bottom)(left) and y (top), x (bot-
tom)(right) for Model (4.2.4) for the non-profit hospitals.

4.3 Summary

In this chapter I applied some of the models introduced earlier to real data. First, my basic proposed

model and the model of Müller et al. (2004) were applied to the daily stock returns of two firms.

The extra mix-split step proposed in Section 3 was also applied and it was shown that mixing of

the chains was improved when using this step. Using these models we get a better understanding

of the similarities and differences of the underlying distributions of those data. Next, the same

two models, together with the model with N-IGP priors (instead of DP priors) were applied to the

stochastic frontier setting. For the first two models the corresponding algorithms were similar to the

ones discussed in Section 3, and also used in the financial data above. For the last model, however,

a similar approach could not be applied, due to limitations of the software used. As a result, the

slice sampler of Griffin and Walker (2009) (as described in Section 3.7) was extended in this context.
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Figure 4.26: Predictive densities (left) and cumulative distributions (right) for the efficiency
of firms in the low staff ratio (solid line) and the high staff ratio group (dashed line) for
Model (4.2.4) applied to the non-profit hospitals.

Finally, the derived algorithms were applied to model hospital efficiency data, where each pair of

data sets corresponded to the same ownership status and was separated according to a staff ratio

index. The results for the first two models were quite similar to each other and rather different from

the results for the last model.
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Figure 4.27: Predictive densities for the efficiency of a firm in F1 (above), F2 (centre) and
F0 (below) for Model (4.2.4) for the non-profit hospitals.
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Figure 4.28: Predictive densities for the efficiency of firms in the low staff ratio (solid line)
and the high staff ratio group (dashed line) for Models (4.2.3) (left) and (4.2.2) (right)
applied to the government hospitals.
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Figure 4.29: Posterior distribution of the weight ε for Models (4.2.3) (left) and (4.2.2)
(right) applied to the government hospitals.
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Figure 4.30: Posterior distribution (left) and trace plot (right) for ε for Model (4.2.4) for
the government hospitals.
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Figure 4.31: Prior distribution of ε in Model (4.2.2) (left), (4.2.3) (middle) and (4.2.4)
(right).
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Figure 4.32: Predictive densities for the efficiency of firms in the low staff ratio (solid line)
and the high staff ratio group (dashed line) (left) and predictive densities for F1 (above),
F2 (centre) and F0 (below) (right) for Model (4.2.4) applied to the government hospitals.



Chapter 5

Modelling Overdispersion With

the Normalized Tempered Stable

Distribution

As mentioned at the end of Chapter 3, a general formula for the moments and cross-moments of

the N-IG distribution will be derived, as well as those of a more general class of distributions, called

the normalised tempered stable distribution. This generalised distribution will be used in creating

a novel distribution for modelling count data. The formulae for the models will then be used in the

calculation of maximum likelihood estimates of the proposed model. It will be demonstrated that

the latter is better than the simpler beta-binomial distribution in modelling overdispersed data and

compare the two models, as well as other models proposed in the literature, using simulated and

real data.

5.1 The Moments of the N-IG Distribution

Although only the one-dimensional N-IG distribution will be used in my proposed models for overdis-

persed data, I also have results for the moments of the more general n-dimensional N-IG distribution,

by extending the results of Lijoi et al. (2005) and James et al. (2006):

Theorem 5.1.1. Let

W = (W1,W2, . . . ,Wn) ∼ N-IG(a1, a2, . . . , an+1),
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where all ai ≥ 0 i = 1, 2, . . . , n+ 1 and at least one of them is strictly positive. Then,

∀ N ∈ IN, and ∀ i = 1, 2, . . . , n,

E(WN
i ) =

N−1∑

t=−2N+2

N−1∑

l=0

cN(t+ 2l + 1, l)It (5.1.1)

where

cN (k, l) =




N − 1

l




(−1)N+l+1aki e

adN (k)

2N−1Γ(N)k!
, dN (k) =

⌊ k−1
2 ⌋
∑

m=0




k

2m+ 1





N−1∏

j=0

(2m+ 1 − 2j),

[x] is the floor function for x ∈ IR, a =
∑n+1

i=1 ai and It =
∫∞
1 e−auutdu.

Proof:

Since W is N-IG-distributed, each Wi can be written as Vi

V , i = 1, 2, . . . , n, where V =
∑n+1

j=1 Vi

and each of those Vi, i = 1, 2, . . . , n + 1 is inverse-Gaussian distributed and independently of each

other. Then:

E(WN
i ) = E

(
V Ni
V N

)

= E

(
V Ni

Γ(N)

∫ ∞

0

uN−1e−uV du

)

=
1

Γ(N)

∫ ∞

0

uN−1E
(

V Ni e−u(Vi+V−i)
)

du, where V−i = V − Vi (5.1.2)

=
1

Γ(N)
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0

uN−1E
(
V Ni e−uVi

)
E(e−uV−i)du
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(−1)N
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(
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(−1)N

Γ(N)
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uN−1E(e−uV−i)
∂N

∂uN
(
E(e−uVi)

)
du (5.1.3)

=
(−1)N

Γ(N)

∫ ∞

0

uN−1e−(a−ai)(
√

2u+1−1) ∂N

∂uN

(

e−ai(
√

2u+1−1)
)

︸ ︷︷ ︸

(1)

du. (5.1.4)

In the above (5.1.2) is an application of the Fubini Theorem and (5.1.3) is an application of Theorem

(16.8) in Billingsley (1995). Finally, for (5.1.4) the know formula for the moment generating function

of the inverse-Gaussian distribution was used.

The difficult part in (5.1.4) is to calculate (1), i.e. the N -th derivative of the function e−ai(
√

2u+1−1).

This is possible using Meyer’s formula, which is a variation of Faa di Bruno’s formula (see, for

example, Johnson (2002)):

∂N

∂xN
(g ◦ f)(x) =

∂N

∂xN
[g(f(x))] =

N∑

k=0

g(k)(f(x))

k!







∂N

∂hN
[f(x+ h) − f(x)]

k

|h = 0






(5.1.5)
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where g(k) is the k−th derivative of the function g.

In this case, g(x) = ex and f(x) = −ai(
√

2x+ 1 − 1). So,
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The last derivative will be: ∂N
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So, using (5.1.5), we get:
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In the above, the sum over k starts from 1, since for k = 0 the term is zero. As a result, the counter

m can also be set to start from 1. Additionally, m can be set to take only odd values, since the

terms in the sum over m will be zero for even values of m, since m ≤ N .

By using a slightly different parametrisation of the counter m, we can substitute
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⌊ k−1

2 ⌋
∑

m=0




k

2m+ 1





N−1∏

j=0

(2m+ 1 − 2j).

Plugging the above expression into (5.1.4), we get:

E(WN
i ) = (−1)N+1

Γ(N)

∑N
k=1

ak
i

k! dN (k)
∫∞
0
e−a(

√
2u+1−1)uN−1(2u+ 1)k/2−Ndu,

where dN (k) =
∑⌊ k−1

2 ⌋
m=0




k

2m+ 1




∏N−1
j=0 (2m+ 1 − 2j).
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The integral in the last equation can be found as follows:
∫ ∞

0

e−a(
√

2u+1−1)uN−1(2u+ 1)k/2−Ndu =

∫ ∞

1

e−a(y−1) (y
2 − 1)N−1

2N−1
yk−2N+1dy,

using the substitution y =
√

2u+ 1

=
1

2N−1

∫ ∞

1

e−a(y−1)
N−1∑

l=0




N − 1

l



 (−1)ly2N−2−2lyk−2N+1dy,

using the binomial theorem

=
1

2N−1

N−1∑

l=0




N − 1

l



 (−1)lea
∫ ∞

1

e−ayyk−2l−1dy.

So, we have:

E(WN
i ) =

N∑

k=1

(−1)N+1

Γ(N)2N−1

aki
k!
eadN (k)

N−1∑

l=0




N − 1

l



 (−1)lI∗k,l

where I∗k,l =
∫∞
1 yk−2l−1e−aydy

The above expression is, of course, a valid one. However, it can be simplified even more by noting

that the integrals I∗k,l depend on k and l only through k−2l. This will reduce the number of integrals

to be calculated from N2 to 3N − 2.

By clustering I∗k,l according to t = k− 2l− 1 ∈ {−2N + 2,−2N + 3, . . . ,−1, 0, 1, 2, . . . , N − 1} (and

also replacing k by t+1+2l), and denoting the clustered integrals by It =
∫∞
1
e−auutdu, we get the

desired formula. �

Another interesting formula than can be derived using the same basic method as above is the one

for the cross moments of each pair Wi,Wj , i 6= j, where both Wi and Wj are components of the

same N-IG-distributed W :

Theorem 5.1.2. Let

W = (W1,W2, . . . ,Wn) ∼ N-IG(a1, a2, . . . , an+1),

where all ai ≥ 0 i = 1, 2, . . . , n+ 1 and at least one of them is strictly positive. Then,

∀ N1, N2 ∈ IN, and ∀ i, j ∈ {1, 2, . . . , n} , i 6= j,

E(WN1

i WN2

j ) =

N1+N2−1∑

t=−2N1−2N2+3

N2∑

l=1

N1+N2−1∑

m=0

cN1,N2(t+ 1 + 2m− l, l,m) It (5.1.6)

where cN1,N2(k, l,m) = (−1)N1+N2+mea

Γ(N1+N2)2N1+N2−1

ak
i a

l
j

k!l! dN1(k)dN2(l)




N1 +N2 − 1

m



 , a =
∑n+1

i=1 ai

dN (k) =
∑⌊ k−1

2 ⌋
m=0




k

2m+ 1




∏N−1
j=0 (2m+ 1 − 2j) and It =

∫∞
1
e−auutdu.
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Proof:

For simplicity, in the following we have substituted N1 + N2 by N. We also used the fact that

Wi = Vi

V ,Wj =
Vj

V , V =
∑n+1
k=1 Vk for some independent inverse-Gaussian-distributed Vk, k =

1, 2, . . . , n+ 1.

E(WN1

i WN2

j ) = E

(

V N1

i V N2

j

V N

)

= E

(

V N1

i V N2

j

Γ(N)

∫ ∞

0

uN−1e−uV du

)

=
1

Γ(N)

∫ ∞

0

uN−1E
(

V N1

i V N2

j e−u(Vi+Vj+V−i,j)
)

du where V−i,j = V − Vi − Vj

=
1

Γ(N)

∫ ∞

0

uN−1E
(

V N1

i e−uVi

)

E
(

V N2

j e−uVj

)

E(e−uV−i,j )du

=
(−1)N

Γ(N)

∫ ∞

0

uN−1E

(
∂N1

∂uN1
(e−uVi)

)

E

(
∂N2

∂uN2
(e−uVj )

)
∏

k 6=i,j
E(e−uVk)du

=
(−1)N

Γ(N)

∫ ∞

0

uN−1 ∂
N1

∂uN1

(
E(e−uVi)

) ∂N2

∂uN2

(
E(e−uVj )

) ∏

k 6=i,j
E(e−uVk)du

=
(−1)N

Γ(N)

∫ ∞

0

uN−1 ∂
N1

∂uN1

(

e−ai(
√

2u+1−1)
) ∂N2

∂uN2

(

e−aj(
√

2u+1−1)
)

e−(a−ai−aj)(
√

2u+1−1)du.

Again, using Meyer’s formula and the transformation y =
√

2u+ 1 in the derived integral, we get:

E(WN1

i WN2

j ) =

N1∑

k=1

N2∑

l=1

N1+N2−1∑

m=0

cN (k, l,m)I∗k,l,m

where cN1,N2(k, l,m) = (−1)N1+N2+mea

Γ(N1+N2)2N1+N2−1

ak
i a

l
j

k!l! dN1(k)dN2(l)




N1 +N2 − 1

m



 ,

I∗k,l,m =
∫∞
1
e−ayyk+l−2m−1dy,

dN1(k) =
∑⌊ k−1

2 ⌋
q=0




k

2q + 1




∏N1−1
j=0 (2q + 1 − 2j), and

dN2(l) =
∑⌊ k−1

2 ⌋
q=0




k

2q + 1




∏N2−1
j=0 (2q + 1 − 2j).

Again, by clustering the integrals I∗k,l,m according to t = k + l − 2m − 1 ∈ {−2N + 3,−2N +

4, . . . ,−1, 0, 1, 2, . . . , N − 1}, we arrive at expression (5.1.6). �

Notice also that, using the above method, the general expression for the moments of products of

powers of more that two quantities, for example E(WN1

i WN2

j WN3

k ), can also be calculated.
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5.1.1 Some results

Using Theorems 5.1.1 and 5.1.2, some basic moment results are derived:

Corollary 5.1.1. LetW = (W1,W2, . . . ,Wn) be distributed as in Theorem 5.1.2 and i, j ∈ {1, 2, . . . , n} , i 6=
j. Then, the following hold:

1. E(Wi) = ai

a .

2. E(W 2
i ) =

(
ai

a

)2
+ ai(a− ai)e

aΓ(−2, a).

3. Var(Wi) = ai(a− ai)e
aΓ(−2, a).

4. E(W 3
i ) = ai

16a [6 − 10a+ (a− ai)(a− 2ai)(a− 1) + ai(2ai+3a)(a+1)
a2

+ a(a− ai)(a
2 − 2aai − 12)eaEi(−a)], where Ei(a) = −

∫∞
−a

e−t

t dt.

5. E(Wi − E(Wi))
3 = − ai

8a3 (2a2
i − 3aia+ a2)[3 − a+ a2(a2 − 12)eaΓ(−2, a)].

6. The skewness coefficient of Wi,

Sk(Wi) :=
E (Wi − E(Wi))

3

(Var(Wi))3/2

is given by:

Sk(Wi) = − (2a2
i − 3aia+ a2)

(
3 − a+ a2(a2 − 12)eaΓ(−2, a)

)

8e3a/2
√
aia7/2 [(a− ai)Γ(−2, a)]

3/2
.

7. E(WiWj) =
aiaj(a+1)

2a2 +
aiaje

aEi(−a)
2 .

8. Cov(Wi,Wj) = −aiajeaΓ(−2, a).

9. Corr(Wi,Wj) = −
√

ai

a−ai

aj

a−aj
.

The above results are appealing, as the expressions for the mean and variance of any element of the

vector W , as well as the correlation of any two elements in W are really simple ones. It is also nice

that the effect of the rest of the elements in W in the above results is expressed only through the

total sum of the parameters, a. Alternatively, if we denote the ratios ai

a by pi, we get the simple

formulae:

1. E(Wi) = pi.

2. Var(Wi) = pi(1 − pi)a
2eaΓ(−2, a).

3. Corr(Wi,Wj) = −
√

pi

1−pi

pj

1−pj
.
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The last three results are also shown in Lijoi et al. (2005).

Proof:

Note: the calculation of the integrals It can be found in the subsection directly after this proof.

1. For the first one, we use Theorem 5.1.1 for N = 1. Therefore, l = 0, t = 0, c1(1, 0) = aie
a, I0 =

e−a

a , so E(Wi) = ai

a .

2. For the second one, we again use Theorem 5.1.1, but now for N = 2. So, l ∈ {0, 1}, t ∈
{−2,−1, 0, 1} and c2(1, 0) = aie

a/2, c2(1, 1) = −aiea/2, c2(2, 0) = a2
i e
a/2, c2(2, 1) =

−a2
i e
a/2, I−2 = aEi(−a) + e−a, I−1 = −Ei(−a), I0 = e−a

a and I1 = e−a
(

1
a + 1

a2

)
.

Putting all these together, we get the desired result.

3. The third part is straightforward from the two results above and the elementary formula:

Var(X) = E(X2) − E2(X).

4. The next result is easy to verify, using Theorem 5.1.1 for N = 3 and some tedious algebra.

5. The third central moment of Wi follows immediately from the above and some algebra.

6. For the skewness of Wi, all we need is to use the definition of skewness, and some algebraic

calculations.

7. The expectation of the product of Wi and Wj can be shown using Theorem 5.1.2 and

N1 = N2 = 1.Therefore, l = 1, m ∈ {0, 1} and t ∈ {−1, 0, 1}, so c1,1(1, 1, 0) =
aiaje

a

2 , c1,1(1, 1, 1) =

−aiaje
a

2 , I−1 = −Ei(−a), I0 = e−a

a and I1 = e−a
(

1
a + 1

a2

)
and we arrive at the desired result.

8. The covariance of Wi and Wj can be directly derived using the above results and the known

formula:

Cov(X,Y ) = E(XY ) − E(X)E(Y ).

9. Finally, the correlation between Wi and Wj follows from the above and the formula:

Corr(X,Y ) =
Cov(X,Y )
√

E(X)E(Y )
. �

5.1.2 Calculating the integrals It

Consider the integral It =
∫∞
1
e−auutdu.

For t = 0,

I0 =

∫ ∞

1

e−audu =
e−a

a
.
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For t = −1,

I−1 =

∫ ∞

1

e−auu−1du = −Ei(−a)

where Ei(a) = −
∫∞
−a

e−t

t dt is the known exponential-integral function. It is also trivial to show the

following relationship between Ei(a) and the incomplete gamma function Γ(a, x) =
∫∞
x e−tta−1dt:

Ei(−a) =
e−a

a2
(1 − a) − 2Γ(−2, a). (5.1.7)

For t ≤ −2,

It = (−1)t
a−t−1Ei(−a)

(−t− 1)!
− e−a

−t−2∑

k=0

ak

t(t+ 1) . . . (t+ k)
.

For t ≥ 1,

It = e−a
t∑

k=0

t!

k!
ak−t−1.

The above results were taken from Gradshteyn and Ryzhik (1994). Alternatively, see Abramowitz

and Stegun (1964).

5.1.3 The one-dimensional N-IG distribution

In modelling overdispersed count data, the one-dimensional N-IG distribution will be used. So, it

would be useful to just state its density function, general moment results and some special moments

for this case:

Let X ∼ N-IG(a1, a2), where a1, a2 > 0. Then, as stated in Lijoi et al. (2005) , its probability

density function is

fX(x) =
ea1+a2a1a2K−1(

√

A2(x))

πx3/2(1 − x)3/2
√

A2(x)
, 0 < x < 1 (5.1.8)

where A2(x) =
a2
1

x +
a2
2

1−x and K is the modified Bessel function of the third type.

Corollary 5.1.2. Let X be distributed as in (5.1.8). It holds that ∀ N ∈ IN,

E(XN ) =

N−1∑

t=−2N+2

N−1∑

l=0

cN (t+ 2l+ 1, l)It (5.1.9)

where

cN (k, l) =




N − 1

l




(−1)N+l+1ak1e

a1+a2dN (k)

2N−1Γ(N)k!
, dN (k) =

⌊ k−1
2 ⌋
∑

m=0




k

2m+ 1





N−1∏

j=0

(2m+ 1 − 2j)

and It =
∫∞
1
e−(a1+a2)uutdu.
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Proof:

The above result is straightforward, as a special case of Theorem 5.1.1. �

Another interesting result that can again be used in the calculation of MLEs of the parameters in a

N-IG-binomial model is the following:

Corollary 5.1.3. Let X be distributed as in (5.1.8). It holds that ∀ N1, N2 ∈ IN,

E
(
XN1(1 −X)N2

)
=

N1+N2−1∑

t=−2N1−2N2+3

N2∑

l=1

N1+N2−1∑

m=0

cN1,N2(t+ 1 + 2m− l, l,m)It (5.1.10)

where cN1,N2(k, l,m) = (−1)N1+N2+mea1+a2

Γ(N1+N2)2N1+N2−1

ak
1a

l
2

k!l! dN1(k)dN2(l)




N1 +N2 − 1

m



 ,

dN (k) =
∑⌊ k−1

2 ⌋
m=0




k

2m+ 1




∏N−1
j=0 (2m+ 1 − 2j) and It =

∫∞
1 e−(a1+a2)uutdu.

Proof:

It follows from Theorem 5.1.2, for X = Wi and Wj = 1 −X . �

In this case, even if we did not have the more general Theorem 5.1.2, one could derive a slightly

different expression for E
(
XN1(1 −X)N2

)
, using the binomial theorem for expressing (1−X)N2 as

a polynomial of X , and then using Theorem 5.1.1, or Corollary 5.1.2. On the other hand, in this

way the derived expression has more summation terms than in Corollary 5.1.2.

Some moment results:

Let X ∼ N-IG(a1, a2). Using the results of Section 5.1.2, we have:

1. E(X) = a1

a1+a2
.

2. E(X2) =
(

ai

a1+a2

)2

+ a1a2e
a1+a2Γ(−2, a1 + a2).

3. Var(X) = a1a2e
a1+a2Γ(−2, a1 + a2).

4. E(X3) = Ei(−(a1+a2))e
a1+a2

16

[
a1(a1 + a2)

3 + 6a2
1(a1 + a2) + 2a3

1(a1 + a2) − 12a1(a1 + a2) + 12a2
1

]

+ a1

64(a1+a2)3

[
(a1 + a2)

5 − 2(a1 + a2)
4 − 18(a1 + a2)

3 + 12a1(a1 + a2)
3 + 4a2

1(a1 + a2)
3

+24(a1 + a2)
2 − 8a2

1(a1 + a2)
2 + 24a1(a1 + a2)

2 + 24a1(a1 + a2) + 16a2
1 + 16a2

1(a1 + a2)
]
.

5.2 A More General Class of Distributions

A more general class of distributions is the tempered stable distribution, which was introduced by

Tweedie (1984):
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Definition 14. Let κ > 0, δ > 0 and γ > 0. A random variable X follows a tempered stable

distribution with parameters κ, δ and γ if its Lévy density is

u(x) = δ2κ
κ

Γ(1 − κ)
x−1−κ exp

{

−1

2
γ1/κx

}

.

We will write X ∼ TS(κ, δ, γ).

In general, the probability density function is not available analytically. On the other hand, due to

its relationship to the positive stable distribution (see Feller (1971)), it can be expressed through

the following series representation:

p(x|κ, δ, γ) = c

∞∑

k=1

(−1)(k−1) sin(kπκ)
Γ(kκ+ 1)

k!
2kκ+1(xδ−1/κ)(−kκ−1) exp

{

−1

2
γ1/κx

}

where c = 1
2π δ

−1/κ exp{δγ}.
The expectation of X is 2κδγ(κ−1)/κ and its variance is 4κ(1−κ)δγ(κ−2)/κ. The moment generating

function will be important for our derivations and is given by

E(exp{tx}) = exp{δγ − δ(γ1/κ − 2t)κ}. (5.2.11)

The tempered stable distribution is infinitely divisible and self-decomposable. It has previously been

applied to several problems. Barndorff-Nielsen and Shephard (2001) model stock prices using scale

mixture of normal distribution where the mixing distribution is tempered stable and Palmer et al.

(2008) apply it to the modelling of cell generation times.

There are two important subclasses. A TS
(

κ, ν
κψ2κ , ψ

2κ
)

will limit in probability as κ→ 0 to

a gamma distribution with probability density function

p(x) =
(ψ2/2)ν

Γ(ν)
xν−1 exp

{

−1

2
ψ2x

}

and the inverse-Gaussian distribution arises when κ = 1
2 , with derived probability density function

p(x) =
δ√
2π

exp{δγ}x−3/2 exp

{

−1

2
(δ2x−1 + γ2x)

}

.

In other words, due to the extra parameter κ, the TS distribution is a general class of distributions,

covering the gamma and the inverse-Gaussian distributions. Because of its infinite divisibility, we

will also be able to construct a new distribution by normalising it, in a similar fashion to how the

Dirichlet and the normalised inverse-Gaussian distributions can be seen as normalised gamma and

inverse-Gaussian distributions. As a result, the derived distribution will have the Dirichlet and the

N-IG distributions as special cases. In the following of this section it is assumed, without loss of

generality, that γ = 1 (since γ is a scale parameter, as seen from (5.2.11)).
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Definition 15. Let 0 < κ < 1 and ν = (ν1, ν2, . . . , νn+1) be a vector of positive numbers. If

V1, V2, . . . , Vn+1 are independent tempered stable random variables with Vi ∼ TS(κ, νi

κ , 1) and

Wi =
Vi

V1 + V2 + . . . Vn+1

then W = (W1,W2, . . . ,Wn) follows a multivariate normalised tempered stable distribution with

parameters ν and κ which we write as MNTS(ν1, ν2, . . . , νn+1;κ).

As mentioned above, both the Dirichlet and the normalised inverse-Gaussian distribution are two

special cases of this distribution. The Dirichlet distribution arises as κ → 0 and the normalised

inverse-Gaussian distribution arises if κ = 1/2:

MNTS(ν1, ν2, . . . , νn+1;κ)
κ→0−→ Dir(ν1, ν2, . . . , νn+1)

in probability, and

MNTS(ν1, ν2, . . . , νn+1; 1/2) ≡ N-IG(2ν1, 2ν2, . . . , 2νn+1).

All the moments and cross-moments of the n-dimensional MNTS distribution exist (since the dis-

tribution is defined on the n-th dimensional unit simplex) and they can be calculated using the

following theorems:

Theorem 5.2.1. Suppose that W = (W1,W2, . . . ,Wn) ∼ MNTS(ν1, ν2, . . . , νn+1;κ) and let N,N1, N2 ∈
IN. It follows that:

1. E
(
WN
i

)
=

N∑

l=1

N−1∑

j=0

bN(l, j) Γ

(

l− j/κ,
S

κ

)

2. E
(

WN1

i WN2

j

)

=

N1∑

l=1

N2∑

m=1

N1+N2−1∑

t=0

cN1,N2(l,m, t) Γ

(

l +m− t/κ,
S

κ

)

where

bN (l, j) =




N − 1

j




(−1)N+j (S/κ)j/κ exp

{
S
κ

}
dN (κ, l)

Γ(N) l!κ
µli,

cN1,N2(l,m, t) =




N1 +N2 − 1

t




(−1)N1+N2+t (S/κ)t/κ exp

{
S
κ

}
dN1(κ, l) dN2(κ,m)

Γ(N1 +N2) l! m! κ
µliµ

m
j ,

dN (κ, l) =
l∑

i=1




l

i



 (−1)i
N−1∏

c=0

(κi− c), S =
n+1∑

i=1

νi, µi = νi

S and Γ(a, x) =
∫∞
x
ta−1 exp{−t}dt is

the incomplete gamma function.
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Proof:

Again, the same procedure as in the previous theorems is followed, which is based on the method of

Lijoi et al. (2005) and James et al. (2006).

We start by noting that, since W ∼ MNTS(ν1, ν2, . . . , νn+1;κ), then there exist independent Vi ∼
TS(κ, νi

κ , 1), i = 1, 2, . . . , n+ 1 such that Wi = Vi

V , i = 1, 2, . . . , n and V =
∑n+1

i=1 Vi. So,

E
(
WN
i

)
= E

(
V Ni
V N

)

= E

(
V Ni

Γ(N)

∫ ∞

0

uN−1e−uV du

)

=
1

Γ(N)

∫ ∞

0

uN−1
∏

j 6=i
E
(
e−uVj

)
E
(
V Ni e−uVi

)
du (5.2.12)

=
(−1)N

Γ(N)

∫ ∞

0

uN−1
∏

j 6=i
E
(
e−uVj

)
E

(
∂N

∂uN
e−uVi

)

du

=
(−1)N

Γ(N)

∫ ∞

0

uN−1
∏

j 6=i
E
(
e−uVj

) ∂N

∂uN
E
(
e−uVi

)
du (5.2.13)

=
(−1)N

Γ(N)
exp

{
S

κ

}∫ ∞

0

uN−1 exp






−
∑

j 6=i

νj
κ

(1 + 2u)κ







∂N

∂uN
exp

{

−νi
κ

(1 + 2u)κ
}

︸ ︷︷ ︸

(1)

du.

(5.2.14)

Again, (5.2.12) is an application of the Fubini Theorem and (5.2.13) can be seen as an application

of Theorem (16.8) of Billingsley (1995). Finally, for (5.2.14) I used the formula for the moment

generating function of the tempered stable distribution (5.2.11).

As before, the difficult part is expression (1) in (5.2.14), i.e. the N -th derivative of the function

exp
{
− νi

κ (1 + 2u)κ
}
. Calculating this integral is again feasible using Meyer’s formula, and the final

result is:

∂N

∂uN
exp

{

−νi
κ

(1 + 2u)κ
}

= 2N
N∑

l=1

exp
{
− νi

κ (1 + 2u)κ
}

l!

νli
κl

l∑

j=1




l

j



 (−1)j(1 + 2u)κl−N
N−1∏

c=0

(κj − c)

= 2N
N∑

l=1

exp
{
− νi

κ (1 + 2u)κ
}

l!

νli
κl

(1 + 2u)κl−NdN (κ, l) (5.2.15)

where

dN (κ, l) =

l∑

j=1




l

j



 (−1)j
N−1∏

c=0

(κj − c) =

l∑

j=1




l

j



 (−1)j
Γ(κj + 1)

Γ(κj −N + 1)
.

It is now straightforward to verify that

E
(
WN
i

)
=

(−1)N2N exp
{
S
κ

}

Γ(N)

N∑

l=1

νl
i

κl dN (κ, l)

l!

∫ ∞

0

uN−1 exp

{

−S
κ

(1 + 2u)κ
}

(1 + 2u)κl−Ndu.
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The integral in the last expression can be simplified using the substitution y = (1 + 2u)κ and the

binomial theorem:

∫ ∞

0

uN−1 exp

{

−S
κ

(1 + 2u)κ
}

(1+2u)κl−Ndu =
1

2NκS
l

κl

N−1∑

m=0




N − 1

m



 (−1)m
Sm/κ

κm/κ
Γ

(

l −m/κ,
S

κ

)

and therefore

E
(
WN
i

)
=

(−1)N exp
{
S
κ

}

Γ(N) κ

N∑

l=1

νlidN (κ, l)

l! Sl

N−1∑

m=0




N − 1

m



 (−1)m
(
S

κ

)m/κ

Γ

(

l −m/κ,
S

κ

)

.

For the cross-moments, we have:

E
(

WN1

i WN2

j

)

=E

(

V N1

i V N2

j

V N

)

, where N = N1 +N2

=E

(

V N1

i V N2

j

Γ(N)

∫ ∞

0

uN−1 e−uV du

)

=
(−1)N

Γ(N)

∫ ∞

0

uN−1 E

(
∂N1

∂uN1
e−uVi

)

E

(
∂N2

∂uN2
e−uVj

)
∏

t6=i,j
E
(
e−uVt

)
du

=
(−1)N

Γ(N)

∫ ∞

0

uN−1 ∂N1

∂uN1
E
(
e−uVi

) ∂N2

∂uN2
E
(
e−uVj

) ∏

t6=i,j
E
(
e−uVt

)
du

=
(−1)N

Γ(N)
exp

{
S

κ

}∫ ∞

0

uN−1 ∂N1

∂uN1

(

e−
νi
κ (1+2u)κ

) ∂N2

∂uN2

(

exp
{

−νj
κ

(1 + 2u)κ
})

× exp






−
∑

t6=i,j

νt
κ

(1 + 2u)κ






du.

Using the result for the N−th derivative of the function exp
{
− νi

κ (1 + 2u)κ
}

from above, we find:

E
(

WN1

i WN2

j

)

=
(−1)N

Γ(N)
exp

{
S

κ

}

2N
N1∑

l=1

N2∑

m=1

dN1(κ, l)dN2(κ,m)

l!m!

νli
κl
νmj
κm

I∗l,m(κ)

where

I∗l,m(κ) =

∫ ∞

0

uN−1 exp

{

−S
κ

(1 + 2u)κ
}

(1 + 2u)κ(l+m)−N du.

Using the same substitution as above, y = (1+2u)κ, in I∗l,m(κ), together with the binomial theorem,

we find:

E
(

WN1

i WN2

j

)

=

N1∑

l=1

N2∑

m=1

N−1∑

t=0

cN1,N2(l,m, t)Γ

(

l +m− t/κ,
S

κ

)

(5.2.16)

where

cN1,N2(l,m, t) =




N1 +N2 − 1

t




(−1)N1+N2+t (S/κ)t/κ exp

{
S
κ

}
dN1(κ, l) dN2(κ,m)

Γ(N1 +N2) l! m! κ
µliµ

m
j . �
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Notice that in this, more general case, one cannot cluster the incomplete gamma functions, as was

done in the N-IG distribution case. Such a clustering can only be done for rational values of κ, for

example 1/2 or 1/3. For such cases, the clustering will be made according to the first argument

of the incomplete gamma function, which is then a function of the indexes l and j or l,m and t

(and since the second argument is the same for all terms). This procedure will require a sum over

u = l − j/κ or u = l +m − t/κ in the first and second expression, respectively. This new sum can

then replace one of the existing sums in each expression. On the other hand, one might find this

clustering appealing, both in terms or algebraic simplicity, as well as for computational convenience.

Algorithms for the calculation of the incomplete gamma function are described by Zhang and

Jin (1996) and implementations in Fortran and Matlab are available. Unfortunately, the corre-

sponding command in Matlab proved to be inefficient for negative arguments. On the other hand,

there is a built-in command for the incomplete gamma function in Mathematica, which I used in my

calculations. This command is exact, even for negative arguments (since Mathematica is a symbolic

language, and therefore exact).

As in the case of the N-IG distribution, the effect of the components of W which are not

included in the moment calculations is only through the sum of their corresponding parameters,

S − νi (for the simple moments) or S − νi − νj (for the cross-moments).

It is also worth mentioning that the function dN (κ, l) defined above is related to the generalized

Stirling numbers, or generalized factorial coefficients, G(n, k, σ) (see, for example, Charalambides

and Singh (1988) and Charalambides (2005)), through the simple formula

dN (κ, l) = (−1)N l!G(N, l, k).

Finally, the ideas could be easily extended to the case of deriving the moments of products of powers

of more that two quantities, such as E
(

WN1

i WN2

j WN3

k

)

, in which case the procedure and the final

formula will be similar to the above (in this case, with four sums).

5.2.1 Some basic moment results

Corollary 5.2.1. If W = (W1,W2, . . . ,Wn) ∼ MNTS(ν1, ν2, . . . , νn+1;κ) then

E (Wi) =
νi
S

= µi

Var(Wi) = (1 − κ)µi(1 − µi)

[

1 −
(
S

κ

)1/κ

exp

{
S

κ

}

Γ

(

1 − 1/κ,
S

κ

)]
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Cov(Wi,Wj) = µiµj

[

κ+ κ
S

κ
− κ exp

{
S

κ

}(
S

κ

)1/κ

Γ

(

2 − 1/κ,
S

κ

)

− 1

]

= µiµj(1 − κ)

[

exp

{
S

κ

}(
S

κ

)1/κ

Γ

(

1 − 1/κ,
S

κ

)

− 1

]

Corr(Wi,Wj) = −
√

µi
1 − µi

µj
1 − µj

.

Proof:

For the first moment we apply the first formula of Theorem 5.2.1 for N = 1:

b1(1, 0) =




0

0




(−1)1 exp

{
S
κ

}
ν1
i

Γ(1)1!κ1+0/κ S1−0/κ
(−κ), and d1(κ, 1) = −κ⇒ b1(1, 0) = exp

{
S

κ

}
νi
S
.

The results follows from noting that Γ
(
1 − 0/κ, Sκ

)
= Γ

(
1, Sκ

)
=
∫∞

S
κ

exp{−t}dt = exp
{
−S
κ

}
. The

second moment is

E
(
W 2
i

)
= −(1 − κ)µi(1 − µi)

S1/κ

κ1/κ
exp

{
S

κ

}

Γ

(

1 − 1/κ,
S

κ

)

+ µi(1 − κ+ µiκ)

since d2(κ, 1) =




1

1



 (−1)1(κ − 0)(κ − 1) = κ(1 − κ) and d2(κ, 2) = 2κ2, which implies that

b2(1, 0) = (1 − κ) exp
{
S
κ

}
µi, b2(1, 1) = −(1 − κ) exp

{
S
κ

}
µi

S1/κ

κ1/κ , b2(2, 0) = κ exp
{
S
κ

}
µ2
i and

b2(2, 1) = −κ exp
{
S
κ

}
µ2
i
S1/κ

κ1/κ . The results follows from the fact that Γ
(
1 − 0/κ, Sκ

)
= exp

{
−S
κ

}
and Γ

(
2 − 0/κ, Sκ

)
=

exp
{
−S
κ

} (
1 + S

κ

)
. The cross-moment E(WiWj) can be calculated using the second part of Theo-

rem 5.2.1 for N1 = N2 = 1.

We only have to calculate c1,1(1, 1, 0) and c1,1(1, 1, 1). Noting that d1(κ, 1) = −κ it follows that

c1,1(1, 1, 0) =




1

0




(−1)2 exp

{
S
κ

}
(−κ)2 ν

1
i

κ1

ν1
j

κ

Γ(2)1!1!κS
1+1−0/κ

κ1+1−0/κ

= exp

{
S

κ

}

κ
νiνj
S2

= exp

{
S

κ

}

κµiµj

c1,1(1, 1, 1) =




1

1




(−1)3 exp

{
S
κ

}
ν1
i ν

1
j

Γ(2)1!1!κS
1+1−1/κ

κ1+1−1/κ

= − exp

{
S

κ

}

κ
S1/κ

κ1/κ

νiνj
S2

= − exp

{
S

κ

}

κµiµj
S1/κ

κ1/κ
.

The fact that Γ
(
1 + 1 − 0/κ, Sκ

)
= Γ

(
2, Sκ

)
= exp

{
−S
κ

} (
1 + S

κ

)
implies that

E (WiWj) = κµiµj

[

1 +
S

κ
− exp

{
S

κ

}(
S

κ

)1/κ

Γ

(

2 − 1/κ,
S

κ

)]

.

Subtracting E(Wi)E(Wj) from the above, we derive the formula for the covariance of Wi and Wj .

Finally, by dividing the covariance ofWi and Wj by the square root of the product of their variances,

we get the desired result. �
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The results shown in Corollary 5.2.1 are quite pleasant and the expectation and correlation struc-

ture are the same as in the simpler Dirichlet and N-IG distributions. The expectation of Wi does

not depend on κ and the variance only depends on ν through the sum S, (similar to Dirichlet and

the N-IG distributions). In fact, the form of the variance generalizes the form for the Dirichlet

distribution since the variance only depends on ν through the mean µi = νi
∑n+1

i=1 νi
and S =

∑n+1
i=1 νi.

Therefore we can write Var(Wi) = α(κ, S)µi(1−µi) for some function α. Finally, the expression for

the correlation does not depend on κ and it is particularly simple.

5.2.2 The normalised tempered stable distribution

The univariate MNTS, which will be called the normalized tempered stable distribution (with pa-

rameters, say, ν1, ν2 and κ, NTS(ν1, ν2;κ)) is an important special case and the one that will used

in the next subsection. As κ → 0, the distribution tends to a beta distribution with parameters ν1

and ν2, whereas for k = 1/2 we get the univariate N-IG distribution with parameters 2ν1 and 2ν2.

The general form of the moments of this distribution can be easily derived from Theorem

5.2.1. From the same theorem the general form of the expectation of E
(
XN1(1 −X)N2

)
can also be

derived, where X ∼ NTS(ν1, ν2;κ), by setting Wi = X and Wj = 1 −X in the second part of the

theorem. The formula for the cross-moments will be particularly useful in the maximum likelihood

estimation of the parameters of the models in Section 5.3.2.

The two central moments are:

E(X) =
ν1

ν1 + ν2
=: µ

Var(X) = (1 − κ)µ(1 − µ)

[

1 −
(
ν1 + ν2
κ

)1/κ

exp

{
ν1 + ν2
κ

}

Γ

(

1 − 1/κ,
ν1 + ν2
κ

)]

.

As κ increases, the tempered stable distribution becomes heavier tailed and this carries over to the

NTS distribution. For example, Figure 5.1 shows how the variance changes with κ (left), how the

kurtosis changes with κ (middle) and the relationship between the two, for a NTS(ν1, ν2;κ) with

ν1 = ν2 distribution. Kurtosis is defined as the standardised fourth central moment:

Kurt(X) =
E(X − E(X))4

(V ar(X))2
.

It is clear from Figure 5.1 that the variance decreases as κ increases. The shape of the variance as

a function of κ is the same for other values of the first moment µ = ν1
ν1+ν2

, however the values of the

variance become smaller as µ moves further from 1/2.

From the shape of the graph of kurtosis plotted against κ, one can see the point made above

that as κ increases, the tails of the underlying TS distributions become heavier. Notice especially the
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Figure 5.1: The Variance and kurtosis of NTS distribution with mean 0.5: (a) shows κ
versus the variance, (b) shows κ versus the kurtosis and (c) shows variance versus kurtosis.
In each graph: S = 0.1 (solid line), S = 1 (dashed line) and S = 10 (dotted line).

dramatic increase in kurtosis for values of κ greater than 0.8. The shape of this graph is preserved

for all values of the other parameters, ν1 and ν2, whereas it is interesting to see that the minimum

kurtosis is not always achieved at the limiting case κ → 0, although the value at this limit is very

close to the overall minimum. For µ → 0, the value of κ that gives the minimum value of kurtosis

tends to 0.2, whereas for not very small values of µ, the case κ ≃ 0 seems to provide the smallest

kurtosis. There is also symmetry around µ = 1/2, in the sense of that for µ and 1 − µ, we get the

same graph. The values of kurtosis increase as µ moves away from 1/2, whereas for large values

of κ, kurtosis decreases as S = ν1 + ν2 increases and for small values of κ, kurtosis increases as S

increases.

In the right graph in Figure 5.1 we see the relationship between the variance and the kurtosis

for µ = 0.5. The shape again is the same for other values of the parameters ν1 and ν2 and the graph

is exactly the same for µ and 1−µ. The beta distribution corresponds to the point at the right end

of the graph (i.e. for largest variance).
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Figure 5.2: Skewness vs κ for various values of the mean for some MNTS distributions. In
each graph: S = 0.1 (solid line), S = 1 (dashed line) and S = 10 (dotted line).
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Let skewness of a distribution denote its standardised third central moment, i.e.

Skew(X) =
E(X − E(X))3

(V ar(X))3/2
.

If µ = 1/2 the skewness is zero for all values of κ. Figure 5.2 shows the skewness against κ for

various values of µ. I only plot the skewness Skew(µ, S, κ) for µ < 0.5 since Skew(µ, S, κ) =

−Skew(1 − µ, S, κ) (which follows from the construction of the distribution). As the value of µ

moves away from 1/2, the values of skewness also increase in absolute terms. On the other hand,

when the value of S = ν1 + ν2 increases, skewness is decreased in absolute value. Finally, note that,

as in the case of the kurtosis, the minimum skewness (maximum, for µ > 1/2) is not achieved for

κ ≃ 0, but usually for some value between 0 and 0.6.

In Figure 5.3 I plotted the relationship between skewness and variance (left) and kurtosis vs

skewness (right). For both graphs I used distributions with µ < 0.5. The beta distribution is again

at the right end of this graph, whereas the minimum skewness is not necessarily at the same point.

The graph of kurtosis versus skewness is the most intriguing ones. The reason for this is the little

curl of the curve at its endpoint where we have the smallest values of kurtosis, and it is caused by

the fact that the minimum for skewness is not achieved at the limiting case κ ≃ 0, as happens for

the kurtosis for not very small values of µ. In this case, the endpoint of the graph for which we have

minimum kurtosis corresponds to the beta distribution. For cases of very small values for the mean,

the same endpoint corresponds to the beta distribution, but to neither minimum skewness, nor the

minimum kurtosis and the graph shows curliness for both those quantities (rather than only for the

skewness, as in Figure 5.3).
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Figure 5.3: Skewness vs variance and kurtosis vs skewness for some MNTS distributions.

Finally, it is worth mentioning that for any mean and variance, one can find a NTS distribution

that has exactly those central moments. This is not a surprise, since there are three parameters in

this distribution, and only two parameters are needed to match these two conditions. On the other

hand, the extra parameter can result in a better fit of the distribution of some data, for example by
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matching also the skewness or the kurtosis. This is something one cannot do with some competing

distributions, for example the beta distribution, since there are only two parameters there, and

therefore by fixing the mean and the variance, all the other moments will also be fixed. In fact,

for fixed mean and variance, the skewness coefficient increases (in absolute terms) as the value of κ

increases (and, of course, ν1 6= ν2), so NTS distributions can be particularly useful in cases where

we believe that the skewness of the data is greater (in absolute terms) than the one implied by the

beta distribution (i.e. for κ ≃ 0).

Having stated the characteristics and the differences of my proposed distribution from the beta

distribution, I will use it as the distribution of the probabilities of success for binomial data. The

derived model will be compared with the widely used beta-binomial (BB) model, as well as with

other models proposed in the literature, using both simulated and real-world data.

5.3 Modelling Overdispersed Count Data

5.3.1 A brief literature review

In many experiments we observe data as the number of observations with some property out of a

sample. The binomial distribution is a natural model for these type of data. However, the data are

often found to be overdispersed which is often explained and modelled through differences in the

binomial success probability p for different units. It is assumed that xi successes (i.e. observations

possessing a certain property) are observed from ni observations and that xi ∼ Bi(ni, pi) where pi

follows some distribution. The likelihood is formed through the cross-moments of this distribution

(see equation (5.3.17)) and the beta is a natural choice for the distribution of the pi, since these

cross-moments are simply calculated. This leads to the beta-binomial (BB) model. However, this

distribution may be misspecified leading to biased estimates of the parameters of the model. Other

possible choices of distribution include the logistic-normal-binomial model (Williams, 1982) and the

probit-normal-binomial model (Ochi and Prentice, 1984). Several authors have considered alter-

native specifications. Altham (1978) and Kupper and Haseman (1978) propose a two-parameter

distribution, the correlated-binomial, which allows for direct interpretation and assignment of the

correlation between any two of the underlying Bernoulli observations of a binomial random variable

through one of its two parameters. Paul (1985) proposes a three-parameters generalisation of the

beta-binomial distribution, the beta-correlated binomial distribution, with a modified version of the

latter in Paul (1987). Brooks et al. (1997) use finite mixture distributions to provide a flexible spec-

ification. However, the introduction of a mixture distribution leads to more complicated inference

and harder interpretation of parameters. Kuk (2004) suggests the q-power distribution which mod-
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els the joint success probabilities of all orders by a power family of completely monotone functions

which extends the folded logistic class of George and Bowman (1995). Pang and Kuk (2005) define

a shared response model by allowing each response to be independent of all other with probability

π or taking a value Z with probability 1 − π. Therefore more than one observation can take the

common value Z. They argue that this is more interpretable than the q-power distribution of Kuk

(2004). Rodŕıguez-Avi et al. (2007) use a generalized beta distribution as the mixing distribution.

5.3.2 The NTS-binomial distribution

My proposed model is the NTS-binomial model, where it is assumed that we have data coming from

a binomial distribution with probabilities of success pi that follow a NTS distribution. In other

word, the NTS distribution is used as the mixing distribution in a binomial model.

Definition 16. A random variable X is said to follow a NTS-binomial distribution if and only if:

X ∼ Bin(n, p)

p ∼ NTS(ν1, ν2;κ)

for parameters ν1, ν2 > 0, 0 < κ < 1 and n ∈ IN.

Of course, in the limit κ→ 0, the above model tends to the BB model.

We can interpret the mixing distribution NTS(ν1, ν2;κ) as representing the heterogeneity in the

probability of success across the different observed groups. The response can be written as the sum

of n Bernoulli random variables, X =
∑n

i=1 Zi where Z1, Z2, . . . , Zn are i.i.d. Bernoulli with success

probability P where P ∼ NTS(ν1, ν2;κ). The intra-group correlation is defined as Corr(Zi, Zj)

which in my model has the form

ρ = (1 − κ)

[

1 −
(
S

κ

)1/κ

exp

{
S

κ

}

Γ

(

1 − 1/κ,
S

κ

)]

.

where S = ν1 + ν2.

In these mixture models the variance can be written as

Var(X) = n2Var(P ) + nE (P (1 − P ))

where P ∼ NTS(ν1, ν2;κ). The first term of this sum can be interpreted as the variance due to

differences between individuals in the sample (between-subject variance), whereas the second term

represents the intra-subject variability. In my model these have a simple form

Var(P ) = (1 − κ)µ(1 − µ)

[

1 −
(
S

κ

)1/κ

exp

{
S

κ

}

Γ

(

1 − 1/κ,
S

κ

)]
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E(P (1 − P )) = µ(1 − µ)

{

1 − (1 − κ)

[

1 −
(
S

κ

)1/κ

exp

{
S

κ

}

Γ

(

1 − 1/κ,
S

κ

)]}

= µ(1 − µ)(1 − ρ).

where µ = E(P ) = ν1
ν1+ν2

.

Estimation of the parameters in a NTS-binomial model can be easily performed using maximum

likelihood estimation (MLE) methods. The formulae for the moments derived in the previous sections

will be particularly useful for those methods:

Let

xi
ind∼ Bin(ni, pi), i = 1, 2, . . . , N

pi
iid∼ NTS(ν1, ν2;κ), i = 1, 2, . . . , N.

Then, the likelihood of the data x = (x1, x2, . . . , xN ), after integrating out the parameters pi, is:

f(x) =

∫ 1

0

· · ·
∫ 1

0

f(x|p1, . . . , pN )f(p1, . . . , pN )dp1 . . . dpN

=

N∏

i=1

∫ 1

0

f(xi|pi)f(pi)dpi

=

N∏

i=1

∫ 1

0




ni

xi



 pxi

i (1 − pi)
ni−xif(pi)dpi

=

N∏

i=1




ni

xi



Epi

(
pxi

i (1 − pi)
ni−xi

)
(5.3.17)

where the expectation in the last line is taken with respect to pi and can be calculated using the

formulae proven before.

An alternative model would consider the same number of trials, n, for each xi. The results in

this case would be almost the same, as we just need to replace ni with n in all the above.

If we now have data x1, x2, . . . , xN , the MLE of the parameters ν1, ν2 and κ, will be a triplet

of numbers, denoted by ν̂1, ν̂2 and κ̂, that maximise (5.3.17). Needless to say, these estimates will

have to satisfy the natural requirements for the parameters, i.e. ν̂1, ν̂2 > 0 and 0 < κ̂ < 1.

The standard errors of these estimates can be estimated using the asymptotic result:

√
N
(

θ̂ − θ
)

→ N(0, (I(θ))−1)

where θ is the parameter of interest, θ̂ is its MLE and I(θ) is the Fisher information matrix. In

this case, the vectors are of dimension 3 (since θ = (ν1, ν2, κ)) and I will be a 3 × 3 matrix, whose

(j, k)−th element Ij,k is given by −E
(
∂2logL
∂uj∂uk

;x
)

, where x is the data set, logL is the log-likelihood,
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u1 = ν1, u2 = ν2 and u3 = κ. By using simple differentiation and the fact that the data are

independent, it can be shown that:

∂2logL

∂uj∂uk
=

∂

∂uj

(
∂logL

∂uk

)

=
∂

∂uj

(

∂

∂uk

(
N∑

i=1

log(Ei)

))

=

N∑

i=1

∂

∂uj

(
∂

∂uk
log(Ei)

)

=

N∑

i=1

∂

∂uj





∂Ei

∂uk

Ei





=

N∑

i=1





∂2Ei

∂uj∂uk

Ei
−

∂Ei

∂uj

∂Ei

∂uk

E2
i





where Ei is (apart from the binomial coefficient, which is dropped during the differentiation, as it

does not involve any of the parameters) the likelihood of the data, having integrated the pi’s out,

Ei = E(pxi

i (1 − pi)
ni−xi).

So, Ijk = −∑N
i=1 E

[
∂2Ei

∂uj ∂uk

Ei
−

∂Ei
∂uj

∂Ei
∂uk

E2

i

]

, where the expectation is taken with respect to each xi,

whose distribution is Ei, defined on {0, 1, 2, . . . , ni}. Finally, I is evaluated at the MLE of the

parameters νi, ν2 and κ and its inverse is calculated.

However, when I followed this procedure, the method failed: in some cases the matrix was

not positive semi-definite and/or the values at the diagonal of its inverse (i.e. where asymptotic

variances should be) were negative. So, I thought that the problem might be that the regularity

condition

∫
∂2

∂θi∂θj
f(x|θ)dx = 0

might not hold (if we were allowed to change the differentiation with the integration, i.e. to integrate

and then differentiate, it would of course have been trivial).

As a result, we used the actual definition of the Fisher information matrix, i.e.

Ii,j = E

(
∂logL

∂ui

∂logL

∂uj
;x

)

.
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Following the same procedure as before, we have:

∂logL

∂ui

∂logL

∂uj
=

N∑

k=1

N∑

l=1

∂ log(Ek)

∂ui

∂ log(El)

∂uj

=

N∑

k=1

N∑

l=1

∂Ek

∂ui

Ek

∂El

∂uj

El

=

N∑

k,l=1; l 6=k

∂Ek

∂ui

Ek

∂El

∂uj

El
+

N∑

k=1

∂Ek

∂ui

∂Ek

∂uj

E2
k

.

The reason for splitting the double sum in this way in the last equation is that for k = l the

expectation will be taken with respect to the respective xk, whereas when k 6= l, the expectation

will be taken with respect to both xk and xl. So, the (i, j)−th element of I will be

N∑

k,l=1; l 6=k
E





∂Ek

∂ui

Ek

∂El

∂uj

El



+

N∑

k=1

E





∂Ek

∂ui

∂Ek

∂uj

E2
k





where the expectation is taken with respect to the corresponding xk or (xk, xl), with distribution(s)

Ek or EkEl. Finally, we evaluate I at the MLE of the parameters νi, ν2 and κ and calculate its

inverse.

The above formulae for the standard errors were given for general ni. The case where all the data

have the same number of Bernoulli trials, say n, follows immediately.

5.3.3 Simulated data

Based on the observation that the NTS distributions exhibit greater (in absolute terms) skewness

than the beta distribution, for the same mean and variance, I first considered two data sets, which

were obviously highly skewed:

In both cases the actual data were xi ∼ Bin(6, pi), i = 1, 2, . . . , N .

1. This data set has size 660. I simulated 660 pi’s where: 20 values are uniformly distributed on

(0,0.1), 50 values are uniformly distributed on (0.1,0,2), 90 values are uniformly distributed

on (0.2,0.3), 120 values are uniformly distributed on (0.3,0.4), 150 values are uniformly dis-

tributed on (0.4,0.5), 110 values are uniformly distributed on (0.5,0.6), 60 values are uniformly

distributed on (0.6,0.7), 30 values are uniformly distributed on (0.7,0.8), 20 values are uni-

formly distributed on (0.8,0.9) and 10 values are uniformly distributed on (0.9,1). We choose

ni = 6 ∀ i = 1, 2, . . . , 660. The pi’s have a mean of 0.4384, a variance of 0.0374 and a skewness

of 0.2880. This skewness is higher than the skewness implied by the beta distribution for the

same mean and variance (which is 0.1693), so one would expect that the MLE for κ would be

different than zero.
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2. I followed the same procedure as (1), now with 770 data, but now with different proportions in

the intervals: 20 in (0,0.1), 90 in (0.1,0. 2), 120 in (0.2,0.3), 150 in (0.3,0.4), 160 in (0.4,0.5),

110 in (0.5,0.6), 60 in (0.6,0.7), 30 in (0.7,0.8), 20 in (0.8,0.9) and 10 in (0.9,1). The mean of

the pi’s was 0.413, the variance was 0.0381 and the skewness was 0.4026 (higher than the 0.25

for the corresponding beta distribution).

The distribution of the underlying probabilities pi described above are shown in Figure 5.4. The

1st data set 2nd data set

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

p
i

F
re

qu
en

cy

Histogram of p
i
’s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

p
i

F
re

qu
en

cy

Histogram of p
i
’s

Figure 5.4: Histogram of pi used in the first two simulated data sets.

maximum likelihood estimates of the parameters in the NTS-binomial and the beta-binomial model

are shown in Table 5.1. As one would expect, these values were quite different and the more general

NTS-binomial model provided a higher likelihood of the data than the BB model. On the other

hand, when using the Akaike Information Criterion, AIC = −2logL+ 2k (where k is the number of

parameters in a model), the more parsimonious beta-binomial model was preferred in both cases.

NTS-binomial beta-binomial
Data κ̂ ν̂1 ν̂2 ν̂1 ν̂2

1 0.50 0.91 1.16 2.56 3.24
2 0.55 0.695 1.049 2.295 3.464

Table 5.1: Maximum likelihood estimates of the NTS-binomial and beta-binomial models
for the first two simulated data sets.

I then considered 22 more simulated data sets, created using a more systematic method. More

specifically, we used:

xi
ind∼ Bin(n, pi), i = 1, 2, . . . , N

pi
iid∼ NTS(ν1, ν2;κ), i = 1, 2, . . . , N

and:

• For data sets 1-3: n = 6, ν1 = 1, ν2 = 1/2, κ = 1/3 and N = 500, 1000 and 1500.

• For data sets 4-6: n = 6, ν1 = 4, ν2 = 1, κ = 3/5 and N = 500, 1000 and 2000.

• For data sets 7-9: n = 6, ν1 = 1, ν2 = 4, κ = 3/5 and N = 500, 1000 and 2000.
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• For data sets 10-12: n = 6, ν1 = 2, ν2 = 4, κ = 4/5 and N = 500, 1000 and 2000.

• For data sets 13-15: n = 12, ν1 = 1, ν2 = 1/2, κ = 1/3 and N = 500, 1000 and 1500.

• For data sets 16-18: n = 12, ν1 = 1, ν2 = 4, κ = 3/5 and N = 500, 1000 and 1500.

• For data sets 19-21: n = 12, ν1 = 2, ν2 = 4, κ = 4/5 and N = 500, 1000 and 1500.

• For data set 22: using beta-binomial data (i.e. with κ ≃ 0), with n = 6, ν1 = 1, ν2 = 1 and

N = 500.

The data sets with n = 12 were used for comparison purposes when more trials were used in the

binomial step.

Results:

In the above data sets, the order of the data sets is in accordance to the data size, with the smaller

number of data corresponding to the first data set index in each triplet. For example, data sets 1-3

correspond to n = 6, ν1 = 1, ν2 = 1/2, κ = 1/3 and data set 1 has N = 500, data set 2 has N = 1000

and data set 3 has N = 1500. Similarly, data sets 4-6 correspond to n = 6, ν1 = 4, ν2 = 1 and κ =

3/5, with data size of 500 for data set 4, data size of 1000 for data set 5 and data size of 2000 for

data set 6 etc.

The MLEs of the parameters when a NTS-binomial and a beta-binomial distribution were

fitted to each data set are shown in Table 5.2. The numbers in parentheses are the standard errors

of these estimates, calculated as in Section 5.3.2.

The first thing to notice is that for the last data set, the algorithm correctly ”discovers” that the

data come from a beta-binomial data, as the MLE for κ is very close to 0. Unfortunately, due to

the fact that the value of κ is very close to 0, it was not possible to get the standard errors of the

estimates in this case, using the Mathematica routine that I used for all the rest.

A second observation is that as the number of data increases, the MLEs are closer to the values of

ν1, ν2 and κ that created the data, as one would expect. As for the standard errors of the estimates,

they seem to be decreasing with N , but not in all cases. On the other hand, if one takes into account

the relative value of the estimated parameter (e.g. calculate (standard error)/(value of estimator)),

this holds in most of the cases. As for the inconsistent cases (in terms of decreasing standard errors

of the estimates as N increases), for example data sets 10 and 11, we observe that they occur in cases

of different set of maximum likelihood estimates for our parameters. This can be due to the fact

that we do not have the actual NTS data, but only the binomial data with probability of success the

NTS data, adding an extra level of randomness in the data. Another relevant, general observation

is that, as the value of κ̂ increases, the standard errors of all MLEs (not only the one for κ̂) seem

to increase. This is probably due to the fact that, skewness increases rapidly for values of κ larger
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NTS-binomial beta-binomial
Data Data size κ̂ ν̂1 ν̂2 ν̂1 ν̂2

1 500 0.33 (1.22) 0.93 (3.35) 0.46 (1.71) 1.90 (0.20) 0.95 (0.038)
2 1000 0.26 (1.01) 1.27 (3.10) 0.62 (1.53) 2.42 (0.21) 1.16 (0.047)
3 1500 0.33 (0.74) 1.05 (2.19) 0.52 (1.11) 2.04 (0.13) 0.97 (0.026)
4 500 0.68 (0.77) 2.07 (6.94) 0.54 (1.83) 9.40 (4.16) 2.43 (0.89)
5 1000 0.58 (0.68) 3.55 (7.33) 0.84 (1.76) 10.60 (3.79) 2.52 (0.76)
6 2000 0.59 (0.71) 3.88 (8.49) 0.94 (2.08) 11.68 (3.17) 2.82 (0.66)
7 500 0.78 (0.92) 0.55 (3.04) 2.32 (12.67) 4.94 (2.60) 16.70 (12.35)
8 1000 0.54 (0.075) 1.51 (0.97) 5.94 (3.73) 2.84 (0.89) 11.32 (4.17)
9 2000 0.44 (0.000004) 1.49 (0.59) 5.97 (2.59) 3.00 (0.71) 12.03 (3.30)
10 500 0.62 (0.033) 2.25 (1.46) 4.87 (3.23) 21.10 (2.91) 43.51 (7.29)
11 1000 0.91 (0.31) 0.48 (2.56) 0.99 (5.21) 10.36 (14.23) 21.23 (9.66)
12 2000 0.92 (0.071) 2.05 (0.56) 4.12 (1.14) 31.89 (27.43) 64.03 (57.19)
13 500 0.32 (1.12) 0.94 (3.14) 0.46 (1.60) 1.90 (0.24) 0.93 (0.043)
14 1000 0.43 (0.75) 0.78 (2.10) 0.37 (1.05) 2.08 (0.20) 1.01 (0.038)
15 1500 0.38 (0.67) 0.85 (1.88) 0.42 (0.98) 2.05 (0.16) 1.02 (0.029)
16 500 0.60 (0.029) 0.99 (1.31) 3.75 (6.35) 3.07 (1.38) 11.68 (6.12)
17 1000 0.60 (0.00002) 1.09 (1.04) 4.53 (5.17) 3.59 (2.65) 15.36 (14.32)
18 1500 0.60 (0.0023) 1.08 (0.96) 4.30 (5.19) 3.30 (0.98) 13.18 (4.50)
19 500 0.93 (1.03) 1.39 (21.16) 2.84 (42.39) 29.16 (109.76) 59.34 (240.28)
20 1000 0.82 (1.28) 1.72 (13.59) 3.48 (27.01) 12.10 (12.53) 24.54 (29.86)
21 1500 0.85 (0.78) 1.36 (8.23) 2.73 (16.03) 12.42 (10.56) 24.85 (24.77)
22 500 0.001 1.04 1.00 1.05 (0.040) 1.00 (0.031)

Table 5.2: Maximum likelihood estimates of the NTS-binomial and beta-binomial models
for the simulated data sets.

than 0.8, for example for data set 10, therefore increasing the overall uncertainty in our prediction.

Next, one can see that the MLEs for ν1 and ν2 are, generally, very different in the cases of the NTS-

binomial and the beta-binomial models. The difference is larger when the value of κ is larger. On

the other hand, the parameters in the two models are not directly comparable, and it makes more

sense to compare the estimates of some moments of the distributions. It is not shown here, but in

most cases the first three central moments of the assumed distribution for pi are well approximated

by the first three central moments of the fitted distributions (see also Table 5.3 for the estimates of

the mean). This is mostly true for the data sets that seem to be a good enough sample from the

underlying distribution and the MLEs are close to the hypothetical values. As one would expect,

the mean is approximated better than variance and skewness and variance is better approximated

than skewness.

Finally, it is interesting to spot the differences between the cases with n = 6 and n = 12. The

NTS(1, 0.5; 0.33) case produces very similar, and in general terms good results. The NTS(2, 4; 0.8)

is generally troublesome for both cases. Finally, the more differences appear in the case of the

underlying pi
iid∼ NTS(1, 4; 0.6). In general (and well demonstrated by the NTS(1, 4; 0.6) data),
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it seems that in the case of n = 12 we are able to get the ”correct” values of the parameters, as

well as matching first three central moments more often than when n = 6. On the other hand,

the (relative-i.e. divided by the estimated value of the parameter) standard errors of our estimated

parameters are generally smaller when less Bernoulli trials are used.

The most awkward aspect of the results in Table 5.2 is the standard errors. These results are

probably due to the specific parametrisation used, where there is strong interaction between the

three parameters. Alternatively, one can look at the reparametrisation (µ, α, κ), where

µ =
ν1

ν1 + ν2
and α = (1 − κ)

[

1 − e
ν1+ν2

κ

(
ν1 + ν2
κ

)1/κ

Γ(1 − 1/κ,
ν1 + ν2
κ

)

]

,

i.e. µ is the mean and α (multiplied by µ(1 − µ)) is the variance of a NTS(ν1, ν2;κ) - distributed

random variable.

The MLEs and the corresponding standard errors for these parameters are shown in Table 5.3. This

Data Data size κ̂ µ̂ α̂ κ µ α
1 500 0.33 (1.76) 0.67 (0.26) 0.26 (0.24)
2 1000 0.26 (1.45) 0.67 (0.18) 0.26 (0.17) 0.33 0.67 0.25
3 1500 0.33 (1.07) 0.67 (0.15) 0.24 (0.14)
4 500 0.68 (0.99) .79 (0.32) 0.079 (0.058)
5 1000 0.58 (1.17) 0.81 (0.26) 0.072 (0.048) 0.60 0.80 0.062
6 2000 0.59 (0.90) 0.81 (0.20) 0.065 (0.034)
7 500 0.78 (0.87) 0.19 (0.39) 0.051 (0.044)
8 1000 0.55 (0.13) 0.20 (0.051) 0.052 (0.0067) 0.60 0.20 0.062
9 2000 0.44 (0.062) 0.20 (0.044) 0.063 (0.0074)
10 500 0.62 (0.11) 0.31 (0.054) 0.044 (0.010)
11 1000 0.91 (0.42) 0.33 (0.40) 0.031 (0.040) 0.80 0.33 0.026
12 2000 0.92 (1.53) 0.33 (1.16) 0.011 (0.058)
13 500 0.32 (1.63) 0.67 (0.24) 0.26 (0.23)
14 1000 0.43 (1.07) 0.68 (0.20) 0.24 (0.15) 0.33 0.67 0.25
15 1500 0.38 (0.96) 0.67 (0.16) 0.26 (0.13)
16 500 0.60 (0.17) 0.21 (0.18) 0.064 (0.025)
17 1000 0.60 (0.10) 0.19 (0.11) 0.065 (0.015) 0.60 0.20 0.062
18 1500 0.60 (0.078) 0.20 (0.089) 0.058 (0.012)
19 500 0.93 (1.38) 0.33 (1.11) 0.012 (0.060)
20 1000 0.82 (1.76) 0.33 (0.57) 0.027 (0.072) 0.80 0.33 0.026
21 1500 0.85 (1.07) 0.33 (0.42) 0.026 (0.051)
22 500 0.001 0.51 0.33 0 0.50 0.33

Table 5.3: Maximum likelihood estimates for κ, µ, and α and the underlying values of
these parameters for the simulated data sets.

table suggests that there is consistency in the MLEs for µ and α (and therefore for the estimated first

two moments), using different data sizes. The only exception seems to be the maximum likelihood

estimates for µ and α for the data sets 10-12 and for α for data set 19. Notice, however, that those
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data sets correspond to underlying pi
iid∼ NTS(2, 4; 0.8), which did not give good and consistent

estimates for ν1 and ν2, either. As for the standard errors of the estimates, there also seems to be

a consistency here, as well as a decrease with the data size, in most of the cases. Again, data sets

10-12 produce the most irrational (in the sense of decreasing standard errors) results. Overall, the

standard errors for the MLEs of those two parameters are much smaller than the standard errors for

the MLEs of ν1 and ν2. The standard errors for κ̂ are comparable to those produced in the previous

parametrisation, but much more consistent in this case.

Finally, for comparison purposes, I plotted the kernel density estimates of the underlying pi for both

the NTS-binomial and beta-binomial models fitted at the MLEs of the parameters for selected data

sets.
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Figure 5.5: Kernel density estimates for the underlying pi in a NTS-binomial (top) and
beta-binomial model (bottom) for simulated data set 3.
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Figure 5.6: Kernel density estimates for the underlying pi in a NTS-binomial (top) and
beta-binomial model (bottom) for simulated data set 11.
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Figure 5.7: Kernel density estimates for the underlying pi in a NTS-binomial (top) and
beta-binomial model (bottom) for simulated data set 16.

5.3.4 An application to mice fetal mortality data

In this section I analyse some data of fetal mortality in mouse litters, used also in Brooks et al.

(1997). Some small mistakes in the tables of the data there were spotted in Garren et al. (2001).

The E1, E2 data sets were introduced in Brooks et al. (1997) and were created by pooling smaller

data sets used by James and Smith (1982), whereas HS1, HS2 and HS3 were taken from Haseman

and Soares (1976) and the AVSS data set was in Aeschbacher and Stalder (1977). In each data set,

the data were more disperse than under a binomial distribution. Brooks et al. (1997) show that

finite mixture models fit the data better than the standard beta-binomial model in all data sets

except AVSS. Here, I fit the NTS-binomial and (its special case when κ = 1/2) the N-IG-binomial

models, as alternatives. Several other models have been applied to these data including: the shared

response model of Pang and Kuk (2005) and the q-power distribution of Kuk (2004). For param-

eter correspondence, note that the beta distribution with parameters (µ, θ) in Brooks et al. (1997)

corresponds to limκ→0NTS(µθ ,
1−µ
θ ;κ).

E1 data:

E1 consists of 205 data points, and under the beta-binomial model,the maximum log-likelihood value

is -283.70 at ν̂1 = 1.219 and ν̂2 = 12.306. For the NTS-binomial model, the maximum log-likelihood

is -280.69 for ν̂1 = 0.165, ν̂2 = 1.688 and κ̂ = 0.738 (i.e. a model not so close to the beta-binomial

one).

E2 data:

Here, there are 211 data points.

For unrestricted κ, the maximum log-likelihood value is -341.46 for ν̂1 = 0.097, ν̂2 = 0.785 and κ̂ =
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0.743 On the other hand, for the beta-binomial case, the maximum log-likelihood is -344.88, and

MLEs of ν̂1 = 1.001 and ν̂2 = 7.900.

HS1 data:

There are 524 data in this data set. For the beta-binomial case, the maximum log-likelihood is

-777.79, obtained at ν̂1 = 1.217 and ν̂2 = 12.291. For the NTS-binomial model, the value of maxi-

mum log-likelihood is significantly higher (-772.67), for ν̂1 = 0.177, ν̂2 = 1.780 and κ̂ = 0.727.

HS2 data:

This is the largest data set, with 1328 observations. The maximum likelihood estimates for the gen-

eral model are ν̂1 = 0.285, ν̂2 = 2.346 and κ̂ = 0.832, whereas for k ≃ 0 we get ν̂1 = 2.400 and ν̂2 =

19.701. The difference in log-likelihood is quite large: -1646.38 for the former and -1657,30 for the

latter. This could be due to the fact that we have many observations, as well as the fact that the

proposed value of κ is far from 0, indicating a substantial difference in the two models.

HS3 data:

This data set has 554 binomial data, and the difference in the maximum log-likelihood for the

NTS-binomial and the beta-binomial models is again quite large. For the simpler model the MLEs

are ν̂1 = 0.944, ν̂2 = 12.305 and maximum log-likelihood= −701.54. For the more general case,

ν̂1 = 0.041, ν̂2 = 0.516 and κ̂ = 0.804, giving log-likelihood= −685.62.

AVSS data:

This data set consists of only 127 observations.

In this case, the maximum likelihood for the NTS-binomial model is achieved at the limiting case

k → 0, i.e. it coincides with the beta-binomial model. The MLE for the other two parameters are

ν̂1 = 1.095 and ν̂2 = 14.778, and the corresponding log-likelihood is -168.93.

NTS-binomial beta-binomial
Data N κ̂ ν̂1 ν̂2 ν̂1 ν̂2
E1 205 0.738 (0.384) 0.165 (0.066) 1.688 (0.023) 1.219 (1.549) 12.306 (20.892)
E2 211 0.743 (0.044) 0.097 (0.168) 0.785 (1.569) 1.001 (0.875) 7.900 (9.815)
HS1 524 0.727 (0.548) 0.177 (0.713) 1.780 (7.169) 1.217 (0.961) 12.291 (13.058)
HS2 1328 0.832 (0.326) 0.285 (0.778) 2.346 (6.414) 2.400 (0.158) 19.701 (2.688)
HS3 554 0.804 (0.274) 0.041 (0.129) 0.516 (1.560) 0.944 (0.732) 12.305 (12.537)

AVSS 127 0 1.095 14.778 1.095 (2.082) 14.778 (36.812)

Table 5.4: Maximum likelihood estimates and standard errors of the estimates for the
NTS-binomial and beta-binomial models for the six mice fetal mortality data sets.

The MLEs for all the above data sets and their related standard errors (shown in parentheses) are

gathered and shown in Table 5.4. In all data sets except AVSS the estimate of κ is substantially

different from κ = 0 (which corresponds to the beta-binomial case). The estimate is zero for the
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AVSS data where the NTS-binomial model corresponds to the beta-binomial model. In the other

data sets κ is estimated to be between 0.74 and 0.83 and the estimated mixing distributions are

substantially different from a beta distribution. In fact the tails of the distribution are much heavier

than those defined by a beta distribution with the same mean and variance. The estimated mixing

distributions are shown in Figure 5.8 with the mixing distribution for the beta-binomial distribution

(the AVSS data set is not included since the estimates for NTS-binomial and beta-binomial models

imply the same mixing distribution). The graphs for the NTS-binomial were created using large

enough samples from this distribution.
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Figure 5.8: Density estimates for the mixing distribution for the NTS-binomial (solid line)
and beta-binomial (dashed line) models evaluated at the maximum likelihood estimates for
the mice fetal mortality data.

The first four central moments for the two distributions are shown in Table 5.5. The first two

E1 E2 HS1 HS2 HS3
Expectation beta 0.0901 0.1125 0.0901 0.1086 0.0713

NTS 0.0888 0.1096 0.0902 0.1087 0.0734
Variance beta 0.00565 0.01008 0.00565 0.00419 0.00464

NTS 0.00636 0.01115 0.00650 0.00395 0.00707
Skewness beta 1.41 1.42 1.41 1.00 1.65

NTS 2.75 2.66 2.67 2.66 3.89
Kurtosis beta 2.42 2.25 2.42 1.21 3.46

NTS 13.26 11.99 12.62 13.57 22.93

Table 5.5: Estimates of the first four central moments of the mixing distributions for the
beta-binomial and NTS-binomial distributions for five mice fetal mortality data sets.

moments are roughly equal with the exception of HS3 which has a larger variance for the NTS-
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binomial model than the beta-binomial model. However, the third and especially fourth moments

are larger for the NTS-binomial model, a result which is in accordance with the interpretation of κ

given in Section 5.2.2.

As discussed above, the likelihood values for the NTS-binomial model are substantially better

than those for the beta-binomial model. However, we would like to compare the NTS-binomial

model to the other competing models: the finite mixture models of Brooks et al. (1997), the shared

response model of Pang and Kuk (2005) and the q-power distribution of Kuk (2004). I also con-

sider the normalised inverse-Gaussian distribution, which fixes κ = 0.5 in the NTS-binomial model.

The Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are used as

measures of fit. If L is the maximum likelihood value, n is the data size and k is the number of

parameters, the AIC = −2 logL+2k and the BIC = −2 logL+k logn. Results for each data set are

Model E1 E2 AVSS HS1 HS2 HS3
beta-binomial +8.3 +6.0 341.9 +9.3 +43.9 +32.8
NTS-binomial +4.8 +1.1 +2.0 +1.2 +24.1 +3.4
N-IG-binomial +5.1 +0.6 +0.5 +3.1 +38.9 +18.8
B-B/B mixture +3.5 +0.4 +3.8 1550.3 3274.7 1373.9
2-d binom. mixture +1.7 +0.6 +1.9 +20.6 +20.1 +4.6
3-d binom. mixture +5.1 +1.9 +5.7 +1.1 +4.1 +1.8
Best binom. mixture +5.1 +1.9 +9.7 +4.5 +1.7 +5.5
Shared response 563.1 687.8 +6.1 +20.3 +42.5 +8.9
q-power +6.6 +8.4 +8.0 +6.5 +2.1 +0.5
Correlated-binomial +26.2 +36.7 +1.2 +57.0 +67.3 +94.5
B-C-B +7.8 +1.3 +2.0 +8.4 +35.7 +24.0

Table 5.6: AIC values for the competing models for each data set. The smallest value for
each data set is shown in bold and other AIC values are shown as differences from that
minimum.

given in Table 5.6 (for AIC) and Table 5.7 (for BIC). The best model has the smallest value of the

information criterion. In both tables, the smallest value of AIC/BIC for each the data set is given in

bold and the values for the other models are given as differences from the best model. In the tables,

B-B/B mixture is the beta-binomial/binomial mixture (i.e. a mixture consisting of a beta-binomial

part and a binomial part), 2-d/3-d correspond to mixtures of two or three binomials respectively,

B-C-B is the beta-correlated-binomial model, and N-IG is the normalised inverse-Gaussian distribu-

tion. Finally, the best binomial mixture is a mixture of binomials with the number of components

unknown. The number of components to be fitted is derived using the program C.A.MAN, using

directional derivative methods (see Bohning et al. (1992)). I also found that the log likelihood value

given by Pang and Kuk (2005) for E1 was not consistent with their estimates. Their value seems

to correspond to the data set given by Brooks et al. (1997) rather than the corrected version given
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by Garren et al. (2001). My proposed NTS-binomial model performs well for all six data sets, es-

Model E1 E2 AVSS HS1 HS2 HS3
beta-binomial +8.3 +6.0 347.6 +6.2 +41.9 +32.3
NTS-binomial +8.1 +4.5 +4.9 +2.4 +27.2 +7.2
N-IG-binomial +5.1 +0.6 +0.5 1561.9 +36.8 +18.3
B-B/B mixture +10.2 +4.6 +9.5 +5.4 +8.3 +8.2
2-d binom. mixture +5.0 +4.0 +4.8 +21.7 +23.2 +8.4
3-d binom. mixture +15.1 +12.0 +14.2 +10.8 +17.5 +14.3
Best binom. mixture +15.1 +12.0 +23.9 +22.7 +25.6 +26.6
Shared response 569.7 694.5 +6.1 +17.2 +40.4 +8.4
q-power +6.6 +7.9 +9.0 +3.4 3287.2 1383.0
Correlated-binomial +26.2 +36.7 +1.2 +53.9 +65.2 +94.0
B-C-B +11.1 +4.6 +4.9 +9.6 +38.8 +27.8

Table 5.7: BIC values for the competing models for each data set. The smallest value for
each data set is shown in bold and other BIC values are shown as differences from that
minimum.

pecially in terms of BIC. The N-IG model (which is a special case of my model) also performs very

well for these data. For the E1 data, the best one in terms of both AIC and BIC is the shared

response model, with the N-IG model very close to it. For E2, again the shared response model

performs better than all the other regarding AIC and BIC, with the N-IG model again quite close

(but with the B-B/B mixture even closer). For the AVSS data, the undisputed winner is the simple

beta-binomial model, which seems to model the data sufficiently well. For HS1, the N-IG model is

actually the best in terms of the BIC, whereas the B-B/B mixture performs best in terms of the

AIC. The value of AIC for the N-IG model and the value of BIC for the B-B/B mixture are, as one

would expect, close to the smallest value. My model is the second best in terms of BIC and third

(but also very close to the second) in terms of the AIC. Regarding the HS2 data set, the differences

between the criteria of the different models are larger than in the other data sets, due to the much

larger data size. The best model in this case is (again) the mixture of beta-binomial and binomial

in terms of AIC and the q-power model in terms of BIC. Finally, for the HS3 data set, the q-power

distribution is the best in terms of the BIC, whereas the B-B/B mixture performs best in terms of

the AIC. My model is second in terms of BIC and fourth in terms of AIC.

Another interesting point is the unimodality of the MLEs in the MNTS-binomial model. As

seen in Figure 5.9, the profile log-likelihoods for the three parameters of this model for the HS1

data are unimodal, with the mode corresponding to the MLEs of them. Although for ν1 and ν2 the

domain in which this is shown is limited ( (0,0.3) for ν1 and (0,3) for ν2), compared to the actual

domain of those two parameters (i.e. the positive real line), this is for illustration purposes. The

unimodality holds for the whole positive real line for both ν1 and ν2. Moreover, the unimodality
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holds for all the data sets considered here.

The reason that I think that this is a useful property for my model comes from a comparison with

the corresponding concept for the beta-binomial/binomial mixture (see Figure 1 and Table 9 in

Brooks et al. (1997)), in which the profile log-likelihood for the mixing parameter γ is bimodal for

almost all data sets. The latter model performs well for most of the data sets, however the fact that

it gives two possible modes for the parameters in the model is a drawback in terms of computations

and/or theoretical properties. On the other hand, my model does not have this problem.
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Figure 5.9: Profile log-likelihoods for the parameters in the MNTS-binomial model for the
HS1 data.

5.4 Summary

In this chapter I move from the nonparametric context to the fully parametric setting. I propose

a new, n-dimensional distribution defined on the unit simplex, called the multivariate normalised

tempered stable (MNTS) distribution, which includes the Dirichlet, the beta and the normalised

inverse-Gaussian distributions as special cases. The general formulae for the moments and cross-

moments of the proposed distribution are also derived. These formulae are later used in the maximum
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likelihood estimation of the parameters in a model for count data. More specifically, it is assumed

that we have data from a binomial distribution, and the probabilities of success are assumed to

follow the univariate MNTS distribution, called the normalised tempered stable (NTS) distribution.

Because of the moment results of this new distribution, the binomial-NTS distributions will be

particularly useful for modelling overdispersed data. This point is illustrated using both simulated

and real data, more specifically mice fetal mortality data. The performance of my proposed model

with other models proposed in the literature for the mice data is also compared, and it is shown

that my model performs consistently well.
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Chapter 6

Conclusions and Future Directions

6.1 Summary

This thesis covers models derived through normalisation methods for both parametric and Bayesian

nonparametric inference. In the Bayesian nonparametric case, a class of models for grouped data that

are assumed to follow dependent random probability measures (RPMs) is proposed. These dependent

RPMs are constructed by normalising infinitely divisible random measures. In the parametric case

a new distribution is proposed, the normalised tempered stable distribution. As the name suggests,

this distribution is the distribution of a vector of normalised tempered stable-distributed random

variables, i.e. each of them divided by the sum of all of them.

In Chapter 1 I begin with a general overview of Bayesian nonparametric methods. Most of these

methods assume that the distributions of some data are also random. These random distributions

are called random probability measures and the most widely used distribution of these RPMs is

the Dirichlet process (DP). Properties of this process are presented, as well as the basic simulation

methods for this type of models. A good alternative for the DP is the normalised inverse-Gaussian

process (N-IGP), which is also defined and studied.

Next, various ways of introducing dependence in Bayesian nonparametric models are described. I

focus on models for grouped data, and more specifically on a model presented in Müller et al. (2004).

The normalisation method is also presented, which will be used in constructing my basic models.

In Chapter 2 a general class of models for two dependent distributions is presented, where

it is assumed that each distribution consists of a weighted sum of a common component and an

idiosyncratic component. Because of the common and the idiosyncratic components, these models

can be naturally applied to grouped data. As shown, a model of this form can be constructed in
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a systematic way by normalising specific infinitely divisible random measures. My basic proposed

model, however, will be a slight simplification of this model. This model, apart from its intuitive

appeal, also exhibits nice theoretical properties, for example very simple moment results. This

model is also very similar to the model of Müller et al. (2004), although constructed using a different

method, and a comparison of the two models is attempted. As mentioned above, the method of

construction of my proposed model results in some nice properties that are not guaranteed in the

model of Müller et al. (2004). On the other hand, the latter model is more general than my proposed

model, since it is constructed in a more elaborate way.

Next, some generalisations of my basic proposed models and of the model of Müller et al. (2004)

in three dimensions, i.e. for three dependent (random) distributions, are presented. The systematic

way of construction of my models, i.e. the normalisation technique, results in a straightforward way

of extending them in three, or even more, dimensions. This is not apparent for the Müller et al.

(2004) model, however some options are presented.

Chapter 3 deals with the computational implementation of our models. As with most Bayesian

nonparametric models, inference for the posterior distribution of the parameters in my models is

achieved using Monte Carlo Markov Chain methods. For my basic model, the algorithm is very

similar to the one described in Müller et al. (2004). On the other hand, when applying this al-

gorithm to simulated data, I observed very slow mixing of the chains, due to the bimodality of

the posterior distribution of a specific parameter. An additional step in the MCMC algorithm was

therefore proposed, in which we either split a cluster from the common component to form clusters

in the idiosyncratic components, or merge two clusters from the idiosyncratic components to form

a common cluster in the common component. Using simulated data, it is demonstrated that this

extra mix-split step improves mixing. This extra step is based on a generic idea, and can therefore

be applied to a variety of models. In fact, this step is applied to the algorithm for the model of

Müller et al. (2004), and again a better mixing is achieved.

Some ideas for simulating the models in higher dimensions are then presented. This area is still

quite unexplored, although it should not be particularly difficult to extend the algorithms that are

used for the simpler models.

Regarding the implementation of the model that directly emerges from the normalisation method,

MCMC methods are again used, but now with a different parametrisation and slice sampling updat-

ing steps for some of the parameters. Although we could have mimicked the previous algorithms,

the method used here is easy to code, straightforward, computationally inexpensive and does not

require any sort of monitoring (as a RWMH step would require). An extra mix-split step was also

included in this algorithm.
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Finally, I present the algorithm for a model which has the same form as my basic model, but with

N-IGP priors instead of DP priors. When I attempted to extend the algorithm for my basic model

here, I came across some problems with the software used (Matlab), which made the algorithm

unreliable. Specifically, the built-in commands in Matlab for calculating the incomplete gamma

function Γ(a, x) (that appears in the Pólya-urn representation of the N-IGP) do not give the correct

values when a takes large negative values. As a result, a different simulation method was used.

More specifically, I follow the method proposed in Griffin and Walker (2009), which makes use of

slice sampling techniques for normalised random measures, and simulating from the full conditional

distributions of all parameters of interest was made possible. When trying to implement a mix-split

step, however, I ended up with an integral that did not have a known closed form. This was, actually,

my motivation for deriving the general moment results for the N-IG distribution in Section 5.

In Chapter 4 various models presented above were applied to real-life data. At first my basic

proposed model and the model of Müller et al. (2004) were applied to daily returns of two stocks.

Using these models, we could get a better feeling about the common behaviour of the two stocks

(corresponding to the common component in the two dependent distributions) and of the behaviour

which is specific for each stock (as shown from the idiosyncratic components). Although the results

are similar, it is also shown (using both predictive power and Bayes factors) that my model performs

slightly better in terms of both criteria.

Next, my basic model, the model with N-IGP priors and the model of Müller et al. (2004) were

embedded in a model for stochastic frontier analysis. The corresponding algorithms for all three

models were derived and then applied to hospital cost frontier data, in order to examine their

efficiencies, and in particular the differences between groups of hospitals. The hospitals in the same

ownership status, but different clinical workers per patient ratios, were compared. The results are

quite similar for my basic model and the model of Müller et al. (2004), and rather different for the

model with the N-IGP priors, especially for small data sizes. Nevertheless, in all models we have

the same results regarding which groups of hospitals (high or low staff ratio) are the most efficient.

In Chapter 5 a parametric model for count data is proposed. I start by deriving the gen-

eral formulae for the moments and cross-moments for the N-IG distribution and derive some basic

moments. Then, a novel, n-dimensional distribution defined on the unit simplex, the multivariate

normalised tempered stable (MNTS) distribution is proposed. As its name indicates, this distribu-

tion can be derived as the distribution of a random vector of tempered stable-distributed random

variables divided by their sum. This distribution has three parameters and includes many known

distributions such as the Dirichlet and the N-IG distribution as special cases. We examine the the-

oretical characteristics of this distribution and derive the general moments and cross-moments for
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this distribution, as well as some basic moments. A new model for discrete data is then constructed,

where it is assumed that the probabilities of success of binomial data follow the normalised tempered

stable (NTS) distribution, which is the univariate version of the MNTS distribution. Based on the

moment results, the new model should be particularly successful in modelling overdispersed data,

which is verified by applying and comparing the proposed model and the known beta-binomial model

to simulated data. Notice that the formulae for general moments and cross-moments derived above

are used in calculating the maximum likelihood estimates of the parameters in our model. Finally,

the new model and the N-IG-binomial model are applied to mice fetal mortality data and the two

models are compared to previously proposed models for the same data, using the AIC and the BIC.

Although my proposed model is never the best model, it performs consistently well and has criterion

values that are very close to the best model in each case.

6.2 Future Work

There are many possible extensions and future directions regarding the work presented in this thesis,

in terms of both modelling and computational issues. Here, we will present some of these options.

The model with N-IGP priors seems to be an interesting alternative to the DP. This can

be seen, for example, from the findings for the hospital data, and especially the government-run

ones. It would be therefore interesting to further study this model and apply it to more data sets.

Comparison with the corresponding model with DP priors can (and should) also be examined in a

formal way, for example using Bayes factors. Simulation methods for this model can also be explored

further, as well as constructing an additional mix-split step in these algorithms.

Apart from the proposed models and the model with N-IGP priors, one might consider models

of the same structure, but with other normalised random measures as the prior distribution of the

dependent random measures. Simulating from the posterior distributions of these models, however,

might be challenging. A possible general algorithm to follow (or extend) is the slice sampling method

for NRMs of Griffin and Walker (2009).

The slice sampler of Griffin and Walker (2009) performed well when used in this thesis, and

could also be further studied, improved and applied to different data sets. This is also true for

the extra mix-split step proposed in some models here. This extra step was shown to improve the

mixing of the chains when used and therefore it would be interesting to embed it in more algorithms.

Assessment of the contribution of this extra step in mixing can then be performed using different

data sets.

The algorithms for the models for three correlated distributions are only described in general
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terms in this thesis. Generalising the existing algorithms should not be extremely difficult, regardless

of the significant increase in both notational complexity and computational burden. It is, therefore,

an obvious area of further research. Developing the algorithms for posterior inference for these

models will also help us better understand the specific models and their properties. Alternatively,

other possible models for grouped data from three (or more) dependent distributions, together with

the corresponding algorithms, may be considered.

Another possible area of future work would be a further and more thorough examination of the

NTS distribution (or, more generally, the MNTS distribution) and the NTS-binomial model. The

NTS distribution is a simple generalisation of many familiar distributions, with only one additional

parameter, whereas the latter performed very well when applied to real data. As noted before,

the NTS-binomial model can be particularly useful for modelling overdispersed count data, and it

therefore seems worth applying it to data of this type, for example skewed data.

Finally, the NTS distribution and the NTS-binomial model can be naturally considered within

the Bayesian context. A first, straightforward, and probably successful Bayesian model would be to

model some count data using the NTS-binomial model, where we assign some prior distributions on

the parameters ν1, ν2 and κ. As indicated by the examples in Chapter 5, this model should perform

particularly well when the data are overdispersed.
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Appendix A

Appendix

A.1 The Acceptance Probabilities For the Mix-Split Step in

Section 3.3

The acceptance probability of the mix-split step described in Section 3.3 is

α(c, c′) = min

{

1,
q(c′, c)

q(c, c′)

f(c′)

f(c)

}

where q(a, b) is the transition probability from a value a to a value b and f(c) = f(c| · · · ) is the

posterior probability of c, having integrated out the weight ε and all the discrete values φji. The

current state of all indicators sji and rji is denoted with c and the proposed one with c′.

The second ratio of probabilities (f(c′)/ f(c)) and can be deduced as follows:

f(c) = f(c| · · · ) =

∫ ∫

f(c, ε,φ)dεdφ

∝
∫ ∫

f(Y|φ, c, S)f(c, ε|φ, · · · )f(φ|m,B)dεdφ

=

∫ ∫

f(Y |φ, c, S)f(c, ε|M)f(φ|m,B)dφdε

=

∫

f(c, ε|M)dε

∫

f(Y |φ, c, S)f(φ|m,B)dφ

=

∫

f(φ|m,B)f(Y |φ, c, S)dφ× f(c|M). (A.1.1)

The first part of (A.1.1) is the joint full conditional distribution of all φji, and can be written as the

product of the full conditionals of each of them. This is a convenient result, because most of the

terms will cancel out when calculating the ratio f(c′)/f(c). The terms that will be left will be those

associated with clusters that are merged/split.
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The second part of (A.1.1) is the distribution of c, conditional on M0,M1. This is easily calculated

by integrating out the weight from f(c, ε|M), and is given in equation (2.1.6).

So, by substituting the above results, and performing the simplifications mentioned above, we have:

Let m01 denote the number of data from the first data set allocated to the cluster to be split and

m02 denote the number of data from the second data set allocated to the same cluster. Then:

Split proposal:

1. If m01 = 0, i.e. a cluster from F0 is moved to F2:

f(csplit)
f(c) = M1

M0

Γ(M1+n1+n2+m02)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n2+m02) .

2. If m02 = 0, i.e. a cluster from F0 is moved to F1:

f(csplit)
f(c) = M1

M0

Γ(M1+n1+n2+m01)Γ(M1+n1)
Γ(M1+n1+n2)Γ(M1+n1+m01) .

3. If m01 > 0, and m02 > 0, i.e. a cluster from F0 is split to both F1 and F2:

f(csplit)
f(c) =

M2
1

M0

Γ(M1+n1+n2+m01+m02)Γ(M1+n1)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n1+m01)Γ(M1+n2+m02)

Γ(m01)Γ(m02)
Γ(m01+m02)

√
S[(m01+m02)B+S]

(m01B+S)(m02B+S) ×
exp{ (m01+m02)m2−2m(

∑
Y ′
1+
∑
Y ′
2 )−B

S (
∑
Y ′
1+
∑
Y ′
2 )2

2(m01+m02)B+2S −m01m
2−2m

∑
Y ′
1−B

S (
∑
Y ′
1)2

2m01B+2S −m02m
2−2m

∑
Y ′
2−B

S (
∑
Y ′
2 )2

2m02B+2S }.

In all the above, it is assumed that K0 > 0 (otherwise we do nothing) and
∑
Y ′

1 ,
∑
Y ′

2 are taken

over the data associated with the split cluster.

Merge proposal:

1. If exactly one of K1 and K2 is zero (note that then, exactly one of m1 and m2 is zero):

f(cmerge)
f(c) = M0

M1
.

2. If both K1 and K2 are positive:

(a) If a cluster from F2 is moved to F0 (in this case, m1 = 0):

f(cmerge)
f(c) = M0

M1

Γ(M1+n1+n2−m2)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n2−m2)

.

(b) If a cluster from F1 is moved to F0 (here, m2 = 0):

f(cmerge)
f(c) = M0

M1

Γ(M1+n1+n2−m1)Γ(M1+n1)
Γ(M1+n1+n2)Γ(M1+n1−m1)

.

(c) If a cluster from F2 and a cluster from F1 are merged in F0 :

f(cmerge)
f(c) = M0

M2
1

Γ(M1+n1+n2−m1−m2)Γ(M1+n1)Γ(M1+n2)
Γ(M1+n1+n2)Γ(M1+n1−m1)Γ(M1+n2−m2)

Γ(m1+m2)
Γ(n1)Γ(m2)

√
(m1B+S)(m2B+S)
S[(m1+m2)B+S] exp

{−(m1+m2)m
2+2m(

∑
Y ′
1+
∑
Y ′
2 )+ B

S (
∑
Y ′
1+
∑
Y ′
2 )2

2(m1+m2)B+2S +
m1m

2−2m
∑
Y ′
1−B

S (
∑
Y ′
1 )2

2m1B+2S +
m2m

2−2m
∑
Y ′
2−B

S (
∑
Y ′
2 )2

2m2B+2S }.

In the above, it is assumed that at least K1 or K2 are non-zero (otherwise we do nothing),and
∑
Y ′

1 ,
∑
Y ′

2 are taken over the data associated with the clusters to be merged.

The transition probabilities q can be calculated as follows:

1. Split step:

q(c, csplit) = P (csplit|c) = P (csplit|c, split step)P (split step|c) = 1
2K0
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q(csplit, c) = P (c|csplit,merge)P (merge|csplit) =







1
2((K1+2)(K2+1)−1) , if m01 > 0, m02 = 0

1
2((K1+1)(K2+2)−1) , if m01 = 0, m02 > 0

1
2((K1+2)(K2+2)−1) , if m01 > 0, m02 > 0.

Here, it is assumed that K0 > 0. The values of K1,K2 do not matter.

2. Merge step:

q(c, cmerge) = P (cmerge|c,merge step)P (merge step|c) = 1
2((K1+1)(K2+1)−1)

and q(cmerge, c) = P (c|cmerge, split step)P (split step|cmerge) = 1
2(K0+1) .

Here, it is assumed that at least one of K1 and K2 is positive.

In the above, I have used that the probability of choosing to propose a merge or a split step is 1/2

for each.

By combining the above, together with the expressions for the ratio f(c′)/ f(c), the acceptance

probabilities for the proposed split or merge step can be calculated.

A.1.1 The acceptance probabilities for the alternative mix-split step

For the alternative mix-split step, i.e. when the values of K0,K1 and K2 are taken into account in

proposing a split or a merge step, the ratios f(c′)
f(c)z will be the same as above. However, since we

propose the mix and split steps differently, the ratios q(c′,c′)
q(c,c′) will be different:

Let n1 and n2 denote the current (i.e. before the proposed mix or split step) number of data assigned

in each idiosyncratic component distribution, F1 and F2, respectively. Then:

1. When K0 = 0, we propose a merge step, and

q(cmerge, c) = P (c|cmerge, split step)P (split step|cmerge) = P (split step|cmerge) = p1,

since P (c|cmerge, split step) = 1
K0+1 = 1, and

p1 =







1 , if K1 = K2 = 0

1/2 , else.

On the other hand,

q(c, cmerge) = P (cmerge|c,merge step)P (merge step|c) = 1
(K1+1)(K2+1)−1 ,

since here P (merge step|c) = 1.

2. When K1 = K2 = 0, we propose a split step, and

q(csplit, c) = P (c|csplit,merge step)P (merge step|csplit) =







p2 , if n1 > 0, n2 = 0

p2 , if n1 = 0, n2 > 0

p2
3 , if n1 > 0, n2 > 0,
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where P (merge step|csplit) = p2 =







1 , if K0 = 1

1/2 , else.

On the other hand,

q(c, csplit) = P (csplit|c, split step)P (split step|c) = 1
K0
, since P (split step|c) = 1.

3. In any other case, we propose a split or a merge step, each w.p. 1/2, and

q(cmerge, c) = P (c|cmerge, split step)P (split step|cmerge) = p3
K0+1 ,

where p3 =







1 , if K1 +K2 = 1, or if both are equal to one and both are selected

1/2 , else

q(c, cmerge) = P (cmerge|c,merge step)P (merge step|c) = 1
2((K1+1)(K2+1)−1)

q(csplit, c) = P (c|csplit,merge step)P (merge step|csplit) =







p2
(K1+2)(K2+1)−1 , if n1 > 0, n2 = 0

p2
(K1+1)(K2+2)−1 , if n1 = 0, n2 > 0

p2
(K1+2)(K2+2)−1 , if n1 > 0, n2 > 0,

where p2 is as above.

q(c, csplit) = P (csplit|c, split step)P (split step|c) = 1
2K0

.
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