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Abstract

This thesis consists of four original pieces of work contained in chapters 2,3,4 and
5. These cover four topics within the area of statistical methods for parameter
estimation of biochemical kinetic models. Emphasis is put on integrating single-cell
reporter gene data with stochastic dynamic models.

Chapter 2 introduces a modelling framework based on stochastic and ordinary dif-
ferential equations that addresses the problem of reconstructing transcription time
course profiles and associated degradation rates from fluorescent and luminescent
reporter genes. We present three case studies where the methodology is used to
reconstruct unobserved transcription profiles and to estimate associated degrada-
tion rates.
In Chapter 3 we use the linear noise approximation to model biochemical reactions
through a stochastic dynamic model and derive an explicit formula for the like-
lihood function which allows for computationally efficient parameter estimation.
The major advantage of the method is that in contrast to the more established
diffusion approximation based methods the computationally costly techniques of
data augmentation are not necessary.
In Chapter 4 we present an inference framework for interpretation of fluorescent
reporter gene data. The method takes into account stochastic variability in a
fluorescent signal resulting from intrinsic noise of gene expression, extrinsic noise
and kinetics of fluorescent protein maturation.
Chapter 5 presents a Bayesian hierarchical model, that allows us to infer distribu-
tions of fluorescent reporter degradation rates.
All methods are embedded in a Bayesian framework and inference is performed
using Markov chain Monte Carlo.
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Chapter 1

Introduction

1.1 Motivation

Systems biology is an inter-disciplinary research area that focuses on the system-

atic study of complex interactions in biological systems [Ehrenberg et al., 2003,

Gunawardena, 2009]. It uses mathematical models to investigate how physiol-

ogy and phenotype arises from molecular interactions [Gunawardena, 2009]. Two

main research branches can be distinguished. The first, ”omics”‘ is stimulated

by high-throughput technologies such as the microarray and focuses on inferring

networks from large data sets [Schena et al., 1995]. The second branch models

interactions between molecules, cells and tissues and is often called ”mechanistic”

systems biology [Guyton et al., 1972, Hodgkin and Huxley, 1990, Kacser et al.,

1995, Rapoport et al., 1974, Savageau, 1976].

Within both ”omics” and ”mechanistic” systems biology molecular interactions, of-

ten represented as molecular networks, play a central role [Huang, 2004]. A static,

genome-wide picture of networks is of interest in ”omics”, whereas ”mechanistic”

systems biology focuses on dynamical properties of smaller networks. Among dif-

ferent types of molecular networks, genetic regulatory networks occupy a special

place as they act as information processing machines in cells, transforming the

cellular and extracellular inputs into appropriate outputs in the form of gene ex-
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pression [Tkačik et al., 2008]. Rules by which these computations are performed

are crucial for understanding the functioning of living cells, in particular their re-

sponse to the environment and decisions about their fate [Ziv et al., 2007].

The expression of a single gene, the basic unit of a gene regulatory network, involves

discrete and inherently random biochemical reactions [Guptasarma, 1995]. As a

consequence regulatory networks comprise spontaneously fluctuating biochemical

species. It is surprising that cells function remarkably well in the presence of noise,

often performing close to the physical limits imposed by the discrete nature of the

signal processing machinery [Bialek and Setayeshgar, 2005, Tkačik et al., 2008].

Dynamical properties and functionality of a network are constituted by its archi-

tecture and kinetic parameters describing velocities at which biochemical reactions

occur. Therefore, there is an increased interest in determining these using a variety

of available experimental techniques. Often networks are studied experimentally

applying time-lapse reporters that allow for real time, in vivo measurements of

concentrations of interacting biochemical species. Data obtained in this type of

experiments are being used to determine the strength of interactions within net-

works.

Research presented in this thesis concerns statistical inference of biochemical ki-

netic parameters and belongs to the realm of ”mechanistic” systems biology. The

methodology developed here allows for estimation of kinetic parameters of gene

expression from reporter assays data such as fluorescent reporter genes and PCR

based assays. Methods are oriented towards single-cell data and stochasticity in

gene expression so that they may contribute to the broad range of attempts to

understand the ability of a living cells to grow, divide, sense and respond to its

environment in the presence of random effects.

In the first part of the introductory chapter we focus on providing motivation for
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the methods presented in the thesis. A stimulus for this type of research comes

from the area of stochastic gene expression and gene regulation that are particu-

larly interesting due to consequences of randomness involved in cellular processes.

Therefore we briefly review research in this fields.

In the second part of the introduction we shortly describe mathematical methods

for modelling biochemical reactions and statistical tools for inference of biochem-

ical kinetics parameters.

1.2 Stochasticity in biological systems

Gene expression is an inherently stochastic process [Raser and O’Shea, 2005] that

leads to cell-to-cell variation in mRNA and protein levels. This randomness can be

beneficial in some cases and harmful in others [Raj and van Oudenaarden, 2008].

In this section we describe the main studies that lead to a characterisation of

stochasticity and explored its implications.

The experimental proof that levels of gene expression vary from cell to cell was pro-

vided by [Novick and Weiner, 1957]. The authors revealed the unpredictability of a

cell’s response by demonstrating that induction by lactose increased the proportion

of cells expressing the beta-galactosidase enzyme rather than the expression level

in each cell equally.

Another pioneering study [Ko et al., 1990] used advances in fluorescent reporter

technology to examine the foundation of the variability in expression. They studied

the effect of different doses of glucocorticoid on the expression of a glucocorticoid-

responsive gene and observed surprisingly large cell-to-cell variability.

Theoretical investigations of the stochastic nature of gene expression was initiated

by [Arkin et al., 1998, McAdams and Arkin, 1997]. Researchers modelled gene ex-

pression using a stochastic formulation of chemical kinetics proposed by [Gillespie,
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1977] and predicted that in some biologically realistic parameter ranges protein

numbers may fluctuate noticeably.

1.2.1 Sources of variability in gene expression

The need for precise characterisation of stochasticity in gene expression was in-

spired by experiments in synthetic biology. Researchers constructed a synthetic

network called ”repressilator”, composed of three repressors that was capable of

producing oscillations in gene expression [Elowitz and Leibler, 2000]. The oscilla-

tions, however, were subject to fluctuations in their period and magnitude. The

study led to the hypothesis that randomness in gene expression perturbed the

functioning of an engineered genetic circuit.

Further experiments explored the origins of stochastic gene expression. The study

of [Elowitz et al., 2002b] followed by the mathematical analysis by [Swain et al.,

2002b] introduced the concept of extrinsic and intrinsic noise. In their experiment,

they transfected two copies of the same promoter into the E. coli genome. One

gene coded the cyan fluorescent protein (CFP) and the other coded the yellow

fluorescent protein (YFP). Extrinsic fluctuations were defined as sources of vari-

ability that affect the expression of both copies of the gene equally in a given

cell. Intrinsic fluctuations were those resulting from the randomness inherent in

transcription and translation and influenced each copy of the gene independently

leading to uncorrelated variations in levels of CFP and YFP.

The study by [Ozbudak et al., 2002] demonstrated that the variability in expression

is depended on the underlying biochemical rates of transcription and translation.

The study verified a prediction by [Thattai and van Oudenaarden, 2001], about

how intrinsic noise in gene expression would change as these parameters were var-

ied.
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1.2.2 Noise and network architecture

Studies of noise in expression of a single gene were followed by investigations of

how stochasticity transmits within gene regulatory networks. First, the common

structure of linear transcriptional cascade [Pedraza and van Oudenaarden, 2005,

Rosenfeld et al., 2005] was examined. Researchers discovered that noise can be

transmitted from the upstream gene to the downstream gene substantially in-

creasing the variability of the expression of the downstream gene. Another study

showed that longer genetic cascades can filter out rapid fluctuations [Hooshangi

et al., 2005].

Beside linear cascades, negative and positive feedbacks are other common motives

in genetic regulatory networks. Feedback arises as the protein encoded by a gene

negatively or positively influences its own transcription. The theoretical model by

[Thattai and van Oudenaarden, 2001] predicted that the presence of these motives

changes the magnitude of fluctuations. This effect was confirmed experimentally

by [Austin et al., 2006, Becskei et al., 2001, Dublanche et al., 2006].

1.2.3 Beneficial and harmful effects of noise

Investigations of noise in genetic networks revealed its two roles in cellular pro-

cesses. First, noise as a nuisance that disturbs a reliable functioning of a cellular

machinery. Second, noise as a source of variability that is exploited by cells.

Nonessential genes are predicted to be noisy, indicating the potential benefits of

noise in this class of genes [Blake et al., 2006]. On the other hand, genes control-

ling the protein synthesis and degradation are predicted to be much less variable.

This suggests that genes essential for cellular function require more precise control

[Blake et al., 2006].

1.2.4 Stochasticity in cell fate and decision making

The other interesting aspect of noise, where its advantageous and disadvanta-

geous consequences are revealed, appears in the context of mechanisms by which
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cells respond to the environment and decide about their fates. Fate decisions are

of special interest to developmental biology, which studies decisions about differ-

entiation into subtypes with specialised attributes. How cells adopt a particular

fate is usually seen as a deterministic process, that results either from virtue of

the cell lineage or from proximity to an inductive signal from another cell. Cer-

tain developmental decisions, however, are random, sometimes out of necessity

or sometimes to explore benefits of randomness [Losick and Desplan, 2008]. For

instance, Drosophila melanogaster generates neurons and glial cells by asymmet-

ric processes of cell division. On the other hand, differentiation into alternative

colour vision photoreceptors in Drosophila is generated by intrinsically stochastic

biochemical reaction [Losick and Desplan, 2008].

The classical example of stochastic decision making is the lysis-lysogeny decision of

bacteriophage lambda [Ptashne, 2007]. After infection of Escherichia coli, phage

follows one of the two possible developmental pathways, lytic growth or lysogeny.

Isogenic cells grown in the same environment, each infected with a phage particle,

can produce both possible outcomes. Some cells follow lyse pathway while others

become lysogens. A theoretical model of lambda infection supports the hypothesis

that biochemical kinetic noise during infection is responsible for observed hetero-

geneity in cell fates [Arkin et al., 1998].

1.3 Systems level approach

Studies of stochasticity in living organisms stimulated two initiatives in systems

biology research [Wilkinson, 2009]. First, stochastic models [Ashall et al., 2009,

Chabot et al., 2007, Lipniacki et al., 2006] are being used in preference to de-

terministic models [Hoffmann et al., 2002, Lipniacki et al., 2004, Nelson et al.,

2004] to describe biochemical network dynamics at the single-cell level. Second,

advanced statistical methodology is being used to estimate parameters of both
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deterministic and stochastic models from time-lapsed experimental data [Chabot

et al., 2007, Finkenstadt et al., 2008, Henderson et al., 2009, Heron et al., 2007].

Even a simple biological system can exhibit a range of complex dynamical be-

haviour [Elowitz and Leibler, 2000], therefore quantitative mathematical and sta-

tistical modelling is necessary to provide its accurate description. Traditionally,

biochemical systems dynamics have been described using continuous determinis-

tic mathematical models [Van Kampen, 2006]. As the intrinsic stochasticity of

biochemical kinetics has been acknowledged it is now commonly accepted that

stochastic models are necessary to properly capture heterogeneous behaviour of

intracellular systems in a realistic way [Wilkinson, 2009]. Stochastic models, how-

ever, are computationally more costly and significantly more challenging to fit to

experimental data.

Deterministic models

The classical approach to modelling chemical kinetics is to assume that molecu-

lar species are present in large numbers and their concentrations are measured as

continuous variables [Van Kampen, 2006]. The changes in concentrations are gov-

erned by reactions that are assumed to be continuous and deterministic processes.

The velocity of each reaction is given by a rate constant or a rate equation (e.g.

Michaelis-Menten or Hill kinetics) [Cornish-Bowden, 1995]. Ordinary differential

equations (ODEs) can be used to describe evolution of such a system. ODEs

in this context are usually called macroscopic rate equation (MRE). The basic

limitation of the deterministic models is that they fail to explain the behaviour of

single-cell data, that are essential for understanding gene regulatory networks. The

small numbers of molecules present in single cells results in random effects that

contain additional information about the systems dynamics. In order to extract

this information from data requires a stochastic model. The strength of stochas-

tic effects is mainly dependent on the number of molecules in a reacting system,

therefore for systems that involve small molecular numbers, stochastic models,
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would provide a more insightful description. In Chapter 2 we demonstrate that by

using a stochastic model, one can estimate parameters that are unidentifiable in

a deterministic model.

Stochastic models

A useful model of a single-cell biochemical system must therefore account for an

inherent randomness of a modelled phenomena. Methods of statistical mechanics

allowed for derivation of the probabilistic framework to model the dynamics of

biochemical reactions. This was achieved using Poisson birth and death processes

[Gardiner, 1985, Gillespie, 1992b, Van Kampen, 2006, Wilkinson, 2006] and the, so

called, Chemical Master Equation that describes the probabilistic evolution of the

system. The state of the system is assumed to be a vector of counts of molecules

that changes due to reaction occurrence appear at discrete time points.

This model has been widely studied in the theory of stochastic processes and a

number of algorithms can be used to simulate data from a stochastic chemical ki-

netics model [Cao et al., 2005, Gillespie, 1977, 2001, Gillespie and Petzold, 2003,

Kiehl et al., 2004, Pucha lka and Kierzek, 2004].

Although stochastic models based on Poisson birth and death processes provide

insight that is hidden when using deterministic models, they create certain diffi-

culties. The computational cost of a simulation is high and analytical solutions

exist only for a very limited number of systems [McQuarrie, 1967]. Therefore,

several types of approximations to birth and death processes have been proposed

[Gardiner, 1985, Van Kampen, 2006]. Such approximations use processes that

have probability distributions similar, to that of birth and death stochastic kinetic

models. There are two main types of approximations, the diffusion approximation

(DA) and the linear noise approximation (LNA).

The diffusion approximation provides stochastic differential equation (SDE) mod-

els where the stochastic perturbation is introduced by a state dependant Gaussian
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noise. The linear noise approximation can be seen as a combination of determin-

istic and stochastic approach because it incorporates the deterministic MRE as a

model of the deterministic system and the SDEs to approximatively describe the

fluctuations around the deterministic state.

Using SDE models is more convenient than Poisson birth and death models be-

cause it is usually straightforward to simulate trajectories from the SDEs using

well established numerical procedures [Kloeden and E., 1999].

1.4 Statistical methods for stochastic biochemical kinetics

At the opposite end of the ”mechanistic” systems biology spectrum, there is a

considerable interest in using statistical methods to estimate parameters of the

dynamical models of the biological systems [Gunawardena, 2009]. In general the

aim is to calibrate the model so as to reproduce experimental results in the best

possible way.

Methods for deterministic models

The fitting of deterministic models to time course data has a long tradition and

comprises a variety of different approaches [Esposito and Floudas, 2000, Mendes

and Kell, 1998, Moles et al., 2003, Ramsay et al., 2007]. The simplest method

involves ”distance” between the model predictions and the experimental data, and

then finding parameters that minimise the distance measure. The least squares

fitting approach is an example of this type [Jaqaman and Danuser, 2006]. The

theoretical way to measure the discrepancy between the model and the experimen-

tal data is given by the statistical concept of the likelihood function [Silvey, 1975].

If the likelihood function is constructed an optimisation procedure can be used

to obtain maximum likelihood estimates. Maximum likelihood estimates have a

good property of consistency, nevertheless there are many complications related to
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optimisation procedure. Likelihood function may be approximately or completely

flat in the neighbourhood of the optimum, demonstrating a lack of identifiability

of the model parameters. Furthermore, the likelihood can be multimodal. These

issues can be approached using Bayesian statistics often combined with Markov

chain Monte Carlo (MCMC) techniques [Barenco et al., 2006, Brown and Sethna,

2003, Vyshemirsky and Girolami, 2008]. Bayesian inference [Gamerman and Lopes,

2006] combines prior information about the model parameters with the likelihood

function that contains information present in the data. Information about model

parameters contained in both the experimental data and the prior distribution is

called posterior distribution. Usually a posterior distribution does not have an

analytical form, nevertheless it is straightforward to construct MCMC algorithms

[Gamerman and Lopes, 2006] that allow to simulate samples from it.

Methods for stochastic models

Statistical methodology for stochastic biochemical kinetic models have only re-

cently appeared in the literature. It is probably due to the fairly sophisticated

algorithms required to fit stochastic models, as the analytical form of their likeli-

hood function is usually not available. Pursuits to tackle this problem have turned

out to be successful. Here, we briefly discuss a variety of solutions that has been

developed.

Derivation of a likelihood function for a stochastic model requires a probabilistic

description of the biochemical system. The most exact framework to describe a

biochemical kinetics system is that of Poisson birth and death processes and the

corresponding CME. Few inference methods have exploited the CME to propose

inference algorithms. One method, proposed by [Reinker et al., 2006], approxi-

mated the likelihood function, the other, suggested by [Tian et al., 2007] estimated

it using Monte Carlo methods. Recently, also a method based on the exact likeli-

hood [Boys et al., 2008] has been developed.
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Although, methods based on the CME have the desired property of using the most

accurate model they are computationally intensive and difficult to apply to prob-

lems of realistic size and complexity. In general, they are likely to be problematic

also because of the requirement of the single molecule precision data, that are not

available in the majority of gene expression experiments.

As stated above, the strategy based on replacing a Poison birth and death pro-

cess with its approximation was a successful way to reduce computational cost

of simulating trajectories of a biochemical system. The same technique has also

been used to construct inference algorithms. It reduces the problem of estimating

the parameters of a Poisson process to the one of estimating the parameters of

a diffusion process. As the inference methods for diffusion equations are subject

to intensive development [Beskos et al., 2006, Durham G. B, 2002, Elerian et al.,

2001] they can be adapted to infer biochemical kinetic rates [Finkenstadt et al.,

2008, Golightly and Wilkinson, 2005, Heron et al., 2007]. Although these meth-

ods are simpler in comparison to approaches based on the CME they also require

sophisticated and computationally intensive Bayesian inference techniques. Sim-

plification, however, allowed to successfully apply these methods to real biological

data [Finkenstadt et al., 2008, Henderson et al., 2009, Heron et al., 2007]. Ap-

plicability of the DA based methods is unfortunately limited to simple systems, in

which most of the model variables are observed. In an usual experimental setting,

however, only few components of a biochemical systems can be measured in vivo.

It may make MCMC simulation problematic, because unobserved variables need

to be integrated out within a simulation.

The main result of this thesis is an alternative inference method that approximates

Poisson birth and death process using the LNA instead of the DA. The derived

framework allows for unobserved variables and measurement error without the price

of an additional computational cost. It works surprisingly well even in situations in

which one would not expect the LNA to be a good approximation to a birth and
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death process.
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Chapter 2

Reconstruction of transcriptional

dynamics from gene reporter data

using differential equations

2.1 Author contributions and chapter’s structure

This chapter is a paper by Bärbel Finkenstädt, Elizabeth A. Heron, Michal Ko-

morowski, Kieron Edwards , Sanyi Tang, Claire V. Harper, Julian R. E. Davis,

Michael R. H. White, Andrew J. Millar and David A. Rand published in Bioinfor-

matics 2008 24(24):2901-2907. Authors contribution are as follows. BF conducted

the numerical estimations for case studies 1 and 2 (ODE part). EAH and MK did

numerical estimations for case study 2 (SDE) and 3, respectively, under the super-

vision and guidance of BF and DAR. ST contributed to the algorithm development

at the early stages of the paper. KE performed experiments for case study 1 and

2, under guidance of AJM. CVH performed the experiment for case study 3 under

guidance of JRED and MRHW. BF wrote the paper with assistance from MK,

EAH and DAR. DAR provided help on the mathematical modeling and initiated

the collaboration between the theoretical and experimental groups.

Sections 2.2 - 2.6 are followed by supplementary section 2.8 that contains details
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of mathematical modeling and statistical methods.

2.2 Abstract

Promoter driven reporter genes, notably luciferase (luc) and green fluorescent pro-

tein (gfp), provide a tool for the generation of a vast array of time-course data sets

from living cells and organisms. The aim of this study is to introduce a modeling

framework based on stochastic and ordinary differential equations that addresses

the problem of reconstructing transcription time course profiles and associated

degradation rates. The dynamical model is embedded into a Bayesian frame-

work and inference is performed using Markov chain Monte Carlo algorithms. We

present three case studies where the methodology is used to reconstruct unob-

served transcription profiles and to estimate associated degradation rates. We

discuss advantages and limits of fitting either stochastic or ordinary differential

equations and address the problem of parameter identifiability when model vari-

ables are unobserved. We also suggest functional forms such as on/off switches

and stimulus response functions to model transcriptional dynamics and present

results of fitting these to experimental data.

2.3 Introduction

Imaging data from luciferase (LUC) and green fluorescent protein (GFP) reporters

combined with fluorescent tagging of protein can provide very high quality data

with good temporal resolution [Millar et al., 1995, Nelson et al., 2004]. In this

case the actual imaging time series is approximately proportional to the abundance

of an artificial protein. The underlying transcriptional dynamics are unobserved

and are masked by two degradation processes, namely of reporter mRNA and

reporter protein. In this study we address the problem of back-calculating from

the observed protein activity to the hidden transcriptional dynamics where it is of

interest to estimate the associated rates of degradation as part of the analysis. We

formulate a probability model based on (stochastic) differential equations which
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provides the mechanistic rules for the back-calculation. In practise heterogeneous

data sets may be available from different experiments which contain information

about the transcription process and model parameters. Data sources may be of

different quality and time resolution, as well as from single cells or an aggregated

population of cells. Longitudinal measurements are discrete in time and can be

irregularly spaced or on different time scales for different variables. Other realistic

shortcomings of the data are that time course measurements may not correspond

to the same biological sample, or data on different variables may not be matched

in time which would be preferable for fitting a multivariate dynamical model. As

the quality and quantity of such data sets supports more or less complex modeling

approaches we consider both stochastic and ordinary differential equations with

measurement noise. Information on rate constants may be incorporated through

prior distributions in a Bayesian approach. We first describe the models and the

statistical methods used for its inference. Then we present three case studies

each with the aim of reconstructing transcription and inferring any identifiable

degradation rates from reporter gene data using available heterogeneous sources

of data. These case studies serve to demonstrate the adaption of the methodology

to different experimental scenarios.

2.4 Models and Inference

It is now well understood that, because of the stochastic nature of reaction events

and the presence of internal noise due to the fluctuations in the molecular envi-

ronment of the cell, regulatory and signalling systems are intrinsically stochastic.

To develop a stochastic model one can attempt to model the individual stochas-

tic events involved such as binding of the transcription factors, the assembly and

initiation of the polymerase and transcription. Although an exact simulation al-

gorithm of the corresponding stochastic processes is provided by [Gillespie, 1977,

1992a] such models are too detailed for there to be any hope of fitting to cur-

rent data with its limitations. Stochastic differential equations (SDEs) provide a
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good approximation of molecular population systems when one can assume that

there is a macroscopic time scale for which (a) the event rates can be regarded as

constant and (b) there are many events of each type. An example of formulat-

ing and fitting an autoregulatory feedback system with transcriptional delay as a

system of SDEs can be found in [Heron et al., 2007]). However, if the data are

too sparsely sampled in time to reveal information about the volatility process, or

if measurements are not realizations of the same continuous stochastic process in

a cell, then the assumption of SDEs can be problematic in estimation. Simpler

modeling approaches based on ODEs to represent the mean process with an ad-

ditional stochastic error may provide a useful vehicle for estimation purposes at

least in systems that have relatively regular and stable dynamics. The formulation

of ODEs to model the dynamics of molecular population processes has become

a widespread tool in systems biology (see, for example, systems studied in [Gold-

beter, 2002, Jensen et al., 2003, Locke et al., 2005a,b]), and early statistically less

rigorous attempts in obtaining kinetic parameters from GFP reporter data can be

found in [Ronen et al., 2002] and [Kalir et al., 2001].

Here we consider the following dynamic model as the mechanistic backbone for

the reconstruction of transcription profiles from reporter protein data

dM/dt = τ(t)− δMM(t), dP/dt = αM(t)− δPP (t), (2.1)

where M denotes the abundance of mRNA molecules and P denotes the abun-

dance of the corresponding protein. The first equation describes the dynamics

of mRNA molecules where transcription is given by a non-negative function τ(t).

The second equation states that the protein is synthesized at a rate proportional

to the abundance of mRNA. The mRNA and the protein are degraded (or leave

their molecular compartment otherwise) at time scales with mean 1/δm and 1/δp,

respectively. The aim is to infer the transcription function τ(t) and possibly other

rate constants of the system given time series data proportional to one or both

variables of the system. Suppose that we measure M,P proportionally to their

population size, sMM(t) for the mRNA and sPP (t) for the reporter protein. Re-

parameterizing (2.1) gives a scaled model which is identical to (2.1) with scaled
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terms for α and τ (see supplementary section 2.8). However, degradation rates

are not affected by scaling. Let Y = {yi}Ti=1 = {M(ti), P (ti)}Ti=1 denote ex-

perimental time series data observed at discrete time points. In order to obtain a

likelihood function that incorporates the mechanistic rules in (2.1) we consider two

approaches. One is the SDE approach where (2.1) is formulated as an appropriate

system of stochastic differential equations. This approach is rigorously modeling

the volatility of the stochastic dynamics of the kinetic processes provided that the

assumptions of the SDE approximation itself are valid. It is very challenging to

incorporate additional measurement error unless its variance is known or assumed.

The second is the mean ODE approach where we assume that a solution path to

(2.1) represents the mean of a stochastic process whilst the modeler makes as-

sumptions about the probability distribution of the residual process. This approach

is less exact than the SDE approach in modeling the volatility of the underlying

stochastic interaction between molecules. On the other hand it naturally deals

with measurement error and might also be useful for fitting to data sets which do

not comply with the SDE assumption, for example, if data points are averages over

replicates, come from different samples and/or represent a population of cells. We

now introduce the two approaches and their likelihood derivation in more detail.

SDE approach: Here, M and P are random variables of molecular population sizes

and the rates of increase and decrease in model (2.1) are event probabilities of

birth and death processes at the individual molecular level. One can derive the

following Itô SDEs ( see supplementary section 2.8)

dM = ζM(t, θ)dt+ σM(t, θ)dWM

dP = ζP (t, θ)dt+ σP (t, θ)dWP , (2.2)

where ζM(t, θ) = τ(t) − δmM(t), ζP (t, θ) = αM(t) − δPP (t), and σM(t) =

s
1/2
M (τ(t) + δmM(t))1/2, σP (t) = s

1/2
P (αM(t) + δPP (t))1/2 are drift and volatility

functions, respectively and WM and WP are independent Wiener processes 1. Here

and throughout the Chapter θ is used to denote a vector of model parameters. If M

1The Wiener process, or Brownian motion, is a continuous-time stochastic process that has indepen-
dent normally distributed increments.
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and P are indirect measurements of molecular populations in the sense that they

are proportional to molecular abundance with factors sM , sP then these factors

arise as additional parameters in the volatility functions and their estimation will

be extremely useful allowing us to calibrate the model to the population level.

Given data Y the likelihood function for the diffusion process is

LSDE(θ; Y) =
T−1∏
i=1

f(yi+1|yi; θ) (2.3)

where f(yi+1|yi; θ) denotes the transition density of yi+1 given yi, that is the

joint probability distribution of M(ti+1) and P (ti+1) given present values, under

parameter vector θ. The exact transition density function for solutions of SDEs is

rarely available in analytical form and usually approximations have to be considered.

If the time-step ∆ti = ti+1 − ti is small then a good approximation is given by

assuming that, conditional on past values,

(*) Increments y(ti+1) − y(ti) are bivariate normal with mean vector ζ(ti)∆ti

and variance matrix Σ(ti)∆ti where ζ(ti) = (ζM(ti), ζP (ti)),

Σ(ti) = diag(σ2
M(ti), σ

2
P (ti)) are the drift and volatility functions as defined

above.

Thus, for sufficiently small sampling intervals ∆ti the likelihood function can be

approximated by a product of the form

LSDE(θ; Y) =
T−1∏
i=1

Φ(y(ti+1)− y(ti); ζ(ti)∆ti,Σ(ti)∆ti) (2.4)

where Φ(x;µ,Σ) denotes the bivariate normal density function with mean vector µ

and variance matrix Σ. Justifications for this approximation are given in [Kloeden

and E., 1999].

Mean ODE approach: Suppose there is a solution path µ(t; θ) = (M(t), P (t); θ)

to the system in (2.1) from unknown initial conditions (M0, P0). Then a natural

probabilistic model is to assume that Y has a joint distribution with mean function

µ(t; θ) and a variance function σ2(t; θ). The distribution function and variance are

specified according to assumptions that the modeler makes about the residual
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process and measurement error. If the error process is assumed independent then

the likelihood in the mean ODE approach is

LODE(θ; Y) =
T∏
i=1

g(yi|µ(ti), σ
2(ti), θ), (2.5)

where θ now incorporates initial conditions (M0, P0) and g is a suitably chosen

probability distribution.

Inference: By Bayes’ theorem the posterior distribution is

π(θ|Y) ∝ L(θ|Y)π(θ), (2.6)

where L is the likelihood function, derived for either the ODE or SDE approach,

and π(θ) are prior densities of model parameters. Sampling from the posterior dis-

tribution is usually achieved using Markov chain Monte Carlo (MCMC), where each

element of θ is updated by using an appropriately constructed Metropolis-Hastings

acceptance/rejection scheme based on either random walk or independence pro-

posals [Gamerman and Lopes, 2006]. The reason for choosing a Bayesian approach

combined with a MCMC algorithm is twofold: Firstly, the Bayesian methodology is

flexible allowing for portability of inference results between different experimental

studies in a well defined way and this is highly relevant to studies in systems biology.

Secondly, the probabilistic imputation of missing data and/or unobserved variables

can be implemented in a straightforward way as part of an MCMC sampler.

Discrete data and unobserved variables: Molecular time series data are discretely

measured and it cannot be guaranteed that the sampling interval is small enough

for the approximation (*) to work well. A remedy suggested in econometric ap-

plications of SDEs [Durham G. B, 2002, Elerian et al., 2001] is to augment the

observed data by introducing a number of latent or unobserved data points, called

a bridge, in-between the measurements with the aim of creating a virtual fine dis-

crete time grid for which the assumption in (*) is valid. The bridges are treated

as missing or latent data. Let Y ∗ denote the collection of all latent data. We wish

to sample from the joint posterior f(θ, Y ∗|Y ) of the parameters θ and the latent

variables Y ∗ given the data Y , using the fact that, by Bayes’ theorem,

π(θ, Y ∗|Y ) ∝ L(Y ∗, Y |θ)π(θ) (2.7)

19



where L(Y ∗, Y |θ) is the approximated augmented likelihood. This is achieved by

sampling in turn from the full conditional densities of θ|Y ∗, Y and Y ∗|θ, Y [Tan-

ner and Wong, 1987]. Thus, in the framework of an MCMC, one can generate

proposal bridge processes and accept these with an appropriately constructed ac-

ceptance probability. In practice we have used (see [Heron et al., 2007]) a bridging

method based on an independence sampler suggested by [Elerian et al., 2001](see

supplementary section 2.8). The treatment of other forms of missing data such as

unobserved variables as part of the inference algorithm is theoretically the same.

In practise, this is challenging as the dimension of the posterior density in (2.7)

can become very large. We present applications of bridge building and stochastic

reconstruction of unobserved processes in our case studies. One also needs to

decide upon the size of a virtual sampling interval for which one can safely assume

that (*) holds. Since there are no analytical results we base our choice on Monte

Carlo studies of simulated systems.

2.5 Case studies

2.5.1 Case study 1: Red light pulse Experiment

The Arabidopsis thaliana gene Chlorophyll A/B binding Protein 2 CAB2 is regu-

lated by light and the circadian clock [Millar and Kay, 1996]. The aim here is to

estimate degradation rate of CAB2 mRNA and to reconstruct the transcriptional

dynamics of the CAB2:LUC reporter gene as a result of a 20 min red-light induc-

tion. At subjective dawn on the 6th day of the experiment (see supplementary

section 2.8 for a description of experiment), the grown Arabidopsis seedlings were

given a 20 min red light pulse to induce CAB2 expression. Samples were harvested

at the indicated time-points and total-RNA and -protein was extracted. Steady

state levels of LUC mRNA were measured by Quantitative PCR (Q-PCR) and

an in vitro LUC assay was used to measure LUC activity in the protein samples.

Concurrently, red light pulsed seedlings were also imaged for LUC activity using

light sensitive cameras [Millar et al., 1995]. This allows the measurement of LUC
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activity within the same seedlings throughout the entire experiment, whereas the

in vitro LUC assays and Q-PCR experiments necessarily sacrificed different samples

for each time-point. All data are probes from whole leaves (plots of all time series

in supplementary section 2.8) representing cell populations and the activity of the

clock gene can be assumed to be synchronized between cells by the light pulse.

There are three replicates of each measurement variable sampled every half hour

for a length of seven hours. Matching control replicates that have not been sub-

ject to light induction were sampled for the same time length albeit more sparsely

for the Q-PCR and in vitro assay data. Assuming that molecular populations all

Figure 2.1: This figure shows mean ODE fit for average data (data points given by
big dots) of red light pulse experiment. LUC mRNA (top left), LUC activity in vitro
(bottom left) and imaging the luminescence from LUC protein (top right) under two
experimental conditions: with and without red light pulse. Solid lines give the mean
ODE fit using mean posterior estimates for the parameters. The 95 % credible intervals
(dashed lines) are shown for the control experiments. The reconstructed transcription
profile τ(t) is shown in the bottom right panel (the area between dashed lines gives 95
% central values of the transcription profile for 10,000 iterations of Markov chain).

scale differently with the Q-PCR, in vitro and in vivo imaging data we use (2.1) to

describe the dynamics of mRNA and imaged LUC protein and add a third equation

dPv/dt = αPvM(t)− δPPv(t), (2.8)

which represents the protein dynamics measured by the in vitro LUC protein as-

says (see supplementary section 2.8 for full model statement). The two protein

equations are identical except for differently scaled translation rates αP and αPv .
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Furthermore a constant cP is added to the imaging data to represent some thresh-

old level at which the camera is able to detect a signal. To specify a form for

the transcription τ(t) consider an indicator function L(t) = 1 for the time of the

red light pulse, and L(t) = 0 otherwise (L(t) = 0 for all control experiments).

The response of mRNA transcription to the stimulus can then be modeled as a

convolution of L(t) and d(u) which is a probability density for the waiting time u

between the pulse and the initiation of transcription i.e. ,

τ(t) = αM

(∫ ∞
0

d(u)L(t− u)du+ τ

)
, (2.9)

where τ represents a baseline transcription. We take d(u) to be a Gamma density

with mean µΓ and standard deviation σΓ to be estimated. The specification in (2.9)

is motivated by the fact that it successfully reproduced the qualitative features

observed in the data in preliminary model simulations and because d is flexible.

Since data are from aggregated cell populations, the imaged protein data is very

smooth and successive data points of the Q-PCR and in vitro time series come

from different samples of cell populations, we choose to fit the model using the

mean ODE approach with independent error. To ensure all variables are strictly

non-negative we used an independent Gamma distribution for g in the likelihood

(2.5) for each of the three variables where parameters were specified to have

mean process equal to an ODE solution and time constant variance σ2
M , σ

2
P , σ

2
Pv.

Applying (2.5) the likelihood of replicate r = 1, 2, 3 is

Lr(θr|Yr) =
TR∏
i=1

g(yr,Ri |µ(ti), θ
r)

TC∏
j=1

g(yr,Cj |µ(tj), θ
r), (2.10)

where yr,Ri is the vector of observed data points i = 1, ..., TR for variables M,P, Pv

for replicate r under the red light experiment, yr,Cj denotes observed data points

j = 1, ..., TC for the corresponding control experiment and g is a product of

Gamma densities. The ODE model was fitted to each of the replicates r = 1, 2, 3

and to the average of the replicates where prior distributions for all parameters

were chosen to be uninformative. Results of posterior estimates are summarized

in Table 2.1 and the model fit can be seen in Figure 2.1. The mean delay time

between light induction and transcription is about 2h with almost all transcription
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happening between 0.8h and 3.2h after the pulse. Convergence of the Markov

chains for parameters associated with the Gamma delay is relatively quick and

precise. Chains for αM and δM are correlated and convergence for these is slower.

The half-life of LUC mRNA is estimated to be around 0.5 hours with some small

variation between replicates. In contrast the chains for δL converged quickly due

to the abundance and smoothness of the imaging data. Protein half-life was

estimated to be around 2 to 2.5 hours. Although the control data do not seem very

dynamic they are useful in inferring the base rates of transcription and translation.

If the control series are omitted from the analysis these rates were estimated with

considerably less precision and slower convergence due to correlations.

Parameter average r1 r2 r3

δM 1.542 (0.019) 1.726 (0.044) 1.417 (0.121) 3.526 (0.315)
(half-life) 0.45 h 0.4 h 0.49 h 0.2 h
µΓ 2.008 (0.011 ) 2.101 (0.014) 1.902 (0.045) 2.362 (0.0289)
σΓ 0.631 (0.013) 0.692 (0.014) 0.686 (0.039) 0.723 (0.0217)
τ 0.012 (0.001) 0.014 (0.001) 0.014 (0.002) 0.013 (0.002)
δP 0.305 (0.0045) 0.286 (0.0040) 0.272 (0.010) 0.365 (0.0093)
(half-life) 2.27 h 2.42 h 2.5 h 1.9 h

Table 2.1: Case 1: Posterior results for selected parameters. Posterior means and
standard deviations of selected estimated parameters (see supplementary section 2.8 for
all parameters), where the red light pulse model was fitted to average data and to single
replicate data sets denoted by r1, r2, r3. Estimated rates are per hour. Degradation
rates are translated into half-lives as follows: half-life (in hours)=ln(2)/degradation rate
(per hour).

2.5.2 Case study 2: A Switch model for CCA1

The Circadian Clock Associated 1 (CCA1) gene in Arabidopsis thaliana has been

identified as one of the core genes of the circadian clock [Wang and Tobin, 1998].

In this case study we show results for the reconstruction of an ON/OFF switching

transcription profile from the following two experimental data sets:

(1) Native mRNA Q-PCR data: Q-PCR measurements were taken at 2 h intervals

over 72 h on CCA1 mRNA entrained under a photoperiod of 18 hours before be-

ing released into constant light. The data used are an average of concentrations

relative to the start of two biological replicates.

23



(2) Protein imaging: High resolution imaging data for a different experiment with

identical conditions as for data (1) was sampled at 1.5h intervals over a length of

91.5 h on LUC protein activity resulting from LUC reporter constructs fused to the

CCA1 promoter. Similar to case study 1 all data come from whole leaves and thus

represent a population of cells where the activity of the clock gene is synchronized

between cells during the exposure to dark, light cycles during the entrainment pe-

riod (see supplementary section 2.8 for further details of experiment). The data

used are an average of concentrations relative to the start of 20 replicates2.

No data were available for the CCA1:LUC mRNA. However, if we assume that

CCA1:LUC and CCA1 mRNA have the same transcriptional dynamics, then the

available two time series are connected in a dynamic model with 3 variables where

LUC mRNA and LUC protein dynamics are described by (2.1) and a further equa-

tion

dMg/dt = τ(t)− δMgMg(t) (2.11)

is added for the native CCA1 mRNA. We assume that observed variables are

proportional to Mg and P populations with scaling factors sMg and sP , while M is

unobserved. To describe the oscillatory nature of the data we consider an ON/OFF

switching function for the transcription τ(t) = τon if transcription is active at time

t, and τ(t) = τoff if transcription is inactive. This function has the advantage of

being interpretable and parsimonious. If it produces realistic oscillations then its

simple structure makes it an interesting ingredient to models of larger networks.

Let Sw = (s1, ..., sR) where s1 < s2 < ... < sR are the times at which a switching

between an ON and OFF state occurs. They are estimated as part of the MCMC

algorithm where we assume that here the number of switches and the initial state

are known3. To set the phase of the clock both data series experienced a light-

dark (LD) cycle of 18 h of L and 6 h of D at the beginning of the sampling period

and this seems to generate a higher amplitude. We allow for this by setting the

2For computational precision we amplified the mRNA concentrations by factor 105 and the protein
concentrations by 104.

3The number of switches and initial state are fairly obvious here. The inference algorithm can however
be generalized to allow for an arbitrary number of switches and where the initial state is estimated. We
will describe work on this elsewhere.
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transcription on-rate to pdτon during the first 35 hours (allowing also for some

delayed effect of the dark period). For purpose of estimation, the mean ODE

approach will be appropriate for similar reasons as case study 1. However, an SDE

approach is a superior theoretical model that should be considered even if data do

not (yet) strictly comply with its underlying assumptions. We use this case study

to show the application of both approaches.

SDE approach: Consider a system of SDEs formulated analogously to (2.2). Since

M is unobserved it can be imputed stochastically as realizations of the SDE but

the cost of computation is high. Simulation studies suggested that the more

practicable way of imputing M as solution to an ODE from an initial condition M0

to be estimated had no discernable impact on our inference results here. In order

to fit an SDE model to discrete data points for Mg and P we augment the coarse

grid to a virtually fine grid (for which assumption (*) is valid) by imputing auxiliary

data in the form of bridges. Let θ = (Sw, τon, τoff , δMg ,M0, δM , SMg , α, δP , SP )

denote the vector of unknown parameters and let M∗
g and P ∗ be the auxiliary data

for Mg and P , respectively. Then according to (2.7) the posterior distribution for

the unknown Θ,M∗
g , P

∗ is given by

π(θ,M∗
g , P

∗|Mg, P ) ∝ L(Mg, P,M
∗
g , P

∗|θ)π(θ),

where we approximate L(Mg, P,M
∗
g , P

∗|θ) with the augmented likelihood in (2.4)

for small sampling intervals for all observed and auxiliary data, i.e. y = (Mg, P,M
∗
g , P

∗).

More details of the SDE inference algorithm are provided in supplementary section

2.8.

Mean ODE approach: Here the likelihood is given by (2.5) where the unobserved

variable M is reconstructed as a solution of an ODE from an initial condition M0

to be estimated. The density g was specified to be the product of two independent

normal distributions with mean equal to the joint ODE solutions for Mg and P

and with variance parameters σ2
Mg

and σ2
P . We have set τoff = 0 for the off-

time as initial estimations showed that it was not different from zero4. As the

4We could not set τoff = 0 in the SDE case for the practical problem that the bridge building
algorithm becomes numerically unstable for values of the mRNA too close to zero. It is because according
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variables are concentrations relative to initial conditions the ODE solutions are

assumed to start at one. Thus, the parameter vector for the mean ODE approach

is θ = (Sw, τon, τoff, δMg ,M0, δM , α, δP , σMg , σP ).

To ensure identifiability in both estimation approaches the prior distribution for

CCA1:LUC mRNA degradation δM has to be informative. We hence used a Gamma

distribution with mean 1.542 and standard deviation 0.019, corresponding to the

results in Table 2.1. All other priors were taken independently uniform in an at-

tempt to estimate all remaining parameters only from the experimental data at

hand. Posterior estimates are given in Table 2.2. Fig. 2.2 shows the transcription

profiles and model fits for both approaches. The plots suggest that the switch

model is remarkably able at reproducing the observed oscillations. The main fea-

ture of the reconstructed profiles is that the inactive times (around 15-18) hours

are at least twice as long as the active times (around 7 hours) and this produces

the pronounced asymmetric cycles in the protein and mRNA time series. The es-

timates also suggest that there is a shorter but larger burst of transcription during

the dark period. Both approaches deliver similar posterior rates for degradation.

Our results for CCA1 mRNA degradation are in remarkable agreement with the

analysis in [Yakir et al., 2007] whose estimates correspond to 0.23 in darkness to

0.46 in light for δMg . Both approaches reliably estimate the half-life of the LUC

protein to be around 9.5 h. This is surprisingly long and is probably due to a lack

in provision of luciferin. The most notable difference between the two approaches

lies in the variance estimation. The SDE approach has to deal with the estima-

tion of the two scaling parameters, sP and sMg . We find that their identification

from the experimental data is problematic as convergence could not achieved al-

though this did not affect convergence of all other parameters. The two scaling

parameters were thus sampled within some chosen bounded region of parameter

space. In particular in order for the bridge sampling to remain numerically stable

for low values of the mRNA series, the sampling of sMg had to be bounded to ar-

tificially low values. The identifiability problem of the scaling parameters leads to

to equations 2.2 molecular concentrations can take negative values. It is more likely to happen for small
values of τoff.
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problems in realistically quantifying the volatility. The estimated intervals in Fig.

2.2 illustrate this for the mRNA series. For the mean ODE approach variability

is measured by the posterior standard error of the fit similar to a regression and

the graph shows that predictions can be made more precisely about the protein

dynamics than about the native mRNA. This is reflecting the fact that the protein

data is a more aggregated and smoother time series than the mRNA series.
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Figure 2.2: Results of fitting SDEs (left) and ODEs (right) in case study 2. Top panel
shows the mean reconstructed transcription profile τ(t) using the switch approximation.
Middle panel shows results for Mg. Bottom panel gives results for P . Big dots are
experimental data for Mg (middle panel) and P (bottom panel). The variation is shown
as follows: For SDE approach (left): solid lines in middle and bottom panel give the 5
% , mean and 95 % values computed from 10,000 simulations of the SDE (using mean
posterior parameter estimates). For ODE approach (right): Solid lines corresponds to
the mean ODE fit (using mean posterior parameter estimates) plus/minus twice the
mean posterior standard error.

δMg δM δP

SDE 0.426 (0.0043) 1.54 (0.019) 0.072 (0.0057)
ODE 0.313 (0.0273) 1.42 (0.101) 0.075 (0.0018)

Table 2.2: Case 2: Posterior results for selected parameters. Posterior mean and stan-
dard error estimates of selected parameters of model in case 2 using the SDE and mean
ODE approach. All rates are per hour. Estimates for all parameters and switch-times
are provided in supplementary section 2.8.
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2.5.3 Case study 3: Stochastic transcription for single cell data

In this experiment protein activity was imaged from GH3 rat pituitary cells sta-

bly transfected with a construct comprising a 5kb human prolactin gene promoter

fragment linked to a destabilized EGFP reporter gene (hPRL-d2EGFP) (see sup-

plementary section 2.8 for details of experiment). Images were taken 108 times in

15 minutes intervals giving a total of 27 hours of data for a single cell (see Figure

2.3). We assume that the dynamics are described by the SDE model in (2.2).

Since M is not observed we cannot identify the degradation rates (δM , δP ) and a

strongly informative prior density is needed. Here we assume that they each have

an independent Gamma distribution with mean 0.4 for δM and 0.5 for δP
5. The

prior variance was arbitrarily chosen to be small at 0.02 for both parameters. Since

M is unobserved we can arbitrarily fix sM = 1. Given the bell-shape of the time

series obtained in the experiment (see Figure 2.3), where transcription is induced

and subsequently returns to its initial level, we have specified τ(t) as follows

τ(t) =

{
b0 exp(− (t−b3)2

b1
) + b4 t ≤ b3

b0 exp(− (t−b3)2

b2
) + b4 t > b3,

(2.12)

where the parameters bi are to be estimated. This allows the on step and off

step width to be different as there is no reason to assume that these two should

be equal. Priors for parameters different than degradation rates were intended to

be uninformative. Here we used exponential prior with means given in Table 2.3.

The challenge for inference here is to integrate over a fully unobserved process

M whilst sampling bridges to augment the discretely observed P . Let P ∗ denote

the vector of bridges augmenting the P process and M∗ denote the latent M

variable (we chose a grid-size of 1 min for which we assume that (*) holds). The

vector of unknown parameters is θ = (δM , δP , α, sP , b0, b1, b2, b3, b4). The posterior

distribution takes the form

π(Θ,M∗, P ∗|P ) ∝ L(M∗, P ∗, P |Θ)π(Θ) (2.13)

5These rates were motivated by preliminary estimation using a small data set from other experiments.
They are used here only to demonstrate the case as their estimates may change if more data were
available.
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where we approximate L(M∗, P ∗, P |Θ) with the likelihood (2.4) for the augmented

data case, i.e. y = (M∗, P ∗, P ). In practice this is a challenging sampling problem

as the dimension of the posterior is very large and traces were highly autocorrelated.

Faster convergence is achieved by re-parameterizing the model (details of this and

the algorithm are given in supplementary section 2.8). The algorithm was first

tested on simulated data from the SDE model with chosen parameters (see Table

2.3). Artificial data are simulated on a fine scale of 15/51 minutes and coarse

data are extracted for P at 15 min intervals. The simulated and observed time

series, and the reconstructed τ(t) are shown in Fig. 2.3. Posterior inference

results are given in Table 2.3. Note that since M is not scaled the transcription

profile corresponds to molecular population sizes which here are about 150 mRNA

molecules per hour. This case study demonstrates that for high frequency single

cell data the SDE approach can be extremely powerful as it allows estimation

of absolute transcription rates in terms of molecule numbers and since sP can

be estimated it is possible to calculate back to molecular levels of protein and

translation rate. The need for precise prior information about degradation rates

is irrespective of either SDE or ODE approach. The problem of non-identifiability

of these parameters is due to not observing M as one can infer both degradation

rates in either approach if both M and P are observed.
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Figure 2.3: Left: Time series of fluorescence intensity used in case study 3. Solid and
dashed lines represent experimental and simulated data, respectively. The variation of
the SDE fit to the real data is shown by the 5 % and 95 % values computed from 1,000
simulations of the SDE (using mean posterior parameter estimates). Right: Box-plot
representing transcription profile in molecules per hour inferred from experimental data
presented in the top figure. Each box represents 50% credibility interval and median of
posterior distribution of the reconstructed transcription rate at particular time point.
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value prior Simulation Experiment

δM 0.44 Γ(0.44,0.02) 0.56 ( 0.36 - 0.92 ) 0.45(0.26 - 0.82 )
δP 0.52 Γ(0.52,0.02) 0.59 (0.38 - 0.89) 0.71 ( 0.45 - 1.09 )
α 20 Exp(100) 16.97 ( 6.54 - 78.98 ) 0.46 ( 0.14 - 1.51 )
sP 0.2 Exp(1) 0.17 ( 0.09 - 0.3 ) 2.11 ( 1.24 - 3.56 )

Table 2.3: Case 3: Posterior inference results. Parameter values used in simulation study.
Priors, posterior medians and 95% credibility intervals inferred from both simulated and
experimental data. Rates are per hour. Γ(µ, σ2) denotes gamma distribution with mean
µ and variance σ2. Full list of all parameter estimates is provided in supplementary
section 2.8.

2.6 Discussion

In this study we suggest a dynamical model relating protein and corresponding

mRNA dynamics via transcription and translation and suggest methods for model

fitting. The applications here were motivated by the availability of gene reporter

data but the model and methodology apply to many other scenarios where it is

of interest to link protein and mRNA dynamics. While a stochastic model such

as (2.2) applies to single cell data, caution needs to be exercised in formulating

an ODE model such as (2.1) for multi-cell data. In order to reasonably assume

such a joint mechanistic model it is essential that the individual cell activities are

synchronized with respect to the gene of interest. Rate constants associated with

processes of degradation, transcription and translation arise as model parameters

and it is an important question whether these can be identified. In addition to a

functional kind of non-identifiability of parameters in complex dynamic models as

considered in [Hengl et al., 2007] here, we find that practical or statistical non-

identifiability of model parameters may result from unobserved variables. Case

study 1 demonstrates that one can estimate all rate constants in systems of equa-

tions of the type given in (2.1) if all model variables - albeit coarse - are observed

over time. Inference precision increases with the frequency at which the processes

are sampled. In contrast, Cases 2 and 3 have latent variables and model inference

is only feasible with informative prior knowledge of some parameters. Simulation

studies of the model (using artificial parameters) help in identifying which sets of
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parameters need to be informed from other experiments. In case 3 prior knowl-

edge of both degradation rates was needed as with M unobserved, parameters can

trade-off giving rise to protein dynamics that is virtually indistinguishable via like-

lihood from the observed protein process. The specification of the functional form

for the transcription profile also plays a role in practical identification. Even if M

is observed the parameter estimates associated with transcription and degradation

are correlated for obvious reasons. Such correlations affect precision of estimates

and convergence of the Markov chain but can be alleviated by sampling more fre-

quently, choosing a parsimonious functional form for transcription, and by technical

aids such as the construction of independence samplers and re-parameterization of

the model. We believe that the functional specifications for τ(t) suggested in our

case studies are useful in conjunction with gene transcription. A theoretical appli-

cation of the switch function in clock modeling can be found in [Aase and Ruoff,

2008]. Although the estimation of the switch model seems too high dimensional

for data sets with many switches this could be overcome by assigning probability

distributions to the on- and off times in the framework of a Bayesian hierarchical

model.

Our results demonstrate that MCMC methods for ODEs and SDEs provide prac-

tical algorithms for reconstruction transcription profiles whilst estimating some

of the rate parameters involved. As the real population dynamics are naturally

stochastic SDEs provide the superior theoretical model. However the mean ODE

approach can be useful as a vehicle for estimation when the data are not fully com-

patible with the SDE assumptions. Whilst they usually describe the same model in

the mean, their difference lies in the specification of the variance. The SDE model

provides a rigid description of the volatility process which is rigorously derived for

the stochastic dynamics of the molecular processes. In theory it is straightforward

to allow for additive measurement error (see [Heron et al., 2007] for estimation

of SDEs with measurement error). However, identification of an unknown mea-

surement error variance is difficult and - to our knowledge - is not possible when

the data are coarse and indirectly measured with unknown scaling factors. The
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variance process of the mean ODE approach is not rigorously derived and can

be specified by the modeler in an attempt to capture anything known about the

residual process and measurement error. Estimation algorithms for the mean ODE

approach are straightforward to implement although for higher dimensional or less

stable systems more difficulties may occur. The algorithm for SDE estimation

can be challenging to implement due to bridge sampling and is computationally

expensive. Case 2 shows a problem that we have also encountered in [Heron et al.,

2007], namely if molecular populations are measured indirectly then the estimation

of unknown scaling parameters can be difficult in practise. This may happen as

a consequence of observing data that are too coarse, in the sense that too lit-

tle information about the volatility process is revealed, or that are otherwise not

directly compatible with the SDE assumption. However, drawbacks of the SDE

approach are associated with the current quality, quantity and availability of the

data. Case study 3 exemplifies that SDE estimation constitutes a very informative

approach in calibrating all processes back to the molecular population levels as the

scaling parameters can be identified. Under suitable assumptions the SDE model

provides a theoretically well founded modeling approach for describing the dynam-

ics of molecular populations in a single cell. Estimation of SDEs is well studied

and feasible and is highly informative when relatively frequent and clean (i.e. with

little measurement error) single cell data are available on all model variables.
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2.8 Supplementary Information

This section contains details of mathematical models and statistical methods used

in the previous sections of this chapter.

2.8.1 Scaled Model

Suppose that we measure M,P indirectly through variables M̃(t) = sMM(t) for

the mRNA and P̃ (t) = sPP (t) for the reporter protein. Re-formulating model

(2.1) in section 2.4 gives a scaled model

dM̃/dt = τ̃(t; θτ )− δMM̃(t)

dP̃ /dt = α̃M̃(t)− δP P̃ (t), (2.14)

where the transcription function τ̃(t; θτ ) = sMτ(t; θτ ) and the translation rate

α̃ = sP
sM
α are now functions of the unknown scaling coefficients sM , sP . Obviously,

the functional forms of (2.14) and model (2.1) in section 2.4 are identical. If we

set M = M̃, P = P̃ , τ = τ̃ and α = α̃ then (2.1) in section 2.4 denotes the

scaled model.

2.8.2 Diffusion Approximation

Let pt(M,P ) denote the probability that at time t system is in the state (M,P ).

The evolution of the joint probability is described by the chemical master equation

of the form (see [Thattai and van Oudenaarden, 2001] for derivation)

dpt(M,P, t)

dt
= τ(t)(pt(M − 1, P )− pt(M,P )) (2.15)

+ αM(pt(M,P − 1)− pt(M,P ))

+ δM(pt(M + 1, P )(M + 1)− pt(M,P )M)

+ δP (pt(M,P + 1)(P + 1)− pt(M,P )P ).
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In order to obtain a diffusion approximation of (2.15) we replace increments on

the right hand of the above with their second order Taylor expansions. This gives

the Fokker-Planck equation

dpt(M,P )

dt
= − ∂

∂M
(τ(t)− δMM)pt(M,P )

− ∂

∂P
(αM − δPP )pt(M,P )

+
1

2

∂2

∂M2
(τ(t) + δMM)pt(M,P )

+
1

2

∂2

∂P 2
(αM + δPP )pt(M,P ).

This method is called Ω (size) expansion and gives valid approximation for sys-

tem of large volume (see [Golightly and Wilkinson, 2005, Van Kampen, 2006] for

details). The Fokker-Planck equation describes the evolution of the probability

densities of the stochastic process governed by the Itô diffusion [Gardiner, 1985]

dM = (τ(t)− δMM)dt+
√
τ(t) + δMMdWr (2.16)

dP = (αM − δPP )dt+
√
αM + δPPdWp,

where dWr, dWp are increments of independent Wiener processes and thus their

joint distribution is bivariate normal as stated in (*) in section 2.4. [Higham, 2001]

gives an accessible algorithmic introduction to stochastic differential equations as

in (2.16) and Wiener processes.

2.8.3 Supplementary information for Case study 1

Experiment

LUC reporter constructs fused to the CAB2 promoter CAB2:LUC, have allowed the

characterization of CAB2 expression during high resolution imaging time-courses

[Millar et al., 1995]. We used the well characterized induction of CAB2 expression

by light to study the activity of LUC in plants. Arabidopsis seed containing the

CAB2:LUC reporter gene were given a 6h white light pulse to induce germination

and then grown in constant darkness for 4 days. Seedlings were grown in darkness

to reduce the basal level of CAB2:LUC expression. Since induction of CAB2 by
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light is gated by the clock, occurring maximally during the early part of the day

[Millar and Kay, 1996], the seedlings were entrained under temperature cycles of

12h at 24 degrees C followed by 12h at 18 degrees C, allowing us to target the light

pulse to the relevant time of the day. At dawn on the 5th day the temperature

cycles were stopped and the plants were maintained in darkness at 22 degrees C.

They were also transferred to liquid media, containing 1mM Luciferin to ensure

that the substrate did not become limiting to LUC activity. At subjective dawn on

the 6th day (24h after the transfer to constant temperature; referred to as time 0

in the text and figures), the seedlings were given a 20min red light pulse to induce

CAB2 expression. Samples were harvested at the indicated time-points and total-

RNA and -protein was extracted. Steady state levels of LUC mRNA were measured

by Quantitative PCR (Q-PCR) and an in vitro LUC assay (Promega, Madison,WI,

USA) was used to measure LUC activity in the protein samples. Concurrently,

red light pulsed seedlings were also imaged for LUC activity using light sensitive

cameras ([Millar et al., 1995]). This allows the measurement of LUC activity within

the same seedlings throughout the entire experiment, whereas the in vitro LUC

assays and Q-PCR experiments necessarily sacrificed different samples for each

time-point.

Model

Assuming that molecular populations scale differently with the Q-PCR, in vitro

and in vivo imaging data we use the following equations based on model (2.1) in

section 2.4

dM

dt
= τ(t)− δMM(t), (2.17)

dP

dt
= αPM(t)− δPP (t) + cP , (2.18)

dPv
dt

= αPvM(t)− δPPv(t), (2.19)

The additional variable Pv represents the protein dynamics measured via the in

vitro LUC protein assays. Both protein equations have identical degradation rates

δP and translation proportional to M(t) but with differently scaled translation

rates αP and αPv . Preliminary estimations also showed that the observed near
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zero levels of the control imaging data are only compatible with the higher control

levels of the in vitro protein and RT-PCR mRNA if a constant cP is added to the

imaging data.

Figure 2.4: Plot of data for case study 1. Left: LUC mRNA Q-PCR, middle: imaging
of LUC protein, right: in-vitro LUC assay, top row: experiment with red light stimulus
during first 20 minutes, bottom row: un-stimulated control experiments. There are
three replicates. A big dot corresponds to an observed data point.

2.8.4 Supplementary information for Case study 2

Experiment

Circadian regulation is normally tested by entraining the organism to 12h light:

12h dark cycles, then transferring the organism to constant conditions. Transgenic

Arabidopsis seed were sterilised and grown as described previously [Gould et al.,

2006], for 4 days at 22o C in Sanyo MLR350 environmental test chambers (Sanyo,

Osaka, Japan) under photoperiods of 75µ moles.m-2s-1 cool white fluorescent

light. Seedlings were then transferred to Percival I-30BLL growth chambers (CLF

Plant Climatics, Emersacker, Germany) at dawn on the 5th day and grown at 22o C

under an equal mix of Red and Blue LEDs at 20-30µ moles.m-2s-1, with 18h light:

6h dark photoperiods. In the data shown in Figure 2.2, time 0 is the time of lights-

on on the 7th day of growth. CCA1:LUC+ plants have been described in [Doyle
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Parameter average r1 r2 r3

αM 10.43 (0.232) 9.62 (0.179) 8.36 (0.538) 25.38 (1.43)
δM 1.542 (0.019) 1.726 (0.044) 1.417 (0.121) 3.526 (0.315)
(half-life) 0.45 h 0.4 h 0.49 h 0.2 h
µΓ 2.008 (0.011 ) 2.101 (0.014) 1.902 (0.045) 2.362 (0.0289)
σΓ 0.631 (0.013) 0.692 (0.014) 0.686 (0.039) 0.723 (0.0217)
τ 0.012 (0.001) 0.014 (0.001) 0.014 (0.002) 0.013 (0.002)
αP 25.07 (0.386) 34.90 (0.555) 23.02 (1.417) 24.83 (1.78)
δP 0.305 (0.0045) 0.286 (0.0040) 0.272 (0.010) 0.365 (0.0093)
(half-life) 2.27 h 2.42 h 2.5 h 1.9 h
αPv 2.178 (0.107) 2.141 (0.210) 2.534 (0.222) 2.152 (0.183)
cP -1.868 (0.198) -2.637 (0.144) -1.763 (0.208) -2.121 (0.388)
σM 0.159 (0.0026) 0.254 (0.0018) 0.134 (0.0069) 0.171 (0.005)
σP 0.183 (0.0133) 0.182 (0.0125) 0.286 (0.0287) 0.331 (0.030)
σPv 0.364 (0.0211) 0.769 (0.0222) 0.562 (0.0129) 0.442 (0.034)

Table 2.4: Posterior means and standard deviations of all estimated parameters where
the red light pulse model was fitted to average data and to single replicate data sets
denoted by r1, r2, r3. Estimated rates are per hour. Degradation rates are translated into
half-life as follows: half-life (in hours)=ln(2) /degradation rate (per hour). σM , σP , σPv
give estimated posterior standard error for each model equation.

et al., 2002]. Luciferase imaging was carried out as previously described [Gould

et al., 2006] using Hamamatsu C4742-98 digital cameras operating at −75o C un-

der control of Wasabi software (Hamamatsu Photonics, Hamamatsu City, Japan).

Bioluminescence levels were quantified using Metamorph software (MDS, Toronto,

Canada). Experiments included 22 individuals of each genotype and were replicated

4 or more times. For Q-PCR experiments, wild type Wassilewskija (Ws) seedlings

were grown for 7 days in Percival Growth chambers under experimental photoperi-

ods of 60-65µMolesm-2s-1 cool white fluorescent light. Seedlings were harvested,

RNA was extracted and reverse transcribed as described previously [Locke et al.,

2005b]. Quantitative PCR was carried out in 384-well format using SYBR Green

JumpStart Taq ReadyMix (Sigma, Gillingham, UK) in technical triplicate with a

LightCycler 480 instrument (Roche, UK), using the Relative Quantification func-

tion to measure mRNA abundance. Expression values were normalised against

ACTIN 2 (ACT2). ACT2 and CCA1. PCR primers have previously been described

[Locke et al., 2005b].
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Model

The model for case study 2 is

dMg

dt
= τ(t)− δMgMg(t), (2.20)

dM

dt
= τ(t)− δMM(t), (2.21)

dP

dt
= αM(t)− δPP (t), (2.22)

where (2.21) and (2.22) are as in model (2.1) in section 2.4, describing the dy-

namics of the luciferase reporter mRNA and protein, respectively. Equation (2.20)

formulates the transcription and degradation of the native gene CCA1 mRNA for

which we have coarse Q-PCR data. Equations (2.20)-(2.22) are at the popula-

tion level. We assume that the observed variables are proportional to Mg and P

with scaling factors sMg and sP , respectively, whilst M is unobserved. Equations

2.20 and 2.22 represent an equivalent parameterization of the scaled variables with

τ̃(t) = sMgτ(t) and α̃ = (sP/sMg)α replacing the transcription and translation

coefficient, respectively. For ease of notation we re-use τ(t) and α.

MCMC algorithm for inference using SDE approach

1. Set iteration counter i = 0. Initialise parameters θ(i) and all bridges M∗
g and

P ∗.

2. Set i = i+ 1

3. Update τ
(i)
on, τ

(i)

off
and δ

(i)
Mg

in one block. Use individual random walk Metropo-

lis proposals and either all are accepted or all are rejected. If the proposals

are accepted update M (i) and τ (i).

4. Similarly, update S
(i)
w in one block using a random walk Metropolis step.

5. Update s
(i)
Mg

using a random walk Metropolis step.

6. Update δ
(i)
M using a random walk Metropolis step. If the proposal is accepted

update M (i) and τ (i).
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7. Update M
(i)
0 using a random walk Metropolis step. Update M (i).

8. Update α(i) and δ
(i)
P in one block using an independence sampler.

9. Update s
(i)
P using a random walk Metropolis step.

10. Sample M∗
g bridges (using the method in [Elerian et al., 2001]).

11. Similarly, update P ∗ bridges.

12. Repeat from Step 2 until a sufficient sample from the converged chains has

been obtained.

Parameter SDE ODE

δMg 0.426 (0.0043) 0.313 (0.0273)
δM 1.54 (0.019) 1.42 (0.101)
α 0.095 (0.0090) 0.113 (0.0050)
δP 0.072 (0.0057) 0.075 (0.0018)
M(0) 19508 (13880) 13487 (6950)
τon 21401 (331) 17865 (1366)
τoff 651 (33.85) 0
pd 2.35 (0.05) 4.39 (0.58)
sMg (SDE), σMg (ODE)) 24.99 (0.013) 7560 (188)
sP (SDE), σP (ODE) 188.6 (8.922) 290 (11.33)
s1 0.56 (0.030) 0.26 (0.09)
s2 21.11 (0.040) 21.85 (0.11)
s3 25.07 (0.046) 23.76 (0.16)
s4 42.12 (0.055) 42.74 (0.19)
s5 50.92 (0.052) 50.28 (0.19)
s6 66.92 (0.063) 66.53 (0.18)
s7 71.80 (0.133) 73.66 (0.26)
s8 86.96 (2.10) 89.55 (0.22)

Table 2.5: Posterior mean and standard error estimates of parameters and switch-times
for the experimental data using the SDE and mean ODE approach in case study 2.

2.8.5 Supplementary information for Case study 3

Experiment

GH3 rat pituitary cells stably transfected with 5kb human prolactin promoter desta-

bilized EGFP reporter construct (hPRL-d2EGFP) were seeded onto 35 mm glass
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coverslip-based dishes (IWAKI, Japan) and cultured in 10 % FCS for 24 h prior to

imaging. Cells were transferred to the stage of a Zeiss Axiovert 200 equipped with

an XL incubator (maintained at 37C, 5 % CO2, in humid conditions) and images

were obtained using a Fluar x20, 0.75 numerical aperture (Zeiss), air objective.

Excitation of d2EGFP was performed using an Argon ion laser at 488nm. Emitted

light was captured through a 505-550 nm bandpass filter from a 545 nm dichroic

mirror. Images were captured every 15 min. 5 M forskolin and 0.5 M BayK 8644

were added directly to the dish at the start of the experiment. Data was captured

and analysed using LSM510 software with consecutive autofocus. Analysis was

performed using Kinetic Imaging software AQM6. Regions of interest were drawn

around each single cell and mean intensity data was measured 108 times in 15

minutes intervals giving a total of 27 hours of data (see Figure 2.3).

Transformation of parameters

To reduce correlation and improve convergence of the chain we re-parameterized

the model in case study 3 as follows

h(Θ,M, P ) = (Θ̂, M̃ , P ) (2.23)

= (θ̂1, θ̂2, θ̂3, θ̂4, θ̂5, θ̂6, θ̂7, θ̂8, θ̂9, M̃ , P ) (2.24)

= (log(δM), log(δP ), log(sPαb0), log(sPα), log(α),

log(α sP b4), log(b3), log(b1), log(b2), M̃ , P ),

where M̃ = sM αM − δPP .

Algorithm for inference

1. Set iteration counter i = 0. Initialise all parameters Θ̂(i), hidden process M̃

and bridges P ∗.

2. Set i = i+ 1

3. Update (θ̂
(i)
1 , θ̂

(i)
3 , θ̂

(i)
6 ) in one block using multivariate normal proposals and

either all are accepted or all are rejected.
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4. Separately update each remaining component of Θ(i) using random walk

proposals.

5. Update P ∗ bridges (using the method in [Elerian et al., 2001])

6. Similarly, update the latent process M̃ .

7. Repeat from Step 2 until a sufficient sample from the converged chains has

been obtained.

value prior Simulation Experiment

δM 0.44 Γ(0.44,0.02) 0.56 ( 0.36 - 0.92 ) 0.45(0.26 - 0.82 )
δP 0.52 Γ(0.52,0.02) 0.59 (0.38 - 0.89) 0.71 ( 0.45 - 1.09 )
α 20 Exp(100) 16.97 ( 6.54 - 78.98 ) 0.46 ( 0.14 - 1.51 )
sP 0.2 Exp(1) 0.17 ( 0.09 - 0.3 ) 2.11 ( 1.24 - 3.56 )
b0 23 Exp(100) 40.48 ( 9.11 - 136.3 ) 112.7 ( 29.52 - 364.8 )
b1 10 Exp(50) 31.52 ( 7.08 - 83.64 ) 54.84 ( 21.67 - 97.14 )
b2 30 Exp(50) 22.83 ( 5.82 - 60.13 ) 59.43 ( 19.08 - 130.6 )
b3 5 Exp(7) 7.22 ( 4.35 - 9.55 ) 13.78 ( 11.08 - 16.05 )
b4 5 Exp(100) 6.4 ( 1.55 - 23.68 ) 7.39 ( 0.25 - 30.75 )
M0 15 Exp(70) 23.11 ( 4.8 - 66.92 ) 31.79 ( 7.81 - 97.87 )

Table 2.6: Posterior inference results for case study 3. Parameter values used in simu-
lation study. Priors, posterior medians and 95% credibility intervals inferred from both
simulated and experimental data. Rates are per hour. Γ(µ, σ2) denotes gamma distri-
bution with mean µ and variance σ2.

Updating Bridges

Suppose data Y = (Y (t1), ..., Y (tT )) are provided at sampling intervals that are

too coarse to allow parameter estimation in the SDE approach without bridging.

For example, LUC protein imaging data may be available every 30 minutes while

for artificial stochastic process data from simulated clock models we find that a

small enough time interval for the normal approximation in (*) in section 2.4 to

produce reasonably accurate parameter estimates is 0.1 hour. The methods applied

in this study make use of established strategies developed for nonlinear stochastic

differential equations [Durham G. B, 2002, Elerian et al., 2001, Eraker, 2001, Kim

et al., 1998, Pedersen, 1995]. The basic idea is to augment the observed data
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by introducing a number of latent data points (called bridges) Y ∗ in-between the

measurements. The bridges are constructed so that the data together with the

bridges (augmented data) give a time series with interval length ∆ti = 0.1 h which

we know from simulation studies allows for accurate parameter estimation.

To provide an estimate of the parameters θ from sparsely sampled data, we use

MCMC to sample from the joint posterior f(θ, Y ∗|Y ) of the parameters θ and the

auxiliary variables Y ∗ given the data Y , using the fact that, by Bayes’ theorem,

f(θ, Y ∗|Y ) ∝ LSDE(Y ∗, Y |θ)π(θ) (2.25)

where, as before, π(θ) denotes the prior distribution on θ and LSDE(Y ∗, Y |θ) is

the approximated augmented likelihood. This is achieved by sampling in turn from

the full conditional densities of θ|Y ∗, Y and Y ∗|θ, Y ([Tanner and Wong, 1987]).

The general structure of the algorithm that we employ is thus as follows:

1. Initialise Y ∗ by constructing linear bridges between each of the given data

points. The parameters θ are initialised as usual.

2. Sample Y ∗i from Y ∗i |Y (ti), Y (ti+1), θ for i = 1, 2, . . . , T − 1. The two

samples constitute a full set of imputed data Y ∗.

3. Sample θ from θ|Y, Y ∗, i.e. use the fully augmented data to update the

parameter vector.

4. Repeat steps 2 and 3 until the required sample is obtained after the chain

has converged.

Updating the parameter vector in step 3 is quite straightforward as for a given

fully augmented time path the constant rate approximation for (*) in section 2.4

is valid and the inference problem is the same as for a finely sampled time path.

To sample Y ∗i in step 2 we use the bridging methodology suggested by [Elerian

et al., 2001] which has proved very satisfactory but it should be noted that there

exist various other available methods for bridging (see [Durham G. B, 2002] for a

survey) that may also be used for this kind of problem. We now briefly describe
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the bridge building part (step 2) of the algorithm using the [Elerian et al., 2001]

sampler. Consider a general SDE of the form:

dy(ti) = µ(y(ti), ti, θ)dt+ σ(y(ti), ti, θ)dW, (2.26)

where y could be, for example, mRNA (M) or protein (P ). We denote y(ti) by yi

and y∗(τi,j) by y∗i,j. Consider any two consecutive observations (yi, yi+1), the ob-

served time series being given by y = (y1, y2, . . . , yT ). We want to impute a bridge

of F auxiliary data points between the pair yi and yi+1 at times (τi,1, . . . , τi,F ),

where τi,j+1 − τi,j = ∆ (= 0.1 h for example) for all j = 1, . . . , F − 1. Let

y∗i = (y∗i,1, . . . , y
∗
i,F ) denote the auxiliary bridge and let y∗ = (y∗1, . . . , y

∗
T−1) de-

note all the auxiliary bridges.

We know that y∗i is conditionally independent of the other bridges, given (yi, yi+1, θ).

Thus

f(y∗|y1, y, θ) =
T−1∏
i=1

f(y∗i |yi, yi+1, θ),

and

f(y∗i |yi, yi+1, θ) ∝
F∏
j=0

f(y∗i,j+1|y∗i,j, θ),

∝
F∏
j=0

Φ(y∗i,j+1 − y∗i,j;µ(y∗i,j, τi,j, θ)∆, σ
2(Y ∗i,j, τi,j, θ)∆),

where Φ is the Normal density.

Given two data points we construct a bridge of length F between them, but

sampling a bridge of length F is not recommended because it is difficult to sample

a high-dimensional y∗i in one block. Instead we construct sub-bridges of length m.

A sub-bridge of m auxiliary data points starts at y∗i,k and ends at y∗i,k+m−1.

y∗i(k,m) = (y∗i,k, y
∗
i,k+1, . . . , y

∗
i,k+m−1), k = 1,m− 1, 2m− 1, . . . (2.27)

The density conditioned on the two points at either end of this sub-bridge, y∗i,k−1, y
∗
i,k+m,

is given by

f(y∗i(k,m)|y∗i,k−1, y
∗
i,k+m, θ) ∝

k+m∏
j=k−1

Φ(y∗i,j+1 − y∗i,j;µ(y∗i,j, τi,j, θ)∆, σ
2(y∗i,j, τi,j, θ)∆).(2.28)
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We sample each of the sub-bridges of length m in sequence and accept or reject

each of them using the Metropolis-Hastings algorithm [Chib and Greenberg, 1995].

Let q(y∗i(k,m)|y∗i,k−1, y
∗
i,k+m, θ) denote the proposal density. Suppose that at each

iteration n of our MCMC algorithm, the sub-bridge y∗i(k,m) is given by y
∗(n)
i(k,m). We

propose a new sub-bridge w ∼ q(y∗i(k,m)|y∗i,k−1, y
∗
i,k+m, θ). The new sub-bridge is

then accepted with probability:

α(y
∗(n)
i(k,m), w|y

∗
i,k−1, y

∗
i,k+m, θ) =

min

(
1,
f(w|y∗i,k−1, y

∗
i,k+m, θ)q(y

∗(n)
i(k,m)|y∗i,k−1, y

∗
i,k+m, θ)

f(y
∗(n)
i(k,m)|y∗i,k−1, y

∗
i,k+m, θ)q(w|y∗i,k−1, y

∗
i,k+m, θ)

)

The proposal density q(.|.) is chosen to be a multivariate Normal approximation

of the target density at the mode. The location of q(.|.) is given by the mode

of the target density obtained by a few Newton-Raphson steps and the dispersion

is given by the negative of the inverse Hessian evaluated at the mode. This is a

multi-dimensional independence sampler, as the proposal distribution q(.|.) does

not depend on the current value of the chain. [Elerian et al., 2001] give analytic

functions for both the gradient and negative Hessian for the type of stochastic

differential equation we are considering, removing the need to approximate these

functions.

Step 3, i.e. updating the parameters, is carried out as usual with the augmented

data (Y, Y ∗) being treated in the same way as if we had fine data.
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Chapter 3

Estimation of biochemical kinetic

parameters using the linear noise

approximation

3.1 Author contributions and chapter’s structure

This chapter is a paper by Micha l Komorowski, Bärbel Finkenstädt, Claire V.

Harper and David A. Rand submitted to BMC Bioinformatics. Author contribu-

tions are as follows. MK proposed and implemented the algorithm. CVH performed

the cycloheximide experiment. MK wrote the paper with assistance from BF and

DAR, who supervised the study.

Sections 3.2 - 3.6 are followed by supplementary section 3.7 that contains details

of mathematical modeling and statistical methods.

3.2 Abstract

Fluorescent and luminescent gene reporters allow us to dynamically quantify changes

in molecular species concentration over time on the single cell level. The math-

ematical modeling of their interaction through multivariate dynamical models re-
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quires the development of effective statistical methods to calibrate such models

against available data. Given the prevalence of stochasticity and noise in biochem-

ical systems inference for stochastic models is of special interest. In this chapter

we present a simple and computationally efficient algorithm for the estimation of

biochemical kinetic parameters from gene reporter data.

We use the linear noise approximation to model biochemical reactions through a

stochastic dynamic model which essentially approximates a diffusion model by an

ordinary differential equation model with an appropriately defined noise process.

An explicit formula for the likelihood function can be derived allowing for com-

putationally efficient parameter estimation. The proposed algorithm is embedded

in a Bayesian framework and inference is performed using Markov chain Monte

Carlo.

The major advantage of the method is that in contrast to the more established dif-

fusion approximation based methods the computationally costly methods of data

augmentation are not necessary. Our approach also allows for unobserved vari-

ables and measurement error. The application of the method to both simulated

and experimental data shows that the proposed methodology provides a useful

alternative to diffusion approximation based methods.

3.3 Background

The estimation of parameters in biokinetic models from experimental data is an

important problem in Systems Biology. In general the aim is to calibrate the

model so as to reproduce experimental results in the best possible way. The

solution of this task plays a key role in interpreting experimental data in the

context of dynamic mathematical models and hence in understanding the dynamics

and control of complex intracellular chemical networks and the construction of

synthetic regulatory circuits [Ehrenberg et al., 2003]. Among biochemical kinetic

systems, the dynamics of gene expression and of gene regulatory networks are of

particular interest. Recent developments of fluorescent microscopy allow us to
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quantify changes in protein concentration over time in single cells (e.g. [Elowitz

et al., 2002a, Nelson et al., 2004]) even with single molecule precision (see [Xie

et al., 2008] for review). Therefore an abundance of data is becoming available to

estimate parameters of mathematical models in many important cellular systems.

Single cell imaging techniques have revealed the stochastic nature of biochemical

reactions (see [Raser and O’Shea, 2005] for review) that most often occur far from

thermodynamic equilibrium [Keizer, 1987] and may involve small copy numbers of

reacting macromolecules [Guptasarma, 1995]. This inherent stochasticity implies

that the dynamic behaviour of one cell is not exactly reproducible and that there

exists stochastic heterogeneity between cells. The disparate biological systems,

experimental designs and data types impose conditions on the statistical methods

that should be used for inference [Finkenstadt et al., 2008, Golightly and Wilkinson,

2005, Moles et al., 2003]. From the modeling point of view the current common

consensus is that the most exact stochastic description of the biochemical kinetic

system is provided by the chemical master equation (CME) [Gillespie, 1992a].

Unfortunately, for many tasks such as inference the CME is not a convenient

mathematical tool and hence various types of approximations have been developed.

The three most commonly used approximations are [Van Kampen, 2006]:

1. The macroscopic rate equation (MRE) approach which describes the ther-

modynamic limit of the system with ordinary differential equations and does

not take into account random fluctuations due to the stochasticity of the

reactions.

2. The diffusion approximation (DA) which provides stochastic differential equa-

tion (SDE) models where the stochastic perturbation is introduced by a state

dependant Gaussian noise.

3. The linear noise approximation (LNA) which can be seen as a combination

because it incorporates the deterministic MRE as a model of the macroscopic

system and the SDEs to approximatively describe the fluctuations around the

deterministic state.
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Statistical methods based on the MRE have been most widely studied [Esposito

and Floudas, 2000, Mendes and Kell, 1998, Moles et al., 2003, Ramsay et al.,

2007]. They require data based on large populations. The main advantages of

this method are its conceptual simplicity and the existence of extensive theory for

differential equations. However, single cells experiments and studies of noise in

small regulatory networks created the need for statistical tools that are capable

to extract information from fluctuations in molecular species. Two methods have

been proposed to address this. The one by [Reinker et al., 2006] assumes availabil-

ity of single molecule precision data. Another approach is based on the diffusion

approximation [Golightly and Wilkinson, 2005, Heron et al., 2007]. This uses likeli-

hood approximation methods (e.g. [Elerian et al., 2001]) that are computationally

intensive and require sampling from high dimensional posterior distributions. In-

ference using these methods is particularly difficult for low frequency data with

unobserved model variables [Finkenstadt et al., 2008, Heron et al., 2007]. The

aim of this study is to investigate the use of the LNA as a method for inference

about kinetic parameters of stochastic biochemical systems. We find that the LNA

approximation provides an explicit Gaussian likelihood for models with hidden vari-

ables and measurement error and is therefore simpler to use and computationally

efficient. To account for prior information on parameters our methodology is em-

bedded in the Bayesian paradigm.

We first provide a description of the LNA based modeling approach and then

formulate the relevant statistical framework. We then study its applicability in four

examples, based on both simulated and experimental data, that clarify principles

of the method.

3.4 Methods

The chemical master equation (CME) is the primary tool to model the stochastic

behaviour of a reacting chemical system. It describes the evolution of the joint
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probability distribution of the number of different molecular species in a spatially

homogeneous, well stirred and thermally equilibrated chemical system [Gillespie,

1992a]. Even though these assumptions are not necessarily satisfied in living or-

ganisms the CME is commonly regarded as the most realistic model of biochemical

reactions inside living cells. Consider a general system of N chemical species inside

a volume Ω and let X = (X1, . . . , XN)T denote the number and x = X/Ω the

concentrations of molecules. The stoichiometry matrix S = {Sij}i=1,2...N ; j=1,2...R

describes changes in the population sizes due to R different chemical events, where

each Sij describes the change in the number of molecules of type i from Xi to

Xi +Sij caused by an event of type j. The probability that an event of type j oc-

curs in the time interval [t, t+dt) equals f̃j(x,Ω, t)Ωdt. The functions f̃j(x,Ω, t)

are called mesoscopic transition rates. This specification leads to a Poisson birth

and death process where the probability h(X, t) that the system is in the state X

at time t is described by the CME [Van Kampen, 2006] which is given in supple-

mentary section 3.7. The first order terms of a Taylor expansian of the CME in

powers of 1/
√

Ω are given by the following MRE (see supplementary section 3.7)

dφi
dt

=
R∑
j=1

Sijfj(ϕ, t) i = 1, 2, . . . , N ; (3.1)

where φi = limΩ→∞,X→∞Xi/Ω, ϕ = (φ1, . . . , φN)T and

fj(ϕ, t) = limΩ→∞ f̃j(x,Ω, t).

Including also the second order terms of this expansion produces the LNA

x(t) = ϕ(t) + Ω−
1
2 ξ(t) (3.2)

which decomposes the state of the system into a deterministic part ϕ as solution of

the MRE in (3.1) and a stochastic process ξ described by an Itô diffusion equation

dξ(t) = A(t)ξdt+ E(t)dW, (3.3)

where dW denotes increments of a Wiener process, [A(t)]ik =
∑R

j=1 Sij∂fj/∂φk,

[E(t)]ij = Sij
√
fj(ϕ, t) and fi = fi(ϕ) (see supplementary section 3.7 for deriva-

tion).
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The rationale behind the expansion in terms of 1/
√

Ω is that for constant average

concentrations relative fluctuations will decrease with the inverse of the square

root of the volume [Elf and Ehrenberg, 2003]. Therefore the LNA is accurate

when fluctuations are sufficiently small in relation to the mean (large Ω). Hence,

the natural measure of adequacy of the LNA is the coefficient of variation i.e. ratio

of the standard deviation to the mean (see supplementary section 3.7). Validity of

this approximation is also discussed in details in [Elf and Ehrenberg, 2003, Ferm

et al., 2007]. In addition it can be shown that the process describing the deviation

from the deterministic state Ω
1
2 (x−ϕ) converges weakly to the diffusion (3.3) as

Ω → ∞ [Kurtz, 1972]. In order to use the LNA in a likelihood based inference

method we need to derive transition densities of the process x.

3.4.1 Transition densities

The LNA provides solutions that are numerically or analytically tractable because

the MRE in (3.1) can be solved numerically and the linear SDE in (3.3) for an

initial condition ξ(ti) = ξti has a solution of the form [Arnold, 1974]

ξ(t) = Φti(t− ti)
(
ξti +

∫ t

ti

Φti(s− ti)−1E(s)dW (s)

)
, (3.4)

where the integral is in the Itô sense and Φti(s) is the fundamental matrix of the

non-autonomous system of ODEs

dΦti

ds
= A(ti + s)Φti , Φti(0) = I. (3.5)

Equations (3.4), (3.5) imply that the transition densities of the process ξ are

Gaussian 1[Oksendal, 1992]

p(ξti |ξti−1
,Θ) = ψ(ξti |µi−1,Ξi−1) (3.6)

where Θ denotes a vector of all model parameters, ψ(·|µi−1,Ξi−1) is the normal

density with mean µi−1 and variance Ξi−1 specified by

µi−1 = Φti−1
(∆i−1)ξti−1

, ∆i−1 = ti − ti−1, (3.7)

Ξi−1 =

∫ ti

ti−1

(Φs(ti − s)E(s))(Φs(ti − s)E(s))Tds.

1Throughout the thesis we use ’Gaussian’ or ’normal’ shortly to denote either a univariate or a
multivariate normal distribution depending on the context.
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It follows from (3.2) and (3.6) that the transition densities of x are normal

p(xti |xti−1
,Θ) = ψ(xti |ϕ(ti) + Ω−

1
2µi−1,Ω

−1Ξi−1). (3.8)

The properties of the normal distribution allow us to construct a convenient infer-

ence framework that is reminiscent of the Kalman filtering methodology (see e.g.

[Brockwell and Davis, 2002]).

3.4.2 Inference

It is rarely possible to observe the time evolution of all molecular components

participating in the system of interest [Ronen et al., 2002]. Therefore, we partition

the process xt into those components yt that are observed and those zt that are

unobserved.

Let x̄ ≡ (xt0 , . . . ,xtn), ȳ ≡ (yt0 , . . . ,ytn) and z̄ ≡ (zt0 , . . . , ztn) denote the

time-series that comprise the values2 of processes x, y and z, respectively, at

times t0, . . . tn. Our aim is to estimate the vector of unknown parameters Θ from

a sequence of measurements ȳ. Given the Markov property of the process x the

augmented likelihood P(ȳ, z̄|Θ) is given by

P(ȳ, z̄|Θ) =
n∏
i=1

p(xti |xti−1
,Θ)p(xt0|Θ), (3.9)

where p(xti |xti−1
,Θ) are Gaussian densities specified in (3.8). For mathematical

convenience we assume that p(xt0|Θ) is also normal with mean ϕ(t0) and covari-

ance matrix Ξ−1. This assumption is justified as equations (3.2) and (3.3) imply

normal distribution at any time given a fixed initial condition. We also assume that

mean ϕ(t0) and covariance matrix Ξ−1 are parameterized as elements of Θ. It can

then be shown (see supplementary section 3.7) that x̄ is Gaussian. Therefore

P(ȳ, z̄|Θ) = ψ(x̄|ϕ(t0), . . . , ϕ(tn), Σ̂), (3.10)

where ψ(·|ϕ(t0), . . . , ϕ(tn), Σ̂) is Gaussian density with mean vector (ϕ(t0), . . . , ϕ(tn))

and covariance matrix Σ̂ whose elements can be calculated numerically in a straight-

forward way (see supplementary section 3.7). Since the marginal distributions are

2Here and throughout the chapter we use the same letter to denote the stochastic process and its
realization.
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also Gaussian it follows that the likelihood function P(ȳ|Θ) can be obtained from

the augmented likelihood (3.10)

P(ȳ|Θ) = ψ(ȳ|(ϕy(t0), . . . , ϕy(tn)),Σ), (3.11)

where the covariance matrix Σ = {Σ(i,j)}i,j=0,...,n is a sub-matrix of Σ̂ such that

Σ(i,j) = Cov(yti ,ytj) and ϕy is the vector consisting of the observed components

of ϕ.

Fluorescent reporter data are usually assumed to be proportional to the number

of fluorescent molecules [Wu and Pollard, 2005] and measurements are subject to

measurement error, i.e. errors that do not influence the stochastic dynamics of the

system. We therefore assume that instead of the matrix ȳ our data have the form

ū ≡ λȳ + (εt0 , . . . , εtn). The parameter λ is a proportionality constant3 and εti

denotes a random vector for additive measurement error. For mathematical con-

venience we assume that the joint distribution of the measurement error is normal

with mean 0 and known covariance matrix Σε, i.e. (εt0 , . . . , εtn) ∼ N(0,Σε). If

measurement errors are independent with a constant variance σ2
ε then Σε = σ2

ε I.

Equation (3.11) implies that the likelihood function can be written as

P(ū|Θ) = ψ(ū|λ(ϕy(t0), . . . , ϕy(tn)), λ2Σ + Σε). (3.12)

Since for given data ū the likelihood function (3.12) can be numerically evalu-

ated any likelihood based inference is straightforward to implement. Using Bayes’

theorem, the posterior distribution P(Θ|ū) satisfies the relation [Gamerman and

Lopes, 2006]

P(Θ|ū) ∝ P (ū|Θ)π(Θ). (3.13)

We use the standard Metropolis-Hastings (MH) algorithm [Gamerman and Lopes,

2006] to sample from the posterior distribution in (3.13).

3It is straightforward to generalize for the case with different proportionality constants for different
molecular components.
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3.5 Results and Discussion

In order to study the use of the LNA method for inference we have selected four

examples which are related to commonly used quantitative experimental techniques

such as measurements based on reporter gene constructs and reporter assays based

on Polymerase Chain Reaction (e.g. RT-PCR, Q-PCR). For expository reasons,

all case studies consider a model of single gene expression.

3.5.1 Model of single gene expression

Although gene expression involves various biochemical reactions it is essentially

modeled in terms of only three biochemical species (DNA, mRNA, protein) and four

reaction channels (transcription, mRNA degradation, translation, protein degrada-

tion) [Chabot et al., 2007, Komorowski et al., 2009b, Thattai and van Oude-

naarden, 2001]. Let x = (r, p) denote concentrations of mRNA and protein,

respectively. The stoichiometry matrix has the form

S =

 1 −1 0 0

0 0 1 −1

 , (3.14)

where rows correspond to molecular species and columns to reaction channels. For

the reaction rates

f̃(x) = (kR(t), γRr, kP r, γPp)
T (3.15)

using (3.1) we can derive the following macroscopic rate equations

φ̇R = kR(t)− γRφR, φ̇P = kPφR − γPφP . (3.16)

For the general case it is assumed that the transcription rate kR(t) is time-

dependent, reflecting changes in the regulatory environment of the gene such

as the availability of transcription factors or chromatin structure.

Using (3.15) and (3.16) in (3.3) we obtain the following SDEs describing the

deviation from the macroscopic state

dξR = −γRξRdt+
√
kR(t) + γRφR(t)dWR (3.17)

dξP = (kP ξR − γP ξP )dt+
√
kPφR(t) + γPφP (t)dWP .
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We will refer to the model in (3.16) and (3.17) as the simple model of single gene

expression.

In order to test our method on a nonlinear system we will also consider the case

of an autoregulated network where the transcription rate of the gene is a function

of its protein concentration as the protein interferes with production of its own

mRNA. This is parameterized by a Hill function [Thattai and van Oudenaarden,

2001] kR(t, p) = kR(t)/(1 + (p/H)nH ) where kR(t) now describes the maximum

rate of transcription, H is a dissociation constant and nH is a Hill coefficient.

Thus, the nonlinear autoregulatory model is described by the MRE

φ̇R = kR(t, φP )− γRφR, φ̇P = kPφR − γPφP (3.18)

and the SDEs

dξR = (k′R(t)ξP − γRξR)dt +
√
kR(t) + γRφR(t)dWR

dξP = (kP ξR − γP ξP )dt+
√
kPφR(t) + γPφP (t)dWP (3.19)

where k′R(t) ≡ ∂kR(t, φP )/∂φP . We refer to this model as the autoregulatory

model of single gene expression. The two models constitute the basis of our

inference studies below.

3.5.2 Inference from fluorescent reporter gene data for the simple model

of single gene expression

To test the algorithm we first use the simple model of single gene expression.

We generate data according to the stoichiometry matrix (3.14) and rates (3.15)

using Gillespie’s algorithm [Gillespie, 1977] and sample it at discrete time points.

We then generate artificial data that are proportional to the simulated protein

data with added normally distributed measurement error with known variance σ2
ε .

Furthermore we assume that mRNA levels are unobserved. Thus the data are of

the form4

ū = (ut0 , . . . , utn)T , (3.20)

4The volume of the system Ω is unknown and we set Ω = 1 so that concentration equals the number
of molecules.

54



where uti = λpti + εti , pti is the simulated protein concentration, λ is an unknown

proportionality constant and εti is measurement error. For the purpose of our

example we model the transcription function by

kR(t) =

{
b0 exp(−b1(t− b3)2) + b4 t ≤ b3

b0 exp(−b2(t− b3)2) + b4 t > b3

(3.21)

This form of transcription corresponds to an experiment, where transcription in-

creases for t ≤ b3 as a result of being induced by an environmental stimulus and

for t > b3 decreases towards a baseline level b4.

We assume that at time t0 (t0 << b3) the system is in a stationary state.

Therefore, the initial condition of the MRE is a function of unknown parameters

(φR(t0), φP (t0)) = (b4/γR, b4kP/γRγP ).

To ensure identifiability of all model parameters we assume that informative prior

distributions for both degradation rates are available. Priors for all other parame-

ters were specified to be non-informative.

To infer the vector of unknown parameters

Θ = (γR, γP , kP , λ, b0, b1, b2, b3, b4)

we sample from the posterior distribution

P(Θ|ū) ∝ P(ū|Θ)π(Θ)

using the standard MH algorithm. The distribution P(ū|Θ) is given by (3.12).

The protein level of the simulated trajectory is sampled every 15 minutes and a

sample size of 101 points obtained. We perform inference for two simulated data

sets: estimate 1 is based on a single trajectory while estimate 2 represents a larger

data set using 20 sampled trajectories (see Figure 3.1A). All prior specifications,

parameters used for the simulations and inference results are presented in Table

3.1A.

Estimate 1 in Table 3.1A demonstrates that it is possible to infer all parameters

from a single, short length time series with a realistically achievable time resolu-

tion. Estimate 2 shows that usage of the LNA does not seem to result in any
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significant bias. A bias has not been detected despite the very small number of

mRNA molecules (5 to 35 - Figure 3.4A in supplementary section 3.7) and protein

molecules (100 to 500 - Figure 3.1A). The coefficient of variation varied between

approximately 0.15 and 0.4 for both molecular species (Figure 3.3 in supplementary

section 3.7).

Inference for this model required sampling from the 9 dimensional posterior distri-

bution (number of unknown parameters). If instead one used a diffusion approxi-

mation based method it would be necessary to sample from a posterior distribution

of much higher dimension (see supplementary section 3.7). In addition, incorpora-

tion of the measurement error is straightforward here, whereas for other methods

it involves a substantial computational cost [Heron et al., 2007].

3.5.3 Inference from fluorescent reporter gene data for the model of

single gene expression with autoregulation

The following example considers the autoregulatory system with only a small num-

ber of reacting molecules. Using Gillespie’s algorithm we generate artificial data

from the single gene expression model with autoregulation. The protein time

courses were then sampled every 15 minutes at 101 discrete points per trajectory

(see Figure 3.1B). As before we assume that the mRNA time courses are not ob-

served and that the protein data are of the form given in (3.20), i.e. proportional

to the actual amount of protein with additive Gaussian measurement error. As in

the previous case study we estimate parameters from two simulated data sets, a

single trajectory and an ensemble of 20 independent trajectories. The inference

results summarized in Table 3.1B show that despite the low number of mRNA

(0-15 molecules, see Fig. 2 in supplementary section 3.7) and protein (10-250

molecules, see Fig. 3.1B) all parameters can be estimated well with appropriate

precision.
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(A)
Param. Prior Value Estimate 1 Estimate 2

γR Γ(0.44,10−2) 0.44 0.43 (0.27-0.60) 0.49 (0.38-0.61)
γP Γ(0.52,10−2) 0.52 0.51 (0.35-0.67) 0.49 (0.38-0.61)
kP Exp(100) 10.00 21.09 (3.91-67.17) 11.41 (7.64-16.00)
λ Exp(100) 1.00 1.42 (0.60-2.57) 1.08 (0.76-1.36)
b0 Exp(100) 15.00 6.80 (0.97-18.43) 12.78 (9.80-15.33)
b1 Exp(1) 0.40 0.79 (0.05-3.02) 0.29 (0.18-0.43)
b2 Exp(1) 0.40 0.77 (0.08-2.79) 0.77 (0.32-1.59)
b3 Exp(10) 7.00 6.13 (4.41-7.85) 7.25 (6.79-7.55)
b4 Exp(100) 3.00 0.94 (0.11-2.88) 2.87 (2.11-3.52)

(B)
Param. Prior Value Estimate 1 Estimate 2

γR Γ(0.44,10−2) 0.44 0.44 (0.27-0.60) 0.42 (0.32-0.54)
γP Γ(0.52,10−2) 0.52 0.49 (0.33-0.65) 0.49 (0.36-0.61)
kP Exp(100) 10.00 14.86 (3.18-47.97) 9.35 (5.87-13.15)
λ Exp(100) 1.00 1.26 (0.48-2.30) 1.15 (0.81-1.50)
b0 Exp(100) 15.00 5.99 (0.20-23.06) 13.47 (9.24-17.13)
b1 Exp(1) 0.40 0.59 (0.01-2.75) 0.27 (0.14-0.53)
b2 Exp(1) 0.40 0.92 (0.05-2.92) 0.83 (0.21-3.52)
b3 Exp(10) 7.00 6.53(0.74-14.69) 7.27 (6.44-7.79)
b4 Exp(100) 3.00 2.85 (0.35-7.19) 2.64 (1.82-3.32)

Table 3.1: Inference results for (A) the simple model and (B) autoregulatory model of
single gene expression Parameter values used in simulation, prior distribution, posterior
medians and 95% credibility intervals. Estimate 1 corresponds to inference from single
time series, Estimate 2 relates to estimates obtained from 20 independent time series.
Data used for inference are plotted in Figure 3.1A for case A and Figure 3.1B for case
B. Variance of the measurement error was assumed to be known σε = 9. Rates are per
hour. Parameters are nH = 1, H = 61.98 in case B.

57



0 5 10 15 20 25

10
0

20
0

30
0

40
0

50
0

60
0

time

flu
or

es
ce

nc
e 

in
te

ns
ity

 (
ar

bi
tr

ar
y 

un
its

)

●

●

●
● ● ●

●

●
●

●

●
●

● ●

●

●
●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

● ●

●

● ●

●
●

● ●

●
●

● ●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

● ●
● ● ●

●

●

●

●

●
●

●
●

●

●

●

● ●

●
●

● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
● ●

●

●

● ● ● ● ●

●

● ●

●
●

● ●

● ● ● ● ●

●
●

● ● ● ●
●

●
●

●
●

●
● ●

●

●

●

●
● ●

● ● ● ●
● ●

● ●
●

●
● ●

●
● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●
●

●
●

●
●

● ● ● ●

●

●

●
●

●
● ●

●

●
● ● ● ● ● ● ●

●
●

●
●

●

●
●

●

●

● ●

●

● ●
●

●
●

●
●

●

● ● ● ● ● ●

●

●
● ● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

● ●

●
●

● ● ●
● ●

● ● ●

●

●
●

● ●

●

●
●

●

●

●

●

●

● ●

●
●

●
●

●
●

●
● ●

● ●

●

● ●
●

● ●

●

● ● ●

● ● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●
● ●

●

●

● ●

●

●

●

● ●

●

●

● ●
● ● ● ●

● ●

●
● ●

●

●
● ●

● ●
● ●

●
●

●
●

● ●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

● ●
●

●
●

● ●

● ● ●
●

● ●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●
● ● ●

● ●
● ●

●

●
●

●
●

●
● ●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

● ● ●

●

●

●

●

●

●

●

●

● ●

● ●

● ●

● ●
● ● ●

●

● ●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●

●
●

●

● ● ●
●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●
●

●
●

●

●

●

●

● ●

●
● ●

●

●

●
●

●

●
●

●

●

●
●

● ●

●

●

●
● ● ● ●

●

●

●

●

● ● ● ●

● ●

●

●

●

● ●
●

●

●

● ●

●

●

● ● ●
●

● ●

●

●

●

●
●

●

● ●

●

● ●

●

●

●
●

●

● ●

●

● ● ●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

● ●

●
●

● ●
●

●
●

●

●
●

●

●

●
●

● ● ●

●

● ● ●

●
●

●

● ● ●

●
●

● ●

●

● ● ● ● ●

●

●

● ●
● ● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ● ●
●

●
●

● ●

●
●

●

●

●

●
●

● ● ●

● ● ● ● ●

●
● ●

●

●

●
●

● ● ●

●
●

●
●

● ●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●
●

●
●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●
● ●

● ● ●

● ● ●
● ●

●

●

●

● ●
●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
● ●

● ●
●

●

● ● ●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ● ●
●

● ● ●

●

● ● ● ●
●

●
●

● ●

●
●

● ● ●
● ●

●
●

●

●
●

●
● ● ●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●
● ●

●

● ●

●

●
●

● ●
● ● ●

●

●

●

●

●
●

● ●

●

●
●

●
●

●
●

●

●

●
●

●
●

● ●
●

● ● ●
● ● ●

●

●
●

● ●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●
●

● ● ● ●

● ●
●

●
●

●
● ●

●
●

●
● ●

●

●

●

●

●

●
●

●

●

● ●

●
● ● ●

●
● ●

● ●

● ● ● ●

● ●

●

●

●
● ●

●

● ● ●
●

● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
● ● ●

●

●

● ● ●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ● ●

●
●

●
●

● ●

●

● ●
●

●
●

●

●

●

● ● ●

●

● ●

●
●

●
●

● ●

●

●
● ●

●
●

●

●

●
●

● ● ● ● ●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

● ●
●

●
● ●

●

●
●

●
● ● ●

●

●
●

● ● ●
●

● ●
●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

● ●

● ●
●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

● ●

●

● ● ●
● ●

● ●

●

●
●

●
●

●

●

●
●

● ●

● ● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ● ●

●
●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ● ● ●

●
● ●

●

●

●

●

●
●

●
● ●

●

●

●

●

●
●

● ●
●

●

● ● ●
● ● ●

●
● ●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●
● ●

●

●
●

●

●

●

● ●
●

●

●

●

● ● ● ●
● ●

●

●
●

●

● ●
●

● ●

●

●
●

●

● ●
●

●

● ● ● ●
● ●

● ●

●
● ●

● ●
●

●

●

●

●
● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

● ●

● ●

● ●
●

●

● ●

●

●

●

●

● ●
●

● ●

● ●
● ●

●

●

●
●

●
●

● ●

A

0 5 10 15 20 25

0
50

10
0

15
0

20
0

25
0

time

flu
or

es
ce

nc
e 

in
te

ns
ity

 (
ar

bi
tr

ar
y 

un
its

)

●
●

●

●
●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

● ● ●

●

●

● ● ●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
● ●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

● ●

●
●

●

●

●
●

●
● ●

● ●

●
●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

● ●

●
●

●

●

● ●
●

●

●

●
●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

● ●

● ●
●

●

●

●

●
●

●
●

●
●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●
●

●

● ● ● ● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

● ●
● ●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
● ●

●
●

●
●

●

●
●

●
●

●
●

●

●
●

●

● ●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

● ● ●

●

●
●

●
●

●

●
●

●
●

● ●

●

●

● ●
●

● ●
●

● ●
● ●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

● ● ●

●

●
●

●
● ●

●

●
●

●
●

●

●
●

●

● ●

●

●

●

●
●

●
● ●

●

●

●

●

●
● ●

● ●

● ● ●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

● ●

●

●

● ● ●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
● ●

● ●
●

●

●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●
●

●
●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●
● ● ●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●

●
● ●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●
●

●

●

●

●
●

●

●
● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

● ● ●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

● ●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●
●

●

●
●

●

●
●

●
● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

● ●
●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●

● ●

●

●

●
●

●
●

●

●
● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

● ●
●

●

●

●
●

●
●

●

● ●
●

●

●
●

●
●

●
● ●

●

●

●
●

●
●

●

●
●

●
●

●
●

●
●

● ●

●
●

●
●

●

●
●

●

●

● ●

●

●

● ●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●
● ●

●

●

●

●

●

●
●

●

●
●

●

●
● ●

●

●

● ●

●
●

● ●
● ●

●

● ●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
● ●

●

● ●

●

●
●

● ●

●
● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

● ●
●

● ●

●
●

●

●
●

●
●

● ●
●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

B

Figure 3.1: Protein timeseries generated using Gillespie’s algorithm for the simple
A and autoregulatory B models of single gene expression with added measurement
error (σ2

ε = 9). Initial conditions for mRNA and protein were sampled from Poisson
distributions with means equal to the stationary means of the system with equal constant
transcription rate b4. In the autoregulatory case we set H = b4kP

2γRγP
. In each panel 20

time series are presented. The deterministic and average trajectories are plotted in
bold black and red lines respectively. Corresponding mRNA trajectories (not used for
inference) are presented in supplementary section 3.7.

3.5.4 Inference for PCR based reporter data

In the case of reporter assays based on Polymerase Chain Reaction (e.g. RT-

PCR, Q-PCR) measurements are obtained from the extraction of the molecular

contents from the inside of cells. Since the sample is sacrificed, the sequence of

measurements are not strictly associated with a stochastic process describing the

same evolving unit. Assume that at each time point ti (i = 0, ..n) we observe l

measurements that are proportional to the number of RNA molecules either from

a single cell or from a population of l cells. This gives a (n+ 1)× l matrix of data

points

ū ≡ {uti,j}i=0,...n;j=1,...,l (3.22)
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where uti,j = λrti,j + εti,j, rti,j is the actual RNA level, λ is the proportionality

constant, εti,j is a Gaussian independent measurement error indexed by time ti.

j = 1, . . . , l indexes the l measurements that are taken at time ti. Note that rti,j

and rti+1,j are independent random variables as they refer to different cells. We

assume that the dynamics of RNA is described by the simple model of single gene

expression with LNA equations (3.16) and (3.17). Let Υt denote the distribution of

measured RNA at time t (ut ∼ Υt). In order to accommodate for the different form

of data we modify the estimation procedure as follows. For analytical convenience

we assumed that the initial distribution is normal Υt0 = N(µt0 , σ
2
t0

). This together

with eq. (3.8) and normality of measurement error implies that Υt = N(µt, σ
2
t ).

Simple explicit formulae for µt and σ2
t are derived in supplementary section 3.7.

Since all observations uti,· are independent we can write the posterior distribution

as

π(Θ|ū) ∝
n∏
i=0

l∏
j=1

ψ(uti,j|µti , σ2
ti

) π(Θ), (3.23)

where ψ(·|µti , σ2
ti

) is the normal density with parameters µti , σ
2
ti

. In order to infer

the vector of the unknown parameters Θ = (γR, λ, b0, b1, b2, b3, b4, µt0 , σ
2
t0

) we

sample from the posterior using a standard MH algorithm. To test the algorithm we

have simulated a small (l = 10, n = 50, plotted in Figure 3.2) and a large (l = 100,

n = 50) data set using Gillespie’s algorithm with parameter values given in Table

3.2. The data were sampled discretely every 30 minutes and a standard normal

error was added. Initial conditions were sampled from the Poisson distribution

with mean b4/γR. The estimation results in Table 3.2 show that parameters

can be inferred well in both cases even though the number of RNA molecules

in the generated data is very small (about 5-35 molecules). Since subsequent

measurements do not belong to the same stochastic trajectory, estimation for the

model presented here is not straightforward with the diffusion approximation based

methods.
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Figure 3.2: Left:PCR based reporter assay data simulated with Gillespie’s algorithm
using parameters presented in Table 3.2 and extracted 51 times (n=50), every 30 minutes
with an independently and normally distributed error (σ2

ε = 9). Each cross correspond to
the end of simulated trajectory, so that the data drawn are of form (3.22). Since number
of RNA molecules is know upto proportionality constant y-axis is in arbitrary units. Time
on x-axis is expressed in hours. Estimates inferred form this data are shown in column
Estimate 1 in Table 3.2. Right: Fluorescence level from cycloheximide experiment is
plotted against time (in hours). Subsequent dots correspond to measurements taken
every 6 minutes.

3.5.5 Estimation of gfp protein degradation rate from cycloheximide

experiment

In this section the method is applied to experimental data. After a period of

transcriptional induction, translation of gfp was blocked by the addition of cyclo-

heximide (CHX). Details of the experiment are presented in supplementary section

3.7. Fluorescence was imaged every 6 minutes for 12.5h (see Figure 3.2). Since

inhibition may not be fully efficient we assume that translation may be occurring

at a (possibly small) positive rate kP . The model with the LNA is

φ̇P = kP − γPφP , (3.24)

dξP = −γP ξPdt+
√
kP + γPφPdWP .
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Parameter Prior Value Estimate 1 Estimate 2

γR Exp(1) 0.44 0.45 (0.35-0.60) 0.46 (0.42-0.50)
λ Exp(100) 1.00 1.07 (0.90-1.22) 1.01 (0.95-1.05)
b0 Exp(100) 15.00 13.13 (10.20-15.87) 14.91 (13.86-15.77)
b1 Exp(1) 0.40 0.29 (0.14-0.51) 0.43 (0.32-0.54)
b2 Exp(1) 0.40 0.32 (0.12-0.93) 0.32 (0.21-0.43)
b3 Exp(10) 7.00 7.05 (6.39-7.63) 6.99 (6.76-7.15)
b4 Exp(100) 3.00 2.97 (2.00-4.18) 3.10 (2.76-3.43)
µ0 Exp(100) 6.76 6.90 (5.79-7.69) 6.55 (6.14-6.85)
σ2

0 Exp(100) 6.76 3.52 (0.01-8.99) 7.59 (5.44-9.49)

Table 3.2: Inference results for PCR based reporter assay simulated data Parameter
values used to generate data, prior distributions used for estimation, posterior median
estimates together with 95% credibility intervals. Estimate 1, Estimate 2 columns relate
to small (l=5, n=50) and large (l=100, n=50) sample sizes. Variance of the measure-
ment was assumed to be known σ2

ε = 4. Estimated rates are per hour.

Param. Prior Estimate LNA Estimate DA

γP Exp(1) 0.53 (0.39-0.67) 0.45 (0.31-0.62)
kP Exp(50) 0.42 (0.15-1.04) 0.32(0.10-1.75)
λ Exp(50) 24.07(16.57-37.05) 22.79(13.79-36.92)

Table 3.3: Inference results for CHX experimental data . Priors, posterior mean and 95%
credibility intervals obtained from CHX experimental data using the LNA approach and
diffusion approximation approach. Estimation with the LNA assumed ut0 = λφP (0).
Estimated rates are per hour.

The observed fluorescence is assumed to be proportional to the signal with propor-

tionality constant λ. For comparison we also consider the diffusion approximation

for which an exact transition density is analytically available (see supplementary

section 3.7)

dp = (kP − γPp)dt+
√
kP + γPpdWP . (3.25)

Since incorporation of measurement error for the diffusion approximation based

model is not straightforward, we assume that measurements were taken without

any error to ensure fair comparison between the two approaches. Table 3.3 shows

that estimates obtained with both methods are not very different.
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3.6 Conclusions

The aim of this chapter is to suggest the LNA as a useful and novel approach to

the inference of biochemical kinetics parameters. Its major advantage is that an

explicit formula for the likelihood can be derived even for systems with unobserved

variables and data with additional measurement error. In contrast to the more

established diffusion approximation based methods [Golightly and Wilkinson, 2005,

Heron et al., 2007] the computationally costly methods of data augmentation to

approximate transition densities and to integrate out unobserved model variables

are not necessary. Furthermore, this method can also accommodate measurement

error in a straightforward way. The suggested procedure here is implemented in a

Bayesian framework using MCMC simulation to generate posterior distributions.

The LNA has previously been studied in the context of approximating Poisson

birth and death processes [Elf and Ehrenberg, 2003, Ferm et al., 2007, Kurtz,

1972, Tomioka et al., 2004] and it was shown that for a large class of models the

LNA provides an excellent approximation. Furthermore, in [Tomioka et al., 2004]

it is shown that for the systems with linear reaction rates the first two moments of

the transition densities resulting from the CME and the LNA are equal. Here we

propose using the LNA directly for inference and provide evidence that the resulting

method can give very good results even if the number of reacting molecules is

very small. Our experience from previous works with diffusion approximation based

methods [Finkenstadt et al., 2008, Heron et al., 2007] is that their implementation

is challenging especially for data that are sparsely sampled in time because the need

for imputation of unobserved time points leads to a very high dimensionality of the

posterior distribution. This usually results in highly autocorrelated traces affecting

the speed of convergence of the Markov chain. Our method considerably reduces

the dimension of the posterior distribution to the number of unknown parameters

of a model only and is independent of the number of unobserved components.

Nevertheless it can only be applied to the systems with sufficiently large volume,

where fluctuations around a deterministic state are relatively close to the mean.
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3.7 Supplementary Information

This section contains details of mathematical models and statistical methods used

in the previous sections of this chapter.

3.7.1 Modelling of Chemical Kinetics

In this section we derive the macroscopic rate equation (MRE), the diffusion ap-

proximation (DA) and the linear noise approximation (LNA) for the chemical sys-

tem described in the section 3.4. Our derivations here (subsection 3.7 ) follow

[Van Kampen, 2006] and [Elf and Ehrenberg, 2003] . The chemical master equa-

tion (CME) describes the time evolution of the probability h that at time t the

system is in the state X

dh(X, t)

dt
= Ω

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
f̃j(x,Ω, t)h(X, t). (3.26)

Here, E−Sij is a step operator defined by

E−Sijf(..., Xi, ...) = f(..., Xi − Sij, ...).

Macroscopic rate equation

As the system’s volume Ω increases, relative fluctuations become negligible and

in the limit of infinitely large Ω the system becomes deterministic. To derive the

macroscopic rate equation we write the operator
∏N

i=1E
−Sij in the form of a first

order multivariate Taylor expansion

N∏
i=1

E−Sij = 1−
N∑
i=1

Sij
Ω

∂

∂xi
+O(Ω−2).

After substitution into the CME (3.26), in the limit of infinitely large Ω we obtain

dh(ϕ, t)

dt
= −

R∑
j=1

(
N∑
i=1

Sij
∂

∂φi

)
fj(ϕ, t)h(ϕ, t). (3.27)

This partial differential equation can be solved by the method of characteristics that

reduces a partial differential equation to a family of ordinary differential equations

along which the solution can be integrated [Evans, 1998].
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The solution is called the macroscopoic rate equation and has the form

dφi
dt

=
R∑
j=1

Sijfj(ϕ, t) i = 1, 2, ..., N. (3.28)

Diffusion approximation

Similarly, one may write the second order Taylor approximation of the step operator

in the following way

N∏
i=1

E−Sij = 1−
N∑
i=1

Sij
Ω

∂

∂xi
+

1

2

1

Ω2

∑
i

∑
k

SijSik
∂2

∂xi∂xk
+O(Ω−3).

Again, if the volume is large enough the terms of order O(Ω−3) can be neglected

and substitution of the expanded operator into (3.26) implies the Fokker-Planck

equation of the form

dh(x, t)

dt
= −

N∑
i=1

R∑
k=1

∂

∂xi
[A]ikh(x, t) +

1

2

N∑
i,k=1

∂

∂xi

∂

∂xk

[
EET

]
ik
h(x, t), (3.29)

where

[A]ik = Sikf̃k(x,Ω, t), E =
1√
Ω
S

√
diag(f̃(x,Ω, t)),

[
EET

]
ik

=
R∑
j=1

1

Ω
SijSkj f̃j(x,Ω, t)

f̃(x,Ω, t) = (f̃1(x,Ω, t), ..., f̃R(x,Ω, t))T .

The above Fokker-Planck equation describes the time evolution of the transition

densities of the Itô diffusion equation [Gardiner, 1985]

dx = A(x, t)dt+ E(x, t)dW, (3.30)

where dW denotes increments of the Wiener process.

Linear noise approximation

In order to obtain the linear noise approximation transition rates, f̃j(x, t) and

the step operator E· are Taylor expanded around the deterministic state ϕ in
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powers of 1/
√

Ω. To obtain such an expansion process, Xi is decomposed into

the deterministic ϕ and stochastic ξ = (ξ1, ..., ξN)T components according to the

relation

Xi ≡ Ωφi + Ω1/2ξi. (3.31)

Transition rates are expanded as follows

f̃j(x, t) = fj(ϕ, t) +
1√
Ω

N∑
i=1

∂fi(ϕ, t)

∂φi
ξi +O(Ω−1). (3.32)

Similarly, we have an expansion of the step operator

N∏
i=1

E−Sij = 1−Ω−1/2

N∑
i=1

Sij
∂

∂ξi
+

1

2Ω

N∑
i=1

N∑
k=1

SijSkj
∂2

∂ξi∂ξk
+O(Ω−

3
2 ). (3.33)

Let us denote the probability distribution of ξ at time t by Π(ξ, t). The distribution

h(X, t) is related to Π(ξ, t) through the relation

h(X, t) = h(Ωϕ+ Ω1/2ξ, t) = Π(ξ, t). (3.34)

If ∂X
∂t

= 0 then ∂ξi
∂t

= Ω−
1
2
∂φi
∂t

and therefore differentiating Π(ξ, t) with respect to

time at constant molecule numbers gives

∂h(X, t)

∂t
=
∂Π(ξ, t)

∂t
+

N∑
i=1

∂ξi
∂t

Π(ξ, t)

∂ξi
=
∂Π(ξ, t)

∂t
−Ω

1
2

N∑
i=1

∂φi
∂t

Π(ξ, t)

∂ξi
. (3.35)

Putting (3.32), (3.33) and (3.34) into (3.26) and identifying terms of order Ω0 we

obtain the Fokker-Planck equation describing the evolution of Π [Elf and Ehren-

berg, 2003]

dΠ(ξ, t)

dt
= −

N∑
i,k=1

[A]ik
∂

∂ξi
ξkΠ +

1

2

N∑
i,k=1

[
EET

]
ik

∂2Π

∂ξi∂ξk
, (3.36)

where

fi = fi(ϕ, t), [A]ik =
R∑
j=1

Sij
∂fj
∂φk

, (3.37)

E = S
√
diag(f(ϕ, t)), and

[
EET

]
ik

=
R∑
j=1

SijSkjfj.

The related Itô diffusion equation has the form

dξ(t) = A(t)ξdt+ E(t)dW. (3.38)
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It is a linear SDE with time inhomogeneous coefficients and its explicit solution

has form 3.4.

To obtain MRE (3.28) we expanded CME (3.26) in terms of Ω−1. Nevertheless

MRE can also be seen as first order expansion in term of Ω−
1
2 . It is because

neglecting the terms of order higher than Ω−
1
2 in expansion (3.33) leads to the

equation

dξ(t) = A(t)ξdt

that for an initial condition ξ = 0 has zero solution. In such a case the system is

described solely by the MRE.

3.7.2 Derivation of the likelihood function

In this section we derive the likelihood function 3.11. We use the notation intro-

duced in the section 3.4.

Recall that in section 3.4 we partitioned the process xt into observed variables yt

and unobserved latent variables zt. The Markov property of the process xt implies

that the augmented likelihood function P(ȳ, z̄|Θ) can be written as

P(ȳ, z̄|Θ) =
n∏
i=1

p(xti |xti−1
,Θ)p(xt0|Θ), (3.39)

where

p(xti|xti−1
,Θ) = ψ(xti |ϕ(ti) + Ω−

1
2µi−1,Ω

−1Ξi−1)

and

p(xt0 |Θ) = ψ(xto|ϕ(to),Ω
−1Ξ−1).

From now on to simplify notation we write µi−1 instead of Ω−
1
2µi−1 and Ξi−1

instead of Ω−1Ξi−1.

In order to write an explicit form of distribution (3.39) we use equations (3.2),

(3.6) and (3.7) that imply that xti can be represented as

xti = φ(ti) +
i∑

j=0

Φtj(ti − tj)ζtj , (3.40)
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where ζtj are independently normally distributed random variables with mean 0

and covariance matrix Ξj−1. This implies that

P(ȳ, z̄|Θ) = ψ(x̄|(ϕ(t0), . . . , ϕ(tn)), Σ̂), (3.41)

where the covariance matrix Σ̂ = {Σ̂(i,j)}i,j=0,...,n, is the (n+ 1)N × (n+ 1)N

block matrix that is composed of N × N submatrices Σ̂(i,j) = Cov(xti ,xtj).

Covariances Cov(xti ,xtj) can be computed using the following relations (j ≥ i)

Cov(xt0 ,xt0) = Ξ−1, (3.42)

Cov(xti ,xti) = Ξi−1 + Φti−1
(∆i−1)Cov(xti−1

,xti−1
)Φti−1

(∆i−1)T ,(3.43)

Cov(xti ,xtj+1
) = Cov(xti ,xtj)Φtj(∆j)

T . (3.44)

In general the initial covariance matrix Ξ−1 can be treated as a model parameter.

Sometimes, however, it can be expressed in term of other model parameters (see

further examples).

In order to find the likelihood function P(ȳ|Θ) from the augmented likelihood

(3.41) we use the fact that marginal distributions of the normal distribution are

normal. Thus, we obtain

P(ȳ|Θ) = ψ(ȳ|(ϕy(t0), . . . , ϕy(tn)),Σ), (3.45)

where the covariance matrix Σ is a block matrix Σ = {Σ(i,j)}i,j=0,...,n and Σ(i,j) =

Cov(yti ,ytj). Therefore Σ(i,j) is the lower right square submatrix of Σ̂(i,j) which

corresponds to the observed part of the process.
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3.7.3 Examples

The simple model of single gene expression

The simple model of single gene expression can be summarised by the following

stoichiometric equations [Thattai and van Oudenaarden, 2001]

R1 : DNA
kR(t)−−−→ DNA+R

R2 : R
γRR/Ω−−−−→ ∅

R3 : R
kPR/Ω−−−−→ R + P

R4 : P
γPP/Ω−−−−→ ∅

Vectors of molecular copy numbers (X), concentrations (x), and macroscopic

counterparts are

X = (R,P ), x = (r, p), ϕ = (φR, φP ).

The mesoscopic and macroscopic transition rate vectors and stoichiometric matrix

have the form

f̃(x, t) =


kR(t)

γRr

kP r

γPp

 , f(ϕ, t) =


kR(t)

γRφR

kPφR

γPφP

 , S =

 1 −1 0 0

0 0 1 −1

 .

(3.46)

Chemical master equation

To obtain the CME for the system we substitute (3.46) into (3.26) to obtain

[Komorowski et al., 2009b]

dh(R,P, t)

dt
= (3.47)

ΩkR(t)(h(R− 1, P, t)− h(R,P, t)) + kPR(h(R,P − 1, t)− h(R,P, t))

+γR(h(R + 1, P, t)(R + 1)− h(R,P, t)R) + γP (h(R,P + 1, t)(P + 1)− h(R,P, t)P ).
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Macroscopic rate equations

Similarly (3.28) and (3.46) results in

φ̇R = kR(t)− γRφR, (3.48)

φ̇P = kPφR − γPφP .

Diffusion approximation

In order to apply diffusion approximation to CME (3.47) we need the drift A(x, t)

and diffusion matrices EET . By substitution of (3.46) into (3.29) we get

A(x, t) =

 kR(t) −γRr

kP r −γPp

 , (EET )(x, t) =
1

Ω

 kR(t) + γRr 0

0 kPφR + γPp

 ,

(3.49)

where E = S
√
diag(f̃(x, t)). The above matrices imply the Fokker-Planck equa-

tion:

dh(r, p, t)

dt
= − ∂

∂r
(kR(t)− γRr)h(r, p, t) (3.50)

− ∂

∂p
(kP r − γPp)h(r, p, t)

+
1

2Ω

∂2

∂r
(kR(t) + γRr)h(r, p, t)

+
1

2Ω

∂2

∂p
(kP r + γPp)h(r, p, t).

This corresponds to the Itô diffusion

dr = (kR(t)− γRr)dt+
√

1/Ω
√
kR(t) + γRrdWr, (3.51)

dp = (kP r − γPp)dt+
√

1/Ω
√
kPp+ γPPdWp.

Linear noise approximation

In the LNA the deterministic and stochastic part are separated according to (3.31)

so that r(t) = φR + Ω−1/2ξR, p(t) = φP + Ω−1/2ξP . Given formulae (3.46) and
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(3.37) we have the following drift and diffusion matrices

A =

 −γR 0

kP −γP

 , (EET )(t) =

 kR(t) + γRφR 0

0 kP r + γPφP

 .

(3.52)

Hence, the Fokker-Planck equation has the form

dh(ξR, ξP , t)

dt
= − ∂

∂ξR
(−γRξR)h(ξR, ξP , t)

− ∂

∂ξP
(kP ξR − γP ξP )h(ξR, ξP , t)

+
1

2

∂2

∂ξR
(kR(t) + γRφR(t))h(ξR, ξP , t)

+
1

2

∂2

∂ξP
(kP ξR + γPφP (t))h(ξR, ξP , t)

and implies the Itô diffusion

dξR = (−γRξR)dt+
√
φR(t) + γRφRdWξR , (3.53)

dξP = (kP ξR − γP ξP )dt+
√
kPφP + γPφPdWξP .

We assume that before time t0 the transcription rate was constant and equal kR(t0)

(kR(t) = kR(t0) for t ≤ t0) and that the system is in the stationary state at time

t0. Therefore as the initial covariance matrix Ξ−1 we use the covariance matrix of

the stationary distribution of the process (3.53) that by the fluctuation-dissipation

theorem [Van Kampen, 2006] can be found as the solution of the following equation

AΞ−1 + Ξ−1A
T + EET (t0) = 0. (3.54)

Single gene expression with autoregulation

For the model of single gene expression with autoregulation the stoichiometric

equation remain unchanged. The mesoscopic and macroscopic transition rates

vector are as follows

f̃(x, t) =


kR(t, φP )

γRr

kP r

γPp

 , f(ϕ, t) =


kR(t, φP )

γRφR

kPφR

γPφP

 . (3.55)
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where kR(t, p) = kR(t)/(1 + (p/H)nH ).

To derive the LNA equations for this model we use formulae (3.55) and eq. (3.37)

and write the drift and diffusion matrices as

A(t) =

 −γR k′R(t)

kP −γP

 , (EET )(t) =

 kR(t, φP ) + γRφR 0

0 kPφR + γPφP

 ,

(3.56)

where k′R(t) = ∂kR/∂φP (t, φP ). Therefore, the equations given by the LNA are

as follows

φ̇R = kR(t, φP )− γRφR, (3.57)

φ̇P = kPφR − γPφP ,

dξR = (k′R(t)ξP − γRξR)dt+
√
kR(t) + γRφR(t)dWR,

dξP = (kP ξR − γP ξP )dt+
√
kPφR(t) + γPφP (t)dWP . (3.58)

Using the same argument as in the previous example we find the initial covariance

matrix Ξ−1 as the solution of the following equation

A(t0)Ξ−1 + Ξ−1A(t0)T + E(t0)E(t0)T = 0. (3.59)

Derivation of likelihood for PCR based reporter data.

In this section we derive formula (3.23). The data for the PCR based reporter

case has the form

ū =



ut0,1 ut0,2 , ..., ut0,l−1 ut0,l

ut1,1 ut1,2 , ..., ut1,l−1 ut1,l
...

...

utn−1,1 utn−1,2 , ..., utn−1,l−1 utn−1,l

utn,1 utn,2 , ..., utn,l−1 utn,l


, (3.60)

where uti,j = λrti,j + εti,j, rti,j is the actual RNA concentration, λ is the propor-

tionality constant, εti,j is the normally and independently distributed measurement

error with variance σ2
ε . The first of the lower indices ti denotes the time of obser-

vation and the second index j refers to the measurement. The random variables

uti,j and uti+1,j′ are independent since they belong to different cells.
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We set Ω = 1 and assume that the RNA levels in all cells are described by

independent processes r(t) = φR(t) + ξR(t), where

φ̇R = kR(t)− γRφR,

dξR = (−γRξR)dt+
√
kR(t) + γRφRdWξR .

We assume that r(t0) is normally distributed with mean µ̃t0 = φR(t0) and variance

σ̃2
t0

. Using equations 3.7 and 3.8 we obtain that

p(r(t)|Θ) = ψ(r(t)|φR(t), σ̃2
t ), (3.61)

where

σ̃2
t =

∫ t

t0

(exp(−2γR(t− s))((kR(s) + γRφR(s))))ds+ σ̃2
t0
exp(−2(γR(t− t0))).

(3.62)

Taking into account that uti,j = λrti,j + εti,j we obtain that

p(uti,j|Θ) = ψ
(
uti,j|µti , σ2

ti

)
, (3.63)

where

µti = λφR(ti), σ2
ti

= λ2σ̃2
ti

+ σ2
ε . (3.64)

Since all observations are independent the likelihood function P(ū|θ) has the form

P(ū|θ) =
n∏
i=0

l∏
j=1

ψ(uti,j|µti , σ2
ti

).

Cycloheximide experiment

Cycloheximide is an inhibitor of protein biosynthesis in eukaryotic organisms. It is

widely used to determine degradation rates of proteins. In the experiment GH3

rat pituitary cells stably transfected with 5kb human prolactin promoter desta-

bilised EGFP reporter construct (hPRL-d2EGFP) were seeded onto 35 mm glass

coverslip-based dishes (IWAKI, Japan) and cultured in 10% FCS for 24h prior to

imaging. Cells were transferred to the stage of a Zeiss Axiovert 200 equipped with

an XL incubator (maintained at 37C, 5% CO2, in humid conditions) and images

were obtained using a Fluar x20, 0.75 numerical aperture (Zeiss), air objective.
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Excitation of d2EGFP was performed using an Argon ion laser at 488nm. Emitted

light was captured through a 505-550 nm bandpass filter from a 545 nm dichroic

mirror. Images were captured every 6 min. 5 µM forskolin and 0.5 µM BayK 8644

was added directly to the dish for 6h followed by the addition of 10µg/ml cyclo-

hexamide to inhibit translation. Data was captured and analysed using LSM510

software with consecutive autofocus. Analysis was performed using Kinetic Imag-

ing software AQM6. Regions of interest were drawn around each single cell and

mean intensity data was collected over 14h.

We assume that action of cyclohexomide does not fully block translation but

reduces the translation rate significantly. If the amount of mRNA is assumed con-

stant then translation events can be treated as occurring at a small constant rate

kP . Then the model of single gene expression reduces to equations describing the

variation in the amount of protein. From (3.48),(3.53) these are given by

φ̇P = kP − γPφP , (3.65)

dξP = −γP ξP +
√
kP + γPφP dWP .

The DA can be used to obtain an analogous model. Again, neglecting fluctuation

of mRNA concentration, assuming constant translation and setting Ω = 1 from

(3.51) we have

dp = (kP − γPp)dt+
√
kP + γPp dWP . (3.66)

By multiplication of the above equation with the scaling factor λ we obtain an

equation for data q = λp proportional to the number of molecules

dq = (λkP − γP q)dt+
√
λ
√
λkP + γP q dWP . (3.67)

This equation is equivalent to Cox, Ingersoll and Ross model and has known

transition densities [Durham G. B, 2002] given by

p(qti+1
|qti) = γP c exp(−u− v)(

v

u
)
w
2 Iw(2

√
uv), (3.68)

where c = 2(λγP (1− exp(−γP∆ti)))
−1, u = c(λkP + γPp

M
ti

) exp(−γP∆ti), v =

c(λkP + γPp
M
ti

), w = 4kP
γP
− 1, ∆ti = ti+1 − ti and Iw(·) is the modified Bessel

function of the first kind of order w.
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3.7.4 Validity of the LNA

In this section we provide some guidelines for decisions about whether our method

can be used to obtain reliable estimates of kinetic rates or whether a more accurate

method (e.g. DA) should be used.

The linear noise approximation has been obtained by a Taylor expansion of the

CME and reaction rates around deterministic system trajectories in terms of 1/
√

Ω.

The rationale behind this expansion is that for constant average concentrations

relative fluctuations will decrease with the inverse of the square root of the volume.

Therefore the LNA is accurate when fluctuations are sufficiently small in relation

to the mean (indication of large Ω) [Elf and Ehrenberg, 2003]. Hence, a natural

measure of adequacy of the LNA is the ratio of the standard deviation to the mean,

i.e. the coefficient of variation (CV). To clarify this principle consider again the

simple model of single gene expression given by the CME (3.47). For simplicity

assume that the transcription rate kR(t) = kR is time-independent. It can be

shown [Thattai and van Oudenaarden, 2001] that CVs for mRNA and protein

concentrations have the form

CV (r) =
1√
Ω

1√
kR/γR

, CV (p) =
1√
Ω

√
1 + kP/(γR + γP )√

kRkP/γRγP
. (3.69)

The CV decreases with the
√

Ω. Since Ω is not identifiable with kR it can not be

estimated from the data. Nevertheless, the CV can be easily calculated during the

estimation procedure, since variances and means at all times ti are computed to

evaluate the likelihood function (3.45). Figure 3.3 presents the CV for mRNA and

protein for the simple model of single gene expression and the model of single gene

expression with autoregulation. The CV is always smaller than approximately 0.5

and decreases during times when the number of molecules is high. Our simulations

show (data not presented) that for higher values of CV estimates may start to

exhibit bias. Therefore for large values of the CV the LNA is likely to be a less

reliable inference method.

There are two additional arguments that justify the usage of the LNA in a more

precise way. If X is a Poisson birth and death process governed by the CME
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(3.26), ϕ is a solution of the MRE (3.28) and ξ is described by (3.38) then

1. the process Ω
1
2 (X−Ωϕ) weakly converges to the diffusion (3.38) as Ω→∞

[Kurtz, 1972]; and

2. for the systems with linear reaction rates the mean and variance of transition

densities of the process X and of the process Ωϕ+Ω1/2ξ are equal [Tomioka

et al., 2004].
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Figure 3.3: Coefficient of variation of RNA (left panel) and protein (right panel) for the
models of simple gene expression (solid line) and gene expression with autoregulation
(dashed line). The coefficient is calculated numerically for parameters presented in Table
3.1.

3.7.5 Notes on the practical implementation of the algorithm

Computation of the likelihood

Computation of the likelihood function 3.12 can be summarised by the following

steps

1 Numerically find ϕ(t) for t ∈ [t0, tn] ;
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2 For i = 0, ..., n − 1 numerically find fundamental matrices Φti(s)

for s ∈ [ti, ti+1];

3 Use results of steps 1 and 2 to compute covariance matrices Ξi−1

for i = 0, ...n;

4 Use matrices computed in steps 2 and 3 to construct covariance

matrix Σ̂ according to the procedure from section 3.7.2;

5 Extract covariance matrix Σ from Σ̂ (according to section 3.7.2);

6 For given data ū evaluate multivariate normal density with mean

vector

λ(ϕ(t0), ..., ϕ(tn−1)) and covariance matrix λ2Σ + Σε, where λ and

Σε are defined the in section 3.4;

Updating Θ

Since biochemical rates are positive it is convenient to parametrise the model in

terms of logarithms of the original parameters. We denote the new parameter-

ization by Θ̄ = (θ̄1, ..., θ̄k) = (log(θ1), ..., log(θk)). The posterior distributions

P̂(Θ̄|ū) can be obtained from P(Θ̄|ū) according to the reparameterization rule

[Gamerman and Lopes, 2006] given here by the equation

P̂(Θ̄|ū) ∝ P(Θ|ū)
k∏
j=1

θj (3.70)

where
∏k

j=1 θj is a determinant of the inverse Jacobian matrix of the parameteriza-

tion Θ̄. Each parameter θ̄j is updated individually using a random-walk Metropolis

algorithm. Let θ̄
(i)
j be the value of θ̄j at iteration i of the MCMC algorithm. A

new value θ̄
(new)
j is proposed from the symmetric proposal distribution

θ̄
(new)
j ∼ N(θ̄

(i)
j , σ

2
θj

)).

The new value θ̄
(new)
j is then accepted with probability given by the following

min

{
1,

P̂(Θ̄
(new)
j , Θ̄−j,i|ū)

P̂(Θ̄i
j, Θ̄−j,i|ū))

}
,

76



where Θ̄−j,i indicates all other parameters excluding θ̄j at iteration i and P̂(Θ̄, z̄|ȳ)

is the posterior distribution of parameters Θ̄. If θ̄
(new)
j is not accepted then θ̄

(i+1)
j =

θ̄
(i)
j . The variance parameter of the proposal distribution, σ2

θj
, is carefully chosen

to ensure that the proposed moves are not too small (in this case there is very

high acceptance of the proposed values and the chains take a long time to explore

the parameter space) or too large (in this case the chains can get ’stuck’ as

the proposed parameter values are not often accepted which also leads to a slow

exploration of the parameter space).

Numerical approximation of fundamental matrices

Consider the linear ODE

dΦs

dt
= A(s+ t)Φs, (3.71)

where A(s + t) and Φs is an N × N matrix. Let Φs(t) be the solution of this

with initial condition the identity matrix i.e. Φs(0) = I. In order to compute

the transition density covariances Ξi−1 (eq. (3.7)), it is necessary to find these

matrices. This can be done either by solving the equation directly (which gives

Φs(t) as t varies) or by solving the adjoint equation (which gives Φs(t) as s varies).

More detailed explanation can be found in [Zwillinger, 1989].

3.7.6 Inference using diffusion approximation

In this section we briefly describe inference methods based on the diffusion ap-

proximation. We also use the example of the simple model of gene expression to

demonstrate advantages of using our method instead.

Similarly as in section 3.4. suppose we observe a discretely sampled multivariate

time series x̄ = (xt0 , ..., xtn) that is assumed to be a realisation of the process

(3.30). For simplicity we assume that all components of x are observed and are

measured without error. The aim is to estimate the unknown parameters θ given

the data x̄ through the posterior distribution P (θ|x̄) ∝ P (x̄|θ)π(θ), where π(θ)

denotes the prior distribution. In order to perform inference the likelihood P (x̄|θ)
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must be derived. Through the Markov property of the process (3.30) we have that

P (x̄|θ) =
n∏
i=1

p(xti |xti−1
,Θ). (3.72)

Exact transition densities of the diffusion (3.30) are unknown and an approximation

has to be considered. If the time increment between observations ∆ti−1
= ti− ti−1

is small then a good approximation is given by the normal density [Kloeden and

E., 1999]

p(xti |xti−1
) = ψ(xti |µti−1

,Ξti−1
), (3.73)

The mean µti−1
and covariance matrix Ξti−1

are given by

µti−1
= xti−1

+ A(xti−1
, ti−1)∆ti−1

, (3.74)

Ξti−1
= ∆ti−1

E(xti−1
, t)E(xti−1

, t)T , (3.75)

where ∆ti−1
= ti − ti−1. Justification for this approximations follow from the

Euler-Maruyama approximation of equation (3.30) and is discussed in details in

[Kloeden and E., 1999].

In practical applications the ∆ti are usually not small. There exist various ap-

proaches in the literature to deal with such a situation (e.g. [Elerian et al.,

2001],[Durham G. B, 2002],[Beskos et al., 2006]). One simple idea leading to

MCMC based inference is to augment the data by introducing a finer set of

times τi,j so that each interval [ti, ti+1] is partitioned into M + 1 subintervals

[ti = τi,0, τi,1, ..., , τi,M+1 = ti+1]. Data is imputed at the new times τi,j which we

will denote by x∗τi,j , j = 1, ...,M . Let denote x̄∗ the set of all imputed points.

The new times are chosen so that the Euler approximation can be safely assumed

to be accurate on each subinterval [τi,j, τi,j+1]. We can then use equation (3.72)

to obtain an augmented approximate likelihood P (x̄, x̄∗|θ) and write densities

p(xti |xti−1
) in terms of imputed variables x∗τi−1,1

, ...,x∗τi−1,M

p(xti|xti−1
) =

M+1∏
j=0

p(x∗τ(i−1)j
|x∗t(i−1)j

) (3.76)

and p(xτ(i−1)j
|xτ(i−1)j

) are calculated according to the formula (3.73). Monte Carlo

methods provide a feasible way to integrate out auxiliary variables.
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By Bayes’ theorem, P(θ, x̄∗|x̄) ∝ P(x̄∗, x̄|θ)π(θ). Thus, to provide an estimate

of θ from sparsely sampled data, MCMC can be used to sample from the joint

posterior P(θ, x̄∗|x̄) of the parameters θ and the auxiliary variables x̄∗ given the

data x̄. The main problem of this approach is that it increases the dimension of

posterior distribution by nMN (number of imputed points). The high dimension

of a posterior distribution leads to highly correlated Markov Chains. Therefore

long chains must be generated to provide a reliable sample from the posterior

distribution. It may become practically unfeasible or extremely difficult if the data

frequency is low (large M needed) or if the process x is high-dimensional.

If some components of the process x are unobserved then the same data augmen-

tation procedure may be used to integrate out unobserved variables.

Inference for single gene expression model using the diffusion approximation

To illustrate problems related to inference using the diffusion approximation method

we use the simple model of single gene expression (More detailed explanation can

be found in [Finkenstadt et al., 2008]). Suppose we have a sequence of measure-

ments

x̄ = (pt0 , pt1 , ..., ptn),

that can be treated as a realisation of the p component of the process (3.51).

Assume that Ω = 1. To perform inference between each pair of subsequent

observations (pti , pti+1
) M additional points are introduced. In addition the r

process in unobserved. Therefore the augmented data matrix (matrix composed

of both x̄∗ and x̄) has the form r∗t0 r∗τ0,1 ... r∗τ0,M r∗t1 ... r∗tn−1
r∗τn−1,1

... r∗τn−1,M
r∗tn

pt0 p∗τ0,1 ... p∗τ0,M pt1 ... ptn−1 p∗τn−1,1
... p∗τn−1,M

ptn

 .

There are 2n(M + 1) + 2 elements of the augmented data matrix (of which

2nM + n + 1 are unknown and n + 1 are known). Therefore, the posterior

distribution P (x̄∗, θ|x̄∗) has dimension 2n(M) + n+ 1 + dim(Θ).

For comparison, if we use the approach based on the LNA the number of unknowns
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is equal to the dimension of Θ.

Practical adjustment of the parameter M depends mostly on the time distance be-

tween observations. For instance, if we assume that in an experiment fluorescence

is measured every 17 minutes, 101 times in total (n=100) and if we set M = 15,

postulating that RNA and protein changes in one minute intervals are normal, then

we obtain that the dimension of the posterior equals 3101 plus number of elements

of the vector Θ. If we use the LNA based approach, proposed in this chapter, the

analogous posterior has the dimension equal to the dimension of Θ.
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Figure 3.4: Timeseries of mRNA generated using Gillespie algorithm for models of
single gene expression without autoregulation A and with autoregulation B. Parameters
used for simulation and estimates inferred from the timeseries are presented in Tables
3.1A and 3.1B. In each panel 20 time series are presented. The deterministic and the
average trajectory are plotted in bold black and red, respectively. Corresponding protein
trajectories used for inference are presented in Figure 3.1.
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Chapter 4

Using single fluorescent reporter

gene to infer half-life of extrinsic

noise and other parameters of

gene expression

4.1 Author contributions and chapter’s structure

This chapter is a paper by Michal Komorowski, Bärbel Finkenstädt, and David A.

Rand submitted to Biophysical Journal. Author contributions are as follows. MK

proposed and implemented the algorithm. MK wrote the paper with assistance

from BF and DAR, who supervised the study.

Sections 4.2 - 4.7 are followed by supplementary section 4.8 that contains details

about mathematical modeling and statistical methods.

4.2 Abstract

Fluorescent proteins are often used as reporters of transcriptional activity. Given

the prevalence of noise in biochemical systems the yielded data is of significant
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interests in efforts to calibrate stochastic models of gene expression and obtain

information about sources of non-genetic variability.

Here we present a statistical inference framework that can be used to estimate

kinetic parameters of gene expression, strength and half-life of extrinsic noise from

single fluorescent reporter gene time series data. The method takes into account

stochastic variability in a fluorescent signal resulting from intrinsic noise of gene

expression, kinetics of fluorescent protein maturation and extrinsic noise. We use

the linear noise approximation and derive an explicit formula for the likelihood of

observed fluorescent data. The method is embedded in a Bayesian paradigm, so

that certain parameters can be informed from other experiments allowing porta-

bility of results across different studies. Inference is performed using Markov chain

Monte Carlo.

Fluorescent reporters are primary tools to observe dynamics of gene expression and

correct interpretation of fluorescent data is crucial to investigate this fundamental

processes of cellular live. As both magnitude and frequency of the noise may have

a dramatic effect on the cell fitness, quantification of stochastic fluctuation is es-

sential to understand how genes are regulated. Our method provides a framework

that addresses this important questions.

4.3 Introduction

Since their discovery [Shimomura et al., 1962] fluorescent proteins have become

one of the most commonly used markers of gene expression [Chalfie et al., 1994]

in intact cells and organisms. In particular they are used to quantify changes in

protein concentration over time [Nelson et al., 2004] and as reporters of transcrip-

tional activity [Rosenfeld et al., 2005] in tissue and at the single cell level. Hence

an abundance of data is becoming available, that is of interest to the estimation

of kinetic parameters of expression of many different genes.

The significance of single gene expression dynamics has resulted in numerous the-
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oretical models [Friedman et al., 2006, Kepler and Elston, 2001, Paulsson, 2006,

Thattai and van Oudenaarden, 2001] and experimental studies ( [Chabot et al.,

2007, Elowitz et al., 2002a, Ozbudak et al., 2002, Xie et al., 2008]) that revealed

aspects of the stochastic nature of this process (see [Raj and van Oudenaarden,

2008, Raser and O’Shea, 2005] for reviews). Most often occurs these systems

are far from thermodynamic equilibrium [Keizer, 1987] and they may involve small

copy numbers of reacting macromolecules [Guptasarma, 1995]. Determining the

origins and the magnitude of the stochastic effects is of interest because of their

implications for cell fate decisions, development and nongenetic individuality (see

[Martinez Arias and Hayward, 2006, Raj and van Oudenaarden, 2008, Raser and

O’Shea, 2005] for reviews). One of the important advances in the studies of noise

in gene expression is the development of experimental methods based on using

two equivalent reporters in the same cell because this allows the determination

of extrinsic and intrinsic components of the total gene expression noise [Elowitz

et al., 2002a, Swain et al., 2002a]. The intrinsic noise is defined as a source of

variability creating differences between expression of two identical genes placed in

the same cell. By contrast, extrinsic noise refers to the sources that affect the two

genes equally in any given cell.

A basic assumption behind using fluorescent proteins as reporters of dynamical

gene expression, particularly in the experiments investigating noise in gene expres-

sion, is that the observed fluorescence intensity is proportional to the number of

proteins being expressed in the cell [Chabot et al., 2007, Elowitz et al., 2002a,

Finkenstadt et al., 2008, Ozbudak et al., 2002]. There is a reasonable basis to

assume that such a proportionality exists for molecules that are actively fluores-

cent [Wu and Pollard, 2005]. Nevertheless before the expressed protein becomes

visible to fluorescent detection techniques it must undergo a maturation process

that can last from few minutes to over a day [Dong and McMillen, 2008, Nagai

et al., 2002] and comprises three major steps: folding, cyclization of tripeptide

motif and oxidation of the cyclized motif [Tsien, 1998]. The dynamics of this pro-
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cess significantly contributes to the observed variability of a fluorescent signal and

has the potential to impact both estimates of the number of proteins present and

estimates of the variability in gene expression [Dong and McMillen, 2008, Wang

et al., 2008]. Even though the maturation process has been recognised it is most

often neglected in the quantitative analysis of fluorescent data (e.g. [Blake et al.,

2003, Chabot et al., 2007, Elerian et al., 2001, Elowitz et al., 2002a, Finkenstadt

et al., 2008, Pedraza and van Oudenaarden, 2005]).

The presence of extrinsic and intrinsic noises and stochastic effects of protein

maturation indicate that extracting information from the fluorescent signal is not

straightforward. Stochastic fluctuations arising at each level of gene expression

are masked by subsequent steps of this process, so that the observed variability

is a filtered mixture of multiple noise sources. In particular, the fluctuations in

transcription rate, which is of great importance to the understanding of gene reg-

ulation, are masked by random events that occur between the release of mRNA

molecules and the occurrence of fluorescent proteins. Therefore a precise inter-

pretation of the fluorescent signal requires a mathematical model and a statistical

method for its calibration. Various approaches have been proposed to address this

problem [Finkenstadt et al., 2008, Friedman et al., 2006, Golightly and Wilkinson,

2005, Heron et al., 2007, Komorowski et al., 2009a, Reinker et al., 2006]. Nev-

ertheless none of the currently available inference methods takes into account the

stochasticity of the protein maturation kinetics or infers strength of extrinsic fluc-

tuations from commonly used single reporter gene data. The currently established

methods to quantify extrinsic noise require a reporter assay with two copies of a

specific promoter [Chabot et al., 2007, Elowitz et al., 2002a, Swain et al., 2002a].

In this chapter we provide both a model and an efficient inference method that ac-

count for the variability originating from the fluorescent protein maturation. The

method allows for the inference on the decay rate (half-life) and magnitude of

extrinsic fluctuations from data of a single reporter gene experiment. Quantifi-
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cation of fluctuations in protein abundance is important to the understanding of

how genes are regulated. For example, it has been demonstrated that both magni-

tude and frequency of the noise may determine cell fitness [Rosenfeld et al., 2005].

Small changes in protein concentration may have a significant effect if they last for

long enough, whereas large fluctuations in concentration may not have any effect if

they occur too frequently to influence cellular processes [Raser and O’Shea, 2005].

This observation stimulated studies of protein level dynamics [Rausenberger and

Kollmann, 2008, Sigal et al., 2006] and reveals the need for a method to quantify

the stochastic characteristics of the expression of different genes.

Our approach simultaneously solves two important problems. It infers the strength

of the extrinsic variability from single fluorescent reporter gene and accounts for

stochasticity of the fluorescent protein maturation. Therefore the method consti-

tutes a general framework for the interpretation of fluorescent time-lapse data.

First we introduce the mathematical model of gene expression that incorporates

stochasticity of protein maturation kinetics and extrinsic noise. We briefly analyse

the influence of kinetic parameters on stochastic properties of the fluorescent

signal, in order to demonstrate how filtering effects influence the identifiability of

model parameters. Finally we present the statistical method to quantify observed

stochasticity in fluorescent signal and demonstrate its applicability using examples

of a gene that is expressed both in a steady state and out-of-steady-state. We

demonstrate why all the model components are necessary to reliably interpret the

fluorescent signal.

4.4 Methods

In this section we extend the standard model of single gene expression by adding

the protein maturation process and a model for extrinsic noise. Subsequently we

analyse stationary fluorescence fluctuations predicted by the model using the auto-
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correlation function and the power spectral density. Finally we use the linear noise

approximation [Elf and Ehrenberg, 2003, Komorowski et al., 2009a, Van Kampen,

2006] to construct a statistical method for estimation of model parameters from

fluorescent reporter gene time series.

4.4.1 Model of fluorescent gene expression

Although gene expression involves numerous biochemical reactions the current

common consensus is to model it in terms of only three biochemical species (DNA,

mRNA, protein) and four reaction channels (transcription, mRNA degradation,

translation, protein degradation) [Friedman et al., 2006, Komorowski et al., 2009b,

Thattai and van Oudenaarden, 2001]. Such a simple model has been successfully

used in a variety of applications and can generate data with the same statistical

behaviour as more complicated models [Dong et al., 2006, Iafolla and McMillen,

2006].

We assume what are now standard simplifications employed in this model. We

assume that the process begins with production of mRNA molecules (R) at time

dependent rate kr(t). Each mRNA molecule may be independently translated into

protein molecules (P ) at rate kp. Both mRNA and protein molecules are degraded

at rates γr, γp respectively. In order to model the expression of a fluorescent

proteins we extend the standard model in a similar way to [Dong and McMillen,

2008, Wang et al., 2008]. After translation proteins are folded at a rate kf and

subsequently matured (oxidated) at a rate km. The number of unmatured folded

proteins and matured proteins are denoted by Pf and Pm. When illuminated ma-

tured proteins are capable of emitting a fluorescent signal. Here, we neglect the

cyclization reaction since it is much faster than the other two constituting the

maturation process [Tsien, 1998]. We also assume that both folded and matured

proteins degrade at rate γp. The reactions in the this model can thus be sum-

marised as the following stoichiometric equations
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R1 : DNA
kr(t)−−→ DNA+R

R2 : R
γr−→ ∅

R3 : R
kp−→ R + P

R4 : P
γp−→ ∅

R5 : P
kf−→ Pf

R6 : Pf
γp−→ ∅

R7 : Pf
km−→ Pm

R8 : Pm
γp−→ ∅

We model biochemical reactions as Poisson birth and death processes. Precisely,

we assume that the probability for each reaction to occur in a small time inter-

val is proportional to the product of the length of that interval, the rate of the

reaction and the number of molecules which may undergo the reaction. The prob-

ability that more than one event will take place in a small time interval is of the

higher order with respect to the length of the interval. Finally, we assume that

events taking place in disjoint time intervals are independent, when conditioned

on events in the previous interval. This specification leads to the Chemical Master

Equation (see supplementary section 4.8). Unfortunately, for many tasks such as

inference the CME is not a convenient mathematical tool and hence various types

of approximations have been developed. As shown in [Komorowski et al., 2009a]

the linear noise approximation provides a useful and reliable inference framework.

The linear noise approximation models biochemical reactions through a stochastic

dynamic model which essentially approximates a Poisson process by an ordinary

differential equation model with an appropriately defined noise process. Using the

linear noise approximation our model equations are (see supplementary section 4.8

for derivation)

dr = (kr(t)− γrr)dt+
√
τ(t) + γrφr(t)dW1, (4.1)

dp = (kpr − (γp + kf )p)dt+
√
kpφr(t) + γpφp(t)dW2 −

√
kfφp(t)dW3, (4.2)

dpf = (kfp− (γp + km)pf )dt+
√
kfφp(t)dW3 +

√
γpφpf

(t)dW4 −
√
kmφpf

(t)dW5, (4.3)

dpm = (kmpf − γppm)dt+
√
kmφpf

(t)dW5 +
√
γpφpm

(t)dW6, (4.4)

where r, p, pf , pm are concentrations of mRNA, unfolded protein, folded pro-

tein and mature protein respectively; {dWi}(i=1,...,6) denote increments of inde-
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pendent Wiener processes; τ(t) is a macroscopic transcription process; variables

φr, φp, φpf , φpm are macroscopic concentrations of mRNA, unfolded protein, folded

protein and mature protein respectively, described by the following ordinary differ-

ential equations (see supplementary section 4.8 for derivation):

φ̇r = τ(t)− γrφr, (4.5)

φ̇p = kpφp − (γp + kf )φp, (4.6)

φ̇pf = kfφp − (γp + km)φpf , (4.7)

φ̇pm = kmφpf − γpφpm . (4.8)

The macroscopic variables describe the behaviour of the system in the thermody-

namic limit. This is the limit of an infinitely large number of reacting molecules,

where fluctuations average out leading to a deterministic behaviour [Van Kampen,

2006].

4.4.2 Extending the standard model by extrinsic noise

Genetically identical cells exhibit significant diversity even when exposed to the

same environmental conditions. Recent studies concluded that this noise has in-

trinsic and extrinsic sources that could be distinguished by placing two independent

gene reporters in the same cell in order to partition observed variability into these

two categories [Elowitz et al., 2002a, Swain et al., 2002a]. Noise sources that

create differences between the two reporters within the same cell are called in-

trinsic noise. Extrinsic noise, on the other hand, refers to sources that affect the

two reporters equally in any given cell but create differences between two cells.

Noise arising from the stochastic events of births and deaths of mRNA and pro-

teins molecules can be identified as intrinsic. Differences between cells, either in

environment or in the concentration of any factor that affects gene expression, will

result in extrinsic noise (see [Raser and O’Shea, 2005] for more details).

This definition of the two sources of variability implies that in the model (4.1-4.8)

intrinsic noise due to the birth and death events is modelled by diffusion terms
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(terms that include dWi).

The sources of extrinsic variability are defined less clearly. Here we focus on the

stochasticity arising from fluctuations in the overall transcription rate, as it is

argued in [Blake et al., 2003, Chabot et al., 2007, Shahrezaei et al., 2008], that

it dominates over other sources of extrinsic noise. As proposed by [Chabot et al.,

2007] and [Shahrezaei et al., 2008] extrinsic noise can arise from a multiplicative

factor in the transcription rate. In this case

kr(t) = τ(t)(1− ζ(t)), (4.9)

where τ(t) is a macroscopic transcription (deterministic function) and ζ(t) is a

stochastic perturbation representing the extrinsic noise. In order to allow for a

potential memory of the extrinsic factor, ζ(t) is modelled as an Ornstein-Uhlenbeck

(OU) process

dζ = (−γζζ)dt+ σζdW7. (4.10)

This form of transcriptional extrinsic noise has been indicated by experimental data

[Chabot et al., 2007]. The OU process has an exponentially decaying autocorre-

lation function (ACF) of the form [Gardiner, 1985]

ACFζ(t) =
σ2
ζ

2γζ
exp(−γζt). (4.11)

The parameter γζ can be thus interpreted as a decay rate of the extrinsic fluctu-

ations and log(2)/γζ constitutes the half-life of the extrinsic noise . Small values

of γζ correspond to slow transcriptional fluctuations and a slowly decaying ACF.

In this case we say that transcription has long memory. The stationary variance

of the OU process is given by
σ2
ζ

2γζ
[Gardiner, 1985] and this quantity describes

the strength of the extrinsic fluctuations. The model that incorporates protein

maturation dynamics and extrinsic noise and for which we construct an inference

method is given by equations (4.1-4.10).
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4.4.3 Analysis of the fluorescent protein fluctuations

Before we present our inference method we examine how the model parameters

determine the memory of fluorescence fluctuations and how they affect the filtering

of the stochasticity arising from the different reactions constituting the expression

process. We are particularly interested in how transcriptional memory and the

strength of transcriptional fluctuations are masked by translation and protein mat-

uration processes.

To understand how memory is determined by model parameters we analytically cal-

culate the autocorrelation function (ACF) for the fluctuations of matured proteins

pm in the stationary state. We assure existence of the steady state by assuming

that the macroscopic component of transcription is constant τ(t) = b and obtain

(see supplementary section 4.8 for derivation)

ACFpf (t) = a1 exp(−γζt) + a2 exp(−γrt) (4.12)

+ a3 exp(−γpt) + a4 exp(−(γp + kf )t) + a5 exp(−(γp + km)t),

where a1, ..., a5 are time independent functions of model parameters. We say

that the observed fluctuations have long memory (are slow) if the ACF is a slowly

decreasing function of time. Formula (4.12) shows that there are five main param-

eters that determine how the ACF depends on time and therefore jointly determine

the total memory of the observed fluctuations. These parameters are: decay rate

of transcriptional fluctuations γζ , mRNA and protein degradation rates γr, γp and

kinetic parameters of maturation kf , km. Therefore estimates of all these param-

eters are necessary in order to understand the origins of the observed fluorescence

fluctuations.

The Fourier transform of the ACF (4.12) gives the power spectrum of the fluores-

cent protein fluctuations. Analysis of the spectrum (see supplementary section 4.8)

reveals that the variability generated at the transcriptional level undergoes low pass

filtering. Therefore fast transcriptional fluctuations (large γξ) will be filtered out.

The strength of the filtering depends on γr, γp, kf , km. For large values of these

parameters high frequencies have a smaller contribution to the observed variability.
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The above analysis, similar to the more insightful studies [Austin et al., 2006, Dong

and McMillen, 2008, Wang et al., 2008], is important from the point of view of

inference. It shows that the filtering effect influences the identifiability of model

parameters. Fast transcriptional fluctuations will not be present in the fluorescent

signal and therefore the precision of estimates for γζ , σ
2
ζ will be limited. In further

sections we demonstrate that our inference framework can detect this effect and

account for it so that estimates of other model parameters are not affected.

4.5 Inference from fluorescent microscopy experimental data

In this section we present a method for estimating parameters of the equations

(4.1-4.10) from sequences of single cell fluorescent microscopy measurements

u = (ut0 , . . . , utn). (4.13)

Let y denote values of the process pm evaluated at times t0, ..., tn

y = (pmt0 , . , pmtn). (4.14)

It can be shown (see supplementary section 4.8) that y has a Gaussian distribution

P(y|Θ) = ψ(y|µ(Θ),Σ(Θ)), (4.15)

where Θ is a vector of all unknown parameters of equations (4.1-4.10),

ψ(·|µ(Θ),Σ(Θ)) is a multivariate Gaussian density with mean vector µ(Θ) and co-

variance matrix Σ(Θ) whose elements can be calculated numerically in a straight-

forward way (see supplementary section 4.8).

In order to find the distribution of the measurements u we define the relation

between the time series of protein concentration y and the measurements u, as-

suming that the fluorescent signal is proportional to the number of fluorescent

molecules with additional measurement error

uti = λpmti + εti , (4.16)
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where λ is an unknown proportionality constant and εti is a measurement er-

ror. For mathematical convenience we assume that the joint distribution of the

measurement error is normal with mean 0 and known covariance matrix Σε, i.e.

(εt0 , ..., εtn) ∼ N(0,Σε). If measurement errors are independent with a constant

variance σ2
ε then Σε = σ2

ε I.

Equations (4.15, 4.16) and normality of the measurement error imply that the

distribution of the vector u is also Gaussian

P (u|Θ) = ψ(u|λµ(Θ), λ2Σ(Θ) + Σε). (4.17)

Henceforth λ is an element of vector Θ and will be estimated from experimental

data. Equation (4.17) provides the joint distribution of a single time series. Of-

ten not only single but many isogenic cells are simultaneously observed under a

fluorescent microscope. In this case the data matrix comprises l time series

U = (u(1), . . . ,u(l)). (4.18)

As the time series corresponding to different cells are independent the likelihood

function takes the form

P (U|Θ) =
l∏

i=1

ψ(u(i)|λµ(Θ), λ2Σ(Θ) + Σε). (4.19)

Since the likelihood is given explicitly, both maximum likelihood and a Bayesian

approach can be used in a straightforward way. To account for prior information

on parameters our methodology is embedded in the Bayesian paradigm where the

posterior distribution P(Θ|U) satisfies [Gamerman and Lopes, 2006]

P(Θ|U) ∝ P (U|Θ)π(Θ). (4.20)

The formulae (4.19) and (4.20) allow us to use the standard Metropolis-Hastings

(MH) algorithm [Gamerman and Lopes, 2006] to generate samples from the pos-

terior P(Θ|U).

4.6 Results

In this section we show that parameters of extrinsic noise can be inferred from

single reporter fluorescent microscopy time series, in contrast to currently avail-
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able methods that require double reporter gene experimental data [Chabot et al.,

2007, Rosenfeld et al., 2005]. In addition we estimate the kinetic parameters of

gene expression such as the transcription profile and the translation rate. Also

the scaling factor λ which relates the fluorescent signal to the number of matured

fluorescent proteins can be inferred from data.

The estimation of the model parameters is possible under the assumption that in-

formative prior distributions for degradation rates γr, γp are obtained in additional

experiments. These experiments are often not difficult to conduct [Gordon et al.,

2007]. Similarly, we use informative priors for the parameters of the protein matu-

ration process. These values are not gene or promoter dependent but characterise

the fluorescent reporter. They can either be found in literature [Tsien, 1998] or

estimated in experiments similar to those used to obtain degradation rates [Gordon

et al., 2007] .

As the transcription and translation rates and the parameters of extrinsic noise

(decay rate and variance) provide the insightful explanation of the observed fluo-

rescent variability, our method can be seen as a quantification of different types of

stochastic behaviours. To demonstrate its applicability we consider two examples.

The first is an inference from steady state fluctuations, while the second is based

on oscillatory, out-of-steady-state expression.

4.6.1 Stationary fluctuations

In this section, we consider a gene that is expressed in a steady state by assum-

ing that the deterministic component of the transcription rate is constant (i.e.

τ(t) = b). Using a modified version of Gillespie’s algorithm [Shahrezaei et al.,

2008], that allows for fluctuation in reaction rates (see supplementary section 4.8

for details) we generated 50 time series for parameter values that give rise to four

different types of stochastic fluctuations. The parameters values are presented in
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Table 4.1 and the corresponding fluorescence signal is plotted in Figure 4.1.

Type A represents fast transcriptional fluctuations (half-life 8 minutes), that due
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Figure 4.1: Detection of extrinsic noise in steady state data. Prior distributions (red
line) and posterior distributions (black line) of parameters γζ (top row), σ2

ζ (bottom
row). Posterior distributions correspond to estimates given in Table 4.2. For fast ex-
trinsic fluctuations (A,D) prior and posterior distribution are similar demonstrating that
extrinsic fluctuations have been filtered out. In contrast, posterior distributions for
slow extrinsic fluctuation (B,C) are significantly different from prior distributions and
represent information about extrinsic fluctuations contained in the data.

.

to the low pass filtering effect have relatively small impact on the observed signal.

In addition, the mRNA and protein degradation rates γr, γp are relatively large

so that the observed variability demonstrates rather homogeneous, short memory

behaviour.

Types B and C demonstrate the effect of long (half-life 83 minutes) and very long

(half-life 69 hours) transcriptional memory. The degradation rates of mRNA and

protein γr, γp are large (similarly to type A) so that the observed long-term mem-

ory behaviour at the fluorescent protein level is a result of the slow transcriptional
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fluctuations.

As the ACF in (4.12) indicates, slow fluorescence fluctuations may appear which

are not necessarily due to long memory in transcription but are, for instance, due

to a low mRNA degradation rate. This regime of behaviour is reflected in type

D where long-term memory of fluorescence appears despite short-term memory of

the transcriptional fluctuations (half-life 8 minutes).

The prior distributions and results of the inference are presented in Table 4.2 and

in Figure 4.2. All kinetic parameters of gene expression, particularly the transcrip-

tion and translation (b, kp) rates as well as the proportionality constant λ can

be estimated with reasonable precision. For the cases with slow extrinsic fluctu-

ations (B and C) the parameters of extrinsic noise γζ , σ
2
ζ have been estimated

from data. In cases A and D where extrinsic fluctuations are fast the obtained

posterior distribution are not much different from the uninformative priors (Figure

4.2). This is due to a lack of information about these parameters in the data,

that results from low pass filtering predicted by the analysis of the power spectral

density (see supplementary section 4.8). Although we cannot precisely estimate

the values of γζ , σ
2
ζ we can detect the filtering effect that is demonstrated by the

similarity of the prior and posterior distributions. This is presented in Figure 4.2,

where prior and posterior distributions for these parameters are plotted. We used

uninformative exponential priors (see Table 4.1). In contrast to cases A and D

the posteriors and priors are significantly different for cases B and C as the slow

extrinsic fluctuations are presented in the data.

This example demonstrates that our method can detect the influence of extrin-

sic fluctuations on the observed variability; if enough information is present in

the data, the half-life and variance of the extrinsic fluctuations can be accurately

estimated. Although this is an advantage in comparison to existing methods of

inferring extrinsic noise our approach is valid only under the assumption that ex-

trinsic noise arises from fluctuations in transcription rate. However, the origin of
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extrinsic fluctuations has never been confirmed experimentaly, therefore it would

be very valuable to use biological data and compare inference results provided

by our approach with that of other methods Elowitz et al. [2002a], Swain et al.

[2002a].

The separation of slow and fast fluctuations can be achieved by fitting a two

component autocorrelation function as shown in [Rosenfeld et al., 2005]. Never-

theless, such an ad hoc procedure will not provide information about the kinetic

parameters of gene expression and cannot distinguish between the sources of fast

and slow fluctuations. Moreover equation (4.12) shows that fluorescent fluctua-

tions can contain more than two time scales. Therefore, our method provides a

more insightful quantification method. Nevertheless its application requires prior

knowledge about degradation and maturation rates.

Parameter A B C D Prior
γr 0.44 0.44 0.44 0.1 Γ(0.44, 0.01)
γp 0.52 0.52 0.52 0.52 Γ(0.52, 0.01)
b 100 200 200 0.5 Exp(100)
kp 1 0.5 0.5 30 Exp(100)
γζ 5 0.5 0.01 5 Exp(10)
σζ 1 0.1 0.002 1.25 Exp(10)
λ 1 1 1 1 Exp(10)
km 4.16 4.16 4.16 4.16 Γ(4.16, 0.01)
kf 0.74 0.74 0.74 0.74 Γ(0.74, 0.01)

Table 4.1: Parameter values that correspond to the four different noise characteristics.
All rates are per hour. These values give raise to the four different types of stochastic
behaviour (Figure 4.1) and has been used to generate data to obtain estimates presented
in Table 4.2. Last column contains prior distributions used for estimation.

4.6.2 An oscillatory gene

Most often experimental data exhibit non-equilibrium behaviour [Chabot et al.,

2007, Sigal et al., 2006]. Theoretical models of gene expression have focused

on analysis of steady state distributions [Friedman et al., 2006, Paulsson, 2006,

Thattai and van Oudenaarden, 2001] with relatively little work done to analyse
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Par. Estimate A Estimate B Estimate C Estimate D

γr 0.457(0.326-0.587) 0.32(0.216-0.451) 0.401(0.248-0.563) 0.091(0.063-0.119)
γp 0.512(0.366-0.657) 0.439(0.277-0.618) 0.546(0.397-0.683) 0.492(0.35-0.613)
b 45.175(25.89-129.98) 45.484(4.22-199.33) 132.091(50.06-278.01) 0.399(0.21-0.65)
kp 2.089(0.443-4.597) 1.362(0.162-6.743) 0.743(0.168-1.833) 27.046(11.355-48.284)
γζ 15.677(4.207-34.209) 0.965(0.322-13.471) 0.01(0.003-0.016) 7.307(0.921-25.855)
σ2
ζ 3.658(0.067-15.792) 0.355(0.046-13.4) 0.002(0.001-0.003) 6.275(0.192-23.809)
λ 1(0.722-1.282) 1.183(0.773-1.648) 1.006(0.753-1.263) 1.091(0.801-1.407)
kf 0.741(0.563-0.892) 0.685(0.507-0.833) 0.731(0.553-0.883) 0.721(0.551-0.869)
km 4.161(3.97-4.315) 4.16(3.964-4.306) 4.162(3.962-4.315) 4.161(3.972-4.311)

Table 4.2: Posterior medians and 95% credibility intervals. Each of the estimates A,B,C
and D corresponds to inference from 50 independent time series generated using Gille-
spie’s algorithm with parameters given in Table 4.1. Data were extracted every 15 min-
utes and 101 point per trajectory were collected. Independent and normally distributed
error with variance σ2

ε = 1 was added to each data point. For estimation variance of
the measurement error was assumed to be known. Rates are per hour. The estimates
are based on the final 20,000 iterations of a run of 30,000 MCMC iterations. To ensure
identifiability of all model parameters we assumed that for both degradation rates and
protein maturation parameters kf , km informative prior distributions are available (see
Table 4.1). Priors for all other parameters were specified to be non-informative.
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Figure 4.2: Detection of extrinsic noise in steady state data. Prior distributions (red
line) and posterior distributions (black line) of parameters γζ (top row), σ2

ζ (bottom
row). Posterior distributions correspond to estimates given in Table 4.2. For fast ex-
trinsic fluctuations (A,D) prior and posterior distribution are similar demonstrating that
extrinsic fluctuations have been filtered out. In contrast, posterior distributions for
slow extrinsic fluctuation (B,C) are significantly different from prior distributions and
represent information about extrinsic fluctuations contained in the data.
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nonequilibrium protein fluorescent trajectories [Chabot et al., 2007, Rausenberger

and Kollmann, 2008]. In this section we demonstrate that our method can be

applied to a system that never reaches a steady state. Although we draw similar

conclusions to those in the previous section, this study demonstrates that the

method can be applied to a variety of biologically relevant experiments [Chabot

et al., 2007, Sigal et al., 2006]. We use oscillatory dynamics (similarly as in

[Chabot et al., 2007]) as an example of non-equilibrium expression. In this case

the deterministic component τ(t) of the transcription process kr(t) is modelled as

τ(t) = b0 sin(
2π

24
(b1t+ b2)) + b3. (4.21)

Both slow (half-life 3.5h) and fast (half-life 21 minutes) regimes of transcriptional

fluctuations are considered (see Table 4.3 for all parameter values). Figure 4.3

presents data generated using Gillespie’s algorithm (see supplementary section

4.8).

As presented in Table 4.3 and Figure 4.4 the parameters of transcription and

translation processes are estimated with accurate precision. For the case of slow

extrinsic fluctuations γζ , σ
2
ζ are inferred precisely. In the case of fast extrinsic

fluctuations the inferred posterior distributions of the parameters γζ , σ
2
ζ are not

much different from uninformative priors, which demonstrates the detection of the

filtering effect.

4.6.3 Necessity of all model components

In this section we demonstrate that all the components of the model (4.1-4.10,4.21)

are necessary to ensure reliable interpretation of the fluorescent signal. To do so

we consider two submodels of model (4.1-4.10,4.21). The first submodel as-

sumes immediate maturation i.e. we assume that we observe uti = λpti + εti and

kf = km = 0. The second submodel assumes immediate maturation and lack

of extrinsic noise i.e. γζ = σ2
ζ = 0. We have generated 400 independent trajec-

tories from the full model using Gillespie’s algorithm (see supplementary section

4.8) assuming that the deterministic part of transcription is oscillatory as given by
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Figure 4.3: Different noise characteristics exhibited in the fluctuations of the fluores-
cence level for out-of-steady-state expression. Top Fast extrinsic fluctuations, Bottom
Slow extrinsic fluctuations. Data generated using Gillespie’s algorithm using parameters
presented in Table 4.3.
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Figure 4.4: Detection of extrinsic noise in out-of-steady-state data. Prior distributions
(red line) and posterior distributions (black line) of parameters γζ (top row), σ2

ζ (bottom
row). Distributions correspond to the estimates for an oscillatory gene given in Table
4.3. Fast extrinsic fluctuations are not exhibited in the data therefore prior and posterior
distributions are similar. In case of slow extrinsic fluctuations posterior distribution is
significantly distinct from prior and contains information about extrinsic noise present
in the data.
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Parameter Prior Value F Estimate F Value S Estimate S

γr Γ(0.44, 0.01) 0.44 0.428(0.308-0.559) 0.44 0.392(0.251-0.524)
γp Γ(0.52, 0.01) 0.52 0.502(0.357-0.635) 0.55 0.502(0.326-0.656)
b0 Exp(100) 30 20.16(9.012-57.691) 30 44.287(9.735-119.943)
b1 Exp(1) 1 0.967(0.927-0.995) 1 1.018(0.983-1.044)
b2 N(0,9) 0 0.532(-0.258-1.218) 0 -0.105(-0.956-0.727)
b3 Exp(100) 50 35.405(15.283-100.669) 50 70.447(12.701-194.011)
kp Exp(100) 2 2.276(0.336-6.403) 2 1.315(0.223-4.193)
γζ Exp(10) 2 11.001(2.712-23.422) 0.2 0.235(0.128-0.492)
σ2
ζ Exp(10) 0.4 6.124(0.364-22.249) 0.02 0.029(0.012-0.094)
λ Exp(10) 0.1 0.117(0.063-0.172) 0.1 0.097(0.053-0.142)
kf Γ(0.74, 0.01) 0.74 0.724(0.546-0.879) 0.81 0.722(0.555-0.875)
km Γ(4.16, 0.01) 4.16 4.165(3.975-4.308) 4.16 4.162(3.972-4.307)

Table 4.3: Parameter values used for the simulation of the oscillatory gene data, prior
distribution, posterior medians and 95% credibility intervals. Value F and Estimate
F corresponds to fast extrinsic fluctuations, whereas Value S and Estimate S to slow
extrinsic fluctuations. Each of the estimates has been obtained from a data set of 50
independent time series sampled every 15 minutes for 25 hours (101 data points per
trajectory). Independent and normally distributed error with variance σ2

ε = 9 was added
to each data point. For estimation the variance of the measurement error was assumed
to be known. Rates are per hour. The estimates are based on the final 20,000 iterations
of a run of 30,000 MCMC iterations. To ensure identifiability of all model parameters
we assume that for both degradation rates, kf , km informative prior distributions are
available . Priors for all other parameters were specified to be non-informative.

equation (4.21). We simulated a large data set in this example to minimise un-

certainty about the model parameters arising from any shortage of data. Then we

used the full model (4.1-4.10,4.21) and both submodels to perform inference from

the generated data. The results are presented in Table 4.4. As already demon-

strated estimation using model (4.1-4.10,4.21) provides accurate values. Since a

large data set has been used this demonstrates that application of the linear noise

approximation does not result in any significant estimation bias. Inference using

submodel 1 results in substantial bias in the estimates of the translation rate kp

and of the phase shift parameter b2. This demonstrates that the incorporation of

the protein maturation process is necessary to obtain the underlying transcription

profile.

Estimates of all model parameters were subject to substantial bias if submodel 2

was used. As intuitively expected, this bias decreases as both protein maturation

process and extrinsic fluctuations become fast enough (data not shown). Nev-
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ertheless, fast maturation and fast extrinsic fluctuations are not common [Nagai

et al., 2002, Rosenfeld et al., 2005, Shahrezaei et al., 2008, Tsien, 1998] and

therefore our method provides a much needed and convenient tool to interpret a

fluorescent signal in the presence of slow extrinsic noise and slow maturation.

Param. Value Prior Estimate 1 Estimate 2 Estimate 3

γr 0.440 Γ(0.44, 0.01) 0.431(0.326-0.533) 0.429(0.383-0.468) 0.302(0.241-0.375)
γp 0.550 Γ(0.52, 0.01) 0.575(0.436-0.707) 0.516(0.456-0.565) 0.261(0.217-0.305)
b0 30.000 Exp(100) 36.160(20.150-65.999) 33.966(21.362-57.365) 6.222(5.575-6.766)
b1 1.000 Exp(100) 0.997(0.986-1.005) 0.994(0.983-1.001) 0.995(0.979-1.006)
b2 0 N(0, 9) -0.156(-0.767-0.288) -0.964(-1.229 - -0.713) (0.867(0.499-1.142)
b3 50.000 Exp(100) 61.889(32.173-116.100) 57.694(36.344-99.245) 7.425(6.520-8.169)
kp 2.000 Exp(100) 1.914(0.716-3.720) 0.928(0.431-1.501) 1.494(1.082-1.937)
γζ 0.200 Exp(10) 0.190(0.146-0.235) 0.177(0.137-0.213) -
σζ 0.012 Exp(10) 0.012(0.008-0.016) 0.011(0.007-0.014) -
λ 0.100 Exp(10) 0.096(0.071-0.118) 0.094(0.073-0.109) 0.164(0.126-0.195)
kf 0.74 Γ(0.74, 0.01) 0.792(0.617-0.946) - -
km 4.160 Γ(4.16, 0.01) 4.203(4.012-4.347) - -

Table 4.4: Parameter values used in simulation, prior distribution, posterior medians and
95% credibility intervals. Estimate 1 corresponds to the inference using model (4.1-4.10).
To obtain Estimate 2 we used a model that assumes immediate protein maturation. The
model used to obtain Estimate 3 assumes immediate maturation and lack of extrinsic
noise. The same data set composed of 400 independent trajectories generated using
Gillespie’s algorithm was used for inference. Time series were sampled every 15 minutes
for 25 hours (101 data points per trajectory). Rates are per hour. The estimates are
based on the final 20,000 iterations of a run of 30,000 MCMC iterations. Variance of
the measurement error was assumed to be known σ2

ε= 9. To ensure identifiability of all
model parameters we assumed that informative prior distributions for both degradation
rates, kf and km are available. Priors for all other parameters were specified to be
non-informative.

4.7 Discussion

The aim of this chapter is to suggest a reliable framework for the interpretation

of fluorescent reporter gene, single-cell, steady state and out-of-steady-state data.

We have developed a model that shows how the observed variability depends on

the kinetic parameters of a fluorescent reporter expression. The model is combined

with a statistical inference framework that allows us to explain the behaviour ob-

served in an experiment in terms of the underlying parameter values. Apart from
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stochasticity resulting from randomness of transcription, translation and degra-

dation events our approach accounts for variability arising from the kinetics of

fluorescent protein maturation as well as extrinsic noise represented as fluctua-

tions in transcription rate. The proposed method allow us to infer properties of

extrinsic noise such as strength and half-life from single reporter gene time-lapse

data, whereas other established methods require double reporter gene experiments.

To perform parameter inference we used the linear noise approximation to derive

an explicit formula for the likelihood of fluorescent reporter gene data measured

with error. The suggested procedure here is implemented in a Bayesian framework

using MCMC simulation to generate posterior distributions. We assure identifi-

ability of model parameters by assuming that informative priors for mRNA and

protein degradation rates as well as maturation parameters of fluorescent reporter

are available and also that the variance of measurement error is known. Therefore

the disadvantage of this approach is that it requires additional prior experiments

to determine these parameters, nevertheless they can be measured in a relatively

straightforward way described in [Gordon et al., 2007]. For some fluorescent pro-

teins such as GFP maturation rates can be found in the literature [Tsien, 1998].

We have successfully tested our approach using data simulated with Gillespie’s

algorithm and demonstrated that protein maturation and extrinsic noise must be

taken into account in order to reliably interpret the fluorescent signal.

We also investigated how the maturation process and transcriptional extrinsic noise

influence the dynamic properties of the fluorescence fluctuations as characterized

by the ACF and the power spectral density. These investigations revealed that both

processes significantly affect the rate at which the ACF decays. Furthermore, they

showed that the maturation process works as a low pass filter that filters out fast

fluctuations in the transcription rate.

In the field of quantitative gene expression promoter-fluorescent-protein fusions

are commonly used as reporters of transcriptional activity. This technique is used
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to address many important questions, particularly to investigate the ability of liv-

ing cells to grow, divide, sense and respond to its environment in the presence of

spontaneous fluctuations in their biochemical machinery. Experiments focused on

establishing the origins of variability in gene expression observed from isogenic cell

populations have influenced the view of how genes are regulated and how vari-

ability between cells arises [Elowitz et al., 2002a, Pedraza and van Oudenaarden,

2005, Rosenfeld et al., 2005]. Recent investigations draw attention to the as-

sumption in the current studies that the fluorescent protein expression reflects the

endogenous protein expression [Chubb, Dong and McMillen, 2008, Wang et al.,

2008], potentially leading to errors in interpretation. Here we confirm this findings

indicating that in order to accurately explain the magnitude, origins and temporal

dynamics of variability in gene expression from fluorescence measurements a math-

ematical model is required, that accounts for the properties of the reporter protein.

Our novel inference framework accounts for this factor and therefore allows us to

reliably obtain a dynamical, detailed picture of the noise in terms of the model

parameters.

4.8 Supplementary Information

This section contains details of mathematical models and statistical methods used

in the previous sections of this chapter.

4.8.1 Derivation of the model equations

In this section we derive model equations (4.1-4.8) described in the section 4.4.

As the mathematical theory of modelling chemical reactions is well established

[Van Kampen, 2006] we start with brief review of mathematical methods and

derive our model as a particular case of a general system.
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General framework for modelling of chemical kinetics

Our derivations in this subsection follow [Van Kampen, 2006] and [Elf and Ehren-

berg, 2003].

The chemical master equation (CME) is the primary tool to model the stochastic

behaviour of a reacting chemical system. It describes the evolution of the joint

probability distribution of the number of different molecular species in a spatially

homogeneous, well stirred and thermally equilibrated chemical system [Gillespie,

1992a]. Even though these assumptions are not necessarily satisfied in living or-

ganisms the CME is commonly regarded as the most realistic model of biochemical

reactions inside living cells. Consider a general system of N chemical species inside

a volume Ω and let X = (X1, . . . , XN)T denote the number and x = X/Ω the

concentrations of molecules. The stoichiometry matrix S = {Sij}i=1,2...N ; j=1,2...R

describes changes in the population sizes due to R different chemical events, where

each Sij describes the change in the number of molecules of type i from Xi to

Xi +Sij caused by an event of type j. The probability that an event of type j oc-

curs in the time interval [t, t+dt) equals f̃j(x,Ω, t)Ωdt. The functions f̃j(x,Ω, t)

are called mesoscopic transition rates. The probability that more than one event

will take place in a small time interval is of the higher order with respect to the

length of the interval. Finally, we assume that events taking place in disjoint time

intervals are independent, when conditioned on the events in the previous interval.

This specification leads to a Poisson birth and death process where the probability

h(X, t) that the system is in the state X at time t is described by the CME

[Van Kampen, 2006]

dh(X, t)

dt
= Ω

R∑
j=1

(
N∏
i=1

E−Sij − 1

)
f̃j(x,Ω, t)h(X, t). (4.22)

Here, E−Sij is a step operator defined by

E−Sijf(..., Xi, ...) = f(..., Xi − Sij, ...).
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Macroscopic rate equation

As the system’s volume Ω increases, relative fluctuations become negligible and

in the limit of infinitely large Ω the system becomes deterministic. To derive the

macroscopic rate equation we write the operator
∏N

i=1E
−Sij in the form of a first

order multivariate Taylor expansion

N∏
i=1

E−Sij = 1−
N∑
i=1

Sij
Ω

∂

∂xi
+O(Ω−2).

After substitution into the CME (4.22), in the limit of infinitely large Ω we obtain

dh(ϕ, t)

dt
= −

R∑
j=1

(
N∑
i=1

Sij
∂

∂φi

)
fj(ϕ, t)h(ϕ, t), (4.23)

where φi = limΩ→∞,X→∞Xi/Ω, ϕ = (φ1, . . . , φN)T and fj(ϕ, t) = limΩ→∞ f̃j(x,Ω, t).

The functions fj(ϕ, t) are called macroscopic transition rates.

This partial differential equation can be solved by the method of characteristics

[Evans, 1998]. The solution is called the macroscopoic rate equation and has the

form [Gardiner, 1985]

dφi
dt

=
R∑
j=1

Sijfj(ϕ, t) i = 1, 2, ..., N. (4.24)

The Linear noise approximation

In order to obtain the linear noise approximation the transition rates, f̃j(x, t) and

the step operator E· are Taylor expanded around the deterministic state ϕ in

powers of 1/
√

Ω. To obtain such an expansion process Xi is decomposed into

the deterministic ϕ and stochastic ξ = (ξ1, ..., ξN)T components according to the

relation

Xi ≡ Ωφi + Ω1/2ξi. (4.25)

The transition rates are expanded as follows

f̃j(x, t) = fj(ϕ, t) +
1√
Ω

N∑
i=1

∂fi(ϕ, t)

∂φi
ξi +O(Ω−1). (4.26)
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Similarly, we have an expansion of the step operator

N∏
i=1

E−Sij = 1−Ω−1/2

N∑
i=1

Sij
∂

∂ξi
+

1

2Ω

N∑
i=1

N∑
k=1

SijSkj
∂2

∂ξi∂ξk
+O(Ω−

3
2 ). (4.27)

Let Π(ξ, t) denote the probability distribution of ξ at time t. Using the fact that

the distribution h(X, t) is related to Π(ξ, t) through the relation

h(X, t) = h(Ωϕ+ Ω1/2ξ, t) = Π(ξ, t) (4.28)

and substituting (4.26), (4.27) and (4.28) into (4.22), we obtain the Fokker-Planck

equation describing the evolution of Π(ξ, t) [Elf and Ehrenberg, 2003]

dΠ(ξ, t)

dt
= −

N∑
i,k=1

[A]ik
∂

∂ξi
ξkΠ +

1

2

N∑
i,k=1

[
EET

]
ik

∂2Π

∂ξi∂ξk
, (4.29)

where

fi = fi(ϕ, t), [A]ik =
R∑
j=1

Sij
∂fj
∂φk

, (4.30)

E = S
√
diag(f(ϕ, t)),

[
EET

]
ik

=
R∑
j=1

SijSkjfj.

The related Itô diffusion equation has the form [Gardiner, 1985]

dξ(t) = A(t)ξdt+ E(t)dW. (4.31)

Model of fluorescent protein expression

The model of fluorescent gene expression introduced in section 4.4 is summarised

by the following stoichiometric equations

R1 : DNA
kr(t)−−→ DNA+R

R2 : R
γr−→ ∅

R3 : R
kp−→ R + P

R4 : P
γp−→ ∅

R5 : P
kf−→ Pf

R6 : Pf
γp−→ ∅

R7 : Pf
km−→ Pm

R8 : Pm
γp−→ ∅,

where R,P, Pf , Pm denote mRNA, protein, folded protein and matured protein
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respectively. Vectors of molecular copy numbers (X), concentrations (x), and

macroscopic counterparts are

X = (R,P, Pf , Pm), x = (r, p, pf , pm), ϕ = (φr, φp, φpf , φpm).

Subsequent elements of the above vectors refer to mRNA, protein, folded protein

and matured protein respectively. The mesoscopic and macroscopic transition rate

vectors and stoichiometric matrix have the form

f̃(x, t) =



kr(t)

γrr

kpr

γpp

kfp

γppf

kmpf

γppm



, f(ϕ, t) =



τ(t)

γrφr

kpφr

γpφp

kfφp

γpφpf

kmφpf

γpφpm



, (4.32)

S =


1 −1 0 0 0 0 0 0

0 0 1 −1 −1 0 0 0

0 0 0 0 1 −1 −1 0

0 0 0 0 0 0 1 −1

 .

As we want to model transcription rate as a stochastic process we distinguish

between the mesoscopic transcription rate kr(t) and the macroscopic transcription

rate τ(t).

Macroscopic rate equations

To obtain the macroscopic description of our model we put formulae (4.32) into

eq. (4.24)

φ̇r = τ(t)− γrφr,

φ̇p = kpφr − (γp + kf )φp,

φ̇pf = kfφp − (γp + km)φpf , (4.33)

φ̇pm = kmφpf − γpφpm .
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Linear noise approximation

In the LNA the deterministic and stochastic part are separated according to (4.25).

The deterministic part of our model is described by MRE (4.33). To describe the

stochastic part we write drift and diffusion matrices A, E according to (4.30) and

(4.32)

A =


−γr 0 0 0

kp −(γp + kf ) 0 0

0 kf −(γp + km) 0

0 0 km −γp

 , (4.34)

E(t) =



√
τ(t) −

√
γrφr 0 0 0 0 0 0

0 0
√
kpφr −

√
γpφp −

√
kfφp 0 0 0

0 0 0 0
√
kfφp −

√
γpφpf −

√
kmφpf 0

0 0 0 0 0 0
√
kmφpf −

√
γpφpm

 .

(4.35)

Therefore equation (4.31) that describes the stochastic part of the system has

the form

dξr = (kr(t)− γrξr)dt+
√
τ(t) + γrφr(t)dW1,

dξp = (kpξr − (γp + kf )ξp)dt+
√
kpφr(t) + γpφp(t)dW2 −

√
kfφp(t)dW3, (4.36)

dξpf
= (kfξp − (γp + km)ξpf

)dt+
√
kfφp(t)dW3 +

√
γpφpf

(t)dW4 −
√
kmφpf

(t)dW5,

dξpm
= (kmξpf

− γpξpm
)dt+

√
kmφpf

(t)dW5 +
√
γpφpm

(t)dW6,

The volume of the system is unknown and we set Ω = 1 so that the concentration

equals the number of molecules. Using the equations (4.25), (4.33) and (4.36) we

obtain

dr = (kr(t)− γrr)dt+
√
τ(t) + γrφr(t)dW1,

dp = (kpr − (γp + kf )p)dt+
√
kpφr(t) + γpφp(t)dW2 −

√
kfφp(t)dW3, (4.37)

dpf = (kfp− (γp + km)pf )dt+
√
kfφp(t)dW3 +

√
γpφpf

(t)dW4 −
√
kmφpf

(t)dW5,

dpm = (kmpf − γppm)dt+
√
kmφpf

(t)dW5 +
√
γpφpm(t)dW6.
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Extension by extrinsic noise

As described in section 4.4 we model the extrinsic noise as a stochastic transcription

process

kr(t) = τ(t)(1 + ζ(t)) (4.38)

where ζ is an Ornstein-Uhlenbeck process

dζ = (−γζζ)dt+ σζdW7. (4.39)

Therefore the final system composed of equations (4.33) and (4.39) can be written

in the form

dx = (A(t)x + F(t))dt+ E(t)dW, (4.40)

where x = (ξ, r, p, pf , pm),

A(t) =



−γζ 0 0 0 0

τ(t) −γr 0 0 0

0 kp −(γp + kf ) 0 0

0 0 kf −(γp + km) 0

0 0 0 km −γp


, (4.41)

E(t) =



σξ 0 0 0 0 0 0 0 0

0
√
τ(t) −

√
γrφr 0 0 0 0 0 0

0 0 0
√
kpφr −

√
γpφp −

√
kfφp 0 0 0

0 0 0 0 0
√
kfφp −

√
γpφpf −

√
kmφpf 0

0 0 0 0 0 0 0
√
kmφpf −

√
γpφpm


(4.42)

and

F(t) = (0, τ(t), 0, 0, 0)T . (4.43)

4.8.2 Derivation of the autocorrelation function and power spectral den-

sity

In this section we derive the autocorrelation function (ACF) and power spectral

density for the stationary state of the stochastic process given by equation (4.40).

If the matrix A is time independent and all its eigenvalues have negative real parts
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then the stationary state exists [Gardiner, 1985]. Therefore, we assure existence

of the stationary state setting τ(t) = b. As the degradation, folding and oxidation

rates are positive it is straightforward to verify that all eigenvalues are negative.

It can be shown [Gardiner, 1985] that for an equation of type (4.40) the autocor-

relation function has the form

ACF (t) = 〈(x(s+ t)− 〈x(s+ t)〉)(x(s)− 〈x(s)〉)T 〉 = exp(At)Ξ for t ≥ 0,

(4.44)

where matrix Ξ is a stationary covariance matrix arising by the fluctuation-dissipation

theorem [Gardiner, 1985] as a solution of the equation

AΞ + ΞAT + EET = 0. (4.45)

Element (5, 5) of the matrix ACF (t) gives the autocorrelation function of the

process pm ACFpm(t). Matrix A has five different eigenvalues: λ1 = −γζ , λ2 =

−γr, λ3 = −(γp + kf ), λ4 = −(γp + km), λ5 = −γp. This and eq. (4.44) imply

that for t ≥ 0 ACFpm(t) can be represented as

ACFpm(t) = a1 exp(−γζt) + a2 exp(−γrt) (4.46)

+ a3 exp(−(γp + kf )t) + a4 exp(−(γp + km)t) + a5 exp(−γpt).

Constants a1, a2, a3, a4, a5 are functions of the model parameters and do not de-

pend on time. They have to complicated form to be presented here. As discusses

in section 4.4 this form of ACFpm demonstrates that there are 5 parameters that

jointly determine memory of the observed fluctuations.

The Fourier transform of the autocorrelation function (4.44) gives a power spectral

density S(ω) of the stationary state of equation (4.40). It can be shown [Gardiner,

1985] that for equations of type (4.40) the power spectral density has the form

S(ω) =
1

2π
(A + iω)EET (AT − iω)−1. (4.47)

The spectral density S(ω) is a 5×5 matrix where the element (5, 5) corresponds to

the spectral density of fluctuations of the matured proteins Spm(ω). Using matrix
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manipulation software [Maple] we obtained

Spm(ω) =
1

2π

km
2kf

2kp
2kr

2σζ
2(

(γp + km)2 + ω2
) (

(γp + kf )
2 + ω2

)
(γr2 + ω2) (γζ2 + ω2) (γp2 + ω2)

+
km

2kf
2kp

2qr
2(

(γp + km)2 + ω2
) (

(γp + kf )
2 + ω2

)
(γr2 + ω2) (γp2 + ω2)

(4.48)

+
km

2kf
2 (qp

2 + qpf
2)(

(γp + km)2 + ω2
)

(γp2 + ω2)
(
(γp + kf )

2 + ω2
)

+
km

2 (qpf
2 + qf

2 + qfm
2)(

(γp + km)2 + ω2
)

(γp2 + ω2)

+
qfm

2 + qm
2

γp2 + ω2

− 2
k2
mkfq

2
pf (γp + kf )(

(γp + km)2 + ω2
)

(γp2 + ω2)
(
(γp + kf )

2 + ω2
)

− 2
kmq

2
fm(

(γp + km)2 + ω2
)

(γp2 + ω2)

where

qr =
√

2b,

qp =

√
kpb

γr
+

kpbγp
γr (γp + kf )

,

qf =

√
γpkfkpb

(γp + km) γr (γp + kf )
,

qm =

√
kmkfkpb

(γp + km) γr (γp + kf )
, (4.49)

qpf =

√
kfkpb

γr (γp + kf )
,

qfm =

√
kmkfkpb

(γp + km) γr (γp + kf )
.

This representation shows how the stochasticity arising at each step of expression

contributes to the observed variability in terms of frequencies. For instance the

first element of the sum in (4.48) shows that variability generated at the tran-

scriptional level (term containing σ2
ζ ) undergoes a low pass filtering (first term of

the spectrum is a quickly decreasing function of ω). Therefore fast transcriptional

fluctuation (large γξ) will be filtered out. The strength of the filtering depends

on γr, γp, kf , km. For large values of these parameters high frequencies have a
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smaller contribution to the observed variability.

4.8.3 Derivation of the likelihood function

In this section we derive the likelihood function 4.15. First, we find the transition

densities of the process x(t) defined by eq. (4.40). For an initial condition x(ti) =

xti and t > ti eq. (4.40) has a solution of the form [Arnold, 1974]

x(t) = Φti(t−ti)
(

xti +

∫ t

ti

Φti(s− ti)−1F(s)ds+

∫ t

ti

Φti(s− ti)−1E(s)dW (s)

)
,

(4.50)

where the integral dW (s) is in Itô sense and Φti(s) is the fundamental matrix of

the non-autonomous system of ordinary differential equations (ODEs)

dΦti

ds
= A(ti + s)Φti , Φti(0) = I. (4.51)

Equations (4.50) and (4.51) imply that the transition densities of the process x

are Gaussian [Oksendal, 1992]

p(xti |xti−1
,Θ) = ψ(xti |µi−1,Ξi−1) (4.52)

where Θ denotes the vector of all model parameters, ψ(·|µi−1,Ξi−1) is the normal

density with mean µi−1 and covariance Ξi−1 specified by

µi−1 = Φti−1
(ti − ti−1)

(
xti−1

+

∫ ti

ti−1

Φti−1
(s− ti−1)−1F(s)ds

)
, (4.53)

Ξi−1 =

∫ ti

ti−1

(Φs(ti − s)E(s))(Φs(ti − s)E(s))Tds.

We use the transition densities of the process x to find the probability distribution

of the vector y = (pmt0 , ..., pmtn). To do so we assume that the distribution of xt0

is also Gaussian with mean ϕ(t0) and covariance matrix Ξ−1. This assumption is

natural, as equation (4.40) implies a Gaussian distribution of xt for a fixed initial

condition xt0 . Using this assumption and eq. (4.52), (4.53) it is straightforward

to write xti as

xti = ϕti +
i∑

j=0

Φtj(ti − tj)ςtj , (4.54)
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where ςtj are independently normally distributed random variables with mean 0

and covariance matrix Ξj−1. Let x̄ = (xt0 , ...,xtn).

The representation (4.54) implies that

P(x̄|Θ) = ψ(x̄|(ϕt0 , . . . , ϕtn), Σ̂), (4.55)

where the covariance matrix Σ̂ = {Σ̂(i,j)}i,j=0,...,n, is a 5(n+ 1)× 5(n+ 1) block

matrix that is composed of the 5×5 submatrices Σ̂(i,j) = Cov(xti ,xtj). It follows

from representation (4.54) that covariances Cov(xti ,xtj) can be computed using

the following relations (j ≥ i)

Cov(xt0 ,xt0) = Ξ−1, (4.56)

Cov(xti ,xti) = Ξi−1 + Φti−1
(ti − ti−1)Cov(xti−1

,xti−1
)Φti−1

(ti − ti−1)T ,

Cov(xti ,xtj+1
) = Cov(xti ,xtj)Φtj(tj+1 − tj)T .

In order to find the likelihood function P(ȳ|Θ) for the data vector y = (pmt0 , ..., pmtn)

from the augmented likelihood (4.55) we use the fact that the marginal distribu-

tions of the normal distribution are normal. Thus, we obtain

P(y|Θ) = ψ(y|(φpm(t0), . . . , φpm(tn)),Σ), (4.57)

where the covariance matrix Σ = {σ2
(i,j)}i,j=0,...,n and σ2

(i,j) = Cov(pmti , pmtj).

Therefore the covariances σ2
(i,j) are given by the elements (5, 5) of matrices Σ̂(i,j).

Estimation of the initial mean and the covariance matrix

Calculation of the likelihood function (4.57) requires the specification of the initial

mean vector ϕ(t0) and the initial covariance matrix Ξ−1. A natural solution to this

problem is to estimate them, in the way all the other parameters of the model are

estimated. Nevertheless, sometimes we know more about ϕ(t0) and Ξ−1 from the

conditions under which the experimental data are obtained. For instance, for some

experiments, it may be reasonable to assume that at time t0 the system is in the

steady state. In this case ϕ(t0) and Ξ−1 can be expressed as the stationary mean

and the stationary variance that are functions of the parameters of eq. (4.40). For
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equation (4.40) the steady state exists for a constant macroscopic transcription

rate τ(t) = b as the values of degradation, folding and oxidation rates are positive

and imply negative eigenvalues of matrix A. Therefore in the examples of the

stationary gene expression in section 4.6 we calculate the initial mean as

ϕ(t0) = −A−1F. (4.58)

The initial covariance matrix can be obtained using fluctuation-dissipation theorem

as the solution of the equation

AΞ−1 + Ξ−1A
T + EET = 0. (4.59)

In many situations the system of interest is not in the stationary state at time

t0. Nevertheless if we can predict its behaviour before t0 we can also calculate

the initial mean vector and initial covariance matrix. We demonstrate this idea

using the example of the oscillatory gene expression from section 4.6. For a

given parameter vector Θ we can calculate the transcription rate τ(t) for t ≤ t0.

Therefore we choose t00 � t0 and assume that xt00 ∼ N(µ00,Ξ00), where µ00,

Ξ00 are set arbitrarily. Using equation (4.53) we calculate ϕ(t0) and Ξ−1. If

t0 − t00 is large enough then the system ”forgets” influence of µ00, Ξ00 as the

eigenvalues of A(t) are negative for all t ∈ [t00, t0]. In this way we can obtain a

good approximation of ϕ(t0) and Ξ−1.

4.8.4 Data generation

The standard Gillespie algorithm [Gillespie, 1977] allows to simulate data for sys-

tems with constant reaction rates. In our model transcription rate kr(t) is a

stochastic process. Hence, to generate data we use a modified version of Gille-

spie’s algorithm proposed in [Shahrezaei et al., 2008]. We briefly summarise this

approach. If the transcription rate is time dependent, then for a given sample path

of kr(t) the probability density of the transcription reaction occurring at time τ is

P(τ) = kr(τ) exp

(∫ τ

0

kr(t)dt

)
. (4.60)
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During the simulation we need to sample τ from P(τ). Therefore we generate a

sample path of kr(t) defined by eq. (4.38) using the Euler method [Kloeden and

E., 1999]. We sample a random number υ from uniform distribution on [0, 1] and

find τ by solving ∫ τ

0

P(s)ds = υ. (4.61)

Equivalently τ can be found as a solution to the simpler equation

∫ τ

0

kr(s)ds = log(
1

υ
) (4.62)

which has been obtained by inserting (4.60) into (4.61) and performing the inte-

gration. To solve (4.62) for τ we follow the procedure proposed in [Shahrezaei

et al., 2008].

4.8.5 Notes on the practical implementation of the algorithm

In this section we discuss the details of the Metropolis-Hastings (MH) algorithm

used to sample from posterior distribution 4.20.

Model parameterization

First we describe reparameterization of our model that allows us to reduce auto-

correlation of the chains generated using the MH algorithm.

We focus on the case of the oscillatory gene expression, where the vector of the

model parameters Θ has the form

Θ = (γr, γp, b0, b1, b2, b3, kp, γζ , σ
2
ζ , λ, kf , km). (4.63)

Parameterization of the stationary gene expression is done analogously. Instead of

using parameters Θ we parametrize the model in terms of Θ̄ = (θ̄0, ..., θ̄11) such
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that Θ = ν(Θ̄), where function ν is defined as follows

γr = exp(θ̄0),

γp = exp(θ̄1),

λ = exp(θ̄4),

km =
exp(θ̄11))

exp(θ̄4)
,

kf =
exp(θ̄3))

exp(θ̄11)
,

kp =
exp(θ̄8))

exp(θ̄3)
, (4.64)

b3 =
exp(θ̄5))

exp(θ̄8)
,

b0 =
exp(θ̄2))

exp(θ̄8)
,

b1 = θ̄6,

b2 = θ̄7,

γζ = exp(θ̄9),

σ2
ζ = exp(θ̄10).

Therefore we have the following relation between the probability distributions ex-

pressed in terms of Θ and Θ̄ [Gamerman and Lopes, 2006]

P (U|Θ̄) ∝ P (U|ν(Θ̄))π(ν(Θ̄))|J(ν(Θ̄))|, (4.65)

where |J(ν(Θ̄))| is the determinant of the Jacobian matrix of parameterization ν.

It is straightforward to verify that

|J(ν(Θ̄))| = exp(θ̄0) exp(θ̄1) exp(θ̄5) exp(θ̄2) exp(−θ̄8) exp(θ̄9) exp(θ̄10). (4.66)

In further sections we denote P (U|ν(Θ̄))π(ν(Θ̄))|J(ν(Θ̄))| by P̄ (Θ̄,U).

Updating Θ̄

Parameter vector Θ̄ is updated using a random-walk Metropolis algorithm. Let

Θ̄(i) be the value of Θ̄ at iteration i of the MCMC algorithm. A new value Θ̄(new)
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is proposed from the symmetric proposal distribution

Θ̄(new) ∼ N(Θ̄(i),Λ).

The new value θ̄
(new)
j is then accepted with probability

min

{
1,

P̄(Θ̄(new),U)

P̄(Θ̄(i),U)

}
.

If Θ̄(new) is not accepted then Θ̄(i+1) = Θ̄(i). The covariance matrix of the proposal

distribution Λ is tuned carefully in order to ensure an efficient exploration of the

parameter space. If the proposed moves are too large, too small or do not reflect

correlations between parameters then the convergence of the chain may be very

slow. To obtain a ”good” Λ we run prior, short simulation of a chain with an

arbitrary Λ and estimate a new Λ based on the generated chain. The new Λ

usually achieves good convergence in the main simulation.

Computation of the likelihood

Here we give a summary of the computation of the likelihood function 4.15. We

assume that the initial condition ϕ(t0) and initial covariance matrix Ξ−1 have been

found according to the procedure described in the section 4.8.3. Computation is

performed as follows

1 Numerically find ϕ(t) for t ∈ [t0, tn] ;

2 For i = 0, ..., n−1 numerically find fundamental matrices Φti(ti+1−

ti)

3 Find numerically matrices Ξi−1 for i = 0, ...n;

4 Use matrices computed in steps 2 and 3 to construct covariance

matrix Σ̂ according to the procedure from section 4.8.3;

5 Extract covariance matrix Σ from Σ̂ (according to section 4.8.3);

6 For given data u evaluate multivariate normal density with mean

vector
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λ(ϕ(t0), ..., ϕ(tn−1)) and covariance matrix λ2Σ + Σε, where λ and

Σε are defined in section 4.4.

Numerical approximation of fundamental matrices

Consider the linear ODE
dΦs

dt
= A(s+ t)Φs, (4.67)

where A(s + t) and Φs are an N × N matrices. Let Φs(t) be the solution of

this with initial condition the identity matrix i.e. Φs(0) = I. In order to compute

the transition density covariances Ξi−1 (eq. (4.53) ), it is necessary to find these

matrices. This can be done by solving the equation directly, which gives Φs(t)

as t varies. For computation of matrices Ξi−1, however, it is more convenient to

iterate backwards the equation for Φs(t− s), with an initial condition Φt(0) = I,

as a function of s.

To derive the equation for Φs(t− s) we use the fact that

d

ds

(
Φ0(s)−1Φ0(s)

)
=

(
d

ds
(Φ0(s)−1

)
Φ0(s) + Φ0(s)−1 d

ds
Φ0(s) = 0. (4.68)

Therefore
d

ds
Φ0(s)−1 = −Φ0(s)−1

(
d

ds
Φ0(s)

)
Φ0(s)−1 (4.69)

and

d

ds
Φs(t− s) =

d

ds

(
Φ0(t)Φ0(s)−1

)
= −Φ0(t)Φ0(s)−1

(
d

ds
Φ0(s)

)
Φ0(s)−1. (4.70)

Finally
d

ds
Φs(t− s) = −Φs(t− s)A(s). (4.71)
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Chapter 5

Inferring parametric distributions

of reporter protein degradation

rates with a Bayesian hierarchical

model

5.1 Author Contributions and chapter’s structure

This chapter is a result of a joint work between Micha l Komorowski, Claire V.

Harper and Bärbel Finkenstädt. MK did numerical simulations and wrote the

chapter, CVH conduced cycloheximide experiment, BF suggested usage of hierar-

chical modelling and supervised the study.

Sections 5.2 - 5.5 are followed by supplementary section 5.6 that contains details

of mathematical modeling and statistical methods.

5.2 Introduction

Understanding biological processes on the molecular level is fundamental to our

investigation of cellular phenomena (e.g. [Blake et al., 2006, Losick and Desplan,
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2008]). Careful use of mathematical models allows us to provide detailed descrip-

tion of the dynamics of complex biochemical interactions underlying functioning

of living cells [Chabot et al., 2007, Hoffmann et al., 2002, Nelson et al., 2004].

The dynamics of gene expression is an example of a system where mathematical

modelling proved to be particularly useful in bringing insight into understanding

of cellular processes [Paulsson, 2005, 2006, Swain et al., 2002a, Thattai and van

Oudenaarden, 2001].

In addition, recent development in fluorescent microscopy technology enabled us

to measure levels of reporter proteins in vivo [Tsien, 1998, Wu and Pollard, 2005].

However, to understand how the observed fluorescence level relates to the dynam-

ics of gene expression the knowledge of mRNA and reporter protein degradation

rates is extremely useful [Chabot et al., 2007, Finkenstadt et al., 2008, Heron

et al., 2007]. As reporter proteins are applied in a variety of different systems

which may have different mRNA and protein degradation rates we need a robust

method to determine these rates for the relevant experimental conditions.

The standard method for estimating the degradation rates of fluorescent reporter

proteins is to treat a cell culture with a translational inhibitor to stop the formation

of the protein [Gordon et al., 2007] and fit exponential curve to the obtained av-

eraged measurements. This method is not without its problems. Firstly, inhibiting

translation invariably results in the death of the cell so estimating the rates has

to be done on a cell sample that is separate to the sample used in an experiment

of interest. As such taking the average of this sample may not correspond to the

samples used in the experiment, biasing the result. Furthermore, degradation rates

naturally vary between cells so using a fixed degradation rate for all the samples

in the experiment may introduce errors, especially if the variance of the degrada-

tion rates is large. Additionally, translation is never fully inhibited as some protein

molecules will still be created biasing the degradation rate estimates.

In this chapter we present a method that overcomes these problems. It is achieved
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by the creation of suitable model that parameterizes protein degradation rates.

Our model is extended to estimate the population distribution of the degradation

rates which allows us to incorporate information on the cellular variation of the

rates.

In the next section we derive the standard model for the determination of reporter

protein degradation rates and propose an inference framework that is embedded

in a Bayesian hierarchical approach. Then we apply the method to experimental,

fluorescent reporter gene data.

5.3 Model

Under the influence of translational inhibitor translation level drops to a small

basal level kp and the initial protein level begins to decrease at rate γp [Gordon

et al., 2007]. Therefore the natural model can be expressed by the single ordinary

differential equation

φ̇p = kp − γpφp, (5.1)

where φp is the protein concentration. Henceforth we call φp the macroscopic

protein concentration. As the single cell experimental data exhibit non negligible

variability we use the stochastic model. To determine its analytical form we use

the linear noise approximation [Elf and Ehrenberg, 2003, Komorowski et al., 2009a,

Van Kampen, 2006] and obtain

dp = (kp − γpp)dt+
√
kp + γpφpdW, (5.2)

where p is the protein concentration and φp is the macroscopic protein con-

centration given by a solution of eq. (5.1) and W is a Wiener process. The

unique solution of equation (5.2) requires the specification of the initial conditions

φp(t0), p(t0). As we do not know the history of a cell before time t0 we assume
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that φp(t0) = p(t0) and treat this quantity as a model parameter.

Considering the relation between experimental measurements cellular protein con-

centration we assume that single cell measurements ut are taken at times t0, ..., tn

and that the data vector has the form

u = (ut0 , ..., utn). (5.3)

Fluorescent reporter data are usually assumed to be proportional to the number

of fluorescent molecules [Wu and Pollard, 2005] and measurements are subject to

measurement error. Therefore we assume that each measured uti is related to the

model variable pti through the relation

uti = λpmti + εti (5.4)

where λ is an unknown proportionality constant and εti is a measurement er-

ror. For mathematical convenience we assume that the joint distribution of the

measurement error is normal with mean 0 and known covariance matrix Σε, i.e.

(εt0 , ..., εtn) ∼ N(0,Σε). If measurement errors are independent with a constant

variance σ2
ε then Σε = σ2

ε I.

It can be shown that u has a multivariate Gaussian distribution (see Chapter 3 or

[Komorowski et al., 2009a])

P (u|θ) = ψ(u|λµ(θ), λ2Σ(θ) + Σε), (5.5)

where ψ denotes multivariate Gaussian density with mean vector λµ(θ) and co-

variance matrix λ2Σ(θ) + Σε. These are explicit functions of model parameters

(see supplementary section 5.6).

Assume now that we observe l cells simultaneously. In this case data matrix has

the form

U = (u(1), ...,u(l)). (5.6)

Usually experimental data indicate that values of kinetic parameters may differ

between cells. Bayesian hierarchical modelling [Gamerman and Lopes, 2006] pro-

vides a natural framework to account for this variability.
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To build a hierarchical model we assume that each time series ui is a reali-

sation of the process (5.2) with initial condition p(i)(0) and parameters θ(i) =

(γ
(i)
p , k

(i)
p , λ(i)). We assume that for each cell these parameters are drown from

the following distributions

γ(i)
p ∼ Γ(µγp , σ

2
γp), k(i)

p ∼ Γ(µkp , σ
2
kp), λ(i) ∼ Γ(µλ, σ

2
λ),

where Γ(µ·, σ
2
· ) denotes a gamma density with mean µ· and variance σ2

· . Let

Θ = (µγp , σ
2
γp , µkp , σ

2
kp
, µλ, σ

2
λ, σ

2
ε ). Assuming independence of γ

(i)
p , k

(i)
p , λ(i) the

above give the distribution of a vector θ(i) that we denote by P (θ(i)|Θ). Hi-

erarchical modelling aims to estimate the parameter vector Θ via the posterior

distribution P (Θ, θ(1), ..., θ(l), p(1)(0), ..., p(l)(0)|U) [Gamerman and Lopes, 2006].

Using Bayes’ rule we can write

P (Θ, θ(1), ..., θ(l), p(1)(0), ..., p(l)(0)|U) ∝
l∏

i=1

P (u(i)|p(i)(0), θ(i))P (θ(i)|Θ)π(Θ),

(5.7)

where π(Θ) is a prior distribution of vector Θ. As P (u(i), p(i)(0)|θ(i)), P (θ(i)|Θ)

are given by analytical formulae after the prior distribution π(Θ) is specified the

standard Metropolis-Hasting algorithm [Gamerman and Lopes, 2006] may be used

to generate samples from posterior distribution (5.7).

5.4 Results

Here we present results where we inferred the degradation rates distribution from

data obtained in an experiment in which translation was blocked by the addition

of cycloheximide (CHX) and fluorescence was imaged every 5.6 minutes for 10h

in 42 cells (Details of the experiment can be found in supplementary section 5.6).

The data are presented in Figure 5.1.

We used a standard Metropolis-Hastings algorithm to generate samples from the

posterior distribution P (Θ, θ(1), ..., θ(l), p(1)(0), ..., p(l)(0)|U) and use posterior me-

dians together with 95% credibility intervals as summary statistics. Results are

presented in Table 5.1. The corresponding parametric distributions are plotted
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in Figure 5.2. Measurement errors were assumed to be independent across cells

and times with mean zero and standard deviation σε. An exponential distributions

with mean 10 has been used as the uninformative prior for each of the parameters

µγp , σ
2
γp , µkp , σ

2
kp
, µλ, σ

2
λ, , σ

2
ε . For initial values p(i)(0) we used flat priors.

5.5 Discussion

In this chapter we have presented a novel method for the estimation of fluorescent

protein degradation rates. The method is embedded in the Bayesian hierarchical

modelling framework. Hierarchical approach allows us to quantify the variability

of kinetic parameters between cells. Well established methods infer a single value

of a degradation rate, whereas our approach provides not only values of degrada-

tion rates in individual cells but also a mean and variance of degradation rates in

the population. Instead of a deterministic approach we used a stochastic model

based on the linear noise approximation. It has the advantage that it accounts for

stochasticity in degradation and translation events so that it may be applied to

single-cell data without a risk of obtaining biased estimates.

To perform parameter inference we derived an analytic formula for the likelihood

of data observed with error and used Metropolis-Hasting algorithm to generate

samples from posterior distributions.

Although our hierarchical approach is applied here to the very simple stochastic

model in future it may be extended to larger models of gene expression and gene

regulation. This extension may be useful to quantify diversity in cellular popula-

tions, that is not only due to randomness of biochemical reactions but also result

from other genetic and epigenetic factors.
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Figure 5.1: Left: Fluorescence level from cycloheximide experiment is plotted against
time (in hours). Measurements were taken simultaneously in 42 cells every 5.6 minutes.
Right: Fluorescence data (thin gray lines) and deterministic fit (black bold line) given by
eq. 5.1 plotted using mean estimates presented in Table 5.1. The variation of SDE 5.2
is shown by the 10% and 90% quantiles (green lines) computed from 10000 simulations
using mean estimates given in Table 5.1. Bold red lines present the 10% and 90%
quantile of SDE 5.2 computed from 10000 simulation using rates drown from gamma
distribution with parameters given in Table 5.1 and initial condition p(0) drawn from
normal distribution with mean and variance calculated directly from the data.

Parameter Prior Estimate

µγp Exp(10) 0.49 (0.44-0.53)
σ2
γp Exp(10) 0.007 (0.002-0.016)

µkp Exp(10) 0.53 (0.37-0.73)
σ2
kp

Exp(10) 0.09 (0.02-0.29)

µλ Exp(10) 6.74 (5.87-7.86)
σ2
λ Exp(10) 5.35 (2.57-11.26)
σ2
ε Exp(10) 1.04 (0.04-5.80)

Table 5.1: Posterior median and 95% credibility intervals of parameters µγp , σ2
γp , µkpσ

2
kp

,

µλ, σ2
λ, σ2

ε inferred from experimental data presented in Figure 5.1 . Rates are per hour.
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Figure 5.2: Distributions of parameters γp (left),kp (middle), λ (right) inferred from data
presented in Figure 5.1. Curves plotted in black correspond to posterior distributions of
individual cells. Red curves present Gamma density with mean and variances presented
in Table 5.1

5.6 Supplementary information

This section contains details about mathematical models and statistical methods

used in the previous sections of this chapter.

5.6.1 Derivation of the mean vector and the covariance matrix

In this section we derive analytical formulae for the mean vector µ(Θ) and the

covariance matrix Σ(Θ).

It is straightforward to verify that solution of eq. (5.1) is given by

φp(t) = φp(0) exp(−γpt) + kp

∫ t

0

exp(−γp(t− s))ds (5.8)

= φp(0) exp(−γpt) +
kp
γp

(1− exp(−γpt)).

Similarly solution of eq. (5.2) has the form [Arnold, 1974]

p(t) = p(0) exp(−γpt) + kp

∫ t

0

exp(−γp(t− s))ds (5.9)

+

∫ t

0

exp(−γp(t− s))
√
kp + γpφ(s)dW.

Basic properties of Itô integral imply

〈p(t)〉 = 〈p(0)〉 exp(−γpt) + kp

∫ t

0

exp(−γp(t− s))ds (5.10)

= 〈p(0)〉 exp(−γpt) +
kp
γp

(1− exp(−γpt)),
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where 〈X〉 denotes expected value of a random variable X.

In order to find the covariance matrix Σ(Θ) = {σ2
i,j}i,j=0,...,n we calculate the

autocorrelation function 〈(p(t1)− 〈p(t1〉)(p(t2)− 〈p(t2)〉)〉. Formulae (5.9), (5.8)

and basic properties of Itô integral give for t1 ≤ t2

〈(p(t1)− 〈p(t1〉)(p(t2)− 〈p(t2)〉)〉 = (5.11)

〈(p(0)− 〈p(0)〉)2〉 exp(−γp(t1 + t2))

+ exp(−γp(t1 + t2))

∫ t1

0

exp(2γps)(kp + γpφ(s))ds.

Therefore

σ2
i,j = σ2

p(0) exp(−γp(ti + tj)) + exp(−γp(tj + ti))

∫ ti

0

exp(2γps)(kp + γpφ(s))ds,

(5.12)

where σ2
p(0) = 〈(p(0)−〈p(0)〉)2〉. To simplify formula (5.12) we use eq. (5.8) and

perform further integration∫ ti

0

exp(2γps)(kp + γpφp(s))ds = (5.13)

kp
γp

(exp(2γpti)− 1) +

(
φp(0)− kp

γp

)
(exp(γpti)− 1) .

Finally we obtain

σ2
i,j = (5.14)

exp(−γp(ti + tj))
(
σ2
p(0) +

kp
γp

(exp(2γpti)− 1) +
(
φp(0)− kp

γp

)
(exp(γpti)− 1)

)
.

As the history of a cell before time 0 is unknown we treat p(0) as a parameter of

the model and assume that p(0) = φp(0) = 〈p(0)〉 and σ2
p(0) = 0.

5.6.2 Cycloheximide experiment

Cycloheximide is an inhibitor of protein biosynthesis in eukaryotic organisms. It is

widely used to determine degradation rates of proteins. In the experiment GH3

rat pituitary cells stably transfected with 5kb human prolactin promoter estabilised

EGFP reporter construct (hPRL-d2EGFP) were seeded onto 35 mm glass coverslip-

based dishes (IWAKI, Japan) and cultured in 10% FCS for 24h prior to imaging.

Cells were transferred to the stage of a Zeiss Axiovert 200 equipped with an XL
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incubator (maintained at 37C, 5% CO2, in humid conditions) and images were ob-

tained using a Fluar x20, 0.75 numerical aperture (Zeiss), air objective. Excitation

of d2EGFP was performed using an Argon ion laser at 488nm. Emitted light was

captured through a 505-550 nm bandpass filter from a 545 nm dichroic mirror.

Images were captured every 5.4 min. 5 µM forskolin and 0.5 µM BayK 8644 was

added directly to the dish for 6h followed by the addition of 10µg/ml cyclohexam-

ide to inhibit translation. Data was captured and analysed using LSM510 software

with consecutive autofocus. Analysis was performed using Kinetic Imaging soft-

ware AQM6. Regions of interest were drawn around each single cell and mean

intensity data was collected over 10h.
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Chapter 6

Discussion

6.1 Summary

In this thesis we have presented a set of statistical methods for the inference of

biochemical kinetic parameters. We have demonstrated the use of well established

methods using experimental data as well as developed new methods testing them

using data generated in computer simulations as well experimental data.

In Chapter 2 we used methods based on ordinary differential equations and stochas-

tic differential equations to infer the kinetic rates of three different genes. A deter-

ministic model was applied to the averaged measurements of Arabidopsis thaliana

CAB2 protein and mRNA. A stochastic model was used for single rat pituitary cell

prolactin promoter fluorescence measurements. For Arabidopsis thaliana CCA1

clock gene data both deterministic and stochastic approach were used. We discuss

the advantages and limitations of fitting either stochastic or ordinary differential

equations and address the problem of parameter identifiability when model vari-

ables are unobserved. Our results demonstrate that MCMC methods for ODEs

and SDEs provide practical algorithms for the reconstruction transcription profiles

whilst estimating some of the kinetic rates involved. As the single-cell dynamics

is naturally stochastic SDEs provide the superior theoretical model. However the

mean ODE approach can be useful as a vehicle for estimation when the data are
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not fully compatible with the SDE assumptions.

The SDEs used for inference in Chapter 2 were derived from the chemical master

equation using the diffusion approximation. Transition densities for this type of

SDE are usually unknown, therefore we used data augmentation techniques to

obtain an approximation of transition densities. Our experience from work with

diffusion approximation based methods is that their implementation is challenging

especially for data that are sparsely sampled in time because the need for imputa-

tion of unobserved time points leads to a very high dimensionality of the posterior

distribution. This usually results in highly autocorrelated traces affecting the speed

of convergence of the Markov chain.

The aim of the Chapter 3 is to introduce the linear noise approximation as a useful

and novel approach to the inference of biochemical kinetics parameters. Its major

advantage is that an explicit formula of the likelihood can be derived even for

systems with unobserved variables and data observed with measurement error. In

contrast to the diffusion approximation based methods the computationally costly

methods of data augmentation to approximate the transition densities and to inte-

grate out unobserved model variables are not necessary. Our method considerably

reduces the dimension of the posterior distribution to the number of unknown

parameters of a model only and is independent of the number of unobserved com-

ponents. Applicability of the LNA is demonstrated using a model of single gene

expression together with experimental and simulated data.

In Chapter 4 we extend the standard model of gene expression used in Chapters

2 and 3 in order to propose a reliable framework for the interpretation of fluores-

cent reporter gene, single-cell, steady state and out-of-steady-state data. The new

model, firstly, incorporates extrinsic noise, modelled as stochastic fluctuations in

the transcription rate. Secondly, a maturation process was introduced to take ac-

count of variability generated by the stochastic maturation of a fluorescent reporter

protein. Therefore, apart from stochasticity resulting from randomness of tran-

scription, translation and degradation events, our approach accounts for extrinsic
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noise as well as variability arising from the kinetics of fluorescent protein matu-

ration. Our method allows to infer properties of extrinsic noise such as variance

and half-life from single reporter gene time-lapse data, whereas other established

methods require experiments employing two reporter genes.

In Chapter 5 we propose a Bayesian hierarchical model for estimation of fluorescent

reporter protein degradation rates. In contrast to standard methods the hierar-

chical approach allows us to quantify the variability of kinetic parameters between

cells. Instead of a single average value of the degradation rate the distribution

of the degradation rates in a population of cells can be inferred. Our model also

accounts for stochasticity in degradation and translation events and measurement

error.

6.2 Relevance

The functioning of living cells depends on the execution of a genetic program

determined by a complex networks of genes. Reliability of this program requires

steadfast signal transduction from one gene to another [Tkačik et al., 2008]. This

process is perturbed by spontaneous fluctuations arising from gene expression [Raj

and van Oudenaarden, 2008]. Reverse engineering of gene regulatory networks as

well as understanding their dynamical properties is a fundamental problem in cur-

rent biology. In vivo measurement technologies provide more and more data that

refer to the functioning of gene regulatory networks [Megason and Fraser, 2007].

Stochastic mathematical modelling is necessary in providing their systematic de-

scription [Wilkinson, 2009]. In order to explain experimentally observed behaviour

in a mathematical model statistical methods are needed for the the estimation

of its parameters [Jaqaman and Danuser, 2006]. This is important because the

picture obtained using inference techniques integrates the theoretical knowledge

resulting from mathematical modelling with experimental data and therefore offers

insight that is otherwise unavailable.
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The methodological concepts presented in this thesis seem to provide a reliable

and convenient framework that addresses the problem of integrating single-cell

reporter gene data with stochastic mathematical models. The main advantage of

the proposed approach based on the linear noise approximation is that it allows

for unobserved variables which is a common situation in current experimental

settings. In addition, a Bayesian framework allows for the portability of results

across different studies, providing a natural solution to parameter identifiability

problems. These advantages allow us to construct a model that constitutes a

general framework for interpretation of fluorescent time-lapse data and can extract

richer, more insightful description of gene expression process from experimental

data than currently available methods. As fluorescent reporters are primary tools

to observe the dynamics of gene expression reliable interpretation of this type of

data is of special significance.

6.3 Future extensions

The explicit formula for the likelihood of observed steady-state and out-of-steady-

state data allows us to ask questions that have only been vaguely addressed before.

For instance, the following problems can be approached:

1. How do the dynamical properties of noise differ between genes?

The method proposed in Chapter 4 can be used to estimate kinetic parameters of

gene expression as well as variance/strenght and half-life of extrinsic noise from

single fluorescent reporter gene time-lapsed data. These parameters provide a

detailed description of noise. Their comparison would provide a new insight into

differences in stochastic regulatory properties between different genes.

2. Can we assign variability in protein concentrations to individual reactions using

single reporter gene data?
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The total observed variability of the fluorescent proteins arises from ten major

sources: extrinsic noise, transcription, translation, protein folding, protein oxida-

tion, mRNA and protein degradation and measurement error. Schematic descrip-

tion of a model of expression of a fluorescent protein with depicted noise sources is

presented in Figure 6.1. Existing methods employ a double reporter gene construct

to distinguish between intrinsic and extrinsic noise. It can be shown (proof not pre-

sented) that the variance of the matured proteins σ2
pm(t) = 〈(pm(t)− 〈pm(t)〉)2〉

can be decomposed as follows σ2
pm(t) = σ2

1(t) + ... + σ2
9(t), where σ2

i (t) is the

contribution of ith source (reaction). More interestingly, the contributions σ2
i (t)

for i = 1, ..., 9 can be inferred from single reporter gene time-lapsed data using

the method proposed in Chapter 4. Inference of the individual contribution will

provide a very precise description of origins of the observed fluctuations.

3. Can we detect origins of extrinsic variability?

Although the definition of extrinsic noise is precise, the source of extrinsic fluctu-

ations is mostly unknown. The determination of its origins will help us to under-

stand how stochastic fluctuations influence gene expression in complex information

processing networks. The availability of an explicit formula for the likelihood of

observed data enables us to employ a statistical model selection framework for test-

ing hypotheses about the origins of extrinsic fluctuations. For instance, it would

be possible to test the hypothesis whether extrinsic noise occurs as fluctuations in

transcription or in translation rate.
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Figure 6.1: Further work: systems analysis of gene expression data at the single cell level.
The explicit formula for the likelihood function allows for detailed analysis of fluorescent
reporter gene data. The parameters of the model of single expression can be estimated
and compared between different genes (1); the total observed fluorescence variability
can be decomposed into the sum of contributions resulting from different sources (2);
the statistical model selection methods can be employed to detect the origins of extrinsic
variability (3)
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