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Abstract 
 

We address the value of information (VOI) and value of centralized control (VCC) in 

the context of a two–echelon, serial supply chain with one retailer and one supplier that 

provides a single perishable product to consumers.  Our analysis is relevant for managing 

slow moving perishable products with fixed lot sizes and expiration dates of a week or less. 

We evaluate two supply chain structures.  In the first structure, referred to as Decentralized 

Information Sharing, the retailer shares its demand, inventory, and ordering policy with the 

supplier, yet both facilities make their own profit-maximizing replenishment decisions.  In 

the second structure, referred to as Centralized Control, incentives are aligned and the 

replenishment decisions are coordinated.  The latter supply chain structure corresponds to the 

industry practices of company owned stores or vendor–managed inventory.   

We measure the VOI and VCC as the marginal improvement in expected profits that 

a supply chain achieves relative to the case when no information is shared and decision 

making is decentralized.  Key assumptions of our model include stochastic demand, lost 

sales, and fixed order quantities.  We establish the importance of information sharing and 

centralized control in the supply chain and identify conditions under which benefits are 

realized.  As opposed to previous work on the VOI, the major benefit in our setting is driven 

by the supplier’s ability to provide the retailer with fresher product.  By isolating the benefit 

by firm, we show that sharing information is not always Pareto improving for both supply 

chain partners in the decentralized setting.        

 

Keywords:  value of information, vendor managed inventory, supply chain management, 
perishable inventory 
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1. Introduction  

We place our research in the context of the grocery industry and, more specifically, in the 

area of managing perishables.   The quality, variety and availability of perishables have become 

an order winning criteria of consumers, representing the primary reason many consumers choose 

one supermarket over another (Hennessy 1998, Tortola 2005, Axtman 2006).  In turn, retailers 

have responded by dramatically increasing the number of SKUs they offer for sale (Tortola 

2005, Boyer 2006).  In some categories, such as produce, the average number of items stocked 

has doubled in the past five years and the trend is expected to continue (Axtman 2006). 

From an operational perspective, the growth in perishables creates additional challenges 

for retailers.  Increasing product variety creates a larger assortment over which demand is spread, 

contributes to an increasing number of slow moving perishables, and increases product spoilage 

(Boyer 2006).  Spoilage is a significant component of total store shrink, with current estimates 

indicating that shrink costs an average supermarket approximately $450,000 per year.  While 

perishable departments account for only 30% of total store sales, they contribute 56% to total 

store shrink  (National Supermarket Research Group 2003).  Moreover, the amount of shrink in 

perishables departments has consistently increased over the past six years (Tortola 2005).  From 

this perspective, the link between variety and spoilage is readily apparent.  There are generally a 

minority of products in an assortment that are high volume and account for the vast majority of 

sales which leaves a preponderance of low volume products accounting for a small percentage of 

sales.  Some retailers report that as much as 75% of their SKUs are slow moving (Småros et al. 

2004).  Our own analysis of item movement at a division of Albertson’s, consisting of seventy 

stores, indicates that 75% of packaged produce items are slow movers – selling less than a case 

per day with more than half (52%) of the items’ case sizes composed of ten units or less.   
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Clearly, efficient management of both fast and slow moving perishables are important 

elements to store profitability, but the management focus is different for each.  For fast moving 

items, spoilage principally arises when the product is unwrapped, displayed in bulk, and subject 

to consumer handling (Tortola 2005).  For slow moving packaged items, the challenge is 

managing inventory levels so that the product sells before its expiration date (Falck 2005).  In 

this paper, we restrict our analysis to the management of slow moving packaged perishables.  

Growth in these products is expected to continue as variety increases (Chanil and Major 2005), 

yet maintaining a proper balance between inventory and service level is particularly acute (Falck 

2005).  The case size (number of units packaged, ordered, and shipped together) imposes certain 

restrictions, as the size of a single case often represents several days of supply.  Even with small 

case sizes, low demand rates coupled with high demand variability challenge grocers in their 

ability to minimize spoilage, resulting in spoilage rates that can exceed 40% (Pfankuch 2006).   

We evaluate two common prescriptions cited in the literature to improve the management 

of perishable products: sharing information on demand or current inventory levels and 

coordinating replenishment activities (Falck 2005, Småros et al. 2004, Lee et al. 1997a,b).  

Although there is anecdotal evidence from practitioner activity that such initiatives have 

significant value, due to privacy and competitive issues, success stories are rarely communicated 

and many industry participants are quick to point out other opportunities like reducing case sizes 

(Småros et al. 2004).  Hence, there remains a lack of understanding among both academics and 

practitioners regarding the value of these initiatives.    

We address the value of information (VOI) and the value of centralized control (VCC) in 

the context of a two–echelon, serial supply chain with one retailer and one supplier that provides 

a single perishable product to consumers.  Replenishment decisions are limited to zero units or a 
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single case and the lead-time is effectively zero since an order placed after observing demand 

one day arrives before demand occurs the next day.  When the supplier is unable to meet a 

demand request from the retailer with stock on hand, an emergency shipment is incurred at a 

significant penalty cost.  The product’s lifetime is fixed and deterministic once produced.  Any 

unsold inventory remaining after the lifetime elapses must be discarded (outdated) at zero 

salvage value.  These assumptions capture characteristics of slow-moving packaged perishables 

with expiration dates of less than a week, where daily demand rates are typically less than a case, 

and overnight replenishments are available.   

We evaluate two scenarios.  In the first scenario, named Decentralized Information 

Sharing (DIS), both supply chain members share their inventory levels and replenishment 

policies with the other, but each facility makes its own profit maximizing replenishment 

decisions.  In the second scenario, named Centralized Control (CC), decision making is 

coordinated and corresponds to the practice of vendor–managed inventory (VMI).  We formulate 

the respective scenarios as Markov Decision Processes (MDPs) and measure the VOI and VCC 

as the marginal improvement in expected profit a supply chain achieves relative to the case of 

traditional replenishment.  Key characteristics of our model include stochastic demand, lost 

sales, and fixed order quantities.  

We establish the importance of information sharing and centralized control, identifying 

the conditions where substantial benefits are realized.  Through a numerical study, we find, on 

average, that by sharing information, product freshness increases 18%, outdating decreases by 

nearly 40%, and total supply chain expected profit increases 4.2%.  With centralized control, 

average expected profit increases 5.6%, but product freshness may decrease and, consequently, 

outdating my increase.  Moreover, the benefit of sharing information in the absence of 
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coordination is not always Pareto improving for both firms.  We also provide some insights into 

the problem when the case size may be changed.  The literature promotes the choice of case sizes 

as another significant opportunity to reduce spoilage (Falck 2005, Småros 2004, Larson and 

DeMarais 1999) and our results support this claim as the VOI and VCC are significantly reduced 

when an optimal case size is chosen.  We also find the VOI and VCC are significantly reduced 

when the supplier’s revenue is freshness dependent.     

The rest of the paper is organized as follows:  §2 reviews the literature, §3 defines the 

model, §4 presents our numerical study with discussion, and §5 concludes the paper.  An online 

appendix (Ketzenberg and Ferguson, 2006) provides additional details of our models and results.   

2. Literature Review 

Our research draws on two separate research streams:  perishable inventory theory and 

the VOI.  Progress on the combined problem of multi–echelon inventory and perishable inventory 

systems has been limited.  We are aware of only a few contributions in this area, the majority are 

motivated by the management of blood banks and focus almost exclusively on the allocation problem.  

Yen (1965), Cohen et al. (1981), Prastacos (1981), and Goh et al. (1993) are representative examples.   

Fujiwara et al. (1997) provide the most recent contribution to the literature and the only one we 

are aware of that directly addresses perishable food products.  They consider a two–stage 

inventory system at a single facility where the first stage consists of the whole product (e.g. meat 

carcasses) made up of multiple sub–products (e.g. cuts of meat) while the second stage consists 

solely of the sub–products.  .They derive optimal ordering and issuing policies for this scenario, 

but do not address the VOI or the VCC.   

There are a few papers that explore the VOI in serial supply chains for non-perishable 

products.  Bourland et al. (1996), Chen (1998), Gavirneni et al. (1999), Lee et al. (2000), and 
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Raghunathan (2001) are representative examples.  Unlike the majority of these examples where 

the VOI and VCC are often small in the context of non-perishable serial supply chains, we show 

significantly larger benefits due to the ability of the supplier to provide fresher product.   

Beyond our study, Ferguson and Ketzenberg (2006) (here after referred to as FK) is the 

only study we are aware of that addresses the VOI in the context of perishable inventory.    In 

their study, the supplier shares its age–dependent inventory state with the retailer.  In contrast, 

we examine the reverse flow of information where the retailer shares its age-dependent inventory 

state and demand information with the supplier.  We also compare information sharing to 

centralized control.  Finally, we note that FK model a retailer in a large distribution network 

where the supplier’s ordering policy is not dependent on a single retailer’s actions whereas we 

model a serial supply chain where the retailer’s actions are material to the supplier’s decisions.   

Despite the differences in the supply chain structures modeled, some of our results 

reinforce those of FK.  Our average improvement in total supply chain expected profit of 4.2% is 

similar to their average improvement of 4.4% (assuming a FIFO issuing policy).  In both cases, 

the profit improvement is primarily driven by a reduction in outdating and an increase in the final 

customer service level.  While we find that when the supplier’s demand is freshness dependent 

(the retailer orders less from a supplier who historically provides older items), the VOI is 

minimal, FK studied freshness dependent demand at the retail customer level and found the VOI 

increases in the sensitivity of demand to product freshness.  The difference in these findings 

indicates the importance of measuring where in the supply chain demand is affected by product 

freshness.  Finally, we show the majority of the additional benefits obtained from centralized 

control of the supply chain (an average of 4.2% for VOI versus 5.6% for CC) can be obtained 

from sharing inventory age related information.  This issue is not addressed in FK.                 
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3. Model 

The setting is a serial supply chain consisting of a retailer and a supplier who provide a 

single perishable product to consumers.  The product has a deterministic lifetime of M + 1 

periods.  Throughout its life, the utility of the product remains constant. When the product 

expires it is outdated without any salvage value.  This assumption corresponds to the wide–

spread use of product expiration dates on packaged goods such as fresh meat and seafood, deli, 

ready-made meals, and fresh cut fruit and vegetables.   

We assume a periodic review inventory model for each facility.  For the retailer, the order 

of events each day follows the sequence: 1) receive delivery, 2) outdate inventory, 3) place order, 

and 4) observe and satisfy demand.  Orders placed in the current period arrive before demand in 

the next period.  Retail demand is discrete, stochastic, and stationary over time.  Let D  denote 

total demand in the current period, with probability mass function ( )φ ⋅ , mean μ , variance 2σ , 

and C  the corresponding coefficient of variation.  Unsatisfied demand is lost.  We normalize the 

retailer’s revenue per unit of satisfied demand to one dollar and predicate the unit purchase cost 

on the product margin 0m , expressed as a percentage of unit revenue.  A holding cost 0h ( 1h ) is 

assessed on ending inventory at the retailer (supplier) respectively.  

The retailer’s replenishment decision q  is restricted to either zero or Q  units, where the 

batch size Q represents the bundle of units that are packaged, shipped, and sold together.  The 

fixed batch size captures certain economies of scale in transportation and handling and is 

common, both in practice (Falck 2005, Småros et al. 2004) and in the literature on the VOI 

(Moinzadeh 2002, Cachon and Fisher 2000, Chen 1998).  Because of increasing levels of 

product variety there are many slow moving perishable products where a single batch of 
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replenishment is sufficient to satisfy expected demand during the order cycle.  In §5, we show 

how our model can also be used to find an optimal value of Q.     

 The replenishment lead-time is one period.  Since the product is perishable, inventory 

may be composed of units with different ages.  Let xi  denote inventory, after outdating and 

before demand, that expires in x periods, where 1,  ...,  x M=  and M is the maximum product 

shelf life at the retail echelon.  Let ( )1 2,  ,  ..., Mi i i i=  represent the vector of inventory held at 

each age class and define 
1

M

x
x

I i
=

=∑ .  Demand is satisfied using a FIFO inventory issuing policy 

and inventory is not capacitated.   

For the supplier, the order of events each period follows the sequence: 1) receive delivery, 

2) observe and satisfy demand, and 3) place order.  An order placed by the retailer corresponds 

to a demand at the supplier in the same period.  Since the supplier only observes orders of Q  

units and faces no ordering cost, the supplier replenishes in orders of Q  units.   We assume the 

supplier orders from a perfectly reliably exogenous source (i.e. the outside source has ample 

capacity) and the lead-time is one period (i.e. whenever Q units are ordered they become 

available at the start of the next period).  Thus, the supplier faces uncertainty only in the timing 

of the order arrivals.  If the supplier receives an order and does not have units in stock to fulfill it, 

the supplier pays an expediting charge that allows it to meet the order in the same period.  Thus, 

the retailer always receives its order request at the beginning of the following day.  

The supplier’s replenishment policy corresponds to a time phased order point policy 

incorporating safety lead-time.  Denoted by α , safety lead time represents the number of periods 

the supplier waits after receiving a retailer order before it places its own replenishment order:  

( )0,1, ..., Mα ∈ .  The safety lead-time is based on the supplier’s critical fractile, determined 
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from its cost of being early or late with a replenishment order.  This policy is optimal for a firm 

facing intermittent demand with deterministic quantities, uncertain timing, and non–perishable 

inventory (Silver et al. 1998).  Employing such a policy ensures no supplier outdating.  This is 

because the longest possible time between retail orders is M periods and, at that time, the age of 

product at the supplier has a minimum life of two periods remaining.  This statement requires a 

further condition:  the retailer never intentionally goes through a period with zero inventory, thus 

assuring the interval between retail orders never exceeds M periods.  These assumptions are 

supported by practice where 1) outdating at supplier echelons is trivial compared to the retail 

echelon and 2) there exists a strong emphasis on high, retail, in-store availability. 

3.1 No Information Sharing (NIS) Case 

We begin by establishing a base case where the retailer does not periodically share 

information pertaining to its replenishment process or inventory position.  Hence, this case 

corresponds to traditional replenishment practices in which the supplier only observes the timing 

between the retailer’s orders.   

3.1.1 NIS Case:  Retailer’s Policy 

We formulate the retailer’s replenishment problem as a MDP where the objective is to find 

an optimal reorder policy that maximizes expected profit.  The linkage between periods is 

captured through the one period transfer function of the retailer’s age dependent inventory.  This 

transfer is dependent on the current inventory level, any order placed in the current period, the 

realization of demand D in the current period, and the remaining lifetime of any replenishment 

inventory (represented by the position x within the vector i  that is updated with the 

replenishment quantity).  The remaining lifetime of replenished inventory, denoted as A, is a 
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function of the number of periods since the last retailer order L , where { }, 1, 2, ...,A L M∈ , and 

the supplier’s safety lead–time α .  

 For ease of exposition, let ( ) ( )max ,0z z+ ≡  and z′  denote a variable defined for the next 

period, whereas a plain variable z is defined for the current period.  Let i′  denote the retailer’s 

inventory level in the next period and ( ), , ,i D q Aτ  denote the one period transfer function.  

Then ( ), , ,i i D q Aτ′ =  where 

1
1

0
x

x

z
z

x

i D i if x A

i

q if x A

+

++

=

⎧⎛ ⎞⎛ ⎞⎪ − − < <⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎪⎝ ⎠′ = ⎨
⎪

=⎪
⎪⎩

∑
. 

Now, let ( )G I  denote the retailer’s one period profit function where  

( ) ( ) ( ) ( )0
0

min ,
D

G I D I h I D Dφ
∞

+

=

⎡ ⎤= − −⎣ ⎦∑ . 

We now introduce the retailer’s MDP.  The value c  is the equivalent average return per period 

when an optimal policy is used.  The extremal equation is 

( )
{ }

( ) ( ) ( )( ) ( ){ }00, 0
, max 1 , , , ,

q Q D
f i L c G I q m f i D q A L Dτ φ

∞

∈ =
′+ = − − + ∑    (1)  

where 

1
M if L

A
M L if L

α
α α

≤⎧
= ⎨ − + + >⎩

       (2) 

1
1 0

if q Q
L

L if q
=⎧′ = ⎨ + =⎩

         (3) 

 
Since the state and decision spaces are discrete and finite and profit is bounded, there exists 

an optimal stationary policy that does not randomize (Putterman, 1994 pg 102 - 111).  The left 
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hand side of (1) defines an extremal equation by the vector of inventory i and the number of 

periods L  since the last order was placed.  The right hand side of (1) computes the total expected 

profit composed of the one period profit function, the purchase cost associated with any new 

order, and future expected profit.  Equation (2) determines the remaining lifetime of any receipts.  

Note if L α≤ , then A M=  since replenishment occurs through expediting.  Also, (2) assumes 

the retailer knows both the supplier’s safety lead–time α  and the age of replenishment A.  The 

retailer can readily deduce these values given the replenishment history with the supplier.  

Finally, (3) updates the number of periods since the last order was placed 

3.1.2 NIS Case:  Supplier’s Policy 

The supplier’s objective is to make ordering decisions that minimize its inventory related 

cost.  A sample path of the supplier’s inventory level follows a renewal process with the renewal 

occurring each time the retailer places an order.  Since the supplier is only concerned with the 

timing of its replenishment, the problem reduces to a myopic cost minimization problem the 

supplier faces each period he ends with zero units in inventory.  If the supplier does not have 

inventory when the retailer places an order, the supplier pays an expediting charge of b.  If the 

supplier does have inventory and the retailer does not order, the supplier pays a holding cost of 

h1 for each of the Q units it holds.   

Let ( )Dψ β  denote the probability of the retailer placing a replenishment orderβ  days after 

the last order, ( )1, 2, ..., Mβ ∈ .    The supplier’s decision is to choose a value for α  so that 

expected cost is minimized, as expressed by:  

 
( )

( ) ( )1 1

min
1

M
D

D

b
Qhα β

ψ β α β
β α ψ β α β=

⎛ ⎞− ≥⎧⎪
⎜ ⎟⎨⎜ ⎟− − − <⎪⎩⎝ ⎠
∑ .  
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The expectation of the suppliers profit is taken over all probabilities for the retailer ordering 

within the next M days and takes into consideration two conditions: 1) α β≥ , the case when the 

retailer orders prior to the supplier receiving replenishment so that the retailer’s replenishment is 

satisfied through expediting, and 2) α β< , the case where the supplier holds inventory at the 

time it receives a retailer replenishment order.  In this case, the supplier incurs holding cost for 

1β α− −  days.  Let *α denote the value that minimizes the above expression. 

 In Appendix A, we characterize the distribution ( )Dψ β .  Note we assume the supplier 

acts honorably and does not attempt to increase its profit by ordering earlier than the safety lead-

time so the product’s useful life at the retailer will be shorter, forcing the retailer to order more 

frequently.  While there may be a short-term incentive for the supplier to act in this manner, the 

long-term negative consequences do not typically make it worthwhile, as the retailer would 

eventually figure out the supplier’s deceitfulness.    

To express the supplier’s expected profit per period, some additional notation is required.  

Let ,i Lπ  denote the steady state probability that the retailer is in state ( ),i L  and let *
,i Lq  denote 

the retailer’s corresponding optimal replenishment decision for this state.  Further, let 1m  denote 

the supplier’s margin per unit expressed as a percentage of its unit revenue.  The supplier’s 

expected profit per period is  

( )

( ) ( )

* *
1 0 , , ,

* *
1 0 1, , ,

1 0 0

1 0

0

i L i L i L

i L i L i L
i L

m m q b if L and q

m m q h Q q if L

otherwise

π α

π α

⎧⎡ ⎤− − − ≤ >⎣ ⎦⎪
⎪⎡ ⎤− − − − >⎨⎣ ⎦
⎪
⎪⎩

∑∑ . 
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3.2 Decentralized Information Sharing (DIS) Case 

The DIS Case builds on the NIS Case so that now the retailer shares its inventory state and 

replenishment policy with the supplier.  Decision-making, however, remains independent.  As 

before, we start by formulating the retailer’s MDP and then proceed to the supplier’s policy.  

3.2.1   DIS Case:  Retailer’s Policy 

 The retailer’s optimization is similar to the NIS Case except it is now necessary to track 

the supplier’s inventory state since the supplier’s replenishment decision is now state–dependent 

on the retailer’s inventory position.  Here, we track the supplier’s age dependent inventory by 

using A – the remaining retail shelf life, since the age at the supplier is simply 1A+  if the 

supplier holds inventory.    This involves a slight change in interpretation, since now A  takes 

values in { }0,1, ..., M  and 0A =  corresponds to the state when the supplier has zero inventory 

and, implicitly, the age of replenished items will be M due to expediting.  Since we now track the 

supplier’s inventory with A, we drop L  from the state space. The extremal equation is 

( )
{ }

( ) ( ) ( )( ) ( ){ }00, 0
, max 1 , , , ,

q Q D
f i A c G I q m f i D q A A Dτ φ

∞

∈ =
′+ = − − + ∑    (4)  

where   

*

*

1  and 0

0

A if q
A M if

otherwise

α β
α β

⎧ − ≥ =
⎪′ = <⎨
⎪
⎩

.       (5) 

Note that (5) determines the supplier’s inventory state in the next period, predicated on 

both the retailer’s order and the supplier’s replenishment decision.  In the next section, we 

describe the supplier’s policy that incorporates the information shared by the retailer.    
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3.2.2 DIS Case:  Supplier’s Policy 

Under the DIS Case, the supplier’s decision is to choose a value for α  so that expected 

cost is minimized, as expressed by:  

 
( )

( ) ( )1 1

 
min

1  

M D

D

b i

Qh iα β

ψ β α β

β α ψ β α β=

⎛ ⎞⎧ − ≥⎪⎜ ⎟⎨⎜ ⎟⎜ ⎟− − − <⎪⎩⎝ ⎠
∑ .  

The conditional distribution ( )D iψ β  is a function of the retailer’s one-period inventory 

state transition probabilities and the optimal ordering decisions resulting from (4).  Since the 

retailer and supplier replenishment decisions are inter-related and decision–making is 

decentralized, some discussion is warranted regarding the order in which the values for *q  and 

*α  are determined.  We employ the following solution procedure:  1) Given a system state 

( ),i A , condition on the decision 0q =  and compute the optimal supplier policy * 0qα = .  2) 

Compute the corresponding expected average profit for the retailer given these decisions.  3) 

Provide the same treatment to the condition for the decision q Q=  and find both the optimal 

supplier policy * q Qα =  and the associated expected average profit for the retailer.  4) Choose 

the value *q  that maximizes the retailer’s expected profit.  Details are provided in Appendix B. 

As in the NIS Case, the supplier’s expected average profit per period is determined from 

the limiting behavior of the retailer in steady state.  Letting  ,i Aπ  denote the steady state 

probability that the system is in state ( ),i A  and *
,i Aq  denote the corresponding optimal retailer 

replenishment decision, the supplier’s expected profit per period is 
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( )

( ) ( )

* *
1 0 , , ,

* *
1 0 1, , ,

1 0 0

1 0

0

i A i A i A

i A i A i A
i A

m m q b if A and q

m m q h Q q if A

otherwise

π

π

⎧⎡ ⎤− − = >⎣ ⎦⎪
⎪⎡ ⎤− − − >⎨⎣ ⎦
⎪
⎪⎩

∑∑ . 

3.3 Centralized Control (CC) Case 

In the CC Case, a central decision maker seeking to maximize total supply chain profits 

makes replenishment decisions for both the retailer and the supplier.  This corresponds to the 

practice of vendor–managed inventories (VMI).  The retailer no longer places orders with the 

supplier.  Instead, we interpret the decision variable q as a planned shipment from the supplier to 

the retailer.  In addition, the supplier’s replenishment orderλ  is now added to the decision space 

of the MDP.  It is never optimal for the supplier to place an order in a period where it already has 

Q  units in inventory.  To see why, we offer an informal proof by contradiction.  Assume the 

supplier places a replenishment order when there are already Q units in stock at the supplier 

level.  This will bring the supplier’s inventory level up to 2Q units but the retailer is restricted to 

ordering either 0 or Q units each period.  Thus if the supplier postpones its ordering decision to 

the period when the retailer places its order, then total system cost is reduced without affecting 

the service level.  Therefore, the supplier will never replenish with a positive quantity on-hand.   

For convenience, let ( )( )1 0 11 1c Q m m= − −  denote the supplier’s purchase cost.  

Assuming 1 0h h<  (otherwise it is never optimal to hold inventory at the supplier) the extremal 

equation is 

( )
( )

( ) ( )( ) ( )

( )

1
0

0, , (0,1) 
1

1

, , , ,

0 0 0, max  
0 0

D

q Q

G I c f i D q A A D

if A and qf i A c
b c if A and q
h Q q otherwise

λ

λ τ φ
∞

=

∈ ∈

⎛ ⎞⎡ ⎤′− + ∑⎜ ⎟⎣ ⎦
⎜ ⎟

⎧ = =⎜ ⎟+ =
⎪⎜ ⎟− − = >⎨⎜ ⎟⎪⎜ ⎟−⎩⎝ ⎠

. (6) 
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Since the objective is to maximize system–wide profit, the optimization expressed in (6) 

omits the transfer price between the supplier and the retailer.  Instead, expected profit maximized 

in the MDP is the sum of the one period profit function, the purchase cost to the supplier for 

regular replenishment, the purchase cost plus penalty cost for any supplier expediting, holding 

costs applied to ending inventory for both facilities, and future expected profit.  The age of the 

inventory at the retailer carries over from (5) in the DIS Case and is not repeated here. 

The resulting policy determines the optimal timing for the retailer and the supplier to 

replenish based on the quantity and age of the inventory on hand at the retailer.  The solution 

procedure differs from the previous policies since now both the retailer’s decision and supplier’s 

decision are considered simultaneously to solve for the optimal supply chain expected profit. 

Hence, the decision space has been expanded to cover an exhaustive search for the optimal 

decisions in each inventory state.   

Further consideration of the policy structure leads to the following observations.  First, 

with the elimination of double marginalization and the fact that market mediation risk is now 

shared collectively by the supply chain, we expect that customer service levels will increase 

relative to the first two scenarios.  Second, the corresponding increase in supply may well 

decrease product freshness at the point of sale and increase the level of outdating.  Third, so long 

as the difference in the marginal cost of holding inventory between the retailer and supplier is 

less than the marginal cost of a lost sale, the supplier’s role will shift to become a cross docking 

facility, passing along inventory to the retailer as soon as it arrives.  These observations are 

supported by the results of an extensive numerical study to which we now proceed. 

4. Numerical Study 
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We evaluate the VOI in the DIS Case and the VCC in the CC Case where VOI and VCC are 

the % improvement in expected total supply chain profit, relative to the NIS Case.  Specifically,  

[ ] [ ]( )
[ ]

Profit Profit
Profit

DIS NIS

NIS

E E
VOI

E
−

=   and 
[ ] [ ]( )

[ ]
Profit Profit

Profit
CC NIS

NIS

E E
VCC

E
−

= . 

Consumer demand ( )φ ⋅  corresponds to a truncated negative binomial distribution with a 

maximum value of 50  (any probabilities for demand exceeding 50 are redistributed 

proportionately within the truncated limit of the distribution).  See Nahmias and Smith (1994) 

regarding the advantages of assuming negative binomial distributions for retail demand.   Across 

our numerical experiments, the mean of the distribution is held constant at four and the 

Coefficient of Variation (C) is treated as a parameter to the model using the values reported 

below.  Each period represents a day and the holding cost at each echelon is 40% of the purchase 

cost, measured on an annual basis.  In total, we consider 972 experiments that comprise a 

factorial design for all combinations of the following parameters: 

( )0.5, 0.6, 0.7C∈   ( )4, 5, 6M ∈   ( )8, 9,10Q∈   ( )0 0.4, 0.5, 0.6m ∈  

( )1 0.4, 0.5, 0.6m ∈   ( )1 1 1 10.05 , 0.10 , 0.15 , 0.20b c c c c∈  

Our selection of parameter values is motivated by values observed in practice for several 

common and slow moving packaged perishables in product categories like fresh meat and 

seafood, deli, ready-made meals, and fresh cut fruit and vegetables. Products in these categories  

are highly perishable although daily item movement is often less than the case size, which itself 

is generally small as confirmed by a study we conducted at a 70 store division of a regional 

grocer.  At the same time, our selection is constrained by the computational feasibility of the 

resulting MDP, since the size of the state space expands exponentially with the vector of age–
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dependent inventory.  Notwithstanding, the range of parameter values considered covers an 

extensive selection of products (Office of Technology Assessment Report, 1979).   

We use value iteration to compute the results for the respective MDPs and then solve the 

accompanying state transition matrices using the method of Gaussian elimination to evaluate 

steady state behavior as described in Kulkarni (p. 124).  In §4.1, we discuss our general 

observations and in §4.2 we report the results of our sensitivity analysis. 

4.1 Results and General Observations 

In general, we find both information sharing and centralized control lead to considerably 

fresher product for sale at the retailer.  In Table 4.1, we report the VOI for the entire supply chain 

and for each member under a decentralized structure (DIS Case) and the corresponding VCC for 

the total supply chain under a centralized structure (CC Case), at given percentiles of the 972 

experiments. For example, the 0.50 percentile denotes the median values.   From this table, three 

observations emerge:  1) the VOI is lower than the VCC, although it can still be substantial, 2) 

the VOI is not necessarily shared equally between the retailer and the supplier, and 3) both the 

VOI and VCC are sensitive to model parameterization and depend largely on system behavior as 

we discuss for each case below. 
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  DIS Case CC Case 
Percentile Total Retailer Supplier Total 

0.00 0.0% 0.0% -10.1% 0.0% 
0.25 0.8% 1.2% -1.6% 1.2% 
0.50 3.3% 4.1% 0.3% 4.6% 
0.75 7.0% 10.1% 4.8% 8.7% 
1.00 13.3% 26.9% 19.0% 16.0% 
Mean 4.2% 6.2% 1.6% 5.6%

Table 4.1: VOI (DIS Case) and VCC (CC Case) across experiments 

4.1.1 DIS Case Observations 

In the DIS Case, information sharing enables the supplier to better time the arrival of its 

replenishment with the timing of retail orders.  In turn, the freshness of product (measured in 

terms of the expected average lifetime remaining) replenished at the retailer increases from an 

average of 3.77 periods to 4.46 (18.3% increase).  Thus, product outdating at the retailer 

decreases by an average of 39.0%.  This increased product freshness also enables the retailer to 

boost its service level by 3.1% on average.   

The change in retailer performance has two direct effects on the supplier.  The change 

reflects both a decrease in outdating at the retailer and an increase in retailer service.  When the 

increase in retailer service (and hence units of satisfied demand) exceed the reduction of 

outdating, the supplier realizes a net increase in retailer orders and is better off.  When the 

opposite occurs the supplier is worse off.  Across experiments, we find that half of the time, the 

combination results in a net decrease in retailer orders which can be as large as a 10.5% 

reduction.  In the other half of the experiments, there is a net increase in retailer orders which can 

be as large as an 18.5% increase.  Even though the supplier is able to reduce its expected 

inventory related costs in all experiments; these savings are generally trivial compared to the 

increase or decrease in revenue that arises through the change in retailer behavior.  In §4.2 we 

evaluate the conditions that affect the retailer’s order stream in a sensitivity analysis. 
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  Total supply chain profit always improves with information sharing, even when the 

supplier’s profit decreases.  An important avenue for future research is to explore how certain 

contracts and incentives can be implemented so that the maximum benefits from information 

sharing can be realized and be Pareto improving for both firms.  In the absence of such contracts, 

it is doubtful the supplier will be a willing participant.  

4.1.2 CC Case Observations 

With centralized control, the improvement in total supply chain profit is greater than the 

improvement observed with information sharing.  On average, the VCC is 27% greater than the 

VOI.  There are two effects at work here.  First, there is minimal value in holding inventory at 

the supplier.  Thus, the supplier serves a cross–docking function wherein any replenishment it 

receives is immediately sent onward to the retailer.  We observe an average decrease of 44% in 

the supplier’s expected inventory holding costs and a related average improvement of 24% in the 

freshness of the product delivered to the retailer.  This represents over a 5% improvement in 

product freshness relative to the DIS Case. 

The second effect comes from the elimination of double marginalization (the stocking 

decision at the retailer is predicated on the entire supply chain’s profit, not just the retailer’s as in 

the NIS and DIS Cases).  Consequently, the retailer’s service level increases an average of 7.0%.  

This represents a considerable improvement when compared to the DIS Case.  To provide higher 

service, more inventory is positioned at the retailer and, therefore, the system may experience an 

increase in outdating relative to both the NIS and DIS Cases.   

4.2 Sensitivity Analysis 

Generally, we find that the VOI and the VCC are sensitive to product perishability, the 

retailer’s ability to match supply and demand, and the size of the penalty for mismatches in 
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supply and demand.  We illustrate sensitivity to each parameter in Figure 4.1.  The height of each 

bar corresponds to the average VOI and VCC across experiments for the parameter value 

specified on the x-axis.  We discuss these relationships and provide a more complete set of 

performance measures in an online appendix (Ketzenberg and Ferguson; 2006).  
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Figure 4.1: Sensitivity of the average VOI/VCC for each fixed parameter value 

5. Discussion 

Our results show that the VOI for perishable items can be significant.  As opposed to 

studies that address the VOI for non-perishable items, the VOI for perishables is derived by the 

supplier’s ability to provide a fresher product.  Indeed, for non perishables our results show the 

VOI is trivial and quickly drops off for lifetimes greater than five days.  The benefits of 

information sharing, however, are not shared equally between the retailer and the supplier.  In a 

decentralized control supply chain, the retailer receives the larger average benefit and, in many 

cases, the supplier can be harmed. 

On average, we find the total supply chain profits increase an average of 4.2% with 

information sharing and 5.6% with centralized control.  Compared to previous studies on non-
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perishable suppy chains, these values may seem small.  There are several reasons the VOI and 

VCC are small in our study.  Starting with the VOI; our serial supply chain setting isolates the 

effect of a lower spoilage cost on the VOI.  Previous studies on non-perishable products used a 

distribution network structure to show positive values for the VOI.  By knowing the inventory 

levels at each retailer, the warehouse can better anticipate future orders and save on fixed costs.  

In a serial chain such as our structure, the VOI is negligible if the product is non-perishable 

because the warehouse does not achieve these savings with only one retailer.  Thus, the VOI 

values in our study are purely based on the reduction in spoilage cost.   

For the VCC; there are two reasons the values are small in our study.  First, for most 

products in the grocery industry, inventory carrying costs are small compared to the opportunity 

of a lost sale.  With such small holding cost, there is little incentive to minimize inventories other 

than for reasons of shelf space and hence service levels are generally quite high.  The prospect of 

outdating for perishables does increase the overage cost and pushes downward pressure on 

service levels.  Yet, they remain high in practice as well as in our study where we generally 

observe service levels in the range of 88%-95%.  Hence, with little opportunity to improve on 

already high service levels, the VCC remains low compared to cases with significant lost sales.  

Second, we restrict the supplier to offering a 100% service level to the retailer by ensuring that 

all replenishment requests are met either from stock-on-hand or through an emergency order.  

This type of replenishment guarantee is also common in practice but it reduces the double 

marginalization effect that might be observed if the supplier was allowed to choose a service 

level based purely on her underage and overage costs. 

On average, the VOI obtains approximately 70% of the VCC, thus information sharing 

alone garners the majority of the benefit of centralized control.  In an industry with high levels of 
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competition, significant legacy relationships, and a great deal of mistrust between supply chain 

partners, this may be significant for retailers who remain reluctant to give up decision-making 

control of their inventory.  We find supply chains benefit the most from information sharing or 

centralized control when product lifetimes are short, batch sizes are large, demand uncertainty is 

high, and when the penalty for mismatches in supply and demand are large.     

Clearly the batch size is an important model parameter that we have assumed is 

exogenously determined.  Even so, we can also use the model to find the optimal Q by searching 

for the largest total supply chain profit over the range of Q for which it is viable to stock and sell 

the product.  In a supplemental study that is available as an online appendix (Ketzenberg and 

Ferguson; 2006), we show that 1) case size optimization can achieve the same level of benefits 

as information sharing and centralized control and 2) the VOI and the VCC are trivial when the 

optimal case size is chosen.  Given the relative costs of these initiatives with the costs of 

changing case sizes, supply chains may find it more beneficial to optimize case size and avoid 

the privacy issues of sharing information and control issues with centralized decision-making 

(Småros et al. 2004).  Regardless, our results make clear that with current industry case sizes, 

local optimization (packaging and handling) can significantly undermine total system efficiency.  

We note, however, that these results are particular to the single case ordering restriction. 

 There are two other limiting model restrictions to our study worth further consideration.  

First, we assume that supplier receives the same revenue per unit, regardless of its product 

freshness and, second, the retailer accepts delivery of product without regard to its remaining 

lifetime.  From a practical perspective, however, it is reasonable to expect that 1) a supplier with 

fresher product may obtain a higher price than a supplier with older product and 2) the retailer 

may refuse shipment if the remaining product lifetime is too short.  In the online supplement 
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(Ketzenberg and Ferguson; 2006), we test how these two relaxations affect the VOI and the 

VCC.  In this study, we assume a simple linear model of freshness dependent pricing.  We also 

assume that the retailer will only accept a replenishment when the product lifetime is long 

enough so that expected profit is strictly positive.  Under these conditions, we find that as price 

sensitivity to product freshness increases, the supplier obtains a larger portion of the total value 

through information sharing and centralized control.  At the same time, however, the total value 

obtained for the supply chain through either initiative (VOI or VCC) rapidly diminishes.  

There are a number of important issues still to be addressed.  While we look at the VOI 

and VCC, we do not propose contracts that provide firms with the incentive to share/use the 

information or to act in a centralized manner. As another pursuit, we find few studies that 

provide a direct comparison between the relative efficacy of information sharing and centralized 

control, an important issue for industries where legacy relationships and high levels of 

competition provide barriers to implementation. Other areas for future research include the 

modeling of distribution supply chains, longer lead-times, different issuing policies, and capacity 

restrictions on the supplier. 
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Appendix A 
Retailer Order Probabilities in the NIS Case 

 
Here, we characterize the distribution ( )Dψ β  introduced in §3.1.2.  Without information 

sharing, the supplier only knows the batch size Q and the history of the number of periods since 

the retailer’s last order β .  We follow the procedure outlined in Bai et al. (2005) to show how 

this information is used to determine the retailer’s order distribution.  

Let Xi be a random variable representing the usage of the product (sales and outdating) at 

the retailer on day i for i = 1, …, M.  The Xi s are independent with the same mean and 

variance, but they may come from different distributions.  Assuming the retailer uses a reorder 

point inventory control policy (a reasonable assumption in this industry), once the retailer’s 

approximate inventory position Ii is below the reorder point r, then an order quantity of size Q 

will be ordered at time ti.  Thus, during the time interval [ti-1, ti) with length iD = ti - ti-1, the 

relationship between accumulated usage and the retailer’s inventory position can be expressed as 

1
1

iD

i i j
j

I I Q X−
=

= + −∑ .  Then the accumulated usage during time interval iD  is 

1
1

iD

j i i
j

X I Q I−
=

= + −∑ .  Therefore, an interval length D  can be defined by the minimal value of n 

for which the nth accumulated usage is greater than Q, that is, 

1 2( ) 1 min{ : }n nD N Q n S X X X Q= + ≡ = + + ⋅⋅⋅+ > ,     (A.1) 

where 1 2( ) max{ : }n nN Q n S X X X Q≡ = + + ⋅⋅⋅+ ≤ .  

The following lemma from Feller (1949) provides the reasoning basis of the first two moments 

of the demand distribution for deriving the estimates. 

LEMMA. If the random variables 1 2, ,...X X  have finite mean E[ ]iX μ= and variance 
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2Var[ ]iX σ= , and D  is defined by (A.1), then E[ ]iX  and VAR[ ]iX  are given by: 

E[ ] (1)   QD o
μ

= +  and    
2

3Var[ ] (1)   as QD o Qσ
μ

= + →∞    respectively.   

The next theorem provides the asymptotic distribution of D .  Its proof is a trivial extension to 

Theorem 3.3.5 in Ross (1996). 

THEOREM. Under the assumptions of the Lemma, D  has the asymptotic normal distribution 

with mean /Q μ  and variance 2 3/Qσ μ : 

2 3N( / , / )  as  D Q Q Qμ σ μ→ →∞ . 

According to Theorem 2.7.1 of Lehmann (1990), the theorem still holds even when the daily 

usages are not identically distributed, but are independent with finite third moments.  While an 

asymptotic distribution may cause concern for small values of Q, our simulation studies show it 

provides good estimates for the distribution parameters over the values of Q used in this paper.  

Thus, we let ( )Dψ β  represent the cdf of D  with a mean of /Q μ  and a variance of 2 3/Qσ μ .   
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Appendix B 
Solution Procedure for the DIS Case 

 
 
PROCEDURE ( ),f i A  
   FOR q = 0 TO Q STEP Q       ;Evaluate q = 0 (1st)and q = Q  (2nd).                                
         Profit:= ( ) ( )01G I q m− −                                   ;Initialize profit to one period profit. 
         IF (q>0) or (A=0)  THEN                                  ;If supplier has no inventory going  
              Determine λ                ;  into next period, determine λ. 
         ELSE       ;if supplier has inventory going into 
               λ:= 0      ;next period, then no supplier order. 
         FOR D = 0 TO MAX DEMAND  ;Evaluate all realizations of demand. 
              Profit = Profit + ( )( ) ( ), , , ,f i D q A A Dτ φ′  ;add in future expected profit. 

         ENDFOR (D)     
         IF q<Q THEN     ;if 1st time through, then save results 
             BEGIN     ;for later comparison to q = Q. 
                 SaveProfit:=Profit 
                 SaveLambda:= λ 
              END 
         ELSE       ;2nd time through, compare profit  
              IF Profit< SaveProfit THEN   ;of q=0 (Saveprofit) to q = Q (Profit).  
                  BEGIN     ;Case q = 0 > q = Q.   
                        q*:=0     ;Set optimal decisions and    
                        ( ),f i A := SaveProfit   ;expected profit. 
                        λ*:= SaveLambda 
                   END 
               ELSE     ;Case q = Q > q = 0. 
                   BEGIN 
                        q*:=0     ;Set optimal decisions and 
                        ( ),f i A :=Profit   ;expected profit.   
                        λ*:= λ 
                   END 
    ENDFOR (q) 
ENDPROCEDURE 
 


