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SUMMARY 

This thesis describes methods that generate a digital three-dimensional (3D) model 

of a visual scene's surfaces, using a set of calibrated photographs taken of the scene. The 

3D model is then rendered to produce views of the scene from new viewpoints. In the 

literature, this is known as 3D scene reconstruction for new view synthesis. This thesis 

introduces novel approaches that improve upon the quality, efficiency, and applicability of 

existing methods. 

To achieve a high quality reconstruction, it is essential to know which cameras have vis­

ibility of local areas on the surface. Accordingly, we present a related pair of techniques for 

computing visibility during a volumetric reconstruction. We then describe post-processing 

methods that refine surface reconstructions to improve model fidelity. 

We explore different representations for modeling the 3D surface during reconstruction. 

We introduce a method of warping the 3D space to represent large-scale scenes. We also 

investigate a level set approach, which embeds the 3D surface as the zero level set of 

volumetrically sampled function. Finally, we present a view-dependent representation that 

can be computed at interactive rates. 

xvi 



CHAPTER I 

INTRODUCTION 

1.1 Problem statement 

One of the primary ways we sense the world is through vision. The human visual system 

acquires light that passes through the lens of the eye and is imaged on the retina. This 

visual data, rich in information, is used to perceive shape, position, and color. 

Mimicking this process, researchers have developed imaging sensors and computer al­

gorithms to analyze visual information. The goal of this thesis is to generate a 3D digital 

representation of a visual scene using a set of photographs. The photographs are taken from 

multiple viewpoints of either a static or dynamic scene. As a pre-process, each camera used 

to photograph the scene is calibrated, yielding the geometry of the image formation pro­

cess. Given these calibrated photographs, how does one compute a 3D model that can be 

rendered to synthesize views of the scene at new viewpoints? This is the central problem 

addressed in this thesis. 

1.2 Motivation 

A key challenge in computer graphics is photo-realistic image synthesis of real-world 

scenes. Unfortunately, many real-world scenes consist of geometrically complex shapes 

that are difficult to recreate in a 3D modeling program. Even after hours of tedious edit­

ing, many CAD-based 3D models produce synthetic images that lack a desired level of 

photo-realism when rendered. 

An alternate approach is image-based modeling. The objective in this approach is to 

create a 3D model using 2D image data. Often this 2D image data consists of photographs, 

also called reference views, taken from multiple viewpoints. In contrast to CAD-based 3D 

1 



surface modeling, taking photographs is simple and intuitive. The photographs are input 

to a computer, which analyzes the photographs to reconstruct a 3D model of surfaces in 

the scene. This model can the be rendered to produce photo-realistic images from new 

viewpoints. 

3D scene reconstruction is a fundamental problem in computer vision and has many 

applications, including robot navigation [47], reverse engineering [26], object recogni­

tion [7, 77], motion capture [104], model building [27, 126], teleconferencing, and more. 

Thus, advances in 3D scene reconstruction can significantly impact a variety of applica­

tions. 

Our application is new view synthesis, the task of generating views of the scene from 

new viewpoints. Conceptually, new view synthesis endows a user a virtual camera, which 

the user places about the scene. The goal then is to synthesize the image that a physical 

camera would see when placed at the same position the virtual camera is placed. We 

perform 3D scene reconstruction to generate a photo-realistic 3D model of the scene, and 

then render the 3D model to synthesize an image at the virtual viewpoint. 

1.3 Volumetric approaches 

In this thesis, we focus on volumetric reconstruction approaches. By volumetric we mean 

that space has been tesselated into discrete volumes called voxels. We typically model a 

voxel as a small cube in 3D space. The voxels are arranged on a 3D sampling lattice, 

forming a voxel space. Within this voxel space, our goal is to find the 3D surfaces that, 

when rendered, reproduce the photographs taken of the scene 

Any surface in the voxel space can be sampled to produce a volumetric representation. 

Volumetric surface representations provide a computationally convenient and topologically 

flexible way to characterize a surface in 3D space. When necessary, a voxel-based model 

can be converted into a polygonal representation for efficient rendering on standard graph­

ics hardware. 
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1.4 Contribution of the thesis 

This thesis examines novel volumetric scene reconstruction approaches, designed for the 

application of new view synthesis. We advance the state of the art by introducing the 

following: 

1. Two novel methods for computing voxel visibility during scene reconstruction. 

2. Methods to post-process the reconstructed geometry, including a volumetric opti­

mization strategy that minimizes reprojection error. 

3. A volumetric warping approach for reconstructing large-scale scenes. 

4. A reconstruction technique that marries the speed and simplicity of space carving 

with the advantages of level set methods. 

5. An efficient view-dependent reconstruction approach that is capable of interactive 

reconstructions. 

1.5 Organization of the thesis 

The rest of this thesis is organized as follows. Chapter 2 presents prior art in the field of 

3D scene reconstruction, focussing primarily on related volumetric approaches. Chapter 3 

describes our generalized voxel coloring (GVC) algorithm, which introduces two novel 

approaches for determining visibility during a volumetric reconstruction. In Chapter 4 we 

extend this work by post-processing the reconstructed 3D model to improve model fidelity. 

We then introduce a warping of 3D space in Chapter 5 that efficiently represents a large-

scale scene. In Chapter 6, we utilize level set methods to implicitly represent the 3D surface 

as a zero-level set of a volumetrically sampled function. In Chapter 7, we present a view-

dependent algorithm, image-based photo hulls (IBPH), designed for interactive new view 

synthesis. In Chapter 9 we review the contributions of this thesis and explore directions for 

future research. 
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Appendix A offers a brief review of single a multi-view camera geometry, and Ap­

pendix B presents a multi-view triangulation algorithm. Appendix C describes our experi­

mental setup for interactive 3D scene reconstruction and new view synthesis. 
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CHAPTER II 

RELATED WORK 

The quest for photo-realism in computer graphics has led to very sophisticated model­

ing of geometry, light, and reflection. Developments in this field have yielded powerful 

approaches, as demonstrated in many contemporary feature films. However, much skill, 

artistry, and tedious labor is required to model and render such complex scenes. 

Consequently, there has been in recent years much interest in applying computer vision 

methods to capture real-world scenes from photographs. Photographs are very simple to 

obtain, and by definition, are photo-realistic. However, one of the limitations of a photo­

graph is its fixed viewpoint. This chapter reviews new view synthesis techniques, which 

circumvent this limitation to generate photo-realistic synthetic views of the scene at new 

viewpoints. 

One distinguishing characteristic of new view synthesis techniques is that of scene rep­

resentation, spanning 2D representations for view morphing, 2-^D representations for view 

interpolation, 3D model reconstruction, 4D light fields, 7D plenoptic functions, and be­

yond. In this review, we give special attention to methods that reconstruct 3D models, 

since that is the approach taken in this thesis. 

During the last decade, the topic of new view synthesis has received considerable in­

terest in the computer graphics, computer vision, and image processing domains, and the 

resulting literature on the subject is vast. To make this review tractable, we limit its scope 

to methods that are passive with respect to the scene lighting. Active vision methods that 

project light into the scene, such as structured lighting and laser range imaging techniques 

are not presented. A goal of many new view synthesis methods is to produce photo-realistic 

new views using off-the-shelf photographic cameras, which are inexpensive and easy to 
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use. 

2.1 Image-based rendering 

We begin this review by briefly surveying image-based rendering algorithms. Image-based 

rendering can be defined as a class of techniques that generate synthetic images from pho­

tographs rather than geometric primitives. The goal of image-based rendering is new view 

synthesis. A related class of techniques are image-based modeling algorithms, which pro­

duce a 3D model of the scene using the photographs. This model can then be rendered for 

view synthesis. Image-based modeling algorithms will be considered later in this chapter. 

The algorithms presented in this section do not compute an explicit 3D model of the full 

scene geometry. 

One of the earliest attempts at image-based rendering was the Movie-Map system [61] 

presented in the early 1980s. This system represents an entire scene as a collection of 

panoramic images, acquired every 10 feet along several streets of a town. As a user navi­

gates a virtual camera along one of the streets, the system displays an optically corrected 

view using the image closest to the virtual camera position. While the system is capable 

of displaying virtual camera rotations, the camera translations are limited to the positions 

at which the scene was photographed. This approach was recently revisited by Kimber, 

Foote, and Lertsithichai [53], who photograph the scene much more densely along each 

path. 

In their seminal work, Chen and Williams [20] demonstrated that it was possible to 

interpolate between viewpoints if dense correspondences are known. The correspondences 

are used to establish optical flow. Pixels in a reference image are then linearly interpolated 

along the optical flow vectors to produce intermediate views. While effective, this approach 

correctly synthesizes new views for only limited virtual camera motions. 

In a similar spirit, many other researchers introduced new view synthesis algorithms 

that warp photographs using correspondence and/or depth information [3, 17, 18, 49, 58, 
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66, 68, 74, 98, 99, 101,103]. Notable developments among this class of techniques include 

the use of epipolar geometry [58], an analysis of the physical validity of view interpola­

tion [99], an occlusion-compatible rendering order that obviates the need for depth compar­

isons [74], extensions to time-varying scenes [66], and generation of within-scene views 

without requiring explicit correspondence information [49]. Some of the key challenges 

to these approaches are establishing correspondences between photographs, synthesizing 

views from arbitrary viewpoints, and dealing with holes in the synthesized view that result 

from disocclusions. 

A number of researchers have introduced image-based rendering algorithms based on 

panoramic imagery. Such use of panoramic imaging for view synthesis has its roots in 

environment mapping [9, 45]. Chen's Quicktime VR [21] approach captures cylindrical 

panoramas by stitching together photographs taken by a camera rotating 360 degrees about 

its center of projection. Other researchers extend this idea by stitching images taken from 

arbitrary camera placements [96, 118]. McMillan and Bishop [74] use cylindrical panora­

mas in conjunction with stereo correspondence algorithms for view synthesis. 

Adelson and Bergen [1] introduce the plenoptic function, a 7-dimensional function that 

characterizes all of the light flowing in 3D space, in all directions, positions, time, and at 

all wavelengths. As McMillan and Bishop [74] point out, the goal of image-based render­

ing is to generate a continuous representation of the plenoptic function given a (typically 

incomplete) set of samples. 

While the plenoptic function is a useful theoretical concept, in practice a complete 

sampling of it would result in an overwhelming amount of data for most scenes. When 

working with static scenes and sampling the color spectrum in RGB channels, the plenoptic 

function becomes 5-dimensional. In the lumigraph [44] and light field [60] approaches, it 

is observed that in the absence of occlusions, the dimensionality can be further reduced to 

four. These approaches sample the scene as two-dimensional arrays of two-dimensional 

images. Synthesis of a new view is achieved by resampling the rays captured in this 4D 
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representation. This work spawned a flurry of subsequent light field research, developed for 

alternative capture topologies [2, 106], efficient rendering [14, 92] and compression [65]. 

Surface light fields [22, 75, 129] are a related representation that assign a color to each ray 

originating from a surface. Surface light fields have shown much promise but do require a 

3D model of the surfaces in the scene. 

The remainder of the techniques presented in chapter are image-based modeling al­

gorithms. These approaches are more closely related to the techniques developed in this 

thesis. 

2.2 Stereo matching approaches 

Stereo vision is the ability to see in three dimensions. The binocular human visual system 

captures light from two slightly different positions. As a result, an imaged object appears 

slightly displaced in the two retinal images. This displacement is known as disparity, and 

is used by the brain to estimate depth. 

Computer vision methods have been developed to simulate this process. Stereo rigs 

consist of a set of cameras that photograph the scene. Disparity is computed from the 

photographs by matching corresponding regions between the images. In this section, we 

review these stereo vision algorithms. We begin with a brief review of two-view approaches 

to illustrate the basic concepts. We then discuss multi-view stereo algorithms designed for 

image-based modeling. 

2.2.1 A brief review of stereo vision 

A standard two-view stereo vision rig consists of two cameras, a left and a right, separated 

by distance known as the baseline. Photographs of a scene are taken simultaneously with 

the two cameras. Given these two photographs, stereo vision seeks to find the depth of 

scene surfaces. 

Key to stereo vision is the correspondence problem. This problem requires one to 

8 



identify, for each scene element (pixel, line, corner, etc.) in one image, a matching scene 

element in the other. This match is called a correspondence. Correspondence algorithms 

can be classified into correlation-based methods and feature-based methods. 

Correlation-based methods attempt to find, for a small patch around a pixel in one 

image, a match in the other image. A similarity measure that indicates the quality of a 

prospective match is maximized. A cross correlation similarity measure can be used, 

N M 

<t>ir\ni,n2]= ^ X h[n\Jrk\,n2 + k2\l'r{h,k2}, 
k]=-Nk2=-M 

as well as other correlation-like measures such as the sum of squared differences (SSD), 

N M 

SSDlr[nun2] = - £ £ «["i +*i,n2 +h] -l'r[hM}f, 
kl = -Nk2=-M 

where a (2N + 1) x (2M+ 1) patch, I'r[n\,n2], is extracted from the right image, Ir[n\,n2], 

and compared in the left image //[wi,«2]- While the equations above assume grayscale 

images, they can be easily extended to color images. A correspondence is often assumed to 

exist for the maximal value of the similarity measure. Disparity is computed for each pixel 

as the image plane difference in spatial position of the corresponding points. 

Feature-based methods match image features, such as lines, edges, and corners. Such 

features rarely occur at every pixel in an image, and as a result, feature-based methods find 

only a sparse set of correspondences. The computer vision literature is rife with various 

feature-based correspondence algorithms for virtually every type of feature. 

The correspondence problem is challenging. It is ill-posed, since as a result of occlu­

sions, a match might not exist. In addition, in homogeneously colored surface regions, 

multiple matches may occur. To make matters worse, correspondences become more dif­

ficult to establish when the baseline increases, and when the reflectance of scene surfaces 

deviates from Lambertian. 

However, additional constraints can be imposed to help minimize false matches. Of 

these, perhaps the most useful is the epipolar constraint [36, 123], since it is always valid. 

For a point in image 1, one can back-project a ray into 3D space that intersects the 3D 
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feature generating the point. This ray, when projected into image 2, defines an epipolar 

line, along which the correspondence must lie. Thus, the epipolar constraint reduces the 

2D search for a correspondence to a ID search along an epipolar line. Epipolar geometry 

is reviewed in Appendix A. 

Other constraints used in stereo matching are not applicable to all scenes, but are useful 

for many scenes of interest. The uniqueness constraint [69] requires that there can be no 

more than one match in image 2 for a pixel in image 1. This constraint has been further used 

to require that matches are bi-directional. The continuity constraint [69] takes advantage of 

the cohesiveness of matter by requiring the disparity vary smoothly over most of the image. 

Note that this constraint does not hold at depth discontinuities. The ordering constraint [4] 

requires that the order of neighboring correspondences on the corresponding epipolar lines 

is preserved. The disparity limit constraint specifies a band of allowable depth values for 

which to search for correspondences. Other constraints are possible. By taking advantage 

of these constraints, stereo matching algorithms produce much better results. 

More recent work on stereo matching has seen the incorporation of color segmentation 

for textureless regions [120], inclusion of temporal consistency for dynamic scenes [15, 79, 

119, 131], use of interline consistency of epipolar lines via graph cuts [94], development 

of multi- and wide baseline approaches [82, 90, 97, 125], rejection of outliers [8, 117], and 

efficient implementations for real-time performance. 

If the cameras are calibrated, i.e., the geometry of image formation in the reference 

views is known, the correspondences can be triangulated to reconstruct 3D structure in 

a metric space. In the two-view case, the 3D information is typically represented as a 

depth map, z(x,y), for each pixel that has been matched in a reference view. This 2±D 

representation captures the scene geometry as seen by the reference view. The depth map 

can then be texture-mapped and rendered to synthesize new views of the scene. However, 

since the depth map does not capture the full 3D geometry of the scene, the new view 

synthesis will be effective for only a limited set of virtual viewpoints near the two reference 

10 



views. To reconstruct the full scene geometry, a reconstruction must be performed using 

multiple images taken from cameras surrounding the scene. This is the subject of the next 

subsection. 

2.2.2 Multi-view stereo reconstruction 

We now review multi-view stereo reconstruction methods that execute a stereo correlation-

based correspondence algorithm between various subsets of the reference views. These 

subsets can range from neighboring image pairs [42] to groups of three to six nearby im­

ages [78]. This produces multiple depth maps that represent points in 3D space as seen 

from different viewpoints. For the task of image-based modeling, the goal is then to infer 

object surfaces from these often noisy points. 

In their "virtualized reality" system, Narayanan, Rander, and Kanade [78, 127] recon­

struct time-varying events from multi-view video. For data acquisition, the authors initially 

designed a hemispherical dome consisting of 51 synchronized video cameras that output 

time-stamped video to a bank of VCRs. Later, they rigged a room using 49 synchronized 

video cameras, each connected to a computer for direct video digitization. By sampling the 

scene with many cameras, reconstructions are less likely to have unrecoverable areas that 

are occluded from all cameras. 

For each time instant, a multi-baseline stereo algorithm is executed, resulting in a dense 

depth map for each camera. Each depth map is embedded into a volumetric space, and 

fused [26] into a single three-dimensional model. This model is then extracted from the 

volume using the marching cubes algorithm and texture-mapped by projecting each color 

image onto the model and accumulating the results using a weighted average based on vis­

ibility. New views of the video can be synthesized from arbitrary viewpoints by rendering 

the polygonal model at each time instant. 

Fua and Leclerc [41] have a similar mesh-based approach to the multi-view recon­

struction problem. Like [78], the goal is to recover, in world space, a texture-mapped 3D 
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mesh using all source images. For each stereo pair, their technique performs hierarchical 

correlation-based matching to find a dense depth map for each image. The depth maps from 

all source images are combined in world space, resulting in a dense set of unstructured 3D 

points. These points are fit to quadric patches, clustered into surfaces, and then polygonized 

into a mesh. The authors then attempt to optimize [41] the mesh to increase the reconstruc­

tion accuracy. The cost function landscape contains local minima, so the mesh found prior 

to optimization must be reasonably close to the true surface for the optimization to be ef­

fective. The optimized mesh is then texture-mapped and rendered to synthesize new views. 

In a similar vein, Isodoro and Sclaroff [50] and Rockwood and Winget [93] demonstrate 

mesh optimization approaches for 3D scene reconstruction. 

The optimization in [41] attempts to find an extremal surface that represents the true sur­

face geometry. An alternate approach formulates stereo matching as an extremal surface 

extraction problem [19, 94]. In Chen and Medioni's [19] approach, images pairs are first 

rectified so that correspondence matching occurs over a one-dimensional range of disparity. 

Then, a correlation coefficient is computed for each pixel [nl, nl] in an image and for each 

disparity d. Rather than simply pick the best match at each pixel, this method encodes all 

the correlation coefficients, for each value of d, into a disparity volume p[nl,nl,d]. The 

elements of p [nl, rc2, d] range between zero and one, which indicate low and high probabil­

ity of a match, respectively. The task is then to extract a maximal surface from p[nl, nl,d]. 

This is accomplished picking values close to one as seeds, and then propagating the surface 

from the seeds by finding locally maximal values. Upon completion, this algorithm finds 

an accurate disparity surface between two views. This process is repeated on other image 

pairs, and the results are fused together into a coherent model that is then texture-mapped 

and rendered to create new views. 

Multi-view stereo matching methods are effective in reconstructing scenes using mul­

tiple arbitrarily placed cameras. Key issues for these methods are obtaining accurate corre­

spondences, and addressing incorrect matches by using multi-view refinement strategies. 
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2.3 Structure from motion 

Structure from motion methods process images over time, observing spatio-temporal changes 

that are caused by relative motion between a camera and the scene. For image-based mod­

eling, often one is interested in reconstructing a static scene filmed by a moving camera, 

although other possibilities exist. These structure from motion methods seek to determine 

the shape, or structure of observed objects as well as the relative motion of the moving 

camera from an image sequence. Often, the scene is sampled at video rates, so the spatial 

differences (disparities) between consecutive frames are much smaller than that of stereo 

methods, and correspondences are easier to find. Quite a bit of literature on structure from 

motion exists; Jebara, Azarbayejani, and Pentland [51] provide a nice overview. Here, 

we focus on methods designed for full perspective cameras, arbitrary camera motion, and 

scene reconstruction for new view synthesis. 

Pollefeys, Koch, Vergauwen, and Van Gool [86] have developed a structure from mo­

tion approach that uses video from an uncalibrated camera with a variable focal length. 

Since 3D structure is poorly estimated for small baselines, the authors track corner features 

over many views so that the effective baseline is large. This establishes a sparse set of 

point correspondences. A robust algorithm uses these point correspondences to estimate 

the fundamental matrix relating consecutive views. Incorporating the epipolar constraint, 

more correspondences are found, and the epipolar geometry is refined. Points in projec­

tive space are computed using triangulation between views. This results in a projective 

3D model comprised of sparse points. The authors then show how to self calibrate, which 

upgrades the reconstruction from projective to metric. The authors rectify the images and 

then perform dense stereo correlation-based matching between consecutive images. Depth 

values are refined, and used to build polygonal, texture-mapped model. New views of the 

scene of the model can then be synthesized by rendering the model. 

Zisserman, Fitzgibbon, and Cross [133] [38] have developed a similar structure from 

motion reconstruction method. Like [86], Zisserman et al. locate corners in the images 
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and robustly estimate the fundamental matrix between image pairs. Unlike [86], the au­

thors additionally locate line segments in each image and estimate the trifocal tensor using 

image triplets. The projective location of points and lines are merged among all views, 

resulting in a sparse set of features in 3D projective space. Adopting Pollefeys et al.'s self-

calibration [85] method, these projective features are upgraded to metric. The authors take 

this sparse metric reconstruction and fit planes to the features using a robust technique. 

Then, a texture map is extracted from the source image that is most fronto-parallel with 

each reconstructed plane. Thus, a planar texture-mapped model is recovered. 

Other structure from motion work addresses poor [80, 81] and degenerate camera mo­

tions [121] as well as dynamic scenes [46]. 

Perhaps the most significant limitation to structure from motion methods is that they 

require the images to be closely spaced. Consequently, these methods can become imprac­

tical [27] for modeling a larger scale scene, such as a city block, as they could require an 

unwieldy number of images to capture all surfaces of interest. In comparison, many of the 

other methods presented in this review have a significant advantage in that they function 

well with a sparser sampling of the scene. 

2.4 Interactive modeling systems 

An interactive modeling system is a user-assisted CAD program that utilizes photographs 

and computer vision methods to produce a photo-realistic 3D model of a scene. By includ­

ing a human operator in the modeling process, very accurate 3D models can be generated. 

In fact, some of the most compelling three-dimensional reconstructions from multiple im­

ages have been produced using these systems. 

Interactive modeling systems are typically designed to reconstruct man-made scenes, 

often architectural scenes, which are usually composed of basic shapes. Many of these 

shapes contain parallel and orthogonal lines, a fact often required by the reconstruction 

program. The input to such a system is a sparse set of photographs. It is important to take 

14 



as few photographs as possible, since the user must interact with the images. 

Becker and Bove [6], Faugeras et al. [35], and Shum, Hei, and Szeliski [105] present 

interactive modeling systems. These methods take advantage of parallel and orthogonal 

lines common to man-made structures. By having a user specify parallel and/or orthogonal 

lines in image space, the authors show how intrinsic and/or extrinsic camera parameters 

can be determined. Then, a user identifies features such as lines and planes by clicking 

on them in the images, and the system solves for the location of the features in 3D space. 

The reconstructions in these papers contain only simple geometry, and in the case of [6], 

consist only of planar surfaces. Texture maps are extracted from the images and applied to 

the reconstructed geometry, producing a model for new view synthesis. 

In Debevec, Taylor, and Malik's [27] system, a user instantiates parameterized geomet­

ric primitives from a vocabulary of simple shapes, such as boxes, prisms, and surfaces of 

revolution. Next, the user marks edge features in the images, and marks each corresponding 

edge on the appropriate geometric primitive. The system then extracts texture maps from 

the images to apply to each geometric primitive, and computes each primitive's location 

in 3D space. This typically produces a reasonably accurate model. However, the simple 

geometric primitives do not capture some of the finer geometric details in the scene. To 

determine how the actual scene deviates from the approximate model, the authors execute 

a correlation-based stereo algorithm between pairs of images, producing a dense depth map 

for each image. This depth information is then used to produce more accurate renderings 

of the model. 

Debevec et al.'s system produces high quality reconstructions that attain a degree of 

photo-realism unparalleled by most new view synthesis techniques. Their work spurred 

development of similar systems [28, 88] as well as consumer software packages. However, 

these systems require a fair amount of user interaction during scene modeling, especially 

compared to the more automatic scene reconstruction methods presented in this thesis. An­

other limitation of these systems is that they cannot reconstruct arbitrarily shaped surfaces. 
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Figure 1: Voxel classifications. For simplicity, this figure shows a 2D voxel space, com­
posed of the three voxel types. Empty space voxels are white, surface voxels are black, and 
inner voxels are gray. 

2.5 Volumetric approaches 

Volumetric approaches represent the scene as a collection of voxels, which are typically 

modeled as small cubes arranged on a 3D lattice. In this context, the goal of 3D scene 

reconstruction is to determine which voxels represent surfaces in the scene. The recon­

struction algorithm classifies each voxel into one of three categories: 

Free Space Voxels These voxels represent free space in the scene. These voxels are made 

transparent. 

Surface Voxels These voxels represent the surfaces in the scene. These voxels are ren­

dered opaque. 

Inner Voxels These voxels are not visible to any camera, and are assumed to be inside 

surfaces. These voxels are not typically displayed. 

These voxel classifications are shown in Figure 1. 

Typical volumetric approaches define a reconstruction volume, the region of space that 

encompasses the scene and in which the reconstruction occurs. The reconstruction volume 
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is tesselated into voxels, forming a voxel space. The volumetric reconstruction algorithm 

then removes, or carves the free space voxels. Upon completion of the algorithm, the 

remaining surface and inner voxels represent the 3D volume of objects in the scene. Note 

that this process is similar to the way a sculptor would chip away at a block of marble to 

reveal a shape. The surface voxels of the reconstruction model the geometry of the scene 

surfaces. These voxels can be colored (or texture-mapped) and rendered to produce new 

views of the scene. 

This section reviews volumetric approaches to the 3D scene reconstruction problem. 

We note that two surveys on the subject appear in the literature [31, 109]. 

2.5.1 Visual hulls 

Perhaps the most straightforward way to reconstruct a 3D scene from multiple calibrated 

images is to compute the visual hull. However, before we describe the basic approach, we 

begin our discussion of the visual hull with some definitions. Unfortunately, there is some 

confusion in the literature regarding the use of the term visual hull. 

Visual hull. The visual hulL, is the maximal shape that gives the same silhou­

ette as the actual object for all views outside the convex hull of the object. 

This definition is given by Laurentini [57]. Reconstruction of the visual hulLo could require 

an infinite number of photographs. We use the term visual hull be the approximation of 

the visual hum reconstructed using N photographs. Many papers in the literature do not 

distinguish between the two. 

Volumetric approaches [40, 76, 87, 116] are commonly employed to reconstruct the 

visual hull. Figure 2 gives a visual description of the pipeline. First, photographs of the 

scene from multiple viewpoints are taken. Then, each photograph is segmented into a 

binary image consisting of foreground and background, thereby producing silhouettes. This 

can be achieved by subtracting a known background. Foreground pixels correspond to 

points to which the 3D object projects. Everything else is background. 
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Figure 2: Visual hull reconstruction. 
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Each silhouette constrains the region of space in which the true surface is located. One 

can back-project rays from the center of projection of an image, through pixels in the sil­

houette, and into 3D space. This defines a cone-shaped wedge emanating from a reference 

view, as shown in the bottom image of Figure 2. If these wedges are intersected from all 

viewpoints, the resultant shape is the visual hull. 

Alternatively, one can project voxels from 3D space into the images. If a voxel projects 

only to background in a reference view, then it is not in the visual hull and it is carved. The 

remaining voxels model the surface of the object as well as its interior. For efficiency, the 

voxel space can be processed in a coarse-to-fine fashion. 

The visual hull has several interesting properties. First, although it is only an approxi­

mation to the true shape of the object, it is guaranteed to enclose the object. This is shown 

in Figure 3. Second, in 3D the visual hull of an object can be a better or worse approx­

imation of the object than the convex hull depending on the geometry of the object and 

the placement of the viewpoints. Third, the size of the visual hull decreases monotonically 

with the number of images used in the reconstruction. However, even when an infinite 

number of images are used, not all surface concavities can be modeled with a visual hull. 

Surface concavities that are not apparent in the silhouettes are not reconstructable using 

this method. 

Work on volumetric reconstruction of visual hulls first appeared in the early 1980s [70]. 

Since then, techniques have been developed for arbitrary camera placement [87], efficient 

reconstruction [72, 116], weakly calibrated cameras [43], and dynamic scenes [71, 72, 76]. 

In Chapter 7, we examine one of these methods [72] in some detail. 

Reconstruction of the visual hull has some advantages. First, the visual hull is simple 

to compute, as one does not need to model visibility of the scene during reconstruction. 

Second, assuming accurate segmentation of the photographs, visual hull methods are ro­

bust to reconstructing surfaces that are non-Lambertian or periodically or homogeneously 

textured. The disadvantages of visual hull approaches are that background segmentation 
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Visual hull 

Figure 3: An example visual hull. In this 2D example, a square shape is photographed by 
four cameras. The visual hull, which contains the true scene, is shown in gray. 
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can be difficult, and by reconstructing the scene using binary silhouettes, much useful color 

information that could be used to attain more accurate 3D reconstructions is discarded. 

2.5.2 Photo hulls 

While a visual hull reconstruction can be rendered to produce new views of the scene, the 

visual geometry is typically not very accurate. This can diminish the photo-realism of the 

synthetic new views. To increase the geometric accuracy, more information than silhouette 

data must be used during reconstruction. 

An obvious choice is color (or luminance, for gray-scale images). Many researchers 

have attempted to reconstruct 3D scenes by analyzing colors across multiple viewpoints, 

looking for a 3D model that, when projected to reference views, reproduces the pho­

tographs. Unfortunately, the problem is ill-posed. For a given set of 2D photographs, 

multiple 3D models that reproduce the photographs can and often do exist. 

In their insightful work, Kutulakos and Seitz [54] introduce the photo hull, which is the 

largest shape that contains all reconstructions in the equivalence class of 3D models that 

reproduce the photographs. The photo hull is unique, and is itself a reconstruction of the 

scene. Better yet, it is the tightest possible bound on the shape of the true scene that can be 

inferred from N photographs, in the absence of a priori geometric or point correspondence 

information [54]. 

Critical to the computation of the photo hull is the notion of photo-consistency. A point 

in 3D space is said to be photo-consistent with a photograph if 

• The point does not project to background. 

• When the point is visible, the light exiting the point (i.e., radiance) in the direction of 

the camera is equal to the observed color of the point's projection in the photograph. 

Since we model points with voxels, the photo hull is found by identifying the spatially 

largest set of voxels that are photo-consistent with all the photographs taken of the scene. 
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To compute the photo hull, we require a method to determine photo-consistency. As­

sume that a point (or voxel) is visible to K of the TV reference views. As described in [54], 

a photo-consistency check is an algorithm that that takes as input at least K colors from 

the photographs, K 3D vectors going from the point (or voxel) toward each camera, and 

all light source positions (for the non-Lambertian case), and determines if it is possible for 

the point to reflect light of the observed color in each photograph. The photo-consistency 

check is assumed to be monotonic in that if a point (or voxel) is found to be inconsistent 

when visible to M cameras, it will still be inconsistent when visible to K > M cameras. 

Such a photo-consistency check is limited to the class of radiance models that are lo­

cally computable - that is, the radiance of any point in the scene is independent of the 

radiance of any other point in the scene [54]. Thus, scenes with transparency would not 

be reconstructable using such a photo-consistency check. However, a wide class of param­

eterized radiance models are valid. An important special case is the Lambertian model, 

which reflects light with equal intensity in all directions [39]. For this model, the photo-

consistency check simply measures the similarity of the colors in the projection of the 

point (or voxel) into each photograph. If the colors are similar, the point (or voxel) is 

photo-consistent. Otherwise, it is inconsistent. We will describe measures for computing 

the similarity of colors across viewpoints in Section 3.1. 

By taking advantage of these additional color constraints, the photo hull geometry is 

often a tighter fit to the true scene geometry than the visual hull. That is, 

True Scene C Photo Hull C Visual Hull 

Figure 4 shows an example of the photo hull for a square shape photographed by four 

cameras. This is the same shape that appears in Figure 3. We note that the photo hull can 

contain concavities that are not possible to model with the visual hull. 

The standard approach for computing a photo hull is space carving [32, 54, 100]. This 

class of volumetric algorithms reconstructs the scene by removing (carving) voxels that are 

not photo-consistent with the reference views. These approaches begin with a voxel space 
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Photo hull 

Figure 4: An example photo hull, taken from [54J. In this 2D example, a square shape is 
photographed by four cameras. The photo hull is shown in gray. Note this shape is a tighter 
fit than the visual hull shown in Figure 3. 
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Figure 5: Four of 36 photographs of a cloth toy. This data set is provided courtesy of Tom 
Malzbender and Bruce Culbertson. 

composed of opaque voxels. Voxels that are visible to the cameras are tested for photo-

consistency. The inconsistent voxels are carved (made transparent), which changes the 

visibility of other voxels in voxel space. The algorithm continues to iterate until all visible 

voxels are photo-consistent. When these remaining photo-consistent voxels are assigned 

the colors they project to in the photographs, they form a model that closely resembles the 

scene. We will describe two of these approaches [54, 100] in more detail in Chapter 3. 

An example of a scene reconstructed using the algorithm from [100] is provided in 

Figures 5 and 6. This reconstruction was computed of a cloth toy using 36 photographs, 

four of which are shown in Figure 5. After reconstructing the scene, the 3D model was 

rendered to a synthetic viewpoint. The new synthesized view is shown in Figure 6 (a), 

along with the corresponding depth map (b). 

Space carving approaches are very powerful, and have captured the interest of many re­

searchers who have proposed extensions to or reformulations of the basic approach. Prock 
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(a) (b) 

Figure 6: Reconstruction of a cloth toy using a space carving algorithm. We show a new 
synthesized view (a) and the corresponding depth map (b). 

and Dyer [91] present a multi-resolution approach as well as hardware implementations 

for improved efficiency. De Bonet and Viola [11] address the problem of reconstructing 

scenes that have opacity. Researchers have performed space carving using intrinsically 

calibrated [33] and weakly calibrated [63, 95] cameras. Vedula et al. [126] link two time-

consecutive voxel spaces together for reconstructing shape and motion of time-varying 

scenes. Space carving was recast in a probabilistic framework by Broadhurst et al. [12]. 

Carceroni and Kutulakos [15] propose a surfel-based approach for reconstructing time-

varying scenes with various reflectances. 

Indeed, the goal of this thesis is to introduce novel approaches that improve upon the 

quality, efficiency, and applicability of these space carving methods. 

2.5.3 Level set methods 

Another class of volumetric reconstruction algorithms is those that employ level set meth­

ods [83, 102]. Level set theory was originally developed to model the evolution of propa­

gating interfaces, but has since been applied to a wide array of problems. 

For 3D surface evolution, these methods usually embed a surface as the zero-level set 

of a volumetric function. This function is sampled on a discrete 3D lattice, forming a voxel 

space. The surface moves along its surface normal, subject to intrinsic, data-driven, and 
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independent forces. Level set theory provides an accurate and stable numerical scheme 

that solves the partial differential equations (PDEs) that characterize the motion for the 

surface. Topological changes are naturally accommodated in this framework. 

Faugeras and Keriven [34] present a level set algorithm for 3D scene reconstruction. 

Their method begins with an initial surface that encompasses the scene being reconstructed. 

The surface then flows inward, with a speed on the surface proportional to the mismatch of 

textures determined by projecting a small patch on the surface into the reference views. The 

surface slows at regions that match, yielding a reconstruction that models the 3D scene. A 

polygonal surface representing the zero-level set can be extracted from the volume using 

the marching cubes algorithm [62]. This technique was extended by Colosimo [24] et al. 

to support multi-resolution reconstruction. 

Yezzi and Soatto [130] introduce a stereoscopic segmentation approach designed for 

radiance functions with smooth statistics. Their region-based method simultaneously seg­

ments the N photographs by evolving a 3D surface using level set methods. They demon­

strate that their approach is resistant to errors in camera calibration and allows for a bi­

directional flow. In a later paper, this work is extended to address scenes with speculari-

ties [52]. 

2.6 Summary 

This chapter reviewed new view synthesis techniques. The goal of these methods is to gen­

erate photo-realistic synthetic views given a collection of photographs taken of a scene. We 

presented image-based rendering as well as image-based modeling methods. Image-based 

rendering algorithms typically warp or resample the photographs to generate new views. 

Image-based modeling approaches first reconstruct a 3D model of the scene geometry, and 

then render the model to produce new views of the scene. 

While there has been much work on the problem of new view synthesis, the problem 

has yet to be fully solved. In this thesis, we introduce methods that extend the state of the 
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art in volumetric image-based modeling methods. Volumetric ipproaches have significant 

advantages over competing methods. 

Comparing to image-based rendering methods, volumetric scene reconstruction ap­

proaches compute a 3D model of the scene. A 3D model is a more complete representation 

that has wider application than simply new view synthesis. Reconstructed 3D models have 

been used in robot navigation, reverse engineering [26], object recognition [7, 77], motion 

capture [104], model building [27, 126], teleconferencing, and more. Furthermore, this 3D 

representation is often much more compact than light field approaches, which rely on a 

dense sampling of the plenoptic function. 

Multi-view stereo matching and structure from motion methods can achieve good qual­

ity reconstructions. However, volumetric approaches like space carving have a key ad­

vantage in that they explicitly model visibility when matching colors across viewpoints. 

Reasoning about occlusion given two or more views of a scene is difficult in the 2D space 

of the images, but is relatively simple in 3D world space. Related to this, in volumetric 

approaches, the cameras can be separated by larger baselines without degrading accuracy 

or runtime. Another advantage is that volumetric approaches inherently integrate a number 

of reference views to yield a dense reconstruction. However, in multi-view stereo matching 

and structure from motion methods, formation of a coherent 3D model from triangulated 

correspondences is an additional step that is error-prone. 

For these reasons, we argue that volumetric approaches are well suited for reconstruct­

ing 3D models of scenes for new view synthesis. The remaining chapters of this thesis 

present methods that extend the state of the art in volumetric scene reconstruction. We in­

troduce techniques that improve the quality, applicability, and efficiency of existing meth­

ods. The next chapter presents a volumetric reconstruction algorithm that generalizes visi­

bility to support arbitrary camera placement while using the full visibility of the scene. 
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CHAPTER III 

GENERALIZED VOXEL COLORING 

This chapter describes generalized voxel coloring (GVC), which encompasses two new 

approaches to computing visibility during a volumetric 3D scene reconstruction. Visibility 

is an essential, yet subtle aspect to this class of algorithms and several interesting variations 

have been proposed. 

Before describing GVC, we discuss the computation of photo-consistency, and describe 

two previous volumetric algorithms that use photo-consistency to reconstruct a scene. We 

then describe how our generalized voxel coloring approach extends these earlier approaches. 

3.1 Photo-consistency 

Computation of the photo hull relies upon establishing the photo-consistency of voxels. 

Throughout this thesis we will assume that the scene is or is nearly Lambertian. In this 

case, a voxel that models a scene surface will project to a similar color in each of the 

reference views, as shown in Figure 7. This fact is used as a constraint for identifying 

scene geometry. We note that the use of other reflectance models is possible [23], but may 

require calibration of light sources and computation of surface normals. 

3.1.1 Visibility 

Visibility is required to correctly compute photo-consistency, as shown in Figure 8. In this 

figure, a voxel that does model a scene surface could erroneously be declared inconsistent if 

visibility is not taken into consideration. The voxel is not visible to the rightmost camera, 

which observes a blue color resulting from occluding geometry in the scene. Only the 

viewpoints that have visibility of a voxel should contribute to the photo-consistency check. 
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Figure 7: Using photo-consistency to identify scene surfaces (Lambertian example). In 
(a), a voxel that models a scene surface projects to consistent colors in the reference views. 
In (b), a voxel that does not model a scene surface projects to different, inconsistent colors. 
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Figure 8: Visibility is required to correctly compute photo-consistency. 
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Many different approaches to computing photo-consistency have been developed and 

analyzed [13, 84]. Below we present two simple photo-consistency measures that are used 

to perform the reconstructions in this thesis. 

3.1.2 A single threshold measure 

Let vis(V, if) denote the set of visible pixels to which a voxel V projects in reference view i. 

The number of pixels in vis(V,z) varies depending on the resolution of the voxel space, the 

resolution of the reference view, the imaging geometry, the relative position of the camera 

and the voxel, and occlusions in the scene. Let vis(V) be the set of pixels to which a voxel 

V projects in all the images. That is, vis(V) = U/ vis(V, i). 

For RGB images, one can compute the mean in each color channel (r,g,b) and a stan­

dard deviation o~ for all the pixels in vis(V). Specifically, we compute 

i N 

~r = jjfrj (1) 

1 N 

S = 7 7 1 > ; (2) 

1 N 

»£-• 
(3) 

a = Ah^+sj+b])-?^-t-b2
 (4) 

where (r;-,g;,Z>;) is the y'th of N colors in vis(V). 

Intuitively, the pixel colors match when <r is small. A simple approach to determine 

photo-consistency, proposed in [100], is to threshold the standard deviation a. That is, 

( True, if o < T\ 
(5) 

False, otherwise 

where T\ is user specified or computed from the noise in the reference views. We note that 

this approach of thresholding the standard deviation also works with color spaces other 

than RGB. 
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This measure of photo-consistency is capable of adequately reconstructing many scenes, 

especially those that have a mostly homogenous color, such as the one shown in Figure 9 

(a). However, its drawback is that it performs poorly for voxels that project to consistent, 

yet highly varying colors in the images, such as those in (b) and (c) of Figure 9. In these 

cases, multiple different colors will be observed for the voxel in the images. Consequently, 

the standard deviation will be high, the photo-consistency measure will incorrectly return 

false, and the voxel will erroneously be carved. 

\y \y 
(a) (b) 
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(c) (d) 

Figure 9: Handling texture and edges. In (a), a voxel represents a homogeneous region, 
for which both o~ and a are small. In (b) and (c), a voxel represents a textured region and 
an edge, respectively, for which both o~ and ~6 are large. In (d), a voxel representing free 
space has a large o~ and small o\ As discussed in Section 3.1.3, cf is the standard deviation 
computed per reference view and averaged across the viewpoints. 

Propagating errors can be caused if the photo-consistency measure incorrectly causes 

voxels to be carved. The removal of a voxel that should be photo-consistent incorrectly 

changes the visibility of other photo-consistent voxels, which may then incorrectly become 

inconsistent. This process can iterate, propagating the errors, and in the worst case, no 

voxels will remain in the volume upon completion of the reconstruction algorithm. 

31 



3.1.3 An adaptive threshold measure 

Voxels that represent textured surfaces and edges, as shown in Figure 9 (b) and (c), will 

project to pixels with a high standard deviation in each image. We use this fact to modify 

the consistency measure described above to handle such surfaces. Let the standard de­

viation of vis(V, i), summed over each color channel, be o~,. Our new photo-consistency 

measure is then 

I True, i f o r < T i + o T 2 
(6) 

False, otherwise 

where a is the average of c, and Tz is a second user-defined threshold. 

This consistency measure simply adds an additional term 0T2 to Equation 5. This 

term spatially adapts the consistency measure based on the colors observed in the voxel's 

projection. The value of (7 will be small when a voxel projects to homogenous colors 

in each image. In this case, there will be little difference between the two consistency 

measures 5 and 6. If these colors are similar (as in Figure 9 (a)), the voxel will be declared 

consistent. If these colors are dissimilar, (as in Figure 9 (d)), the voxel will be declared 

inconsistent. When the voxel projects to highly varying pixels in each image, the ~o term 

will increase the maximum value of a allowable for the voxel to be declared consistent. 

This allows for textured surfaces, as well as edges, to be correctly reconstructed. The 

threshold T2 allows one to weight the contribution of this term to the photo-consistency 

measure. 

The two-threshold consistency measure described above is effective at reconstructing 

Lambertian scenes. It will be used to produce all the reconstructions presented in this 

thesis. Its main drawback is that it requires two parameters, T\ and T2, to be specified 

prior to reconstruction. These thresholds are not typically known in advance, and to find 

them, one sweeps the parameter space until values are found that achieve good results. 

Other researchers have investigated alternative measures that require little or no parameter 

tuning [13, 107]. 
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3.2 Voxel coloring - a single planar sweep 

We now describe Seitz and Dyer's voxel coloring algorithm [100], which was the first 

volumetric approach to use photo-consistency to reconstruct a color 3D scene. 

The voxel coloring algorithm begins with a reconstruction volume of initially opaque 

voxels that encompasses the scene to be reconstructed. As the algorithm runs, opaque vox­

els are tested for photo-consistency and those that are found to be inconsistent are carved. 

The algorithm stops when all the remaining opaque voxels are photo-consistent. When 

these final voxels are assigned the colors they project to in the input images, they form a 

model that closely resembles the scene. 

As voxel coloring progresses, opaque voxels occlude each other from the input images 

in a complex and constantly changing pattern. To test the photo-consistency of a voxel, its 

visibility must first be determined. Since this is done many times during a reconstruction, 

it must be performed efficiently. 

To simplify the computation of voxel visibility and to allow a scene to be reconstructed 

in a single scan of the voxels, Seitz and Dyer imposed what they called the ordinal visibility 

constraint on the camera locations. It requires that the cameras be placed such that all the 

voxels are visited in a single scan in near-to-far order relative to every camera. Typically, 

this condition is met by placing all the cameras on one side of the scene and scanning 

voxels in planes that are successively further from the cameras. Thus, the transparency 

of all voxels that might occlude a voxel V is determined before V is checked for photo-

consistency. This insures that the visibility of a voxel stops changing before it needs to be 

computed, which is important since every voxel is visited just once. An occlusion bitmap, 

with one bit per input camera pixel, is used to account for occlusion. These bits are initially 

clear. When a voxel is found to be consistent, meaning it will remain opaque, all the 

occlusion bits in the voxel's projection are set, as shown in Figure 10. The visibility set of 

a voxel is simply the pixels in the voxel's projection whose occlusion bits are clear. 
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Figure 10: Voxel coloring via a planar sweep. On the left, a voxel is found to be consistent, 
and a bit in the occlusion bitmap is set for each pixel in the projection of a consistent 
voxel into each image, indicated by the gray pixels in the occlusion bitmaps. On the right, 
visibility of the lowest voxel is established by examining the pixels to which the voxel 
projects. These pixels are shown in black. If the occlusion bits have been set for these 
pixels, then the voxel is occluded, as is the case for the two middle cameras. 

3.3 Arbitrary camera placement 

The voxel coloring algorithm described in the previous section is elegant and efficient. 

However, the ordinal visibility constraint is a significant limitation. Since the voxels must 

be ordered from near to far relative to all the cameras, the cameras cannot surround the 

scene. Thus, some surfaces will not be visible in any image and hence cannot be recon­

structed. Because it is often desirable to obtain a model that resembles the scene from 

every direction, several variations of voxel coloring have been developed to circumvent 

this limitation. If we surround the scene with cameras, we give up the ordinal visibility 

constraint. Without the constraint, there is no order in which to scan voxels that guarantees 

their visibility will not change after we check their photo-consistency. Hence, algorithms 

that allow arbitrary camera placement must test voxels repeatedly for photo-consistency 

until their visibility stabilizes. 
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set all voxels opaque 
loop { 

AllVoxelsConsistent = TRUE 
for every opaque voxel V { 

determine vis(V) 
if vis(V) has consistent color { 

assign V the average color of all pixels in vis(V) 
} else { 

AllVoxelsConsistent ~ FALSE 
set V to be transparent 

} 
} 
if AllVoxelsConsistent = TRUE 

quit 

} 

Figure 11: Pseudo-code for space carving algorithms. 

Figure 11 gives the general approach for voxel coloring algorithms that allow arbi­

trary camera placement. In the inner loop, the visibility of voxels is found, their photo-

consistency is checked, and they are carved if they are found to be inconsistent. If one 

voxel is carved, the visibility of other voxels potentially changes, invalidating any photo-

consistency tests they may have passed. Hence, there is an outer loop that repeats the 

photo-consistency checking until no carving occurs in the inner loop. No carving occurs 

on the final iteration of the outer loop so no testing is invalidated and the final set of opaque 

voxels is guaranteed to be photo-consistent. 

When the algorithm in Figure 11 begins to run, the model bears little resemblance to 

the scene. Yet, the algorithm computes the visibility for voxels, and carves those found to 

be inconsistent, based on this model. It is reasonable to wonder if the algorithm might fail 

because of carving voxels early on that would be photo-consistent in the final model. As 

described in [25], this cannot happen if a monotonic photo-consistency measure is used. 

For such a photo-consistency measure, if a set of pixels is inconsistent, any superset of 

those pixels is also inconsistent. Since the algorithm changes only opaque voxels to trans­

parent and never vice versa, remaining opaque voxels can only become more visible as 
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the algorithm runs and the pixels that, can see a voxel at one point in time will be a sub­

set of those that see the voxel at any later time. Thus, if the photo-consistency measure 

ever finds a voxel to be inconsistent, the voxel will also be inconsistent in the final model. 

Therefore, when using a monotonic photo-consistency measure, the algorithm never carves 

a voxel that would be consistent in the final model. In this sense we say that carving is 

conservative. 

We note that in this thesis, we use the term space carving to refer to the class of vol­

umetric reconstruction algorithms that allow for arbitrary camera placement and also use 

photo-consistency to carve away voxels that do not model scene surfaces. These space 

carving algorithms include [25, 32, 54], and are grouped together by some authors writ­

ing papers in the computer vision literature. Below, we refer to the algorithm in [54] as 

Kutulakos and Seitz's space carving approach. 

3.4 Space carving: multiple planar sweeps 

Kutulakos and Seitz [54] present a space carving algorithm that implements Figure 11. 

It always scans voxels for photo-consistency by evaluating a plane of voxels at a time, 

as is done with voxel coloring. Unlike voxel coloring, their approach performs multiple 

scans, typically along the positive and negative directions of each of the three axes. The 

algorithm forces the scans to be near-to-far, relative to the cameras, by using only images 

whose cameras have already been passed by the moving plane. Thus, when a voxel is 

evaluated, the transparency is already known of other voxels that might occlude it from the 

cameras currently being used. Because carving is conservative, the set of uncarved voxels 

is a shrinking superset of the desired color-consistent model as the algorithm runs. 

Kutulakos and Seitz's approach achieves the goal of allowing arbitrary camera place­

ment. For simplicity, the original formulation of the algorithm [56] used only a subset of 

the cameras that have visibility of a voxel when computing photo-consistency. Such an ap­

proach can produce a model that includes some inconsistent voxels. A later enhancement 
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to the algorithm [54] describes some additional bookkeeping that enables the method to 

compute visibility exactly. 

3.5 Generalized voxel coloring 

Now that we have reviewed voxel coloring and Kutulakos and Seitz's space carving algo­

rithm, we are ready to present our new algorithm, generalized voxel coloring (GVC). The 

goal of GVC is to reconstruct the scene using the exact visibility while supporting arbi­

trary camera placement. In this spirit, it is similar to the enhanced space carving algorithm 

described in [54]. However, GVC has several advantages that will be described below. 

GVC encompasses two different methods, GVC-IB and GVC-LDI, for computing scene 

visibility during a volumetric reconstruction. GVC-LDI is an enhancement of GVC-IB, our 

basic algorithm. The carving of one voxel potentially changes the visibility of other vox­

els. When an uncarved voxel's visibility changes, its photo-consistency should be reeval­

uated and it, too, should be carved if it is then found to be inconsistent. GVC-LDI uses 

layered depth images (LDIs) [73, 103] to determine exactly which voxels have their vis­

ibility changed when another voxel is carved and thus can reevaluate exactly the right 

voxels. In the same situation, GVC-IB does not know which voxels need to be reevalu­

ated and so reevaluates all voxels in the current model. Therefore, GVC-LDI performs 

significantly fewer photo-consistency evaluations than GVC-IB during a reconstruction. 

However, GVC-IB uses considerably less memory than GVC-LDI. Like Kutulakos and 

Seitz's space carving approach, both GVC-IB and GVC-LDI initially assume all voxels are 

opaque, i.e., uncarved. They carve inconsistent voxels until all those that remain project 

into consistent colors in the images from which they are visible. 

3.5.1 GVC-IB 

GVC-IB determines visibility as follows. First, every voxel is assigned a unique ID. Then, 

an item buffer [128] is constructed for each image. An item buffer, shown in Figure 12 
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Figure 12: GVC data structures. An item buffer is shown in (a), and a layered depth image 
is shown in (b). For simplicity, we show a 2D scene captured by ID cameras. 

(a), contains a voxel ID for every pixel in the reference view. To compose an item buffer, 

each voxel is rendered to a camera using z-buffering, however, instead of storing a color, 

the voxel ID is stored. Each pixel in the item buffer will then contain the ID of the closest 

voxel that projects onto the pixel. This is exactly the visibility information we need when 

computing photo-consistency. 

Once valid item buffers have been computed for the images, it is then possible to com­

pute the set vis(V) of all pixels from which the voxel V is visible. To compute vis(V), we 

first project V into each image. Then, for every pixel P in the projection of V, if P's item 

buffer value equals V's ID, then P is added to vis(V). To check the photo-consistency of a 

voxel V, we apply a photo-consistency function consist() to vis(V). 

Since carving a voxel changes the visibility of the remaining uncarved voxels, and since 

we use item buffers to maintain visibility information, the item buffers need to be updated 

periodically. GVC-IB does this by recomputing the item buffers from scratch. Since this 

is time consuming, we allow GVC-IB to carve many voxels between updates. As a result, 

the item buffers are out-of-date much of the time and the computed set vis(V) is guaranteed 

only to be a subset of all the pixels from which a voxel V is visible. However, since carving 

is conservative, no voxels will be carved that should not be carved. During the final iteration 

of GVC-IB, no carving occurs so the visibility information stays up-to-date. Every voxel 

is checked for photo-consistency on the final iteration so it follows that the final model is 
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photo-consistent. 

As carving progresses, each voxel is in one of the three categories described in Sec­

tion 2.5 of this thesis: 

• Free space voxel: It has been found to be inconsistent and has been carved. 

• Surface voxel: It is on the surface of the set of uncarved voxels and has been found 

to be consistent whenever it has been evaluated. 

• Inner voxel: It is not visible to any of the reference views and its photo-consistency 

is undefined. 

We use an array of bits, one per voxel, to record which voxels have been carved. This 

data structure is called 'carved' in the pseudo-code Figure 13 and is initially set to false for 

every voxel. We maintain a data structure called the surface voxel list (SVL) to identify 

the second category of voxels. The SVL is initialized to be the set of voxels that are not 

surrounded by other voxels. The item buffers are computed by rendering all the voxels on 

the SVL to each reference view. Though inner voxels are uncarved, they do not need to be 

rendered into the item buffers because they are not visible from any images. When a voxel 

is carved, adjacent inner voxels become surface voxels and are added to the SVL. To avoid 

adding a voxel to the SVL more than once, we need a rapid means of determining if the 

voxel is already on the SVL; hence we implement the SVL as a hash table. When GVC-

IB has finished, the final set of uncarved voxels may be recorded by saving the function 

carved() or the SVL. 

3.5.2 GVC-LDI 

GVC-IB computes visibility in a relatively simple manner that makes efficient use of mem­

ory. However, the visibility information is time consuming to update. Hence, GVC-IB 

updates it infrequently and it is out-of-date much of the time. This does not lead to in­

correct results but it does result in inefficiency because a voxel that would be evaluated as 
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initialize SVL 
for every voxel V 

carved[V) - false 
loop { 

visibilityChanged = false 
compute item buffers by rendering voxels on SVL 
for every voxel V G SVL { 

compute vis(V) 

if (consist(vis(V)) = false) { 
visibilityChanged = true 
carved(V) = true 
remove V from SVL 
for all voxels N that are adjacent to V 

if (carved (N) = false and N f SVL) 
add N to SVL 

} 
} 
if (visibilityChanged = false) { 

save voxel space 
quit 

} 
} 

Figure 13: GVC-IB pseudo-code. 
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inconsistent using all the visibility information might be evaluated as consistent using a 

subset of the information. Ultimately, all the information is collected but, in the meantime, 

voxels can remain uncarved longer than necessary and can therefore require more than 

an ideal number of photo-consistency evaluations. Furthermore, GVC-IB reevaluates the 

photo-consistency of voxels on the SVL even when their visibility (and hence their photo-

consistency) has not changed since their last evaluation. By using layered depth images 

instead of item buffers, GVC-LDI can efficiently and immediately update the visibility 

information when a voxel is carved and also can precisely determine the voxels whose 

visibility has changed. 

The item buffers used by the GVC-IB method record at each pixel P just the closest 

voxel that projects onto P. In contrast, the LDIs store at each pixel a list of all the surface 

voxels that project onto P as shown in Figure 12 (b). These lists, which in the pseudo-code 

are called LDI(P), are depth sorted according to the distance of the voxel to the image's 

camera. The head of LDI(P) stores the voxel closest to P, which is the same voxel an item 

buffer would store. Since the information stored in an item buffer is also available in an 

LDI, vis(V) can be computed in the same way as in GVC-IB. The LDIs are initialized by 

rendering the SVL voxels. 

The uncarved voxels whose visibility changes when another voxel is carved come from 

two sources, as shown in Figure 14: 

• They are inner voxels adjacent to the carved voxel and become surface voxels when 

the carved voxel becomes transparent. 

• They are already surface voxels (hence they are in the SVL and LDIs) and are often 

distant from the carved voxel. 

Voxels in the first category are trivial to identify since they are next to the carved voxel. 

Voxels in the second category are impossible to identify efficiently in the GVC-IB method; 

hence, that method must repeatedly evaluate the entire SVL for photo-consistency. In 
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Figure 14: Voxels that change visibility. 

GVC-LDI, voxels in the second category can be found easily with the aid of the LDIs; 

they will be the second voxel on LDl(P) for some pixel P in the projection of the carved 

voxel. GVC-LDI keeps a list of the SVL voxels whose visibility has changed, called the 

changed visibility SVL (CVSVL in the pseudo-code in Figure 15). These are the only 

voxels whose photo-consistency must be checked. Carving is finished when the CVSVL is 

empty. 

When a voxel is carved, the LDIs (and hence the visibility information) can be updated 

immediately and efficiently. The carved voxel can be deleted easily from LDI(P) for every 

pixel P in its projection. The same process automatically updates the visibility information 

for the second category of uncarved voxels whose visibility has changed; these voxels move 

to the head of LDI lists from which the carved voxel has been removed and they are also 

added to the CVSVL. Inner voxels adjacent to the carved voxel are pushed onto the LDI 

lists for pixels they project onto. As a byproduct of this process, we learn if the voxel is 

visible. If so, we put it on the CVSVL. Pseudo-code for GVC-LDI appears in Figure 15. 

3.5.3 Results 

We have reconstructed a number of scenes using the GVC-IB and GVC-LDI algorithms. 

Figures 16, 17, 18, and 19 demonstrate the process for a typical example. In Figure 16, 

we show two of 17 reference views of a toy model of Ghirardelli Square. These images 

were taken with a resolution of 1152 x 872 pixels. The object was placed on a black 
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initialize SVL 
render SVL to LDIs 
for every voxel V 

carved(V) = false 
copy SVL to CVSVL 
while (CVSVL is not empty) { 

delete V from CVSVL 
compute vis{V) 
if (consist(vis(V)) = false) { 

carved(V) = true 
remove V from SVL 
for every pixel P in projection of V into all images { 

if (V is head of LDI(P)) 
add next voxel on LDI (P) (if any) to CVSVL 

delete V from LDI(P) 
} 

for every voxel N adjacent to V with N ^ SVL { 
N_is_visible = false 
for every pixel P in projection of N to all images { 

add N to LDI(P) 
if (N is head of LDI(P)) 

jV_is_visible = true 

} 
add N to SVL 
i f (Af_is_vis ible) 

add iV t o CVSVL 
} 

} 

} 

save voxe l space 

Figure 15: GVC-LDI Pseudo-code. 
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Figure 16: Two of 17 reference views of a toy model of Ghirardelli Square. 

and white checkerboard pattern so that the cameras used to photograph the scene could be 

calibrated. Calibration was performed using Tsai's method [124]. For each camera, the 

calibration gives the pose, shown in Figure 17. The green polyhedron in the figure is the 

reconstruction volume. 

The reconstruction volume was tesselated into 168 x 104 x 256 voxels. At this reso­

lution, each voxel had a physical size of 0.7 mm per side. Figure 18 shows a GVC-LDI 

reconstruction in progress. In the figure, the green voxels are the voxels on the CVSVL. 

Initially, all voxels visible to the reference views are placed on the CVSVL, as shown in the 

left-most image of the figure. The algorithm carves the inconsistent voxels, which exposes 

new surface voxels that must be processed. Each voxel that is photo-consistent is given a 

color equal to its mean (r,g, b) of vis(V), and moved to the surface voxels list. As the algo­

rithm iterates, more photo-consistent voxels are found and the scene surfaces emerge. The 

algorithm converges when all visible voxels are photo-consistent. The figure shows that 

GVC processes the voxels in a more general order than the plane sweeping approach used 

in voxel coloring and Kutulakos and Seitz's space carving approach. Once the reconstruc­

tion is complete, new views of the scene can be synthesized by rendering the reconstructed 

surface to new viewpoints, as shown in Figure 19. 
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Figure 17: Visualization showing camera placements and reconstruction volume for the 
Ghirardelli data set. 

Figure 18: An example reconstruction using GVC-LDI. 
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filnl 

Figure 19: New view synthesis via rendering of the reconstruction. 

Reconstruction results for multiple data sets appear in Figure 20. In this figure, we 

show one reference view, one new view synthesized from the reconstruction, and the cor­

responding depth map for each data set. Details regarding the number and resolution of the 

images as well as the resolution of the voxel space for these data sets appear in Table 1. 

Table 2 presents the runtime and memory requirements for GVC reconstructions of 

these data sets. Reconstructions were performed on a 2.0 GHz Pentium 4 machine with 1 

GB of RAM. The algorithm ran completely in memory so there was no paging to the hard 

disk. 

GVC-IB and GVC-LDI differ significantly in their memory usage. Storage of the refer­

ence views and the item buffers accounts for the majority of memory consumed by GVC-

IB. In contrast, in GVC-LDI, the LDIs dominate the memory usage. Each LDI consumes 

an amount of memory roughly proportional to the number of image pixels times the depth 

complexity of the scene. Consequently, GVC-LDI uses considerably more memory than 

GVC-IB, as shown in Table 2. Memory consumed by the carve and SVL data structures is 

relatively insignificant, and therefore the voxel resolution has little bearing on the memory 

requirements for GVC-IB and GVC-LDI. 

GVC-LDI executes significantly faster that GVC-IB. For the Ghirardelli, Broccoli, and 
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Data Set Number of Images Image Resolution Voxel Resolution 
Ghirardelli 17 1152x872 168x104x256 
Broccoli 17 576 x 436 168x136x184 
Tower 36 1536x1024 141 x 141 x 176 

Table 1: Data sets and parameters for GVC reconstructions. 

Data Set Algorithm Runtime (h:m:s) Memory Usage 
Ghirardelli GVC-IB 1:28:39 157.2 MB 
Ghirardelli GVC-LDI 0:37:16 284.6 MB 
Broccoli GVC-IB 1:22:39 45.5 MB 
Broccoli GVC-LDI 0:39:00 177.9 MB 
Tower GVC-IB 2:19:29 472.1 MB 
Tower GVC-LDI 1:04:24 724.5 MB 

Table 2: Runtime and memory usage for GVC reconstructions. 

Tower data sets, GVC-LDI ran 2.4, 2.1, and 2.2 times faster than GVC-IB. There are 

two reasons for this improvement. First, GVC-LDI always uses the full visibility of the 

scene when computing photo-consistency. GVC-IB, in contrast, often uses out-of-date 

item buffers, resulting in some inconsistent voxels being declared photo-consistent on the 

Nth iteration of the algorithm. Once the item buffers are updated on the JV+ 1st iteration, 

these inconsistent voxels are carved. 

Second, GVC-LDI processes only the voxels that change visibility. Near convergence, 

only a small number of voxels are changing visibility so the algorithm is exceptionally fast. 

GVC-IB processes all voxels on the SVL, regardless of whether or not they have changed 

visibility. Medium to high resolution scenes will have a large number of voxels on the SVL, 

so GVC-IB will be significantly slower than GVC-LDI. By processing only the voxels that 

change visibility, GVC-LDI minimizes the number of photo-consistency checks required 

to reconstruct the scene. 

In this thesis we do not compare results from the generalized voxel coloring algorithm 
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Figure 20: Reconstruction results for several data sets. 
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to those computed using the voxel coloring or Kutulakos and Seitz's space carving ap­

proach. The voxel coloring algorithm would not be able to reconstruct many of our scenes, 

like the Broccoli or Ghirardelli data sets, because it restricts the placement of cameras that 

are used to photograph the scene so that they satisfy the ordinal visibility constraint. We of­

ten photograph an object by placing cameras all around the object in a manner that does not 

satisfy the ordinal visibility constraint. We do not compare to Kutulakos and Seitz's space 

carving approach because there are two versions of their algorithm. One version does not 

use full scene visibility when reconstructing the scene. We performed a comparison to that 

version of their algorithm in our generalized voxel coloring paper [25], and found GVC to 

produce superior results. In response to GVC, the Kutulakos and Seitz's space carving al­

gorithm was enhanced to use full scene visibility. We have not implemented this algorithm, 

but believe it would yield results similar to GVC. 

3.5.4 Analysis 

GVC produces a thin-shelled voxel surface, as demonstrated in Figure 21. This figure plots 

the voxels that lie on a plane that slices through the reconstruction of the Ghirardelli model. 

The region of space inside a surface is not visible to any camera, and is not processed by 

GVC because it never becomes exposed. In contrast, algorithms like voxel coloring and 

Kutulakos and Seitz's space carving approach visit every voxel in the voxel space. 

Since GVC-IB and GVC-LDI do not stop carving until the remaining uncarved voxels 

are all color-consistent and since they never carve consistent voxels, we expect them to pro­

duce identical results when used with a monotonic photo-consistency function. However, 

in practice, monotonic photo-consistency functions can be hard to construct. An obvious 

monotonic approach to computing photo-consistency of a set of pixels P would threshold 

the maximum difference between the colors of any two pixels in P. However, using dis­

tance in the RGB cube as a difference measure, this function is 0(n2) on the size of P and 
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Figure 21: GVC reconstructs a thin-shelled surface, as demonstrated in this slice running 
through a reconstruction. 

has poor immunity to noise and high frequency color variation. The standard deviation-

based photo-consistency measure we use is not monotonic. Consequently, GVC-IB and 

GVC-LDI generally produce models that are different but similar in quality. 

We note in passing that GVC-IB can be parallelized, as well as hardware accelerated 

using standard graphics hardware. However, we do not describe these approaches in this 

thesis. 

3.5.5 Multi-resolution GVC 

To decrease runtime, GVC can be implemented in a coarse-to-fine fashion [91], as shown 

in Figure 22. We first perform a reconstruction at lower resolution using coarse voxels. At 

this lower resolution, we are able to carve away a large part of space that would require a 

lot of computation at a higher resolution. Once the reconstruction at the lower resolution is 

complete, we dilate the surface. After the dilation, we tessellate each voxel into eight sub-

voxels, which doubles the resolution in each dimension. We then re-execute the algorithm 

at the higher resolution. This process continues until a desired resolution is obtained. The 

voxels in the final reconstructed model all have the same size. However, the size of carved 

voxels varies depending on the resolution of the voxel space when the carving occurred. 
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Figure 22: Flow diagram for multi-resolution GVC implementation. 

Dilation of the surface prior to the resolution increase is necessary to prevent the evolv­

ing surface S from passing though fine details that cannot be properly modeled at a lower 

resolution. For example, consider a large voxel that contains a small patch of the true 3D 

surface T being reconstructed. If the voxel is projected into the reference views, the ma­

jority of the pixels in the voxel's projection will not represent T. Such a voxel could be 

inconsistent. At coarse resolutions this can cause some parts of T to go undetected. A 

simple solution, presented in [91], is to dilate S before the resolution increase. Doing so 

provides a mechanism for S to back up, and then reevaluate the skipped part of T at a higher 

resolution where it can properly be reconstructed. 

We implemented this coarse-to-fine strategy in the GVC-LDI algorithm. Table 3 presents 

runtimes demonstrating the faster results produced by this multi-resolution approach. Com­

pared with Table 2, we note that the multi-resolution reconstruction runs 1.9 times and 1.5 

times faster than the single resolution implementation for the Ghirardelli and Broccoli data 

sets, respectively. The multi-resolution reconstruction of the Tower data set did not fit into 

main memory so we do not present runtime results in the table for this data set. 
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Data Set Initial Resolution Final Resolution Runtime (h:m:s) 
Ghirardelli 21 x 13x32 168x104x256 0:19:28 
Broccoli 21 x 17x23 168x136x184 0:25:32 

Table 3: Multi-resolution voxel spaces and runtimes. 

In Chapter 8 we will compare GVC to other reconstruction approaches presented in this 

thesis. 

3.6 Summary 

In this chapter, we presented a new volumetric scene reconstruction algorithm called gen­

eralized voxel coloring. GVC uses color analysis to identify geometry in the scene that is 

consistent with the photographs taken of the scene. To properly compute photo-consistency, 

the visibility of voxels in the scene must be known. GVC-IB and GVC-LDI use item buffers 

and layered depth images, respectively, to compute this visibility information. The GVC-

LDI approach is time efficient, while the GVC-IB method uses less memory. 

GVC has a number of advantages over competing space carving methods, summarized 

below. 

• GVC-IB and GVC-LDI are capable of reconstructing scenes photographed from ar­

bitrarily placed cameras. 

• GVC-IB and GVC-LDI do not process inner voxels. 

• GVC-LDI uses a flexible data structure that minimizes photo-consistency checks. 

We will show in Chapter 4 that the layered depth images are useful in optimizing the 

reconstructed surface. 

While GVC is a useful algorithm for reconstructing 3D scenes using multiple pho­

tographs, it does have some limitations. As will be shown in Chapter 4, the surface that is 

reconstructed can have a number geometric artifacts, some of which can be mitigated using 
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simple 3D morphological filtering. Additionally, smoothing the surface during reconstruc­

tion, a topic discussed in Chapter 6, helps reduce such artifacts. 

GVC finds the largest 3D surface that projects to pixels that match based on the thresh­

old^) used in the photo-consistency measure. This approach does not necessarily find the 

photo hull, which optimally reproduces the photographs. To get closer to the photo hull, we 

present a volumetric optimization approach in Chapter 4 that refines a GVC reconstruction 

to better reproduce the photographs. 

GVC is well suited to reconstructing small-scale scenes, such as those presented in this 

chapter. However, reconstructing large-scale scenes can become difficult as such a scene 

may require a prohibitively large number of voxels that must be processed. We address this 

issue in Chapter 5. 

The amount of time required for a reconstruction can vary based on number of factors, 

including image resolution, voxel resolution, the number of images. Typically reconstruc­

tions take a few minutes to hours for the data sets used in this thesis. In Chapter 7, we 

introduce a new algorithm that can perform reconstructions in a fraction of a second. To do 

this, we trade-off geometric accuracy for speed, as well as move as many of the computa­

tions in the 2D space of the images instead of the 3D space of the scene. 

In fact, the rest of this thesis can be viewed as extensions to GVC. These extensions are 

designed to improve model fidelity, increase applicability to a wider class of scenes, and 

improve reconstruction speed. Some open issues we do not address in this thesis include in­

corporation of motion constraints when reconstructing temporally varying scenes [15,126], 

alternative photo-consistency measures for reconstructing non-Lambertian scenes [23, 52], 

and reconstruction using uncalibrated or weakly calibrated cameras [33, 95]. 
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CHAPTER IV 

POST-PROCESSING 

Chapter 3 of this thesis presented new volumetric reconstruction algorithms that use multi­

ple calibrated photographs of a visual scene to produce a 3D voxel-based model of the scene 

surfaces. While these algorithms often produce high quality models that can be rendered 

to produce new views of the scene, geometric inaccuracies can diminish the photo-realism 

of the synthesized views. 

In this chapter we introduce some post-processing methods for improving the fidelity of 

the reconstructed model. We begin by enumerating the sources of geometric inaccuracies 

in multi-view reconstructions. 

4.1 Geometric inaccuracies 

The geometric inaccuracies in a reconstruction come from both theoretical and practical 

sources. 

4.1.1 Theoretical sources 

A point on the true scene geometry projects to photo-consistent colors in the reference 

views. However, the converse is not necessarily true: points that project to photo-consistent 

colors in the reference views may or may not lie on the true scene geometry. 

As a result, the photo hull deviates from the actual geometry of the scene. This geo­

metrical deviation appears in one of two related forms; floaters and cusps, both of which 

are shown in Figure 23. Both examples in the figure illustrate a multi-colored flat surface 

photographed by two cameras. In the left image, a floater appears as a small disconnected 

54 



Reconstructed 
;.**V' ' *~ geometry 

True 
surface 

Figure 23: A multi-colored flat surface is photographed by two cameras in both examples. 
Due to floaters and cusps, the reconstructed geometry can deviate from the true scene. 

piece of geometry, and typically is found floating off of the main surface. In the right im­

age, a cusp appears as a wedge-shaped area that points towards the cameras. Any point on 

the cusp or floater projects to photo-consistent colors in the reference views, even though 

there might not be any scene geometry at that location. 

Figure 24 shows the presence of cusps and floaters in GVC reconstructions. Cusps 

appear at locally homogeneously colored parts of a surface, which is the case for the white 

areas on the calibration paper in the tower model shown in part (a) of the figure. Floaters 

typically appear as a single or a small group of voxels floating near the main reconstructed 

surface. 

The theory of the photo hull states that we cannot expect to get a better reconstruction 

unless we have some a priori knowledge about the scene. Just based on the photographs, 

the cusps and floaters in Figure 23 could be the true scene geometry, and appear because 

the photo hull is the largest photo-consistent reconstruction. However, if we knew a priori 

that the scene was was flat (or smooth), or was one connected piece, we could use this 

information to mitigate the effects of the cusps and floaters. 

4.1.2 Practical sources 

While one strives to reconstruct the photo hull when using a space carving algorithm like 

GVC, in practice, one often falls short of this goal. A number of sources of error prevent 
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Figure 24: Reconstructions exhibiting cusps and floaters. 
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the algorithm from achieving the best possible reconstruction that can be inferred from N 

photographs. Below we enumerate the most significant sources of error. 

4.1.2.1 Camera calibration errors 

Camera calibration errors come in two forms: geometric and photometric. As a pre-process 

before reconstruction, the cameras used to photograph the scene are calibrated. The geo­

metric calibration computes the intrinsic and extrinsic parameters of the camera so that 

points in 3D space can be projected into the reference views. Single and multiple camera 

geometry is described in Appendix A. Despite much progress in camera calibration re­

search in the computer vision community, the process is still error prone. Typical errors are 

on the order of sub-pixel to a few pixels of reprojection error for the data sets used in this 

thesis. 

Consequently, the projection of a voxel into a reference view is not exact. This re­

sults in incorrect pixels being used in the photo-consistency check, which in turn can yield 

misclassifications. Voxels that should be photo-consistent can erroneously be declared in­

consistent, and voxels that should be inconsistent can be declared photo-consistent. 

Intuitively, geometric calibration errors limit the resolution of the voxel space. Consider 

a small voxel that models the true surface. In each image, the voxel's footprint, shifted from 

its true location, might not contain any photo-consistent colors across the reference views, 

and the voxel would be carved. Using larger voxels helps mitigate this problem, since the 

footprint of the voxel's projection into each image will be contain a larger area. Kutu-

lakos [55] presents a related method that helps address geometric calibration errors during 

reconstruction by looking for a matching pixel in a variably sized footprint in each of the 

reference views when determining photo-consistency. He shows that such a technique can 

reconstruct a scene photographed by cameras that significant calibration errors. However, 

the surface that is reconstructed is much larger and lower quality than the photo hull. 
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Photometric calibration errors are colorimetric variations that result from color mis­

alignment. A variety of sources can cause these calibration errors; we describe a few here. 

As a simple example, consider the case of multiple cameras photographing a Lambertian 

object of a single color. Each camera has different controls, such as brightness and color 

balance that affect image quality. If each camera has different settings, errors in the photo­

metric calibration can result in different RGB values to be recorded by each camera for the 

object. Large differences can cause problems when photo-consistency is computed. 

Photometric differences can occur as the camera is moved about the scene, as shown 

in Figure 25. In this example, we photographed a scene on a sunny day using a digital 

camera. The two photos were taken within a minute of each other. With the sun to the 

photographer's back, the surfaces appear bright as shown in (a). However, when the pho­

tographer takes a photo from the other side of the scene, there is much more incident light 

on the camera, particularly from the sky. When the photo is taken, the camera's shutter is 

open for less time. The resulting image has a saturated sky and darker foreground objects. 

Corresponding regions in the two photos do not project to similar colors. 

Photometric errors can even occur within a photo. Vignetting is a light falloff that is a 

characteristic of the camera lens, is present in nearly all photographic images, and is often 

modeled using a 4th order cosine. An example of vignetting appears in Figure 26. In this 

example, a cylindrical panorama was formed by rotating a ID scanner around its optical 

axis. Vignetting appears vertically as a darkening of the pixels as one moves away from the 

vertical center of the image, as shown in part (a) of the figure. Part (b) shows the results of 

a photometric compensation for the vignetting. The colors of bricks on the ground in the 

compensated image appear much more uniform. 

Without proper photometric calibration, the photo-consistency check is unreliable, since 

the true scene geometry will not project to photo-consistent colors in the reference views. 

Therefore, it is often necessary to perform a photometric adjustment prior to reconstruction. 
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Figure 25: Photometric differences can occur when moving a camera in a scene. 

4.1.2.2 Invalid photo-consistency measures 

Reconstruction errors occur when the photo-consistency measure does not accurately ac­

count for the radiance in the scene. For example, when one assumes a Lambertian scene, 

the photo-consistency measure tries to match colors across the different viewpoints. How­

ever, if the scene contains specular surfaces, some viewpoints may observe specularities 

for a true surface point while others might not. These varied colors can result in a misclas-

sification by the photo-consistency check. 

4.1.2.3 Thresholds 

Standard photo-consistency measures threshold a color matching metiic. The threshold 

is typically found through experimentation by sweeping through the parameter space of 

the threshold until the best reconstruction is found. As Figure 27 indicates, if too low a 

threshold is used, few voxels will be declared photo-consistent. However, using a threshold 
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Figure 26: A photograph exhibiting vignetting appears in (a). The compensated image 
appears in (b). 
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Figure 27: The effect of varying the photo-consistency threshold, from low (upper left) to 
high (lower right). The best reconstruction occurs for the image in the upper right. 

that is too high results in a fattened model. Typically one uses the lowest threshold that 

reconstructs all scene surfaces. 

Unfortunately, in general there is not a single threshold that is ideal for reconstructing 

all surfaces in the scene. For a given threshold, some surfaces could likely be more accu­

rately reconstructed with a lower threshold. But lowering the global threshold can cause 

other surfaces to become carved that should be in the final reconstruction. Ideally, one 

would like a spatially adaptive threshold that is locally optimized. In Section 4.3 we will 

present a technique that achieves such a threshold. 

4.1.2.4 Poor photographic sampling 

Poor photographic sampling takes on several forms. For a local area on a surface to be prop­

erly reconstructed, it must be visible to at least two reference views. Thus, the resolution 

of the photographs must be sufficiently high so that a visible surface to be reconstructed 

projects to at least one pixel in two of the reference views. Additionally, one must care­

fully consider the camera placements when photographing the scene, particularly when 

dealing with complex self-occluding surfaces. Finally, the images should be in focus, as 
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reconstructing the scene using blurry photographs can result in fattened models. 

4.1.2.5 Insufficient voxel resolution 

The voxel space should have sufficient resolution to model the scene surfaces. Typically 

one represents a voxel as a cube in space with a single color. Many thin objects cannot be 

modeled with this representation. For example, consider a thin plane that is black on one 

side and white on another. A voxel occupying the space of the plane may project to different 

colors in the reference views even though the voxel models a scene surface. Increasing the 

resolution of the voxel space so that the white side of the plane is modeled with voxels 

distinct from the ones modeling the black side solves this problem. Alternatively, one 

could allow for a different color on each of the six sides of the voxel cube. 

4.2 Mathematical morphology 

One very straightforward way to improve model fidelity is to apply a 3D morphological 

processing to the reconstructed geometry. Simple operations such as openings and clos­

ings [16, 67] can remove floaters and fill holes in the model. 

4.2.1 Basic morphological operations 

We apply morphological operations to the carved array of Sections 3.5.1 and 3.5.2. This 

3D binary array indicates if a voxel has been carved. The binary surface and its interior, 

denoted as C, are the set of voxels that have not been carved. Our morphological filters also 

employ a 3D binary structuring element, denoted as SE below. 

The basic functions in mathematical morphology are erosion and dilation. Let SExyZ be 

the structuring element after it has been translated so that its origin is located at the point 

{x,y,z). The erosion of C by the structuring element SE is defined as 

CeSE = {x,y,z\SExyzCC}. (7) 

This equation states that the binary volume that results from eroding C by SE is the set 
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of points (x, y, z) such that if SE is translated to (x, y, z), then it is completely contained 

within the uncarved region of C. 

The dilation of C by SE is defined as 

C&SE = {x,y,z\SExytnCr 0}- (8) 

Thus, the binary volume that results from dilating C by SE is the set of points (x, y, z) 

such that if SE is translated to (x, y, z), then its intersection with the uncarved region of C 

is non-empty. 

Erosion and dilation can be cascaded to produce other operations. An opening is an ero­

sion followed by a dilation. An opening excels at removing small volumes such as floaters, 

as well as smoothing the surface without significantly changing its volume. Opening is 

defined as 

CoSE = (CQSE)®SE. (9) 

A closing is a dilation followed by an erosion. A closing has the effect of filling holes 

in the surface and connecting nearby points, also without significantly changing its volume. 

Closing is defined as 

c*SE = (cesE)esE. (io) 

Openings and closings can be cascaded as well, to remove floating voxels and fill small 

holes if desired. 

4.2.2 Morphological filtering of reconstructions 

We have applied morphological filters to GVC reconstructions, illustrated in Figure 28. 

We use a cubical structuring element that is 3 x 3 x 3 voxels large. Part (a) shows a 

reconstruction of the Tower data set. There are small holes in on the plane of the paper 

in the reconstructed surface. While not very large, these holes are visually distracting when 

viewing animations of the reconstructed surface. The holes are filled by applying a closing 

to the surface, shown in (b). Part (c) of the figure shows a reconstruction of the Broccoli 
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data set. An opening operation removes the floaters seen hovering near the main surface, 

as demonstrated in part (d) of the figure. 

Another simple way to remove the floaters is to perform a connected components anal­

ysis. This approach clusters the voxels into groups of connected pieces. Many of the scenes 

reconstructed in this thesis consist of one connected component. Therefore, any piece of 

geometry not connected to the largest component can be removed from the voxel space. 

Figure 29 shows the results of applying this filter to a reconstruction of the Ghirardelli data 

set. Note that the filtered surface contains no floaters disconnected from the main surface. 

4.3 Volumetric optimization 

The morphological approaches to model refinement presented in the previous section can 

be effective at filling small holes and removing floaters from the reconstructed geometry. 

However, these approaches have the disadvantage that they do not take photo-consistency 

into account when adding or removing voxels to the model. Consequently, they might make 

modifications to the surface that decrease visual quality. For this reason, we use a small 

structuring element when applying morphological operations to the reconstructed surface. 

Recall that space carving algorithms find a set of voxels whose photo-inconsistency falls 

below a threshold. It would be preferable to have an algorithm that minimizes inconsistency 

to find the model that is most photo-consistent with the input images. 

In this section, we present a method that post-processes a GVC reconstruction to min­

imize reprojection error, which measures how well projections of the reconstructed scene 

reproduce the photographs. The reprojection error, defined in image space, guides the re­

finement of the scene reconstruction in 3D object space. This refinement approach makes 

better use of all color information from all viewpoints, and thereby produces a model closer 

in quality to the photo hull. 
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Figure 28: Morphological filtering of surfaces. 
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Figure 29: Model refinement by connected components analysis. 

4.3.1 Optimal reconstructions 

Our goal is to find a 3D surface that optimally reproduces the photographs. To be more spe­

cific, we seek a volumetric surface S0, which, when projected to each camera, minimizes 

a multi-view image space error function E(S), whose argument is a volumetric reconstruc­

tion. Borrowing from [115], characteristics that E(S) should possess include: 

1. The function should incorporate information from all available viewpoints. 

2. The function should weight the error so that viewpoints that have more visibility have 

a greater contribution to the error. 

3. The function should be minimized by the true scene. 

4. The function should provide a relative ordering of solutions, so as to rank the quality 

of reconstructed surfaces. If the volumetric surface S\ is a better solution than 52, 

then E(Si)<E(S2). 

5. The function should relatively simple to compute. 
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Let the reprojection of a reconstruction S into the ith camera be denoted as /?,-. Also, let 

the original photograph at the zth camera be denoted as Pj. Since Ri and Pi are color images, 

they have pixels with r, g, and b components. Let these color components in the jth pixel 

of Ri be referenced as /?,-(y).r, Ri(j).g, and Kj(j).b, respectively. Similarly, we denote the 

r, g, and b components of the jth pixel of Pi as Pi(j).r, Pi(j)-g, and Pi(j).b. 

Reprojection error computes the dissimilarity of/?,- and Pj. We define it to be 

(pl(j).r-RlU).rf + 

ltil% (Pl(J).g-RlU)-g)2 + 

{Pl{j).b-Rl{j).b)2 

E(S) = r, , 
' lliMi 

where N is the number of images, M; is the number of pixels used in the comparison for 

the ith image, and Ri and Pi are images as described above. The reprojection error is the 

average squared difference between pixels in R( and Pj, taken over the pixels Mj. 

This function possesses the necessary characteristics mentioned above. Specifically, it 

incorporates information from all views, as the sum over / is over all viewpoints. The vari­

able Mi weights the reprojection error so that viewpoints with greater visibility have a larger 

contribution. The function reaches its minimal value of zero for the true scene, for which Ri 

is identical to Pi for the pixels indexed by j . The function does provide a relative ordering 

of solutions, so that one reconstructed scene can be objectively ranked relative to another. 

Consequently, the reprojection error can guide changes to the surface during reconstruc­

tion. We will show that the difference in reprojection error can be computed incrementally, 

i.e., for only the pixels in Ri that change, resulting in an efficient computation. 

4.3.2 Reprojection error and standard deviation 

A comparison of the reprojection error function with that of the single threshold standard 

deviation measure described in Section 3.1.2 is useful in relating this new approach to 

standard space carving methods. The main difference between the two is that the stan­

dard deviation measure is defined on a per voxel basis. In contrast, the reprojection error 
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is defined over the entire projection of the reconstructed scene. A per scene basis for the 

reprojection error is necessary so that we can globally measure the effect of a surface modi­

fication. If however, only one voxel changes visibility, then the reprojection error is simply 

the square of the standard deviation used in voxel coloring. To see this, recall that during 

reconstruction, a voxel is projected into each image, and the set of visible pixels in all im­

ages, previously denoted as vis(V), is found. For simplicity, we change notation and now 

denote the pixels in vis(V) as X. If the voxel is photo-consistent, its color is set to equal the 

mean of X. Thus, for a given voxel, each color channel of Ri(j) will be the expected value 

of the corresponding color channel in Pj, over all images /. We denote this expected value 

as 

li,r = E[X.rl 

M = E[X.g], 

li.b = E{X.b). 

Let k index over pixels in X, and suppose the cardinality of the set. is L. Then, the reprojec­

tion error has the form, 

(X(k).r-n.rf + 

Z t l (X(k).g-H.g)2 + 

(X(k).b-n.bf 
E(V) = z = a2. 

This is simply a formula for the sample variance [59] of X, equivalent to the square of the 

standard deviation used in voxel coloring, assuming a biased variance measure is used. 

4.3.3 Optimal scene reconstructions exist but are not unique 

An optimal scene reconstruction must exist. However, optimal reconstructions are not 

necessarily unique because of the ill-posed nature of the 3D reconstruction problem; many 

3D surfaces can exist that globally minimize the reprojection error. Finding an optimal 
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scene reconstruction can be challenging, since the error landscape can contain numerous 

local minima far away from a global minimum. 

4.3.4 The search space is large 

Performing a combinatorial analysis can shed some light on the size of the search space. 

The search space for the optimal reconstruction is defined on a six-dimensional (x, y, z, r, 

g, b) domain for standard color scenes. Voxel opacity accounts for three of these dimen­

sions, as it consists of a bit for the spatial location, defined on a three-dimensional (x, y, z) 

domain, of each voxel in the voxel space. Each opaque voxel can then have a unique color, 

defined on another three-dimensional (r, g, b) domain. Consider a voxel space containing 

v voxels. Since a voxel can either be opaque or transparent, there are 2V possible voxel 

opacity configurations. 

Now let us consider the number of different colorings of the 2V possible voxel opacity 

configurations. Let the variable p be number of opaque voxels in a candidate configuration. 

Then, there will a total of 
/ \ 

v 

\ p ) 

configurations with p opaque voxels. If the number of possible colors for the voxel is c, 

then there are cp possible colorings of the voxel configurations with p opaque voxels. The 

total number of candidate reconstructions, n, is then the sum of the possible colorings over 

all possible voxel geometries, 

This sum can be evaluated using the binomial theorem, yielding 

p=0 H c^ = ( c + l ) v . 

A simple example of this is provided in figure 30. 
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Opacity 1: No opaque voxels m 
Opacity 2: Right voxel opaque :• cm 
Opacity 3: Left voxel opaque *i nn 
Opacity 4: Both voxels opaque M m n EQ 

Figure 30: Example voxel opacity configurations and colorings for v = 2, c = 2. Suppose 
that we have a reconstruction volume that contains two voxels (v = 2), and each opaque 
voxel can take on one of two possible colors, (c = 2), which are gray and black. Then, there 
are 2V = 4 unique voxel opacity configurations, and (c+ l)v = 9 possible reconstructions 
to check. These nine reconstructions, grouped into the four voxel opacity configurations, 
are shown above. 

When working with real world scenes, both the values of v and c are quite large. If we 

use 24-bit images, a voxel can have one of c = 224 unique colors, so 

rc = (224 + l ) v «2 2 4 v . 

Since v is typically large, the number of possible reconstructions defined on this six-

dimensional domain is enormous. Even if one ignores color from this analysis, the 2V 

possible voxel opacity configurations is unsearchably large for typical scenes. Thus, we 

will require effective algorithms to limit our searching in this huge space. 

4.3.5 Minimizing the reprojection error 

We have developed two different methods to minimize the reprojection error. One method 

performs a greedy optimization. This greedy approach is discussed in Section 4.3.5.1. The 

other method uses simulated annealing to minimize the reprojection error. This simulated 

annealing approach is discussed in Section 4.3.5.2. But first, we present what these two 

approaches have in common. 

The general methodology for both approaches is the same. First, a space carving al­

gorithm such as GVC is executed. This produces a reconstruction that can be quickly 

computed, and should be reasonably close to a global minimum in the reprojection error. 

Then, this volumetric surface is refined by either removing surface voxels, or adding vox­

els that are adjacent to surface voxels. We call these adjacent voxels neighbor voxels. By 
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attempting to carve surface voxels, we provide a mechanism for the reconstructed surface 

to thin. We exploit the spatial coherency of surfaces by attempting to add neighbor vox­

els. This provides a mechanism for the reconstructed surface to grow. After modifying the 

surface, the methodology incrementally evaluates the reprojection error, upon which the 

decision to accept or undo the modification is made. 

One of the key aspects underlying our two algorithms is the incremental update of vis­

ibility, the reprojection error, and the reprojected images. During a surface modification, 

often just a few voxels change visibility. Rather than re-render the entire scene reconstruc­

tion to determine visibility from scratch, we use the layered depth images of Section 3.5.2 

to incrementally update visibility for only the voxels whose visibility changes. Using the 

LDIs, our algorithms efficiently compute the change in reprojection error only over the 

pixels that change visibility. If the modification is accepted, the reprojected images /?,• are 

updated for only those pixels as well. Incremental updates of visibility, reprojection error, 

and reprojected images provide raw ingredients for optimization: efficient ways to modify 

the model and compute an error function. 

In our methodology, modifications to the surface are made tentatively, for if it is deter­

mined that a modification results in a less favorable surface, the modification is undone. In 

our implementation, we make tentative changes to the LDIs. For each pixel that changes 

on an LDI, we store undo information that is used only if we undo the surface modifica­

tion. All other changes are stored in temporary data structures, whose elements are copied 

to permanent data structures upon acceptance, or discarded upon rejection, of the surface 

modification. 

One of the flexible features of space carving algorithms is their ability to reconstruct a 

scene using either segmented or unsegmented photographs. A photograph Pi is segmented 

if each pixel is labeled as foreground or background. Foreground pixels correspond to 

objects that should be reconstructed, while background pixels correspond to objects that 

should not be reconstructed. If the algorithm is given such information, it computes the 
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reprojection error over the union of the foreground pixels, i.e., Pi, with the pixels in the 

reprojection of the reconstructed scene, i.e., the pixels in /?,-. However, not all scenes have 

easily segmentable photographs. For these latter scenes, we compute the reprojection error 

over the pixels in /?,-. 

See [108] for pseudo-code and in-depth implementation details. 

4.3.5.1 Greedy method 

In the greedy method, voxels are added or carved only if they reduce the reprojection error. 

The reprojection error is computed for the surface before modification, yielding the quan­

tity E0M, and after modification, yielding the quantity Enew. If the change in reprojection 

error, 

^ • t L = tLnew ^old 

is negative, the reprojection error has decreased and the surface modification is accepted. If 

this quantity is nonnegative, the surface modification is undone. Since scenes reconstructed 

by space carving algorithms tend to be larger than the true scene, our implementation first 

performs a greedy carving pass that thins the reconstruction, and then performs a greedy 

adding pass. By executing these two sequential passes, we avoid attempting to add voxels 

to the fattened model, as such voxels are unlikely to decrease the reprojection error. One 

application of the greedy method usually results in much improved surfaces. Additional ap­

plications of the greedy method can further reduce the reprojection error, with diminishing 

rewards each time the algorithm is applied. In practice, we typically apply the algorithm 

once to a reconstruction. 

4.3.5.2 Simulated annealing method 

The reprojection error can contain numerous local minima. Since the greedy method only 

accepts changes that decrease the reprojection error, it has the disadvantage that it could get 

caught in a local minimum of the error, possibly far from a global minimum. To address 

this issue, we developed a simulated annealing [89] method that accepts some changes 
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that increase the reprojection error. This method introduces a few new variables, namely, 

k, the Boltzmann constant, and T, the temperature. Surface modifications that lower the 

reprojection error are always accepted. However, surface modifications that increase the 

reprojection error are accepted with probability 

p = e-*E'kT. 

Initially, the temperature is high, and it is more likely that unfavorable changes will be 

accepted. Accepting such an unfavorable change can dislodge the algorithm if it is caught 

at a local minimum. As the program runs, the temperature is slowly decreased to zero. At 

zero, the simulated annealing method no longer accepts unfavorable changes. 

Since this method can make unfavorable surface modifications, it simultaneously at­

tempts to add and carve voxels, unlike the sequential nature (carving pass, then an adding 

pass) of the greedy algorithm. This prevents the algorithm from adding (carving) many 

unfavorable voxels without providing an opportunity to carve (add) them. 

4.3.6 Results and Analysis 

We have executed our volumetric optimization algorithms on several data sets, both real 

and synthetic. For experimental runs we used an HP J5000 workstation, with a 440 MHz 

processor and 2 GB of RAM. 

4.3.6.1 Toy car scene 

We executed our algorithms on a data set we call Toy car, which consists of seventeen 800 

x 600 images of a synthetic scene that is relatively easy to reconstruct, as the scene is col­

orful, the cameras are perfectly calibrated, and the background has been subtracted. Three 

reference views are shown in Figure 31. We first performed a reconstruction in a 168 x 120 

x 104 volume using the GVC-LDI algorithm, which took 39 minutes to complete. Then 

the reprojection error was minimized using the greedy and simulated annealing algorithms. 
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Figure 31: Toycar data set: two of 17 reference views 

Method Greedy Sim. annealing 
Execution time (min) 134 269 
Memory usage (MB) 233 270 

Estart 4373 4373 
Eend 1747 1727 

Improvement 60.1% 60.5% | 

Table 4: Results for the Toycar scene 

We define the improvement, /, of the reprojection error to be 

/ = {Estart ~~ Eend) /Estart: 

where Estart and Eena- are the reprojection errors at the start and end of the reprojective error 

minimization algorithm, respectively. 

The execution time, memory usage, and percentage improvement for the two methods 

are reported in Table 4. Since the simulated annealing method performs surface modifi­

cations that increase the error, many of which are later undone, it has a longer execution 

time. The memory usage of both algorithms was dominated by the LDIs, and was found 

to be comparable. Both methods significantly reduced the reprojection error for this scene, 

offering an improvement of about 60%. Figure 32 plots the reprojection error as a function 

of time. The simulated annealing approach ultimately gets to a slightly lower reprojection 

error, but at the expense of taking longer to complete. 

Sections of input and reprojected images are shown in Figure 33. We show sections of 
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Figure 32: Reprojection error vs. time for Toycar scene 

the images in order to zoom in so that details in the images are more apparent. The primary 

benefit that reprojective optimization offers is the thinning of the fattened reconstruction 

output by GVC. Reprojections of the refined reconstructions output by the optimization 

algorithms more closely match the input photographs. In particular, notice how the globe 

in (c) and (d) has a more reasonable size compared with that of (b). This thinning effect is 

quite apparent when one makes a simple animation that cycles between these images. Since 

the thinned surface geometry more closely matches that of the true scene, voxels receive 

a more accurate coloring. For example, in (b) notice how the small island near the center 

of the globe's projection is barely visible, and the striped pyramid has a noisy appearance. 

In (c) and (d), the island is much more discernable, and the pyramid has a better coloring. 

The refined scene is significantly improved, but is not perfect. For example, the simulated 

annealing approach has a few mis-colored voxels in the striped pyramid. 

4.3.6.2 Shoes scene 

Our Shoes data set consists of twelve 1536 x 1024 photographs of a cloth toy and two pairs 

of shoes on multi-colored paper. This data set is more challenging to reconstruct, as it is 

not segmented and has camera calibration errors. We first performed a reconstruction in a 
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(a) (b) (c) (d) 

Figure 33: Refinement of the Toycar reconstruction. A section of one of the input pho­
tographs of the scene is shown in (a), with the silhouette of the globe outlined in white. The 
GVC-LDI algorithm was used to find a scene reconstruction, which was reprojected to the 
same viewpoint as that of (a), yielding (b). The reconstructed scene was refined using the 
greedy algorithm (c) and the simulated annealing algorithm (d). In (b) through (d), the the 
silhouette of the globe from the input photograph is added to demonstrate that the fattened 
model of (b) is refined in (c) and (d). 

[ Method Greedy Sim. annealing 
Execution time (min) 491 709 
Memory usage (MB) 809 818 

Estart 892 892 
^•end 595 557 

Improvement 33.3% 37.6% 

Table 5: Results for the Shoes scene 

144 x 128 x 80 volume using the GVC-LDI algorithm, which took 71 minutes to complete. 

Then, our optimization algorithms were executed. Table 5 presents the execution time, 

memory usage, and percentage improvement for the two methods. As for the Toycar scene, 

the simulated annealing method took considerably more time to finish, but had a slightly 

better improvement. Figure 34 shows the reprojection error as a function of time for the 

two methods. 

A section of an input photograph and reprojected images are shown in Figure 35. The 

refined scenes are both objectively and subjectively improved. For this scene, notice that the 

simulated annealing algorithm does a better job than the greedy algorithm in reconstructing 
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Figure 34: Reprojection error vs. time for Shoes scene 

the black and white checkerboard cushion. 

In Chapter 8 we will compare the volumetric optimization algorithm to other recon­

struction approaches presented in this thesis. 

4.4 Other methods 

Other methods for refining the reconstructed model have been developed. Dinh, Turk, and 

Slabaugh [29, 30] describe a method that fits an implicit surface to the reconstructed geom­

etry. The approach places either radially symmetric [29] or anisotropically distorted [30] 

radial basis functions at scanned surface locations. In the presence of noise, direct interpo­

lation of the scanned surface points results in a noisy model. Instead, this approach finds a 

reasonable surface that approximates the geometrical data. This method additionally con­

verts the voxel-based model to a polygonal model well suited for rendering with standard 

graphics hardware. 

4.5 Summary 

This chapter presented post-processing methods that take a volumetric reconstruction as 

input and then refine the surface geometry to improve model fidelity. 

After describing the major sources of geometric error exhibited in volumetric recon­

structions, we demonstrated that simple morphological filtering of the surface can fill small 
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(a) (b) (c) (d) 

Figure 35: Close up of cloth toy. As before, (a) is from the input photograph, (b) is a 
reconstruction using the GVC-LDI algorithm, and (c) and (d) are refined scenes using the 
OVC greedy and simulated annealing algorithms, respectively. Notice how more detail is 
visible in (c) and (d) than in (b); in particular, the white speckles in the topmost cushion, 
and the black and white checkerboard pattern on the lowest cushion. 

holes and remove floaters. While morphological filtering can be effective, it does not take 

photo-consistency into account when making changes to the surface. Consequently, we use 

a small structuring element when applying morphological operations to the reconstructed 

surface to prevent extensive filtering of the surface. 

We then described a volumetric optimization approach that computes a volumetric sur­

face that strives to optimally reproduce the photographs. This approach defines reprojection 

error, which measures how well a volumetric reconstruction reproduces the photographs. 

We then use reprojection error to guide surface refinement. We developed greedy and 

simulated annealing approaches to minimizing the reprojection error. We demonstrated 

that modifications to the surface that minimize reprojection error visually improve model 

fidelity. 

The volumetric optimization approach described in this thesis is brute-force in the sense 

that it tries removing every voxel from surface, and tries adding neighbors to every voxel 

on the surface. While this approach works, an alternate, possibly more efficient approach 
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could use a reprojection error gradient to indicate which way the surface should be de­

formed in order to most effectively minimize reprojection error. We leave this as future 

work. 

The resolution of the voxel space will have an effect on the value of the reprojection 

error. Recall that each voxel is given a single color in our representation. Even if we 

were able to find the photo hull, which optimally reproduces the photographs, depending 

on the resolution of the voxel space, the reprojection error would be non-zero. A coarse 

voxel that projects to many differently colored pixels in a reference view would contribute 

a non-zero amount to the reprojection error. At higher resolutions of the voxel space, 

this quantization error component of the reprojection error decreases. When the voxel 

resolution is sufficiently high so that each voxel projects to one pixel in each of the reference 

views, this quantization error term becomes zero. 

To decrease runtime of our optimization method, it would be possible to execute the 

algorithm in coarse-to-fine fashion similar to the multi-resolution implementation of GVC 

described in Section 3.5.5. This method would start with a coarse resolution, find an op­

timal reconstruction, and then increase resolution. The algorithm could iterative in this 

fashion until a desired resolution is reached. Such an approach would be less susceptible 

to local minima at higher resolutions. 

In conclusion, post-processing a volumetric reconstruction computed using a space 

carving algorithm like GVC can significantly improve model fidelity. In Chapter 6, we 

will revisit this issue of mitigating photo hull geometric distortions like cusps and floaters, 

but instead of post-processing a voxel-based surface, we will incorporate smoothness con­

straints on an implicit surface during reconstruction. 
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CHAPTER V 

VOLUMETRIC WARPING 

The space carving algorithms discussed so far in this thesis are often successful at recon­

structing small-scale scenes defined on a limited spatial domain. Applying them to large-

scale scenes can become challenging, since one must use a large reconstruction volume to 

contain the scene. Such a large reconstruction volume can consist of an unwieldy number 

of voxels that becomes prohibitive to process. 

In this chapter, we present a method that warps the voxel space, so that the domain of 

the reconstruction extends to an infinite or semi-infinite volume [110]. Doing so enables 

the reconstruction of objects far away from the cameras, as well as reconstruction of a back­

ground environment. As we will show, our warping approach produces a spatially adaptive 

voxel size that allows for foreground objects to be reconstructed at higher resolution, while 

objects farther away from the cameras are reconstructed at lower resolution as they project 

to fewer pixels in the reference views. 

5.1 Background modeling 

Space carving algorithms are not well suited to capturing the environment (sky, background 

objects, etc.) of a scene. Typical reconstructions are photo-realistic in the foreground, 

which is modeled, but empty in the background, which is unmodeled. As a result, synthe­

sized new views can have large "unknown" regions, as shown in black in Figure 36. For 

some scenes, such as an outdoor scene, we might like to reconstruct the background as 

well, yielding a more photo-realistic reconstruction. 

In the computer graphics domain, infinite scenes have been modeled and rendered using 

environment mapping. This method projects the background onto the interior of a sphere 
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(a) (b) 

Figure 36: Unknown regions because of reconstruction on a finite domain. A photograph 
of our Bench scene is shown in (a), with the reconstruction volume superimposed. Only the 
voxels within the reconstruction volume are considered during reconstruction. The scene 
contains many objects outside of the reconstruction volume that are not reconstructed, re­
sulting in unknown regions that appear as black in a projection of the reconstruction, shown 
in (b). 

or cube that surrounds the foreground scene. Blinn and Newell [9] use such an approach 

to synthesize reflections of the environment off of shiny foreground surfaces, a procedure 

known as reflection mapping. Greene [45] additionally renders the environment map di­

rectly to generate views of the background. This approach is quite effective at producing 

convincing synthetic images. However, since the foreground and background are modeled 

differently, separate mechanisms must be provided to create and render each. Furthermore, 

the three-dimensionality of the environment is lost, as the background is represented as 

a texture-map. Like environment mapping, the techniques described in this chapter seek 

an efficient mechanism to represent the background scene. Our warped volumetric space 

provides this in a single framework that can more easily accommodate surfaces that ap­

pear both in the foreground and background. We reconstruct the background scene three-

dimensionally using computer vision methods. 
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Interior space 

(a) (b) 

Figure 37: Pre-warped (a) and warped (b) voxel spaces shown in two dimensions. In 
(a), the voxel space is divided into two regions; an interior space shown with dark gray 
voxels, and an exterior space shown with light gray voxels. Both regions consist of voxels 
of uniform size. The warped voxel space is shown in (b). The warping does not affect the 
voxels in the interior space, while the voxels in the exterior space increase in size further 
from the interior space. The outer shell of voxels in (b) are warped to infinity, and are 
represented with arrows in the figure. 

5.2 Volumetric warping 

The goal of a volumetric warping function is to represent an infinite or semi-infinite volume 

with a finite number of voxels, while satisfying the requirement that no voxels overlap and 

no gaps exist between voxels. There are many possible ways to achieve this goal. In this 

section, we use the term pre-warped to refer to the volume before the volumetric warping 

function is applied. 

The volumetric warping method presented here separates the voxel space into an inte­

rior space used to model foreground surfaces, and an exterior space used to model back­

ground surfaces, as shown in Figure 37 (a). The volumetric warp does not affect the voxels 

in the interior space, providing backward compatibility with previous space carving algo­

rithms, and allowing reconstruction of objects in the foreground at a fixed voxel resolution. 
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Voxels in the exterior space are warped according to a warping function that changes 

the size of the voxel based on its distance from the interior space. The further a voxel in the 

exterior space is located from the interior space, the larger its size, as shown in Figure 37 

(b). Voxels on the outer shell of the exterior space have coordinates warped to infinity, and 

have infinite volume. Note that while the voxels in the warped space have a variable size, 

the voxel space still has a regular 3D lattice topology. 

To help further limit the class of possible warping functions, we introduce the following 

desirable property of a warped voxel space: 

Constant footprint property: For each reference view, voxels project to the same number 

of pixels, independent of depth. 

Figure 38 shows an example of a voxel space that satisfies the constant footprint property 

for two cameras. Assuming perspective projection, a voxel space that satisfies this property 

has a spatially adaptive voxel size that increases away from the cameras, in a manner per­

fectly matched with the images. While a useful conceptual construct, the constant footprint 

property cannot in general be satisfied when more than N cameras are present in RN space. 

Thus, for three-dimensional scenes, a voxel space cannot be constructed that satisfies the 

property for general camera placement when there are more than three cameras. Since 

reconstruction using three or less cameras is limiting, we instead design our volumetric 

warping function to approximate the constant footprint property for an arbitrary number of 

images. 

5.2.1 Frustum warp 

We now describe a frustum warp function that is used to warp the exterior space. We 

develop the equations and figures in two dimensions for simplicity; the idea easily extends 

to three dimensions. 

The frustum warp assumes that both the interior space and the pre-warped exterior space 

have rectangular-shaped outer boundaries, as shown in Figure 39. The pre-warped exterior 
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Figure 38: Example of a 2D voxel space that satisfies the constant footprint property for 
two images. Notice that the two filled in voxels project to the same number of pixels in the 
right image, regardless of their respective distance from the camera. Note that this figure is 
solely used to illustrate the constant footprint property; the warped voxel space developed 
and used in this thesis actually looks like that of Figure 37 (b). 

space is divided into four trapezoidal regions, bounded by (1) lines / connecting the four 

corners of the interior space to their respective corners of the exterior pre-warped space, (2) 

the boundary of the interior space, and (3) the boundary of the pre-warped exterior space. 

We denote these trapezoidal regions as ±JC, and ±y, based on the region's relative position 

to the center of the interior space. These regions are also shown in Figure 39. 

Let (x,y) be a pre-warped point in the exterior space, and let (xw,yw) be the point after 

warping. To warp (x,y), we first apply a warping function based on the region in which 

the point is located. This warping function is applied to only one coordinate of (x,y). For 

example, suppose that the point is located in the +x region, as depicted in Figure 40. Points 

in the +x and —x regions are warped using the ^-warping function, 

XW=X —pr, (11) 
X,g LA-I 

where xe is the distance along the x-axis from the center of the interior space to the outer 

boundary of the exterior space, and JC,- is the distance along the x-axis from the center of 
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Figure 39: Boundaries and regions. The outer boundaries of both the interior and exterior 
space are shown in the figure. The four trapezoidal regions, ±x and ±y are also shown. 

the interior space to the outer boundary of the interior space, shown in (a) of Figure 40. A 

quick inspection of this warping equation reveals its behavior. For a point on the boundary 

of the interior space, x = *,-, and thus xw = *,-, so the point does not move. However, points 

outside of the boundary get warped according to their proximity to the boundary of the 

exterior space. For a point on the boundary of the exterior space, x — xe, and so xw = « , 

Continuing with the above example, once xw is computed, we find the other coordinate 

yw by solving a line equation, 

yw=y + m(xw-x), (12) 

where m is the slope of the line connecting the point (*, y) with the point a, shown in (b) of 

Figure 40. Point a is located at the intersection of the line parallel to the *-axis and running 

through the center of the interior space, with the nearest line /, as shown in the figure. Note 

that in general, point a is not equal to the center of the interior space. 

As shown above, the exterior space is divided into four trapezoidal regions for the two-

dimensional case. In three dimensions, this generalizes to six frustum-shaped regions, ±JC, 

±y, ±z; hence the term frustum warp. There are three warping functions, namely the 

Outer interior boundary 

Outer exterior boundary 
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Figure 40: Finding the warped point. The x-warping function is applied to the x-coordinate 
of the point (x,y), as the point is located in the +* region. This yields the coordinate xw, 
shown in (a). In (b), the other coordinate yw is found by solving the line equation using the 
coordinate xw found in (a). 
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x-warping function as given above, and y- and z-warping functions, 

ye-yi „ _ 
>'w = V r-r (13) 

ye - \y\ 
Ze Zi , , ,s 

Zw = Z r-r., (14) 
Ze ~ \Z\ 

In general, the procedure to warp a point in the pre-warped exterior space is as follows. 

1. Determine in which frustum-shaped region the point is located. 

2. Apply the appropriate warping function to one of the coordinates. If the point is the 

in ±x region, apply the x-warping function, if the point is in the ±y region, apply the 

v-warping function, and if the point is the ±z region, apply the z-warping function. 

3. Find the other two coordinates by solving line equations using the warped coordinate. 

After reconstruction, we intend the model to be viewed from near or within the interior 

space. For such viewpoints, voxels will project to approximately the same footprint in each 

image. 

5.2.2 Other warping functions 

The frustum warp presented above is not the only possible warp. Any warp that does not 

move the outer boundary of the interior space, and warps the outer boundary of the pre-

warped exterior space to infinity, while satisfying the criteria that no gaps form between 

voxels, and that no voxels overlap, is valid. Furthermore, it is desirable to choose a warp­

ing function that approximates the constant footprint property for the cameras used in the 

reconstruction as well as the camera placements during new view synthesis. An example 

of an alternative warping function is one that warps radially with distance from the center 

of the reconstruction volume. 

5.3 Implementation issues 

Reconstructing a scene using a warped reconstruction volume poses some new challenges, 

described in this section. 
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5.3.1 Cameras inside volume 

Perhaps the most difficult challenge is that of having the cameras embedded inside the 

reconstruction volume. Typically, when one uses a standard space carving algorithm, the 

cameras used to take the photographs of the scene are placed outside of the reconstruction 

volume, so that at least two cameras have visibility of each voxel. The photo-consistency 

measure used in space carving algorithms, qualitatively, determines if all the cameras that 

can see a voxel agree on its color. This photo-consistency is poorly defined when a voxel 

is visible from only one camera. 

Since the warped reconstruction volume can occupy all space, cameras get embedded 

inside the voxel space, as shown in (a) of Figure 41. Our reconstruction algorithm initially 

assumes that all voxels are opaque. Therefore, camera views are obscured, and the cameras 

cannot work together to carve the volume. This poses a problem, since to be properly 

defined, the photo-consistency measure requires that at least two cameras have visibility of 

a voxel. Consequently, the space carving algorithm cannot proceed, and terminates without 

removing any voxels from the volume. 

To address this issue, we must remove (pre-carve) a section of the voxel space so that 

initially, each surface voxel is observed by at least two cameras, validating the photo-

consistency measure, as shown in (b) of Figure 41. There are a variety of possible methods 

to achieve this result. A generic method is to have a user identify regions of the voxel space 

to pre-carve. Obviously, the pre-carved regions must consist only of empty space, i.e., not 

contain any scene surfaces to be reconstructed. While effective, this method precludes a 

fully automatic reconstruction. Alternatively, one can pre-carve the volume using a heuris­

tic. For example, if appropriate, one could require that the cameras have visibility of the 

boundary between the interior space and the exterior space. Other heuristics are possible. 

Once the pre-carving is complete, we execute a standard space carving algorithm using the 

warped voxel space. 
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(a) (b) 

Figure 41: Pre-carving operation. Reconstruction in the warped space causes the cameras 
to be embedded in the voxel space, as shown in (a). For many camera placements, it would 
be impossible to carve any voxels, since no voxel is visible to more than one camera. We 
execute a pre-carving step in (b) so that cameras can work together to carve the volume. 

5.3.2 Preventing visible holes in the outer shell 

Because of errors in camera calibration, image noise, inaccurate color threshold etc., space 

carving sometimes removes voxels that should remain in the volume. Thus, it is possible 

that voxels on the outer shell of the voxel space will be deemed inconsistent. Removing 

such voxels can result in unknown black regions similar to those in Figure 36 during new 

view synthesis, as no voxel would project onto the camera for some pixels in the image 

plane. Since one cannot see beyond infinity, we do not carve voxels on the outer shell of 

the voxel space, independent of the photo-consistency measure. 

5.4 Results 

We have modified the GVC algorithm to utilize the warped voxel space. We created a 

synthetic data set, called Marbles, consisting of twelve 320 x 240 images of five small 

texture-mapped spheres inside a much larger sphere textured with a rainbow-like image. 

We reconstructed the scene using a voxel space that consisted of 48 x 48 x 48 voxels, of 
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which the inner 32 x 32 x 32 were in the interior space and imwarped. The voxel space 

was set up so that the five small texture-mapped spheres were reconstructed in the interior 

space, while the larger sphere, making up the background, was reconstructed in the exterior 

warped space. Sample images from the data set are shown in (a) and (b) of Figure 42. 

A reconstruction was performed using the warped voxel space. The reconstruction was 

projected to the viewpoints of (a) and (b), yielding (c) and (d). Note that the background 

environment was reconstructed using our warped voxel space. 

Next, we took a series of ten panoramic (360 degree field of view) photographs of a 

quadrangle at Stanford University, using a digital camera that produces cylindrical images. 

These photographs had resolution of about 2502 x 884 pixels. One photograph from the 

set is shown in Figure 43 (a). We have found that when reconstructing an environment, it 

is preferable to use large field of view images, as objects far from the cameras are visible 

in many photographs. This achieves a sufficient sampling of the scene with fewer pho­

tographs. A voxel space of resolution 300 x 300 x 200 voxels, of which the inner 200 x 200 

x 100 were interior voxels, was pre-carved manually by removing part of the voxel space 

that containing the cameras. Then, the GVC algorithm was used to reconstruct the scene. 

Figure 43 (b) shows the reconstructed model reprojected to the same viewpoint as in (a). 

Note that objects far away from the cameras, such as many of the buildings and trees, have 

been reconstructed with reasonable accuracy for new view synthesis. New views are shown 

in (c) and (d) of the figure. 

Despite the successes of this reconstruction, it is not perfect. The sky is very far away 

from the cameras (for practical purposes, at infinity), and should therefore be represented 

with voxels on the outer shell of the voxel space. However, since the sky is nearly texture-

less, cusping occurs, resulting in inaccurate computed geometry, apparent in an animated 

sequence of new views of the reconstruction. Reconstruction of outdoor scenes is challeng­

ing, as surfaces often do not satisfy the Lambertian assumption. To compensate, we used 

a higher consistency threshold, also resulting in some inaccurate geometry. On the whole, 
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(c) (d) 

Figure 42: Original images of the Marbles data set are shown in (a) and (b), and a recon­
struction projected to the same viewpoints of (a) and (b) is shown in (c) and (d), respec­
tively. 

though, the reconstruction is reasonably accurate and produces convincing new views. 

5.5 Summary 

In this chapter we introduced a volumetric warping approach for modeling infinitely large 

scenes with a finite number of voxels. We modified our GVC algorithm to reconstruct the 

scene using this warped voxel space, and demonstrated results for a synthetic scene as well 

as a large-scale real-world scene. Our approach is capable of reconstructing a background 

environment in addition to a foreground scene. 

In this approach we intend to synthesize new views in or near the interior space. When 

the virtual camera moves into the exterior space, the frustum shape of the exterior voxels 
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Figure 43: Results for the Stanford scene. One of the ten panoramic photographs is shown 
in (a). The reconstructed model, projected to the same viewpoint as that of (a) is shown in 
(b). New synthesized panoramic views are shown in (c) and (d). 
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becomes apparent. Also, when synthesizing new views placed in the exterior space, exte­

rior voxels near the virtual camera can be excessively large. Therefore, this approach only 

has a limited region of space for which new view synthesis is effective. To increase the 

range of effective viewpoints for new view synthesis, one could combine multiple interior 

/ exterior spaces together. Such work remains an open problem. Another open problem is 

the development of a multi-resolution voxel space that is customized to the scene content as 

observed in the reference views. For example, large voxels could model far away surfaces 

or nearby homogeneously colored surfaces, while smaller voxels could model finer nearby 

surfaces that exhibit more color variation. Such an approach might employ on octree rep­

resentation of 3D space. 

As a practical concern, an implementation of our volumetric warping approach can have 

difficulties in representing a large dynamic range of depth values using finite-precision 

values on a computer. This becomes especially significant when performing z-buffering 

during rendering. The bit depth of the z-buffer should be sufficiently high to avoid rendering 

errors. Alternatively, one could rewarp the depth values so that they are constrained to a 

limited range. 

In Chapter 7, we will present a view-dependent representation of 3D space that satisfies 

the constant footprint property at all virtual camera positions. 
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CHAPTER VI 

SPACE CARVING USING LEVEL SET METHODS 

While space carving approaches like GVC are effective, they can produce ragged and irreg­

ular surfaces, especially where there are high curvature features such as cusps and floaters 

described in Chapter 4. Rather than post-process the reconstructed geometry, one can re­

quire surface smoothness during the reconstruction. Doing so mitigates cusps and penalizes 

floaters. 

In this chapter we present a multi-resolution space carving approach that uses level set 

methods [113]. Unlike most standard space carving techniques, this approach produces a 

smooth reconstruction composed of manifold surfaces. The method outputs a polygonal 

mesh, which is more suitable for rendering on standard graphics hardware than a collection 

of voxels. We texture-map the reconstructed polygonal mesh using the photographs, and 

then render it to produce photo-realistic new views of the scene. 

We begin this chapter with a brief description of surface evolution using level set meth­

ods, and describe our reconstruction algorithm. 

6.1 Surface representation 

Surface evolution techniques characterize the motion of a surface changing its shape over 

space and time. In this class of methods, two different surface representations are com­

monly used: explicit and implicit. Explicit surface representations directly specify the 

location of points on the 3D surface, often as a polygonal mesh or as a parametric surface. 

The points on an implicit surface, in contrast, are implied by the evaluation of a function 

i//. The surface exists at a point (x,y,z) if y(x,y,z) = c, where c is a constant. Implicit 

surfaces are very useful for describing manifolds, as y/(x,y,z) is negative for points inside 
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the surface, and positive for points outside. Additionally, useful surface properties can 

be computed directly from the implicit surface representation. For example, the general 

technique for finding the unit surface normal N to an implicit surface is to take partial 

derivatives of yf(x,y,z) as follows [10]: 

Vu/ 
N=iwr (15) 

where 

6.2 Level set methods 

Level set theory was developed by Osher and Sethian [83, 102] to model the evolution 

of propagating interfaces. Early work was applied to computational fluid dynamics and 

crystal growth; however, in recent years there has been much interest in applying the theory 

to problems in computer vision, graphics, and image processing. 

6.2.1 Description 

Level set methods represent an N — 1 dimensional surface S implicitly as the zero-level set 

of an iV-dimensional function y/. This implicit representation has a number of advantages 

over explicit surface representations, including natural support of topological changes, con­

cise descriptions of differential structure, and no need for reparameterization. 

The surface moves with a spatially and temporally variable speed F along its surface 

normal, subject to intrinsic, independent, and data-driven forces, as shown in Figure 44. 

Intrinsic forces are determined by local properties of the surface such as curvature. Inde­

pendent forces are independent of the surface, such as a underlying velocity that passively 

transports the surface in a direction. Data-driven terms are used to guide the evolving 

surface to a desired shape that solves a particular problem. 
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Figure 44: Surface evolution along surface normal, with a speed F composed of intrinsic, 
independent, and data-driven terms. 

6.2.2 Evolution of the surface 

In this section we derive the equation of motion that describes evolution of the surface S 

embedded as the zero-level set of y/. Since we will be moving the surface temporally as 

well as spatially, we include an additional temporal variable t, giving y/(x,y,z,t). 

Let x = (x,y,z) be a point on the surface. The velocity of a point on the surface is the 

temporal derivative of x, 
dx /dx dy dz 
~dt = \5i''di'~di 

Since the evolving surface moves along its unit normal N with a speed F, 

(17) 

^ • N = F. (18) 
dt 

Using Equation 15, we can rewrite this expression as 

| ^ V i / / = F|Vy/|. (19) 

Now consider the function y/. For points on the zero-level set, 

y{xyy,z,t)=Q. (20) 

Differentiation of Equation 20 with respect to time gives 

^ + ^ ^ + ^ . ^ Z + ^ ^ £ = 0 (21) 
dt dx dt dy dt dz dt 
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Figure 45: Two common flows: normal flow (top) and curvature flow (bottom). 

This expression can be rewritten as 

dty dx 

i+v^=°- (22) 

Substituting Equation 19 into Equation 22 yields the level set evolution equation, 

^ + F |Vv/ |=0. (23) 

Equation 23 describes the time evolution of the level set function \\f so that the zero-level 

set of this evolving function is always identified with the propagating surface. 

6.2.3 Two common flows 

Two common flows are the normal flow and curvature flow. The normal flow is a surface 

evolution that moves along the surface normal with a constant speed. The surface erodes 

when evolved along the inward surface normal as shown in the top of Figure 45. Note that 

the normal flow preserves corners and edges. Curvature flow is a surface evolution with a 

speed based on //, a measure of curvature. Places where there is high curvature move more 

quickly, resulting in smoothing over time, shown in the bottom of Figure 45. 
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6.3 Reconstruction algorithm 

Given Equation 23, all that is left to do is to define an initial surface, and a speed function 

F that drives the evolving surface to the true scene geometry while enforcing smoothness. 

We embed the initial surface as the zero-level set of a volumetrically sampled function 

y. The exact shape of the initial surface is not very important, as long as it contains the 

surfaces being reconstructed. This requirement is necessary since we will shrink the surface 

during reconstruction. A simple initial surface to use is the surface of the reconstruction 

volume. This is the same initial surface we used for our GVC reconstructions in Chapter 3. 

The speed function F we use is 

F = ab0 + a i 0 # , (24) 

resulting in a surface evolution of 

~\ r i 

_ = FN = «o0N + cti 0HN, (25) 
ot 

where <j) is a measure of color mismatch related to photo-consistency and H is the mean cur­

vature. This evolution is comprised of two terms: a weighted normal flow and a weighted 

curvature flow. The constants «o and a\ are used to weight the two flows relative to each 

other. The weighted curvature keeps the reconstruction smooth, while the weighted normal 

flow allows the evolving surface to better fit the scene being reconstructed. 

The weighting factor (j) is data dependent, and proportional to the standard deviation 

used in the photo-consistency measure described in Section 3.1.3. We scale <j) so that it is 

within the range [0, 1], using the equation 

I I, if voxel is inconsistent 

(26) 
m i n ( ^ , 1), if voxel is consistent 

where <7o is user-specified parameter. Thus, <j) is large when a voxel modeling the surface 

is inconsistent. This will allow the surface to readily propagate along its inwardly pointing 

normal through regions of space that do not contain object surfaces being reconstructed. 
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The 0 term becomes small when a voxel modeling the surface is photo-consistent. Here, 

the surface propagation slows. At places where the surface is fully photo-consistent, 0 = 0 

and the surface evolution stops altogether. 

The value of OQ affects both the amount of smoothing as well as the convergence of the 

algorithm. A lower value of O"o will allow the evolving surface to more readily propagate 

through photo-consistent space. This results in more smoothing of the model when a\ > 0. 

However, a value that is too low will allow the evolving surface to pass through the photo-

consistent points where one would like the surface to stop. In such a case, the evolution 

may fail to converge. A larger value of OQ slows the evolving surface down when it is in 

photo-consistent space. In the limit as Go goes to infinity, Equation 26 becomes 

!

1, if voxel is inconsistent 
(27) 

0, if voxel is consistent 

This is the approach taken by space carving algorithms, which do not carve photo-consistent 

voxels. 

In the level set framework, the surface evolution of Equation 25 becomes 

^ = (ao + a i / / ) 0 | V v | , (28) 

with 

(29) 

During evolution, we keep track of which voxels are on the surface. We iterate subject 

to Equation 28 until the number of surface voxels remains the same for Z, where Z is a 

small number. This indicates the surface has slowed down to a point where it the evolution 

is near or at convergence. 

6.4 Implementation 

In this section, we discuss the implementation of Equation 28. 
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6.4.1 Voxel space 

We sample y/ on a discrete grid using two 3D voxel arrays that store i/Aasa function of 

{x,y,z) for the current time t and the next time, t + At. This forms a 3D voxel space in 

which the reconstruction occurs. 

6.4.2 Derivatives 

We use finite difference approximations for the spatial and temporal partial derivatives of 

y/. In our implementation of Equation 23, we employ the first forward difference for the 

temporal derivative of y/, 

dy y{x,y,z,t + At)-y{x,y,z,t) 

dt At 

With this approximation, Equation 23 becomes 

(30) 

\[f(xiy1z,t + At) = \if(xiy,z,t)-AtF\V}if\. (31) 

We approximate the spatial derivatives with central differences. For the first-order spa­

tial derivative in the x-dimension we use 

llf _d¥ _ V(* + Ax,y, V ) - y(x- Ax,y,z,t) 
¥x~ dx~~ 2Ax • {3Z) 

The second-order derivative in the x-dimension is approximated as 

_d2y \lf(x + Ax,y,z,t)-2\if{x,y,z,t) + \if(x~Ax,y,z,t) 
¥xx ~ dx* ~ (Ax)2 ' ( 3 3 ) 

Spatially, we use step size Ax of one voxel. Similar equations exist for the y and z dimen­

sions. The temporal time step At is discussed below. 

Sethian [102] has shown that normal flow surface evolution can develop singularities 

known as shocks. Shocks are sharp corners or edges that occur when the evolving surface 

flows in on itself. To properly model this phenomenon, Sethian proposes the use of weak 

solutions given by entropy conditions. These solutions require that one take the appro­

priate forward or backward approximation to the spatial derivatives in the implementation 
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of Equation 23. However, Sethian also shows that shocks do not form for a combined 

normal and curvature flow. Thus, as long as a\ > 0, we can safely use central difference 

approximations for the spatial derivatives. 

6.4.3 Stability 

In order for the numerical implementation of the surface evolution to stay stable, one must 

satisfy the Courant-Friedrichs-Lewy (CFL) condition, which gives an upper bound on the 

time step used in the evolution. For CCQ + a\ = 1, one can derive the CFL condition using 

Von Neumann analysis [89], which, for the surface evolution of Equation 28, yields a 

maximum allowable time step of 

M = \. (34) 

6.4.4 Narrow band 

Updating y/ in Equation 28 over the entire voxel space requires 0(N3) operations, where N 

is the number of voxels in the voxel space along one dimension. However, in our approach, 

we are interested only in the evolving surface. Therefore, it is possible to update y/ only in a 

narrow band [102] around the zero-level set, as shown in Figure 46 for a 2D slice of the 3D 

volume. The narrow band approach lowers the computational cost to 0(kN2), where k is 

the number of band voxels. The orange curve in the figure indicates the surface embedded 

in the voxel space. It is interpolated from the voxel array, using the marching cubes [62] 

algorithm. 

6.4.5 Multi-resolution 

For efficiency, our algorithm works in a coarse-to-fine fashion similar to the multi-resolution 

GVC approach discussed in Section 3.5.5. We first perform a reconstruction at resolution 

R using large voxels. At a lower resolution, we are able to carve away a large part of space 

that would require a lot of computation at a higher resolution. Once the reconstruction at 

resolution R is complete, we dilate the surface. After the dilation, we tessellate each voxel 
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(a) (b) 

Figure 46: Updating y/ in the complete array (a) vs. narrow band (b), shown for a 2D slice 
of the 3D volume. 

into eight sub-voxels, which increases the resolution to R+ 1. We perform trilinear inter­

polation to compute each value of \\f in the higher resolution volume. We then re-execute 

the algorithm at the higher resolution, This process continues until a desired resolution is 

obtained, as described in Figure 22 

6.5 Results 

We performed a multi-resolution reconstruction using the Broccoli data set. We started with 

a box-shaped initial surface in a coarse 21 x 17 x 23 volume. We executed the algorithm 

for three resolution increases, resulting in a 168 x 136 x 184 volume. Figure 47 shows the 

initial evolution of the zero level set from the initial surface. Once the geometry is recon­

structed, we extract a polygonal representation of the surface by executing the marching 

cubes [62] algorithm. Next, we texture-map the polygonal model using the photographs 

of the scene. For this, we consider the rays between the triangle center and each reference 

view that has visibility of the triangle. We then compute the angle 0 between each ray and 

the triangle surface normal. We apply pixels onto the triangle from only the reference view 

that has the smallest 0. New photo-realistic views of the reconstructed broccoli stalk are 

shown in Figure 48. 
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Figure 47: Initial evolution of the zero level set at the lowest resolution. 

(a) (b) 

(c) (d) 

Figure 48: New synthesized views of the broccoli stalk. Untextured surfaces are shown in 
(a) and (c), textured surfaces are shown in (b) and (d). 
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We also performed a multi-resolution reconstruction of our Camel data set. This data 

set, courtesy of Gabe Brostow, consists of eleven 720 x 480 photographs of a toy camel. 

Four photographs from this data set appear in Figure 49. Our initial surface was again a 

box surrounding the scene. The resolution was 35 x 35 x 45. We executed the algorithm for 

two resolution increases, ending with a volume that had resolution 140 x 140 x 180. Some 

of the photographs contained specular highlights from the scene lighting reflecting from 

the object surface. Correspondingly, we had to increase the photo-consistency threshold 

during reconstruction, which resulted in a fatter surface. Also, the specular highlights 

result in some speckles that appear as texturing artifacts in new views rendered from the 

reconstruction, as shown in Figure 50. 

Finally, we show results from reconstructing the Tower data set. Our initial surface was 

again a box, this time embedded into a 35 x 35 x 46 volume. Wre executed the algorithm 

for one resolution increase, resulting in a 70 x 70 x 92 volume. New views synthesized 

by rendering the polygonal surface are shown in Figure 51. There are some high curvature 

locations on the true surface, such as in between the cushions of the object, that are not 

properly reconstructed by this approach. The smoothed surface does not accurately model 

the scene geometry in such locations, which results in reconstruction artifacts, apparent in 

the synthetic new views in the figure. However, the overall geometry of the scene has been 

reconstructed with reasonable accuracy. 

In Chapter 8 we will compare the level set reconstruction algorithm to other reconstruc­

tion approaches presented in this thesis. 

6.6 Summary 

We have presented a multi-resolution space carving algorithm implemented with level set 

methods. Using a set of photographs taken with calibrated cameras, this approach gener­

ates a smooth, texture-mapped 3D polygonal model that can be rendered using standard 

graphics hardware to produce new views of the scene. 
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Figure 49: Four of eleven reference views of the Camel data set. 
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(a) 

(c) 

(e) (f) 

Figure 50: New synthetic views of the Camel data set. Untextured surfaces are shown in 
(a), (c), and (e), while textured surfaces are shown in (b), (d), and (f). 
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(c) (d) 

Figure 51: New synthetic views of the Tower data set. Untextured surfaces are shown in 
(a) and (c), while textured surfaces are shown in (b) and (d). 
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Our level set approach gives a structured way to incorporate smoothing during recon­

struction. The reconstructed surface is smooth and regular, and does not contain extraneous 

floating geometry, holes, or large cusps that can plague standard space carving approaches. 

However, due to the smoothing term, however, some sharp edges, corners, and fine geo­

metrical details are not preserved. For example, the broccoli model has some thin small 

leaves near the stalk that are not present in the final reconstruction. 

Our approach does not necessarily find the most photo-consistent surface. A possi­

ble extension to this work would be to design a flow that stops at maxima of the photo-

consistency function, similar in spirit to the volumetric optimization technique discussed 

in Section 4.3. Such an optimization-based level set approach might require a bi-directional 

flow. Also, future work might investigate ways to automatically adapt OCQ and <X\ during re­

construction. In places where fitting is desired, the normal flow could dominate the surface 

evolution. However, in places where smoothing is desired, the curvature flow term could 

dominate. 
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CHAPTER VII 

IMAGE-BASED PHOTO HULLS 

Depending on the number of photographs and resolution of the voxel space, the time re­

quired to reconstruct a scene using a space carving algorithm like GVC on modern com­

puter hardware typically ranges from a few minutes to several hours. While parallelization 

and hardware acceleration of these algorithms is possible, space carving algorithms have 

not yet been demonstrated to offer interactive performance for non-trivial resolutions. 

In fact, most standard approaches to the 3D scene reconstruction problem such as multi-

baseline stereo, structure from motion, and shape from shading were not designed for real­

time performance and thus are too slow to process the images online. When working with 

multi-view video data, most techniques perform the 3D reconstruction offline after the 

images have been acquired. Once the reconstruction is complete, it is rendered in real­

time. 

In this chapter we present a new algorithm called image-based photo hulls (IBPH) 

[111, 112] that reconstructs and synthesizes views of a scene's photo hull at interactive 

rates. Online 3D reconstruction and new view synthesis significantly broadens the ap­

plicability of this class of techniques; we demonstrate the use of our algorithm in a 3D 

video-conferencing application. 

7.1 Image-based visual hulls 
7.1.1 Overview 

Our IBPH algorithm builds upon the image-based visual hulls (IBVH) algorithm [72]. The 

IBVH algorithm is a very efficient approach to computing views of the visual hull. The key 

to this algorithm's efficiency is its use of epipolar geometry for computing the geometry 
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and visibility of the scene. By taking advantage of epipolar relationships, all of the steps 

of the algorithm function in the image space of the reference views. Note that epipolar 

geometry is reviewed in Appendix A. 

While the IBVH algorithm is exceptionally efficient, the geometry it reconstructs is not 

very accurate. This is because the IBVH algorithm reconstructs only the visual hull of the 

scene. As described in Chapter 2, the visual hull is a conservative volume reconstructed 

from silhouettes. When photographed by only a few cameras, the scene's visual hull is 

much larger than the true scene. Even if photographed by an infinite number of cameras, 

many scenes with concavities will not be modeled correctly by a visual hull. One can 

partially compensate for such geometric inaccuracies by view-dependent texture-mapping 

(VDTM), as done in the IBVH approach [72]. 

However, artifacts resulting from the inaccurate geometry are still apparent in new syn­

thesized views, as shown in Figure 52. This figure demonstrates a reconstruction of a pin-

wheel photographed from five viewpoints. Two of the reference views, after background 

subtraction, are shown in the top row of the figure. A new view of the scene, placed halfway 

between two reference views, is rendered from the reconstruction. The middle row shows 

the visual hull reconstruction. At this viewpoint, the right side of the reconstructed pin-

wheel is texture-mapped with one reference image, while the left side of the pinwheel is 

texture-mapped with another. Because of the geometric inaccuracy of the visual hull, there 

is a salient seam along the pinwheel where there is a transition between the two images 

used to texture-map the surface. In particular, the center of the pinwheel is not present 

in the synthetic view. The improved geometry of the photo hull corrects this problem, as 

shown in the bottom row of the figure. 

In this chapter we adapt the IBVH algorithm to reconstruct views of the photo hull, by 

utilizing the color information of the images to identify scene geometry. These additional 

color constraints result in more accurately reconstructed geometry, which often projects to 

better synthesized virtual views of the scene. Our approach combines the efficiency of the 
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Figure 52: We show two reference views (top row) at one time instant of our Pinwheel data 
set, after background subtraction. The visual hull reconstruction (middle row) vs. photo 
hull reconstruction (bottom row) are shown for a synthetic view, along with corresponding 
depth maps. 
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Figure 53: View-dependent geometry. 

IBVH algorithm with the improved geometric accuracy of the photo hull. 

7.1.2 Computing geometry 

One of the unique properties of the IBVH algorithm is that it reconstructs view-dependent 

geometry. A user moves a virtual camera about the scene. For each virtual camera place­

ment, the IBVH algorithm computes the extent that back-projected rays from the center of 

projection Ĉ / intersect the visual hull in 3D space, as shown in Figure 53. These inter­

vals are stored as a layered depth image [103]. Thus, the representation of the geometry is 

specified for the desired view, and changes as the user moves the virtual camera. 

Consider an individual ray, as shown in Figure 54. The ray is back-projected from the 

desired view's center of projection, through a pixel in the image plane, and into 3D space. 

This ray projects to an epipolar line in each reference view. The IBVH algorithm deter­

mines the 2D intervals where the epipolar line crosses the silhouette. These 2D intervals 

are then "lifted" back onto the 3D ray using a simple projective transformation. The inter­

vals along the 3D ray from all reference views are intersected. The resultant set of intervals 

describe where the ray pierces the visual hull. These are called hull intervals in this thesis. 
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Figure 54: Determining a ray's visual hull intervals. 

In Figure 54, one hull interval is found along the back-projected ray. Once this procedure 

has been performed on all rays back-projected from the desired view, the reconstruction of 

the view-dependent geometry of the visual hull is complete. 

7.1.3 Computing visibility 

In order to color a point on the visual hull, it is necessary to determine which cameras have 

an unoccluded view of the point. Thus, visibility must be computed before texture-mapping 

the reconstructed geometry. 

At a pixel p in the desired view, the first point (if any) along the first visual hull interval 

indicates a point P in 3D space that projects to p and is visible in the desired view, as shown 

in Figure 55 (a). To compute visibility, for each reference view we need to determine if P 

is visible. P must be visible in the reference view if the line segment PC r between P and 

the reference view's center of projection C r does not intersect any visual hull geometry. 

The layered depth image representation of the visual hull makes this easy to determine. 

In the desired view, PC r projects to an epipolar line segment pe, where e is the epipole, 

found by projecting C r into the desired view, as shown in Figure 55 (b). For each pixel 
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Figure 55: P is visible in the reference view if there is no occluding geometry along PC, 
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Figure 56: View-dependent texture-mapping. 

along pe, the visual hull intervals can be checked to see if they contain geometry that 

intersects PCr. If an intersection occurs, point P is not visible in the reference view, and no 

more pixels along pe need be evaluated. Otherwise, one continues evaluating pixels along 

pe, until there are no more pixels to evaluate. If no visual hull interval has intersected PCr, 

then the point P is visible in the reference view. 

The IBVH paper [72] discusses discretization issues in computing visibility using this 

approach, as well as occlusion-compatible orderings to improve its efficiency. 

7.1.4 View-dependent texture mapping 

Once visibility has been computed, one can color the visual hull using the reference views. 

The IBVH paper employs view-dependent texture mapping, which retains view-dependent 

effects present in the photos, and works well with the inaccurate geometry of the visual 

hull. To color a point p in the desired view, the closest point P on the hull is found. Then, 

for each reference view that has visibility of P, the angle between PC,/ and PCr is found, 

as shown in Figure 56. The reference view with the smallest angle is chosen to color the 
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compute IBVH 
compute visibility 
pre-compute homogeneous ray steps HAP in each reference image 
do 

evaluate photo-consistency 
for each inconsistent ray in desired view 

if (number of steps along ray k <=k + K) 
step along inconsistent ray 

else 
set ray consistent 

if (updating visibility) 
update visibility 

} while(number of inconsistent rays > M) 
display hull using VDTM 

Figure 57: Pseudo-code for the IBPH algorithm. See text for details. 

visual hull. This is the reference view that has the "best" view of P for the virtual camera's 

location. For example, in Figure 56, reference view 2 would be chosen since 02 < #l • 

7.2 Image-based photo hulls 

As discussed in Section 2.5.1, the visual hull is a conservative volume that is guaranteed to 

enclose the surfaces being reconstructed. The image-based visual hulls algorithm therefore 

is able to eliminate a large part of space that does not contain any scene surfaces. And 

because the IBVH algorithm is very efficient, it does this quickly. Our image-based photo 

hulls algorithm refines geometry of the image-based visual hull using photo-consistency to 

yield improved results. Below we describe the approach. 

7.2.1 Approach 

As indicated in the pseudo-code in Figure 57, our IBPH algorithm starts with the visual 

hull computed by the IBVH algorithm. The IBPH algorithm then evaluates the photo-

consistency of the closest point on the visual hull along each ray back-projected from the 

desired view. If the point is inconsistent, we take a small step along the ray, moving away 

from the desired view, as depicted in Figure 58. We continue stepping along an inconsistent 
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Figure 58: Computing the image-based photo hull. 

ray until it either becomes consistent or we have stepped beyond all visual hull intervals 

along the ray. This latter case indicates that no photo-consistent geometry along the ray 

was found. 

Note that in this approach, only the points on the hull that are visible in the desired view 

are processed. Initially, these points are the first points in the first visual hull interval along 

each back-projected ray. By stepping along the inconsistent rays until convergence, the 

IBPH algorithm reconstructs only the portion of the photo hull that is visible to the desired 

view. 

7.2.2 Stepping along epipolar lines 

As we step in 3D along an inconsistent ray, looking for the point at which it becomes 

consistent, we must simultaneously step along an epipolar line in each reference view. The 

brute force way of stepping along the epipolar line in a reference view is to simply project 

each 3D point P,- on the ray to the reference view point p,- by multiplying the reference 

view's projection matrix H with P„ i.e., p,- = HP,. Such an approach will work, but will 

require a large number of matrix multiplications. 

117 

Reference view 

Inconsistent 



AP 

Desired view 

' P i 

Reference view r 

Figure 59: Stepping along an epipolar line. 

While the step size |AP| in 3D is constant, the step size between adjacent points along 

the epipolar line in a 2D reference view varies because of the projection. However, since 

the projection is a homography (linear projective transformation), the step size is constant 

in homogeneous coordinates. We use this fact to produce a more efficient procedure for 

stepping along the epipolar line. 

Consider the 3D point Po on the ray, as shown in Figure 59. It projects to a point 

po = //Po in a reference image. If we take a step along the ray, we arrive at a 3D point 

Pi = Po + AP. The point pi, the projection of Pi into the reference view, can be written as 

Pi = # P i 

= //(Po + AP) 

= po + HAP 

Thus, we can incrementally update the homogeneous position of the point along the epipo­

lar line. That is, 

//Po, i = 0 
Pi = (35) 

p;_i+//AP, i>0 
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We pre-compute the constant HAP for each ray and store it in a lookup table, as shown in 

the pseudo-code of Figure 57. As we step along the epipolar line, we use Equation 35 to 

compute the homogeneous position of the point pz. With this approach, stepping along an 

epipolar line is very efficient. 

7.2.3 IBPH visibility 

When evaluating the photo-consistency of a 3D point, only pixels from the reference views 

that have visibility of the 3D point should be used. As one steps along the inconsistent 

rays, the visibility of the scene may change. A point that was not visible in a reference 

view before may become visible after the step is taken. Therefore, it is necessary to update 

visibility after stepping. This is achieved by re-executing the visibility procedure described 

in Section 7.1.3. 

Visibility could be updated each time a step is taken along each ray. However, such an 

excessive number of visibility updates results in a slow reconstruction. Instead, our algo­

rithm takes one step along each inconsistent ray, and then updates visibility. As a result, the 

visibility may be out-of-date when evaluating some 3D points. However, such an approach 

is conservative. Pixels from only a subset of the references views that have visibility of 

the point will contribute to the consistency measure. For a monotonic photo-consistency 

function [54], this may result in some 3D points being erroneously classified as consistent, 

while a full visibility calculation would show that they are really inconsistent. Since vis­

ibility is updated periodically, such erroneous classifications are properly classified on a 

later iteration of the algorithm. Such an approach is similar to that used in the GVC-IB 

approach described in Section 3.5.1. 

7.2.4 Sampling 

One way to trade off accuracy for speed in both the IBVH and IBPH algorithms is to 

compute the hull in a multi-resolution fashion. The algorithm is executed not for every pixel 

in the desired view, but rather on a coarse raster. One first computes the hull at sampling 
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Figure 60: Multi-resolution sampling for faster performance. In this example, DX = DY 
= 2. 

locations (jtDX,)>DY) in the desired image, where DX and DY are constants that specify 

the sampling size. The sampling locations are shown as black dots in Figure 60. For 

in-between pixels on the boundary, indicated using black squares in the figure, the hull is 

computed at every pixel so that the edges of the synthesized image are at full resolution. For 

pixels inside the boundary, the closest point of the hull interval (i.e., depth) is interpolated 

from adjacent samples. This approach significantly reduces the number of rays that must 

be processed, resulting in a faster reconstruction. 

Figure 61 shows the effect increasing the sampling size DX and DY for a pinwheel 

photographed from five viewpoints. The leftmost image shows the depth map when DX 

and DY are 1. In this case, we are computing a depth value for every pixel in the desired 

image. While the depth map is crisp, the frame rate is only 0.4 frames per second (FPS). 

Increasing the sampling size has a significant impact on the frame rate. For the rightmost 

image, the DX and DY are both five, and the frame rate is 8.3 FPS. The tradeoff for this 

improvement in frame rate is blurring of the depth map, since the depth values at pixels 

inside the border are interpolated from the sampling locations. Continuing to increase the 

sampling size further blurs the depth map, but has little impact on the frame rate, as more 

pixels become boundary pixels, which are sampled at full resolution. 
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Figure 61: Effect of increasing sampling size DX, DY on the reconstructed depth map and 
frame rate. 

For IBPH, there is an additional sampling parameter, AP. This is the size of the 3D step 

taken along an inconsistent ray. In our application, we set |AP| to a size that results in a 

projected size | Ap| of about one pixel for most reference views. 

7.2.5 Convergence 

The IBPH algorithm steps along the inconsistent rays, stopping at the point at which each 

ray becomes photo-consistent. For convergence, one can require that all rays are photo-

consistent. However, often during a reconstruction, a significant majority of the rays will 

become consistent quickly. Continuing to process a handful of inconsistent rays will yield 

little impact on the overall quality of the reconstruction, but can take a lot of time. In our 

implementation, we have introduced a mechanism to terminate the reconstruction when M 

or less rays are inconsistent, as shown in the pseudo-code of Figure 57. When M is a small 

number, good quality hulls are produced quickly. 

Figure 62 justifies our use of M to terminate the reconstruction before all rays are photo-

consistent. This plot shows ray classifications versus iteration for reconstruction of our Sam 

data set, which consists of a person's head photographed from four viewpoints. The visual 

hull projected to 1333 of the 80 x 60 points on the coarse raster. Rays back-projected 

through these points were analyzed using the IBPH algorithm. Initially, 635 were incon­

sistent and 698 were consistent, as shown in the figure. At each iteration of the algorithm, 

a step was taken along each inconsistent ray. The plot of the number of inconsistent rays is 
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Figure 62: Ray classifications vs. iteration. 

very steep at first, indicating that many rays become consistent quickly. After 60 iterations, 

most rays are consistent. However, it takes an additional 140 iterations for the few remain­

ing inconsistent rays to become consistent. For real-time application, one would rather not 

continue processing these rays, as they will not significantly contribute to the quality of the 

reconstructed model. 

7.2.6 Spatial coherence 

Most scenes exhibit a high degree of spatial coherence, as they consist of surfaces that do 

not radically change their position over a small region of space. Accordingly, many stereo 

vision algorithms impose a regularization criterion that requires the reconstructed geometry 

to be smooth. In a similar vein, we have developed a very simple and efficient smoothing 

technique that we incorporate into our IBPH algorithm. The smoothing also helps mitigate 

reconstruction errors because of noise and specularities. 

When stepping along an inconsistent ray, we keep track of the number of steps we 
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Figure 63: Varying K. From left to right, K = 1, 2, and 5. 

have taken, k. As shown in the pseudo-code of Figure 57, before taking another step, we 

compare k to a local mean computed by averaging the number of steps taken along rays 

in a small neighborhood around the inconsistent ray. We denote this local average k. If 

k>k + K, where K is a small constant, we do not step along the ray. This ensures that the 

number of steps taken along a ray is not significantly different from that of its neighbors, 

resulting in a surface that is spatially coherent. This smoothing approach requires very little 

computation and works naturally with the representation of the hull geometry used in our 

algorithm. 

Figure 63 shows the effect of changing K for a reconstruction of a person's head. Notice 

that there are less abrupt transitions in the depth map in the left-most reconstruction (K = 1) 

compared to the right-most reconstruction (K = 5). 

7.3 Results 

We have implemented the IBPH algorithm on a multi-camera system, shown in Appendix C. 

We have five calibrated Sony DFW-V500 digital cameras. The cameras are synchronized 

so that they take images of the scene at the same instant of time. Each camera is connected 

to an 800 MHz HP Kayak machine. These machines perform background subtraction on 

the incoming frames, segmenting them into foreground and background regions. The reso­

lution of the reference images is 320 x 240 pixels. 
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The segmented reference images are sent over a 100 Mb/s switch to our server ma­

chine, which computes the 3D reconstruction. Our server machine is a dual processor 2 

GHz HP x4000 workstation. Our algorithm has been multi-threaded to take advantage of 

our multi-processor machine. The ith thread reconstructs the scene using a set of images 

corresponding to time r,. In this way, the IBPH algorithm can very naturally be parallelized. 

The bottom row of Figure 52 shows the results of IBPH algorithm in reconstructing a 

pinwheel. We placed the pinwheel in front of the cameras and spun the wheel. Figure 52 

shows the reconstruction at one time instant. For this reconstruction, the sampling rate 

parameters DX and DY were 4, and the resolution of the desired view was 320 x 240. 

The algorithm reconstructed the scene and generated new views at 6 FPS. The IBPH al­

gorithm produces more geometrically accurate results than the IBVH algorithm. However, 

the IBVH algorithm ran at 25 FPS for this data. 

Figure 64 shows a view from a real-time 3D telepresence application we are currently 

developing with HP labs. The 3D model of the person's head and neck is reconstructed 

online using the IBPH algorithm. The reconstructed geometry of the person is then depth 

composited with a 3D model of a conference room. New synthesized views of this com­

posited scene are generated at 7.5 frames per second. The upper image in the figure shows 

the texture-mapped model, while the lower image shows the depth map. 

Figure 65 compares the results produced using the multi-resolution generalized voxel 

coloring (GVC) algorithm presented in Chapter 3. The resolution of the final GVC recon­

structed model is 160 x 200 x 160 voxels. At this resolution, a voxel projects to about one 

pixel in the synthesized view. To make a suitable comparison, we show the results of the 

IBPH algorithm using a lxl sampling size. As expected, the synthesized new views and 

depth maps are similar in quality. The pinwheel's center and petals can be identified in the 

depth maps, and both new views are similarly realistic. 

This IBPH reconstruction was texture-mapped view-dependently; while the GVC re­

construction was texture-mapped view-independently by setting the color of each voxel 
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Figure 64: Using IBPH in a real-time 3D telepresence application. 
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Figure 65: Comparing IBPH (top) to generalized voxel coloring (bottom). Texture-
mapped view view (left) and corresponding depth map (right). 

equal to its mean of the pixels in its projection in all the reference views. This explains 

why some speckles appear in some of the petals of the pinwheel in the GVC reconstruc­

tion. Also, the GVC result shows some breaking apart of the surface along the outer edges 

of the pinwheel, which had some specularity. The IBPH algorithm was implemented to 

preserve edges for this data set. 

The GVC reconstruction took 2 minutes and 47 seconds using one processor on our 

dual processor 2 GHz machine. Even if we multi-threaded GVC to take advantage of the 

second processor in our machine, it would still run well over an order of magnitude slower 

than IBPH for a lxl sampling size. More detailed comparisons between GVC and IBPH 

will be presented in Chapter 8. 

In Chapter 8 we will compare IBPH to other reconstruction approaches presented in 

this thesis. 
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7.4 Summary 

In this chapter we have presented our image-based photo hulls algorithm that efficiently 

reconstructs views of the photo hull. Our algorithm extends the image-based visual hulls 

algorithm by utilizing the color information in the reference views to further constrain the 

3D space containing scene surfaces. The more accurate geometry reconstructed by our 

technique often results in better new views synthesized of the scene. 

Our IBPH algorithm's efficiency comes from the following sources. First, it computes 

the photo hull starting from the visual hull. Using the IBVH algorithm, we are able to 

quickly find the visual hull, efficiently removing a large part of the 3D space that does not 

contain the surfaces being reconstructed. Second, our IBPH algorithm computes only that 

portion of the photo hull that is visible to the virtual viewpoint. Since this is the viewpoint 

that is being synthesized, it is not necessary to reconstruct that part of the 3D scene that is 

not visible in the rendered view. Finally, we have demonstrated the effect of increasing the 

sampling size DX and DY to tradeoff accuracy for speed. 

Our method inherits all the limitations of algorithms that reconstruct the photo hull. 

Scene surfaces must be sufficiently colorful in order to be properly reconstructed. The 

photo-consistency measure we use assumes a Lambertian scene. Reconstruction of sig­

nificantly non-Lambertian scenes requires a more sophisticated approach for determining 

photo-consistency. We should note that visual hull reconstruction algorithms like IBVH do 

not have a problem with non-Lambertian scenes, as they do not perform color matching. 

The depth maps that are reconstructed with the IBPH algorithm, while geometrically more 

accurate, can be noisier that those of the IBVH algorithm. Finally, the IBPH algorithm is 

significantly slower that the IBVH algorithm. 

There are several possible future directions for this research. The photo-consistency 

measure presented here does not take into account surface orientation or the distance of 

the reference view from the surface. Correlation-based matching similar to [34] might 

improve reconstruction quality. Additionally, we do not take into consideration temporal 
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coherence. Motion constraints could be imposed to improve efficiency and reconstruction 

quality. Finally, an adaptive approach to determining |AP|, the step size taken along each 

ray might improve the efficiency of our algorithm. When the photo-consistency measure is 

very inconsistent, one might take larger steps. As the consistency improves, one could take 

smaller steps until the ray becomes photo-consistent. 
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CHAPTER VIII 

EVALUATION 

This thesis has introduced a variety of methods that reconstruct a 3D scene using multiple 

photographs. The reconstructed geometry is then used to synthesize views of the scene 

from new viewpoints. In this chapter, we evaluate the generalized voxel coloring (GVC) 

algorithm of Chapter 3, the volumetric optimization approach of Chapter 4, the level set 

method of Chapter 6, and the image-based photo hulls (IBPH) algorithm of Chapter 7 by 

analyzing the quality of reconstructions produced by each approach. We also compare 

these methods to the visual hull and the image-based visual hull. 

A common problem when working with this class of algorithms is how one should eval­

uate different 3D scene reconstruction methods. That is, how can one objectively quantify 

the quality of a 3D scene reconstruction? 

An intuitive approach is to use 3D ground truth information. When there is known 

3D geometry, one can compute a 3D spatial error measure that characterizes the mismatch 

between actual and reconstructed geometry. We perform such an analysis in Section 8.1. 

Since our application is new view synthesis, such a 3D spatial error measure can po­

tentially be an inadequate indicator for how well a reconstructed scene will produce new 

views. An alternative evaluation approach leaves one image out during reconstruction. For 

example, if there are N reference views, the reconstruction is performed using N — 1 of the 

reference views. The reconstructed model is then projected to the reference view that was 

left out, forming an image. This projected image is then compared with the reference view 

that was left out. We perform such an analysis in Section 8.2. 
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8.1 3D error evaluation 

In this section, we reconstruct a scene of known 3D geometry. We then compute a 3D spa­

tial error that measures the difference between the reconstructed geometry and the known 

scene geometry. 

Using computer graphics methods, it is easy to produce synthetic images of a known 

3D scene. One simply specifies the geometry and color of the scene in 3D space, and then 

renders the scene to a camera viewpoint, forming a reference view. For such a synthetic 

scene, the cameras are perfectly calibrated and the scene can be made perfectly Lambertian. 

For simplicity, we specified a plane located on the xy axis. We call this data set Syn-

thPlane. The plane extends six units in the x and y dimensions each, and has a different 

randomly assigned color in each 1 unit x 1 unit square. The plane was photographed from 

24 different viewpoints, each with a radius r = 10.5 units from the center of the plane. 

Eight viewpoints were taken at 45° intervals of azimuth angle 6 at elevation angles of 

(j) = 15°, 40°, and 65°. Figure 66 shows the camera placements, as well as a bounding 

box containing the plane. Figure 67 shows three of the reference views for 0 = 0 ° and 

(j) — 15°,40°, and 65° degrees. These images were generated to have a size of 640 x 480 

pixels. 

While a multi-colored plane is not the most exciting surface to reconstruct, it is useful 

and interesting for several reasons. First, it is quite simple to compare reconstructed ge­

ometry to that of a plane; we will describe our method below. Second, while the planar 

geometry is simple, it is effective for comparing different reconstruction algorithms since 

the reconstructed geometry exhibits the characteristics present in reconstructions of more 

geometrically complex surfaces. Thus, understanding how well these algorithms recon­

struct a plane offers important insight into more complex surfaces. Finally, a plane is easy 

to model and render, so generating synthetic reference views is a simple endeavor. 
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Figure 66: Camera placements and reconstruction volume for the SynthPlane scene. 

Figure 67: Three of 24 reference views for the SynthPlane scene, for <j> = 15°,40°, and 
65°, left to right. 
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Figure 68: Computing the volume under the reconstructed surface for (a) continuous 
h(x,y) and (b) discrete h(x,y). In (b), the volume of a box-shaped region under a sam­
ple in of h(x,y) is simply h(x,y)AxAy. 

8.1.1 3D error metric 

Our 3D error metric E^D measures the volume of space that exists between the recon­

structed surface and true surface located on the z = 0 plane, as illustrated in (a) of Figure 68. 

This volume can be determined by solving the double integral, 

EID = j j \h(x,y)\dxdy, (36) 

where h(x,y) is the height of reconstructed surface. We take the absolute value of h(x,y) to 

ensure that all contributions to the 3D error are positive. 

We generate h(x,y) from the reconstructed surface by storing the largest z value for all 

surface voxels that are indexed by x and y. We call h{x,y) the height field of the recon­

struction. Since the height field is generated by a set of voxels, it is piece-wise planar, as 

shown in (b) of Figure 68. Therefore, without approximation, we can replace the integrals 

of Equation 36 with summations, yielding 

M M 

E3D= X £ \h(x,y)\AxAy, 
x=ly=\ 

(37) 

where Ax = Ay is the size of a voxel in one dimension, ./V is the number of voxels along the 

x dimension, and M is the number of voxels along the y dimension of the voxel space. 
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If the surface does not exist at a point (x,y), the height field is undefined. This situation 

occurs at places, such as holes, where the reconstructed surface has been incorrectly carved 

away. For the 3D error, we set the height field to zero at such a point. Thus, E^D will not 

penalize holes that exist in the model. However, the new view synthesis error measure we 

use in Section 8.2 will penalize holes in the surface. 

In the experiments that follow, all reconstructions were performed on a dual processor 

2 GHz machine with 1 GB of shared memory. All algorithms, with the exception of image-

based visual hulls and image-based photo hulls ran on one processor. 

For each approach, we reconstruct the scene three times. The first reconstruction is 

performed using 8 (0 = 15°) reference views. These correspond to the highest 8 camera 

placements in Figure 66. The second reconstruction is performed using 16 (0 = 15°,40°) 

reference views. These are the upper 16 camera placements in Figure 66. The third recon­

struction is performed using all 24 (0 = 15°,40°, and 65°) reference views. Performing 

these three reconstructions shows the effect of reconstructing the scene using more oblique 

views. 

8.1.2 Visual hull reconstruction 

The SynthPlane scene was reconstructed in a 160 x 160 x 140 voxel space using a voxel-

based visual hull algorithm. At this resolution, a voxel projects to just a few pixels in each 

reference view. 

The top row of Figure 70 displays the height field for the three visual hull reconstruc­

tions. As demonstrated in the left-most image, the visual hull reconstructed using just top 

view photographs results in a very poor surface. The reconstructed model has a pyramidal 

shape, with a maximum value of 5.3 units at the apex. Clearly, this reconstruction deviates 

significantly from a plane. We compute E^p using Equation 37, which yields a value of 67.2 

units3. The middle image of the top row of Figure 70 shows the visual hull reconstruction 

achieved using 16 reference views. The reconstructed model still has a pyramidal shape, 
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however, the apex of the pyramid is much lower, at a height of 2.45 units. The 3D error 

for this reconstruction is 30.4 units3. Finally, the right image of the top row of Figure 70 

shows the reconstruction attained using all 24 reference views. This reconstructed model 

still has a pyramidal shape, but more closely represents a plane. The apex of the pyramid 

is located at a height of 1.05 units, and the 3D error for this reconstruction is 13.3 units3. 

Note that in the figure, the color map ranges from 0 to 6 for the visual hull reconstructions. 

We report the time required to perform a reconstruction using a min:sec format. The 

8, 16, and 24 reference view reconstructions required a time of 8:28, 9:12, and 11:26, re­

spectively. When one evaluates a voxel to determine if it is part of the visual hull, one must 

project it into all reference views. Thus, the execution time of the algorithm is proportional 

to the number of reference views, as observed in these timing results. The visual hull was 

computed using unoptimized code; therefore these timing results should not be taken too 

seriously. We tabulate the error and timing results in Table 7. 

As more oblique views are used, the visual hull reconstruction more closely approxi­

mates the true scene. However, the visual hull geometry significantly deviates from that of 

the true scene in this experiment. 

We will show new views generated from these reconstructions in Section 8.2. 

8.1.3 GVC reconstruction 

Next, we reconstructed the SynthPlane data set using the generalized voxel coloring algo­

rithm. Again, we performed the reconstruction using 8, 16, and 24 reference views as done 

for the visual hull reconstruction. However, in this experiment we reconstructed the scene 

in a single resolution 160 x 160 x 45 voxel space. We lowered the number of voxels in the 

z dimension to avoid processing large regions of empty space that will not represent the 

photo hull. 

The second row of Figure 70 displays the height field for the three GVC reconstructions. 

Note that color map the figure ranges from z = 0 to z = 2.5, which is less than half the range 
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of the visual hull plots in the top row of the figure. We did this so that more surface detail 

of the reconstruction is apparent. The three images show the cusping effect discussed in 

Section 4.1.1. These are wedge-shaped protrusions on the reconstructed surface that result 

from homogeneously colored regions on the true surface. Any point on the cusp projects to 

a photo-consistent color in the reference views. As reference views that are more oblique 

to the plane are included, the height of the cusps diminishes. The reconstruction attained 

using all 24 reference views is quite close to planar. 

We computed E^D for the three GVC reconstructions, which yielded 21.4 units3, 6.13 

units3, and 2.17 units3, for reconstructions using 8, 16, and 24 reference views, respectively. 

The maximum value of the height map was 1.7 units, 0.55 units, and 0.25 units, respec­

tively, for the three reconstructions. At this resolution, the voxel size was 0.05 units. Note 

that both the 3D error E^D a n d m e maximum height value are significantly decreased in the 

GVC reconstructions compared to the visual hull reconstructions for the same number of 

reference views. 

In Figure 69 we show a close-up of the height map, and one of the reference views from 

a similar viewpoint. Notice how the colors that are similar to each other, like the two adja­

cent cyan colors, form a plateau in the height map. This is because the photo-consistency 

measure could not disambiguate the two colors. Colors that the photo-consistency measure 

finds to be different have valleys along the edges where they touch. 

The 8, 16, and 24 reference view reconstructions required a time of 5:24, 12:03, and 

16:27, respectively. Like the visual hull reconstruction algorithm, the time required for a 

reconstruction to complete is proportional to the number of reference views. We tabulate 

the error and timing results in Table 7. 
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Figure 69: Zooming in on the GVC height map. Similar colors form plateaus in the depth 
map, while different colors have valleys along the edges where they touch. 
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8.1.4 Volumetric optimization 

We executed the volumetric optimization algorithm on the GVC reconstructions of the 

previous subsection. Recall that the volumetric optimization algorithm refines the recon­

structed surface by minimizing reprojection error. For each experiment, we ran the greedy 

algorithm, first doing a pass where we carved voxels, and then a pass where we added vox­

els. During both passes, only modifications to the surface that decreased the reprojection 

error were accepted. 

Table 6 tabulates the experimental results from the volumetric optimization of the three 

reconstructions. Volumetric optimization decreased the reprojection error by about 34% on 

average for the three reconstructions. Reprojection error is more closely related to the new 

view synthesis error measure we use in Section 8.2 than the 3D error we compute in this 

section. 

The 3D error for the GVC reconstruction was 21.4, 6.4, and 2.2 units3, for the re­

constructions attained using 8, 16, and 24 reference views, respectively. After volumetric 
-I 

optimization, the 3D error of the optimized model was 20.3, 6.1, and 2.1 units , as shown 

in Table 6. Thus, the improvement in 3D error, about 5% on average for the three recon­

structions, was not as dramatic as the change in reprojection error. However, the optimized 

surface more closely resembled the true planar surface, since the 3D error decreased for 

all three reconstructions. Also, the optimized surface has few floaters for the reconstruc­

tion using 8 reference views, unlike the GVC reconstruction. The third row of Figure 70 

displays the height fields for the three optimized reconstructions. 

The 8, 16, and 24 reference view volumetric optimizations required times of 35:28, 

32:07, and 51:19, respectively. The time required for the volumetric optimization to com­

plete depends primarily on how close the unoptimized surface is to a local minimum in the 

reprojection error. Therefore, the execution time may increase or decrease with the number 

of reference views. We tabulate the error and timing results in Table 7. 
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Views 8 16 24 

Time (minrsec) 35:28 32:07 51:19 
Number of voxels carved 10324 9011 8038 
Number of voxels added 670 613 212 

REstart 4204 2681 3027 

REend 2648 1788 2083 
Improvement 37.0 % 33.3 % 31.1 % 
E3D (units3) 20.29 6.13 2.07 

Max. height (units) 1.7 0.55 0.25 

Table 6: Volumetric optimization of the SynthPlane data set. 

8.1.5 Level set reconstruction 

Next, we reconstructed the SynthPlane data set using the level set algorithm. Our multi-

resolution approach started with a 40 x 40 x 12 voxel space, and allowed the algorithm pass 

through two resolution increases, resulting in a 160 x 160 x 48 voxel space. 

We reconstructed the scene using 8, 16, and 24 reference views as done for previous 

algorithms. For each reconstruction we set the constants a® and a\ both to 0.5 so that the 

normal flow and the curvature flow contributed equally to the evolution. The incorporation 

of the curvature flow term resulted in smoothing of the model, as seen in height fields 

shown in the fourth row of Figure 70. The cusps located at each homogeneously colored 

square have a more rounded shape compared with the other reconstruction methods. This 

smoothed surface more closely resembles a plane. Computation of the 3D error resulted in 

values of 17.4, 5.46, and 1.24 units3, for the 8, 16, and 24 reference view reconstructions, 

respectively. These 3D error values are the lowest of all algorithms evaluated in this thesis. 

However, the reconstructed model had some carved away edges that were not penalized in 

our 3D error metric. However, these carved edges will be penalized in our error measure 

described in Section 8.2. 

While this approach produced the best results in terms of 3D error, it generally required 

the most to execute. The 8, 16, and 24 reference view reconstructions required times of 

41:51, 46:06, and 51:17, respectively. 
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8.1.6 Image-based photo hulls reconstruction 

Next, we ran the image-based visual hulls and image-based photo hulls algorithms on the 

SynthPlane data set. Recall that these algorithms view-dependently reconstruct the scene, 

producing the visible portion of the hull as seen by a virtual camera placed in the scene. We 

placed the virtual camera directly above the plane, for an azimuth angle 0=0° , and a radius 

10.5 units up the z axis, shown as the orange camera in Figure 72. Using a sampling lattice 

of 4 x 4, we generated a synthetic view with resolution 640 x 480 pixels. The algorithm 

produced a layered-depth image at the virtual camera position. We then converted the 

closest point on the hull into a 3D height map h(x,y) for analysis. 

The IBVH algorithm produced results very similar in quality to those of the visual hull 

reported in Section 8.1.2, but ran much more quickly. For the 8, 16, and 24 reference view 

reconstructions, 3D errors of 64.7, 30.0, and 17.7 units3 were attained in 0.217, 0.377, and 

1.16 seconds, respectively. Note that the images of the SynthPlane data set have a black 

background, and are therefore pre-segmented into foreground and background. For photo­

graphic data sets, the background segmentation would require additional computation. We 

do not show results attained using the IBVH algorithm in Figure 70 because they are nearly 

identical to the visual hull shown in the top row of the figure. However, we do tabulate the 

results in Table 7. 

Finally, we performed reconstructions using the image-based photo hulls algorithm. 

For the 8, 16, and 24 reference view reconstructions, 3D errors of 17.7, 7.65, and 5.43 

units3 were attained. The 3D surface using 8 reference views compared quite well to other 

methods like GVC. However, the surfaces generated using 16 and 32 reference views were 

significantly noisier than those produced using the other methods, as seen in bottom row 

of Figure 70. In particular, notice that there is a significant floater in the center of the of 

the height field for the middle image. This noise in the height fields results in a higher 3D 

error. 
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The inaccuracy of the IBPH height fields is hardly surprising, since the IBPH algo­

rithm sacrifices quality for speed. By reconstructing the scene on a coarse 4 x 4 raster, 

the algorithm produces a depth map that is lower resolution and less accurate. Also, when 

computing photo-consistency, IBPH uses a small, fixed size footprint in each reference 

view that is independent of the location of the reference view relative to the surface being 

reconstructed. This approximation to the projection of a voxel is imprecise. However, it is 

simple to implement and quite fast. 

While the IBPH algorithm produces somewhat imprecise reconstructions, it does so 

orders of magnitude faster than competing space carving approaches. The 8, 16, and 24 

reference view reconstructions required times of 6.21, 5.55, and 12.3 seconds, respectively. 

Recall that the IBPH algorithm computes the photo hull starting from the visual hull. 

As seen in the top row of Figure 70, the visual hull reconstructed using 8 reference views 

has a pyramidal shape that is significantly non-planar. Therefore, the IBPH algorithm must 

do a lot of work stepping along inconsistent rays to reach the photo hull. The visual hull 

computed using 16 reference views is much closer to a planar surface, which saves the 

IBPH algorithm a lot of work. For this reason, the algorithm execution time actually de­

creases when going from 8 to 16 reference views. The time increases when going from 

16 to 24 reference views for two reasons. First, in general the runtime of the algorithm 

is proportional to the number of reference views, since a point on a ray must be projected 

to all reference views to determine photo-consistency. Second, the multi-threaded version 

of the IBPH algorithm did not fit into main memory when processing 24 reference views. 

Therefore, we ran the algorithm only using one processor, which required approximately 

half the memory. As a result, the reconstruction was roughly two times slower that it would 

have been had it ran on two processors. 
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8.1.7 Summary of 3D error analysis 

In this section we have performed a 3D error analysis of most of the reconstruction ap­

proaches developed in this thesis. The results are summarized in Figure 70 and Table 7. 

These experiments reconstructed a simple scene of known 3D geometry. 

The results show that the level set reconstruction method performed the best in terms 

of most accurately reconstructing the geometry. During reconstruction, this algorithm 

smoothes the surface. This helps mitigate the cusps in the reconstructed model. As a 

result, the algorithm produces results that have the lowest 3D error. Despite these good 

results, the level set approach does have some detnments. It is sensitive to its parameters -

the thresholds used in the photo-consistency measure, the value of Co, and X, the number of 

iterations that serve in the stopping criterion for the algorithm. Furthermore, we will show 

in Section 8.2 that this method carved away some photo-consistent edges of the plane. 

By taking advantage of the color information in the reference views, GVC produces 

better results than the visual hull. In terms of 3D error, the volumetrically optimized surface 

is even more accurate than the GVC reconstruction, but only by a slim margin. The benefit 

one gets by executing this algorithm might not be worth the amount of time required for it to 

run. Finally, the IBPH algorithm produces a lower quality surface, but orders of magnitude 

faster than GVC, volumetric optimization, and the level set approach. Thus, IBPH is best 

suited to time-critical applications. 

Figure 71 plots the 3D error vs. time for all reconstructions of the SynthPlane data set. 

Some general observations can be made from the figure. First, as more reference views 

are used, the 3D error decreases. Second, the IBVH and IBPH algorithms are significantly 

faster than the other approaches. For a given number of images, the level set method 

achieves a reconstruction with the lowest 3D error for this data set. Finally, the visual hull 

geometry, reconstructed from silhouettes, is much less accurate than the geometry produced 

by methods that utilize the color information in the photographs. 
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Figure 70: Reconstructions of the SynthPlane data set. From left to right: using 8, 16, and 
24 reference views. From top to bottom: visual hull, GVC, volumetric optimization, level 
set method, and image-based photo hulls. See text for analysis. 
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Approach No. ref. views E-iD (units3) Max. height (units) Time (m:s) 

Visual Hull 8 67.2 5.30 08:28 
GVC 8 21.4 1.70 05:24 

Volumetric optimization 8 20.3 1.70 35:28 
Level sets 8 17.4 1.13 41:51 

IBVH 8 64.7 5.32 00:0.217 
IBPH 8 17.7 1.63 _j 00:6.21 

Visual Hull 16 30.4 2.45 09:12 
GVC 16 6.41 0.55 12:03 

Volumetric optimization 16 6.13 0.55 32:07 
Level sets 16 5.46 0.47 46:06 

IBVH 16 30.0 2.47 00:0.377 
IBPH 16 7.65 2.42 00:5.55 

Visual Hull 24 13.3 1.05 11:26 
GVC 24 2.17 0.25 16:27 

Volumetric optimization 24 2.08 0.25 51:19 
Level sets 24 1.24 0.125 51:17 

IBVH 24 12.5 1.05 00:1.16 
IBPH 24 5.43 1.05 00:12.3 

Table 7: 3D error analysis results. 
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3D Error vs. Time 
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Figure 71: 3D error vs. time, SynthPlane scene. Note that time is plotted on a logarithmic 
scale. The figure shows results using 8, 16, and 24 reference views for the image-based 
visual hulls (IBVH), image-based photo hulls (IBPH), generalized voxel coloring (GVC), 
visual hull (VH), volumetric optimization (VO), and level set (LS) reconstruction algo­
rithms. 
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8.2 New view synthesis evaluation 

The previous section computed the 3D error between the true and reconstructed surface ge­

ometry for approaches described in this thesis. The 3D error is a useful characterization of 

the reconstruction algorithms, and is especially relevant if the application of the algorithm 

requires a geometrically accurate 3D model. 

However, the 3D error is not necessarily indicative of how well a reconstruction will 

synthesize new views. For some synthesized viewpoints, errors in the 3D geometry will 

not generate any objectionable artifacts in the synthesized view. Therefore, an alternate 

measure for evaluating a reconstructed model's ability to synthesize new views is needed. 

We describe such a method in this section. 

8.2.1 2D mean square error 

After performing a 3D reconstruction, we can render the reconstructed model to generate 

a synthetic image R at a new viewpoint V. We can then compare the pixels in R to a 

photograph P, taken at location V, that is not a viewpoint for one of the reference views 

used to reconstruct the scene. 

This 2D error measures the difference between R and P. Since R and P are color images, 

they have pixels with r, g, and b components. Let the color components in the ith pixel of 

R be referenced as R(i).r, R(i).g, and R(i).b, respectively. Similarly, we denote the r, g, 

and b components of the ith pixel of P as P(i).r, P(i).g, and P(i).b. We then define the new 

view synthesis error to be the mean square error between R and P, 

(P(i).r-R(i).r)2 + 

Z& (P(i).g-R(i).g)2 + 

(P(i).b-R(i).bf 

where M is the number of pixels used in the comparison. 

This error metric is similar to the reprojection error of Chapter 4 but differs in several 
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Figure 72: The camera placement used for new view synthesis evaluation is shown high­
lighted in orange. The camera placements of the reference views are shown in gray. 

important ways. First, the reprojection error is computed over all reference views. In 

contrast, E2D is computed at one view - the view being synthesized. Second, the photograph 

P used in E2D is not used to produce the reconstruction. 

We generated an image P of the SynthPlane scene by rendering the multi-colored plane 

to a camera location V directly above the plane, for an elevation angle 0 = 0°, and a radius 

10.5 units up the z axis. The camera placement is shown in orange in Figure 72. This 

image P, shown in Figure 73, is the image we will attempt to synthesize by rendering the 

reconstructions previously generated. 

8.2.2 Visual hull 

We rendered the voxel-based visual hull to synthesize a new view at V. The results are 

shown in Figure 74. The left image of the first row of the figure shows the synthesized 

view achieved using the 8 reference view reconstruction. The synthesized view is quite 
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Figure 73: An image formed by rendering the true scene to viewpoint V. In the experi­
ments that follow, we will synthesize this viewpoint by rendering 3D models produced by 
the different reconstruction algorithms. 
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poor, since the pyramidal 3D geometry of the visual hull significantly deviates from true 

planar geometry of the scene. Each voxel is assigned a color equal to the mean of the pixels 

in its projection in all reference views that have visibility of the voxel. Due to the inaccurate 

geometry, voxels project to incorrect pixels in the images. These pixels are then averaged 

together, causing many of the colors bleed together. 

The right images of the figure show square error as a grayscale image. A darker color 

indicates a larger error. This image was produced by comparing the image on the left with 

the image in Figure 73 using Equation 38. 

The middle and bottom rows show the view synthesized using the reconstruction achieved 

with 16 and 24 reference views, respectively. Adding more reference views produces a 

more accurate new synthesized view. However, even for the reconstruction achieved using 

24 reference views, the inaccurate geometry of the visual hull still results in significant 

mean squared error. From top to bottom, the mean square error was computed to be 4889, 

2484, and 1299. Table 8 summarizes these results. 

8.2.3 Generalized voxel coloring 

Next, we rendered the GVC reconstructions to synthesize new views at V. The results are 

shown in Figure 75. From top to bottom, the rows indicate the new views synthesized using 

the reconstructions achieved using 8, 16, and 24 reference views. Note that these synthe­

sized images exhibit fewer artifacts than those produced using the visual hull. A number 

of floaters are present in the 8 reference view reconstruction. They appear a speckles in the 

new synthesized view, as seen in the first row of the figure. The reconstructions achieved 

using more reference views better synthesize the new view, as shown in the figure. From 

top to bottom, the mean square error for these three synthesized views was computed to be 

596.3, 405.5, and 360.2, for the 8, 16, and 24 reference view reconstructions, respectively. 

Table 8 summarizes these results. 
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Figure 74: New view synthesis results for the visual hull algorithm. From top to bot­
tom: using 8, 16, and 24 reference views. The synthesized views are on the left, and the 
corresponding squared error images are on the right. 
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Figure 75: New view synthesis results for the GVC algorithm. From top to bottom: using 
8, 16, and 24 reference views. The synthesized views are on the left, and the corresponding 
squared error images are on the right. 
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8.2.4 Volumetric optimization 

We synthesized views using the results of the volumetric optimization. The new views and 

the squared error images are shown in Figure 76. The volumetric optimization approach 

produced synthetic views that had the lowest mean squared error of all the reconstruction 

algorithms analyzed. For the three reconstructions using 8, 16, and 24 reference views, 

the mean square error E2D was computed to be 428.8, 329.1, and 300.5. This volumetric 

optimization improves upon the results of the GVC algorithm by removing many floaters 

and thinning the surface without forming holes in the model. The improvement in E2D that 

resulted from optimizing the surface was 28.1%, 18.8%, and 16.6%, respectively. Table 8 

summarizes these results. 

8.2.5 Level set method 

Figure 76 shows the new view synthesis results attained by rendering the polygonal surface 

reconstructed by the level set approach. While in Section 8.1 we showed that the smooth­

ing property of this approach helps mitigate the effect of floaters and cusps, it has the 

detriment that it can penalize high curvature parts of the object being reconstructed. As a 

consequence, the evolving surface can pass through photo-consistent edges and corners that 

project to different colors in the reference views. This artifact is observable in the recon­

structions in the figure, as the edges of the plane are not properly reconstructed. Since the 

mean square error E2D penalizes holes in the model, the level set method did not fare well 

in this analysis. For the 8, 16, and 24 view reconstructions, EOD was computed to be 1568, 

722, and 1854, respectively. The reprojection error increased when using all 24 reference 

views, since when using more images, some of the edges looked less photo-consistent. This 

allowed the evolving surface to propagate more readily through photo-consistent regions. 

Table 8 summarizes these results. 
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Figure 76: New view synthesis results for the volumetric optimization algorithm. From 
top to bottom: using 8, 16, and 24 reference views. The synthesized views are on the left, 
and the corresponding squared error images are on the right. 
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Figure 77: New view synthesis results for the level set algorithm. From top to bottom: 
using 8, 16, and 24 reference views. The synthesized views are on the left, and the corre­
sponding squared error images are on the right. 
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8.2.6 Image-based visual hulls 

Next, we performed new view synthesis using the image-based visual hulls algorithm. 

While the IBVH algorithm reconstructs the visual hull, just like the voxel-based visual hull 

reconstruction algorithm, it texture maps the reconstructed geometry using view-dependent 

texture mapping. Thus, the new synthesized views produced by the IBVH algorithm are 

quite different from the view-independent texturing of the voxel-based visual hull in Sec­

tion 8.2.2, even though both have very similar geometry. 

Figure 78 shows the results of synthesizing the viewpoint V using the IBVH algorithm 

with 8, 16, and 24 reference views. The poor results are a consequence of the inaccurate 

geometry of the visual hull. Compared with the results from the voxel-based visual hull of 

Figure 74, the view-dependent texture mapping (VDTM) by the IBVH algorithm produces 

less blurry images. 

Recall that the VTDM approach assigns a color to a pixel based on the reference view 

that has the best viewpoint of the reconstructed geometry being colored. By not averaging 

colors across the reference views, blurring is avoided, but when the geometry is inaccurate, 

new synthesized views lack photo-realism. As more reference views are used, the image-

based visual hull geometry improves, but artifacts still remain, as seen in Figure 78. For 

the 8,16, and 24 view reconstructions, the 2D mean squared error E2D was computed to be 

6770, 3776, and 1778, respectively. Table 8 summarizes these results. 

8.2.7 Image-based photo hulls 

Finally, we synthesized new views at viewpoint V using the image-based photo hulls al­

gorithm. The results appear in Figure 79. For the 8, 16, and 24 view reconstructions, 

the 2D mean squared error E2D was computed to be 522.3, 773.3, and 807.1, respectively. 

Contrary to intuition, this error increased as more reference views were used. We demon­

strated in Section 8.1.6 that using more reference views with the IBPH algorithm results 

in a more geometrically accurate reconstruction. However, the view-dependent texture 
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Figure 78: New view synthesis results for the IBVH algorithm. From top to bottom: using 
8, 16, and 24 reference views. The synthesized views are on the left, and the corresponding 
squared error images are on the right. 
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mapping strategy becomes problematic when many reference views are used, since the ref­

erence view being used to texture-map a local point on the surface changes quickly along 

the surface. In the presence of inaccurate geometry, this results in small miscolorings, espe­

cially on the edges between two different colors as seen in Figure 79. Table 8 summarizes 

these results. 

8.2.8 Summary of 2D mean square error analysis 

In this section we performed a 2D mean square error analysis that evaluates a method's 

ability to synthesize new views. The mean square error computes the difference between a 

synthesized image R and a photograph P generated at the same viewpoint as R but was not 

used to reconstruct the scene. The results are tabulated in Table 8, and Figure 80 plots the 

mean square error (MSE) as a function of time for the various reconstructions. 

For the SynthPlane data set, the volumetric optimization technique had the lowest mean 

square error for all the methods evaluated. It produced synthetic images with the lowest 

mean square error for the three reconstructions using 8, 16, and 24 reference views. While 

this approach produced the best results, it did require more time to run than any of the other 

methods except for the level set algorithm. If the desired application is new view synthesis, 

the cost of volumetrically optimizing the surface may well be worth the amount of time it 

takes for the algorithm to execute. 

As with the 3D error, the methods like GVC that utilize the color information of the 

reference views produce better results than those that reconstruct the visual hull. The IBVH 

and IBPH methods again are orders of magnitude faster than competing methods, as seen in 

Figure 80, and are best suited to realtime applications. The level set method does encounter 

problems with surfaces that have sharp corners and edges, especially those that project to 

photo-consistent, but different colors in the reference views. Finally, we note that the view-

dependent texture mapping approach does not perform well with a large (greater than 10) 

number of reference views. 
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Figure 79: New view synthesis results for the IBPH algorithm. From top to bottom: using 
8, 16, and 24 reference views. The synthesized views are on the left, and the corresponding 
squared error images are on the right. 
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Mean Square Error vs. Time 
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Figure 80: Mean square error vs. time, SynthPlane scene. Note that time is plotted on 
a logarithmic scale. The figure shows results using 8, 16, and 24 reference views for the 
image-based visual hulls (IBVH), image-based photo hulls (IBPH), generalized voxel col­
oring (GVC), visual hull (VH), volumetric optimization (VO), and level set (LS) recon­
struction algorithms. 
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Approach No. ref. views EID Time (m:s) 

Visual Hull 8 4889 08:28 
GVC 8 596.3 05:24 

Volumetric optimization 8 428.8 35:28 
Level sets 8 1568 41:51 

IBVH 8 6770 00:0.217 
IBPH 8 522.3 00:6.21 

Visual Hull 16 2484 09:12 
GVC 16 405.5 12:03 

Volumetric optimization 16 329.1 32:07 
Level sets 16 722 46:06 

IBVH 16 3776 00:0.377 
IBPH 16 773.3 00:5.55 

Visual Hull 24 1299 11:26 
GVC 24 360.2 16:27 

Volumetric optimization 24 300.5 51:19 
Level sets 24 1854 51:17 

IBVH 24 1778 00:1.16 
IBPH 24 807.1 00:12.3 

Table 8: Mean square error analysis results. 

159 



CHAPTER IX 

CONCLUSION 

In this thesis we have presented novel 3D scene reconstruction methods for new view syn­

thesis. The goal of these methods is to compute the photo hull, which is the tightest possible 

bound on the shape of the true scene that can be inferred from N photographs. Rendering 

the photo hull (or the visible part of it in IBPH) often produces photo-realistic new views 

of the scene. 

9.1 Review of contributions 

The generalized voxel coloring algorithm presented in Chapter 3 introduces two new meth­

ods for computing visibility during a voxel-based reconstruction. The GVC-IB algorithm 

uses less memory, while the GVC-LDI algorithm always uses up-to-date visibility and 

minimizes photo-consistency checks. GVC was the first space carving approach to solve 

the visibility problem exactly, which has been shown to produce superior results [25, 114] 

compared to algorithms that approximate scene visibility. The GVC-LDI algorithm was 

also the first 3D scene reconstruction approach to use layered depth images. 

In Chapter 4 we presented various post-processing methods to refine space carving re­

constructions. Simple morphological filtering was demonstrated to improve model fidelity. 

We then introduced a volumetric optimization approach that minimizes reprojection error. 

This approach was the first space carving method to carve the model below the global 

threshold, and to evaluate modifications to the surface on a per scene, rather than per voxel 

basis. 

We introduced a volumetric warping algorithm in Chapter 5 that warps the voxel space 
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so that infinitely large scene can be modeled with a finite number of voxels. We demon­

strated that such a technique is useful for reconstructing surfaces very far away from the 

cameras, in addition to a foreground scene. 

The level set approach to space carving discussed in Chapter 6 represented the sur­

face implicitly in the voxel space. In this framework, surface smoothing can naturally be 

incorporated into the 3D reconstruction instead of applied as a post-processing step. 

The image-based photo hulls algorithm of Chapter 7 adopted a view-dependent ap­

proach to reconstructing only the portion of the computed photo hull that is visible to a 

virtual camera being moved about the scene. This was the first algorithm to demonstrate 

interactive reconstruction and view synthesis of the computed photo hull for nontrivial res­

olutions. 

Additionally, the multi-view triangulation approach and analysis in Appendix B is a 

novel contribution in this thesis. 

9.2 Future work 

Significant progress on the problem of 3D reconstruction from multiple views has been 

made. Despite these developments, many techniques fall somewhat short of their ultimate 

goal of generating photo-realistic new views of arbitrary scenes. 

One area of future work is the reconstruction of non-Lambertian scenes. The Lamber-

tian assumption commonly made in reconstruction algorithms simplifies the problem at the 

expense of limiting the class of scenes that can be reconstructed. Clearly though, real sur­

faces interact with light in complex ways, producing view-dependent effects such as spec-

ularities and reflections. Thus, more sophisticated modeling of the bidirectional reflectance 

distribution function will be required to improve the flexibility of existing reconstruction 

algorithms. Some work on this problem has started to emerge in the literature [15, 23, 64]. 

Future work is needed to fully automate scene reconstruction. Perhaps the most signifi­

cant obstacle in achieving this goal is camera calibration. For the space carving algorithms 
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described in this thesis, one calibrates the cameras in an often tedious pre-process before 

reconstruction. Self-calibration [85, 133] methods have appeared in the literature, but have 

been implemented in short baseline approaches that use a single camera moving about the 

scene. Future research is needed for accurate, wide baseline multi-view self-calibration. 

Reconstruction from multi-view video poses new research opportunities and applica­

tions. Incorporating motion constraints into the reconstruction algorithm can improve re­

construction quality in addition to compute nonrigid motion [15, 126]. Viewpoint control 

of dynamic scenes could find application in a variety of settings such as interactive tele­

vision and virtual reality. Future research in this area includes 4D video compression (3D 

model + time) and model-based coding. The ability to reason about moving objects in 

three dimensions, rather than their projection into two, could benefit many video-based 

applications, such as motion estimation, tracking, and automatic target recognition. 
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APPENDIX A 

CAMERA GEOMETRY 

This appendix provides a brief description of the geometry of single and multiple views. 

The amount of material on the subject is vast; our intent here is to present only the basic 

concepts that are relevant to the techniques described in this thesis. For an in-depth treatise, 

please refer to Hartley and Zisserman's [48] or Faugeras and Luong's [37] textbook. 

We begin with a discussion of a single view's projection matrix, which is used by all 

of the techniques in this thesis. We then present multi-view concepts of bundle adjustment 

and epipolar geometry. 

A. 1 A camera's projection matrix 

A camera's projection matrix H is a 3 x 4 matrix that describes how a point P = (X, Y,Z) 

in 3D space projects to a point p = (*,)>) in an image. Using a homogeneous representation 

for P and p, the relationship is 

sx 

sy = HP = 

h\ hi hi h\4 

hi hi h23 h* 

hi hi hi hA 

X 

Y 

Z 

1 

(39) 

where s is a scale factor. Since H is known only up to an arbitrary scale factor, it has 11 

degrees of freedom, and can be computed from six known point correspondences P <-»• p 

using one of a number of different techniques [123, 124, 132]. 

The projection matrix can be composed using the camera calibration. Correspondingly, 

if known, the projection matrix can be decomposed [48] to reveal the camera calibration 
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parameters. The relationship is 

H = K[R \~RT] (40) 

The matrix K in Equation 40 is a 3 x 3 matrix 

K = 

f 
dx 

0 c, 
0 L 

dy 
Cy 

0 0 1 

(41) 

composed of the intrinsic camera parameters, which are physically measurable quantities 

that do not vary as the camera is moved in space. They are: 

• dx: Horizontal size of a pixel 

• dy\ Vertical size of a pixel 

• / : Focal length 

• Cx: Horizontal center of image 

• Cy'. Vertical center of image 

Here we assume that the camera has no skew, i.e., pixels have a square or rectangular shape, 

which is typically the case for modern cameras. 

The matrix R in Equation 40 is a 3 x 3 rotation matrix that describes the orientation of 

the camera in 3D space. R has three degrees of freedom, and can be described by three 

rotations (i//-, 0, (j)) about the x, y, and z axes, respectively, as 

cos 0 — sin 0 Q 

sin (j) cos (j) 0 

0 0 1 

R = 

cos 6 0 sin 0 

0 1 0 

- sin 0 0 cos 0 

1 0 0 

0 cos y/ — sin i// 

0 sin ty/ cos y/ 

(42) 

Finally, T = [7 ,̂ Ty, TZ]T in Equation 40 is the position of the camera's center of projec­

tion in world coordinates. The six extrinsic camera parameters, (\//, 0,0) and T specify the 

camera pose, and vary as the camera is moved in space. 
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A.2 Bundle adjustment 

Calibrating each camera individually using point correspondences P <-> p can achieve ac­

ceptable calibration results. However, bundle adjustment [122] is often used to refine the 

calibration to achieve a jointly optimal solution over all reference views. Bundle adjustment 

can also used to refine the 3D points if desired. 

Bundle adjustment assumes that a set of 3D points P ; are viewed by cameras with 

projection matrices Hi, and that these quantities are approximately known. Given the set of 

image coordinates p j ; to which P ; projects in the ith image, bundle adjustment refines the 

projection matrices //,• and/or the 3D points P7 to minimize the image-space error 

£*(#,*;, Py)2, (43) 
U 

where d(x,y) is a geometric image distance measure. This procedure is called bundle 

adjustment since it adjusts the bundle of rays between each camera center and the set of 3D 

points. 

Bundle adjustment relies on gradient descent subject to constraints on the camera pa­

rameters, and is typically implemented using the Levenberg-Marquardt algorithm [89]. The 

optimization is subject to local minima, so the technique requires a reasonably accurate 

initialization. For a large number of 3D points and cameras, the procedure can be computa­

tionally intensive; however, Triggs et al. [122] describe methods that reduce computational 

cost by taking advantage of the mathematical structure of the problem. 

A3 Epipolar geometry 

Epipolar geometry is the intrinsic projective geometry between two views. It is used exten­

sively in the IBPH algorithm of Chapter 7. Epipolar geometry is independent of the scene 

structure, and depends only on the cameras' intrinsic parameters and relative pose. 

Consider a 3D point P that is imaged by two different viewpoints, and projects to points 
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(a) (b) 

Figure 81: Epipolar geometry. In (a), a point P is imaged by two cameras. In (b), the 
epipolar plane going through the point P and the camera centers Ci and C2 is formed. 

pi and P2 as shown in Figure 81 (a). What are the geometric constraints on the two corre­

sponding points pi and P2? Consider the plane n defined by P and the center of projection 

for each camera, Ci and C2, shown in Figure 81 (b). It is clear from the figure that rays 

back-projected from pi and P2 intersect at P, and that the rays lie in the epipolar plane n. 

Now consider the left reference view. The epipolar plane cuts through the image plane, 

forming an epipolar line in Figure 81 (b). The epipolar line goes through the image point 

pi and the epipole ei, which is the projection of camera 2's center of projection into the 

image plane of camera 1. Regardless of the location of the 3D point P in space, the epipole 

remains fixed. Symmetric results hold for the right image. 

This epipolar geometry is very useful when searching for correspondences between 

views, as shown in Figure 82. Given the image point pi, one can back-project a ray from 

the center of projection Ci and into 3D space. In image 2, this ray projects to the epipolar 

line, along which the correspondence must lie. Thus, the epipolar geometry restricts the 

search for the correspondence to a one-dimensional region along the epipolar line. 

The epipolar geometry is typically encoded into a 3 x 3 matrix F called the fundamental 

matrix. The fundamental matrix can be estimated from image correspondences, or com­

puted from the camera calibration of the two views if known. We do the latter, since our 
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Epipolar line 

Figure 82: Correspondence search using epipolar geometry. 

cameras are calibrated, and determine F as 

— T F = ^2- /[TX]/?A:1-1 , (44) 

where K\ and K2 are the intrinsic camera matrices, R is a rotation matrix specifying the 

relative change in orientation between the two views, and [Tx] is a 3 x 3 skew-symmetric 

matrix formed from the relative translation (Tx,TyjTz) between the two views as 

[Tx] = 

0 -T, Tv 

Z 0 -Tr 

-Ty Tx 0 

(45) 

Recall that the correspondence for a point pi from image 1 must lie along the epipolar 

line in image 2. This epipolar line is very easily computed using the fundamental matrix as 

Fpi . For points x on the epipolar line, including the correspondence P2, 

xTFpi = 0. (46) 

The trifocal tensor and quadrifocal tensor are similar geometrical entities that relate 

sets of three and four views, respectively. In this thesis we make use only of epipolar 

geometry, so we conclude our discussion of multi-view geometry here. 
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APPENDIX B 

MULTI-VIEW TRIANGULATION 

B.l Introduction 

Often in computer vision, one must triangulate corresponding points between two images 

in order to compute depth. Because of errors in quantization, camera calibration, and 

correspondence, rays back-projected from the images into three-dimensional space rarely 

intersect. As a result, one must find a point that is optimally close to the two rays. This 

appendix generalizes this problem for the case of multiple images; i.e., how to compute 

the optimal position of three-dimensional point given rays emanating from corresponding 

pixels in N images, where N > 2. We develop a simple, closed-form technique with a 

linear solution and provide an example to demonstrate the method. To our knowledge, this 

technique is novel. 

B.2 Computing depth using two views 

We begin by considering a common method [123] for stereo triangulation. Here, we assume 

that the camera parameters are known, and that the projections, Pi and P2 of a 3D point 

into two images, I\ and 1% are known, as shown in Figure 83. Points Pi and P2 are called 

a correspondence, as they both correspond to the same point P in 3D space. Our task is to 

compute the location of point P, given Pi, P2, and the camera parameters. 

Figure 83 shows that for each camera, we can back-project a ray from the camera 

center Q, through the image pixel of the correspondence, forming a ray d2 into 3D space. 

Ideally, these rays would intersect exactly at the same 3D point. However, since the camera 

parameters and correspondence locations in image space are known only approximately, 

the rays will not actually intersect in 3D space. So instead, we seek to find a 3D point that 
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Figure 83: A common method for stereo triangulation. 

has minimal distance from both rays. This point will be located on a line segment that is 

orthogonal to the rays, as shown in Figure 83. A standard approach then, first computes 

the endpoints of this line segment. From these, one computes the midpoint P of the line 

segment. Point P is the point in 3D space that is optimally close to the two non-intersecting 

rays. 

This approach works well for two-view triangulation. However, what if one has a cor­

respondence visible in TV views, for N > 2? One could triangulate the correspondence 

/ M \ 
between M different pairs of views, possibly all 

N 
pairs, resulting in M estimates 

v 2 ; of the point P. These estimates could then be combined to produce a single value for the 

point P. While this would result in a reasonable solution, there are a few drawbacks to 

this approach. First, the triangulation algorithm would be executed M times, once for each 

pair of views chosen. If all pairs of views are chosen, this requires executing the triangu­

lation algorithm 0(N2) times. For large TV this can be computationally intensive. Perhaps 

even more significant is that the combination of these pairwise results does not guarantee a 

solution that is optimal in the sense of having minimum distance to all rays. 

In the next section, we describe a simple technique that executes in 0(N) time and 

additionally finds a point P that is optimally close to all N rays. 
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Figure 84: Finding the shortest distance between a point and a ray. 

B.3 Computing depth using N views 
B.3.1 The distance between a point and a ray 

Consider Figure 84(a), which shows a point P = (je,y,z) and a ray £ that starts at point Q = 

C*i ĵ yi >£i) and has a normalized direction di = a\x + b\y + c\z. Our task in this subsection 

is to derive an equation for the distance between the point P and the ray l. Intuitively, this 

distance is along a line that goes through P and is orthogonal to I. In Figure 84(b), this 

distance is represented by the length of vector RP. 

The vector QR is the projection of QP onto the ray L From the figure, we note that 

Q P = ( * - * i ) i + ( y - y i ) y + (z -* i )* , (47) 

and this vector has a length 

||QP|| = A / ( x - x 1 ) 2 + (>;-yi)2 + ( z - z i ) 2 . (48) 

QR, the projection of QP onto di is 

QR = (QP a ^ d i (49) 

= M*-* i )+£ i (y -yO + ci&~*i)]di (50) 

Since di has unit magnitude, the length of QR is then 

\\QR\\=al(x-xl)+bl(y-yl) + c[(z-zi). (51) 
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Our goal is find the length of the vector RP. Since the points PQR form a right triangle, 

we can invoke the Pythagorean thereom, 

||QP||2 = ||QR||2 + ||RP||2, (52) 

or 

||RP||2 = | |QP| |2- | |QR| |2 (53) 

Substituting in values gives 

||RP||2 = (x-xi ) 2 + (};-v1)2 + ( z - z i ) 2 - h ( x - ^ 1 ) + / 7 l ( v - y 1 ) + c 1 ( z - z 1 ) ] 2 (54) 

Thus, 

\\KP\\ = y/(x-xl)
2 + (y-yi)2 + {z-zi)2-[al(x-xi)+b1(y-yl) + ci(z-zi)r (55) 

Equation 55 is the distance between a point P = (x,y,z) and a ray £ that starts at point 

Q = (x\,y\,zi) and has a normalized direction di = a\\ + b\y + c\z. 

B.3.2 Minimizing the sum of squared distance 

To compute the total distance, D(x,y,z) between a point and N rays, Equation 55 is evalu­

ated for each ray i and the results are summed. This yields an equation of the form 

N , 

D(x,y,z) = ^yJ(x-xi)
2 + (y-yi¥ + (z-Zi)2-{ai(x-xi) + bi{y-yi) + ci(z-Zi)}2. 

i=\ 
(56) 

One might try to analytically optimize D(x,y,z). However, because of the square root, 

the solution is nonlinear. So instead, we optimize the sum of squared distances, 

N 
E(x,y,z) = 'Z(x-xi)

2 + (y-yl)
2 + (z-Zi)2-lai(x-xi) + bl(y-yi) + cl(z-Zi)}\ (57) 

1=1 

which is a sum of terms similar to Equation 54, one for each ray. Thus, our goal is to find 

a point that globally minimizes E(x,y,z). 
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B.3.3 Derivation of the optimal point 

To find the optimal point, we differentiate E(x,y,z), set the partial derivatives to zero, and 

evaluate the critical points. 

dE{X
d^

Z) = ?J{2(x-xl)-2ai{al(x-xl) + bl(y-yl) + cl(z-zl)}} = 0 

dE(x,y,z) 

1=1 

N 

= ^Z{2{y-yi)-2bi\ai{x-xi) + bl(y-yi)+cl{z-Zi)]} = 0 

= 2J{2(z-zl)-2cl[al(x-xi)+bl(y-yl) + ci(z-zl)]} = 0 
1=1 dz 

We seek the optimal point (x,y,z) that satisfies the above equations. Expanding the 

terms and dividing by 2 yields 

/v 
^ [x - xt - a2

tx + afx( - a ;% + a;%; - atCiZ + a,-ctfj] = 0 
i=\ 
N 

^[y~ yt - aibix + afriXi - bfy + bjyt - 6f QZ + btctZi] = 0 
i = l 

/v 
£ [z - z,- - fl|c/jc + ajC/x; - V t f + biCtyi - cfz + cfzi\ = 0 
i = l 

Placing the terms involving (x,-,yi,Zi) on the right side of the equation gives 

N N 

£ [(1 - af)x - aibty - aiaz] = £ [(1 - fiff )x,- - a^yt - aiazi] 
i=\ i = l 

(58) 

(59) 

(60) 

(61) 

yv N 

^[-aibiPc+il-bfiy-biCiz] = ^[-aibiXi + il-b^yi-biQZi] (62) 
i= l i = i 

yv /v 

]T [-UiCiX - fr/C^ -h (1 - cj)z] = X [~aicixi - biciyi + ( l ~ cf)zi] (63) 
(=1 i = l 

Next, we write this in matrix form 

S i ( l - a ? ) " E ^ A ' -S/fl/Ci 

- E* fli-c,- - E* fe E/ (1 - <f) 

E/ [(1 - ^ )* i - a^tf* - fl.-QZi] 

Ef [-aibiXi + (1 - &?)# - &,-<%•] 

Ei [-fl/c^/ - V ^ / + (1 - c?)z/] 

(64) 
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Figure 85: An example showing our multi-view triangulation algorithm. 

This expression is of the form Ax = b. For each ray i, the starting point of the ray (*,-,)>,•,z,-) 

and the ray direction d,- = a,-x + Z?,y + c,-z are known. Thus, all the terms in the matrix A and 

the vector b are known. We compute these matrices, and solve for x, 

x = A_1b. (65) 

The point x then, is the point that is is closest to all of the rays in the sense of minimizing 

the sum of squared distance. 

B.4 Example 

In this section, we consider a simple example that shows how this approach works for trian­

gulation. While this example computes the optimal point using two images, the approach 

works for an arbitrary number of images. 

Suppose we have two cameras as shown in Figure 85. Camera 1 is centered at the 

origin, so {x\,y\,z\) = (0,0,0). Camera 2 is centered at the point (^2,^2,22) = (3,2,5). A 

correspondence is found in the two images, and in each image a ray is back-projected from 

the camera center through the pixel in the image plane, as shown in the figure. The ray 

from camera 1 has a direction (a\, b\, c\) = (1,0,0), parallel to the x-axis, and the ray from 
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camera 2 has a direction (a2,b2:c2) — (0 ,0 , -1 ) , parallel to the z-axis. Our goal is to find 

the point in 3D space that is closest to both rays. By inspection, we expect the solution to 

this problem to be (3,1,0). 

Using the matrix equation in the previous section, we get 

•a\b\-a2b2 -a\C\-a2c2 

-a\b\-a2b2 \-b\-\-\-b\ ~b\c\-b2c2 

—a\c\—a2c2 —b\c\—b2c2 \—c\ + \—c\ 

1 - a f + 1 — az
2 

(1 -a\)x\ -a\b\y{ -a\c\Z[ + (1 -a\)x2 - a2b2y2 - a2c2z2 

-a\b\x\ + (1 -b\)y\ -b\C[Z\ -a2b2x2 + (\ -b\)y2 - b2c2z2 

-axc\x\ -b\c\y\ + (1 - c\)z\ -a\c\x2 - b\c\y2 + (1 -c])z 2 

Plugging in known values gives 

1 0 0 

0 2 0 

0 0 4 

which yields the correct solution of 

X 3 

y — 2 

z 0 

_ -
X 3 

y — 1 

z 0 

(66) 

(67) 

(68) 

B.5 Analysis 
B.5.1 When Is a unique solution not possible? 

Equation 65 shows that if the matrix A is invertible, then a unique solution exists. In this 

subsection we determine under what circumstances A becomes singular, resulting in no 

unique solution. To do this, we first compute the determinant of A. 

L' (1 - aj) ~ £,• afbi - 2i aiCi 

-l^tbi 2 , - ( i - ^ ) -Zihci 

-1/ atci - Xi btCi X,- (l-cf) 
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Each element of A is a sum from i = 1 • • • N. Evaluating and simplifying the terms in 

this determinant for general N is rather challenging. Using the constraint af + bj + cf = 1, 

with some work it is possible to show that this determinant can be rewritten as 

\A\ = j££X(V,-V,)2(l-aI) + 
Z I = 1 / = 1 £~] 

N N N 

^XI2(<*v-<v*)2o-*2)+ 
Mi WJ 

i N N N 

*2I5>^-flA)2(i-ci)+ 
z / = l j=l Jfc=l 

#1 M'J 
N N N 

SSS(fl.V*- f l*V;)2 (7°) 
(=17=1 k=\ 

jjt MU 

A unique solution to this problem cannot be found when Equation 70 equals zero. |A| 

is the sum of nonnegative expressions, as each ray direction is normalized. Thus, the only 

way Equation 70 can equal zero is if each expression evaulates to zero. This fact leads to 

the following theorem: 

Theorem 1 A unique solution exists except when all the rays are either parallel or anti-

parallel. That is, 

ax-\-by + cz 

or (71) 

—ax — by — cz 

*i=< 

Proof: To prove Theorem 1, we must show that each term in Equation 70 equals zero 

only when all the rays are parallel or an ti-parallel. The only way the expression (\—a\) can 

be zero is if each normalized ray direction is either (1,0,0) or (—1,0,0), i.e., all the rays 

are parallel or anti-parallel. A similar result holds for the (1 — bf) and (1 — c|) expressions 

in Equation 70. For the expressions ibtCj — bjC;), (tyCj — fl/c,-), and (afij — afti) to be zero, 
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we must have 

b^j = bjCi (72) 

ctiCj = ajci (73) 

a{bj = ajbi (74) 

Using the fact that a2 -k~bf -f cf = 1, we can rewrite Equation 74 as 

ciibj = atbi (75) 

a^l-aj-c2 = a^\-a2-c2 (76) 

a2(l-a2-c2) - a)(\-a2-c2) (77) 

a2-a2c2 = a2-a2c2 (78) 

Since (<2/cy — ajci)2 = 0, we know that a2c2 = 2aiajCiCj — a2;C2. We substitute this into 

Equation 78, yielding 

0 0 0 0 0 0 

a, - 2aidjCiCj + ajcj = tf;- — ajcf (79) 

0 0 0 O 

A,-+2fl,-q = cij-\-2aiajCiCj (80) 

Using Equation 73, we get 

or^fly (81) 

Similar results hold for b and c, resulting in 

at = ±aj (82) 

h = ±bj (83) 

Q = ±c;- (84) 

In order for Equations 72 to 74 to be satisfied, the signs on the above three equations must 

either all be positive or negative. Thus, the first three terms of Equation 70 are zero if and 

only if all the rays are parallel or anti-parallel. 
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Figure 86: No unique solution exists when all rays are parallel or anti-parallel. In (a), any 
point that is along the line that is equidistant from the parallel rays will be optimally close 
to the two rays. However, if just one ray is not parallel, as in (b), a unique solution exists, 
depicted with a gray dot. 

The fourth term of Equation 70 can be re-expressed to look one of the Equations 72 

to 74. For example, using the fact that axbj = cijbi, 

{aibj)ck = akbiCj (85) 

(ajbi)ck = akbtCj (86) 

ajck = akCj (87) 

Thus, the fourth term of Equation 70 is zero when the other three terms of Equation 70 are 

zero, namely when all the rays are parallel or anti-parallel. This concludes the proof. A 

Theorem 1 is consistent with one's intuition. When all the rays are parallel (or anti-

parallel), one would not expect that a unique solution exists, as shown in Figure 86 (a). In 

this case, any point along a line that is equidistant from the parallel rays will be a valid 

solution. This equidistant line is depicted with a dotted line. However, if at least one of the 

rays is not parallel to the others, then a unique solution exists, as shown in in Figure 86 (b). 

B.5.2 Discussion of extremum 

In the derivation above, we found an extremal point of the sum of squared distance E (x, y, z). 

By nature of the problem, one can assume that this extremal point is a minimum and not 
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D = 

d2E d2E d2E 
dx2 dxdy dxdz 

d2E d2E d2E 
dxdy dy2 dydz 

d2E d2E d2E 
dxdz dydz dz2 

(88) 

a maximum. For the finicky reader, we prove in this subsection that the extremal point is 

indeed a minimum. 

Theorem 2 The extremal point found by this method minimizes the sum of squared dis­

tance. 

Proof: To show that the extremal point is indeed a minimum, we must analyze the 

matrix of second partial derivatives [5], 

2E,-(l-flf) -22,-flA- -2S.-fl.-Ci 

- 2 E . - ^ - 2^(1 ~bf) -22ibiCi 

- 2 L- atCi - 2 £.- fc.c. 2 £.- (1 - c?) 

and show that the determinants of the upper-left lx l submatrix, upper-left 2x2 submatrix, 

and D are all strictly positive. 

First, we compute the determinant of D\, the upper-left lx l submatrix, 

| D i | = 2 X ( l - a ? ) (89) 

Since #. is a component from a normalized vector, the value of each (1 — of) term must be 

nonnegative. Thus, D\ must be nonnegative, since it is a sum of nonnegative terms. The 

only situation for which D\ could be zero is if each at• = ± 1 . In that case, all rays would 

be parallel or anti-parallel, with directions [a^b^Ci) = (1,0,0) or (a.,^.,c/) = ( -1 ,0 ,0) . 

As shown earlier, we cannot expect a unique solution for this case, so we do not care about 

the extremal point. Thus, D\ is strictly positive except when the all rays are parallel or 

an ti-parallel. 

Next, we compute the determinant of £>2, the upper-left 2x2 submatrix, 

2 2 / ( 1 - * ? ) - 2 L * A -

-21,-fl,-*, 22 I-(l-&?) 
1̂ 1 = (90) 

Using the fact that af-\-bf+cj = l, this determinant can be expressed as 

N N N 

\D2\=4NY(ch + ^^lbj-ajbiy (91) 
J = l 7 = l 
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Since D2 is a sum of nonnegative terms, it must also be nonnegative. The only way £>2 can 

be zero is if all c,- = 0, and each a[b} = a}b\ for i ̂  j . This can only happen when all the 

rays are parallel or anti-parallel, since 

ctibj = flyZ?,- (92) 

l-bj-cjbj = ^-b)-c)bi (93) 

v ^ ^ - - v ^ 1 ^ (94) 

( 1 - ^ = (l-b2j)bf (95) 

^ - ^ = ^_b2b2 ( % ) 

^? = ^ (97) 

Likewise, D2 can only be zero for af = a2- This equation, along with Equations 92 and 97 

are true only when the rays are parallel or anti-parallel. Thus, D2 is strictly positive except 

when all rays are parallel or anti-parallel. 

Finally, we must show that the determinant of D is nonnegative. Comparing equa­

tions 69 and 88, we note that \D\ = 8|A|. In the previous section, we showed that the 

determinant of A was strictly positive except when all rays were parallel or anti-parallel. 

Therefore, this result also applies to the determinant of D. This concludes the proof. A 

Thus, the extremal point P found by our optimal ray intersection algorithm minimizes 

the sum of squared distance to each ray. 
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APPENDIX C 

EXPERIMENTAL SETUP 

In this appendix we describe our experimental setup used for interactive new view synthe­

sis. 

As Figure 87 shows, our lab is equipped with five Sony DFW-V500 digital video cam­

eras positioned on an arc. These cameras are synchronized for simultaneous image ac­

quisition. Synchronization is achieved by sending a short pulse out the parallel port of a 

computer to the external trigger input on each camera. 

For applications that require maximum performance, we connect each camera via Fire Wire 

to a personal computer. These computers perform background subtractions on the incoming 

video. The background is attained by first collecting a short video clip of the scene before 

the object to be reconstructed is placed in front of the cameras. The segmented multi-view 

video is sent over a 100 Mbps switch to our server machine, which is a dual-processor 

Pentium 4 2.0 GHz machine. For each time instant, the server computes the image-based 

photo hull. 

The image-based photo hull can be displayed on the server machine. Since the recon­

struction is a 3D representation, it can be depth composited with synthetic objects using 

standard computer graphics methods. Our server machine is connected to Internet2. With 

this connection, we are able to perform 3D video-conferencing with remote sites. In partic­

ular, we are developing a 3D video-conferencing application with Hewlett-Packard Labs. 
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Figure 87: Our experimental setup for interactive new view synthesis. 
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