
Novel Volumetric Scene Reconstruction Methods
for New View Synthesis

A Thesis
Presented to

The Academic Faculty

by

Gregory G. Slabaugh

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

School of Electrical and Computer Engineering
Georgia Institute of Technology

November 2002

Copyright © 2002 by Gregory G. Slabaugh

Novel Volumetric Scene Reconstruction Methods

for New View Synthesis

Approved by:

•»" V « = T ^ ~~

Russell M. Mersereau, Committee Chair Greg^Turk

Ronald W. Schafer, Advisor II Mat ClHans

Anthony J. Yez4J 0 (I V*

Date Approved K)<?V- ^L> ^ Q ^ V

This thesis is dedicated to the memory of my mother, Phyllis G. Slabaugh.

iii

ACKNOWLEDGEMENTS

During my graduate career, I have been blessed with many wonderful relationships. I would

like to take this opportunity to express my gratitude to those who have helped shape this

thesis.

I am most grateful to my advisor, Dr. Schafer, with whom it has been both an honor

and a pleasure to work. It was Dr. Schafer who introduced me to the problem of new view

synthesis. His open-minded and flexible approach allowed me to forge my own path as a

graduate student. I thank him for being an outstanding advisor - insightful, helpful, kind,

and patient.

Next I would like to thank Hewlett-Packard Laboratories, which supported and con­

tributed to the research described in this thesis. I thank Fred Kitson, whose unwavering

commitment to our work is truly appreciated. I am especially grateful to Tom Malzben-

der and Bruce Culbertson, with whom I have collaborated throughout my graduate career.

Their input is reflected significantly in this thesis. I appreciate all the opportunities that

HP has offered me, including two internships and extended collaborations. Mat Hans de­

serves a great deal of thanks for his assistance in setting up our lab as well as his insights

on several projects. I would also like to thank all previous and current HP Labs employees

who have collaborated with me on 3D scene reconstruction, particularly Dan Gelb, Mark

Livingston, Irwin Sobel, and the rest of the Coliseum team.

I thank my friends and colleagues at the College of Computing, who helped keep me

abreast of the latest developments in computer graphics and vision, collaborated with me

on projects, and discussed novel research ideas with me. In particular, Greg Turk, Quynh

Dinh, Eugene Zhang, Gabe Brostow, and Drew Steedly and deserve special recognition.

I'd also like to thank Leonard McMillan, Wojciech Matusik, and Chris Buehler, who

IV

shared their Image-Based Visual Hulls code and system configuration with us.

Our group, the Center for Signal and Image Processing (CSIP), is at the forefront of

teaching and research in digital signal processing. I am grateful to the professors from

whom I have taken classes, and/or have opened their doors to me. This includes Dr. Mc-

Clellan, Dr. Meresereau, Dr. Yezzi, Dr. Smith, Dr. Jackson, and Dr. Zhou.

While a CSIP graduate student I had the opportunity to befriend many fellow graduate

students. In particular, I would like to acknowledge Jordan Rosenthal, Amer Abufadel,

John Glotzbach, Lisa McCrickard, Gail Rosen, Robert Morris, Ghassan Al-Regib, Sam Li,

Raviv Raich, Yen-Chi Lee, Sangkeun Lee, Nik Vasiloglou, Jailin Tain, Arden Huang, and

Chris Lanciani.

I owe a sincere thanks to the CSIP staff who provided administrative support, especially

Kay Gilstrap, Christy Ellis, and Stacy Shultz. I am also grateful to Sam Smith and Keith

May who helped with computer support.

I express much gratitude to and love for my family; my father and his wife, Ronald

and Marilyn Slabaugh, my brothers and their wives, Eric and Maria Slabaugh, and Jason

Slabaugh and Allison Foulds, my aunt Mary Morris, as well as my extended family. Also

thanks to my friends, John and Alina Stevenson, Chuck Chung, Pietro Bonacossa, and

Mark Kelley who helped keep me sane by pulling me out of the lab every now and then to

enjoy life.

I would especially like to thank my partner Stephen Blanchard, for his alacrity, patience,

and love.

v

TABLE OF CONTENTS

DEDICATION iii

ACKNOWLEDGEMENTS iv

LIST OF TABLES xi

LIST OF FIGURES xii

SUMMARY xvi

I INTRODUCTION 1

1.1 Problem statement 1

1.2 Motivation 1

1.3 Volumetric approaches 2

1.4 Contribution of the thesis 3

1.5 Organization of the thesis 3

II RELATED WORK 5

2.1 Image-based rendering 6

2.2 Stereo matching approaches 8

2.2.1 A brief review of stereo vision 8

2.2.2 Multi-view stereo reconstruction 11

2.3 Structure from motion 13

2.4 Interactive modeling systems 14

2.5 Volumetric approaches 16

2.5.1 Visual hulls 17

2.5.2 Photo hulls 21

2.5.3 Level set methods 25

2.6 Summary 26

III GENERALIZED VOXEL COLORING 28

3.1 Photo-consistency 28

vi

3.1.1 Visibility 28

3.1.2 A single threshold measure 30

3.1.3 An adaptive threshold measure 32

3.2 Voxel coloring - a single planar sweep 33

3.3 Arbitrary camera placement 34

3.4 Space carving: multiple planar sweeps 36

3.5 Generalized voxel coloring 37

3.5.1 GVC-IB 37

3.5.2 GVC-LDI 39

3.5.3 Results 42

3.5.4 Analysis 49

3.5.5 Multi-resolution GVC 50

3.6 Summary 52

POST-PROCESSING 54

4.1 Geometric inaccuracies 54

4.1.1 Theoretical sources 54

4.1.2 Practical sources 55

4.2 Mathematical morphology 62

4.2.1 Basic morphological operations 62

4.2.2 Morphological filtering of reconstructions 63

4.3 Volumetric optimization 64

4.3.1 Optimal reconstructions 66

4.3.2 Reprojection error and standard deviation 67

4.3.3 Optimal scene reconstructions exist but are not unique 68

4.3.4 The search space is large 69

4.3.5 Minimizing the reprojection error 70

4.3.6 Results and Analysis 73

4.4 Other methods 77

4.5 Summary 77

vii

V VOLUMETRIC WARPING 80

5.1 Background modeling 80

5.2 Volumetric warping 82

5.2.1 Frustum warp 83

5.2.2 Other warping functions 87

5.3 Implementation issues 87

5.3.1 Cameras inside volume 88

5.3.2 Preventing visible holes in the outer shell 89

5.4 Results 89

5.5 Summary 91

VI SPACE CARVING USING LEVEL SET METHODS 94

6.1 Surface representation 94

6.2 Level set methods 95

6.2.1 Description 95

6.2.2 Evolution of the surface 96

6.2.3 Two common flows 97

6.3 Reconstruction algorithm 98

6.4 Implementation 99

6.4.1 Voxel space 100

6.4.2 Derivatives 100

6.4.3 Stability 101

6.4.4 Narrow band 101

6.4.5 Multi-resolution 101

6.5 Results 102

6.6 Summary 104

VII IMAGE-BASED PHOTO HULLS 109

7.1 Image-based visual hulls 109

7.1.1 Overview 109

viii

7.1.2 Computing geometry 112

7.1.3 Computing visibility 113

7.1.4 View-dependent texture mapping 115

7.2 Image-based photo hulls 116

7.2.1 Approach 116

7.2.2 Stepping along epipolar lines 117

7.2.3 IBPH visibility 119

7.2.4 Sampling 119

7.2.5 Convergence 121

7.2.6 Spatial coherence 122

7.3 Results 123

7.4 Summary 127

VIII EVALUATION 129

8.1 3D error evaluation 130

8.1.1 3D error metric 132

8.1.2 Visual hull reconstruction 133

8.1.3 GVC reconstruction .134

8.1.4 Volumetric optimization 137

8.1.5 Level set reconstruction 138

8.1.6 Image-based photo hulls reconstruction 139

8.1.7 Summary of 3D error analysis 141

8.2 New view synthesis evaluation 145

8.2.1 2D mean square error 145

8.2.2 Visual hull 146

8.2.3 Generalized voxel coloring 148

8.2.4 Volumetric optimization 151

8.2.5 Level set method 151

8.2.6 Image-based visual hulls 154

8.2.7 Image-based photo hulls 154

IX

8.2.8 Summary of 2D mean square error analysis 156

IX CONCLUSION 160

9.1 Review of contributions 160

9.2 Future work 161

APPENDIX A — CAMERA GEOMETRY 163

APPENDIX B — MULTI-VIEW TRIANGULATION 168

APPENDIX C — EXPERIMENTAL SETUP 180

REFERENCES 182

VITA 193

x

LIST OF TABLES

1 Data sets and parameters for GVC reconstructions 47

2 Runtime and memory usage for GVC reconstructions 47

3 Multi-resolution voxel spaces and runtimes 52

4 Results for the Toycar scene 74

5 Results for the Shoes scene 76

6 Volumetric optimization of the SynthPlane data set 138

7 3D error analysis results 143

8 Mean square error analysis results 159

XI

LIST OF FIGURES

1 Voxel classifications 16

2 Visual hull reconstruction 18

3 An example visual hull 20

4 An example photo hull 23

5 Photographs of a cloth toy 24

6 Reconstruction of a cloth toy 25

7 Using photo-consistency to identify scene surfaces 29

8 Visibility is required to correctly compute photo-consistency 29

9 Reconstructing texture and edges 31

10 Voxel coloring via a planar sweep 34

11 Pseudo-code for space carving algorithms 35

12 GVC data structures 38

13 GVC-IB Pseudo-code 40

14 Voxels that change visibility 42

15 GVC-LDI Pseudo-code 43

16 Two of 17 reference views of a toy model of Ghirardelli Square 44

17 Visualization showing camera placements and reconstruction volume 45

18 An example reconstruction using GVC-LDI 45

19 New view synthesis via rendering of the reconstruction 46

20 Reconstruction results for several data sets 48

21 GVC reconstructs a thin-shelled surface 50

22 Flow diagram for multi-resolution GVC implementation 51

23 Cusps and floating geometry 55

24 Reconstructions exhibiting cusps and floaters 56

25 Photometric differences can occur when moving a camera in a scene 59

26 Vignetting 60

27 The effect of varying photo-consistency threshold 61

xn

28 Morphological filtering of surfaces 65

29 Model refinement by connected components analysis 66

30 The volumetric reconstruction search space 70

31 Toycar data set: two of 17 reference views 74

32 Reprojection error vs. time for Toycar scene 75

33 Refinement of the Toycar reconstruction 76

34 Reprojection error vs. time for Shoes scene 77

35 Close up of cloth toy 78 %

36 Unknown regions because of reconstruction on a finite domain 81

37 Pre-warped and warped voxel spaces in 2D 82

38 Constant footprint property 84

39 Boundaries and regions used by the warping function 85

40 Warping a point using the warping function 86

41 Pre-carving initialization 89

42 Reconstruction of the marbles scene 91

43 Reconstruction of the Stanford scene 92

44 Surface evolution along surface normal 96

45 Two common flows 97

46 Narrow band implementation 102

47 Initial evolution of the zero level set at the lowest resolution 103

48 New synthesized views of the broccoli stalk .103

49 Four of eleven reference views of the Camel data set 105

50 New synthetic views of the Camel data set 106

51 New synthetic views of the Tower data set 107

52 Visual hull vs. photo hull for the Pinwheel data set I l l

53 View-dependent geometry 112

54 Determining a ray's visual hull intervals 113

55 Visibility computation using hull intervals 114

56 View-dependent texture-mapping 115

xm

57 Pseudo-code for the IBPH algorithm 116

58 Computing the image-based photo hull 117

59 Stepping along an epipolar line 118

60 Multi-resolution IBPH sampling 120

61 Changing the size of the sampling lattice 121

62 Ray classifications vs. iteration 122

63 Varying the spatial coherence parameter 123

64 Using IBPH in a real-time 3D telepresence application 125

65 Comparing IBPH to GVC 126

66 Camera placements and reconstruction volume for the SynthPlane scene . . 131

67 Three of 24 reference views for the SynthPlane scene 131

68 Volume under surface 132

69 Zooming in on the GVC height map 136

70 Reconstructions of the SynthPlane data set 142

71 3D error vs. time, SynthPlane scene 144

72 Camera placement used for new view synthesis evaluation .146

73 An image formed by rendering the true scene to viewpoint V 147

74 New view synthesis results for the visual hull algorithm .149

75 New view synthesis results for the GVC algorithm 150

76 New view synthesis results for the volumetric optimization algorithm . . . 152

77 New view synthesis results for the level set algorithm 153

78 New view synthesis results for the IBVH algorithm 155

79 New view synthesis results for the IBPH algorithm 157

80 Mean square error vs. time, SynthPlane scene 158

81 Epipolar geometry 166

82 Correspondence search using epipolar geometry 167

83 A common method for stereo triangulation 169

84 Finding the shortest distance between a point and a ray 170

85 An example showing our multi-view triangulation algorithm 173

xiv

86 Triangulation is ill-posed when all rays are parallel or anti-parallel 177

87 Our experimental setup for interactive new view synthesis 181

xv

SUMMARY

This thesis describes methods that generate a digital three-dimensional (3D) model

of a visual scene's surfaces, using a set of calibrated photographs taken of the scene. The

3D model is then rendered to produce views of the scene from new viewpoints. In the

literature, this is known as 3D scene reconstruction for new view synthesis. This thesis

introduces novel approaches that improve upon the quality, efficiency, and applicability of

existing methods.

To achieve a high quality reconstruction, it is essential to know which cameras have vis­

ibility of local areas on the surface. Accordingly, we present a related pair of techniques for

computing visibility during a volumetric reconstruction. We then describe post-processing

methods that refine surface reconstructions to improve model fidelity.

We explore different representations for modeling the 3D surface during reconstruction.

We introduce a method of warping the 3D space to represent large-scale scenes. We also

investigate a level set approach, which embeds the 3D surface as the zero level set of

volumetrically sampled function. Finally, we present a view-dependent representation that

can be computed at interactive rates.

xvi

CHAPTER I

INTRODUCTION

1.1 Problem statement

One of the primary ways we sense the world is through vision. The human visual system

acquires light that passes through the lens of the eye and is imaged on the retina. This

visual data, rich in information, is used to perceive shape, position, and color.

Mimicking this process, researchers have developed imaging sensors and computer al­

gorithms to analyze visual information. The goal of this thesis is to generate a 3D digital

representation of a visual scene using a set of photographs. The photographs are taken from

multiple viewpoints of either a static or dynamic scene. As a pre-process, each camera used

to photograph the scene is calibrated, yielding the geometry of the image formation pro­

cess. Given these calibrated photographs, how does one compute a 3D model that can be

rendered to synthesize views of the scene at new viewpoints? This is the central problem

addressed in this thesis.

1.2 Motivation

A key challenge in computer graphics is photo-realistic image synthesis of real-world

scenes. Unfortunately, many real-world scenes consist of geometrically complex shapes

that are difficult to recreate in a 3D modeling program. Even after hours of tedious edit­

ing, many CAD-based 3D models produce synthetic images that lack a desired level of

photo-realism when rendered.

An alternate approach is image-based modeling. The objective in this approach is to

create a 3D model using 2D image data. Often this 2D image data consists of photographs,

also called reference views, taken from multiple viewpoints. In contrast to CAD-based 3D

1

surface modeling, taking photographs is simple and intuitive. The photographs are input

to a computer, which analyzes the photographs to reconstruct a 3D model of surfaces in

the scene. This model can the be rendered to produce photo-realistic images from new

viewpoints.

3D scene reconstruction is a fundamental problem in computer vision and has many

applications, including robot navigation [47], reverse engineering [26], object recogni­

tion [7, 77], motion capture [104], model building [27, 126], teleconferencing, and more.

Thus, advances in 3D scene reconstruction can significantly impact a variety of applica­

tions.

Our application is new view synthesis, the task of generating views of the scene from

new viewpoints. Conceptually, new view synthesis endows a user a virtual camera, which

the user places about the scene. The goal then is to synthesize the image that a physical

camera would see when placed at the same position the virtual camera is placed. We

perform 3D scene reconstruction to generate a photo-realistic 3D model of the scene, and

then render the 3D model to synthesize an image at the virtual viewpoint.

1.3 Volumetric approaches

In this thesis, we focus on volumetric reconstruction approaches. By volumetric we mean

that space has been tesselated into discrete volumes called voxels. We typically model a

voxel as a small cube in 3D space. The voxels are arranged on a 3D sampling lattice,

forming a voxel space. Within this voxel space, our goal is to find the 3D surfaces that,

when rendered, reproduce the photographs taken of the scene

Any surface in the voxel space can be sampled to produce a volumetric representation.

Volumetric surface representations provide a computationally convenient and topologically

flexible way to characterize a surface in 3D space. When necessary, a voxel-based model

can be converted into a polygonal representation for efficient rendering on standard graph­

ics hardware.

2

1.4 Contribution of the thesis

This thesis examines novel volumetric scene reconstruction approaches, designed for the

application of new view synthesis. We advance the state of the art by introducing the

following:

1. Two novel methods for computing voxel visibility during scene reconstruction.

2. Methods to post-process the reconstructed geometry, including a volumetric opti­

mization strategy that minimizes reprojection error.

3. A volumetric warping approach for reconstructing large-scale scenes.

4. A reconstruction technique that marries the speed and simplicity of space carving

with the advantages of level set methods.

5. An efficient view-dependent reconstruction approach that is capable of interactive

reconstructions.

1.5 Organization of the thesis

The rest of this thesis is organized as follows. Chapter 2 presents prior art in the field of

3D scene reconstruction, focussing primarily on related volumetric approaches. Chapter 3

describes our generalized voxel coloring (GVC) algorithm, which introduces two novel

approaches for determining visibility during a volumetric reconstruction. In Chapter 4 we

extend this work by post-processing the reconstructed 3D model to improve model fidelity.

We then introduce a warping of 3D space in Chapter 5 that efficiently represents a large-

scale scene. In Chapter 6, we utilize level set methods to implicitly represent the 3D surface

as a zero-level set of a volumetrically sampled function. In Chapter 7, we present a view-

dependent algorithm, image-based photo hulls (IBPH), designed for interactive new view

synthesis. In Chapter 9 we review the contributions of this thesis and explore directions for

future research.

3

Appendix A offers a brief review of single a multi-view camera geometry, and Ap­

pendix B presents a multi-view triangulation algorithm. Appendix C describes our experi­

mental setup for interactive 3D scene reconstruction and new view synthesis.

4

CHAPTER II

RELATED WORK

The quest for photo-realism in computer graphics has led to very sophisticated model­

ing of geometry, light, and reflection. Developments in this field have yielded powerful

approaches, as demonstrated in many contemporary feature films. However, much skill,

artistry, and tedious labor is required to model and render such complex scenes.

Consequently, there has been in recent years much interest in applying computer vision

methods to capture real-world scenes from photographs. Photographs are very simple to

obtain, and by definition, are photo-realistic. However, one of the limitations of a photo­

graph is its fixed viewpoint. This chapter reviews new view synthesis techniques, which

circumvent this limitation to generate photo-realistic synthetic views of the scene at new

viewpoints.

One distinguishing characteristic of new view synthesis techniques is that of scene rep­

resentation, spanning 2D representations for view morphing, 2-^D representations for view

interpolation, 3D model reconstruction, 4D light fields, 7D plenoptic functions, and be­

yond. In this review, we give special attention to methods that reconstruct 3D models,

since that is the approach taken in this thesis.

During the last decade, the topic of new view synthesis has received considerable in­

terest in the computer graphics, computer vision, and image processing domains, and the

resulting literature on the subject is vast. To make this review tractable, we limit its scope

to methods that are passive with respect to the scene lighting. Active vision methods that

project light into the scene, such as structured lighting and laser range imaging techniques

are not presented. A goal of many new view synthesis methods is to produce photo-realistic

new views using off-the-shelf photographic cameras, which are inexpensive and easy to

5

use.

2.1 Image-based rendering

We begin this review by briefly surveying image-based rendering algorithms. Image-based

rendering can be defined as a class of techniques that generate synthetic images from pho­

tographs rather than geometric primitives. The goal of image-based rendering is new view

synthesis. A related class of techniques are image-based modeling algorithms, which pro­

duce a 3D model of the scene using the photographs. This model can then be rendered for

view synthesis. Image-based modeling algorithms will be considered later in this chapter.

The algorithms presented in this section do not compute an explicit 3D model of the full

scene geometry.

One of the earliest attempts at image-based rendering was the Movie-Map system [61]

presented in the early 1980s. This system represents an entire scene as a collection of

panoramic images, acquired every 10 feet along several streets of a town. As a user navi­

gates a virtual camera along one of the streets, the system displays an optically corrected

view using the image closest to the virtual camera position. While the system is capable

of displaying virtual camera rotations, the camera translations are limited to the positions

at which the scene was photographed. This approach was recently revisited by Kimber,

Foote, and Lertsithichai [53], who photograph the scene much more densely along each

path.

In their seminal work, Chen and Williams [20] demonstrated that it was possible to

interpolate between viewpoints if dense correspondences are known. The correspondences

are used to establish optical flow. Pixels in a reference image are then linearly interpolated

along the optical flow vectors to produce intermediate views. While effective, this approach

correctly synthesizes new views for only limited virtual camera motions.

In a similar spirit, many other researchers introduced new view synthesis algorithms

that warp photographs using correspondence and/or depth information [3, 17, 18, 49, 58,

6

66, 68, 74, 98, 99, 101,103]. Notable developments among this class of techniques include

the use of epipolar geometry [58], an analysis of the physical validity of view interpola­

tion [99], an occlusion-compatible rendering order that obviates the need for depth compar­

isons [74], extensions to time-varying scenes [66], and generation of within-scene views

without requiring explicit correspondence information [49]. Some of the key challenges

to these approaches are establishing correspondences between photographs, synthesizing

views from arbitrary viewpoints, and dealing with holes in the synthesized view that result

from disocclusions.

A number of researchers have introduced image-based rendering algorithms based on

panoramic imagery. Such use of panoramic imaging for view synthesis has its roots in

environment mapping [9, 45]. Chen's Quicktime VR [21] approach captures cylindrical

panoramas by stitching together photographs taken by a camera rotating 360 degrees about

its center of projection. Other researchers extend this idea by stitching images taken from

arbitrary camera placements [96, 118]. McMillan and Bishop [74] use cylindrical panora­

mas in conjunction with stereo correspondence algorithms for view synthesis.

Adelson and Bergen [1] introduce the plenoptic function, a 7-dimensional function that

characterizes all of the light flowing in 3D space, in all directions, positions, time, and at

all wavelengths. As McMillan and Bishop [74] point out, the goal of image-based render­

ing is to generate a continuous representation of the plenoptic function given a (typically

incomplete) set of samples.

While the plenoptic function is a useful theoretical concept, in practice a complete

sampling of it would result in an overwhelming amount of data for most scenes. When

working with static scenes and sampling the color spectrum in RGB channels, the plenoptic

function becomes 5-dimensional. In the lumigraph [44] and light field [60] approaches, it

is observed that in the absence of occlusions, the dimensionality can be further reduced to

four. These approaches sample the scene as two-dimensional arrays of two-dimensional

images. Synthesis of a new view is achieved by resampling the rays captured in this 4D

7

representation. This work spawned a flurry of subsequent light field research, developed for

alternative capture topologies [2, 106], efficient rendering [14, 92] and compression [65].

Surface light fields [22, 75, 129] are a related representation that assign a color to each ray

originating from a surface. Surface light fields have shown much promise but do require a

3D model of the surfaces in the scene.

The remainder of the techniques presented in chapter are image-based modeling al­

gorithms. These approaches are more closely related to the techniques developed in this

thesis.

2.2 Stereo matching approaches

Stereo vision is the ability to see in three dimensions. The binocular human visual system

captures light from two slightly different positions. As a result, an imaged object appears

slightly displaced in the two retinal images. This displacement is known as disparity, and

is used by the brain to estimate depth.

Computer vision methods have been developed to simulate this process. Stereo rigs

consist of a set of cameras that photograph the scene. Disparity is computed from the

photographs by matching corresponding regions between the images. In this section, we

review these stereo vision algorithms. We begin with a brief review of two-view approaches

to illustrate the basic concepts. We then discuss multi-view stereo algorithms designed for

image-based modeling.

2.2.1 A brief review of stereo vision

A standard two-view stereo vision rig consists of two cameras, a left and a right, separated

by distance known as the baseline. Photographs of a scene are taken simultaneously with

the two cameras. Given these two photographs, stereo vision seeks to find the depth of

scene surfaces.

Key to stereo vision is the correspondence problem. This problem requires one to

8

identify, for each scene element (pixel, line, corner, etc.) in one image, a matching scene

element in the other. This match is called a correspondence. Correspondence algorithms

can be classified into correlation-based methods and feature-based methods.

Correlation-based methods attempt to find, for a small patch around a pixel in one

image, a match in the other image. A similarity measure that indicates the quality of a

prospective match is maximized. A cross correlation similarity measure can be used,

N M

<t>ir\ni,n2]= ^ X h[n\Jrk\,n2 + k2\l'r{h,k2},
k]=-Nk2=-M

as well as other correlation-like measures such as the sum of squared differences (SSD),

N M

SSDlr[nun2] = - £ £ «["i +*i,n2 +h] -l'r[hM}f,
kl = -Nk2=-M

where a (2N + 1) x (2M+ 1) patch, I'r[n\,n2], is extracted from the right image, Ir[n\,n2],

and compared in the left image //[wi,«2]- While the equations above assume grayscale

images, they can be easily extended to color images. A correspondence is often assumed to

exist for the maximal value of the similarity measure. Disparity is computed for each pixel

as the image plane difference in spatial position of the corresponding points.

Feature-based methods match image features, such as lines, edges, and corners. Such

features rarely occur at every pixel in an image, and as a result, feature-based methods find

only a sparse set of correspondences. The computer vision literature is rife with various

feature-based correspondence algorithms for virtually every type of feature.

The correspondence problem is challenging. It is ill-posed, since as a result of occlu­

sions, a match might not exist. In addition, in homogeneously colored surface regions,

multiple matches may occur. To make matters worse, correspondences become more dif­

ficult to establish when the baseline increases, and when the reflectance of scene surfaces

deviates from Lambertian.

However, additional constraints can be imposed to help minimize false matches. Of

these, perhaps the most useful is the epipolar constraint [36, 123], since it is always valid.

For a point in image 1, one can back-project a ray into 3D space that intersects the 3D

9

feature generating the point. This ray, when projected into image 2, defines an epipolar

line, along which the correspondence must lie. Thus, the epipolar constraint reduces the

2D search for a correspondence to a ID search along an epipolar line. Epipolar geometry

is reviewed in Appendix A.

Other constraints used in stereo matching are not applicable to all scenes, but are useful

for many scenes of interest. The uniqueness constraint [69] requires that there can be no

more than one match in image 2 for a pixel in image 1. This constraint has been further used

to require that matches are bi-directional. The continuity constraint [69] takes advantage of

the cohesiveness of matter by requiring the disparity vary smoothly over most of the image.

Note that this constraint does not hold at depth discontinuities. The ordering constraint [4]

requires that the order of neighboring correspondences on the corresponding epipolar lines

is preserved. The disparity limit constraint specifies a band of allowable depth values for

which to search for correspondences. Other constraints are possible. By taking advantage

of these constraints, stereo matching algorithms produce much better results.

More recent work on stereo matching has seen the incorporation of color segmentation

for textureless regions [120], inclusion of temporal consistency for dynamic scenes [15, 79,

119, 131], use of interline consistency of epipolar lines via graph cuts [94], development

of multi- and wide baseline approaches [82, 90, 97, 125], rejection of outliers [8, 117], and

efficient implementations for real-time performance.

If the cameras are calibrated, i.e., the geometry of image formation in the reference

views is known, the correspondences can be triangulated to reconstruct 3D structure in

a metric space. In the two-view case, the 3D information is typically represented as a

depth map, z(x,y), for each pixel that has been matched in a reference view. This 2±D

representation captures the scene geometry as seen by the reference view. The depth map

can then be texture-mapped and rendered to synthesize new views of the scene. However,

since the depth map does not capture the full 3D geometry of the scene, the new view

synthesis will be effective for only a limited set of virtual viewpoints near the two reference

10

views. To reconstruct the full scene geometry, a reconstruction must be performed using

multiple images taken from cameras surrounding the scene. This is the subject of the next

subsection.

2.2.2 Multi-view stereo reconstruction

We now review multi-view stereo reconstruction methods that execute a stereo correlation-

based correspondence algorithm between various subsets of the reference views. These

subsets can range from neighboring image pairs [42] to groups of three to six nearby im­

ages [78]. This produces multiple depth maps that represent points in 3D space as seen

from different viewpoints. For the task of image-based modeling, the goal is then to infer

object surfaces from these often noisy points.

In their "virtualized reality" system, Narayanan, Rander, and Kanade [78, 127] recon­

struct time-varying events from multi-view video. For data acquisition, the authors initially

designed a hemispherical dome consisting of 51 synchronized video cameras that output

time-stamped video to a bank of VCRs. Later, they rigged a room using 49 synchronized

video cameras, each connected to a computer for direct video digitization. By sampling the

scene with many cameras, reconstructions are less likely to have unrecoverable areas that

are occluded from all cameras.

For each time instant, a multi-baseline stereo algorithm is executed, resulting in a dense

depth map for each camera. Each depth map is embedded into a volumetric space, and

fused [26] into a single three-dimensional model. This model is then extracted from the

volume using the marching cubes algorithm and texture-mapped by projecting each color

image onto the model and accumulating the results using a weighted average based on vis­

ibility. New views of the video can be synthesized from arbitrary viewpoints by rendering

the polygonal model at each time instant.

Fua and Leclerc [41] have a similar mesh-based approach to the multi-view recon­

struction problem. Like [78], the goal is to recover, in world space, a texture-mapped 3D

11

mesh using all source images. For each stereo pair, their technique performs hierarchical

correlation-based matching to find a dense depth map for each image. The depth maps from

all source images are combined in world space, resulting in a dense set of unstructured 3D

points. These points are fit to quadric patches, clustered into surfaces, and then polygonized

into a mesh. The authors then attempt to optimize [41] the mesh to increase the reconstruc­

tion accuracy. The cost function landscape contains local minima, so the mesh found prior

to optimization must be reasonably close to the true surface for the optimization to be ef­

fective. The optimized mesh is then texture-mapped and rendered to synthesize new views.

In a similar vein, Isodoro and Sclaroff [50] and Rockwood and Winget [93] demonstrate

mesh optimization approaches for 3D scene reconstruction.

The optimization in [41] attempts to find an extremal surface that represents the true sur­

face geometry. An alternate approach formulates stereo matching as an extremal surface

extraction problem [19, 94]. In Chen and Medioni's [19] approach, images pairs are first

rectified so that correspondence matching occurs over a one-dimensional range of disparity.

Then, a correlation coefficient is computed for each pixel [nl, nl] in an image and for each

disparity d. Rather than simply pick the best match at each pixel, this method encodes all

the correlation coefficients, for each value of d, into a disparity volume p[nl,nl,d]. The

elements of p [nl, rc2, d] range between zero and one, which indicate low and high probabil­

ity of a match, respectively. The task is then to extract a maximal surface from p[nl, nl,d].

This is accomplished picking values close to one as seeds, and then propagating the surface

from the seeds by finding locally maximal values. Upon completion, this algorithm finds

an accurate disparity surface between two views. This process is repeated on other image

pairs, and the results are fused together into a coherent model that is then texture-mapped

and rendered to create new views.

Multi-view stereo matching methods are effective in reconstructing scenes using mul­

tiple arbitrarily placed cameras. Key issues for these methods are obtaining accurate corre­

spondences, and addressing incorrect matches by using multi-view refinement strategies.

12

2.3 Structure from motion

Structure from motion methods process images over time, observing spatio-temporal changes

that are caused by relative motion between a camera and the scene. For image-based mod­

eling, often one is interested in reconstructing a static scene filmed by a moving camera,

although other possibilities exist. These structure from motion methods seek to determine

the shape, or structure of observed objects as well as the relative motion of the moving

camera from an image sequence. Often, the scene is sampled at video rates, so the spatial

differences (disparities) between consecutive frames are much smaller than that of stereo

methods, and correspondences are easier to find. Quite a bit of literature on structure from

motion exists; Jebara, Azarbayejani, and Pentland [51] provide a nice overview. Here,

we focus on methods designed for full perspective cameras, arbitrary camera motion, and

scene reconstruction for new view synthesis.

Pollefeys, Koch, Vergauwen, and Van Gool [86] have developed a structure from mo­

tion approach that uses video from an uncalibrated camera with a variable focal length.

Since 3D structure is poorly estimated for small baselines, the authors track corner features

over many views so that the effective baseline is large. This establishes a sparse set of

point correspondences. A robust algorithm uses these point correspondences to estimate

the fundamental matrix relating consecutive views. Incorporating the epipolar constraint,

more correspondences are found, and the epipolar geometry is refined. Points in projec­

tive space are computed using triangulation between views. This results in a projective

3D model comprised of sparse points. The authors then show how to self calibrate, which

upgrades the reconstruction from projective to metric. The authors rectify the images and

then perform dense stereo correlation-based matching between consecutive images. Depth

values are refined, and used to build polygonal, texture-mapped model. New views of the

scene of the model can then be synthesized by rendering the model.

Zisserman, Fitzgibbon, and Cross [133] [38] have developed a similar structure from

motion reconstruction method. Like [86], Zisserman et al. locate corners in the images

13

and robustly estimate the fundamental matrix between image pairs. Unlike [86], the au­

thors additionally locate line segments in each image and estimate the trifocal tensor using

image triplets. The projective location of points and lines are merged among all views,

resulting in a sparse set of features in 3D projective space. Adopting Pollefeys et al.'s self-

calibration [85] method, these projective features are upgraded to metric. The authors take

this sparse metric reconstruction and fit planes to the features using a robust technique.

Then, a texture map is extracted from the source image that is most fronto-parallel with

each reconstructed plane. Thus, a planar texture-mapped model is recovered.

Other structure from motion work addresses poor [80, 81] and degenerate camera mo­

tions [121] as well as dynamic scenes [46].

Perhaps the most significant limitation to structure from motion methods is that they

require the images to be closely spaced. Consequently, these methods can become imprac­

tical [27] for modeling a larger scale scene, such as a city block, as they could require an

unwieldy number of images to capture all surfaces of interest. In comparison, many of the

other methods presented in this review have a significant advantage in that they function

well with a sparser sampling of the scene.

2.4 Interactive modeling systems

An interactive modeling system is a user-assisted CAD program that utilizes photographs

and computer vision methods to produce a photo-realistic 3D model of a scene. By includ­

ing a human operator in the modeling process, very accurate 3D models can be generated.

In fact, some of the most compelling three-dimensional reconstructions from multiple im­

ages have been produced using these systems.

Interactive modeling systems are typically designed to reconstruct man-made scenes,

often architectural scenes, which are usually composed of basic shapes. Many of these

shapes contain parallel and orthogonal lines, a fact often required by the reconstruction

program. The input to such a system is a sparse set of photographs. It is important to take

14

as few photographs as possible, since the user must interact with the images.

Becker and Bove [6], Faugeras et al. [35], and Shum, Hei, and Szeliski [105] present

interactive modeling systems. These methods take advantage of parallel and orthogonal

lines common to man-made structures. By having a user specify parallel and/or orthogonal

lines in image space, the authors show how intrinsic and/or extrinsic camera parameters

can be determined. Then, a user identifies features such as lines and planes by clicking

on them in the images, and the system solves for the location of the features in 3D space.

The reconstructions in these papers contain only simple geometry, and in the case of [6],

consist only of planar surfaces. Texture maps are extracted from the images and applied to

the reconstructed geometry, producing a model for new view synthesis.

In Debevec, Taylor, and Malik's [27] system, a user instantiates parameterized geomet­

ric primitives from a vocabulary of simple shapes, such as boxes, prisms, and surfaces of

revolution. Next, the user marks edge features in the images, and marks each corresponding

edge on the appropriate geometric primitive. The system then extracts texture maps from

the images to apply to each geometric primitive, and computes each primitive's location

in 3D space. This typically produces a reasonably accurate model. However, the simple

geometric primitives do not capture some of the finer geometric details in the scene. To

determine how the actual scene deviates from the approximate model, the authors execute

a correlation-based stereo algorithm between pairs of images, producing a dense depth map

for each image. This depth information is then used to produce more accurate renderings

of the model.

Debevec et al.'s system produces high quality reconstructions that attain a degree of

photo-realism unparalleled by most new view synthesis techniques. Their work spurred

development of similar systems [28, 88] as well as consumer software packages. However,

these systems require a fair amount of user interaction during scene modeling, especially

compared to the more automatic scene reconstruction methods presented in this thesis. An­

other limitation of these systems is that they cannot reconstruct arbitrarily shaped surfaces.

15

«

Figure 1: Voxel classifications. For simplicity, this figure shows a 2D voxel space, com­
posed of the three voxel types. Empty space voxels are white, surface voxels are black, and
inner voxels are gray.

2.5 Volumetric approaches

Volumetric approaches represent the scene as a collection of voxels, which are typically

modeled as small cubes arranged on a 3D lattice. In this context, the goal of 3D scene

reconstruction is to determine which voxels represent surfaces in the scene. The recon­

struction algorithm classifies each voxel into one of three categories:

Free Space Voxels These voxels represent free space in the scene. These voxels are made

transparent.

Surface Voxels These voxels represent the surfaces in the scene. These voxels are ren­

dered opaque.

Inner Voxels These voxels are not visible to any camera, and are assumed to be inside

surfaces. These voxels are not typically displayed.

These voxel classifications are shown in Figure 1.

Typical volumetric approaches define a reconstruction volume, the region of space that

encompasses the scene and in which the reconstruction occurs. The reconstruction volume

16

is tesselated into voxels, forming a voxel space. The volumetric reconstruction algorithm

then removes, or carves the free space voxels. Upon completion of the algorithm, the

remaining surface and inner voxels represent the 3D volume of objects in the scene. Note

that this process is similar to the way a sculptor would chip away at a block of marble to

reveal a shape. The surface voxels of the reconstruction model the geometry of the scene

surfaces. These voxels can be colored (or texture-mapped) and rendered to produce new

views of the scene.

This section reviews volumetric approaches to the 3D scene reconstruction problem.

We note that two surveys on the subject appear in the literature [31, 109].

2.5.1 Visual hulls

Perhaps the most straightforward way to reconstruct a 3D scene from multiple calibrated

images is to compute the visual hull. However, before we describe the basic approach, we

begin our discussion of the visual hull with some definitions. Unfortunately, there is some

confusion in the literature regarding the use of the term visual hull.

Visual hull. The visual hulL, is the maximal shape that gives the same silhou­

ette as the actual object for all views outside the convex hull of the object.

This definition is given by Laurentini [57]. Reconstruction of the visual hulLo could require

an infinite number of photographs. We use the term visual hull be the approximation of

the visual hum reconstructed using N photographs. Many papers in the literature do not

distinguish between the two.

Volumetric approaches [40, 76, 87, 116] are commonly employed to reconstruct the

visual hull. Figure 2 gives a visual description of the pipeline. First, photographs of the

scene from multiple viewpoints are taken. Then, each photograph is segmented into a

binary image consisting of foreground and background, thereby producing silhouettes. This

can be achieved by subtracting a known background. Foreground pixels correspond to

points to which the 3D object projects. Everything else is background.

17

4/
'

r» i

Imaging

^ '

T

r^r
•

Segmentation

^ '

Figure 2: Visual hull reconstruction.

18

Each silhouette constrains the region of space in which the true surface is located. One

can back-project rays from the center of projection of an image, through pixels in the sil­

houette, and into 3D space. This defines a cone-shaped wedge emanating from a reference

view, as shown in the bottom image of Figure 2. If these wedges are intersected from all

viewpoints, the resultant shape is the visual hull.

Alternatively, one can project voxels from 3D space into the images. If a voxel projects

only to background in a reference view, then it is not in the visual hull and it is carved. The

remaining voxels model the surface of the object as well as its interior. For efficiency, the

voxel space can be processed in a coarse-to-fine fashion.

The visual hull has several interesting properties. First, although it is only an approxi­

mation to the true shape of the object, it is guaranteed to enclose the object. This is shown

in Figure 3. Second, in 3D the visual hull of an object can be a better or worse approx­

imation of the object than the convex hull depending on the geometry of the object and

the placement of the viewpoints. Third, the size of the visual hull decreases monotonically

with the number of images used in the reconstruction. However, even when an infinite

number of images are used, not all surface concavities can be modeled with a visual hull.

Surface concavities that are not apparent in the silhouettes are not reconstructable using

this method.

Work on volumetric reconstruction of visual hulls first appeared in the early 1980s [70].

Since then, techniques have been developed for arbitrary camera placement [87], efficient

reconstruction [72, 116], weakly calibrated cameras [43], and dynamic scenes [71, 72, 76].

In Chapter 7, we examine one of these methods [72] in some detail.

Reconstruction of the visual hull has some advantages. First, the visual hull is simple

to compute, as one does not need to model visibility of the scene during reconstruction.

Second, assuming accurate segmentation of the photographs, visual hull methods are ro­

bust to reconstructing surfaces that are non-Lambertian or periodically or homogeneously

textured. The disadvantages of visual hull approaches are that background segmentation

19

Visual hull

Figure 3: An example visual hull. In this 2D example, a square shape is photographed by
four cameras. The visual hull, which contains the true scene, is shown in gray.

20

can be difficult, and by reconstructing the scene using binary silhouettes, much useful color

information that could be used to attain more accurate 3D reconstructions is discarded.

2.5.2 Photo hulls

While a visual hull reconstruction can be rendered to produce new views of the scene, the

visual geometry is typically not very accurate. This can diminish the photo-realism of the

synthetic new views. To increase the geometric accuracy, more information than silhouette

data must be used during reconstruction.

An obvious choice is color (or luminance, for gray-scale images). Many researchers

have attempted to reconstruct 3D scenes by analyzing colors across multiple viewpoints,

looking for a 3D model that, when projected to reference views, reproduces the pho­

tographs. Unfortunately, the problem is ill-posed. For a given set of 2D photographs,

multiple 3D models that reproduce the photographs can and often do exist.

In their insightful work, Kutulakos and Seitz [54] introduce the photo hull, which is the

largest shape that contains all reconstructions in the equivalence class of 3D models that

reproduce the photographs. The photo hull is unique, and is itself a reconstruction of the

scene. Better yet, it is the tightest possible bound on the shape of the true scene that can be

inferred from N photographs, in the absence of a priori geometric or point correspondence

information [54].

Critical to the computation of the photo hull is the notion of photo-consistency. A point

in 3D space is said to be photo-consistent with a photograph if

• The point does not project to background.

• When the point is visible, the light exiting the point (i.e., radiance) in the direction of

the camera is equal to the observed color of the point's projection in the photograph.

Since we model points with voxels, the photo hull is found by identifying the spatially

largest set of voxels that are photo-consistent with all the photographs taken of the scene.

21

To compute the photo hull, we require a method to determine photo-consistency. As­

sume that a point (or voxel) is visible to K of the TV reference views. As described in [54],

a photo-consistency check is an algorithm that that takes as input at least K colors from

the photographs, K 3D vectors going from the point (or voxel) toward each camera, and

all light source positions (for the non-Lambertian case), and determines if it is possible for

the point to reflect light of the observed color in each photograph. The photo-consistency

check is assumed to be monotonic in that if a point (or voxel) is found to be inconsistent

when visible to M cameras, it will still be inconsistent when visible to K > M cameras.

Such a photo-consistency check is limited to the class of radiance models that are lo­

cally computable - that is, the radiance of any point in the scene is independent of the

radiance of any other point in the scene [54]. Thus, scenes with transparency would not

be reconstructable using such a photo-consistency check. However, a wide class of param­

eterized radiance models are valid. An important special case is the Lambertian model,

which reflects light with equal intensity in all directions [39]. For this model, the photo-

consistency check simply measures the similarity of the colors in the projection of the

point (or voxel) into each photograph. If the colors are similar, the point (or voxel) is

photo-consistent. Otherwise, it is inconsistent. We will describe measures for computing

the similarity of colors across viewpoints in Section 3.1.

By taking advantage of these additional color constraints, the photo hull geometry is

often a tighter fit to the true scene geometry than the visual hull. That is,

True Scene C Photo Hull C Visual Hull

Figure 4 shows an example of the photo hull for a square shape photographed by four

cameras. This is the same shape that appears in Figure 3. We note that the photo hull can

contain concavities that are not possible to model with the visual hull.

The standard approach for computing a photo hull is space carving [32, 54, 100]. This

class of volumetric algorithms reconstructs the scene by removing (carving) voxels that are

not photo-consistent with the reference views. These approaches begin with a voxel space

22

Photo hull

Figure 4: An example photo hull, taken from [54J. In this 2D example, a square shape is
photographed by four cameras. The photo hull is shown in gray. Note this shape is a tighter
fit than the visual hull shown in Figure 3.

23

Figure 5: Four of 36 photographs of a cloth toy. This data set is provided courtesy of Tom
Malzbender and Bruce Culbertson.

composed of opaque voxels. Voxels that are visible to the cameras are tested for photo-

consistency. The inconsistent voxels are carved (made transparent), which changes the

visibility of other voxels in voxel space. The algorithm continues to iterate until all visible

voxels are photo-consistent. When these remaining photo-consistent voxels are assigned

the colors they project to in the photographs, they form a model that closely resembles the

scene. We will describe two of these approaches [54, 100] in more detail in Chapter 3.

An example of a scene reconstructed using the algorithm from [100] is provided in

Figures 5 and 6. This reconstruction was computed of a cloth toy using 36 photographs,

four of which are shown in Figure 5. After reconstructing the scene, the 3D model was

rendered to a synthetic viewpoint. The new synthesized view is shown in Figure 6 (a),

along with the corresponding depth map (b).

Space carving approaches are very powerful, and have captured the interest of many re­

searchers who have proposed extensions to or reformulations of the basic approach. Prock

24

(a) (b)

Figure 6: Reconstruction of a cloth toy using a space carving algorithm. We show a new
synthesized view (a) and the corresponding depth map (b).

and Dyer [91] present a multi-resolution approach as well as hardware implementations

for improved efficiency. De Bonet and Viola [11] address the problem of reconstructing

scenes that have opacity. Researchers have performed space carving using intrinsically

calibrated [33] and weakly calibrated [63, 95] cameras. Vedula et al. [126] link two time-

consecutive voxel spaces together for reconstructing shape and motion of time-varying

scenes. Space carving was recast in a probabilistic framework by Broadhurst et al. [12].

Carceroni and Kutulakos [15] propose a surfel-based approach for reconstructing time-

varying scenes with various reflectances.

Indeed, the goal of this thesis is to introduce novel approaches that improve upon the

quality, efficiency, and applicability of these space carving methods.

2.5.3 Level set methods

Another class of volumetric reconstruction algorithms is those that employ level set meth­

ods [83, 102]. Level set theory was originally developed to model the evolution of propa­

gating interfaces, but has since been applied to a wide array of problems.

For 3D surface evolution, these methods usually embed a surface as the zero-level set

of a volumetric function. This function is sampled on a discrete 3D lattice, forming a voxel

space. The surface moves along its surface normal, subject to intrinsic, data-driven, and

25

independent forces. Level set theory provides an accurate and stable numerical scheme

that solves the partial differential equations (PDEs) that characterize the motion for the

surface. Topological changes are naturally accommodated in this framework.

Faugeras and Keriven [34] present a level set algorithm for 3D scene reconstruction.

Their method begins with an initial surface that encompasses the scene being reconstructed.

The surface then flows inward, with a speed on the surface proportional to the mismatch of

textures determined by projecting a small patch on the surface into the reference views. The

surface slows at regions that match, yielding a reconstruction that models the 3D scene. A

polygonal surface representing the zero-level set can be extracted from the volume using

the marching cubes algorithm [62]. This technique was extended by Colosimo [24] et al.

to support multi-resolution reconstruction.

Yezzi and Soatto [130] introduce a stereoscopic segmentation approach designed for

radiance functions with smooth statistics. Their region-based method simultaneously seg­

ments the N photographs by evolving a 3D surface using level set methods. They demon­

strate that their approach is resistant to errors in camera calibration and allows for a bi­

directional flow. In a later paper, this work is extended to address scenes with speculari-

ties [52].

2.6 Summary

This chapter reviewed new view synthesis techniques. The goal of these methods is to gen­

erate photo-realistic synthetic views given a collection of photographs taken of a scene. We

presented image-based rendering as well as image-based modeling methods. Image-based

rendering algorithms typically warp or resample the photographs to generate new views.

Image-based modeling approaches first reconstruct a 3D model of the scene geometry, and

then render the model to produce new views of the scene.

While there has been much work on the problem of new view synthesis, the problem

has yet to be fully solved. In this thesis, we introduce methods that extend the state of the

26

art in volumetric image-based modeling methods. Volumetric ipproaches have significant

advantages over competing methods.

Comparing to image-based rendering methods, volumetric scene reconstruction ap­

proaches compute a 3D model of the scene. A 3D model is a more complete representation

that has wider application than simply new view synthesis. Reconstructed 3D models have

been used in robot navigation, reverse engineering [26], object recognition [7, 77], motion

capture [104], model building [27, 126], teleconferencing, and more. Furthermore, this 3D

representation is often much more compact than light field approaches, which rely on a

dense sampling of the plenoptic function.

Multi-view stereo matching and structure from motion methods can achieve good qual­

ity reconstructions. However, volumetric approaches like space carving have a key ad­

vantage in that they explicitly model visibility when matching colors across viewpoints.

Reasoning about occlusion given two or more views of a scene is difficult in the 2D space

of the images, but is relatively simple in 3D world space. Related to this, in volumetric

approaches, the cameras can be separated by larger baselines without degrading accuracy

or runtime. Another advantage is that volumetric approaches inherently integrate a number

of reference views to yield a dense reconstruction. However, in multi-view stereo matching

and structure from motion methods, formation of a coherent 3D model from triangulated

correspondences is an additional step that is error-prone.

For these reasons, we argue that volumetric approaches are well suited for reconstruct­

ing 3D models of scenes for new view synthesis. The remaining chapters of this thesis

present methods that extend the state of the art in volumetric scene reconstruction. We in­

troduce techniques that improve the quality, applicability, and efficiency of existing meth­

ods. The next chapter presents a volumetric reconstruction algorithm that generalizes visi­

bility to support arbitrary camera placement while using the full visibility of the scene.

27

CHAPTER III

GENERALIZED VOXEL COLORING

This chapter describes generalized voxel coloring (GVC), which encompasses two new

approaches to computing visibility during a volumetric 3D scene reconstruction. Visibility

is an essential, yet subtle aspect to this class of algorithms and several interesting variations

have been proposed.

Before describing GVC, we discuss the computation of photo-consistency, and describe

two previous volumetric algorithms that use photo-consistency to reconstruct a scene. We

then describe how our generalized voxel coloring approach extends these earlier approaches.

3.1 Photo-consistency

Computation of the photo hull relies upon establishing the photo-consistency of voxels.

Throughout this thesis we will assume that the scene is or is nearly Lambertian. In this

case, a voxel that models a scene surface will project to a similar color in each of the

reference views, as shown in Figure 7. This fact is used as a constraint for identifying

scene geometry. We note that the use of other reflectance models is possible [23], but may

require calibration of light sources and computation of surface normals.

3.1.1 Visibility

Visibility is required to correctly compute photo-consistency, as shown in Figure 8. In this

figure, a voxel that does model a scene surface could erroneously be declared inconsistent if

visibility is not taken into consideration. The voxel is not visible to the rightmost camera,

which observes a blue color resulting from occluding geometry in the scene. Only the

viewpoints that have visibility of a voxel should contribute to the photo-consistency check.

28

Blue
RecKJ

($ "f ^

\ , / ^ ^ — S c e n e - ^ Scene

> • ^ B ^ M | r *""""""" surface ><j£*r-
<—~~ surface

Photo-consistent Inconsistent

(a) (b)

Figure 7: Using photo-consistency to identify scene surfaces (Lambertian example). In
(a), a voxel that models a scene surface projects to consistent colors in the reference views.
In (b), a voxel that does not model a scene surface projects to different, inconsistent colors.

JT^\ £ RedO
(p e d ^ ^ Bluep

Scene
surface

Figure 8: Visibility is required to correctly compute photo-consistency.

29

Many different approaches to computing photo-consistency have been developed and

analyzed [13, 84]. Below we present two simple photo-consistency measures that are used

to perform the reconstructions in this thesis.

3.1.2 A single threshold measure

Let vis(V, if) denote the set of visible pixels to which a voxel V projects in reference view i.

The number of pixels in vis(V,z) varies depending on the resolution of the voxel space, the

resolution of the reference view, the imaging geometry, the relative position of the camera

and the voxel, and occlusions in the scene. Let vis(V) be the set of pixels to which a voxel

V projects in all the images. That is, vis(V) = U/ vis(V, i).

For RGB images, one can compute the mean in each color channel (r,g,b) and a stan­

dard deviation o~ for all the pixels in vis(V). Specifically, we compute

i N

~r = jjfrj (1)

1 N

S = 7 7 1 > ; (2)

1 N

»£-•
(3)

a = Ah^+sj+b])-?^-t-b2
 (4)

where (r;-,g;,Z>;) is the y'th of N colors in vis(V).

Intuitively, the pixel colors match when <r is small. A simple approach to determine

photo-consistency, proposed in [100], is to threshold the standard deviation a. That is,

(True, if o < T\
(5)

False, otherwise

where T\ is user specified or computed from the noise in the reference views. We note that

this approach of thresholding the standard deviation also works with color spaces other

than RGB.

30

This measure of photo-consistency is capable of adequately reconstructing many scenes,

especially those that have a mostly homogenous color, such as the one shown in Figure 9

(a). However, its drawback is that it performs poorly for voxels that project to consistent,

yet highly varying colors in the images, such as those in (b) and (c) of Figure 9. In these

cases, multiple different colors will be observed for the voxel in the images. Consequently,

the standard deviation will be high, the photo-consistency measure will incorrectly return

false, and the voxel will erroneously be carved.

\y \y
(a) (b)

^ v S*

2L
(c) (d)

Figure 9: Handling texture and edges. In (a), a voxel represents a homogeneous region,
for which both o~ and a are small. In (b) and (c), a voxel represents a textured region and
an edge, respectively, for which both o~ and ~6 are large. In (d), a voxel representing free
space has a large o~ and small o\ As discussed in Section 3.1.3, cf is the standard deviation
computed per reference view and averaged across the viewpoints.

Propagating errors can be caused if the photo-consistency measure incorrectly causes

voxels to be carved. The removal of a voxel that should be photo-consistent incorrectly

changes the visibility of other photo-consistent voxels, which may then incorrectly become

inconsistent. This process can iterate, propagating the errors, and in the worst case, no

voxels will remain in the volume upon completion of the reconstruction algorithm.

31

3.1.3 An adaptive threshold measure

Voxels that represent textured surfaces and edges, as shown in Figure 9 (b) and (c), will

project to pixels with a high standard deviation in each image. We use this fact to modify

the consistency measure described above to handle such surfaces. Let the standard de­

viation of vis(V, i), summed over each color channel, be o~,. Our new photo-consistency

measure is then

I True, i f o r < T i + o T 2
(6)

False, otherwise

where a is the average of c, and Tz is a second user-defined threshold.

This consistency measure simply adds an additional term 0T2 to Equation 5. This

term spatially adapts the consistency measure based on the colors observed in the voxel's

projection. The value of (7 will be small when a voxel projects to homogenous colors

in each image. In this case, there will be little difference between the two consistency

measures 5 and 6. If these colors are similar (as in Figure 9 (a)), the voxel will be declared

consistent. If these colors are dissimilar, (as in Figure 9 (d)), the voxel will be declared

inconsistent. When the voxel projects to highly varying pixels in each image, the ~o term

will increase the maximum value of a allowable for the voxel to be declared consistent.

This allows for textured surfaces, as well as edges, to be correctly reconstructed. The

threshold T2 allows one to weight the contribution of this term to the photo-consistency

measure.

The two-threshold consistency measure described above is effective at reconstructing

Lambertian scenes. It will be used to produce all the reconstructions presented in this

thesis. Its main drawback is that it requires two parameters, T\ and T2, to be specified

prior to reconstruction. These thresholds are not typically known in advance, and to find

them, one sweeps the parameter space until values are found that achieve good results.

Other researchers have investigated alternative measures that require little or no parameter

tuning [13, 107].

32

3.2 Voxel coloring - a single planar sweep

We now describe Seitz and Dyer's voxel coloring algorithm [100], which was the first

volumetric approach to use photo-consistency to reconstruct a color 3D scene.

The voxel coloring algorithm begins with a reconstruction volume of initially opaque

voxels that encompasses the scene to be reconstructed. As the algorithm runs, opaque vox­

els are tested for photo-consistency and those that are found to be inconsistent are carved.

The algorithm stops when all the remaining opaque voxels are photo-consistent. When

these final voxels are assigned the colors they project to in the input images, they form a

model that closely resembles the scene.

As voxel coloring progresses, opaque voxels occlude each other from the input images

in a complex and constantly changing pattern. To test the photo-consistency of a voxel, its

visibility must first be determined. Since this is done many times during a reconstruction,

it must be performed efficiently.

To simplify the computation of voxel visibility and to allow a scene to be reconstructed

in a single scan of the voxels, Seitz and Dyer imposed what they called the ordinal visibility

constraint on the camera locations. It requires that the cameras be placed such that all the

voxels are visited in a single scan in near-to-far order relative to every camera. Typically,

this condition is met by placing all the cameras on one side of the scene and scanning

voxels in planes that are successively further from the cameras. Thus, the transparency

of all voxels that might occlude a voxel V is determined before V is checked for photo-

consistency. This insures that the visibility of a voxel stops changing before it needs to be

computed, which is important since every voxel is visited just once. An occlusion bitmap,

with one bit per input camera pixel, is used to account for occlusion. These bits are initially

clear. When a voxel is found to be consistent, meaning it will remain opaque, all the

occlusion bits in the voxel's projection are set, as shown in Figure 10. The visibility set of

a voxel is simply the pixels in the voxel's projection whose occlusion bits are clear.

33

Occlusion
bitmaps i l l

T T ^f

Plane sweeping
through scene

4 \

i Sweep
direction

• m MB mm

< P * A
i

f
^

X \i ff
i \ & / \ 11 /

ff
i

/ v * f

Figure 10: Voxel coloring via a planar sweep. On the left, a voxel is found to be consistent,
and a bit in the occlusion bitmap is set for each pixel in the projection of a consistent
voxel into each image, indicated by the gray pixels in the occlusion bitmaps. On the right,
visibility of the lowest voxel is established by examining the pixels to which the voxel
projects. These pixels are shown in black. If the occlusion bits have been set for these
pixels, then the voxel is occluded, as is the case for the two middle cameras.

3.3 Arbitrary camera placement

The voxel coloring algorithm described in the previous section is elegant and efficient.

However, the ordinal visibility constraint is a significant limitation. Since the voxels must

be ordered from near to far relative to all the cameras, the cameras cannot surround the

scene. Thus, some surfaces will not be visible in any image and hence cannot be recon­

structed. Because it is often desirable to obtain a model that resembles the scene from

every direction, several variations of voxel coloring have been developed to circumvent

this limitation. If we surround the scene with cameras, we give up the ordinal visibility

constraint. Without the constraint, there is no order in which to scan voxels that guarantees

their visibility will not change after we check their photo-consistency. Hence, algorithms

that allow arbitrary camera placement must test voxels repeatedly for photo-consistency

until their visibility stabilizes.

34

set all voxels opaque
loop {

AllVoxelsConsistent = TRUE
for every opaque voxel V {

determine vis(V)
if vis(V) has consistent color {

assign V the average color of all pixels in vis(V)
} else {

AllVoxelsConsistent ~ FALSE
set V to be transparent

}
}
if AllVoxelsConsistent = TRUE

quit

}

Figure 11: Pseudo-code for space carving algorithms.

Figure 11 gives the general approach for voxel coloring algorithms that allow arbi­

trary camera placement. In the inner loop, the visibility of voxels is found, their photo-

consistency is checked, and they are carved if they are found to be inconsistent. If one

voxel is carved, the visibility of other voxels potentially changes, invalidating any photo-

consistency tests they may have passed. Hence, there is an outer loop that repeats the

photo-consistency checking until no carving occurs in the inner loop. No carving occurs

on the final iteration of the outer loop so no testing is invalidated and the final set of opaque

voxels is guaranteed to be photo-consistent.

When the algorithm in Figure 11 begins to run, the model bears little resemblance to

the scene. Yet, the algorithm computes the visibility for voxels, and carves those found to

be inconsistent, based on this model. It is reasonable to wonder if the algorithm might fail

because of carving voxels early on that would be photo-consistent in the final model. As

described in [25], this cannot happen if a monotonic photo-consistency measure is used.

For such a photo-consistency measure, if a set of pixels is inconsistent, any superset of

those pixels is also inconsistent. Since the algorithm changes only opaque voxels to trans­

parent and never vice versa, remaining opaque voxels can only become more visible as

35

the algorithm runs and the pixels that, can see a voxel at one point in time will be a sub­

set of those that see the voxel at any later time. Thus, if the photo-consistency measure

ever finds a voxel to be inconsistent, the voxel will also be inconsistent in the final model.

Therefore, when using a monotonic photo-consistency measure, the algorithm never carves

a voxel that would be consistent in the final model. In this sense we say that carving is

conservative.

We note that in this thesis, we use the term space carving to refer to the class of vol­

umetric reconstruction algorithms that allow for arbitrary camera placement and also use

photo-consistency to carve away voxels that do not model scene surfaces. These space

carving algorithms include [25, 32, 54], and are grouped together by some authors writ­

ing papers in the computer vision literature. Below, we refer to the algorithm in [54] as

Kutulakos and Seitz's space carving approach.

3.4 Space carving: multiple planar sweeps

Kutulakos and Seitz [54] present a space carving algorithm that implements Figure 11.

It always scans voxels for photo-consistency by evaluating a plane of voxels at a time,

as is done with voxel coloring. Unlike voxel coloring, their approach performs multiple

scans, typically along the positive and negative directions of each of the three axes. The

algorithm forces the scans to be near-to-far, relative to the cameras, by using only images

whose cameras have already been passed by the moving plane. Thus, when a voxel is

evaluated, the transparency is already known of other voxels that might occlude it from the

cameras currently being used. Because carving is conservative, the set of uncarved voxels

is a shrinking superset of the desired color-consistent model as the algorithm runs.

Kutulakos and Seitz's approach achieves the goal of allowing arbitrary camera place­

ment. For simplicity, the original formulation of the algorithm [56] used only a subset of

the cameras that have visibility of a voxel when computing photo-consistency. Such an ap­

proach can produce a model that includes some inconsistent voxels. A later enhancement

36

to the algorithm [54] describes some additional bookkeeping that enables the method to

compute visibility exactly.

3.5 Generalized voxel coloring

Now that we have reviewed voxel coloring and Kutulakos and Seitz's space carving algo­

rithm, we are ready to present our new algorithm, generalized voxel coloring (GVC). The

goal of GVC is to reconstruct the scene using the exact visibility while supporting arbi­

trary camera placement. In this spirit, it is similar to the enhanced space carving algorithm

described in [54]. However, GVC has several advantages that will be described below.

GVC encompasses two different methods, GVC-IB and GVC-LDI, for computing scene

visibility during a volumetric reconstruction. GVC-LDI is an enhancement of GVC-IB, our

basic algorithm. The carving of one voxel potentially changes the visibility of other vox­

els. When an uncarved voxel's visibility changes, its photo-consistency should be reeval­

uated and it, too, should be carved if it is then found to be inconsistent. GVC-LDI uses

layered depth images (LDIs) [73, 103] to determine exactly which voxels have their vis­

ibility changed when another voxel is carved and thus can reevaluate exactly the right

voxels. In the same situation, GVC-IB does not know which voxels need to be reevalu­

ated and so reevaluates all voxels in the current model. Therefore, GVC-LDI performs

significantly fewer photo-consistency evaluations than GVC-IB during a reconstruction.

However, GVC-IB uses considerably less memory than GVC-LDI. Like Kutulakos and

Seitz's space carving approach, both GVC-IB and GVC-LDI initially assume all voxels are

opaque, i.e., uncarved. They carve inconsistent voxels until all those that remain project

into consistent colors in the images from which they are visible.

3.5.1 GVC-IB

GVC-IB determines visibility as follows. First, every voxel is assigned a unique ID. Then,

an item buffer [128] is constructed for each image. An item buffer, shown in Figure 12

37

Item Buffer

B B l

K/ /
M i H , pm 1 -"n

V L

- B

FT"!

+LTT1 t

B A

/ /

ofii

LDI

ft

to/1 iqBM-mffl

(a) (b)

Figure 12: GVC data structures. An item buffer is shown in (a), and a layered depth image
is shown in (b). For simplicity, we show a 2D scene captured by ID cameras.

(a), contains a voxel ID for every pixel in the reference view. To compose an item buffer,

each voxel is rendered to a camera using z-buffering, however, instead of storing a color,

the voxel ID is stored. Each pixel in the item buffer will then contain the ID of the closest

voxel that projects onto the pixel. This is exactly the visibility information we need when

computing photo-consistency.

Once valid item buffers have been computed for the images, it is then possible to com­

pute the set vis(V) of all pixels from which the voxel V is visible. To compute vis(V), we

first project V into each image. Then, for every pixel P in the projection of V, if P's item

buffer value equals V's ID, then P is added to vis(V). To check the photo-consistency of a

voxel V, we apply a photo-consistency function consist() to vis(V).

Since carving a voxel changes the visibility of the remaining uncarved voxels, and since

we use item buffers to maintain visibility information, the item buffers need to be updated

periodically. GVC-IB does this by recomputing the item buffers from scratch. Since this

is time consuming, we allow GVC-IB to carve many voxels between updates. As a result,

the item buffers are out-of-date much of the time and the computed set vis(V) is guaranteed

only to be a subset of all the pixels from which a voxel V is visible. However, since carving

is conservative, no voxels will be carved that should not be carved. During the final iteration

of GVC-IB, no carving occurs so the visibility information stays up-to-date. Every voxel

is checked for photo-consistency on the final iteration so it follows that the final model is

38

photo-consistent.

As carving progresses, each voxel is in one of the three categories described in Sec­

tion 2.5 of this thesis:

• Free space voxel: It has been found to be inconsistent and has been carved.

• Surface voxel: It is on the surface of the set of uncarved voxels and has been found

to be consistent whenever it has been evaluated.

• Inner voxel: It is not visible to any of the reference views and its photo-consistency

is undefined.

We use an array of bits, one per voxel, to record which voxels have been carved. This

data structure is called 'carved' in the pseudo-code Figure 13 and is initially set to false for

every voxel. We maintain a data structure called the surface voxel list (SVL) to identify

the second category of voxels. The SVL is initialized to be the set of voxels that are not

surrounded by other voxels. The item buffers are computed by rendering all the voxels on

the SVL to each reference view. Though inner voxels are uncarved, they do not need to be

rendered into the item buffers because they are not visible from any images. When a voxel

is carved, adjacent inner voxels become surface voxels and are added to the SVL. To avoid

adding a voxel to the SVL more than once, we need a rapid means of determining if the

voxel is already on the SVL; hence we implement the SVL as a hash table. When GVC-

IB has finished, the final set of uncarved voxels may be recorded by saving the function

carved() or the SVL.

3.5.2 GVC-LDI

GVC-IB computes visibility in a relatively simple manner that makes efficient use of mem­

ory. However, the visibility information is time consuming to update. Hence, GVC-IB

updates it infrequently and it is out-of-date much of the time. This does not lead to in­

correct results but it does result in inefficiency because a voxel that would be evaluated as

39

initialize SVL
for every voxel V

carved[V) - false
loop {

visibilityChanged = false
compute item buffers by rendering voxels on SVL
for every voxel V G SVL {

compute vis(V)

if (consist(vis(V)) = false) {
visibilityChanged = true
carved(V) = true
remove V from SVL
for all voxels N that are adjacent to V

if (carved (N) = false and N f SVL)
add N to SVL

}
}
if (visibilityChanged = false) {

save voxel space
quit

}
}

Figure 13: GVC-IB pseudo-code.

40

inconsistent using all the visibility information might be evaluated as consistent using a

subset of the information. Ultimately, all the information is collected but, in the meantime,

voxels can remain uncarved longer than necessary and can therefore require more than

an ideal number of photo-consistency evaluations. Furthermore, GVC-IB reevaluates the

photo-consistency of voxels on the SVL even when their visibility (and hence their photo-

consistency) has not changed since their last evaluation. By using layered depth images

instead of item buffers, GVC-LDI can efficiently and immediately update the visibility

information when a voxel is carved and also can precisely determine the voxels whose

visibility has changed.

The item buffers used by the GVC-IB method record at each pixel P just the closest

voxel that projects onto P. In contrast, the LDIs store at each pixel a list of all the surface

voxels that project onto P as shown in Figure 12 (b). These lists, which in the pseudo-code

are called LDI(P), are depth sorted according to the distance of the voxel to the image's

camera. The head of LDI(P) stores the voxel closest to P, which is the same voxel an item

buffer would store. Since the information stored in an item buffer is also available in an

LDI, vis(V) can be computed in the same way as in GVC-IB. The LDIs are initialized by

rendering the SVL voxels.

The uncarved voxels whose visibility changes when another voxel is carved come from

two sources, as shown in Figure 14:

• They are inner voxels adjacent to the carved voxel and become surface voxels when

the carved voxel becomes transparent.

• They are already surface voxels (hence they are in the SVL and LDIs) and are often

distant from the carved voxel.

Voxels in the first category are trivial to identify since they are next to the carved voxel.

Voxels in the second category are impossible to identify efficiently in the GVC-IB method;

hence, that method must repeatedly evaluate the entire SVL for photo-consistency. In

41

• Surface voxel

[] Inner voxel

E2 Voxel to be carved

• Voxel that changes visibility

Figure 14: Voxels that change visibility.

GVC-LDI, voxels in the second category can be found easily with the aid of the LDIs;

they will be the second voxel on LDl(P) for some pixel P in the projection of the carved

voxel. GVC-LDI keeps a list of the SVL voxels whose visibility has changed, called the

changed visibility SVL (CVSVL in the pseudo-code in Figure 15). These are the only

voxels whose photo-consistency must be checked. Carving is finished when the CVSVL is

empty.

When a voxel is carved, the LDIs (and hence the visibility information) can be updated

immediately and efficiently. The carved voxel can be deleted easily from LDI(P) for every

pixel P in its projection. The same process automatically updates the visibility information

for the second category of uncarved voxels whose visibility has changed; these voxels move

to the head of LDI lists from which the carved voxel has been removed and they are also

added to the CVSVL. Inner voxels adjacent to the carved voxel are pushed onto the LDI

lists for pixels they project onto. As a byproduct of this process, we learn if the voxel is

visible. If so, we put it on the CVSVL. Pseudo-code for GVC-LDI appears in Figure 15.

3.5.3 Results

We have reconstructed a number of scenes using the GVC-IB and GVC-LDI algorithms.

Figures 16, 17, 18, and 19 demonstrate the process for a typical example. In Figure 16,

we show two of 17 reference views of a toy model of Ghirardelli Square. These images

were taken with a resolution of 1152 x 872 pixels. The object was placed on a black

I 1 \

• + - - - - r a — -
1 •!•'• --

I~J \

' ' "' LE

t. ._±_

42

initialize SVL
render SVL to LDIs
for every voxel V

carved(V) = false
copy SVL to CVSVL
while (CVSVL is not empty) {

delete V from CVSVL
compute vis{V)
if (consist(vis(V)) = false) {

carved(V) = true
remove V from SVL
for every pixel P in projection of V into all images {

if (V is head of LDI(P))
add next voxel on LDI (P) (if any) to CVSVL

delete V from LDI(P)
}

for every voxel N adjacent to V with N ^ SVL {
N_is_visible = false
for every pixel P in projection of N to all images {

add N to LDI(P)
if (N is head of LDI(P))

jV_is_visible = true

}
add N to SVL
i f (Af_is_vis ible)

add iV t o CVSVL
}

}

}

save voxe l space

Figure 15: GVC-LDI Pseudo-code.

43

Figure 16: Two of 17 reference views of a toy model of Ghirardelli Square.

and white checkerboard pattern so that the cameras used to photograph the scene could be

calibrated. Calibration was performed using Tsai's method [124]. For each camera, the

calibration gives the pose, shown in Figure 17. The green polyhedron in the figure is the

reconstruction volume.

The reconstruction volume was tesselated into 168 x 104 x 256 voxels. At this reso­

lution, each voxel had a physical size of 0.7 mm per side. Figure 18 shows a GVC-LDI

reconstruction in progress. In the figure, the green voxels are the voxels on the CVSVL.

Initially, all voxels visible to the reference views are placed on the CVSVL, as shown in the

left-most image of the figure. The algorithm carves the inconsistent voxels, which exposes

new surface voxels that must be processed. Each voxel that is photo-consistent is given a

color equal to its mean (r,g, b) of vis(V), and moved to the surface voxels list. As the algo­

rithm iterates, more photo-consistent voxels are found and the scene surfaces emerge. The

algorithm converges when all visible voxels are photo-consistent. The figure shows that

GVC processes the voxels in a more general order than the plane sweeping approach used

in voxel coloring and Kutulakos and Seitz's space carving approach. Once the reconstruc­

tion is complete, new views of the scene can be synthesized by rendering the reconstructed

surface to new viewpoints, as shown in Figure 19.

44

' • ' • "

. . . ••

- '-.

:

Figure 17: Visualization showing camera placements and reconstruction volume for the
Ghirardelli data set.

Figure 18: An example reconstruction using GVC-LDI.

45

filnl

Figure 19: New view synthesis via rendering of the reconstruction.

Reconstruction results for multiple data sets appear in Figure 20. In this figure, we

show one reference view, one new view synthesized from the reconstruction, and the cor­

responding depth map for each data set. Details regarding the number and resolution of the

images as well as the resolution of the voxel space for these data sets appear in Table 1.

Table 2 presents the runtime and memory requirements for GVC reconstructions of

these data sets. Reconstructions were performed on a 2.0 GHz Pentium 4 machine with 1

GB of RAM. The algorithm ran completely in memory so there was no paging to the hard

disk.

GVC-IB and GVC-LDI differ significantly in their memory usage. Storage of the refer­

ence views and the item buffers accounts for the majority of memory consumed by GVC-

IB. In contrast, in GVC-LDI, the LDIs dominate the memory usage. Each LDI consumes

an amount of memory roughly proportional to the number of image pixels times the depth

complexity of the scene. Consequently, GVC-LDI uses considerably more memory than

GVC-IB, as shown in Table 2. Memory consumed by the carve and SVL data structures is

relatively insignificant, and therefore the voxel resolution has little bearing on the memory

requirements for GVC-IB and GVC-LDI.

GVC-LDI executes significantly faster that GVC-IB. For the Ghirardelli, Broccoli, and

46

Data Set Number of Images Image Resolution Voxel Resolution
Ghirardelli 17 1152x872 168x104x256
Broccoli 17 576 x 436 168x136x184
Tower 36 1536x1024 141 x 141 x 176

Table 1: Data sets and parameters for GVC reconstructions.

Data Set Algorithm Runtime (h:m:s) Memory Usage
Ghirardelli GVC-IB 1:28:39 157.2 MB
Ghirardelli GVC-LDI 0:37:16 284.6 MB
Broccoli GVC-IB 1:22:39 45.5 MB
Broccoli GVC-LDI 0:39:00 177.9 MB
Tower GVC-IB 2:19:29 472.1 MB
Tower GVC-LDI 1:04:24 724.5 MB

Table 2: Runtime and memory usage for GVC reconstructions.

Tower data sets, GVC-LDI ran 2.4, 2.1, and 2.2 times faster than GVC-IB. There are

two reasons for this improvement. First, GVC-LDI always uses the full visibility of the

scene when computing photo-consistency. GVC-IB, in contrast, often uses out-of-date

item buffers, resulting in some inconsistent voxels being declared photo-consistent on the

Nth iteration of the algorithm. Once the item buffers are updated on the JV+ 1st iteration,

these inconsistent voxels are carved.

Second, GVC-LDI processes only the voxels that change visibility. Near convergence,

only a small number of voxels are changing visibility so the algorithm is exceptionally fast.

GVC-IB processes all voxels on the SVL, regardless of whether or not they have changed

visibility. Medium to high resolution scenes will have a large number of voxels on the SVL,

so GVC-IB will be significantly slower than GVC-LDI. By processing only the voxels that

change visibility, GVC-LDI minimizes the number of photo-consistency checks required

to reconstruct the scene.

In this thesis we do not compare results from the generalized voxel coloring algorithm

47

1
isiv •"WUttuiuu

^ ^ ^ • p huBoiiinDM

J E E F H I
^

Ghirardelli

Broccoli

Tower

Figure 20: Reconstruction results for several data sets.

48

to those computed using the voxel coloring or Kutulakos and Seitz's space carving ap­

proach. The voxel coloring algorithm would not be able to reconstruct many of our scenes,

like the Broccoli or Ghirardelli data sets, because it restricts the placement of cameras that

are used to photograph the scene so that they satisfy the ordinal visibility constraint. We of­

ten photograph an object by placing cameras all around the object in a manner that does not

satisfy the ordinal visibility constraint. We do not compare to Kutulakos and Seitz's space

carving approach because there are two versions of their algorithm. One version does not

use full scene visibility when reconstructing the scene. We performed a comparison to that

version of their algorithm in our generalized voxel coloring paper [25], and found GVC to

produce superior results. In response to GVC, the Kutulakos and Seitz's space carving al­

gorithm was enhanced to use full scene visibility. We have not implemented this algorithm,

but believe it would yield results similar to GVC.

3.5.4 Analysis

GVC produces a thin-shelled voxel surface, as demonstrated in Figure 21. This figure plots

the voxels that lie on a plane that slices through the reconstruction of the Ghirardelli model.

The region of space inside a surface is not visible to any camera, and is not processed by

GVC because it never becomes exposed. In contrast, algorithms like voxel coloring and

Kutulakos and Seitz's space carving approach visit every voxel in the voxel space.

Since GVC-IB and GVC-LDI do not stop carving until the remaining uncarved voxels

are all color-consistent and since they never carve consistent voxels, we expect them to pro­

duce identical results when used with a monotonic photo-consistency function. However,

in practice, monotonic photo-consistency functions can be hard to construct. An obvious

monotonic approach to computing photo-consistency of a set of pixels P would threshold

the maximum difference between the colors of any two pixels in P. However, using dis­

tance in the RGB cube as a difference measure, this function is 0(n2) on the size of P and

49

• , . ,

I

Figure 21: GVC reconstructs a thin-shelled surface, as demonstrated in this slice running
through a reconstruction.

has poor immunity to noise and high frequency color variation. The standard deviation-

based photo-consistency measure we use is not monotonic. Consequently, GVC-IB and

GVC-LDI generally produce models that are different but similar in quality.

We note in passing that GVC-IB can be parallelized, as well as hardware accelerated

using standard graphics hardware. However, we do not describe these approaches in this

thesis.

3.5.5 Multi-resolution GVC

To decrease runtime, GVC can be implemented in a coarse-to-fine fashion [91], as shown

in Figure 22. We first perform a reconstruction at lower resolution using coarse voxels. At

this lower resolution, we are able to carve away a large part of space that would require a

lot of computation at a higher resolution. Once the reconstruction at the lower resolution is

complete, we dilate the surface. After the dilation, we tessellate each voxel into eight sub-

voxels, which doubles the resolution in each dimension. We then re-execute the algorithm

at the higher resolution. This process continues until a desired resolution is obtained. The

voxels in the final reconstructed model all have the same size. However, the size of carved

voxels varies depending on the resolution of the voxel space when the carving occurred.

50

Starting Resolution

i
Reconstruct scene

Yes
Desired resolution?]^--—5

No

Dilate surface

Subdivide voxels

Figure 22: Flow diagram for multi-resolution GVC implementation.

Dilation of the surface prior to the resolution increase is necessary to prevent the evolv­

ing surface S from passing though fine details that cannot be properly modeled at a lower

resolution. For example, consider a large voxel that contains a small patch of the true 3D

surface T being reconstructed. If the voxel is projected into the reference views, the ma­

jority of the pixels in the voxel's projection will not represent T. Such a voxel could be

inconsistent. At coarse resolutions this can cause some parts of T to go undetected. A

simple solution, presented in [91], is to dilate S before the resolution increase. Doing so

provides a mechanism for S to back up, and then reevaluate the skipped part of T at a higher

resolution where it can properly be reconstructed.

We implemented this coarse-to-fine strategy in the GVC-LDI algorithm. Table 3 presents

runtimes demonstrating the faster results produced by this multi-resolution approach. Com­

pared with Table 2, we note that the multi-resolution reconstruction runs 1.9 times and 1.5

times faster than the single resolution implementation for the Ghirardelli and Broccoli data

sets, respectively. The multi-resolution reconstruction of the Tower data set did not fit into

main memory so we do not present runtime results in the table for this data set.

51

Data Set Initial Resolution Final Resolution Runtime (h:m:s)
Ghirardelli 21 x 13x32 168x104x256 0:19:28
Broccoli 21 x 17x23 168x136x184 0:25:32

Table 3: Multi-resolution voxel spaces and runtimes.

In Chapter 8 we will compare GVC to other reconstruction approaches presented in this

thesis.

3.6 Summary

In this chapter, we presented a new volumetric scene reconstruction algorithm called gen­

eralized voxel coloring. GVC uses color analysis to identify geometry in the scene that is

consistent with the photographs taken of the scene. To properly compute photo-consistency,

the visibility of voxels in the scene must be known. GVC-IB and GVC-LDI use item buffers

and layered depth images, respectively, to compute this visibility information. The GVC-

LDI approach is time efficient, while the GVC-IB method uses less memory.

GVC has a number of advantages over competing space carving methods, summarized

below.

• GVC-IB and GVC-LDI are capable of reconstructing scenes photographed from ar­

bitrarily placed cameras.

• GVC-IB and GVC-LDI do not process inner voxels.

• GVC-LDI uses a flexible data structure that minimizes photo-consistency checks.

We will show in Chapter 4 that the layered depth images are useful in optimizing the

reconstructed surface.

While GVC is a useful algorithm for reconstructing 3D scenes using multiple pho­

tographs, it does have some limitations. As will be shown in Chapter 4, the surface that is

reconstructed can have a number geometric artifacts, some of which can be mitigated using

52

simple 3D morphological filtering. Additionally, smoothing the surface during reconstruc­

tion, a topic discussed in Chapter 6, helps reduce such artifacts.

GVC finds the largest 3D surface that projects to pixels that match based on the thresh­

old^) used in the photo-consistency measure. This approach does not necessarily find the

photo hull, which optimally reproduces the photographs. To get closer to the photo hull, we

present a volumetric optimization approach in Chapter 4 that refines a GVC reconstruction

to better reproduce the photographs.

GVC is well suited to reconstructing small-scale scenes, such as those presented in this

chapter. However, reconstructing large-scale scenes can become difficult as such a scene

may require a prohibitively large number of voxels that must be processed. We address this

issue in Chapter 5.

The amount of time required for a reconstruction can vary based on number of factors,

including image resolution, voxel resolution, the number of images. Typically reconstruc­

tions take a few minutes to hours for the data sets used in this thesis. In Chapter 7, we

introduce a new algorithm that can perform reconstructions in a fraction of a second. To do

this, we trade-off geometric accuracy for speed, as well as move as many of the computa­

tions in the 2D space of the images instead of the 3D space of the scene.

In fact, the rest of this thesis can be viewed as extensions to GVC. These extensions are

designed to improve model fidelity, increase applicability to a wider class of scenes, and

improve reconstruction speed. Some open issues we do not address in this thesis include in­

corporation of motion constraints when reconstructing temporally varying scenes [15,126],

alternative photo-consistency measures for reconstructing non-Lambertian scenes [23, 52],

and reconstruction using uncalibrated or weakly calibrated cameras [33, 95].

53

CHAPTER IV

POST-PROCESSING

Chapter 3 of this thesis presented new volumetric reconstruction algorithms that use multi­

ple calibrated photographs of a visual scene to produce a 3D voxel-based model of the scene

surfaces. While these algorithms often produce high quality models that can be rendered

to produce new views of the scene, geometric inaccuracies can diminish the photo-realism

of the synthesized views.

In this chapter we introduce some post-processing methods for improving the fidelity of

the reconstructed model. We begin by enumerating the sources of geometric inaccuracies

in multi-view reconstructions.

4.1 Geometric inaccuracies

The geometric inaccuracies in a reconstruction come from both theoretical and practical

sources.

4.1.1 Theoretical sources

A point on the true scene geometry projects to photo-consistent colors in the reference

views. However, the converse is not necessarily true: points that project to photo-consistent

colors in the reference views may or may not lie on the true scene geometry.

As a result, the photo hull deviates from the actual geometry of the scene. This geo­

metrical deviation appears in one of two related forms; floaters and cusps, both of which

are shown in Figure 23. Both examples in the figure illustrate a multi-colored flat surface

photographed by two cameras. In the left image, a floater appears as a small disconnected

54

Reconstructed
;.**V' ' *~ geometry

True
surface

Figure 23: A multi-colored flat surface is photographed by two cameras in both examples.
Due to floaters and cusps, the reconstructed geometry can deviate from the true scene.

piece of geometry, and typically is found floating off of the main surface. In the right im­

age, a cusp appears as a wedge-shaped area that points towards the cameras. Any point on

the cusp or floater projects to photo-consistent colors in the reference views, even though

there might not be any scene geometry at that location.

Figure 24 shows the presence of cusps and floaters in GVC reconstructions. Cusps

appear at locally homogeneously colored parts of a surface, which is the case for the white

areas on the calibration paper in the tower model shown in part (a) of the figure. Floaters

typically appear as a single or a small group of voxels floating near the main reconstructed

surface.

The theory of the photo hull states that we cannot expect to get a better reconstruction

unless we have some a priori knowledge about the scene. Just based on the photographs,

the cusps and floaters in Figure 23 could be the true scene geometry, and appear because

the photo hull is the largest photo-consistent reconstruction. However, if we knew a priori

that the scene was was flat (or smooth), or was one connected piece, we could use this

information to mitigate the effects of the cusps and floaters.

4.1.2 Practical sources

While one strives to reconstruct the photo hull when using a space carving algorithm like

GVC, in practice, one often falls short of this goal. A number of sources of error prevent

55

cusp

floaters

(b)

Figure 24: Reconstructions exhibiting cusps and floaters.

56

the algorithm from achieving the best possible reconstruction that can be inferred from N

photographs. Below we enumerate the most significant sources of error.

4.1.2.1 Camera calibration errors

Camera calibration errors come in two forms: geometric and photometric. As a pre-process

before reconstruction, the cameras used to photograph the scene are calibrated. The geo­

metric calibration computes the intrinsic and extrinsic parameters of the camera so that

points in 3D space can be projected into the reference views. Single and multiple camera

geometry is described in Appendix A. Despite much progress in camera calibration re­

search in the computer vision community, the process is still error prone. Typical errors are

on the order of sub-pixel to a few pixels of reprojection error for the data sets used in this

thesis.

Consequently, the projection of a voxel into a reference view is not exact. This re­

sults in incorrect pixels being used in the photo-consistency check, which in turn can yield

misclassifications. Voxels that should be photo-consistent can erroneously be declared in­

consistent, and voxels that should be inconsistent can be declared photo-consistent.

Intuitively, geometric calibration errors limit the resolution of the voxel space. Consider

a small voxel that models the true surface. In each image, the voxel's footprint, shifted from

its true location, might not contain any photo-consistent colors across the reference views,

and the voxel would be carved. Using larger voxels helps mitigate this problem, since the

footprint of the voxel's projection into each image will be contain a larger area. Kutu-

lakos [55] presents a related method that helps address geometric calibration errors during

reconstruction by looking for a matching pixel in a variably sized footprint in each of the

reference views when determining photo-consistency. He shows that such a technique can

reconstruct a scene photographed by cameras that significant calibration errors. However,

the surface that is reconstructed is much larger and lower quality than the photo hull.

57

Photometric calibration errors are colorimetric variations that result from color mis­

alignment. A variety of sources can cause these calibration errors; we describe a few here.

As a simple example, consider the case of multiple cameras photographing a Lambertian

object of a single color. Each camera has different controls, such as brightness and color

balance that affect image quality. If each camera has different settings, errors in the photo­

metric calibration can result in different RGB values to be recorded by each camera for the

object. Large differences can cause problems when photo-consistency is computed.

Photometric differences can occur as the camera is moved about the scene, as shown

in Figure 25. In this example, we photographed a scene on a sunny day using a digital

camera. The two photos were taken within a minute of each other. With the sun to the

photographer's back, the surfaces appear bright as shown in (a). However, when the pho­

tographer takes a photo from the other side of the scene, there is much more incident light

on the camera, particularly from the sky. When the photo is taken, the camera's shutter is

open for less time. The resulting image has a saturated sky and darker foreground objects.

Corresponding regions in the two photos do not project to similar colors.

Photometric errors can even occur within a photo. Vignetting is a light falloff that is a

characteristic of the camera lens, is present in nearly all photographic images, and is often

modeled using a 4th order cosine. An example of vignetting appears in Figure 26. In this

example, a cylindrical panorama was formed by rotating a ID scanner around its optical

axis. Vignetting appears vertically as a darkening of the pixels as one moves away from the

vertical center of the image, as shown in part (a) of the figure. Part (b) shows the results of

a photometric compensation for the vignetting. The colors of bricks on the ground in the

compensated image appear much more uniform.

Without proper photometric calibration, the photo-consistency check is unreliable, since

the true scene geometry will not project to photo-consistent colors in the reference views.

Therefore, it is often necessary to perform a photometric adjustment prior to reconstruction.

58

^ p -

(a) (b)

Figure 25: Photometric differences can occur when moving a camera in a scene.

4.1.2.2 Invalid photo-consistency measures

Reconstruction errors occur when the photo-consistency measure does not accurately ac­

count for the radiance in the scene. For example, when one assumes a Lambertian scene,

the photo-consistency measure tries to match colors across the different viewpoints. How­

ever, if the scene contains specular surfaces, some viewpoints may observe specularities

for a true surface point while others might not. These varied colors can result in a misclas-

sification by the photo-consistency check.

4.1.2.3 Thresholds

Standard photo-consistency measures threshold a color matching metiic. The threshold

is typically found through experimentation by sweeping through the parameter space of

the threshold until the best reconstruction is found. As Figure 27 indicates, if too low a

threshold is used, few voxels will be declared photo-consistent. However, using a threshold

59

(b)

Figure 26: A photograph exhibiting vignetting appears in (a). The compensated image
appears in (b).

60

Figure 27: The effect of varying the photo-consistency threshold, from low (upper left) to
high (lower right). The best reconstruction occurs for the image in the upper right.

that is too high results in a fattened model. Typically one uses the lowest threshold that

reconstructs all scene surfaces.

Unfortunately, in general there is not a single threshold that is ideal for reconstructing

all surfaces in the scene. For a given threshold, some surfaces could likely be more accu­

rately reconstructed with a lower threshold. But lowering the global threshold can cause

other surfaces to become carved that should be in the final reconstruction. Ideally, one

would like a spatially adaptive threshold that is locally optimized. In Section 4.3 we will

present a technique that achieves such a threshold.

4.1.2.4 Poor photographic sampling

Poor photographic sampling takes on several forms. For a local area on a surface to be prop­

erly reconstructed, it must be visible to at least two reference views. Thus, the resolution

of the photographs must be sufficiently high so that a visible surface to be reconstructed

projects to at least one pixel in two of the reference views. Additionally, one must care­

fully consider the camera placements when photographing the scene, particularly when

dealing with complex self-occluding surfaces. Finally, the images should be in focus, as

61

reconstructing the scene using blurry photographs can result in fattened models.

4.1.2.5 Insufficient voxel resolution

The voxel space should have sufficient resolution to model the scene surfaces. Typically

one represents a voxel as a cube in space with a single color. Many thin objects cannot be

modeled with this representation. For example, consider a thin plane that is black on one

side and white on another. A voxel occupying the space of the plane may project to different

colors in the reference views even though the voxel models a scene surface. Increasing the

resolution of the voxel space so that the white side of the plane is modeled with voxels

distinct from the ones modeling the black side solves this problem. Alternatively, one

could allow for a different color on each of the six sides of the voxel cube.

4.2 Mathematical morphology

One very straightforward way to improve model fidelity is to apply a 3D morphological

processing to the reconstructed geometry. Simple operations such as openings and clos­

ings [16, 67] can remove floaters and fill holes in the model.

4.2.1 Basic morphological operations

We apply morphological operations to the carved array of Sections 3.5.1 and 3.5.2. This

3D binary array indicates if a voxel has been carved. The binary surface and its interior,

denoted as C, are the set of voxels that have not been carved. Our morphological filters also

employ a 3D binary structuring element, denoted as SE below.

The basic functions in mathematical morphology are erosion and dilation. Let SExyZ be

the structuring element after it has been translated so that its origin is located at the point

{x,y,z). The erosion of C by the structuring element SE is defined as

CeSE = {x,y,z\SExyzCC}. (7)

This equation states that the binary volume that results from eroding C by SE is the set

62

of points (x, y, z) such that if SE is translated to (x, y, z), then it is completely contained

within the uncarved region of C.

The dilation of C by SE is defined as

C&SE = {x,y,z\SExytnCr 0}- (8)

Thus, the binary volume that results from dilating C by SE is the set of points (x, y, z)

such that if SE is translated to (x, y, z), then its intersection with the uncarved region of C

is non-empty.

Erosion and dilation can be cascaded to produce other operations. An opening is an ero­

sion followed by a dilation. An opening excels at removing small volumes such as floaters,

as well as smoothing the surface without significantly changing its volume. Opening is

defined as

CoSE = (CQSE)®SE. (9)

A closing is a dilation followed by an erosion. A closing has the effect of filling holes

in the surface and connecting nearby points, also without significantly changing its volume.

Closing is defined as

c*SE = (cesE)esE. (io)

Openings and closings can be cascaded as well, to remove floating voxels and fill small

holes if desired.

4.2.2 Morphological filtering of reconstructions

We have applied morphological filters to GVC reconstructions, illustrated in Figure 28.

We use a cubical structuring element that is 3 x 3 x 3 voxels large. Part (a) shows a

reconstruction of the Tower data set. There are small holes in on the plane of the paper

in the reconstructed surface. While not very large, these holes are visually distracting when

viewing animations of the reconstructed surface. The holes are filled by applying a closing

to the surface, shown in (b). Part (c) of the figure shows a reconstruction of the Broccoli

63

data set. An opening operation removes the floaters seen hovering near the main surface,

as demonstrated in part (d) of the figure.

Another simple way to remove the floaters is to perform a connected components anal­

ysis. This approach clusters the voxels into groups of connected pieces. Many of the scenes

reconstructed in this thesis consist of one connected component. Therefore, any piece of

geometry not connected to the largest component can be removed from the voxel space.

Figure 29 shows the results of applying this filter to a reconstruction of the Ghirardelli data

set. Note that the filtered surface contains no floaters disconnected from the main surface.

4.3 Volumetric optimization

The morphological approaches to model refinement presented in the previous section can

be effective at filling small holes and removing floaters from the reconstructed geometry.

However, these approaches have the disadvantage that they do not take photo-consistency

into account when adding or removing voxels to the model. Consequently, they might make

modifications to the surface that decrease visual quality. For this reason, we use a small

structuring element when applying morphological operations to the reconstructed surface.

Recall that space carving algorithms find a set of voxels whose photo-inconsistency falls

below a threshold. It would be preferable to have an algorithm that minimizes inconsistency

to find the model that is most photo-consistent with the input images.

In this section, we present a method that post-processes a GVC reconstruction to min­

imize reprojection error, which measures how well projections of the reconstructed scene

reproduce the photographs. The reprojection error, defined in image space, guides the re­

finement of the scene reconstruction in 3D object space. This refinement approach makes

better use of all color information from all viewpoints, and thereby produces a model closer

in quality to the photo hull.

64

(c) (d)

Figure 28: Morphological filtering of surfaces.

65

Figure 29: Model refinement by connected components analysis.

4.3.1 Optimal reconstructions

Our goal is to find a 3D surface that optimally reproduces the photographs. To be more spe­

cific, we seek a volumetric surface S0, which, when projected to each camera, minimizes

a multi-view image space error function E(S), whose argument is a volumetric reconstruc­

tion. Borrowing from [115], characteristics that E(S) should possess include:

1. The function should incorporate information from all available viewpoints.

2. The function should weight the error so that viewpoints that have more visibility have

a greater contribution to the error.

3. The function should be minimized by the true scene.

4. The function should provide a relative ordering of solutions, so as to rank the quality

of reconstructed surfaces. If the volumetric surface S\ is a better solution than 52,

then E(Si)<E(S2).

5. The function should relatively simple to compute.

66

Let the reprojection of a reconstruction S into the ith camera be denoted as /?,-. Also, let

the original photograph at the zth camera be denoted as Pj. Since Ri and Pi are color images,

they have pixels with r, g, and b components. Let these color components in the jth pixel

of Ri be referenced as /?,-(y).r, Ri(j).g, and Kj(j).b, respectively. Similarly, we denote the

r, g, and b components of the jth pixel of Pi as Pi(j).r, Pi(j)-g, and Pi(j).b.

Reprojection error computes the dissimilarity of/?,- and Pj. We define it to be

(pl(j).r-RlU).rf +

ltil% (Pl(J).g-RlU)-g)2 +

{Pl{j).b-Rl{j).b)2

E(S) = r, ,
' lliMi

where N is the number of images, M; is the number of pixels used in the comparison for

the ith image, and Ri and Pi are images as described above. The reprojection error is the

average squared difference between pixels in R(and Pj, taken over the pixels Mj.

This function possesses the necessary characteristics mentioned above. Specifically, it

incorporates information from all views, as the sum over / is over all viewpoints. The vari­

able Mi weights the reprojection error so that viewpoints with greater visibility have a larger

contribution. The function reaches its minimal value of zero for the true scene, for which Ri

is identical to Pi for the pixels indexed by j . The function does provide a relative ordering

of solutions, so that one reconstructed scene can be objectively ranked relative to another.

Consequently, the reprojection error can guide changes to the surface during reconstruc­

tion. We will show that the difference in reprojection error can be computed incrementally,

i.e., for only the pixels in Ri that change, resulting in an efficient computation.

4.3.2 Reprojection error and standard deviation

A comparison of the reprojection error function with that of the single threshold standard

deviation measure described in Section 3.1.2 is useful in relating this new approach to

standard space carving methods. The main difference between the two is that the stan­

dard deviation measure is defined on a per voxel basis. In contrast, the reprojection error

67

is defined over the entire projection of the reconstructed scene. A per scene basis for the

reprojection error is necessary so that we can globally measure the effect of a surface modi­

fication. If however, only one voxel changes visibility, then the reprojection error is simply

the square of the standard deviation used in voxel coloring. To see this, recall that during

reconstruction, a voxel is projected into each image, and the set of visible pixels in all im­

ages, previously denoted as vis(V), is found. For simplicity, we change notation and now

denote the pixels in vis(V) as X. If the voxel is photo-consistent, its color is set to equal the

mean of X. Thus, for a given voxel, each color channel of Ri(j) will be the expected value

of the corresponding color channel in Pj, over all images /. We denote this expected value

as

li,r = E[X.rl

M = E[X.g],

li.b = E{X.b).

Let k index over pixels in X, and suppose the cardinality of the set. is L. Then, the reprojec­

tion error has the form,

(X(k).r-n.rf +

Z t l (X(k).g-H.g)2 +

(X(k).b-n.bf
E(V) = z = a2.

This is simply a formula for the sample variance [59] of X, equivalent to the square of the

standard deviation used in voxel coloring, assuming a biased variance measure is used.

4.3.3 Optimal scene reconstructions exist but are not unique

An optimal scene reconstruction must exist. However, optimal reconstructions are not

necessarily unique because of the ill-posed nature of the 3D reconstruction problem; many

3D surfaces can exist that globally minimize the reprojection error. Finding an optimal

68

scene reconstruction can be challenging, since the error landscape can contain numerous

local minima far away from a global minimum.

4.3.4 The search space is large

Performing a combinatorial analysis can shed some light on the size of the search space.

The search space for the optimal reconstruction is defined on a six-dimensional (x, y, z, r,

g, b) domain for standard color scenes. Voxel opacity accounts for three of these dimen­

sions, as it consists of a bit for the spatial location, defined on a three-dimensional (x, y, z)

domain, of each voxel in the voxel space. Each opaque voxel can then have a unique color,

defined on another three-dimensional (r, g, b) domain. Consider a voxel space containing

v voxels. Since a voxel can either be opaque or transparent, there are 2V possible voxel

opacity configurations.

Now let us consider the number of different colorings of the 2V possible voxel opacity

configurations. Let the variable p be number of opaque voxels in a candidate configuration.

Then, there will a total of
/ \

v

\ p)

configurations with p opaque voxels. If the number of possible colors for the voxel is c,

then there are cp possible colorings of the voxel configurations with p opaque voxels. The

total number of candidate reconstructions, n, is then the sum of the possible colorings over

all possible voxel geometries,

This sum can be evaluated using the binomial theorem, yielding

p=0 H c^ = (c + l) v .

A simple example of this is provided in figure 30.

69

Opacity 1: No opaque voxels m
Opacity 2: Right voxel opaque :• cm
Opacity 3: Left voxel opaque *i nn
Opacity 4: Both voxels opaque M m n EQ

Figure 30: Example voxel opacity configurations and colorings for v = 2, c = 2. Suppose
that we have a reconstruction volume that contains two voxels (v = 2), and each opaque
voxel can take on one of two possible colors, (c = 2), which are gray and black. Then, there
are 2V = 4 unique voxel opacity configurations, and (c+ l)v = 9 possible reconstructions
to check. These nine reconstructions, grouped into the four voxel opacity configurations,
are shown above.

When working with real world scenes, both the values of v and c are quite large. If we

use 24-bit images, a voxel can have one of c = 224 unique colors, so

rc = (224 + l) v «2 2 4 v .

Since v is typically large, the number of possible reconstructions defined on this six-

dimensional domain is enormous. Even if one ignores color from this analysis, the 2V

possible voxel opacity configurations is unsearchably large for typical scenes. Thus, we

will require effective algorithms to limit our searching in this huge space.

4.3.5 Minimizing the reprojection error

We have developed two different methods to minimize the reprojection error. One method

performs a greedy optimization. This greedy approach is discussed in Section 4.3.5.1. The

other method uses simulated annealing to minimize the reprojection error. This simulated

annealing approach is discussed in Section 4.3.5.2. But first, we present what these two

approaches have in common.

The general methodology for both approaches is the same. First, a space carving al­

gorithm such as GVC is executed. This produces a reconstruction that can be quickly

computed, and should be reasonably close to a global minimum in the reprojection error.

Then, this volumetric surface is refined by either removing surface voxels, or adding vox­

els that are adjacent to surface voxels. We call these adjacent voxels neighbor voxels. By

70

attempting to carve surface voxels, we provide a mechanism for the reconstructed surface

to thin. We exploit the spatial coherency of surfaces by attempting to add neighbor vox­

els. This provides a mechanism for the reconstructed surface to grow. After modifying the

surface, the methodology incrementally evaluates the reprojection error, upon which the

decision to accept or undo the modification is made.

One of the key aspects underlying our two algorithms is the incremental update of vis­

ibility, the reprojection error, and the reprojected images. During a surface modification,

often just a few voxels change visibility. Rather than re-render the entire scene reconstruc­

tion to determine visibility from scratch, we use the layered depth images of Section 3.5.2

to incrementally update visibility for only the voxels whose visibility changes. Using the

LDIs, our algorithms efficiently compute the change in reprojection error only over the

pixels that change visibility. If the modification is accepted, the reprojected images /?,• are

updated for only those pixels as well. Incremental updates of visibility, reprojection error,

and reprojected images provide raw ingredients for optimization: efficient ways to modify

the model and compute an error function.

In our methodology, modifications to the surface are made tentatively, for if it is deter­

mined that a modification results in a less favorable surface, the modification is undone. In

our implementation, we make tentative changes to the LDIs. For each pixel that changes

on an LDI, we store undo information that is used only if we undo the surface modifica­

tion. All other changes are stored in temporary data structures, whose elements are copied

to permanent data structures upon acceptance, or discarded upon rejection, of the surface

modification.

One of the flexible features of space carving algorithms is their ability to reconstruct a

scene using either segmented or unsegmented photographs. A photograph Pi is segmented

if each pixel is labeled as foreground or background. Foreground pixels correspond to

objects that should be reconstructed, while background pixels correspond to objects that

should not be reconstructed. If the algorithm is given such information, it computes the

71

reprojection error over the union of the foreground pixels, i.e., Pi, with the pixels in the

reprojection of the reconstructed scene, i.e., the pixels in /?,-. However, not all scenes have

easily segmentable photographs. For these latter scenes, we compute the reprojection error

over the pixels in /?,-.

See [108] for pseudo-code and in-depth implementation details.

4.3.5.1 Greedy method

In the greedy method, voxels are added or carved only if they reduce the reprojection error.

The reprojection error is computed for the surface before modification, yielding the quan­

tity E0M, and after modification, yielding the quantity Enew. If the change in reprojection

error,

^ • t L = tLnew ^old

is negative, the reprojection error has decreased and the surface modification is accepted. If

this quantity is nonnegative, the surface modification is undone. Since scenes reconstructed

by space carving algorithms tend to be larger than the true scene, our implementation first

performs a greedy carving pass that thins the reconstruction, and then performs a greedy

adding pass. By executing these two sequential passes, we avoid attempting to add voxels

to the fattened model, as such voxels are unlikely to decrease the reprojection error. One

application of the greedy method usually results in much improved surfaces. Additional ap­

plications of the greedy method can further reduce the reprojection error, with diminishing

rewards each time the algorithm is applied. In practice, we typically apply the algorithm

once to a reconstruction.

4.3.5.2 Simulated annealing method

The reprojection error can contain numerous local minima. Since the greedy method only

accepts changes that decrease the reprojection error, it has the disadvantage that it could get

caught in a local minimum of the error, possibly far from a global minimum. To address

this issue, we developed a simulated annealing [89] method that accepts some changes

72

that increase the reprojection error. This method introduces a few new variables, namely,

k, the Boltzmann constant, and T, the temperature. Surface modifications that lower the

reprojection error are always accepted. However, surface modifications that increase the

reprojection error are accepted with probability

p = e-*E'kT.

Initially, the temperature is high, and it is more likely that unfavorable changes will be

accepted. Accepting such an unfavorable change can dislodge the algorithm if it is caught

at a local minimum. As the program runs, the temperature is slowly decreased to zero. At

zero, the simulated annealing method no longer accepts unfavorable changes.

Since this method can make unfavorable surface modifications, it simultaneously at­

tempts to add and carve voxels, unlike the sequential nature (carving pass, then an adding

pass) of the greedy algorithm. This prevents the algorithm from adding (carving) many

unfavorable voxels without providing an opportunity to carve (add) them.

4.3.6 Results and Analysis

We have executed our volumetric optimization algorithms on several data sets, both real

and synthetic. For experimental runs we used an HP J5000 workstation, with a 440 MHz

processor and 2 GB of RAM.

4.3.6.1 Toy car scene

We executed our algorithms on a data set we call Toy car, which consists of seventeen 800

x 600 images of a synthetic scene that is relatively easy to reconstruct, as the scene is col­

orful, the cameras are perfectly calibrated, and the background has been subtracted. Three

reference views are shown in Figure 31. We first performed a reconstruction in a 168 x 120

x 104 volume using the GVC-LDI algorithm, which took 39 minutes to complete. Then

the reprojection error was minimized using the greedy and simulated annealing algorithms.

73

Figure 31: Toycar data set: two of 17 reference views

Method Greedy Sim. annealing
Execution time (min) 134 269
Memory usage (MB) 233 270

Estart 4373 4373
Eend 1747 1727

Improvement 60.1% 60.5% |

Table 4: Results for the Toycar scene

We define the improvement, /, of the reprojection error to be

/ = {Estart ~~ Eend) /Estart:

where Estart and Eena- are the reprojection errors at the start and end of the reprojective error

minimization algorithm, respectively.

The execution time, memory usage, and percentage improvement for the two methods

are reported in Table 4. Since the simulated annealing method performs surface modifi­

cations that increase the error, many of which are later undone, it has a longer execution

time. The memory usage of both algorithms was dominated by the LDIs, and was found

to be comparable. Both methods significantly reduced the reprojection error for this scene,

offering an improvement of about 60%. Figure 32 plots the reprojection error as a function

of time. The simulated annealing approach ultimately gets to a slightly lower reprojection

error, but at the expense of taking longer to complete.

Sections of input and reprojected images are shown in Figure 33. We show sections of

74

ReprojectRm error vs. time, toymt data set

100 200

Time (min)

300

•Simulated
Annealing

•Greedy

Figure 32: Reprojection error vs. time for Toycar scene

the images in order to zoom in so that details in the images are more apparent. The primary

benefit that reprojective optimization offers is the thinning of the fattened reconstruction

output by GVC. Reprojections of the refined reconstructions output by the optimization

algorithms more closely match the input photographs. In particular, notice how the globe

in (c) and (d) has a more reasonable size compared with that of (b). This thinning effect is

quite apparent when one makes a simple animation that cycles between these images. Since

the thinned surface geometry more closely matches that of the true scene, voxels receive

a more accurate coloring. For example, in (b) notice how the small island near the center

of the globe's projection is barely visible, and the striped pyramid has a noisy appearance.

In (c) and (d), the island is much more discernable, and the pyramid has a better coloring.

The refined scene is significantly improved, but is not perfect. For example, the simulated

annealing approach has a few mis-colored voxels in the striped pyramid.

4.3.6.2 Shoes scene

Our Shoes data set consists of twelve 1536 x 1024 photographs of a cloth toy and two pairs

of shoes on multi-colored paper. This data set is more challenging to reconstruct, as it is

not segmented and has camera calibration errors. We first performed a reconstruction in a

75

(a) (b) (c) (d)

Figure 33: Refinement of the Toycar reconstruction. A section of one of the input pho­
tographs of the scene is shown in (a), with the silhouette of the globe outlined in white. The
GVC-LDI algorithm was used to find a scene reconstruction, which was reprojected to the
same viewpoint as that of (a), yielding (b). The reconstructed scene was refined using the
greedy algorithm (c) and the simulated annealing algorithm (d). In (b) through (d), the the
silhouette of the globe from the input photograph is added to demonstrate that the fattened
model of (b) is refined in (c) and (d).

[Method Greedy Sim. annealing
Execution time (min) 491 709
Memory usage (MB) 809 818

Estart 892 892
^•end 595 557

Improvement 33.3% 37.6%

Table 5: Results for the Shoes scene

144 x 128 x 80 volume using the GVC-LDI algorithm, which took 71 minutes to complete.

Then, our optimization algorithms were executed. Table 5 presents the execution time,

memory usage, and percentage improvement for the two methods. As for the Toycar scene,

the simulated annealing method took considerably more time to finish, but had a slightly

better improvement. Figure 34 shows the reprojection error as a function of time for the

two methods.

A section of an input photograph and reprojected images are shown in Figure 35. The

refined scenes are both objectively and subjectively improved. For this scene, notice that the

simulated annealing algorithm does a better job than the greedy algorithm in reconstructing

76

•Simulated
Annealing

•Greedy

Time (min)

Figure 34: Reprojection error vs. time for Shoes scene

the black and white checkerboard cushion.

In Chapter 8 we will compare the volumetric optimization algorithm to other recon­

struction approaches presented in this thesis.

4.4 Other methods

Other methods for refining the reconstructed model have been developed. Dinh, Turk, and

Slabaugh [29, 30] describe a method that fits an implicit surface to the reconstructed geom­

etry. The approach places either radially symmetric [29] or anisotropically distorted [30]

radial basis functions at scanned surface locations. In the presence of noise, direct interpo­

lation of the scanned surface points results in a noisy model. Instead, this approach finds a

reasonable surface that approximates the geometrical data. This method additionally con­

verts the voxel-based model to a polygonal model well suited for rendering with standard

graphics hardware.

4.5 Summary

This chapter presented post-processing methods that take a volumetric reconstruction as

input and then refine the surface geometry to improve model fidelity.

After describing the major sources of geometric error exhibited in volumetric recon­

structions, we demonstrated that simple morphological filtering of the surface can fill small

77

(a) (b) (c) (d)

Figure 35: Close up of cloth toy. As before, (a) is from the input photograph, (b) is a
reconstruction using the GVC-LDI algorithm, and (c) and (d) are refined scenes using the
OVC greedy and simulated annealing algorithms, respectively. Notice how more detail is
visible in (c) and (d) than in (b); in particular, the white speckles in the topmost cushion,
and the black and white checkerboard pattern on the lowest cushion.

holes and remove floaters. While morphological filtering can be effective, it does not take

photo-consistency into account when making changes to the surface. Consequently, we use

a small structuring element when applying morphological operations to the reconstructed

surface to prevent extensive filtering of the surface.

We then described a volumetric optimization approach that computes a volumetric sur­

face that strives to optimally reproduce the photographs. This approach defines reprojection

error, which measures how well a volumetric reconstruction reproduces the photographs.

We then use reprojection error to guide surface refinement. We developed greedy and

simulated annealing approaches to minimizing the reprojection error. We demonstrated

that modifications to the surface that minimize reprojection error visually improve model

fidelity.

The volumetric optimization approach described in this thesis is brute-force in the sense

that it tries removing every voxel from surface, and tries adding neighbors to every voxel

on the surface. While this approach works, an alternate, possibly more efficient approach

78

could use a reprojection error gradient to indicate which way the surface should be de­

formed in order to most effectively minimize reprojection error. We leave this as future

work.

The resolution of the voxel space will have an effect on the value of the reprojection

error. Recall that each voxel is given a single color in our representation. Even if we

were able to find the photo hull, which optimally reproduces the photographs, depending

on the resolution of the voxel space, the reprojection error would be non-zero. A coarse

voxel that projects to many differently colored pixels in a reference view would contribute

a non-zero amount to the reprojection error. At higher resolutions of the voxel space,

this quantization error component of the reprojection error decreases. When the voxel

resolution is sufficiently high so that each voxel projects to one pixel in each of the reference

views, this quantization error term becomes zero.

To decrease runtime of our optimization method, it would be possible to execute the

algorithm in coarse-to-fine fashion similar to the multi-resolution implementation of GVC

described in Section 3.5.5. This method would start with a coarse resolution, find an op­

timal reconstruction, and then increase resolution. The algorithm could iterative in this

fashion until a desired resolution is reached. Such an approach would be less susceptible

to local minima at higher resolutions.

In conclusion, post-processing a volumetric reconstruction computed using a space

carving algorithm like GVC can significantly improve model fidelity. In Chapter 6, we

will revisit this issue of mitigating photo hull geometric distortions like cusps and floaters,

but instead of post-processing a voxel-based surface, we will incorporate smoothness con­

straints on an implicit surface during reconstruction.

79

CHAPTER V

VOLUMETRIC WARPING

The space carving algorithms discussed so far in this thesis are often successful at recon­

structing small-scale scenes defined on a limited spatial domain. Applying them to large-

scale scenes can become challenging, since one must use a large reconstruction volume to

contain the scene. Such a large reconstruction volume can consist of an unwieldy number

of voxels that becomes prohibitive to process.

In this chapter, we present a method that warps the voxel space, so that the domain of

the reconstruction extends to an infinite or semi-infinite volume [110]. Doing so enables

the reconstruction of objects far away from the cameras, as well as reconstruction of a back­

ground environment. As we will show, our warping approach produces a spatially adaptive

voxel size that allows for foreground objects to be reconstructed at higher resolution, while

objects farther away from the cameras are reconstructed at lower resolution as they project

to fewer pixels in the reference views.

5.1 Background modeling

Space carving algorithms are not well suited to capturing the environment (sky, background

objects, etc.) of a scene. Typical reconstructions are photo-realistic in the foreground,

which is modeled, but empty in the background, which is unmodeled. As a result, synthe­

sized new views can have large "unknown" regions, as shown in black in Figure 36. For

some scenes, such as an outdoor scene, we might like to reconstruct the background as

well, yielding a more photo-realistic reconstruction.

In the computer graphics domain, infinite scenes have been modeled and rendered using

environment mapping. This method projects the background onto the interior of a sphere

80

(a) (b)

Figure 36: Unknown regions because of reconstruction on a finite domain. A photograph
of our Bench scene is shown in (a), with the reconstruction volume superimposed. Only the
voxels within the reconstruction volume are considered during reconstruction. The scene
contains many objects outside of the reconstruction volume that are not reconstructed, re­
sulting in unknown regions that appear as black in a projection of the reconstruction, shown
in (b).

or cube that surrounds the foreground scene. Blinn and Newell [9] use such an approach

to synthesize reflections of the environment off of shiny foreground surfaces, a procedure

known as reflection mapping. Greene [45] additionally renders the environment map di­

rectly to generate views of the background. This approach is quite effective at producing

convincing synthetic images. However, since the foreground and background are modeled

differently, separate mechanisms must be provided to create and render each. Furthermore,

the three-dimensionality of the environment is lost, as the background is represented as

a texture-map. Like environment mapping, the techniques described in this chapter seek

an efficient mechanism to represent the background scene. Our warped volumetric space

provides this in a single framework that can more easily accommodate surfaces that ap­

pear both in the foreground and background. We reconstruct the background scene three-

dimensionally using computer vision methods.

81

Exterior space

Interior space

(a) (b)

Figure 37: Pre-warped (a) and warped (b) voxel spaces shown in two dimensions. In
(a), the voxel space is divided into two regions; an interior space shown with dark gray
voxels, and an exterior space shown with light gray voxels. Both regions consist of voxels
of uniform size. The warped voxel space is shown in (b). The warping does not affect the
voxels in the interior space, while the voxels in the exterior space increase in size further
from the interior space. The outer shell of voxels in (b) are warped to infinity, and are
represented with arrows in the figure.

5.2 Volumetric warping

The goal of a volumetric warping function is to represent an infinite or semi-infinite volume

with a finite number of voxels, while satisfying the requirement that no voxels overlap and

no gaps exist between voxels. There are many possible ways to achieve this goal. In this

section, we use the term pre-warped to refer to the volume before the volumetric warping

function is applied.

The volumetric warping method presented here separates the voxel space into an inte­

rior space used to model foreground surfaces, and an exterior space used to model back­

ground surfaces, as shown in Figure 37 (a). The volumetric warp does not affect the voxels

in the interior space, providing backward compatibility with previous space carving algo­

rithms, and allowing reconstruction of objects in the foreground at a fixed voxel resolution.

82

Voxels in the exterior space are warped according to a warping function that changes

the size of the voxel based on its distance from the interior space. The further a voxel in the

exterior space is located from the interior space, the larger its size, as shown in Figure 37

(b). Voxels on the outer shell of the exterior space have coordinates warped to infinity, and

have infinite volume. Note that while the voxels in the warped space have a variable size,

the voxel space still has a regular 3D lattice topology.

To help further limit the class of possible warping functions, we introduce the following

desirable property of a warped voxel space:

Constant footprint property: For each reference view, voxels project to the same number

of pixels, independent of depth.

Figure 38 shows an example of a voxel space that satisfies the constant footprint property

for two cameras. Assuming perspective projection, a voxel space that satisfies this property

has a spatially adaptive voxel size that increases away from the cameras, in a manner per­

fectly matched with the images. While a useful conceptual construct, the constant footprint

property cannot in general be satisfied when more than N cameras are present in RN space.

Thus, for three-dimensional scenes, a voxel space cannot be constructed that satisfies the

property for general camera placement when there are more than three cameras. Since

reconstruction using three or less cameras is limiting, we instead design our volumetric

warping function to approximate the constant footprint property for an arbitrary number of

images.

5.2.1 Frustum warp

We now describe a frustum warp function that is used to warp the exterior space. We

develop the equations and figures in two dimensions for simplicity; the idea easily extends

to three dimensions.

The frustum warp assumes that both the interior space and the pre-warped exterior space

have rectangular-shaped outer boundaries, as shown in Figure 39. The pre-warped exterior

83

*

f." . " : ' • '••'••'&

-*• 'J i>;' V

Figure 38: Example of a 2D voxel space that satisfies the constant footprint property for
two images. Notice that the two filled in voxels project to the same number of pixels in the
right image, regardless of their respective distance from the camera. Note that this figure is
solely used to illustrate the constant footprint property; the warped voxel space developed
and used in this thesis actually looks like that of Figure 37 (b).

space is divided into four trapezoidal regions, bounded by (1) lines / connecting the four

corners of the interior space to their respective corners of the exterior pre-warped space, (2)

the boundary of the interior space, and (3) the boundary of the pre-warped exterior space.

We denote these trapezoidal regions as ±JC, and ±y, based on the region's relative position

to the center of the interior space. These regions are also shown in Figure 39.

Let (x,y) be a pre-warped point in the exterior space, and let (xw,yw) be the point after

warping. To warp (x,y), we first apply a warping function based on the region in which

the point is located. This warping function is applied to only one coordinate of (x,y). For

example, suppose that the point is located in the +x region, as depicted in Figure 40. Points

in the +x and —x regions are warped using the ^-warping function,

XW=X —pr, (11)
X,g LA-I

where xe is the distance along the x-axis from the center of the interior space to the outer

boundary of the exterior space, and JC,- is the distance along the x-axis from the center of

84

y
A

' — • x

Figure 39: Boundaries and regions. The outer boundaries of both the interior and exterior
space are shown in the figure. The four trapezoidal regions, ±x and ±y are also shown.

the interior space to the outer boundary of the interior space, shown in (a) of Figure 40. A

quick inspection of this warping equation reveals its behavior. For a point on the boundary

of the interior space, x = *,-, and thus xw = *,-, so the point does not move. However, points

outside of the boundary get warped according to their proximity to the boundary of the

exterior space. For a point on the boundary of the exterior space, x — xe, and so xw = « ,

Continuing with the above example, once xw is computed, we find the other coordinate

yw by solving a line equation,

yw=y + m(xw-x), (12)

where m is the slope of the line connecting the point (*, y) with the point a, shown in (b) of

Figure 40. Point a is located at the intersection of the line parallel to the *-axis and running

through the center of the interior space, with the nearest line /, as shown in the figure. Note

that in general, point a is not equal to the center of the interior space.

As shown above, the exterior space is divided into four trapezoidal regions for the two-

dimensional case. In three dimensions, this generalizes to six frustum-shaped regions, ±JC,

±y, ±z; hence the term frustum warp. There are three warping functions, namely the

Outer interior boundary

Outer exterior boundary

85

f\~ /&t\

1

V x

\ / N
->i x, v - j

* — [* — * \

y

X

(a)

y

+ X

(b)

Figure 40: Finding the warped point. The x-warping function is applied to the x-coordinate
of the point (x,y), as the point is located in the +* region. This yields the coordinate xw,
shown in (a). In (b), the other coordinate yw is found by solving the line equation using the
coordinate xw found in (a).

86

x-warping function as given above, and y- and z-warping functions,

ye-yi „ _
>'w = V r-r (13)

ye - \y\
Ze Zi , , ,s

Zw = Z r-r., (14)
Ze ~ \Z\

In general, the procedure to warp a point in the pre-warped exterior space is as follows.

1. Determine in which frustum-shaped region the point is located.

2. Apply the appropriate warping function to one of the coordinates. If the point is the

in ±x region, apply the x-warping function, if the point is in the ±y region, apply the

v-warping function, and if the point is the ±z region, apply the z-warping function.

3. Find the other two coordinates by solving line equations using the warped coordinate.

After reconstruction, we intend the model to be viewed from near or within the interior

space. For such viewpoints, voxels will project to approximately the same footprint in each

image.

5.2.2 Other warping functions

The frustum warp presented above is not the only possible warp. Any warp that does not

move the outer boundary of the interior space, and warps the outer boundary of the pre-

warped exterior space to infinity, while satisfying the criteria that no gaps form between

voxels, and that no voxels overlap, is valid. Furthermore, it is desirable to choose a warp­

ing function that approximates the constant footprint property for the cameras used in the

reconstruction as well as the camera placements during new view synthesis. An example

of an alternative warping function is one that warps radially with distance from the center

of the reconstruction volume.

5.3 Implementation issues

Reconstructing a scene using a warped reconstruction volume poses some new challenges,

described in this section.

87

5.3.1 Cameras inside volume

Perhaps the most difficult challenge is that of having the cameras embedded inside the

reconstruction volume. Typically, when one uses a standard space carving algorithm, the

cameras used to take the photographs of the scene are placed outside of the reconstruction

volume, so that at least two cameras have visibility of each voxel. The photo-consistency

measure used in space carving algorithms, qualitatively, determines if all the cameras that

can see a voxel agree on its color. This photo-consistency is poorly defined when a voxel

is visible from only one camera.

Since the warped reconstruction volume can occupy all space, cameras get embedded

inside the voxel space, as shown in (a) of Figure 41. Our reconstruction algorithm initially

assumes that all voxels are opaque. Therefore, camera views are obscured, and the cameras

cannot work together to carve the volume. This poses a problem, since to be properly

defined, the photo-consistency measure requires that at least two cameras have visibility of

a voxel. Consequently, the space carving algorithm cannot proceed, and terminates without

removing any voxels from the volume.

To address this issue, we must remove (pre-carve) a section of the voxel space so that

initially, each surface voxel is observed by at least two cameras, validating the photo-

consistency measure, as shown in (b) of Figure 41. There are a variety of possible methods

to achieve this result. A generic method is to have a user identify regions of the voxel space

to pre-carve. Obviously, the pre-carved regions must consist only of empty space, i.e., not

contain any scene surfaces to be reconstructed. While effective, this method precludes a

fully automatic reconstruction. Alternatively, one can pre-carve the volume using a heuris­

tic. For example, if appropriate, one could require that the cameras have visibility of the

boundary between the interior space and the exterior space. Other heuristics are possible.

Once the pre-carving is complete, we execute a standard space carving algorithm using the

warped voxel space.

88

(a) (b)

Figure 41: Pre-carving operation. Reconstruction in the warped space causes the cameras
to be embedded in the voxel space, as shown in (a). For many camera placements, it would
be impossible to carve any voxels, since no voxel is visible to more than one camera. We
execute a pre-carving step in (b) so that cameras can work together to carve the volume.

5.3.2 Preventing visible holes in the outer shell

Because of errors in camera calibration, image noise, inaccurate color threshold etc., space

carving sometimes removes voxels that should remain in the volume. Thus, it is possible

that voxels on the outer shell of the voxel space will be deemed inconsistent. Removing

such voxels can result in unknown black regions similar to those in Figure 36 during new

view synthesis, as no voxel would project onto the camera for some pixels in the image

plane. Since one cannot see beyond infinity, we do not carve voxels on the outer shell of

the voxel space, independent of the photo-consistency measure.

5.4 Results

We have modified the GVC algorithm to utilize the warped voxel space. We created a

synthetic data set, called Marbles, consisting of twelve 320 x 240 images of five small

texture-mapped spheres inside a much larger sphere textured with a rainbow-like image.

We reconstructed the scene using a voxel space that consisted of 48 x 48 x 48 voxels, of

89

which the inner 32 x 32 x 32 were in the interior space and imwarped. The voxel space

was set up so that the five small texture-mapped spheres were reconstructed in the interior

space, while the larger sphere, making up the background, was reconstructed in the exterior

warped space. Sample images from the data set are shown in (a) and (b) of Figure 42.

A reconstruction was performed using the warped voxel space. The reconstruction was

projected to the viewpoints of (a) and (b), yielding (c) and (d). Note that the background

environment was reconstructed using our warped voxel space.

Next, we took a series of ten panoramic (360 degree field of view) photographs of a

quadrangle at Stanford University, using a digital camera that produces cylindrical images.

These photographs had resolution of about 2502 x 884 pixels. One photograph from the

set is shown in Figure 43 (a). We have found that when reconstructing an environment, it

is preferable to use large field of view images, as objects far from the cameras are visible

in many photographs. This achieves a sufficient sampling of the scene with fewer pho­

tographs. A voxel space of resolution 300 x 300 x 200 voxels, of which the inner 200 x 200

x 100 were interior voxels, was pre-carved manually by removing part of the voxel space

that containing the cameras. Then, the GVC algorithm was used to reconstruct the scene.

Figure 43 (b) shows the reconstructed model reprojected to the same viewpoint as in (a).

Note that objects far away from the cameras, such as many of the buildings and trees, have

been reconstructed with reasonable accuracy for new view synthesis. New views are shown

in (c) and (d) of the figure.

Despite the successes of this reconstruction, it is not perfect. The sky is very far away

from the cameras (for practical purposes, at infinity), and should therefore be represented

with voxels on the outer shell of the voxel space. However, since the sky is nearly texture-

less, cusping occurs, resulting in inaccurate computed geometry, apparent in an animated

sequence of new views of the reconstruction. Reconstruction of outdoor scenes is challeng­

ing, as surfaces often do not satisfy the Lambertian assumption. To compensate, we used

a higher consistency threshold, also resulting in some inaccurate geometry. On the whole,

90

(c) (d)

Figure 42: Original images of the Marbles data set are shown in (a) and (b), and a recon­
struction projected to the same viewpoints of (a) and (b) is shown in (c) and (d), respec­
tively.

though, the reconstruction is reasonably accurate and produces convincing new views.

5.5 Summary

In this chapter we introduced a volumetric warping approach for modeling infinitely large

scenes with a finite number of voxels. We modified our GVC algorithm to reconstruct the

scene using this warped voxel space, and demonstrated results for a synthetic scene as well

as a large-scale real-world scene. Our approach is capable of reconstructing a background

environment in addition to a foreground scene.

In this approach we intend to synthesize new views in or near the interior space. When

the virtual camera moves into the exterior space, the frustum shape of the exterior voxels

91

yte- . ,f •liifi?;/ • r

w$ TTj^fcji - ij

t^«^feM»,^i fcji

(d)

Figure 43: Results for the Stanford scene. One of the ten panoramic photographs is shown
in (a). The reconstructed model, projected to the same viewpoint as that of (a) is shown in
(b). New synthesized panoramic views are shown in (c) and (d).

92

becomes apparent. Also, when synthesizing new views placed in the exterior space, exte­

rior voxels near the virtual camera can be excessively large. Therefore, this approach only

has a limited region of space for which new view synthesis is effective. To increase the

range of effective viewpoints for new view synthesis, one could combine multiple interior

/ exterior spaces together. Such work remains an open problem. Another open problem is

the development of a multi-resolution voxel space that is customized to the scene content as

observed in the reference views. For example, large voxels could model far away surfaces

or nearby homogeneously colored surfaces, while smaller voxels could model finer nearby

surfaces that exhibit more color variation. Such an approach might employ on octree rep­

resentation of 3D space.

As a practical concern, an implementation of our volumetric warping approach can have

difficulties in representing a large dynamic range of depth values using finite-precision

values on a computer. This becomes especially significant when performing z-buffering

during rendering. The bit depth of the z-buffer should be sufficiently high to avoid rendering

errors. Alternatively, one could rewarp the depth values so that they are constrained to a

limited range.

In Chapter 7, we will present a view-dependent representation of 3D space that satisfies

the constant footprint property at all virtual camera positions.

93

CHAPTER VI

SPACE CARVING USING LEVEL SET METHODS

While space carving approaches like GVC are effective, they can produce ragged and irreg­

ular surfaces, especially where there are high curvature features such as cusps and floaters

described in Chapter 4. Rather than post-process the reconstructed geometry, one can re­

quire surface smoothness during the reconstruction. Doing so mitigates cusps and penalizes

floaters.

In this chapter we present a multi-resolution space carving approach that uses level set

methods [113]. Unlike most standard space carving techniques, this approach produces a

smooth reconstruction composed of manifold surfaces. The method outputs a polygonal

mesh, which is more suitable for rendering on standard graphics hardware than a collection

of voxels. We texture-map the reconstructed polygonal mesh using the photographs, and

then render it to produce photo-realistic new views of the scene.

We begin this chapter with a brief description of surface evolution using level set meth­

ods, and describe our reconstruction algorithm.

6.1 Surface representation

Surface evolution techniques characterize the motion of a surface changing its shape over

space and time. In this class of methods, two different surface representations are com­

monly used: explicit and implicit. Explicit surface representations directly specify the

location of points on the 3D surface, often as a polygonal mesh or as a parametric surface.

The points on an implicit surface, in contrast, are implied by the evaluation of a function

i//. The surface exists at a point (x,y,z) if y(x,y,z) = c, where c is a constant. Implicit

surfaces are very useful for describing manifolds, as y/(x,y,z) is negative for points inside

94

the surface, and positive for points outside. Additionally, useful surface properties can

be computed directly from the implicit surface representation. For example, the general

technique for finding the unit surface normal N to an implicit surface is to take partial

derivatives of yf(x,y,z) as follows [10]:

Vu/
N=iwr (15)

where

6.2 Level set methods

Level set theory was developed by Osher and Sethian [83, 102] to model the evolution

of propagating interfaces. Early work was applied to computational fluid dynamics and

crystal growth; however, in recent years there has been much interest in applying the theory

to problems in computer vision, graphics, and image processing.

6.2.1 Description

Level set methods represent an N — 1 dimensional surface S implicitly as the zero-level set

of an iV-dimensional function y/. This implicit representation has a number of advantages

over explicit surface representations, including natural support of topological changes, con­

cise descriptions of differential structure, and no need for reparameterization.

The surface moves with a spatially and temporally variable speed F along its surface

normal, subject to intrinsic, independent, and data-driven forces, as shown in Figure 44.

Intrinsic forces are determined by local properties of the surface such as curvature. Inde­

pendent forces are independent of the surface, such as a underlying velocity that passively

transports the surface in a direction. Data-driven terms are used to guide the evolving

surface to a desired shape that solves a particular problem.

95

Outside
Outside

F(InUInd,D)

Figure 44: Surface evolution along surface normal, with a speed F composed of intrinsic,
independent, and data-driven terms.

6.2.2 Evolution of the surface

In this section we derive the equation of motion that describes evolution of the surface S

embedded as the zero-level set of y/. Since we will be moving the surface temporally as

well as spatially, we include an additional temporal variable t, giving y/(x,y,z,t).

Let x = (x,y,z) be a point on the surface. The velocity of a point on the surface is the

temporal derivative of x,
dx /dx dy dz
~dt = \5i''di'~di

Since the evolving surface moves along its unit normal N with a speed F,

(17)

^ • N = F. (18)
dt

Using Equation 15, we can rewrite this expression as

| ^ V i / / = F|Vy/|. (19)

Now consider the function y/. For points on the zero-level set,

y{xyy,z,t)=Q. (20)

Differentiation of Equation 20 with respect to time gives

^ + ^ ^ + ^ . ^ Z + ^ ^ £ = 0 (21)
dt dx dt dy dt dz dt

96

F= 1

F = H

Time

Figure 45: Two common flows: normal flow (top) and curvature flow (bottom).

This expression can be rewritten as

dty dx

i+v^=°- (22)

Substituting Equation 19 into Equation 22 yields the level set evolution equation,

^ + F |Vv/ |=0. (23)

Equation 23 describes the time evolution of the level set function \\f so that the zero-level

set of this evolving function is always identified with the propagating surface.

6.2.3 Two common flows

Two common flows are the normal flow and curvature flow. The normal flow is a surface

evolution that moves along the surface normal with a constant speed. The surface erodes

when evolved along the inward surface normal as shown in the top of Figure 45. Note that

the normal flow preserves corners and edges. Curvature flow is a surface evolution with a

speed based on //, a measure of curvature. Places where there is high curvature move more

quickly, resulting in smoothing over time, shown in the bottom of Figure 45.

97

6.3 Reconstruction algorithm

Given Equation 23, all that is left to do is to define an initial surface, and a speed function

F that drives the evolving surface to the true scene geometry while enforcing smoothness.

We embed the initial surface as the zero-level set of a volumetrically sampled function

y. The exact shape of the initial surface is not very important, as long as it contains the

surfaces being reconstructed. This requirement is necessary since we will shrink the surface

during reconstruction. A simple initial surface to use is the surface of the reconstruction

volume. This is the same initial surface we used for our GVC reconstructions in Chapter 3.

The speed function F we use is

F = ab0 + a i 0 # , (24)

resulting in a surface evolution of

~\ r i

_ = FN = «o0N + cti 0HN, (25)
ot

where <j) is a measure of color mismatch related to photo-consistency and H is the mean cur­

vature. This evolution is comprised of two terms: a weighted normal flow and a weighted

curvature flow. The constants «o and a\ are used to weight the two flows relative to each

other. The weighted curvature keeps the reconstruction smooth, while the weighted normal

flow allows the evolving surface to better fit the scene being reconstructed.

The weighting factor (j) is data dependent, and proportional to the standard deviation

used in the photo-consistency measure described in Section 3.1.3. We scale <j) so that it is

within the range [0, 1], using the equation

I I, if voxel is inconsistent

(26)
m i n (^ , 1), if voxel is consistent

where <7o is user-specified parameter. Thus, <j) is large when a voxel modeling the surface

is inconsistent. This will allow the surface to readily propagate along its inwardly pointing

normal through regions of space that do not contain object surfaces being reconstructed.
98

The 0 term becomes small when a voxel modeling the surface is photo-consistent. Here,

the surface propagation slows. At places where the surface is fully photo-consistent, 0 = 0

and the surface evolution stops altogether.

The value of OQ affects both the amount of smoothing as well as the convergence of the

algorithm. A lower value of O"o will allow the evolving surface to more readily propagate

through photo-consistent space. This results in more smoothing of the model when a\ > 0.

However, a value that is too low will allow the evolving surface to pass through the photo-

consistent points where one would like the surface to stop. In such a case, the evolution

may fail to converge. A larger value of OQ slows the evolving surface down when it is in

photo-consistent space. In the limit as Go goes to infinity, Equation 26 becomes

!

1, if voxel is inconsistent
(27)

0, if voxel is consistent

This is the approach taken by space carving algorithms, which do not carve photo-consistent

voxels.

In the level set framework, the surface evolution of Equation 25 becomes

^ = (ao + a i / /) 0 | V v | , (28)

with

(29)

During evolution, we keep track of which voxels are on the surface. We iterate subject

to Equation 28 until the number of surface voxels remains the same for Z, where Z is a

small number. This indicates the surface has slowed down to a point where it the evolution

is near or at convergence.

6.4 Implementation

In this section, we discuss the implementation of Equation 28.

99

6.4.1 Voxel space

We sample y/ on a discrete grid using two 3D voxel arrays that store i/Aasa function of

{x,y,z) for the current time t and the next time, t + At. This forms a 3D voxel space in

which the reconstruction occurs.

6.4.2 Derivatives

We use finite difference approximations for the spatial and temporal partial derivatives of

y/. In our implementation of Equation 23, we employ the first forward difference for the

temporal derivative of y/,

dy y{x,y,z,t + At)-y{x,y,z,t)

dt At

With this approximation, Equation 23 becomes

(30)

\[f(xiy1z,t + At) = \if(xiy,z,t)-AtF\V}if\. (31)

We approximate the spatial derivatives with central differences. For the first-order spa­

tial derivative in the x-dimension we use

llf _d¥ _ V(* + Ax,y, V) - y(x- Ax,y,z,t)
¥x~ dx~~ 2Ax • {3Z)

The second-order derivative in the x-dimension is approximated as

_d2y \lf(x + Ax,y,z,t)-2\if{x,y,z,t) + \if(x~Ax,y,z,t)
¥xx ~ dx* ~ (Ax)2 ' (3 3)

Spatially, we use step size Ax of one voxel. Similar equations exist for the y and z dimen­

sions. The temporal time step At is discussed below.

Sethian [102] has shown that normal flow surface evolution can develop singularities

known as shocks. Shocks are sharp corners or edges that occur when the evolving surface

flows in on itself. To properly model this phenomenon, Sethian proposes the use of weak

solutions given by entropy conditions. These solutions require that one take the appro­

priate forward or backward approximation to the spatial derivatives in the implementation

100

of Equation 23. However, Sethian also shows that shocks do not form for a combined

normal and curvature flow. Thus, as long as a\ > 0, we can safely use central difference

approximations for the spatial derivatives.

6.4.3 Stability

In order for the numerical implementation of the surface evolution to stay stable, one must

satisfy the Courant-Friedrichs-Lewy (CFL) condition, which gives an upper bound on the

time step used in the evolution. For CCQ + a\ = 1, one can derive the CFL condition using

Von Neumann analysis [89], which, for the surface evolution of Equation 28, yields a

maximum allowable time step of

M = \. (34)

6.4.4 Narrow band

Updating y/ in Equation 28 over the entire voxel space requires 0(N3) operations, where N

is the number of voxels in the voxel space along one dimension. However, in our approach,

we are interested only in the evolving surface. Therefore, it is possible to update y/ only in a

narrow band [102] around the zero-level set, as shown in Figure 46 for a 2D slice of the 3D

volume. The narrow band approach lowers the computational cost to 0(kN2), where k is

the number of band voxels. The orange curve in the figure indicates the surface embedded

in the voxel space. It is interpolated from the voxel array, using the marching cubes [62]

algorithm.

6.4.5 Multi-resolution

For efficiency, our algorithm works in a coarse-to-fine fashion similar to the multi-resolution

GVC approach discussed in Section 3.5.5. We first perform a reconstruction at resolution

R using large voxels. At a lower resolution, we are able to carve away a large part of space

that would require a lot of computation at a higher resolution. Once the reconstruction at

resolution R is complete, we dilate the surface. After the dilation, we tessellate each voxel

101

(a) (b)

Figure 46: Updating y/ in the complete array (a) vs. narrow band (b), shown for a 2D slice
of the 3D volume.

into eight sub-voxels, which increases the resolution to R+ 1. We perform trilinear inter­

polation to compute each value of \\f in the higher resolution volume. We then re-execute

the algorithm at the higher resolution, This process continues until a desired resolution is

obtained, as described in Figure 22

6.5 Results

We performed a multi-resolution reconstruction using the Broccoli data set. We started with

a box-shaped initial surface in a coarse 21 x 17 x 23 volume. We executed the algorithm

for three resolution increases, resulting in a 168 x 136 x 184 volume. Figure 47 shows the

initial evolution of the zero level set from the initial surface. Once the geometry is recon­

structed, we extract a polygonal representation of the surface by executing the marching

cubes [62] algorithm. Next, we texture-map the polygonal model using the photographs

of the scene. For this, we consider the rays between the triangle center and each reference

view that has visibility of the triangle. We then compute the angle 0 between each ray and

the triangle surface normal. We apply pixels onto the triangle from only the reference view

that has the smallest 0. New photo-realistic views of the reconstructed broccoli stalk are

shown in Figure 48.

102

Figure 47: Initial evolution of the zero level set at the lowest resolution.

(a) (b)

(c) (d)

Figure 48: New synthesized views of the broccoli stalk. Untextured surfaces are shown in
(a) and (c), textured surfaces are shown in (b) and (d).

103

We also performed a multi-resolution reconstruction of our Camel data set. This data

set, courtesy of Gabe Brostow, consists of eleven 720 x 480 photographs of a toy camel.

Four photographs from this data set appear in Figure 49. Our initial surface was again a

box surrounding the scene. The resolution was 35 x 35 x 45. We executed the algorithm for

two resolution increases, ending with a volume that had resolution 140 x 140 x 180. Some

of the photographs contained specular highlights from the scene lighting reflecting from

the object surface. Correspondingly, we had to increase the photo-consistency threshold

during reconstruction, which resulted in a fatter surface. Also, the specular highlights

result in some speckles that appear as texturing artifacts in new views rendered from the

reconstruction, as shown in Figure 50.

Finally, we show results from reconstructing the Tower data set. Our initial surface was

again a box, this time embedded into a 35 x 35 x 46 volume. Wre executed the algorithm

for one resolution increase, resulting in a 70 x 70 x 92 volume. New views synthesized

by rendering the polygonal surface are shown in Figure 51. There are some high curvature

locations on the true surface, such as in between the cushions of the object, that are not

properly reconstructed by this approach. The smoothed surface does not accurately model

the scene geometry in such locations, which results in reconstruction artifacts, apparent in

the synthetic new views in the figure. However, the overall geometry of the scene has been

reconstructed with reasonable accuracy.

In Chapter 8 we will compare the level set reconstruction algorithm to other reconstruc­

tion approaches presented in this thesis.

6.6 Summary

We have presented a multi-resolution space carving algorithm implemented with level set

methods. Using a set of photographs taken with calibrated cameras, this approach gener­

ates a smooth, texture-mapped 3D polygonal model that can be rendered using standard

graphics hardware to produce new views of the scene.

104

Figure 49: Four of eleven reference views of the Camel data set.

105

(a)

(c)

(e) (f)

Figure 50: New synthetic views of the Camel data set. Untextured surfaces are shown in
(a), (c), and (e), while textured surfaces are shown in (b), (d), and (f).

106

(c) (d)

Figure 51: New synthetic views of the Tower data set. Untextured surfaces are shown in
(a) and (c), while textured surfaces are shown in (b) and (d).

107

Our level set approach gives a structured way to incorporate smoothing during recon­

struction. The reconstructed surface is smooth and regular, and does not contain extraneous

floating geometry, holes, or large cusps that can plague standard space carving approaches.

However, due to the smoothing term, however, some sharp edges, corners, and fine geo­

metrical details are not preserved. For example, the broccoli model has some thin small

leaves near the stalk that are not present in the final reconstruction.

Our approach does not necessarily find the most photo-consistent surface. A possi­

ble extension to this work would be to design a flow that stops at maxima of the photo-

consistency function, similar in spirit to the volumetric optimization technique discussed

in Section 4.3. Such an optimization-based level set approach might require a bi-directional

flow. Also, future work might investigate ways to automatically adapt OCQ and <X\ during re­

construction. In places where fitting is desired, the normal flow could dominate the surface

evolution. However, in places where smoothing is desired, the curvature flow term could

dominate.

108

CHAPTER VII

IMAGE-BASED PHOTO HULLS

Depending on the number of photographs and resolution of the voxel space, the time re­

quired to reconstruct a scene using a space carving algorithm like GVC on modern com­

puter hardware typically ranges from a few minutes to several hours. While parallelization

and hardware acceleration of these algorithms is possible, space carving algorithms have

not yet been demonstrated to offer interactive performance for non-trivial resolutions.

In fact, most standard approaches to the 3D scene reconstruction problem such as multi-

baseline stereo, structure from motion, and shape from shading were not designed for real­

time performance and thus are too slow to process the images online. When working with

multi-view video data, most techniques perform the 3D reconstruction offline after the

images have been acquired. Once the reconstruction is complete, it is rendered in real­

time.

In this chapter we present a new algorithm called image-based photo hulls (IBPH)

[111, 112] that reconstructs and synthesizes views of a scene's photo hull at interactive

rates. Online 3D reconstruction and new view synthesis significantly broadens the ap­

plicability of this class of techniques; we demonstrate the use of our algorithm in a 3D

video-conferencing application.

7.1 Image-based visual hulls
7.1.1 Overview

Our IBPH algorithm builds upon the image-based visual hulls (IBVH) algorithm [72]. The

IBVH algorithm is a very efficient approach to computing views of the visual hull. The key

to this algorithm's efficiency is its use of epipolar geometry for computing the geometry

109

and visibility of the scene. By taking advantage of epipolar relationships, all of the steps

of the algorithm function in the image space of the reference views. Note that epipolar

geometry is reviewed in Appendix A.

While the IBVH algorithm is exceptionally efficient, the geometry it reconstructs is not

very accurate. This is because the IBVH algorithm reconstructs only the visual hull of the

scene. As described in Chapter 2, the visual hull is a conservative volume reconstructed

from silhouettes. When photographed by only a few cameras, the scene's visual hull is

much larger than the true scene. Even if photographed by an infinite number of cameras,

many scenes with concavities will not be modeled correctly by a visual hull. One can

partially compensate for such geometric inaccuracies by view-dependent texture-mapping

(VDTM), as done in the IBVH approach [72].

However, artifacts resulting from the inaccurate geometry are still apparent in new syn­

thesized views, as shown in Figure 52. This figure demonstrates a reconstruction of a pin-

wheel photographed from five viewpoints. Two of the reference views, after background

subtraction, are shown in the top row of the figure. A new view of the scene, placed halfway

between two reference views, is rendered from the reconstruction. The middle row shows

the visual hull reconstruction. At this viewpoint, the right side of the reconstructed pin-

wheel is texture-mapped with one reference image, while the left side of the pinwheel is

texture-mapped with another. Because of the geometric inaccuracy of the visual hull, there

is a salient seam along the pinwheel where there is a transition between the two images

used to texture-map the surface. In particular, the center of the pinwheel is not present

in the synthetic view. The improved geometry of the photo hull corrects this problem, as

shown in the bottom row of the figure.

In this chapter we adapt the IBVH algorithm to reconstruct views of the photo hull, by

utilizing the color information of the images to identify scene geometry. These additional

color constraints result in more accurately reconstructed geometry, which often projects to

better synthesized virtual views of the scene. Our approach combines the efficiency of the

110

Figure 52: We show two reference views (top row) at one time instant of our Pinwheel data
set, after background subtraction. The visual hull reconstruction (middle row) vs. photo
hull reconstruction (bottom row) are shown for a synthetic view, along with corresponding
depth maps.

I l l

•*£:

C*

Figure 53: View-dependent geometry.

IBVH algorithm with the improved geometric accuracy of the photo hull.

7.1.2 Computing geometry

One of the unique properties of the IBVH algorithm is that it reconstructs view-dependent

geometry. A user moves a virtual camera about the scene. For each virtual camera place­

ment, the IBVH algorithm computes the extent that back-projected rays from the center of

projection Ĉ / intersect the visual hull in 3D space, as shown in Figure 53. These inter­

vals are stored as a layered depth image [103]. Thus, the representation of the geometry is

specified for the desired view, and changes as the user moves the virtual camera.

Consider an individual ray, as shown in Figure 54. The ray is back-projected from the

desired view's center of projection, through a pixel in the image plane, and into 3D space.

This ray projects to an epipolar line in each reference view. The IBVH algorithm deter­

mines the 2D intervals where the epipolar line crosses the silhouette. These 2D intervals

are then "lifted" back onto the 3D ray using a simple projective transformation. The inter­

vals along the 3D ray from all reference views are intersected. The resultant set of intervals

describe where the ray pierces the visual hull. These are called hull intervals in this thesis.

112

esired view Visual Hull (3D)

\

^r::::::i
\T"*--- ———-----.

Reference view

> ^

£<t

Desired view
Reference view

Figure 54: Determining a ray's visual hull intervals.

In Figure 54, one hull interval is found along the back-projected ray. Once this procedure

has been performed on all rays back-projected from the desired view, the reconstruction of

the view-dependent geometry of the visual hull is complete.

7.1.3 Computing visibility

In order to color a point on the visual hull, it is necessary to determine which cameras have

an unoccluded view of the point. Thus, visibility must be computed before texture-mapping

the reconstructed geometry.

At a pixel p in the desired view, the first point (if any) along the first visual hull interval

indicates a point P in 3D space that projects to p and is visible in the desired view, as shown

in Figure 55 (a). To compute visibility, for each reference view we need to determine if P

is visible. P must be visible in the reference view if the line segment PC r between P and

the reference view's center of projection C r does not intersect any visual hull geometry.

The layered depth image representation of the visual hull makes this easy to determine.

In the desired view, PC r projects to an epipolar line segment pe, where e is the epipole,

found by projecting C r into the desired view, as shown in Figure 55 (b). For each pixel

113

Desired view

Desired view

Reference view

(a)

c,

Reference view „ ^
W

(b)

Figure 55: P is visible in the reference view if there is no occluding geometry along PC,

114

*.

^.--'

, - ' , < , v r % X ^^"
, '" ~1 N ^ ^ ^ ^ ^ ^ ^

,"' *• v^

* • '
' l N^

c, ^ \ ^ i

\

Reference view 1 P * ^ ^ "*

\ c
Desired view *

C s<

Figure 56: View-dependent texture-mapping.

along pe, the visual hull intervals can be checked to see if they contain geometry that

intersects PCr. If an intersection occurs, point P is not visible in the reference view, and no

more pixels along pe need be evaluated. Otherwise, one continues evaluating pixels along

pe, until there are no more pixels to evaluate. If no visual hull interval has intersected PCr,

then the point P is visible in the reference view.

The IBVH paper [72] discusses discretization issues in computing visibility using this

approach, as well as occlusion-compatible orderings to improve its efficiency.

7.1.4 View-dependent texture mapping

Once visibility has been computed, one can color the visual hull using the reference views.

The IBVH paper employs view-dependent texture mapping, which retains view-dependent

effects present in the photos, and works well with the inaccurate geometry of the visual

hull. To color a point p in the desired view, the closest point P on the hull is found. Then,

for each reference view that has visibility of P, the angle between PC,/ and PCr is found,

as shown in Figure 56. The reference view with the smallest angle is chosen to color the

115

compute IBVH
compute visibility
pre-compute homogeneous ray steps HAP in each reference image
do

evaluate photo-consistency
for each inconsistent ray in desired view

if (number of steps along ray k <=k + K)
step along inconsistent ray

else
set ray consistent

if (updating visibility)
update visibility

} while(number of inconsistent rays > M)
display hull using VDTM

Figure 57: Pseudo-code for the IBPH algorithm. See text for details.

visual hull. This is the reference view that has the "best" view of P for the virtual camera's

location. For example, in Figure 56, reference view 2 would be chosen since 02 < #l •

7.2 Image-based photo hulls

As discussed in Section 2.5.1, the visual hull is a conservative volume that is guaranteed to

enclose the surfaces being reconstructed. The image-based visual hulls algorithm therefore

is able to eliminate a large part of space that does not contain any scene surfaces. And

because the IBVH algorithm is very efficient, it does this quickly. Our image-based photo

hulls algorithm refines geometry of the image-based visual hull using photo-consistency to

yield improved results. Below we describe the approach.

7.2.1 Approach

As indicated in the pseudo-code in Figure 57, our IBPH algorithm starts with the visual

hull computed by the IBVH algorithm. The IBPH algorithm then evaluates the photo-

consistency of the closest point on the visual hull along each ray back-projected from the

desired view. If the point is inconsistent, we take a small step along the ray, moving away

from the desired view, as depicted in Figure 58. We continue stepping along an inconsistent

116

Consistent

w\
4__

Reference view
Desired view

Figure 58: Computing the image-based photo hull.

ray until it either becomes consistent or we have stepped beyond all visual hull intervals

along the ray. This latter case indicates that no photo-consistent geometry along the ray

was found.

Note that in this approach, only the points on the hull that are visible in the desired view

are processed. Initially, these points are the first points in the first visual hull interval along

each back-projected ray. By stepping along the inconsistent rays until convergence, the

IBPH algorithm reconstructs only the portion of the photo hull that is visible to the desired

view.

7.2.2 Stepping along epipolar lines

As we step in 3D along an inconsistent ray, looking for the point at which it becomes

consistent, we must simultaneously step along an epipolar line in each reference view. The

brute force way of stepping along the epipolar line in a reference view is to simply project

each 3D point P,- on the ray to the reference view point p,- by multiplying the reference

view's projection matrix H with P„ i.e., p,- = HP,. Such an approach will work, but will

require a large number of matrix multiplications.

117

Reference view

Inconsistent

AP

Desired view

' P i

Reference view r

Figure 59: Stepping along an epipolar line.

While the step size |AP| in 3D is constant, the step size between adjacent points along

the epipolar line in a 2D reference view varies because of the projection. However, since

the projection is a homography (linear projective transformation), the step size is constant

in homogeneous coordinates. We use this fact to produce a more efficient procedure for

stepping along the epipolar line.

Consider the 3D point Po on the ray, as shown in Figure 59. It projects to a point

po = //Po in a reference image. If we take a step along the ray, we arrive at a 3D point

Pi = Po + AP. The point pi, the projection of Pi into the reference view, can be written as

Pi = # P i

= //(Po + AP)

= po + HAP

Thus, we can incrementally update the homogeneous position of the point along the epipo­

lar line. That is,

//Po, i = 0
Pi = (35)

p;_i+//AP, i>0

118

We pre-compute the constant HAP for each ray and store it in a lookup table, as shown in

the pseudo-code of Figure 57. As we step along the epipolar line, we use Equation 35 to

compute the homogeneous position of the point pz. With this approach, stepping along an

epipolar line is very efficient.

7.2.3 IBPH visibility

When evaluating the photo-consistency of a 3D point, only pixels from the reference views

that have visibility of the 3D point should be used. As one steps along the inconsistent

rays, the visibility of the scene may change. A point that was not visible in a reference

view before may become visible after the step is taken. Therefore, it is necessary to update

visibility after stepping. This is achieved by re-executing the visibility procedure described

in Section 7.1.3.

Visibility could be updated each time a step is taken along each ray. However, such an

excessive number of visibility updates results in a slow reconstruction. Instead, our algo­

rithm takes one step along each inconsistent ray, and then updates visibility. As a result, the

visibility may be out-of-date when evaluating some 3D points. However, such an approach

is conservative. Pixels from only a subset of the references views that have visibility of

the point will contribute to the consistency measure. For a monotonic photo-consistency

function [54], this may result in some 3D points being erroneously classified as consistent,

while a full visibility calculation would show that they are really inconsistent. Since vis­

ibility is updated periodically, such erroneous classifications are properly classified on a

later iteration of the algorithm. Such an approach is similar to that used in the GVC-IB

approach described in Section 3.5.1.

7.2.4 Sampling

One way to trade off accuracy for speed in both the IBVH and IBPH algorithms is to

compute the hull in a multi-resolution fashion. The algorithm is executed not for every pixel

in the desired view, but rather on a coarse raster. One first computes the hull at sampling

119

Figure 60: Multi-resolution sampling for faster performance. In this example, DX = DY
= 2.

locations (jtDX,)>DY) in the desired image, where DX and DY are constants that specify

the sampling size. The sampling locations are shown as black dots in Figure 60. For

in-between pixels on the boundary, indicated using black squares in the figure, the hull is

computed at every pixel so that the edges of the synthesized image are at full resolution. For

pixels inside the boundary, the closest point of the hull interval (i.e., depth) is interpolated

from adjacent samples. This approach significantly reduces the number of rays that must

be processed, resulting in a faster reconstruction.

Figure 61 shows the effect increasing the sampling size DX and DY for a pinwheel

photographed from five viewpoints. The leftmost image shows the depth map when DX

and DY are 1. In this case, we are computing a depth value for every pixel in the desired

image. While the depth map is crisp, the frame rate is only 0.4 frames per second (FPS).

Increasing the sampling size has a significant impact on the frame rate. For the rightmost

image, the DX and DY are both five, and the frame rate is 8.3 FPS. The tradeoff for this

improvement in frame rate is blurring of the depth map, since the depth values at pixels

inside the border are interpolated from the sampling locations. Continuing to increase the

sampling size further blurs the depth map, but has little impact on the frame rate, as more

pixels become boundary pixels, which are sampled at full resolution.

120

Figure 61: Effect of increasing sampling size DX, DY on the reconstructed depth map and
frame rate.

For IBPH, there is an additional sampling parameter, AP. This is the size of the 3D step

taken along an inconsistent ray. In our application, we set |AP| to a size that results in a

projected size | Ap| of about one pixel for most reference views.

7.2.5 Convergence

The IBPH algorithm steps along the inconsistent rays, stopping at the point at which each

ray becomes photo-consistent. For convergence, one can require that all rays are photo-

consistent. However, often during a reconstruction, a significant majority of the rays will

become consistent quickly. Continuing to process a handful of inconsistent rays will yield

little impact on the overall quality of the reconstruction, but can take a lot of time. In our

implementation, we have introduced a mechanism to terminate the reconstruction when M

or less rays are inconsistent, as shown in the pseudo-code of Figure 57. When M is a small

number, good quality hulls are produced quickly.

Figure 62 justifies our use of M to terminate the reconstruction before all rays are photo-

consistent. This plot shows ray classifications versus iteration for reconstruction of our Sam

data set, which consists of a person's head photographed from four viewpoints. The visual

hull projected to 1333 of the 80 x 60 points on the coarse raster. Rays back-projected

through these points were analyzed using the IBPH algorithm. Initially, 635 were incon­

sistent and 698 were consistent, as shown in the figure. At each iteration of the algorithm,

a step was taken along each inconsistent ray. The plot of the number of inconsistent rays is

121

1400

1200

1000

w>

I BOO
u
ts "«'
H

Z 600
JB

C£

400

o1

O 20 40 60 80 100 120 140 160 190 200
Iteration (number of steps along eactk inconsistent r«y)

Figure 62: Ray classifications vs. iteration.

very steep at first, indicating that many rays become consistent quickly. After 60 iterations,

most rays are consistent. However, it takes an additional 140 iterations for the few remain­

ing inconsistent rays to become consistent. For real-time application, one would rather not

continue processing these rays, as they will not significantly contribute to the quality of the

reconstructed model.

7.2.6 Spatial coherence

Most scenes exhibit a high degree of spatial coherence, as they consist of surfaces that do

not radically change their position over a small region of space. Accordingly, many stereo

vision algorithms impose a regularization criterion that requires the reconstructed geometry

to be smooth. In a similar vein, we have developed a very simple and efficient smoothing

technique that we incorporate into our IBPH algorithm. The smoothing also helps mitigate

reconstruction errors because of noise and specularities.

When stepping along an inconsistent ray, we keep track of the number of steps we

122

~*
* <«#*

Consistent rays
Ireores^-erft rays

Figure 63: Varying K. From left to right, K = 1, 2, and 5.

have taken, k. As shown in the pseudo-code of Figure 57, before taking another step, we

compare k to a local mean computed by averaging the number of steps taken along rays

in a small neighborhood around the inconsistent ray. We denote this local average k. If

k>k + K, where K is a small constant, we do not step along the ray. This ensures that the

number of steps taken along a ray is not significantly different from that of its neighbors,

resulting in a surface that is spatially coherent. This smoothing approach requires very little

computation and works naturally with the representation of the hull geometry used in our

algorithm.

Figure 63 shows the effect of changing K for a reconstruction of a person's head. Notice

that there are less abrupt transitions in the depth map in the left-most reconstruction (K = 1)

compared to the right-most reconstruction (K = 5).

7.3 Results

We have implemented the IBPH algorithm on a multi-camera system, shown in Appendix C.

We have five calibrated Sony DFW-V500 digital cameras. The cameras are synchronized

so that they take images of the scene at the same instant of time. Each camera is connected

to an 800 MHz HP Kayak machine. These machines perform background subtraction on

the incoming frames, segmenting them into foreground and background regions. The reso­

lution of the reference images is 320 x 240 pixels.

123

The segmented reference images are sent over a 100 Mb/s switch to our server ma­

chine, which computes the 3D reconstruction. Our server machine is a dual processor 2

GHz HP x4000 workstation. Our algorithm has been multi-threaded to take advantage of

our multi-processor machine. The ith thread reconstructs the scene using a set of images

corresponding to time r,. In this way, the IBPH algorithm can very naturally be parallelized.

The bottom row of Figure 52 shows the results of IBPH algorithm in reconstructing a

pinwheel. We placed the pinwheel in front of the cameras and spun the wheel. Figure 52

shows the reconstruction at one time instant. For this reconstruction, the sampling rate

parameters DX and DY were 4, and the resolution of the desired view was 320 x 240.

The algorithm reconstructed the scene and generated new views at 6 FPS. The IBPH al­

gorithm produces more geometrically accurate results than the IBVH algorithm. However,

the IBVH algorithm ran at 25 FPS for this data.

Figure 64 shows a view from a real-time 3D telepresence application we are currently

developing with HP labs. The 3D model of the person's head and neck is reconstructed

online using the IBPH algorithm. The reconstructed geometry of the person is then depth

composited with a 3D model of a conference room. New synthesized views of this com­

posited scene are generated at 7.5 frames per second. The upper image in the figure shows

the texture-mapped model, while the lower image shows the depth map.

Figure 65 compares the results produced using the multi-resolution generalized voxel

coloring (GVC) algorithm presented in Chapter 3. The resolution of the final GVC recon­

structed model is 160 x 200 x 160 voxels. At this resolution, a voxel projects to about one

pixel in the synthesized view. To make a suitable comparison, we show the results of the

IBPH algorithm using a lxl sampling size. As expected, the synthesized new views and

depth maps are similar in quality. The pinwheel's center and petals can be identified in the

depth maps, and both new views are similarly realistic.

This IBPH reconstruction was texture-mapped view-dependently; while the GVC re­

construction was texture-mapped view-independently by setting the color of each voxel

124

«•

Figure 64: Using IBPH in a real-time 3D telepresence application.

125

Figure 65: Comparing IBPH (top) to generalized voxel coloring (bottom). Texture-
mapped view view (left) and corresponding depth map (right).

equal to its mean of the pixels in its projection in all the reference views. This explains

why some speckles appear in some of the petals of the pinwheel in the GVC reconstruc­

tion. Also, the GVC result shows some breaking apart of the surface along the outer edges

of the pinwheel, which had some specularity. The IBPH algorithm was implemented to

preserve edges for this data set.

The GVC reconstruction took 2 minutes and 47 seconds using one processor on our

dual processor 2 GHz machine. Even if we multi-threaded GVC to take advantage of the

second processor in our machine, it would still run well over an order of magnitude slower

than IBPH for a lxl sampling size. More detailed comparisons between GVC and IBPH

will be presented in Chapter 8.

In Chapter 8 we will compare IBPH to other reconstruction approaches presented in

this thesis.

126

7.4 Summary

In this chapter we have presented our image-based photo hulls algorithm that efficiently

reconstructs views of the photo hull. Our algorithm extends the image-based visual hulls

algorithm by utilizing the color information in the reference views to further constrain the

3D space containing scene surfaces. The more accurate geometry reconstructed by our

technique often results in better new views synthesized of the scene.

Our IBPH algorithm's efficiency comes from the following sources. First, it computes

the photo hull starting from the visual hull. Using the IBVH algorithm, we are able to

quickly find the visual hull, efficiently removing a large part of the 3D space that does not

contain the surfaces being reconstructed. Second, our IBPH algorithm computes only that

portion of the photo hull that is visible to the virtual viewpoint. Since this is the viewpoint

that is being synthesized, it is not necessary to reconstruct that part of the 3D scene that is

not visible in the rendered view. Finally, we have demonstrated the effect of increasing the

sampling size DX and DY to tradeoff accuracy for speed.

Our method inherits all the limitations of algorithms that reconstruct the photo hull.

Scene surfaces must be sufficiently colorful in order to be properly reconstructed. The

photo-consistency measure we use assumes a Lambertian scene. Reconstruction of sig­

nificantly non-Lambertian scenes requires a more sophisticated approach for determining

photo-consistency. We should note that visual hull reconstruction algorithms like IBVH do

not have a problem with non-Lambertian scenes, as they do not perform color matching.

The depth maps that are reconstructed with the IBPH algorithm, while geometrically more

accurate, can be noisier that those of the IBVH algorithm. Finally, the IBPH algorithm is

significantly slower that the IBVH algorithm.

There are several possible future directions for this research. The photo-consistency

measure presented here does not take into account surface orientation or the distance of

the reference view from the surface. Correlation-based matching similar to [34] might

improve reconstruction quality. Additionally, we do not take into consideration temporal

127

coherence. Motion constraints could be imposed to improve efficiency and reconstruction

quality. Finally, an adaptive approach to determining |AP|, the step size taken along each

ray might improve the efficiency of our algorithm. When the photo-consistency measure is

very inconsistent, one might take larger steps. As the consistency improves, one could take

smaller steps until the ray becomes photo-consistent.

128

CHAPTER VIII

EVALUATION

This thesis has introduced a variety of methods that reconstruct a 3D scene using multiple

photographs. The reconstructed geometry is then used to synthesize views of the scene

from new viewpoints. In this chapter, we evaluate the generalized voxel coloring (GVC)

algorithm of Chapter 3, the volumetric optimization approach of Chapter 4, the level set

method of Chapter 6, and the image-based photo hulls (IBPH) algorithm of Chapter 7 by

analyzing the quality of reconstructions produced by each approach. We also compare

these methods to the visual hull and the image-based visual hull.

A common problem when working with this class of algorithms is how one should eval­

uate different 3D scene reconstruction methods. That is, how can one objectively quantify

the quality of a 3D scene reconstruction?

An intuitive approach is to use 3D ground truth information. When there is known

3D geometry, one can compute a 3D spatial error measure that characterizes the mismatch

between actual and reconstructed geometry. We perform such an analysis in Section 8.1.

Since our application is new view synthesis, such a 3D spatial error measure can po­

tentially be an inadequate indicator for how well a reconstructed scene will produce new

views. An alternative evaluation approach leaves one image out during reconstruction. For

example, if there are N reference views, the reconstruction is performed using N — 1 of the

reference views. The reconstructed model is then projected to the reference view that was

left out, forming an image. This projected image is then compared with the reference view

that was left out. We perform such an analysis in Section 8.2.

129

8.1 3D error evaluation

In this section, we reconstruct a scene of known 3D geometry. We then compute a 3D spa­

tial error that measures the difference between the reconstructed geometry and the known

scene geometry.

Using computer graphics methods, it is easy to produce synthetic images of a known

3D scene. One simply specifies the geometry and color of the scene in 3D space, and then

renders the scene to a camera viewpoint, forming a reference view. For such a synthetic

scene, the cameras are perfectly calibrated and the scene can be made perfectly Lambertian.

For simplicity, we specified a plane located on the xy axis. We call this data set Syn-

thPlane. The plane extends six units in the x and y dimensions each, and has a different

randomly assigned color in each 1 unit x 1 unit square. The plane was photographed from

24 different viewpoints, each with a radius r = 10.5 units from the center of the plane.

Eight viewpoints were taken at 45° intervals of azimuth angle 6 at elevation angles of

(j) = 15°, 40°, and 65°. Figure 66 shows the camera placements, as well as a bounding

box containing the plane. Figure 67 shows three of the reference views for 0 = 0 ° and

(j) — 15°,40°, and 65° degrees. These images were generated to have a size of 640 x 480

pixels.

While a multi-colored plane is not the most exciting surface to reconstruct, it is useful

and interesting for several reasons. First, it is quite simple to compare reconstructed ge­

ometry to that of a plane; we will describe our method below. Second, while the planar

geometry is simple, it is effective for comparing different reconstruction algorithms since

the reconstructed geometry exhibits the characteristics present in reconstructions of more

geometrically complex surfaces. Thus, understanding how well these algorithms recon­

struct a plane offers important insight into more complex surfaces. Finally, a plane is easy

to model and render, so generating synthetic reference views is a simple endeavor.

130

Figure 66: Camera placements and reconstruction volume for the SynthPlane scene.

Figure 67: Three of 24 reference views for the SynthPlane scene, for <j> = 15°,40°, and
65°, left to right.

131

*!(x,tt
Hx,y)

2 = 0 plane

(a) (b)

Figure 68: Computing the volume under the reconstructed surface for (a) continuous
h(x,y) and (b) discrete h(x,y). In (b), the volume of a box-shaped region under a sam­
ple in of h(x,y) is simply h(x,y)AxAy.

8.1.1 3D error metric

Our 3D error metric E^D measures the volume of space that exists between the recon­

structed surface and true surface located on the z = 0 plane, as illustrated in (a) of Figure 68.

This volume can be determined by solving the double integral,

EID = j j \h(x,y)\dxdy, (36)

where h(x,y) is the height of reconstructed surface. We take the absolute value of h(x,y) to

ensure that all contributions to the 3D error are positive.

We generate h(x,y) from the reconstructed surface by storing the largest z value for all

surface voxels that are indexed by x and y. We call h{x,y) the height field of the recon­

struction. Since the height field is generated by a set of voxels, it is piece-wise planar, as

shown in (b) of Figure 68. Therefore, without approximation, we can replace the integrals

of Equation 36 with summations, yielding

M M

E3D= X £ \h(x,y)\AxAy,
x=ly=\

(37)

where Ax = Ay is the size of a voxel in one dimension, ./V is the number of voxels along the

x dimension, and M is the number of voxels along the y dimension of the voxel space.

132

If the surface does not exist at a point (x,y), the height field is undefined. This situation

occurs at places, such as holes, where the reconstructed surface has been incorrectly carved

away. For the 3D error, we set the height field to zero at such a point. Thus, E^D will not

penalize holes that exist in the model. However, the new view synthesis error measure we

use in Section 8.2 will penalize holes in the surface.

In the experiments that follow, all reconstructions were performed on a dual processor

2 GHz machine with 1 GB of shared memory. All algorithms, with the exception of image-

based visual hulls and image-based photo hulls ran on one processor.

For each approach, we reconstruct the scene three times. The first reconstruction is

performed using 8 (0 = 15°) reference views. These correspond to the highest 8 camera

placements in Figure 66. The second reconstruction is performed using 16 (0 = 15°,40°)

reference views. These are the upper 16 camera placements in Figure 66. The third recon­

struction is performed using all 24 (0 = 15°,40°, and 65°) reference views. Performing

these three reconstructions shows the effect of reconstructing the scene using more oblique

views.

8.1.2 Visual hull reconstruction

The SynthPlane scene was reconstructed in a 160 x 160 x 140 voxel space using a voxel-

based visual hull algorithm. At this resolution, a voxel projects to just a few pixels in each

reference view.

The top row of Figure 70 displays the height field for the three visual hull reconstruc­

tions. As demonstrated in the left-most image, the visual hull reconstructed using just top

view photographs results in a very poor surface. The reconstructed model has a pyramidal

shape, with a maximum value of 5.3 units at the apex. Clearly, this reconstruction deviates

significantly from a plane. We compute E^p using Equation 37, which yields a value of 67.2

units3. The middle image of the top row of Figure 70 shows the visual hull reconstruction

achieved using 16 reference views. The reconstructed model still has a pyramidal shape,

133

however, the apex of the pyramid is much lower, at a height of 2.45 units. The 3D error

for this reconstruction is 30.4 units3. Finally, the right image of the top row of Figure 70

shows the reconstruction attained using all 24 reference views. This reconstructed model

still has a pyramidal shape, but more closely represents a plane. The apex of the pyramid

is located at a height of 1.05 units, and the 3D error for this reconstruction is 13.3 units3.

Note that in the figure, the color map ranges from 0 to 6 for the visual hull reconstructions.

We report the time required to perform a reconstruction using a min:sec format. The

8, 16, and 24 reference view reconstructions required a time of 8:28, 9:12, and 11:26, re­

spectively. When one evaluates a voxel to determine if it is part of the visual hull, one must

project it into all reference views. Thus, the execution time of the algorithm is proportional

to the number of reference views, as observed in these timing results. The visual hull was

computed using unoptimized code; therefore these timing results should not be taken too

seriously. We tabulate the error and timing results in Table 7.

As more oblique views are used, the visual hull reconstruction more closely approxi­

mates the true scene. However, the visual hull geometry significantly deviates from that of

the true scene in this experiment.

We will show new views generated from these reconstructions in Section 8.2.

8.1.3 GVC reconstruction

Next, we reconstructed the SynthPlane data set using the generalized voxel coloring algo­

rithm. Again, we performed the reconstruction using 8, 16, and 24 reference views as done

for the visual hull reconstruction. However, in this experiment we reconstructed the scene

in a single resolution 160 x 160 x 45 voxel space. We lowered the number of voxels in the

z dimension to avoid processing large regions of empty space that will not represent the

photo hull.

The second row of Figure 70 displays the height field for the three GVC reconstructions.

Note that color map the figure ranges from z = 0 to z = 2.5, which is less than half the range

134

of the visual hull plots in the top row of the figure. We did this so that more surface detail

of the reconstruction is apparent. The three images show the cusping effect discussed in

Section 4.1.1. These are wedge-shaped protrusions on the reconstructed surface that result

from homogeneously colored regions on the true surface. Any point on the cusp projects to

a photo-consistent color in the reference views. As reference views that are more oblique

to the plane are included, the height of the cusps diminishes. The reconstruction attained

using all 24 reference views is quite close to planar.

We computed E^D for the three GVC reconstructions, which yielded 21.4 units3, 6.13

units3, and 2.17 units3, for reconstructions using 8, 16, and 24 reference views, respectively.

The maximum value of the height map was 1.7 units, 0.55 units, and 0.25 units, respec­

tively, for the three reconstructions. At this resolution, the voxel size was 0.05 units. Note

that both the 3D error E^D a n d m e maximum height value are significantly decreased in the

GVC reconstructions compared to the visual hull reconstructions for the same number of

reference views.

In Figure 69 we show a close-up of the height map, and one of the reference views from

a similar viewpoint. Notice how the colors that are similar to each other, like the two adja­

cent cyan colors, form a plateau in the height map. This is because the photo-consistency

measure could not disambiguate the two colors. Colors that the photo-consistency measure

finds to be different have valleys along the edges where they touch.

The 8, 16, and 24 reference view reconstructions required a time of 5:24, 12:03, and

16:27, respectively. Like the visual hull reconstruction algorithm, the time required for a

reconstruction to complete is proportional to the number of reference views. We tabulate

the error and timing results in Table 7.

135

(a)

i n

(b)

Figure 69: Zooming in on the GVC height map. Similar colors form plateaus in the depth
map, while different colors have valleys along the edges where they touch.

136

8.1.4 Volumetric optimization

We executed the volumetric optimization algorithm on the GVC reconstructions of the

previous subsection. Recall that the volumetric optimization algorithm refines the recon­

structed surface by minimizing reprojection error. For each experiment, we ran the greedy

algorithm, first doing a pass where we carved voxels, and then a pass where we added vox­

els. During both passes, only modifications to the surface that decreased the reprojection

error were accepted.

Table 6 tabulates the experimental results from the volumetric optimization of the three

reconstructions. Volumetric optimization decreased the reprojection error by about 34% on

average for the three reconstructions. Reprojection error is more closely related to the new

view synthesis error measure we use in Section 8.2 than the 3D error we compute in this

section.

The 3D error for the GVC reconstruction was 21.4, 6.4, and 2.2 units3, for the re­

constructions attained using 8, 16, and 24 reference views, respectively. After volumetric
-I

optimization, the 3D error of the optimized model was 20.3, 6.1, and 2.1 units , as shown

in Table 6. Thus, the improvement in 3D error, about 5% on average for the three recon­

structions, was not as dramatic as the change in reprojection error. However, the optimized

surface more closely resembled the true planar surface, since the 3D error decreased for

all three reconstructions. Also, the optimized surface has few floaters for the reconstruc­

tion using 8 reference views, unlike the GVC reconstruction. The third row of Figure 70

displays the height fields for the three optimized reconstructions.

The 8, 16, and 24 reference view volumetric optimizations required times of 35:28,

32:07, and 51:19, respectively. The time required for the volumetric optimization to com­

plete depends primarily on how close the unoptimized surface is to a local minimum in the

reprojection error. Therefore, the execution time may increase or decrease with the number

of reference views. We tabulate the error and timing results in Table 7.

137

Views 8 16 24

Time (minrsec) 35:28 32:07 51:19
Number of voxels carved 10324 9011 8038
Number of voxels added 670 613 212

REstart 4204 2681 3027

REend 2648 1788 2083
Improvement 37.0 % 33.3 % 31.1 %
E3D (units3) 20.29 6.13 2.07

Max. height (units) 1.7 0.55 0.25

Table 6: Volumetric optimization of the SynthPlane data set.

8.1.5 Level set reconstruction

Next, we reconstructed the SynthPlane data set using the level set algorithm. Our multi-

resolution approach started with a 40 x 40 x 12 voxel space, and allowed the algorithm pass

through two resolution increases, resulting in a 160 x 160 x 48 voxel space.

We reconstructed the scene using 8, 16, and 24 reference views as done for previous

algorithms. For each reconstruction we set the constants a® and a\ both to 0.5 so that the

normal flow and the curvature flow contributed equally to the evolution. The incorporation

of the curvature flow term resulted in smoothing of the model, as seen in height fields

shown in the fourth row of Figure 70. The cusps located at each homogeneously colored

square have a more rounded shape compared with the other reconstruction methods. This

smoothed surface more closely resembles a plane. Computation of the 3D error resulted in

values of 17.4, 5.46, and 1.24 units3, for the 8, 16, and 24 reference view reconstructions,

respectively. These 3D error values are the lowest of all algorithms evaluated in this thesis.

However, the reconstructed model had some carved away edges that were not penalized in

our 3D error metric. However, these carved edges will be penalized in our error measure

described in Section 8.2.

While this approach produced the best results in terms of 3D error, it generally required

the most to execute. The 8, 16, and 24 reference view reconstructions required times of

41:51, 46:06, and 51:17, respectively.

138

8.1.6 Image-based photo hulls reconstruction

Next, we ran the image-based visual hulls and image-based photo hulls algorithms on the

SynthPlane data set. Recall that these algorithms view-dependently reconstruct the scene,

producing the visible portion of the hull as seen by a virtual camera placed in the scene. We

placed the virtual camera directly above the plane, for an azimuth angle 0=0° , and a radius

10.5 units up the z axis, shown as the orange camera in Figure 72. Using a sampling lattice

of 4 x 4, we generated a synthetic view with resolution 640 x 480 pixels. The algorithm

produced a layered-depth image at the virtual camera position. We then converted the

closest point on the hull into a 3D height map h(x,y) for analysis.

The IBVH algorithm produced results very similar in quality to those of the visual hull

reported in Section 8.1.2, but ran much more quickly. For the 8, 16, and 24 reference view

reconstructions, 3D errors of 64.7, 30.0, and 17.7 units3 were attained in 0.217, 0.377, and

1.16 seconds, respectively. Note that the images of the SynthPlane data set have a black

background, and are therefore pre-segmented into foreground and background. For photo­

graphic data sets, the background segmentation would require additional computation. We

do not show results attained using the IBVH algorithm in Figure 70 because they are nearly

identical to the visual hull shown in the top row of the figure. However, we do tabulate the

results in Table 7.

Finally, we performed reconstructions using the image-based photo hulls algorithm.

For the 8, 16, and 24 reference view reconstructions, 3D errors of 17.7, 7.65, and 5.43

units3 were attained. The 3D surface using 8 reference views compared quite well to other

methods like GVC. However, the surfaces generated using 16 and 32 reference views were

significantly noisier than those produced using the other methods, as seen in bottom row

of Figure 70. In particular, notice that there is a significant floater in the center of the of

the height field for the middle image. This noise in the height fields results in a higher 3D

error.

139

The inaccuracy of the IBPH height fields is hardly surprising, since the IBPH algo­

rithm sacrifices quality for speed. By reconstructing the scene on a coarse 4 x 4 raster,

the algorithm produces a depth map that is lower resolution and less accurate. Also, when

computing photo-consistency, IBPH uses a small, fixed size footprint in each reference

view that is independent of the location of the reference view relative to the surface being

reconstructed. This approximation to the projection of a voxel is imprecise. However, it is

simple to implement and quite fast.

While the IBPH algorithm produces somewhat imprecise reconstructions, it does so

orders of magnitude faster than competing space carving approaches. The 8, 16, and 24

reference view reconstructions required times of 6.21, 5.55, and 12.3 seconds, respectively.

Recall that the IBPH algorithm computes the photo hull starting from the visual hull.

As seen in the top row of Figure 70, the visual hull reconstructed using 8 reference views

has a pyramidal shape that is significantly non-planar. Therefore, the IBPH algorithm must

do a lot of work stepping along inconsistent rays to reach the photo hull. The visual hull

computed using 16 reference views is much closer to a planar surface, which saves the

IBPH algorithm a lot of work. For this reason, the algorithm execution time actually de­

creases when going from 8 to 16 reference views. The time increases when going from

16 to 24 reference views for two reasons. First, in general the runtime of the algorithm

is proportional to the number of reference views, since a point on a ray must be projected

to all reference views to determine photo-consistency. Second, the multi-threaded version

of the IBPH algorithm did not fit into main memory when processing 24 reference views.

Therefore, we ran the algorithm only using one processor, which required approximately

half the memory. As a result, the reconstruction was roughly two times slower that it would

have been had it ran on two processors.

140

8.1.7 Summary of 3D error analysis

In this section we have performed a 3D error analysis of most of the reconstruction ap­

proaches developed in this thesis. The results are summarized in Figure 70 and Table 7.

These experiments reconstructed a simple scene of known 3D geometry.

The results show that the level set reconstruction method performed the best in terms

of most accurately reconstructing the geometry. During reconstruction, this algorithm

smoothes the surface. This helps mitigate the cusps in the reconstructed model. As a

result, the algorithm produces results that have the lowest 3D error. Despite these good

results, the level set approach does have some detnments. It is sensitive to its parameters -

the thresholds used in the photo-consistency measure, the value of Co, and X, the number of

iterations that serve in the stopping criterion for the algorithm. Furthermore, we will show

in Section 8.2 that this method carved away some photo-consistent edges of the plane.

By taking advantage of the color information in the reference views, GVC produces

better results than the visual hull. In terms of 3D error, the volumetrically optimized surface

is even more accurate than the GVC reconstruction, but only by a slim margin. The benefit

one gets by executing this algorithm might not be worth the amount of time required for it to

run. Finally, the IBPH algorithm produces a lower quality surface, but orders of magnitude

faster than GVC, volumetric optimization, and the level set approach. Thus, IBPH is best

suited to time-critical applications.

Figure 71 plots the 3D error vs. time for all reconstructions of the SynthPlane data set.

Some general observations can be made from the figure. First, as more reference views

are used, the 3D error decreases. Second, the IBVH and IBPH algorithms are significantly

faster than the other approaches. For a given number of images, the level set method

achieves a reconstruction with the lowest 3D error for this data set. Finally, the visual hull

geometry, reconstructed from silhouettes, is much less accurate than the geometry produced

by methods that utilize the color information in the photographs.

141

Figure 70: Reconstructions of the SynthPlane data set. From left to right: using 8, 16, and
24 reference views. From top to bottom: visual hull, GVC, volumetric optimization, level
set method, and image-based photo hulls. See text for analysis.

142

Approach No. ref. views E-iD (units3) Max. height (units) Time (m:s)

Visual Hull 8 67.2 5.30 08:28
GVC 8 21.4 1.70 05:24

Volumetric optimization 8 20.3 1.70 35:28
Level sets 8 17.4 1.13 41:51

IBVH 8 64.7 5.32 00:0.217
IBPH 8 17.7 1.63 _j 00:6.21

Visual Hull 16 30.4 2.45 09:12
GVC 16 6.41 0.55 12:03

Volumetric optimization 16 6.13 0.55 32:07
Level sets 16 5.46 0.47 46:06

IBVH 16 30.0 2.47 00:0.377
IBPH 16 7.65 2.42 00:5.55

Visual Hull 24 13.3 1.05 11:26
GVC 24 2.17 0.25 16:27

Volumetric optimization 24 2.08 0.25 51:19
Level sets 24 1.24 0.125 51:17

IBVH 24 12.5 1.05 00:1.16
IBPH 24 5.43 1.05 00:12.3

Table 7: 3D error analysis results.

143

3D Error vs. Time

80

70

60

50
"c

* 4 0
o

30

20

10

0.001

8

16

*
16 h 24

0.01 0.1 1

Time (miri)

Figure 71: 3D error vs. time, SynthPlane scene. Note that time is plotted on a logarithmic
scale. The figure shows results using 8, 16, and 24 reference views for the image-based
visual hulls (IBVH), image-based photo hulls (IBPH), generalized voxel coloring (GVC),
visual hull (VH), volumetric optimization (VO), and level set (LS) reconstruction algo­
rithms.

144

8.2 New view synthesis evaluation

The previous section computed the 3D error between the true and reconstructed surface ge­

ometry for approaches described in this thesis. The 3D error is a useful characterization of

the reconstruction algorithms, and is especially relevant if the application of the algorithm

requires a geometrically accurate 3D model.

However, the 3D error is not necessarily indicative of how well a reconstruction will

synthesize new views. For some synthesized viewpoints, errors in the 3D geometry will

not generate any objectionable artifacts in the synthesized view. Therefore, an alternate

measure for evaluating a reconstructed model's ability to synthesize new views is needed.

We describe such a method in this section.

8.2.1 2D mean square error

After performing a 3D reconstruction, we can render the reconstructed model to generate

a synthetic image R at a new viewpoint V. We can then compare the pixels in R to a

photograph P, taken at location V, that is not a viewpoint for one of the reference views

used to reconstruct the scene.

This 2D error measures the difference between R and P. Since R and P are color images,

they have pixels with r, g, and b components. Let the color components in the ith pixel of

R be referenced as R(i).r, R(i).g, and R(i).b, respectively. Similarly, we denote the r, g,

and b components of the ith pixel of P as P(i).r, P(i).g, and P(i).b. We then define the new

view synthesis error to be the mean square error between R and P,

(P(i).r-R(i).r)2 +

Z& (P(i).g-R(i).g)2 +

(P(i).b-R(i).bf

where M is the number of pixels used in the comparison.

This error metric is similar to the reprojection error of Chapter 4 but differs in several

145

Figure 72: The camera placement used for new view synthesis evaluation is shown high­
lighted in orange. The camera placements of the reference views are shown in gray.

important ways. First, the reprojection error is computed over all reference views. In

contrast, E2D is computed at one view - the view being synthesized. Second, the photograph

P used in E2D is not used to produce the reconstruction.

We generated an image P of the SynthPlane scene by rendering the multi-colored plane

to a camera location V directly above the plane, for an elevation angle 0 = 0°, and a radius

10.5 units up the z axis. The camera placement is shown in orange in Figure 72. This

image P, shown in Figure 73, is the image we will attempt to synthesize by rendering the

reconstructions previously generated.

8.2.2 Visual hull

We rendered the voxel-based visual hull to synthesize a new view at V. The results are

shown in Figure 74. The left image of the first row of the figure shows the synthesized

view achieved using the 8 reference view reconstruction. The synthesized view is quite

146

Figure 73: An image formed by rendering the true scene to viewpoint V. In the experi­
ments that follow, we will synthesize this viewpoint by rendering 3D models produced by
the different reconstruction algorithms.

147

poor, since the pyramidal 3D geometry of the visual hull significantly deviates from true

planar geometry of the scene. Each voxel is assigned a color equal to the mean of the pixels

in its projection in all reference views that have visibility of the voxel. Due to the inaccurate

geometry, voxels project to incorrect pixels in the images. These pixels are then averaged

together, causing many of the colors bleed together.

The right images of the figure show square error as a grayscale image. A darker color

indicates a larger error. This image was produced by comparing the image on the left with

the image in Figure 73 using Equation 38.

The middle and bottom rows show the view synthesized using the reconstruction achieved

with 16 and 24 reference views, respectively. Adding more reference views produces a

more accurate new synthesized view. However, even for the reconstruction achieved using

24 reference views, the inaccurate geometry of the visual hull still results in significant

mean squared error. From top to bottom, the mean square error was computed to be 4889,

2484, and 1299. Table 8 summarizes these results.

8.2.3 Generalized voxel coloring

Next, we rendered the GVC reconstructions to synthesize new views at V. The results are

shown in Figure 75. From top to bottom, the rows indicate the new views synthesized using

the reconstructions achieved using 8, 16, and 24 reference views. Note that these synthe­

sized images exhibit fewer artifacts than those produced using the visual hull. A number

of floaters are present in the 8 reference view reconstruction. They appear a speckles in the

new synthesized view, as seen in the first row of the figure. The reconstructions achieved

using more reference views better synthesize the new view, as shown in the figure. From

top to bottom, the mean square error for these three synthesized views was computed to be

596.3, 405.5, and 360.2, for the 8, 16, and 24 reference view reconstructions, respectively.

Table 8 summarizes these results.

148

- &

Figure 74: New view synthesis results for the visual hull algorithm. From top to bot­
tom: using 8, 16, and 24 reference views. The synthesized views are on the left, and the
corresponding squared error images are on the right.

149

'I

J

Figure 75: New view synthesis results for the GVC algorithm. From top to bottom: using
8, 16, and 24 reference views. The synthesized views are on the left, and the corresponding
squared error images are on the right.

150

8.2.4 Volumetric optimization

We synthesized views using the results of the volumetric optimization. The new views and

the squared error images are shown in Figure 76. The volumetric optimization approach

produced synthetic views that had the lowest mean squared error of all the reconstruction

algorithms analyzed. For the three reconstructions using 8, 16, and 24 reference views,

the mean square error E2D was computed to be 428.8, 329.1, and 300.5. This volumetric

optimization improves upon the results of the GVC algorithm by removing many floaters

and thinning the surface without forming holes in the model. The improvement in E2D that

resulted from optimizing the surface was 28.1%, 18.8%, and 16.6%, respectively. Table 8

summarizes these results.

8.2.5 Level set method

Figure 76 shows the new view synthesis results attained by rendering the polygonal surface

reconstructed by the level set approach. While in Section 8.1 we showed that the smooth­

ing property of this approach helps mitigate the effect of floaters and cusps, it has the

detriment that it can penalize high curvature parts of the object being reconstructed. As a

consequence, the evolving surface can pass through photo-consistent edges and corners that

project to different colors in the reference views. This artifact is observable in the recon­

structions in the figure, as the edges of the plane are not properly reconstructed. Since the

mean square error E2D penalizes holes in the model, the level set method did not fare well

in this analysis. For the 8, 16, and 24 view reconstructions, EOD was computed to be 1568,

722, and 1854, respectively. The reprojection error increased when using all 24 reference

views, since when using more images, some of the edges looked less photo-consistent. This

allowed the evolving surface to propagate more readily through photo-consistent regions.

Table 8 summarizes these results.

151

Figure 76: New view synthesis results for the volumetric optimization algorithm. From
top to bottom: using 8, 16, and 24 reference views. The synthesized views are on the left,
and the corresponding squared error images are on the right.

152

,

•

^ - ^
>

Figure 77: New view synthesis results for the level set algorithm. From top to bottom:
using 8, 16, and 24 reference views. The synthesized views are on the left, and the corre­
sponding squared error images are on the right.

153

8.2.6 Image-based visual hulls

Next, we performed new view synthesis using the image-based visual hulls algorithm.

While the IBVH algorithm reconstructs the visual hull, just like the voxel-based visual hull

reconstruction algorithm, it texture maps the reconstructed geometry using view-dependent

texture mapping. Thus, the new synthesized views produced by the IBVH algorithm are

quite different from the view-independent texturing of the voxel-based visual hull in Sec­

tion 8.2.2, even though both have very similar geometry.

Figure 78 shows the results of synthesizing the viewpoint V using the IBVH algorithm

with 8, 16, and 24 reference views. The poor results are a consequence of the inaccurate

geometry of the visual hull. Compared with the results from the voxel-based visual hull of

Figure 74, the view-dependent texture mapping (VDTM) by the IBVH algorithm produces

less blurry images.

Recall that the VTDM approach assigns a color to a pixel based on the reference view

that has the best viewpoint of the reconstructed geometry being colored. By not averaging

colors across the reference views, blurring is avoided, but when the geometry is inaccurate,

new synthesized views lack photo-realism. As more reference views are used, the image-

based visual hull geometry improves, but artifacts still remain, as seen in Figure 78. For

the 8,16, and 24 view reconstructions, the 2D mean squared error E2D was computed to be

6770, 3776, and 1778, respectively. Table 8 summarizes these results.

8.2.7 Image-based photo hulls

Finally, we synthesized new views at viewpoint V using the image-based photo hulls al­

gorithm. The results appear in Figure 79. For the 8, 16, and 24 view reconstructions,

the 2D mean squared error E2D was computed to be 522.3, 773.3, and 807.1, respectively.

Contrary to intuition, this error increased as more reference views were used. We demon­

strated in Section 8.1.6 that using more reference views with the IBPH algorithm results

in a more geometrically accurate reconstruction. However, the view-dependent texture

154

> •

m
I _ i

.

-
np 1

i ,

Figure 78: New view synthesis results for the IBVH algorithm. From top to bottom: using
8, 16, and 24 reference views. The synthesized views are on the left, and the corresponding
squared error images are on the right.

155

mapping strategy becomes problematic when many reference views are used, since the ref­

erence view being used to texture-map a local point on the surface changes quickly along

the surface. In the presence of inaccurate geometry, this results in small miscolorings, espe­

cially on the edges between two different colors as seen in Figure 79. Table 8 summarizes

these results.

8.2.8 Summary of 2D mean square error analysis

In this section we performed a 2D mean square error analysis that evaluates a method's

ability to synthesize new views. The mean square error computes the difference between a

synthesized image R and a photograph P generated at the same viewpoint as R but was not

used to reconstruct the scene. The results are tabulated in Table 8, and Figure 80 plots the

mean square error (MSE) as a function of time for the various reconstructions.

For the SynthPlane data set, the volumetric optimization technique had the lowest mean

square error for all the methods evaluated. It produced synthetic images with the lowest

mean square error for the three reconstructions using 8, 16, and 24 reference views. While

this approach produced the best results, it did require more time to run than any of the other

methods except for the level set algorithm. If the desired application is new view synthesis,

the cost of volumetrically optimizing the surface may well be worth the amount of time it

takes for the algorithm to execute.

As with the 3D error, the methods like GVC that utilize the color information of the

reference views produce better results than those that reconstruct the visual hull. The IBVH

and IBPH methods again are orders of magnitude faster than competing methods, as seen in

Figure 80, and are best suited to realtime applications. The level set method does encounter

problems with surfaces that have sharp corners and edges, especially those that project to

photo-consistent, but different colors in the reference views. Finally, we note that the view-

dependent texture mapping approach does not perform well with a large (greater than 10)

number of reference views.

156

T"!

J

".'"!

1
1
1 -

• '
j 1 \ i
'- - j =y

Figure 79: New view synthesis results for the IBPH algorithm. From top to bottom: using
8, 16, and 24 reference views. The synthesized views are on the left, and the corresponding
squared error images are on the right.

157

Mean Square Error vs. Time

8000

7000

6000

5000

£ 4000

3000

2000

1000

16

16 r—•• 24"
*8

2L

0.001 0.01 0.1 1

Time (min)

Figure 80: Mean square error vs. time, SynthPlane scene. Note that time is plotted on
a logarithmic scale. The figure shows results using 8, 16, and 24 reference views for the
image-based visual hulls (IBVH), image-based photo hulls (IBPH), generalized voxel col­
oring (GVC), visual hull (VH), volumetric optimization (VO), and level set (LS) recon­
struction algorithms.

158

Approach No. ref. views EID Time (m:s)

Visual Hull 8 4889 08:28
GVC 8 596.3 05:24

Volumetric optimization 8 428.8 35:28
Level sets 8 1568 41:51

IBVH 8 6770 00:0.217
IBPH 8 522.3 00:6.21

Visual Hull 16 2484 09:12
GVC 16 405.5 12:03

Volumetric optimization 16 329.1 32:07
Level sets 16 722 46:06

IBVH 16 3776 00:0.377
IBPH 16 773.3 00:5.55

Visual Hull 24 1299 11:26
GVC 24 360.2 16:27

Volumetric optimization 24 300.5 51:19
Level sets 24 1854 51:17

IBVH 24 1778 00:1.16
IBPH 24 807.1 00:12.3

Table 8: Mean square error analysis results.

159

CHAPTER IX

CONCLUSION

In this thesis we have presented novel 3D scene reconstruction methods for new view syn­

thesis. The goal of these methods is to compute the photo hull, which is the tightest possible

bound on the shape of the true scene that can be inferred from N photographs. Rendering

the photo hull (or the visible part of it in IBPH) often produces photo-realistic new views

of the scene.

9.1 Review of contributions

The generalized voxel coloring algorithm presented in Chapter 3 introduces two new meth­

ods for computing visibility during a voxel-based reconstruction. The GVC-IB algorithm

uses less memory, while the GVC-LDI algorithm always uses up-to-date visibility and

minimizes photo-consistency checks. GVC was the first space carving approach to solve

the visibility problem exactly, which has been shown to produce superior results [25, 114]

compared to algorithms that approximate scene visibility. The GVC-LDI algorithm was

also the first 3D scene reconstruction approach to use layered depth images.

In Chapter 4 we presented various post-processing methods to refine space carving re­

constructions. Simple morphological filtering was demonstrated to improve model fidelity.

We then introduced a volumetric optimization approach that minimizes reprojection error.

This approach was the first space carving method to carve the model below the global

threshold, and to evaluate modifications to the surface on a per scene, rather than per voxel

basis.

We introduced a volumetric warping algorithm in Chapter 5 that warps the voxel space

160

so that infinitely large scene can be modeled with a finite number of voxels. We demon­

strated that such a technique is useful for reconstructing surfaces very far away from the

cameras, in addition to a foreground scene.

The level set approach to space carving discussed in Chapter 6 represented the sur­

face implicitly in the voxel space. In this framework, surface smoothing can naturally be

incorporated into the 3D reconstruction instead of applied as a post-processing step.

The image-based photo hulls algorithm of Chapter 7 adopted a view-dependent ap­

proach to reconstructing only the portion of the computed photo hull that is visible to a

virtual camera being moved about the scene. This was the first algorithm to demonstrate

interactive reconstruction and view synthesis of the computed photo hull for nontrivial res­

olutions.

Additionally, the multi-view triangulation approach and analysis in Appendix B is a

novel contribution in this thesis.

9.2 Future work

Significant progress on the problem of 3D reconstruction from multiple views has been

made. Despite these developments, many techniques fall somewhat short of their ultimate

goal of generating photo-realistic new views of arbitrary scenes.

One area of future work is the reconstruction of non-Lambertian scenes. The Lamber-

tian assumption commonly made in reconstruction algorithms simplifies the problem at the

expense of limiting the class of scenes that can be reconstructed. Clearly though, real sur­

faces interact with light in complex ways, producing view-dependent effects such as spec-

ularities and reflections. Thus, more sophisticated modeling of the bidirectional reflectance

distribution function will be required to improve the flexibility of existing reconstruction

algorithms. Some work on this problem has started to emerge in the literature [15, 23, 64].

Future work is needed to fully automate scene reconstruction. Perhaps the most signifi­

cant obstacle in achieving this goal is camera calibration. For the space carving algorithms

161

described in this thesis, one calibrates the cameras in an often tedious pre-process before

reconstruction. Self-calibration [85, 133] methods have appeared in the literature, but have

been implemented in short baseline approaches that use a single camera moving about the

scene. Future research is needed for accurate, wide baseline multi-view self-calibration.

Reconstruction from multi-view video poses new research opportunities and applica­

tions. Incorporating motion constraints into the reconstruction algorithm can improve re­

construction quality in addition to compute nonrigid motion [15, 126]. Viewpoint control

of dynamic scenes could find application in a variety of settings such as interactive tele­

vision and virtual reality. Future research in this area includes 4D video compression (3D

model + time) and model-based coding. The ability to reason about moving objects in

three dimensions, rather than their projection into two, could benefit many video-based

applications, such as motion estimation, tracking, and automatic target recognition.

162

APPENDIX A

CAMERA GEOMETRY

This appendix provides a brief description of the geometry of single and multiple views.

The amount of material on the subject is vast; our intent here is to present only the basic

concepts that are relevant to the techniques described in this thesis. For an in-depth treatise,

please refer to Hartley and Zisserman's [48] or Faugeras and Luong's [37] textbook.

We begin with a discussion of a single view's projection matrix, which is used by all

of the techniques in this thesis. We then present multi-view concepts of bundle adjustment

and epipolar geometry.

A. 1 A camera's projection matrix

A camera's projection matrix H is a 3 x 4 matrix that describes how a point P = (X, Y,Z)

in 3D space projects to a point p = (*,)>) in an image. Using a homogeneous representation

for P and p, the relationship is

sx

sy = HP =

h\ hi hi h\4

hi hi h23 h*

hi hi hi hA

X

Y

Z

1

(39)

where s is a scale factor. Since H is known only up to an arbitrary scale factor, it has 11

degrees of freedom, and can be computed from six known point correspondences P <-»• p

using one of a number of different techniques [123, 124, 132].

The projection matrix can be composed using the camera calibration. Correspondingly,

if known, the projection matrix can be decomposed [48] to reveal the camera calibration

163

parameters. The relationship is

H = K[R \~RT] (40)

The matrix K in Equation 40 is a 3 x 3 matrix

K =

f
dx

0 c,
0 L

dy
Cy

0 0 1

(41)

composed of the intrinsic camera parameters, which are physically measurable quantities

that do not vary as the camera is moved in space. They are:

• dx: Horizontal size of a pixel

• dy\ Vertical size of a pixel

• / : Focal length

• Cx: Horizontal center of image

• Cy'. Vertical center of image

Here we assume that the camera has no skew, i.e., pixels have a square or rectangular shape,

which is typically the case for modern cameras.

The matrix R in Equation 40 is a 3 x 3 rotation matrix that describes the orientation of

the camera in 3D space. R has three degrees of freedom, and can be described by three

rotations (i//-, 0, (j)) about the x, y, and z axes, respectively, as

cos 0 — sin 0 Q

sin (j) cos (j) 0

0 0 1

R =

cos 6 0 sin 0

0 1 0

- sin 0 0 cos 0

1 0 0

0 cos y/ — sin i//

0 sin ty/ cos y/

(42)

Finally, T = [7 ,̂ Ty, TZ]T in Equation 40 is the position of the camera's center of projec­

tion in world coordinates. The six extrinsic camera parameters, (\//, 0,0) and T specify the

camera pose, and vary as the camera is moved in space.

164

A.2 Bundle adjustment

Calibrating each camera individually using point correspondences P <-> p can achieve ac­

ceptable calibration results. However, bundle adjustment [122] is often used to refine the

calibration to achieve a jointly optimal solution over all reference views. Bundle adjustment

can also used to refine the 3D points if desired.

Bundle adjustment assumes that a set of 3D points P ; are viewed by cameras with

projection matrices Hi, and that these quantities are approximately known. Given the set of

image coordinates p j ; to which P ; projects in the ith image, bundle adjustment refines the

projection matrices //,• and/or the 3D points P7 to minimize the image-space error

£*(#,*;, Py)2, (43)
U

where d(x,y) is a geometric image distance measure. This procedure is called bundle

adjustment since it adjusts the bundle of rays between each camera center and the set of 3D

points.

Bundle adjustment relies on gradient descent subject to constraints on the camera pa­

rameters, and is typically implemented using the Levenberg-Marquardt algorithm [89]. The

optimization is subject to local minima, so the technique requires a reasonably accurate

initialization. For a large number of 3D points and cameras, the procedure can be computa­

tionally intensive; however, Triggs et al. [122] describe methods that reduce computational

cost by taking advantage of the mathematical structure of the problem.

A3 Epipolar geometry

Epipolar geometry is the intrinsic projective geometry between two views. It is used exten­

sively in the IBPH algorithm of Chapter 7. Epipolar geometry is independent of the scene

structure, and depends only on the cameras' intrinsic parameters and relative pose.

Consider a 3D point P that is imaged by two different viewpoints, and projects to points

165

(a) (b)

Figure 81: Epipolar geometry. In (a), a point P is imaged by two cameras. In (b), the
epipolar plane going through the point P and the camera centers Ci and C2 is formed.

pi and P2 as shown in Figure 81 (a). What are the geometric constraints on the two corre­

sponding points pi and P2? Consider the plane n defined by P and the center of projection

for each camera, Ci and C2, shown in Figure 81 (b). It is clear from the figure that rays

back-projected from pi and P2 intersect at P, and that the rays lie in the epipolar plane n.

Now consider the left reference view. The epipolar plane cuts through the image plane,

forming an epipolar line in Figure 81 (b). The epipolar line goes through the image point

pi and the epipole ei, which is the projection of camera 2's center of projection into the

image plane of camera 1. Regardless of the location of the 3D point P in space, the epipole

remains fixed. Symmetric results hold for the right image.

This epipolar geometry is very useful when searching for correspondences between

views, as shown in Figure 82. Given the image point pi, one can back-project a ray from

the center of projection Ci and into 3D space. In image 2, this ray projects to the epipolar

line, along which the correspondence must lie. Thus, the epipolar geometry restricts the

search for the correspondence to a one-dimensional region along the epipolar line.

The epipolar geometry is typically encoded into a 3 x 3 matrix F called the fundamental

matrix. The fundamental matrix can be estimated from image correspondences, or com­

puted from the camera calibration of the two views if known. We do the latter, since our

166

Epipolar line

Figure 82: Correspondence search using epipolar geometry.

cameras are calibrated, and determine F as

— T F = ^2- /[TX]/?A:1-1 , (44)

where K\ and K2 are the intrinsic camera matrices, R is a rotation matrix specifying the

relative change in orientation between the two views, and [Tx] is a 3 x 3 skew-symmetric

matrix formed from the relative translation (Tx,TyjTz) between the two views as

[Tx] =

0 -T, Tv

Z 0 -Tr

-Ty Tx 0

(45)

Recall that the correspondence for a point pi from image 1 must lie along the epipolar

line in image 2. This epipolar line is very easily computed using the fundamental matrix as

Fpi . For points x on the epipolar line, including the correspondence P2,

xTFpi = 0. (46)

The trifocal tensor and quadrifocal tensor are similar geometrical entities that relate

sets of three and four views, respectively. In this thesis we make use only of epipolar

geometry, so we conclude our discussion of multi-view geometry here.

167

APPENDIX B

MULTI-VIEW TRIANGULATION

B.l Introduction

Often in computer vision, one must triangulate corresponding points between two images

in order to compute depth. Because of errors in quantization, camera calibration, and

correspondence, rays back-projected from the images into three-dimensional space rarely

intersect. As a result, one must find a point that is optimally close to the two rays. This

appendix generalizes this problem for the case of multiple images; i.e., how to compute

the optimal position of three-dimensional point given rays emanating from corresponding

pixels in N images, where N > 2. We develop a simple, closed-form technique with a

linear solution and provide an example to demonstrate the method. To our knowledge, this

technique is novel.

B.2 Computing depth using two views

We begin by considering a common method [123] for stereo triangulation. Here, we assume

that the camera parameters are known, and that the projections, Pi and P2 of a 3D point

into two images, I\ and 1% are known, as shown in Figure 83. Points Pi and P2 are called

a correspondence, as they both correspond to the same point P in 3D space. Our task is to

compute the location of point P, given Pi, P2, and the camera parameters.

Figure 83 shows that for each camera, we can back-project a ray from the camera

center Q, through the image pixel of the correspondence, forming a ray d2 into 3D space.

Ideally, these rays would intersect exactly at the same 3D point. However, since the camera

parameters and correspondence locations in image space are known only approximately,

the rays will not actually intersect in 3D space. So instead, we seek to find a 3D point that

168

I

'K

Figure 83: A common method for stereo triangulation.

has minimal distance from both rays. This point will be located on a line segment that is

orthogonal to the rays, as shown in Figure 83. A standard approach then, first computes

the endpoints of this line segment. From these, one computes the midpoint P of the line

segment. Point P is the point in 3D space that is optimally close to the two non-intersecting

rays.

This approach works well for two-view triangulation. However, what if one has a cor­

respondence visible in TV views, for N > 2? One could triangulate the correspondence

/ M \
between M different pairs of views, possibly all

N
pairs, resulting in M estimates

v 2 ; of the point P. These estimates could then be combined to produce a single value for the

point P. While this would result in a reasonable solution, there are a few drawbacks to

this approach. First, the triangulation algorithm would be executed M times, once for each

pair of views chosen. If all pairs of views are chosen, this requires executing the triangu­

lation algorithm 0(N2) times. For large TV this can be computationally intensive. Perhaps

even more significant is that the combination of these pairwise results does not guarantee a

solution that is optimal in the sense of having minimum distance to all rays.

In the next section, we describe a simple technique that executes in 0(N) time and

additionally finds a point P that is optimally close to all N rays.

169

V-iXA\z)

di =ait+W+Cit f^&A = *it+b-\9+c\l

Q = {X]?/I,JI) Q ~{xuy\,z\)
(a) (b)

Figure 84: Finding the shortest distance between a point and a ray.

B.3 Computing depth using N views
B.3.1 The distance between a point and a ray

Consider Figure 84(a), which shows a point P = (je,y,z) and a ray £ that starts at point Q =

C*i ĵ yi >£i) and has a normalized direction di = a\x + b\y + c\z. Our task in this subsection

is to derive an equation for the distance between the point P and the ray l. Intuitively, this

distance is along a line that goes through P and is orthogonal to I. In Figure 84(b), this

distance is represented by the length of vector RP.

The vector QR is the projection of QP onto the ray L From the figure, we note that

Q P = (* - * i) i + (y - y i) y + (z -* i)* , (47)

and this vector has a length

||QP|| = A / (x - x 1) 2 + (>;-yi)2 + (z - z i) 2 . (48)

QR, the projection of QP onto di is

QR = (QP a ^ d i (49)

= M*-* i)+£ i (y -yO + ci&~*i)]di (50)

Since di has unit magnitude, the length of QR is then

\\QR\\=al(x-xl)+bl(y-yl) + c[(z-zi). (51)

170

Our goal is find the length of the vector RP. Since the points PQR form a right triangle,

we can invoke the Pythagorean thereom,

||QP||2 = ||QR||2 + ||RP||2, (52)

or

||RP||2 = | |QP| |2- | |QR| |2 (53)

Substituting in values gives

||RP||2 = (x-xi) 2 + (};-v1)2 + (z - z i) 2 - h (x - ^ 1) + / 7 l (v - y 1) + c 1 (z - z 1)] 2 (54)

Thus,

\\KP\\ = y/(x-xl)
2 + (y-yi)2 + {z-zi)2-[al(x-xi)+b1(y-yl) + ci(z-zi)r (55)

Equation 55 is the distance between a point P = (x,y,z) and a ray £ that starts at point

Q = (x\,y\,zi) and has a normalized direction di = a\\ + b\y + c\z.

B.3.2 Minimizing the sum of squared distance

To compute the total distance, D(x,y,z) between a point and N rays, Equation 55 is evalu­

ated for each ray i and the results are summed. This yields an equation of the form

N ,

D(x,y,z) = ^yJ(x-xi)
2 + (y-yi¥ + (z-Zi)2-{ai(x-xi) + bi{y-yi) + ci(z-Zi)}2.

i=\
(56)

One might try to analytically optimize D(x,y,z). However, because of the square root,

the solution is nonlinear. So instead, we optimize the sum of squared distances,

N
E(x,y,z) = 'Z(x-xi)

2 + (y-yl)
2 + (z-Zi)2-lai(x-xi) + bl(y-yi) + cl(z-Zi)}\ (57)

1=1

which is a sum of terms similar to Equation 54, one for each ray. Thus, our goal is to find

a point that globally minimizes E(x,y,z).

Ill

B.3.3 Derivation of the optimal point

To find the optimal point, we differentiate E(x,y,z), set the partial derivatives to zero, and

evaluate the critical points.

dE{X
d^

Z) = ?J{2(x-xl)-2ai{al(x-xl) + bl(y-yl) + cl(z-zl)}} = 0

dE(x,y,z)

1=1

N

= ^Z{2{y-yi)-2bi\ai{x-xi) + bl(y-yi)+cl{z-Zi)]} = 0

= 2J{2(z-zl)-2cl[al(x-xi)+bl(y-yl) + ci(z-zl)]} = 0
1=1 dz

We seek the optimal point (x,y,z) that satisfies the above equations. Expanding the

terms and dividing by 2 yields

/v
^ [x - xt - a2

tx + afx(- a ;% + a;%; - atCiZ + a,-ctfj] = 0
i=\
N

^[y~ yt - aibix + afriXi - bfy + bjyt - 6f QZ + btctZi] = 0
i = l

/v
£ [z - z,- - fl|c/jc + ajC/x; - V t f + biCtyi - cfz + cfzi\ = 0
i = l

Placing the terms involving (x,-,yi,Zi) on the right side of the equation gives

N N

£ [(1 - af)x - aibty - aiaz] = £ [(1 - fiff)x,- - a^yt - aiazi]
i=\ i = l

(58)

(59)

(60)

(61)

yv N

^[-aibiPc+il-bfiy-biCiz] = ^[-aibiXi + il-b^yi-biQZi] (62)
i= l i = i

yv /v

]T [-UiCiX - fr/C^ -h (1 - cj)z] = X [~aicixi - biciyi + (l ~ cf)zi] (63)
(=1 i = l

Next, we write this in matrix form

S i (l - a ?) " E ^ A ' -S/fl/Ci

- E* fli-c,- - E* fe E/ (1 - <f)

E/ [(1 - ^)* i - a^tf* - fl.-QZi]

Ef [-aibiXi + (1 - &?)# - &,-<%•]

Ei [-fl/c^/ - V ^ / + (1 - c?)z/]

(64)

172

y

/ / - ~p -, -r — y

'* /* ^

/p::p^. (t l _ _ _ , / -,<•'

I * " w A

•J

Figure 85: An example showing our multi-view triangulation algorithm.

This expression is of the form Ax = b. For each ray i, the starting point of the ray (*,-,)>,•,z,-)

and the ray direction d,- = a,-x + Z?,y + c,-z are known. Thus, all the terms in the matrix A and

the vector b are known. We compute these matrices, and solve for x,

x = A_1b. (65)

The point x then, is the point that is is closest to all of the rays in the sense of minimizing

the sum of squared distance.

B.4 Example

In this section, we consider a simple example that shows how this approach works for trian­

gulation. While this example computes the optimal point using two images, the approach

works for an arbitrary number of images.

Suppose we have two cameras as shown in Figure 85. Camera 1 is centered at the

origin, so {x\,y\,z\) = (0,0,0). Camera 2 is centered at the point (^2,^2,22) = (3,2,5). A

correspondence is found in the two images, and in each image a ray is back-projected from

the camera center through the pixel in the image plane, as shown in the figure. The ray

from camera 1 has a direction (a\, b\, c\) = (1,0,0), parallel to the x-axis, and the ray from

173

camera 2 has a direction (a2,b2:c2) — (0 ,0 , -1) , parallel to the z-axis. Our goal is to find

the point in 3D space that is closest to both rays. By inspection, we expect the solution to

this problem to be (3,1,0).

Using the matrix equation in the previous section, we get

•a\b\-a2b2 -a\C\-a2c2

-a\b\-a2b2 \-b\-\-\-b\ ~b\c\-b2c2

—a\c\—a2c2 —b\c\—b2c2 \—c\ + \—c\

1 - a f + 1 — az
2

(1 -a\)x\ -a\b\y{ -a\c\Z[+ (1 -a\)x2 - a2b2y2 - a2c2z2

-a\b\x\ + (1 -b\)y\ -b\C[Z\ -a2b2x2 + (\ -b\)y2 - b2c2z2

-axc\x\ -b\c\y\ + (1 - c\)z\ -a\c\x2 - b\c\y2 + (1 -c])z 2

Plugging in known values gives

1 0 0

0 2 0

0 0 4

which yields the correct solution of

X 3

y — 2

z 0

_ -
X 3

y — 1

z 0

(66)

(67)

(68)

B.5 Analysis
B.5.1 When Is a unique solution not possible?

Equation 65 shows that if the matrix A is invertible, then a unique solution exists. In this

subsection we determine under what circumstances A becomes singular, resulting in no

unique solution. To do this, we first compute the determinant of A.

L' (1 - aj) ~ £,• afbi - 2i aiCi

-l^tbi 2 , - (i - ^) -Zihci

-1/ atci - Xi btCi X,- (l-cf)

174

file:///-b/-/-/-b/

Each element of A is a sum from i = 1 • • • N. Evaluating and simplifying the terms in

this determinant for general N is rather challenging. Using the constraint af + bj + cf = 1,

with some work it is possible to show that this determinant can be rewritten as

\A\ = j££X(V,-V,)2(l-aI) +
Z I = 1 / = 1 £~]

N N N

^XI2(<*v-<v*)2o-*2)+
Mi WJ

i N N N

*2I5>^-flA)2(i-ci)+
z / = l j=l Jfc=l

#1 M'J
N N N

SSS(fl.V*- f l*V;)2 (7°)
(=17=1 k=\

jjt MU

A unique solution to this problem cannot be found when Equation 70 equals zero. |A|

is the sum of nonnegative expressions, as each ray direction is normalized. Thus, the only

way Equation 70 can equal zero is if each expression evaulates to zero. This fact leads to

the following theorem:

Theorem 1 A unique solution exists except when all the rays are either parallel or anti-

parallel. That is,

ax-\-by + cz

or (71)

—ax — by — cz

*i=<

Proof: To prove Theorem 1, we must show that each term in Equation 70 equals zero

only when all the rays are parallel or an ti-parallel. The only way the expression (\—a\) can

be zero is if each normalized ray direction is either (1,0,0) or (—1,0,0), i.e., all the rays

are parallel or anti-parallel. A similar result holds for the (1 — bf) and (1 — c|) expressions

in Equation 70. For the expressions ibtCj — bjC;), (tyCj — fl/c,-), and (afij — afti) to be zero,

175

we must have

b^j = bjCi (72)

ctiCj = ajci (73)

a{bj = ajbi (74)

Using the fact that a2 -k~bf -f cf = 1, we can rewrite Equation 74 as

ciibj = atbi (75)

a^l-aj-c2 = a^\-a2-c2 (76)

a2(l-a2-c2) - a)(\-a2-c2) (77)

a2-a2c2 = a2-a2c2 (78)

Since (<2/cy — ajci)2 = 0, we know that a2c2 = 2aiajCiCj — a2;C2. We substitute this into

Equation 78, yielding

0 0 0 0 0 0

a, - 2aidjCiCj + ajcj = tf;- — ajcf (79)

0 0 0 O

A,-+2fl,-q = cij-\-2aiajCiCj (80)

Using Equation 73, we get

or^fly (81)

Similar results hold for b and c, resulting in

at = ±aj (82)

h = ±bj (83)

Q = ±c;- (84)

In order for Equations 72 to 74 to be satisfied, the signs on the above three equations must

either all be positive or negative. Thus, the first three terms of Equation 70 are zero if and

only if all the rays are parallel or anti-parallel.

176

Figure 86: No unique solution exists when all rays are parallel or anti-parallel. In (a), any
point that is along the line that is equidistant from the parallel rays will be optimally close
to the two rays. However, if just one ray is not parallel, as in (b), a unique solution exists,
depicted with a gray dot.

The fourth term of Equation 70 can be re-expressed to look one of the Equations 72

to 74. For example, using the fact that axbj = cijbi,

{aibj)ck = akbiCj (85)

(ajbi)ck = akbtCj (86)

ajck = akCj (87)

Thus, the fourth term of Equation 70 is zero when the other three terms of Equation 70 are

zero, namely when all the rays are parallel or anti-parallel. This concludes the proof. A

Theorem 1 is consistent with one's intuition. When all the rays are parallel (or anti-

parallel), one would not expect that a unique solution exists, as shown in Figure 86 (a). In

this case, any point along a line that is equidistant from the parallel rays will be a valid

solution. This equidistant line is depicted with a dotted line. However, if at least one of the

rays is not parallel to the others, then a unique solution exists, as shown in in Figure 86 (b).

B.5.2 Discussion of extremum

In the derivation above, we found an extremal point of the sum of squared distance E (x, y, z).

By nature of the problem, one can assume that this extremal point is a minimum and not

177

D =

d2E d2E d2E
dx2 dxdy dxdz

d2E d2E d2E
dxdy dy2 dydz

d2E d2E d2E
dxdz dydz dz2

(88)

a maximum. For the finicky reader, we prove in this subsection that the extremal point is

indeed a minimum.

Theorem 2 The extremal point found by this method minimizes the sum of squared dis­

tance.

Proof: To show that the extremal point is indeed a minimum, we must analyze the

matrix of second partial derivatives [5],

2E,-(l-flf) -22,-flA- -2S.-fl.-Ci

- 2 E . - ^ - 2^(1 ~bf) -22ibiCi

- 2 L- atCi - 2 £.- fc.c. 2 £.- (1 - c?)

and show that the determinants of the upper-left lx l submatrix, upper-left 2x2 submatrix,

and D are all strictly positive.

First, we compute the determinant of D\, the upper-left lx l submatrix,

| D i | = 2 X (l - a ?) (89)

Since #. is a component from a normalized vector, the value of each (1 — of) term must be

nonnegative. Thus, D\ must be nonnegative, since it is a sum of nonnegative terms. The

only situation for which D\ could be zero is if each at• = ± 1 . In that case, all rays would

be parallel or anti-parallel, with directions [a^b^Ci) = (1,0,0) or (a.,^.,c/) = (-1 ,0 ,0) .

As shown earlier, we cannot expect a unique solution for this case, so we do not care about

the extremal point. Thus, D\ is strictly positive except when the all rays are parallel or

an ti-parallel.

Next, we compute the determinant of £>2, the upper-left 2x2 submatrix,

2 2 / (1 - * ?) - 2 L * A -

-21,-fl,-*, 22 I-(l-&?)
1̂ 1 = (90)

Using the fact that af-\-bf+cj = l, this determinant can be expressed as

N N N

\D2\=4NY(ch + ^^lbj-ajbiy (91)
J = l 7 = l

178

-2S.-fl.-Ci

Since D2 is a sum of nonnegative terms, it must also be nonnegative. The only way £>2 can

be zero is if all c,- = 0, and each a[b} = a}b\ for i ̂ j . This can only happen when all the

rays are parallel or anti-parallel, since

ctibj = flyZ?,- (92)

l-bj-cjbj = ^-b)-c)bi (93)

v ^ ^ - - v ^ 1 ^ (94)

(1 - ^ = (l-b2j)bf (95)

^ - ^ = ^_b2b2 (%)

^? = ^ (97)

Likewise, D2 can only be zero for af = a2- This equation, along with Equations 92 and 97

are true only when the rays are parallel or anti-parallel. Thus, D2 is strictly positive except

when all rays are parallel or anti-parallel.

Finally, we must show that the determinant of D is nonnegative. Comparing equa­

tions 69 and 88, we note that \D\ = 8|A|. In the previous section, we showed that the

determinant of A was strictly positive except when all rays were parallel or anti-parallel.

Therefore, this result also applies to the determinant of D. This concludes the proof. A

Thus, the extremal point P found by our optimal ray intersection algorithm minimizes

the sum of squared distance to each ray.

179

APPENDIX C

EXPERIMENTAL SETUP

In this appendix we describe our experimental setup used for interactive new view synthe­

sis.

As Figure 87 shows, our lab is equipped with five Sony DFW-V500 digital video cam­

eras positioned on an arc. These cameras are synchronized for simultaneous image ac­

quisition. Synchronization is achieved by sending a short pulse out the parallel port of a

computer to the external trigger input on each camera.

For applications that require maximum performance, we connect each camera via Fire Wire

to a personal computer. These computers perform background subtractions on the incoming

video. The background is attained by first collecting a short video clip of the scene before

the object to be reconstructed is placed in front of the cameras. The segmented multi-view

video is sent over a 100 Mbps switch to our server machine, which is a dual-processor

Pentium 4 2.0 GHz machine. For each time instant, the server computes the image-based

photo hull.

The image-based photo hull can be displayed on the server machine. Since the recon­

struction is a 3D representation, it can be depth composited with synthetic objects using

standard computer graphics methods. Our server machine is connected to Internet2. With

this connection, we are able to perform 3D video-conferencing with remote sites. In partic­

ular, we are developing a 3D video-conferencing application with Hewlett-Packard Labs.

180

H\ i W«B' I

Figure 87: Our experimental setup for interactive new view synthesis.

181

REFERENCES

[1] ADELSON, E. H. and BERGEN, J. R., "The Plenoptic Function and the Elements
of Early Vision," in Computational Models of Visual Processing (LANDY, M. and
MOVSHON, J. A., eds.), Cambridge, MA: MIT Press, 1991.

[2] ALIAGA, D. G. and CARLBOM, I., "Plenoptic Stitching: A Scalable Method for Re­
constructing 3D Interactive Walkthroughs," in SIGGRAPH 2001, Computer Graph­
ics Proceedings, 2001.

[3] AVIDAN, S. and SHASHUA, A., "Novel View Synthesis by Cascading Trilinear Ten­
sors," IEEE Transactions on Visualization and Computer Graphics, vol. 4, no. 4,
pp. 293-306, 1998.

[4] BAKER, H. H. and BlNFORD, T. O., "Depth from Edge and Intensity Based Stereo,"
in International Joint Conference on Artificial Intelligence, pp. 631-636, 1981.

[5] BARTLE, R., The Elements of Real Analysis. New York: John Wiley and Sons,
seconded., 1976.

[6] BECKER, S. and BOVE, V. M., "Semiautomatic 3-D Model Extraction from Uncal-
ibrated 2-D Camera Views," Proc. SP1E Visual Data Exploration and Analysis II,
vol. 2410, pp. 447-461, Feb. 1995.

[7] BEVERIDGE, J. R. and STEVENS, M., "Precise Matching of 3-D Target Models to
Multisensor Data," IEEE Transactions on Image Processing, vol. 6, no. 1, pp. 126-
142, 1997.

[8] BLACK, M. J. and RANGARAJAN, A., "On the Unification of Line Processes, Out­
lier Rejection, and Robust Statistics with Applications in Early Vision," Interna­
tional Journal of Computer Vision, vol. 19, no. 1, pp. 57-91, 1996.

[9] BLINN, J. and NEWELL, M., "Texture and Reflection on Computer Generated Im­
ages," Communications of ACM, vol. 19, no. 10, pp. 542-547, 1976.

[10] BLOOMENTHAL, J., Introduction to Implicit Surfaces. San Francisco, CA: Morgan
Kaufmann Publishers, Inc., 1997.

[11] BONET, J. D. and VIOLA, P., "Roxels: Responsibility Weighted 3D Volume Re­
construction," in International Conference on Computer Vision, pp. 415-^125, 1999.

[12] BROADHURST, A., DRUMMOND, T. W., and CIPOLLA, R., "A Probabilistic
Framework for Space Carving," in International Conference on Computer Vision,
vol. 1, pp. 388-393, 2001.

182

[13] BROADHURST, A., A Probabilistic Framework for Space Carving. Ph.d. thesis,
University of Cambridge, 2001.

[14] BUEHLER, C , BOSSE, M., MCMILLAN, L., GORTLER, S. J., and COHEN, M. R,
"Unstructured Lumigraph Rendering," in SIGGRAPH 2001, Computer Graphics
Proceedings, pp. 425-432, 2001.

[15] CARCERONI, R. and KUTULAKOS, K., "Multi-View Scene Capture by Surfel Sam­
pling: From Video Streams to Non-Rigid Motion, Shape, and Reflectance," in Inter­
national Conference on Computer Vision, vol. 2, pp. 60-67, 2001.

[16] CASTLEMAN, K. R., Digital Image Processing. Englewood Cliffs, NJ: Prentice
Hall, 1996.

[17] CHANG, N. and ZAKHOR, A., "A Multivalued Representation for View Synthesis,"
in International Conference on Image Processing, pp. 505-509, 1999.

[18] CHEN, Q. and MEDIONI, G., "Image synthesis from a sparse set of views," in Pro­
ceedings of the Conference on Visualization '97, pp. 269-275, ACM Press, 1997.

[19] CHEN, Q. and MEDIONI , G., "A Volumetric Stereo Matching Method: Application
to Image-Based Modeling," Proc. Computer Vision and Pattern Recognition, pp. 29-
34, June 1999.

[20] CH E N , S. E. and WILLIAMS, L., "View Interpolation for Image Synthesis," in SIG­
GRAPH 1993, Computer Graphics Proceedings, pp. 279-288, 1993.

[21] CHEN, S. E., "QuickTime VR — An Image-Based Approach to Virtual Environ­
ment Navigation," in SIGGRAPH 1995, Computer Graphics Proceedings, pp. 29-
38, 1995.

[22] CHEN, W., BOUGET, J., C H U , M., and GRZESZCZUK, R., "Light Field Mapping:
Efficient Representation and Hardward Rendering of Surface Light Fields," in SIG­
GRAPH 2002, Computer Graphics Proceedings, 2002.

[23] CHHABRA, V, "Reconstructing Specular Objects with Image-based Rendering Us­
ing Color Caching," Master's thesis, Worcester Polytechnic Institute, 2001.

[24] COLOSIMO, A., SARTI, A., andTUBARO, S., "Image-Based Object Modeling: A
Multiresolution Level-Set Approach," in International Conference on Image Pro­
cessing, pp. 181-184,2001.

[25] CULBERTSON, W. B., MALZBENDER, T., and SLABAUGH, G., "Generalized Voxel
Coloring," in Proceedings of the International Workshop on Vision Algorithms,
pp. 100-115, Springer-Verlag LNCS 1883, 1999.

[26] CURLESS, B. and LEVOY, M., "A Volumetric Method for Building Complex Mod­
els from Range Images," in SIGGRAPH 1996, Computer Graphics Proceedings,
pp. 303-312, 1996.

183

[27] DEBEVEC, P., TAYLOR, C., and MALIK, J., "Modeling and Rendering Architec­
ture from Photographs: A Hybrid Geometry- and Image-based Approach," in SIG-
GRAPH1996, Computer Graphics Proceedings, pp. 11-20, 1996.

[28] DEDIEU, S., GLUTTON, P., SCHLICK, C., and REUTER, P., "Reality: an Interac­
tive Reconstruction Tool of 3D Objects from Photographs," in Workshop on Vision,
Modeling, and Visualization, 2001.

[29] DlNH, H. Q., TURK, G., and SLABAUGH, G., "Reconstructing Surfaces Using An-
iostropic Basis Functions," in International Conference on Computer Vision, vol. 2,
pp. 606-613, 2001.

[30] DlNH, H. Q., TURK, G., and SLABAUGH, G., "Reconstructing Surfaces by Volu­
metric Regularization Using Radial Basis Functions," IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002.

[31] DYER, C. R., "Volumetric Scene Reconstruction from Multiple Views," in Founda­
tions of Image Understanding (DAVIS, L. S., ed.), pp. 469-489, Kluwer, 2001.

[32] ElSERT, P., STEINBACH, E., and GiROD, B., "Multi-Hypothesis, Volumetric Re­
construction of 3-D Objects From Multiple Calibrated Camera Views," in ICASSP,
vol. 6, pp. 3509-3512, 1999.

[33] ElSERT, P., STEINBACH, E., and GiROD, B., "Automatic Reconstruction of 3-D
Stationary Objects from Multiple Uncalibrated Camera Views," IEEE Transactions
on Circuits and Systems for Video Technology, vol. 10, no. 2, pp. 261-277, 2000.

[34] FAUGERAS, O. and KERIVEN, R., "Variational Principles, Surface Evolution,
PDE's, Level Set Methods and the Stereo Problem," IEEE Transactions on Image
Processing, vol. 7, no. 3, pp. 336-344, 1998.

[35] FAUGERAS, O., LAVEAU, S., ROBERT, L., CSURKA, G., and ZELLER, C , "3-D

Reconstruction of Urban Scenes from Sequences of Images," INRIA Tech. Report
2572, pp. 1-24, June 1995.

[36] FAUGERAS, O., Three-Dimensional Computer Vision: A Geometrical Viewpoint.
Cambridge, MA: The MIT Press, second printing ed., 1993.

[37] FAUGERAS, O. and LUONG, Q.-T., The Geometry of Multiple Images. Cambridge:
MIT Press, 2001.

[38] FITZGIBBON, A. and ZiSSERMAN, A., "Automatic 3D Model Acquisition and Gen­
eration of New Images From Video Sequences," Proc. European Signal Processing
Conference, pp. 1261-1269, 1998.

[39] FOLEY, J. D., VAN DAM, A., FEINER, S. K., and HUGHES, J. F., Computer Graph­
ics: Principles and Practice. Reading, MA: Addison-Wesley, second edition ed.,
1996.

184

[40] FROMHERZ, T. and BiCHSEL, M., "Shape from Contours as Initial Step in Shape
from Multiple Cues," in ISPRS Commission III Symposium on Spatial Information
from Digital Photogrammetry and Computer Vision, pp. 240-256, 1994.

[41] FUA, P. and LECLERC, Y., "Object-Centered Surface Reconstruction: Combin­
ing Multi-Image Stereo and Shading," International Journal of Computer Vision,
vol. 16, pp. 35-56, Sep 1995.

[42] FUA, P. and SANDER, P., "Reconstructing Surfaces from Unstructured 3D Points,"
Proc. European Conference on Computer Vision, 1992.

[43] GARCIA, B. and BRUNET, P., "3D Reconstruction With Projective Octrees and
Epipolar Geometry," in Proceedings of the IEEE International Conference on Com­
puter Vision, pp. 1067-1072, 1998.

[44] GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., and COHEN, M. F., "The Lu-

migraph," in SIGGRAPH1996, Computer Graphics Proceedings, pp. 43-54, 1996.

[45] GREENE, N., "Environment Mapping and Other Applications of World Projections,"
International Journal of Computer Vision, pp. 21-29, 1986.

[46] HAN, M. and KANADE, T., "Multiple Motion Scene Reconstruction from Uncali-
brated Views," in International Conference on Computer Vision, vol. 1, pp. 163-170,
2001.

[47] HARDING, C. M. and LANE, R. G., "Passive Navigation from Image Sequences by
Use of a Volumetric Approach," Journal of the Optical Society of America, vol. 19,
no. 2, pp. 295-305, 2002.

[48] HARTLEY, R. and ZlSSERMAN, A., Multiple View Geometry. Cambridge: Cam­
bridge Unversity Press, 2000.

[49] IRANI, M., HASSNER, T., and ANANDAN, P., "What Does the Scene Look Like
from a Scene Point?," in European Conference on Computer Vision, vol. 2, pp. 883-
897, 2002.

[50] ISODORO, J. and SCLAROFF, S., "Stochastic Mesh-Based Multiview Reconstruc­
tion," in 1st International Symposium on 3D Processing, Visualization, and Trans­
mission, pp.568-577, 2002.

[51] JEBARA, T., AZARBAYEJANL, A., and PENTLAND, A., "3D Structure from 2D
Motion," IEEE Signal Processing Magazine, vol. 16, no. 3, pp. 66-84, 1999.

[52] JlN, H., YEZZI, A., and SOATTO, S., "Variational Multiframe Stereo in the Pres­
ence of Specular Reflections," in 1st International Symposium on 3D Processing,
Visualization, and Transmission, pp. 626-630, 2002.

[53] KlMBER, D., FOOTE, J., and LERTSITHICHAI, S., "FlyAbout: Spatially Indexed
Panoramic Video," in ACM Multimedia, pp. 339-347, 2001.

185

[54] KUTULAKOS, K. and SEITZ, S., "A Theory of Shape by Space Carving," Interna­
tional Journal of Computer Vision, vol. 38, no. 3, pp. 199-218, 2000.

[55] KUTULAKOS, K. N., "Approximate N-View Stereo," in Proceedings of the the Sixth
European Conference on Computer Vision, vol. 1, pp. 67-83, 2000.

[56] KUTULAKOS, K. N. and SEITZ, S. M., "A Theory of Shape by Space Carving,"
in Proceedings of the Seventh IEEE International Conference on Computer Vision,
vol. 1, pp. 307-314, 1999.

[57] LAURENTINI, A., "The Visual Hull Concept for Silhouette-based Image Under­
standing," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16,
no. 2, pp. 150-162, 1994.

[58] LAVEU, S. and FAUGERAS, O., "3-D Scene Representation as a Collection of Im­
ages," in International Conference on Pattern Recognition, pp. 689-691, 1994.

[59] LEON-GARCIA, A., Probability and Random Processes for Electrical Engineering.
Addison-Wesley, 1993.

[60] LEVOY, M. and HANRAHAN, R, "Light Field Rendering," Computer Graphics,
vol. 30, no. Annual Conference Series, pp. 31-^12, 1996.

[61] LlPPMAN, A., "Movie-Maps: An Application of the Optical Video-disk to Com­
puter Graphics," Computer Graphics, vol. 14, no. 3, 1980.

[62] LORENSON, W. and CLINE, H., "Marching Cubes: A High Resolution 3D Surface
Construction Algorithm," in SIGGRAPH 1987, Computer Graphics Proceedings,
pp. 163-170, 1987.

[63] M. KlMURA, SAITO, H. and KANADE, T., "3D Voxel Construction Based on
Epipolar Geometry," in International Conference on Image Processing, pp. 135-
139, 1999.

[64] MAGDA, S., KREIGMAN, D., ZICKLER, T., and BELHUMEUR, P., "Beyond Lam­
bert: Reconstructing Surfaces with Arbitrary BRDFs," in International Conference
on Computer Vision, vol. 2, pp. 391-398, 2001.

[65] MAGNOR, M. and GiROD, B., "Adaptive Block-based Light Field Coding," Proc.
International Workshop on Synthetic-Natural Hybrid Coding and Three Dimen­
sional Imaging, pp. 140-143, 1999.

[66] MANNING, R. A. and DYER, C. R., "Interpolating View and Scene Motion by
Dynamic View Morphing," in Proc. Computer Vision and Pattern Recognition Conf,
vol. 1, pp. 388-394, 1999.

[67] MARAGOS, P. and SCHAFER, R. W., "Morphological Systems for Multidimen­
sional Signal Processing," Proceedings of the IEEE, vol. 78, pp. 690-710, April
1990.

186

[68] MARK, W. R., Post-Rendering 3D Image Warping: Visibility, Reconstruction, and
Performance for Depth-Image Warping. Ph.d. thesis, University of North Carolina,
1999.

[69] MARR, D. and POGGIO, T., "Cooperative Computation of Stereo Disparity," Sci­
ence, vol. 194, pp. 283-287, 1976.

[70] MARTIN, W. and AGGARWAL, J. K., "Volumetric Descriptions of Objects from
Multiple Views," IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 5, no. 2, pp. 150-158, 1983.

[71] MATSUYAMA, T. and TAKAI, T., "Generation, Visualization, and Editing of 3D
Video," in The First International Symposium on 3D Data Processing, Visualization,
and Transmission, pp. 234-245, 2002.

[72] MATUSIK, W., BUEHLER, C , RASKAR, R., GORTLER, S. J., and M C M I L L A N , L.,

"Image-Based Visual Hulls," in SIGGRAPH 2000, Computer Graphics Proceedings,
pp. 369-374, 2000.

[73] M A X , N., PUEYO, S., and SCHRODER, P., "Hierarchical Rendering of Trees from
Precomputed Multi-Layer Z-Buffers," in Eurographics Workshop on Rendering,
pp. 165-174, 1996.

[74] M C M I L L A N , L., "A List-Priority Rendering Algorithm for Redisplaying Projected
Surfaces," Tech. Rep. Technical Report TR95-005, University of North Carolina,
1995.

[75] MILLER, G., RUBIN, S., and PONCELEON, D., "Lazy Decompression of Surface
Light Fields for Precomputed Global Illumination," in Eurographics Workshop on
Rendering, pp. 281-292, 1998.

[76] M O E Z Z I , S., TAI, L. C , and GERARD, P., "Virtual View Generation for 3D Digital
Video," IEEE Multimedia, vol. 4, no. 1, pp. 18-26, 1997.

[77] MOSTAFA, M. G., HEMAYED, E., and FARAG, A., "Target Recognition via 3D Ob­
ject Reconstruction from Image Sequence and Contour Matching," Pattern Recog­
nition Letters, vol. 20, no. 11-13, pp. 1381-1387, 1999.

[78] NARAYANAN, P., RANDER, P., and KANADE, T., "Constructing Virtual Worlds
Using Dense Stereo," in International Conference on Computer Vision, pp. 3-10,
1998.

[79] NEUMANN, J. and ALOIMONOS, Y., "Spatio-temporal Stereo Using Multi-
resolution Subdivision Surfaces," International Journal of Computer Vision, vol. 47,
no. 1-3, pp. 181-193,2002.

[80] NiSTER, D., "Reconstruction from Uncalibrated Sequences with a Hierarchy of Tri­
focal Tensors," in European Conference on Computer Vision, pp. 649-663, 2000.

187

[81] NISTER, D., "Frame Decimation for Structure and Motion," in European Workshop
on 3D Structure from Multiple Images for Large-scale Environments (POLLEFEYS,
M., VAN GOOL, L., ZISSERMAN, A., and FITZGIBBON, A., eds.), pp. 17-34,
Springer LNCS 2018, 2001.

[82] OKUTOMI, M. and KANADE, T., "A Multiple-Baseline Stereo," IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 15, Apr. 1993.

[83] OSHER, S. and SETHIAN, J., "Fronts Propagating with Curvature Dependent Speed:
Algorithms Based on Hamilton-Jacobi Formulations," Journal of Computational
Physics, vol. 79, pp. 12-49, 1988.

[84] OZUN, O., "Comparison of Photo-consistency Measures Used in the Voxel Coloring
Algorithm," Master's thesis, Middle East Technical University, 2002.

[85] POLLEFEYS, M., KOCH, R., and GOOL, L. V, "Self-Calibration and Metric Re­
construction Inspite of Varying and Unkonwn Intrinsic Camera Parameters," Inter­
national Journal of Computer Vision, vol. 32, pp. 7-25, Jan. 1999.

[86] POLLEFEYS, M., KOCH, R., VERGAUWEN, M., and GOOL, L. V, "Hand-Held
Acquisition of 3D Models With a Video Camera," Proc. 2nd International Confer­
ence on 3-D Digital Imaging and Modeling, pp. 14-23, 1999.

[87] POTMESIL, M., "Generating Octree Models of 3D Objects from Their Silhouettes in
a Sequence of Images," Computer Vision, Graphics and Image Processing, vol. 40,
no. 1, pp. 1-29, 1987.

[88] POULIN, P., OUIMET, M., and FRASSON, M. C , "Interactively Modeling with Pho-
togrammetry," in Proceedings of the Eurographics Workshop on Rendering, pp. 9 3 -
104, 1998.

[89] PRESS, W., TEUKOLSKY, S., VETTERLING, W., and FLANNERY, B., Numerical
Recipes in C. Cambridge University Press, second ed., 1992.

[90] PRITCHETT, P. and ZISSERMAN, A., "Wide Baseline Stereo Matching," Proc. In­
ternational Conference on Computer Vision, pp. 754-760, Jan. 1998.

[91] PROCK, A. and DYER, C , "Towards Real-Time Voxel Coloring," in Image Under­
standing Workshop, pp. 315-321, 1998.

[92] REGAN, M. J. P., MILLER, G. S. P., RUBIN, S. M., and KOGELNIK, C , "A Real
Time Low-Latency Hardware Light-Field Renderer," in Siggraph 1999, Computer
Graphics Proceedings, pp. 287-290, Addison Wesley Longman, 1999.

[93] ROCKWOOD, A. and WlNGET, J., "Three-Dimensional Object Reconstruction from
Two-Dimensional Images," Computer-Aided Design, vol. 29, pp. 279-285, Mar.
1997.

188

[94] ROY, S. and Cox, I. J., "A Maximum-Flow Formulation of the JV-camera Stereo
Correspondence Problem," in Proceedings of the Interntational Conference on Com­
puter Vision, pp. 492-499, 1999.

[95] SAITO, H. and KANADE, T., "Shape Reconstruction in Projective Grid Space from
Large Number of Images," in IEEE Computer Society Conference on Computer Vi­
sion and Pattern Recognition, pp. 49-54, 1999.

[96] SAWHNEY, H. S. and KUMAR, R., "True Multi-Image Alignment and Its Applica­
tion to Mosaicing and Lens Distortion Correction," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 21, no. 3, pp. 235-243, 1999.

[97] SCHAFFALITZKY, F. and ZiSSERMAN, A., "Viewpoint Invariant Texture Matching
and Wide Baseline Stereo," in International Conference on Computer Vision, 2001.

[98] SCHARSTEIN, D., "Stereo Vision for View Synthesis," in IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, pp. 852-858, IEEE Com­
puter Society Press, 1996.

[99] SEITZ, S. and DYER, C , "Physically-Valid View Synthesis by Image Interpolation,"
in Proceedings, Workshop on the Representation of Visual Scenes, IEEE Computer
Society Press, June 1995.

[100] SEITZ, S. and DYER, C , "Photorealistic Scene Reconstruction by Voxel Coloring,"
International Journal of Computer Vision, vol. 35, no. 2, pp. 151-173, 1999.

[101] SEITZ, S. M. and DYER, C. R., "View Morphing," in SIGGRAPH 1996, Computer
Graphics Proceedings, pp. 21-30, 1996.

[102] SETHIAN, J., Level Set Methods and Fast Marching Methods. Cambridge University
Press, second edition ed., 1999.

[103] SHADE, J., GORTLER, S., H E , L., and SZELISKI, R., "Layered Depth Images," in
SIGGRAPH 1998, Computer Graphics Proceedings, pp. 231-242, 1998.

[104] SHARMAN, K., NIXON, M., and CARTER, J., "Extraction and Description of 3D
(Articulated) Moving Objects," in 1st International Symposium on 3D Processing,
Visualization, and Transmission, pp. 664-667, 2002.

[105] SHUM, H. Y., H E I , M., and SZELISKI, R., "Interactive Construction of 3D Models
from Panoramic Mosaics," Proc. Computer Vision and Pattern Recognition, pp. 427-
433, June 1998.

[106] SHUM, H.-Y. and H E , L.-W., "Rendering with Concentric Mosaics," in SIGGRAPH
1999, Computer Graphics Proceedings, pp. 299-306, 1999.

[107] SLABAUGH, G., CULBERTSON, W. B., MALZBENDER, T., LIVINGSTON, M., S O -

BEL, I., STEVENS, M., and SCHAFER, R., "A Collection of Methods for Volu­
metric Reconstruction of Visual Scenes," Submitted to the International Journal of
Computer Vision.

189

[108] SLABAUGH, G., CULBERTSON, W. B., MALZBENDER, T., and SCHAFER, R.,

"Improved Voxel Coloring Via Volumetric Optimization," Tech. Rep. 3, Center for
Signal and Image Processing, Georgia Tech., 2000.

[109] SLABAUGH, G., CULBERTSON, W. B., MALZBENDER, T., and SCHAFER, R., "A

Survey of Volumetric Scene Reconstruction Methods from Photographs," in Volume
Graphics 2001, Proc. of Joint IEEE TCVG and Eurographics Workshop (MUELLER,
K. and KAUFMAN, A., eds.), pp. 81-100, Springer Computer Science, 2001.

[110] SLABAUGH, G., MALZBENDER, T., and CULBERTSON, W. B., "Volumetric Warp­
ing for Voxel Coloring on an Infinite Domain," in European Workshop on 3D
Structure from Multiple Images for Large-scale Environments (POLLEFEYS, M.,
VAN GOOL, L., ZISSERMAN, A., and FITZGIBBON, A., eds.), pp. 109-123,
Springer LNCS 2018, 2000.

[I l l] SLABAUGH, G., SCHAFER, R., and H A N S , M., "Image-Based Photo Hulls for Fast
and Photo-Realistic New View Synthesis," Submitted to Real-Time Imaging.

[112] SLABAUGH, G., SCHAFER, R. W., and HANS, M., "Image-Based Photo Hulls,"
in 1st International Symposium on 3D Processing, Visualization, and Transmission,
pp. 704-708, 2002.

[113] SLABAUGH, G., SCHAFER, R. W., and H A N S , M., "Multi-Resolution Space Carv­
ing Using Level Set Methods," in International Conference on Image Processing,
vol. 2, pp. 545-548, 2002.

[114] STEINBACH, E., GIROD, B., EISERT, P., and BETZ, A., "3-D Reconstruction of
Real-World Objects Using Extended Voxels," in International Conference on Image
Processing, 2000.

[115] STEVENS, M. R., Reasoning About Object Appearance in the Context of a Scene.
Ph.d. thesis, Colorado State University, 1999.

[116] SZELISKI, R., "Rapid Octree Construction from Image Sequences," CVGIP: Image
Understanding, vol. 58, no. 1, pp. 23-32, 1993.

[117] SZELISKI, R., "A Multi-View Approach to Motion and Stereo," International Con­
ference on Computer Vision and Pattern Recognition, pp. 157-153, 1999.

[118] SZELISKI, R. and SHUM, H.-Y., "Creating Full View Panoramic Image Mosaics
and Environment Maps," in SIGGRAPH 1997, Computer Graphics Proceedings,
pp. 251-258, 1997.

[119] TAO, H., SAWHNEY, H. S., and KUMAR, R., "Dynamic Depth Recovery from Mul­
tiple Synchronized Video Streams," in Conference on Computer Vision and Pattern
Recognition, pp. 118-124, 2001.

190

[120] TAO, H., SAWHNEY, H. S„ and KUMAR, R., "A global matching framework for
stereo computation," in International Conference on Computer Vision, pp. 532-539,
2001.

[121] TORR, P., FITZGIBBON, A., and ZISSERMAN, A., "Maintaining Multiple Motion
Model Hypothesis over Many Views to Recover Matching and Structure," in Inter­
national Conference on Computer Vision, pp. 485-491, 1998.

[122] TRIGGS, B., MCLAUCHLAN, P., HARTLEY, R., and FITZGIBBON, A., "Bundle
Adjustment - A Modern Synthesis," in Proceedings of the International Workshop
on Vision Algorithms, pp. 298-372, Springer-Verlag LNCS 1883, 1999.

[123] TRUCCO, E. and VERRI, A., Introductory Techniques for 3-D Computer Vision.
New Jersey: Prentice-Hall, 1998.

[124] TSAI , R., "A Versatile Camera Calibration Technique for High-Accuracy 3D Ma­
chine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses," IEEE Trans­
actions on Robotics and Automation, vol. 3, no. 4, pp. 323-344, 1987.

[125] TUYTELAARS, T. and GOOL, L. V., "Wide Baseline Stereo based on Local,
Affinely invariant Regions," in British Machine Vision Conference, pp. 412-^-22,
2000.

[126] VEDULA, S., BAKER, S., SEITZ, S., and KANADE, T., "Shape and Motion Carv­
ing in 6D," in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 2, pp. 592-598, 2000.

[127] VEDULA, S., RANDER, P., SAITO, H., and KANADE, T., "Modeling, Combining,
and Rendering Dynamic Real-World Events from Image Sequences," Proc. Virtual
Systems and Multimedia, pp. 323-344, 1998.

[128] WEGHORST, H., HOOPER, G., and GREENBERG, D. P., "Improving Computational
Methods for Ray Tracing," ACM Transactions on Graphics, vol. 3, no. 1, pp. 52-69,
1984.

[129] W O O D , D. N., AZUMA, D. I., ALDINGER, K., CURLESS, B., DUCHAMP, T.,

SALESIN, D. H., and STUETZLE, W., "Surface Light Fields for 3D Photography,"
in SIGGRAPH 2000, Computer Graphics Proceedings (AKELEY, K., ed.), pp. 287-
296, 2000.

[130] YEZZI, A. and SOATTO, S., "Stereoscopic Segementation," in International Con­
ference on Computer Vision, vol. 1, pp. 59-66, 2001.

[131] ZHANG, Y. and KAMBHAMETTU, C , "Integrated 3D Scene Flow and Structure Re­
covery from Multiview Image Sequences," in IEEE Conference on Computer Vision
and Pattern Recognition, pp. 674-681, 2000.

[132] ZHANG, Z., "Flexible Camera Calibration By Viewing a Plane From Unknown Ori­
entations," in International Conference on Computer Vision, pp. 666-673, 1999.

191

[133] ZiSSERMAN, A., FiTZGlBBON, A., and CROSS, G., "VHS to VRML: 3D Graphi­
cal Models from Video Sequences," Proc. International Conference on Multimedia
Systems, pp. 51-57, 1999.

192

VITA

Greg Slabaugh was born in Garden City, MI on May 31, 1971. In May of 1989, he grad­
uated from Brother Rice High School in Bloomfield Hills, MI. He then attended the Uni­
versity of Michigan in Ann Arbor, MI, graduating with honors in 1994 with a Bachelor of
Science degree in Engineering Physics. That year, Greg received the Outstanding Student
of the Year Award in Engineering Physics.

From summer 1994 to fall 1996, Greg worked at Friendly Software, a start-up software
company located in Toledo, OH. There, he developed a 3D graphics engine for computer
video games.

In the fall of 1996 Greg enrolled at the Georgia Institute of Technology for graduate
school. In August of 1998 he graduated with honors with a Master of Science degree in
Electrical Engineering. He then began work towards a doctorate degree. During his Ph.D.
studies, Greg interned twice at Hewlett-Packard Laboratories in Palo Alto, CA; once in the
fall of 1998 and again in the summer and fall of 1999.

While a graduate student, Greg received a Presidential Fellowship from the Georgia
Institute of Technology, as well as a Foundation Fellowship from Schlumberger. In spring
of 2002, Greg received an award in the Georgia Tech Student Paper Competition sponsored
by Science Applications International Corporation. Greg was awarded the Center for Signal
and Image Processing Outstanding Service Award in fall of 2000, and the Outstanding
Research Award in fall of 2002. In the early years of his graduate studies, Greg worked as
a teaching assistant, developing technology-based educational tools. The latter years of his
graduate studies were funded by Hewlett-Packard.

Greg is member of IEEE, Tau Beta Pi, and Phi Kappa Phi.

193

