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Abstract

In this thesis we study certain classes of surface homeomorphisms and in
particular the interplay between the topology of the underlying surface and topo-
logical, geometrical and dynamical properties of the homeomorphisms. We study
three problems in three independent chapters:

The first problem is to describe the minimal sets of non-resonant torus home-
omorphisms, i.e. those homeomorphisms which are in a sense close to a minimal
translation of the torus. We study the possible minimal sets that such a homeomor-
phism can admit, uniqueness of minimal sets and their relation with other limit sets.
Further, we give examples of homeomorphisms to illustrate the possible dynamics.
In a sense, this study is a two-dimensional analogue of H. Poincaré’s study of orbit
structures of orientation preserving circle homeomorphisms without periodic points.

The second problem concerns the interplay between smoothness of surface
diffeomorphisms, entropy and the existence of wandering domains. Every surface
admits homeomorphisms with positive entropy that permutes a dense collection of
domains that have bounded geometry. However, we show that at a certain level
of differentiability it becomes impossible for a diffeomorphism of a surface to have
positive entropy and permute a dense collection of domains that has bounded ge-
ometry.

The third problem concerns quasiconformal homogeneity of surfaces; i.e.,
whether a surface admits a transitive family of quasiconformal homeomorphisms,
with an upper bound on the maximal distortion of these homeomorphisms. In
the setting of hyperbolic surfaces, this turns out to be a very intriguing question.
Our main result states that there exists a universal lower bound on the maximal
dilatation of elements of a transitive family of quasiconformal homeomorphisms on
a hyperbolic surface of genus zero.
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Chapter 1

Introduction

The main theme of this thesis is the study of certain classes of surface homeomor-

phisms and in particular the interplay between the topology of the underlying surface

and topological, geometrical and dynamical properties of the homeomorphisms. We

will study three independent problems concerning three classes of homeomorphisms

in the chapters 2, 3 and 4 below. In this introductory chapter, we give a description

of the problems we study in later chapters. We refer to the relevant chapters for the

precise definitions, results and references.

The first problem is to describe the minimal sets of non-resonant torus home-

omorphisms, i.e. homeomorphisms of the torus, isotopic to the identity, for which

the translation set is a single point with rationally independent irrational coordi-

nates. The translations of the torus with this property are exactly those for which

every orbit is dense in the torus. This class of torus homeomorphisms is a natural

two-dimensional analogue of the class of orientation preserving circle homeomor-

phisms of the circle without periodic points, which were first systematically studied

and their (topological) behaviour classified by H. Poincaré around 1880. We classify

the possible minimal sets these non-resonant homeomorphism can admit, uniqueness

of minimal sets and their relation with other limit sets. We show that the minimal

sets come in three different types. Roughly speaking, these are: (I) minimal sets
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for which the components of the complement in the torus are all open topological

disks, (II) minimal sets for which the components of the complement of the min-

imal set contain essential annuli and (III) the minimal sets that are in a sense a

topological extension of a Cantor set. Using this classification, we prove that the

only locally connected minimal sets are sets closely resembling, but not necessarily

homeomorphic to, a Sierpiński set of the torus.

Further, we construct homeomorphisms that admit minimal sets of all above

types, including some rather exotic minimal sets. These results can be found in

chapter 2.

In chapter 3, we study the interplay between smoothness of surface diffeomor-

phisms, topological entropy and the existence of wandering domains. A wandering

domain is a domain in the surface such that the iterates of this domain under the

diffeomorphism are mutually disjoint. We say a diffeomorphism permutes a dense

collection of domains if there exists a dense collection of domains, with disjoint clo-

sures, that are wandering. Further, a collection of domains in the surface is said

to have bounded geometry if every domain can be contained in a ball and in turn

contains a ball, such that the ratio of the radii of these balls is bounded from above.

It is not difficult to construct examples of homeomorphisms with positive

entropy that permute a dense collection of domains with bounded geometry. When

one requires the domains to have bounded geometry, then the more regular the

homeomorphism, the more difficult it becomes for it to simultaneously have positive

entropy and retain the bounded geometry property for the domains it permutes.

We show that at a certain level of differentiability, it becomes impossible for a

diffeomorphism to have positive entropy and permute a dense collection of domains

with bounded geometry. The idea of the proof is to show that the geometry of the

domains puts strong bounds on the maximal dilatation of the diffeomorphism on

the complement of the permuted domains. Using the differentiability assumptions,

and geometrical estimates that relate to the topological entropy, we then show that

2



the maximal dilatation grows at a rate that is slow enough to ensure the topological

entropy is zero.

The third problem, see chapter 4, concerns quasiconformal homogeneity of

Riemann surfaces. Given a Riemann surface M , it is said to be K-quasiconformally

homogeneous if the exist a transitive family of K-quasi-conformal homeomorphisms

of M , where K is the smallest such constant K ≥ 1. The notion of quasiconformal

homogeneity of surfaces was introduced by Gehring and Palka in 1976. It is easy

to see that the surfaces C, C∗ and D2 are 1-quasiconformally (i.e. conformally)

homogeneous, and so are the surfaces T2, the torus, and P1, the Riemann sphere. It

can be shown that these are the only conformally homogeneous Riemann surfaces.

In other words, any other surface is K-quasiconformally homogeneous, where 1 <

K ≤ ∞.

The following problem naturally presents itself: given a class of surfaces, are

the quasiconformality constants of these surfaces uniformly bounded away from 1?

Natural classes to consider are genus zero surfaces, i.e. those surfaces that can be

embedded in the Riemann sphere and closed surfaces of genus g ≥ 2. In chapter

4, we focus our attention to the former class, i.e. genus zero surfaces. Our main

result states that there exists a universal lower bound K > 1 such that if M is any

hyperbolic genus zero surface, then K ≥ K. The proof of this result makes essential

use of the fact that the genus of the surface is zero and the idea of the proof is as

follows.

If M is K-quasiconformally homogeneous, then the lengths of the (homotopi-

cally non-trivial) simple closed geodesics on M is uniformly bounded from below.

On a planar surface, any two simple closed geodesics that intersect do so in an even

number of intersection points (which clearly fails to be true on a surface of higher

genus). Using the transitivity of the family of K-quasiconformal homeomorphisms

of M , we construct configurations of simple closed geodesics that intersect in a

particular way. In the near conformal limit, i.e. if K is sufficiently close to 1, we

3



then show that these configurations contain essential closed curves whose length is

strictly less than that of the shortest closed curve the surface allows and thus these

configurations can not exist.

It is the fact that the genus of the surface M is zero, and thus geodesics

intersect in an even number, that makes that this argument works well; it is difficult

to see how to construct similar configurations of simple closed curves on closed

surfaces of genus g ≥ 2. Nevertheless, the (as yet) unanswered case of the closed

surfaces is very interesting, see the open problem section at the end of chapter 4.
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Chapter 2

Minimal Sets of Non-Resonant

Torus Homeomorphisms

As was known to H. Poincaré, an orientation preserving circle homeomorphism

without periodic points is either minimal or has no dense orbits, and every orbit

accumulates on the unique minimal set. In the first case the minimal set is the

circle, in the latter case a Cantor set. In this chapter we study a two-dimensional

analogue of this classical result: we classify the minimal sets of non-resonant torus

homeomorphisms; that is, torus homeomorphisms isotopic to the identity for which

the rotation set is a point with rationally independent irrational coordinates.

2.1 Definitions and statement of results

Let T1 = R/Z and f : T1 → T1 an orientation preserving circle homeomorphism.

A lift F : R → R of f satisfies f ◦ p1 = p1 ◦ F , with p1 : R → T1 the canonical

projection. The number

ρ(F, x) := lim
n→∞

Φn(x) − x

n
, (2.1)

exists for all x ∈ R, is independent of x and well defined up to an integer; that is, if F

and F̂ are two lifts of f then ρ(F )− ρ(F̂ ) ∈ Z. The number ρ(f) := ρ(F, x) mod Z
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is called the rotation number of f and ρ(f) ∈ Q if and only if f has periodic points.

Denote rθ : T1→T1 the rigid rotation of the circle with rotation number θ. The

following classical result classifies the possible topological dynamics of orientation

preserving homeomorphisms of the circle without periodic points [38, 39, 40].

Poincaré Classification Theorem. Let f : T1 → T1 be an orientation preserving

homeomorphism such that ρ(f) ∈ R \ Q. Then

(i) if f is transitive then f is conjugate to the rigid rotation rρ(f), and

(ii) if f is not transitive then f is semi-conjugate to the rotation rρ(f) via a non-

invertible continuous monotone map.

Moreover, f has a unique minimal set M, which is the circle T1 in case (i), or a

Cantor set in case (ii) and M = Ω(f) = ω(x) = α(x) = for all x ∈ T1.

Every connected component I of the complement of the Cantor minimal

set is a wandering interval, i.e. fn(I) ∩ I = ∅, for all n 6= 0. Given a Cantor

set in the circle, there exists a circle homeomorphism with any given irrational

rotation number that has this Cantor set as its minimal set M. This fact was first

explicitly mentioned by Denjoy [14], but essentially known already by Bohl [7] and

Kneser [26]. Denjoy [14] proved that an orientation preserving circle diffeomorphism

f ∈ Diff2(T1) with irrational rotation number is necessarily transitive and hence can

not have a wandering interval, see also [20].

The key feature of orientation preserving circle homeomorphisms without

periodic points is that it has an irrational rotation number which is independent

of the basepoint, where the rotation with the corresponding rotation number is

minimal. A natural generalization to dimension two is as follows. Let T2 = R2/

Z2, where p : R2→T2 is the canonical projection mapping. We denote Homeo(T2)

the class of homeomorphisms of the torus. Given an element f ∈ Homeo(T2),

we denote F : R2→R2 a lift to the cover. Any two different lifts F, F̂ of f differ

6



by an integer translation, that is, F (z) = F̂ (z) + (n,m) where (n,m) ∈ Z2. Let

Homeo0(T
2) ⊂ Homeo(T2) the subclass of homeomorphisms isotopic to the identity,

i.e. those homeomorphisms whose lifts commute with integer translations. We

denote ρ(f) the rotation set corresponding to f ∈ Homeo0(T
2) (see section 2.2.2

below for precise definitions). We define

Homeo∗(T
2) ⊂ Homeo0(T

2), (2.2)

the class of homeomorphisms isotopic to the identity for which the rotation set

ρ(f) = (α, β) mod Z2 is a single point for which the numbers 1, α, β are rationally

independent. These homeomorphisms are said to be non-resonant torus homeomor-

phisms.

Generalizations of Poincaré’s Theorem and Denjoy’s Theorem have recently

attracted much attention, perhaps most notably the work of F. Béguin, S. Crovisier,

T. Jäger, G. Keller, F. le Roux and J. Stark [3, 22, 23], where one considers an anal-

ogous class of torus homeomorphisms, namely quasiperiodically forced circle home-

omorphisms, which are torus homeomorphisms of the form (x, θ) 7→ (x + α, gθ(x))

mod Z2, with (x, θ) ∈ T2 and gθ : T1→T1 a family of circle homeomorphisms and

α ∈ R \ Q. In [3, 22, 23], the appropriate analogues of the results of Poincaré and

Denjoy in the class of quasiperiodically forced circle homeomorphisms are devel-

oped. Analogues of Poincaré’s Theorem in the setting of conservative torus homeo-

morphisms are developed by T. Jäger in [21].

To state our results, we need the following definitions. A connected set

X ⊂ T2 is said to be (un)bounded according to whether a lift X̃ ⊂ R2 is (un)bounded

as a subset of R2, where a lift X̃ of X is a connected component of p−1(X). A

compact and connected set is called a continuum. A continuum C in T2 is called

non-separating if the complement in T2 is connected. Given a bounded continuum

C ⊂ T2, we define Fill(C) ⊂ T2, the filled continuum, the smallest (with respect

to inclusion) non-separating bounded continuum containing C. A bounded non-

separating continuum in T2 is called acyclic.

7



Definition 2.1 (Extension of a Cantor set). Let M be a minimal set for f ∈
Homeo∗(T2), with {Λi}i∈I be the collection of connected components of M. If

Fill(Λi) is acyclic for every i ∈ I, Fill(Λi) ∩ Fill(Λj) = ∅ if i 6= j and there exists

a continuous φ : T2→T2, homotopic to the identity, and an f̂ ∈ Homeo∗(T2), such

that

(i) φ ◦ f = f̂ ◦ φ, i.e. f is semi-conjugate to f̂ , and

(ii) M̂ := φ(Q̂) ⊂ T2 is a Cantor minimal set for f̂ ,

where Q̂ =
⋃

i∈I Fill(Λi), then we say M is an extension of a Cantor set.

Put in words, M is an extension of a Cantor set, if the semi-conjugacy φ

between f and f̂ sends the collection of filled in components of M to points in a

one-to-one fashion, and the corresponding totally disconnected set M̂ is a Cantor

minimal set of the factor f̂ . An extension of a Cantor set is called non-trivial, if

there exist components of M that are not singletons.

Further, we define the following. A disk D ⊂ T2 in the torus is an injection by

a homeomorphism of the open unit disk D2 ⊂ R2 into the torus. An annulus A ⊂ T2

is an injection by a homeomorphism of the open annulus S1 × (0, 1) into the torus,

where A is said to be essential if the inclusion A →֒ T2 induces an injection of π1(A)

into π1(T
2). Let us now state our main results. Our first result gives a classification

of the possible minimal sets of homeomorphisms in our class Homeo∗(T2).

Theorem 2.A (Classification of minimal sets). Let f ∈ Homeo∗(T2) and let M be

a minimal set for f . Let {Σk}k∈Z be the connected components of the complement

M in T2. If M 6= T2, then either

(I) {Σk} is a collection of bounded and unbounded disks,

(II) {Σk} is a collection of essential annuli and bounded disks,

(III) M is an extension of a Cantor set.
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This result is proved in sections 2.3.1-2.3.2. It follows from the proof of

Theorem 2.A that

Corollary 2.1 (Structure of orbits; type I and II). Let f ∈ Homeo∗(T2) with a

minimal set M of type I or II. Then

M = Ω(f) = ω(z) = α(z), (2.3)

for all z ∈ T2. In particular, M is unique.

In [3, Thm 1.2], F. Béguin, S. Crovisier, T. Jäger and F. le Roux construct

a counterexample to Corollary 2.1 in the case where M is of type III in the setting

of quasiperiodically forced circle homeomorphisms. Formulated in our terminology,

this result reads

Counterexample 2.2 (Structure of orbits; type III [3]). There exist homeomor-

phisms f ∈ Homeo∗(T2) which have a unique Cantor minimal set M (and are thus

of type III), but are transitive.

In other words, M 6= T2 is the unique Cantor minimal set, but Ω(f) = T2.

Uniqueness of minimal sets of type III homeomorphisms has not been settled, see

the open problem section at the end of this chapter. Further, we have that

Corollary 2.3 (Connected minimal sets). Let f ∈ Homeo∗(T2). Then M is con-

nected if and only if M is of type I.

See section 2.3.2 for the proofs of the above two corollaries. To state our

second result, we need the following. Recall that a null-sequence is a sequence of

positive real numbers for which for every given ǫ > 0 there exist only finitely many

elements of the sequence that are greater than ǫ.

Definition 2.2 (quasi-Sierpiński set). A quasi-Sierpiński set is a continuum S =

T2\⋃k∈Z
Dk with {Dk}k∈Z a family of disks such that

⋃
k∈Z

Dk is dense in T2, and

a) Dk is the interior of a closed embedded disk, for every k ∈ Z,

9



b) Cl(Dk) ∩ Cl(Dk′) is at most a single point if k 6= k′, and

c) diam(Dk), k ∈ Z, is a null-sequence.

If property b) above is replaced by the condition that Cl(Dk) ∩ Cl(Dk′) = ∅, if

k 6= k′, then we refer to S as a Sierpiński set.

A closed subset of a topological space is locally connected, if every of its

points has arbitrarily small connected neighbourhoods. Requiring a minimal set

to be locally connected, reduces the list of Theorem 2.A to one type of non-trivial

minimal set, see section 2.3.3 for the proof.

Theorem 2.B (Locally connected minimal sets). Let f ∈ Homeo∗(T2) and suppose

that the minimal set M of f is locally connected. Then either M = T2 or M is a

quasi-Sierpiński set.

This result was (essentially) proved by A. Bís, H. Nakayama and P. Walczak

in [4] where locally connected minimal sets of general homeomorphisms of closed

surfaces are classified; it is shown that any locally connected minimal set of a home-

omorphism of a surface other than the torus T2 is either a finite set of points or a

finite union of disjoint simple closed curves. In the case of the torus, it is shown

that, in addition to these locally connected minimal sets, any other locally connected

minimal set is a quasi-Sierpiński set (in our terminology). We show how this result,

for our class of homeomorphisms, can be recovered from Theorem 2.A above, and

our line of approach is different. Rather than assuming the minimal set is locally

connected from the start as in [4], we start with the list of minimal sets of Theorem

2.A and show that most of these minimal sets are not locally connected, ultimately

arriving at the only possible locally connected minimal set, a quasi-Sierpiński set.

Our final result says that the classification of Theorem 2.A. is sharp in the

following sense.

Theorem 2.C (Existence of minimal sets). Every type of minimal set Theorem

2.A. allows is realized by homeomorphisms in Homeo∗(T2).

10



This result is proved by a number of examples in section 2.4. Let us briefly

discuss these. It is well-known there exist homeomorphisms f ∈ Homeo∗(T2) for

which the minimal set is a Sierpiński set. The first example given, a locally connected

quasi-Sierpiński minimal set that is not a Sierpiński set, is known [4]. The examples

constructed in section 2.4 are a minimal set for which the complement is a single

unbounded disk (type I), a minimal set for which the complement components are

essential annuli and bounded disks (type II) and examples of rather exotic non-

trivial extensions of Cantor sets (type III), where the minimal sets constructed are

homeomorphic to Cantor dust interspersed with various continua.

In section 2.5, we discuss some open problems related to the results obtained.

2.2 Preliminary results

Let us first introduce some background results and set notation used throughout

the remainder of this chapter.

2.2.1 Limit sets

A minimal set M of a homeomorphism f ∈ Homeo(T2) is a non-empty closed

and f -invariant set M ⊆ T2 that is minimal (relative to inclusion) with respect to

the properties of being non-empty, closed and invariant. As T2 is compact, every

f ∈ Homeo(T2) admits at least one minimal set (see e.g. [47, Thm 5.2]).

The non-wandering set Ω(f) is defined as

Ω(f) = {z ∈ T2 | ∀U ∋ z ∃n 6= 0 with fn(U) ∩ U 6= ∅}. (2.4)

and, for z ∈ T2, the omega limit set ω(z) and alpha limit set α(z) are defined by

ω(z) = {w ∈ T2 | ∃ nk such that fnk(z)→w, for k→∞}

α(z) = {w ∈ T2 | ∃ nk such that f−nk(z)→w, for k→∞}

11



respectively. The sets Ω(f), ω(z) and α(z) are closed and f -invariant and the

following inclusions hold

M ⊆ Ω(f) and ω(z), α(z) ⊆ Ω(f), (2.5)

for every z ∈ T2.

2.2.2 Rotation sets

The notion of rotation number for orientation preserving homeomorphisms of the

circle is generalized in [34] to homeomorphisms f ∈ Homeo0(T
2), as follows.

Definition 2.3. Let f ∈ Homeo0(T
2) and F : R2 → R2 a lift of f . Define ρ(F ) as

ρ(F ) =

∞⋂

m=1

Cl

( ∞⋃

n=m

{
Fn(z̃) − z̃

n

∣∣ z̃ ∈ R2

})
⊂ R2. (2.6)

Relative to a single basepoint z̃ ∈ R2, this reads

ρ(F, z̃) =
∞⋂

m=1

Cl

(
Fn(z̃) − z̃

n
| n > m

)
. (2.7)

The rotation set is defined as ρ(f) = ρ(F ) mod Z2 and (the pointwise rotation set)

ρ(f, z) = ρ(F, z̃) mod Z2, where z = p(z̃).

In words, ρ(F ) collects all limit points of the sequences

Fnk(z̃k) − z̃k
nk

with nk→∞ for k→∞ and z̃k ∈ R2. The rotation set for an f ∈ Homeo0(T
2) is

in general no longer a single point, but a convex compact and connected set (see

again [34]).

We say the vector (α, β) ∈ R2 is irrational, if the numbers 1, α, β are ratio-

nally independent; that is, if the only solution over the integers of

N1 +N2α+N3β = 0 (2.8)
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is N1 = N2 = N3 = 0. The translation τ : T2→T2 corresponding to (α, β),

τ : (x, y) 7→ (x+ α, y + β) mod Z2, (2.9)

is minimal if and only if the vector (α, β) is irrational. The class of homeomor-

phisms of the torus T2 isotopic to the identity with rotation set consisting of a

single irrational vector will be denoted by Homeo∗(T2). It is easy to see that a

homeomorphism f ∈ Homeo∗(T2) has no periodic points.

Lemma 2.4. Let f ∈ Homeo∗(T2). If X ⊂ T2 is a bounded connected set, then

fn(X) 6= X, for all n 6= 0.

Proof. If X ⊂ T2 is bounded and fN(X) = X, for some N 6= 0, we can take a lift

F of f and a lift X̃ of X such that FN (X̃) = X̃ . Let z̃ ∈ X̃. As X̃ is bounded, we

must have that ρ(F, z̃) = (0, 0) and thus ρ(f, z) = (0, 0) mod Z2, where z = p(z̃),

contrary to our assumption on the rotation set.

In other words, if X ⊂ T2 is a connected and f -invariant set, then X is

necessarily unbounded.

Lemma 2.5. Let f ∈ Homeo∗(T2) and F a lift of f . Let D ⊂ R2 be a closed

topological disk. Then there exists no N 6= 0, and (p, q) ∈ Z2, such that

FN (D) ⊆ Tp,q(D) or Tp,q(D) ⊆ FN (D).

Proof. Suppose that there exists an N 6= 0 and (p, q) ∈ Z2 such that FN (D) ⊆
Tp,q(D). Choosing a different lift F̂ if necessary, we may assume that F̂N (D) ⊆ D.

By the Brouwer Fixed Point Theorem, F̂N has a fixed point on D, and thus f has

a periodic point, contrary to our assumptions. The case where Tp,q(D) ⊆ FN (D)

follows by considering the inverse F−1.

2.2.3 Topology of torus domains

Next, we turn to the topology of domains in the torus. In the subsequent proof, the

various topological types of domains on the torus play an important role. In what
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follows, a domain is an open connected set. Let γ ⊂ T2 be an essential simple closed

curve. We say the curve γ has homotopy type (p, q) if γ lifts to a curve γ̃ ∈ R2

such that, up to a suitable translation, γ̃ connects the lattice points (0, 0) ∈ Z2 and

(p, q) ∈ Z2 with p and q coprime. If we define

Tp,q : R2→R2, Tp,q(x, y) = (x+ p, y + q), (2.10)

then γ̃ is periodic in the sense that

γ̃ =
⋃

n∈Z

T n
p,q(η), (2.11)

where η ⊂ γ̃ is the arc connecting (0, 0) and (p, q). Let D ⊂ T2 be a domain. The

inclusion D →֒ T2 naturally induces an injection of π1(D) into π1(T
2). This gives

rise to the following

Definition 2.4 (Types of domains). A domain D ⊂ T2 is said to be trivial, essen-

tial or doubly essential according to whether the inclusion of π1(D) into π1(T
2) is

isomorphic to 0,Z or Z2 respectively.

D1

D2

γ

D3

γ

γ′

Figure 2.1: A trivial, essential and doubly essential domain D1,D2 and D3 in T2

respectively; D1 contains no essential simple closed curves, D2 contains the essential
curve γ, and D3 contains two non-homotopic essential curves γ, γ′.

Definition 2.5. An essential domain D ⊂ T2 has characteristic (p, q) if an essential

closed curve γ ⊂ D has homotopy type (p, q).
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Note that definition 2.5 is well-defined, in the sense that every other essential

simple closed curve in D must have the same homotopy type (as otherwise the

domain D would be doubly essential). The following lemma relates the notion of

a trivial and essential domain to that of a disk and essential annulus in the torus

respectively.

Lemma 2.6. A domain D ⊂ T2, such that D̃ is simply connected, is trivial (resp.

essential) if and only if it is a disk (resp. essential annulus) in the torus.

Proof. As the if part is evident, we need only prove the only if part. First suppose

thatD is trivial and let D̃ a lift ofD. By the Riemann mapping theorem, there exists

a biholomorphism φ : D2→D̃. As D is trivial, no two points in D̃ are identified under

the action of the translation group Z2 ⊂ R2 and thus p| eD is injective. Therefore, we

have that p ◦ φ : D2→T2 with p ◦ φ(D2) = D, and thus D ⊂ T2 is a disk.

Next, suppose that D is essential. Then there exists a unique pair (p, q) ∈ Z2,

with gcd(p, q) = 1, such that the translation Tp,q leaves D̃ invariant, i.e. Tp,q(D̃) =

D̃. Further, as D̃ is simply connected, again by the Riemann mapping theorem,

there exists a biholomorphism φ : D2→D̃. As Tp,q : D̃→D̃ is a biholomorphism, the

map

µ : D2 −→ D2, µ = φ−1 ◦ Tp,q ◦ φ

is itself a biholomorphism and thus a Möbius transformation. Moreover, as Tp,q

does not fix any point in D̃, µ does not fix any point in D2 and thus µ is either a

hyperbolic or a parabolic Möbius transformation. It is well-known that D2/〈µ〉 is

then topologically equivalent to an annulus S1 × (0, 1), therefore so is D̃/〈Tp,q〉. As

D̃ admits no translations other than (multiples of) Tp,q that leave D̃ invariant, the

continuous projection p restricted to D̃/〈Tp,q〉 into the torus T2 is an injection and

thus D is indeed topologically equivalent to the annulus S1 × (0, 1).
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2.2.4 Decomposition theory

We recall some standard results from decomposition theory, to be used in the proof

of Theorem 2.A. In the following statements, let M be a closed surface.

Definition 2.6. A collection U = {Ui}i∈I of continua in a surface M is said to be

upper semi-continuous if the following holds:

(1) If Ui,Uj ∈ U , then Ui ∩ Uj = ∅.

(2) If Ui ∈ U , then Ui is non-separating.

(3) We have that M =
⋃

i∈I Ui.

(4) If Uik with k ∈ N is a sequence that has the Hausdorff limit C, then there

exists Uj ∈ U such that C ⊂ Uj .

In a compact metric space, every Hausdorff limit of continua is again a con-

tinuum. We have the following classical result, see for example [48].

Moore’s Theorem. Let U be an upper semi-continuous decomposition of a surface

M so that every element of U is acyclic. Then there is a continuous map φ : M→M

that is homotopic to the identity and such that for every z ∈ M , we have that

φ−1(z) = Ui for some element Ui ∈ U .

The following result is easily proved with Moore’s Theorem.

Lemma 2.7. Given an upper semicontinuous decomposition U of a surface M into

acyclic elements and a f ∈ Homeo(M), with the property that f sends elements of

U into elements of U . Then the natural quotient map f̂ ∈ Homeo(M) defined by

φ ◦ f(z) = f̂ ◦ φ(z), for every z ∈ M , is a homeomorphism. In other words, f is

semi-conjugate to f̂ through φ.
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2.3 Classification of the minimal sets

This section deals with the proof of Theorems 2.A. and 2.B. In what follows, let

f ∈ Homeo∗(T2) with M a minimal set of f . The outline of the proof is as follows.

The main part of the proof of Theorem 2.A. is the study of the topology of the

connected components {Σk} of the complement of M. Using that a component Σk

is either trivial, essential or doubly essential, we show that a minimal set comes in

either one of the three different types in the statement of Theorem 2.A.

Using the classification of Theorem 2.A, we show that the only locally con-

nected minimal sets are those of type I and, moreover, the components Σk are

bounded disks, which are the interiors of closed embedded topological disks inter-

secting pairwise in at most one point, leading to Theorem 2.B.

2.3.1 Topology of the domains Σk

In what follows, let Σ = Σk be any element of {Σk}, the collection of connected

components of the complement of M, a minimal set of an element f ∈ Homeo∗(T2).

Further, let d̃(·, ·) be the standard Euclidean metric on R2 and let d(·, ·) the (induced)

metric on T2.

Lemma 2.8. If fn(Σ) ∩ Σ = ∅ for all n 6= 0, then Σ is a disk or an essential

annulus.

Proof. First, suppose that Σ is doubly essential and let γ, γ′ ⊂ Σ be two non-

homotopic essential simple closed curves. As f is homotopic to the identity, the

homotopy classes of f(γ) and γ are equal. As every two non-homotopic simple closed

curves on the torus intersect, we have that f(γ) ∩ γ′ 6= ∅. Therefore f(Σ) ∩ Σ 6= ∅
and thus Σ has to be either trivial or essential.

Thus let Σ be a trivial or essential domain and let Σ̃ be a lift of Σ. In order

to show that Σ is a disk or essential annulus respectively, by Lemma 2.6, it suffices

to show that Σ̃ is simply connected. To prove this, suppose to the contrary that Σ̃
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is not simply connected. Then there exists a simple closed curve γ ⊂ Σ̃ such that

the open disk Dγ with boundary curve γ has the property that

Dγ ∩ p−1(M) 6= ∅. (2.12)

Let F be a lift of f . As every point in M is recurrent, there exists a subsequence nk

such that fnk(z)→z for k→∞. Therefore, by passing to a subsequence if necessary,

we may assume that for all k ≥ 1, we have that

Fnk(Dγ) ∩ Tpk,qk
(Dγ) 6= ∅, (2.13)

for certain (pk, qk) ∈ Z2. Given (2.13), there are two possibilities. For a given k ≥ 1,

we have that either

(a) Fnk(Dγ) ⊂ Tpk,qk
(Dγ) or Tpk,qk

(Dγ) ⊂ Fnk(Dγ), or

(b) Fnk(γ) ∩ Tpk,qk
(γ) 6= ∅.

Case (a) can be excluded as, by Lemma 2.5, this yields periodic points for f . Fur-

thermore, case (b) is ruled out as this implies that

Fnk(Σ̃) ∩ Tpk,qk
(Σ̃) 6= ∅, (2.14)

implying that fnk(Σ) ∩ Σ 6= ∅, contrary to our assumption. Therefore, Σ̃ must be

simply connected indeed.

In what follows, a fundamental domain of T2 is defined as the standard square

[0, 1] × [0, 1] ⊂ R2 and the integer translates thereof.

Lemma 2.9. If Σ is trivial, then Σ is a disk. Moreover, if Σ is bounded, then

fn(Σ) ∩ Σ = ∅ for all n 6= 0.

Proof. Because M is invariant, we have that either: (a) fn(Σ)∩Σ = ∅ for all n 6= 0

or (b) fN(Σ) = Σ for some N 6= 0. In case (a), Σ is a disk by Lemma 2.8. In case

(b), it follows from Lemma 2.4 that Σ is necessarily unbounded.
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Thus we need to show that for unbounded Σ, we have that Σ̃ is simply

connected, if fN (Σ) = Σ for some N 6= 0. We may as well assume that N = 1.

Take a lift F of f such that F (Σ̃) = Σ̃. If Σ̃ is not simply connected, then there

exists a simple closed curve γ ⊂ Σ̃ such that the disk Dγ ⊂ R2 with boundary curve

γ has the property that Dγ ∩ p−1(M) 6= ∅. Similarly to Lemma 2.8, there exists a

subsequence nk such that, for k ≥ 1, we have that

Fnk(Dγ) ∩ Tpk,qk
(Dγ) 6= ∅, (2.15)

for certain (pk, qk) ∈ Z2. As

ρ(f) = ρ(f, z) = (α, β) mod Z2 6= (0, 0) mod Z2,

for every z ∈ T2, it follows that d̃(Fnk(z̃), z̃)→∞, for k→∞. In particular, passing to

a subsequence once again, we may assume that Fnk(z̃) is contained in a fundamental

domain different from that of z̃, for all k ≥ 1. Condition (2.15) gives again the two

possiblities (a) and (b) of Lemma 2.8 and we can exclude case (a) as this would

yield periodic points for f . Therefore, for all k ≥ 1, (2.15) reduces to the condition

that

Fnk(γ) ∩ Tpk,qk
(γ) 6= ∅, (2.16)

for some (pk, qk) ∈ Z2. Thus for every k ≥ 1, we have that

(i) Fnk(γ) ∩ Tpk,qk
(γ) 6= ∅,

(ii) Fnk(γ) lies in a fundamental domain different from that of γ, and

(iii) Fnk(γ) ⊂ Σ̃.

Condition (iii) follows simply from the fact that Σ̃ is F -invariant and γ ⊂ Σ̃. Fix

any k ≥ 1 and choose w̃ ∈ Fnk(γ) ∩ Tpk,qk
(γ) and let w̃′ = T−1

pk,qk
(w̃) ∈ γ. As Σ̃ is a

domain, it is path-connected and thus there exists an arc η ⊂ Σ̃ connecting w̃ and

w̃′. As these endpoints lie in different fundamental domains of T2, η projects under p

to an essential closed curve, as its endpoints differ by an integer translate. However,
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this contradicts our assumption that Σ is trivial (and thus does not contain any

essential simple closed curves). This contradiction shows that Σ must be simply

connected and this completes the proof.

Using the irrationality of the rotation vector (α, β), we now deduce the fol-

lowing.

Lemma 2.10. If Σ is essential, then Σ is an essential annulus and fn(Σ) ∩ Σ = ∅
for all n 6= 0.

Proof. It suffices to show that, if Σ is essential, then fn(Σ) ∩ Σ 6= ∅ for all n 6= 0.

It then follows from Lemma 2.8 that Σ is an essential annulus. Assume that Σ has

characteristic (p, q). We will show that, by our choice of translation number, fN can

not fix an essential domain, for all N 6= 0. To derive a contradiction, suppose there

exist an N 6= 0 such that fN (Σ) = Σ. Without loss of generality, we may assume

that N = 1, i.e. that f(Σ) = Σ. Let γ ⊂ Σ be an essential simple closed curve and

let γ̃ be a lift of γ. We may assume that γ̃ intersects (0, 0) ∈ R2, and by definition

it also intersects (p, q) ∈ R2, where p, q ∈ Z and gcd(p, q) = 1. The arc η ⊂ γ̃

connecting (0, 0) and (p, q) is compact and therefore bounded. Therefore, the curve

γ̃ divides R2 into two unbounded connected components Hl and Hr, homeomorphic

to half-planes, so that R2\γ̃ = Hl ∪ Hr and Hl ∩ Hr = ∅. Further, as γ is a simple

closed curve, any integer translate γ̃′ = Tp′,q′(γ̃), where (p′, q′) is not an integer

multiple of (p, q), has the property that γ̃′ ∩ γ̃ = ∅. This follows from the fact that

Σ is essential, but not doubly essential; if γ̃′ 6= γ̃, then there exists an arc ζ ⊂ Σ̃

connecting (0, 0) to a point (p′, q′) = Tp′,q′(0, 0), which is not a multiple of (p, q), the

projection of ζ under p would lie in a homotopy class other than that of γ, implying

that Σ would be doubly essential, contrary to our assumption. Therefore, we can

choose integer translates γ̃l and γ̃r of γ̃ contained in Hl and Hr respectively and we

can define Γ ⊂ R2 to be the infinite strip bounded by γ̃l ∪ γ̃r.

We claim that Σ̃ ⊂ Γ. Indeed, if Σ̃∩Γc 6= ∅, then Σ̃∩ (γ̃l ∪ γ̃r) 6= ∅. Suppose

that Σ̃ ∩ γ̃l 6= ∅. The case where Σ̃ ∩ γ̃l 6= ∅ (or both) is similar. Let z̃′ ∈ Σ̃ ∩ γ̃l.
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Because γ̃ ⊂ Σ̃ and Σ̃ is path-connected, there exists an arc ζ ⊂ Σ̃ connecting z̃′ to

a point z̃ ∈ γ̃l such that z = p(z̃′) = p(z̃). But this again implies that Σ̃ has to be

doubly essential, contrary to our assumption. Thus Σ̃ ⊂ Γ.

To finish the proof, choose a lift F of f such that F (Σ̃) = Σ̃. As Γ is invariant

under the translation Tp,q, and Σ̃ ⊂ Γ, we thus must have that

ρ(F, z̃) = lim
n→∞

Fn(z̃) − z̃

n
= (a, b), where

b

a
=
q

p
, (2.17)

for every z̃ ∈ Σ̃. As (a, b) = (α+ s, β + t) for certain s, t ∈ Z and α, β /∈ Q, we have

that a = α+ s 6= 0 and b = β + t 6= 0, and we obtain

α+ s

β + t
=
a

b
=
q

p
. (2.18)

Rewriting (2.18) gives that

pα− qβ − (ps− qt) = 0.

As p, q, ps − qt ∈ Z, with (p, q) 6= (0, 0), this gives a non-trivial solution of (2.8),

which contradicts the irrationality of (α, β).

The following lemma shows that not all combinations of types of domains

can occur.

Lemma 2.11. The collection {Σk} can not contain both an essential annulus and

an unbounded disk.

Proof. Suppose, to derive a contradiction, that the collection of domains {Σk} con-

tains both an essential annulus and an unbounded disk. By Lemma 2.10, the col-

lection {Σk} contains infinitely many essential annuli; let us denote these by {Σa
k}.

Note further that, as all these annuli are disjoint, these all have the same charac-

teristic, which we assume to be (0, 1); the proof in case of any other characteristic

is entirely similar. Denote Σ an element of {Σk} homeomorphic to an unbounded

disk.
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Let Σ̃ ⊂ R2 and Σ̃a
k ⊂ R2 be lifts of Σ and Σa

k respectively. Take z̃ ∈ Σ̃ and

let ℓez be the horizontal (Euclidean) line through z̃. Let I ⊂ ℓez ∩ Σ̃ be the connected

component containing z̃. As the line ℓez is horizontal and the characteristic of the

essential annuli Σa
k is (0, 1), the length of the interval I is finite. Let z̃−, z̃+ ∈ ∂I be

the left and right endpoint of the interval I respectively. As z̃−, z̃+ ∈ ∂Σ̃ we have

that

z± := p(z̃±) ∈ ∂Σ ⊂ M. (2.19)

Define I±1 = T±1
0,1 (I). Let γk ⊂ Σa

k be a simple closed curve and γ̃k a lift of γk.

Certainly, we have that γ̃k ∩ T n
0,1(I) for all n ∈ Z.

As every orbit in M is dense, we can take a point z′ ∈ ∂Σa
k, for some k ∈ Z,

and find subsequences kt and k′t such that fkt(z′)→z+ and fk′
t(z)→z− for t→∞.

After appropriately labeling the annuli if necessary, we find points zkt
∈ γkt

⊂ Σa
kt

and zk′
t
∈ γk′

t
⊂ Σa

k′
t

such that zkt
→z+ and zkt

→z− for t→∞. Thus we can find

lifts γ̃kt
and γ̃k′

t
and points z̃kt

⊂ γ̃kt
and z̃k′

t
⊂ γ̃k′

t
, such that z̃kt

→z̃+ and z̃k′
t
→z̃−,

for t→∞. As the curves γ̃kt
, γ̃k′

t
are periodic (in the sense of (2.11)), they define an

infinite strip Γt that contain the line segments T n
0,1(I), for all n ∈ Z. Further, after

a relabeling if neccesary, we may assume that Γt′ ⊂ Γt if t′ > t. We now have that

Σ̃ ⊂ Γt for every t ≥ 1 and I ⊂ Σ̃.

By periodicity, T±1
0,1 (z̃kt

) and T±1
0,1 (z̃k′

t
) limit to T±1(z̃+) and T±1(z̃−) respec-

tively. Therefore, as Σ̃ is unbounded, we must have that either Σ̃ ∩ T0,1(I) 6= ∅ or

Σ̃ ∩ T−1
0,1 (I) 6= ∅, or both. As Σ̃ is path-connected, we can find an arc η ⊂ Σ̃ that

projects under p to an essential closed curve γ ⊂ Σ, which is the desired contradic-

tion; Σ is a disk and thus does not contain any essential closed curves.

We recall that a Cantor set can be characterized topologically as being com-

pact, perfect and totally-disconnected.

Lemma 2.12. If Σ is doubly essential, then M is an extension of a Cantor set.

Proof. Denote {Λi}i∈I the collection of connected components of M. Because Σ
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is doubly essential, f(Σ) ∩ Σ 6= ∅, hence f(Σ) = Σ. As f(Σ) = Σ, we have that

f(∂Σ) = ∂Σ. Further, as ∂Σ ⊂ M and ∂Σ is closed, ∂Σ = M by minimality of

M. Let Λ := Λi be any connected component of M, for some i ∈ I. As Λ is closed

in M and M is closed in T2, Λ is closed, and thus compact, in T2. Therefore, Λ

is a continuum. Further, as M is nowhere dense (as M 6= T2), it follows that Λ is

nowhere dense.

We need to show that a lift Λ̃ of Λ is bounded. As Σ is doubly essential,

there exist two non-homotopic essential simple closed curves γ, γ′ ⊂ Σ. As these

curves are non-homotopic, the respective lifts γ̃, γ̃′ ⊂ Σ̃ of γ and γ′ and the integer

translates of these curves tile R2 into bounded disks. As Λ̃ ∩ Σ̃ = ∅, it follows that

Λ̃ has to be contained in one of these bounded disks, implying Λ̃ itself is bounded.

As Λ is a connected component of M, we must either have that fn(Λ)∩Λ = ∅
for all n 6= 0, or fN (Λ) = Λ for some finite N 6= 0. However, the latter is excluded

by Lemma 2.4 as Λ is bounded and thus fn(Λ) ∩ Λ = ∅ for all n 6= 0. As Λ is

a bounded continuum, the connected components of T2 \ Λ consists of a unique

unbounded component and every other component is a bounded disk. Let D be

one such disk. Then Σ is contained in this unbounded component; indeed, if this

would not be the case, then we can take a point z ∈ D ∩ Σ and an essential simple

closed curve γ ⊂ Σ passing through z. As M∩Σ = ∅, and z ∈ D, this implies that

γ ⊂ D, contradicting that D is a disk. We thus conclude that D ∩ Σ = ∅. Further,

if D ∩M 6= ∅, then this implies that Σ ∩D 6= ∅ as ∂Σ = M, which contradicts our

earlier conclusion. In other words, to a component Λ, we can uniquely adjoin the

open disks which, apart from the unique doubly essential component containing Σ,

form the connected components of T2 \ Λ. This proves that Fill(Λi) ∩ Fill(Λj) = ∅
if i 6= j, with Fill(Λi) a bounded non-separating continuum, for every i ∈ I.

Let again Λi be any component of M and define Q̂ =
⋃

i∈I Fill(Λi). Define

the decomposition U of T2 into the continua {Fill(Λi)}i∈I and singletons in the

complement of these continua. In order to show that M is an extension of a Cantor
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set, we first show that the decomposition U is upper semi-continuous. By Moore’s

Theorem (see section 2.2.4), this implies there exists a continuous φ : T2→T2 such

that φ−1(z) = Uj for every z ∈ T2. We have already shown that the decomposition

U satisfies conditions (1), (2) and (3) of definition 2.6. To prove it satisfies condition

(4), we need to show that if a sequence of continua Ujk
, with k ∈ Z, has Hausdorff

limit C, then C ⊂ Uj for some j ∈ J . As the statement is obvious if C is a singleton,

assume C to be a non-trivial continuum. Note that every element non-degenerate

element Ujk
∈ U has the property that ∂Ujk

⊂ ∂Σ = M. Further, without loss of

generality, we may assume that no element ∂Ujk
is a singleton and that the elements

are mutually disjoint. We first claim that the interior of C has to be empty. Indeed,

if not, there would exist a subsequence of elements for which the largest open disk

contained in the interior of Ujk
would be bounded from below, contradicting that

the torus is compact and the elements mutually disjoint. Therefore, as ∂Ujk
⊂ M,

every point of the Hausdorff limit C is the limit point of a sequence of points of

M. As M is closed, this implies C is itself contained in M. In particular, as C is

connected, C is contained in a connected component of M, i.e. C ⊂ Λi ⊂ Uj for

some j ∈ J . So U is upper semi-continuous indeed. We have already shown that all

non-trivial elements of U are non-separating and bounded, and thus acyclic.

Thus, by Moore’s Theorem, there exists a continuous φ : T2→T2, homotopic

to the identity, such that for every z ∈ T2, φ−1(z) is a unique element of U . By

Lemma 2.7, as U is upper semi-continuous and f sends elements of U into elements of

U , the mapping f̂ defined by φ◦f = f̂ ◦φ is a homeomorphism. As f ∈ Homeo∗(T2)

and φ is homotopic to the identity, we have that f̂ is isotopic to the identity and

by a standard argument, ρ(f) = ρ(f̂) mod Z2, thus f̂ ∈ Homeo∗(T2). This proves

condition (i) of definition 2.1.

To prove condition (ii) of definition 2.1, we need to show that M̂ := φ(Q̂) ⊂
T2 is a Cantor minimal set for f̂ . As M is a minimal set for f , M̂ is a minimal

set for f̂ . Further, as M̂ is totally disconnected by construction, it suffices to show
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that M̂ is compact and perfect. First, Q̂ is compact as the complement Σ is open.

Because φ is continuous, M̂ is compact. To show M̂ is perfect, we observe that,

because Fill(Λi)∩Fill(Λj) = ∅ if i 6= j, no element Fill(Λi) is isolated, as this would

imply that a component Λi is isolated. Therefore, by continuity of φ, no point of

M̂ is isolated, and thus M̂ is perfect.

2.3.2 Proof of Theorem 2.A

Proof of Theorem 2.A. To show that the minimal set M of f is either of type I, II or

III as given above, assume that M 6= T2 and let {Σk} be the collection of connected

components of the complement of M. If no element of {Σk} is doubly essential, then

Σk is either trivial or essential, for all k ∈ Z. By Lemma 2.9 and 2.10, {Σk} are all

disks and/or essential annuli; however, by Lemma 2.11, {Σk} can not both contain

an essential annulus and an unbounded disk. In case no element Σk is essential,

we have a type I minimal set. In case at least one, and therefore infinitely many,

connected components are essential, we have a type II minimal set. If for some k,

Σk is doubly essential, then M is an extension of a Cantor set by Lemma 2.12 and

these correspond to a type III minimal sets. This concludes the proof.

We finish this section with the proofs of the corollaries stated above.

Proof of Corollary 2.1. Let M be a minimal set of f of type I. It suffices to show

that M = Ω(f). Indeed, if this is shown, then by minimality of M and the inclusions

α(z), ω(z) ⊆ Ω(f), with ω(z), α(z) closed and f -invariant sets for every z ∈ T2, we

obtain (2.3). Uniqueness then also follows, as any other minimal set M′ of f has

to be contained in the complement of Ω(f), which is clearly impossible; if z ∈ M′

then z is both recurrent and wandering, which are incompatible conditions to hold

simultaneously.

First, suppose that M is of type I. Fix a component Σ := Σk. Then Σ is a

disk. If Σ is bounded, then by Lemma 2.9 we have that fn(Σ)∩Σ = ∅ for all n 6= 0,
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and thus Σ ∩ Ω(f) = ∅. So it remains to prove the case where Σ is an unbounded

disk. We may assume that there exists an N 6= 0 such that fN(Σ) = Σ, as otherwise

we are done by the previous argument. Further, we may assume that N = 1. A

modification of the argument of Lemma 2.9 shows that Ω(f)∩Σ = ∅ in this case as

well. Indeed, let F be a lift of f such that F (Σ̃) = Σ̃ and suppose that Ω(f)∩Σ 6= ∅.
Take a z̃ ∈ p−1(Ω(f)) ∩ Σ̃. Let Dρ ⊂ Σ̃ be a small (Euclidean) disk centered at z̃

with radius ρ > 0. As z = p(z̃) ∈ Ω(f), there exists a subsequence nk, where nk→∞
for k→∞, and a sequence of real numbers ρk > 0, where ρk→0 for k→0, such that

Fnk(Dρk
) ∩ Tpk,qk

(Dρk
) 6= ∅ for some (pk, qk) ∈ Z2. By choosing k large enough, we

can find a nk so that Fnk(Dρk
) is contained in a fundamental domain other than

that of Dρk
. If we take any intersection point of Fnk(Dρk

)∩Tpk,qk
(Dρk

), translate it

back by T−1
pk,qk

and connect the two points by a simple arc η, then η projects under

p to an essential closed curve contained in Σ, contradicting that Σ is a disk.

If M is of type II, then all elements of {Σk} are essential annuli or bounded

disks. We need only show that if Σk is an essential annulus, then Ω(f) ∩ Σk = ∅.
This follows from Lemma 2.10 stating that fn(Σk) ∩ Σk = ∅ for all n 6= 0, and this

finishes the proof.

Proof of Corollary 2.3. First, it is clear that no minimal set of type III is connected.

Thus we have to show that no element of the collection of connected components

of the complement of M can contain an essential annulus. Indeed, if one such

component would be an essential annulus, then by Lemma 2.10, there would in fact

be infinitely many disjoint essential annuli. Taking any two essential annuli, taking

an essential simple closed curve in each and deleting these two curves, separates the

torus into two disjoint essential annuli A1 and A2. Each of these two annuli A1

and A2 has to contain points of M; if A1 does not contain points of M, then A1

is contained in a connected component of the complement of M, contrary to our

assumption. Similarly for A2. But this gives a separation of M.

Conversely, let M be of type I, so that Σk is an open topological disk for every
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k ∈ Z. In each disk Σk, we can find a sequence Dt
k of nested disks, i.e. Dt

k ⊂ Dt+1
k ,

embedded in Σk, such that Cl(Dt
k) is a closed disk and such that

⋃
t≥1D

t
k = Σk.

We can accomplish this by uniformizing each disk Σk to the unit disk D2, taking

nested such disks centered at the origin in D2, and pulling these back to Σk. Define

Γt = T2 \ ⋃k∈Z
Dt

k. We claim that Γt is connected. Indeed, define the compact

sets Γs
t = T2 \ ⋃s

k=−sD
t
k. Clearly, Γs

t , as the torus with finitely many disjoint

disks whose closures are disjoint deleted, is connected. As Γs+1
t ⊂ Γs

t , we have that

Γt =
⋂

s≥1 Γs
t is connected as well. By the same token, as Γt+1 ⊂ Γt with Γt compact

and connected for every t ≥ 1, we have that M =
⋂

t≥1 Γt is connected.

2.3.3 Locally connected minimal sets

We proceed with the proof of Theorem 2.B. It what follows, let again M be a

minimal set of an element f ∈ Homeo∗(T2).

Lemma 2.13. If M 6= T2 is locally connected, then M is of type I.

Proof. First we show that if M is locally connected, it can not be of type II. Indeed,

if M is of type II, then there exists an infinite number of essential annuli among its

complement component {Σk}k∈Z and suppose M is locally connected. Let Σ := Σk

be an essential annulus. Then fn(Σ) ∩ Σ = ∅ for all n 6= 0. Denote Σn = fn(Σ).

Let γn ⊂ Σn be an essential simple closed curve and choose zn ∈ γn. Passing

to a subsequence nk, where nk→∞ for k→∞, we may assume that znk
→z. By

Corollary 2.1 we must have that z ∈ M. Let U ∋ z be an open neighbourhood.

By locally connectivity of M, there exists a connected open neighbourhood V ⊂ U ,

with V ∋ z, such that V ∩M is connected. There exists a small open (Euclidean)

disk D ⊂ V centered at z. By passing to a subsequence, and upon relabeling if

necessary, we may assume that znk
⊂ V for all k ≥ 1 and that d(z, γnk

) < d(z, γnk′
)

if k > k′. The two curves γnk
and γnk+1

bound an essential annulus Ak, for every

k ≥ 1. Define Vk = Ak ∩ V . Then it holds that Vk ∩M 6= ∅. Indeed, otherwise we

can take any connected component V ′
k of Vk and connect γnk

and γnk+1
by an arc
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η ⊂ V ′
k disjoint from M, which is impossible as these two curves are contained in two

disjoint essential annuli. As all Ak are mutually disjoint, up to the boundary curves

γnk
which are disjoint from M, we see that V ∩M consists in fact of infinitely many

connected components, contrary to our assumption. Thus M can not be locally

connected.

Secondly, if M is locally connected, then M can not be of type III. To show

this, let {Λi}i∈I be the collection of connected components of M and take z ∈ M.

Then z ∈ Λi for some i ∈ I. As Λi is a bounded continuum, by Lemma 2.4, we have

that fn(Λi)∩Λi = ∅ for all n 6= 0. Since z ∈ M, there exist a subsequence nk, with

nk→∞ for k→∞, such that fnk(z)→z. Therefore, every open neighbourhood U of

z meets infinitely many components Λk, all of which are mutually disjoint, hence

M is not locally connected.

It follows from Lemma 2.13 that if M is locally connected, it is also connected

by Corollary 2.3.

Lemma 2.14. If M 6= T2 is locally connected, then fn(Σk)∩Σk = ∅, for all n 6= 0.

Proof. As Σk is a disk for every k ∈ Z, by Lemma 2.9, if fN (Σk) = Σk for some

N 6= 0, then Σk is an unbounded disk. Denote Σ := Σk and let Σ̃ be its lift. Fix

z̃0 ∈ Σ̃ and let z̃t ∈ Σ̃ be a sequence of points such that d̃(z̃0, z̃t)→∞, for t→∞,

and that any two such points z̃t and z̃t′ , with t 6= t′, are contained in two different

fundamental domains. This can be done as Σ̃ is unbounded. Let η ⊂ Σ̃ be a simple

arc passing through each of these points z̃t, t ≥ 1.

For every t ≥ 1, define D̃t ⊂ Σ̃ the largest Euclidean disk centered at z̃t

contained in Σ̃. By passing to a subsequence if necessary, we may assume that

all these disks are mutually disjoint. Therefore, the disks Dt := p(D̃t) ⊂ T2 are

mutually disjoint and thus the collection of disks Dt is a null-sequence as T2 is

compact. In particular, there exists a sequence of points wt ∈ M, contained in ∂Dt,

with d(wt, zt)→0, where zt = p(z̃t) ∈ Σ. Passing to a convergent subsequence such

that wt→w ∈ M for t→∞, we obtain a sequence zt→w, for t→∞.
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Let w̃ be a lift of w. We claim that M̃ is not locally connected at w̃. If

this is shown, then it follows that M is not locally connected at w as p is a local

homeomorphism, contradicting our assumption. To prove the claim, let D be an

open Euclidean disk centered at w̃ and let U ⊂ D any neighbourhood of w̃. As

the collection of points z̃t, t ∈ Z, are contained in different fundamental domains

and p(z̃t)→w, there exist (pt, qt) ∈ Z2 such that, if we define ηt := Tpt,qt(η) and

z̃′t = Tpt,qt(z̃t), we have that z̃′t→w̃ ∈ D and ηt ∩ ηt′ = ∅, if t 6= t′. Indeed, by

passing to a subsequence, we may assume that for all t ≥ 1, we have that z̃′t ∈ D.

If ηt ∩ ηt′ 6= ∅, then two points of η are identified under a translation Tp,q, where

(p, q) 6= (0, 0), thus yielding an essential closed curve under projection of η ⊂ Σ̃

under p, contrary to our assumption.

Define ζt ⊂ ηt ∩ D the smallest (relative to inclusion) simple arc passing

through z̃′t such that the endpoints of ζt are contained in ∂D. As ηt ∩ ηt′ = ∅ if

t 6= t′, we have that ζt ∩ ζt′ = ∅ if t 6= t′. Any two such different arcs ζt and ζt′ ,

joined by the two arcs in ∂D, form a disk D(t, t′) ⊂ D. We claim that every such

disk D(t, t′) is such that D(t, t′) ∩ M̃ 6= ∅. Indeed, if this was not the case, then

there exists an arc ξ ⊂ D(t, t′) joining z̃′t and z̃′t′ with t 6= t′, such that ξ∩M̃ = ∅. It

follows that the arc η′ ⊂ η joining z̃t and Tp̄,q̄(z̃t) concatenated with the arc Tp̄,q̄(ξ),

where (p̄, q̄) = (pt, qt) − (pt′ , qt′) 6= (0, 0), joins two different lattice points and is

contained in the complement of M̃, which again yields an essential closed curve

under projection of p, contrary to our assumptions.

Therefore, as a neighbourhood U ∋ w̃ contains infinitely many points z̃′t for

t sufficiently large, U ∩ M̃ consists of infinitely many connected components and

thus M̃ is not locally connected at w̃.

So any locally connected minimal set M has to be of type I, and fn(Σk) ∩
Σk = ∅ for all n 6= 0 and k ∈ Z. To finish the proof of Theorem 2.B, we argue in a

way similar to that in [4]. The proof of the following lemma follows from [4, Lemma

7].
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Lemma 2.15. If M 6= T2 is locally connected, such that fn(Σk) ∩ Σk = ∅, for all

n 6= 0 and every k ∈ Z, then diam(Σk), k ∈ Z, is a null sequence.

Combining Lemma 2.14 with Lemma 2.15, it thus follows that diam(Σk) is

a null-sequence. A cut point of a minimal set M ⊂ T2 is a point z ∈ M that

separates M, i.e. M\ {z} consists of at least two connected components. We have

the following general property for minimal sets of homeomorphisms of compact

metric spaces, see [4, Lemma 2].

Lemma 2.16. Let M be a connected minimal set of a homeomorphism of a compact

metric space X. Then M has no cut points.

The following result, see e.g. [29, Thm 61-4], will be used in the subsequent

lemma to prove that the disks Σk in the complement of M are indeed interiors of

closed embedded disks.

Lemma 2.17. Let B ⊂ R2 be a closed topological disk and D ⊂ B an open disk. If

B \D has no cut points, then D is the interior of a closed topological disk.

Lemma 2.18. If M is locally connected, then Σk is the interior of a closed embedded

disk, for every k ∈ Z.

Proof. By Lemma 2.15, Σk is a bounded open disk for every k ∈ Z and the sequence

diam(Σk) is a null-sequence. Therefore, Cl(Σk) ⊂ T2 is embedded. Define Γk =

T2 \ Σk, for some k ∈ Z. We claim that Γk is locally connected. Let z ∈ ∂Σk. As

M is locally connected, there exists an open connected neighbourhood U ∋ z such

that U ∩M is connected. Take a smaller disk V contained in U . Then the union of

U ∩M and Σk′ ∩ V , for all k′ 6= k, is the required connected neighbourhood.

Secondly, by Lemma 2.16, M has no cut points. We claim that Γk has no

cut points either. Indeed, if z ∈ M, then M \ {z} is connected and so is Γk as

every disk Σk′ , with k′ 6= k, shares boundary points with M\{z}. Clearly, no point

z ∈ Σk′ , for some k′ 6= k, can cut Γk. Thus Γk is free of cut points. As Cl(Σk) is
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embedded in T2, we can take a simple closed curve γ ⊂ Γk bounding an embedded

disk in T2 that properly contains Cl(Σk). Now we apply Lemma 2.17 to conclude

that Σk is the interior of a closed embedded topological disk.

Σ Σ′

η η′

z1

z2

Figure 2.2: Proof of Theorem 2.B.

Proof of Theorem 2.B. By Lemma 2.13, M has to be of type I and is thus connected.

Furthermore, by Lemma 2.15, the disks {Σk} are bounded and their diameter form a

null sequence. By Lemma 2.18, Σk is the interior of a closed embedded topological

disk, for every k ∈ Z. To finish the proof, we need to show that Cl(Σ) ∩ Cl(Σ′)

consists of at most a single point, where Σ and Σ′ are two distinct elements of {Σk}.
Denote γ = ∂Σ and γ′ = ∂Σ′, both simple closed (trivial) curves. Assume, to the

contrary, that γ∩γ′ contains at least two points z1, z2. Take exists an arc η ⊂ Cl(Σ)

starting at z1 and ending at z2 such that η ∩ ∂Σ = {z1, z2}. Similarly, there exists

an arc η′ ⊂ Cl(Σ′) starting at z1 and ending at z2 such that η′ ∩ ∂Σ′ = {z1, z2}.
Then η ∪ η′ forms a simple closed curve that bounds a disk D. As the diameters

of Σ and Σ′ tend to zero, diam(fn(D))→0 for |n|→∞. Furthermore, as z1 6= z2, D

contains arcs contained in ∂Σ and ∂Σ′ joining z1 and z2 in its interior, we have that

D ∩M 6= ∅. As diam(fn(D)) is a null sequence, for sufficiently large N , we have

that fN (D) ⊂ D, which by Lemma 2.5 implies f has periodic points. Therefore,

Cl(Σ) ∩ Cl(Σ′) can consist of at most a single point and thus M is indeed a quasi-

Sierpiński set. This finishes the proof.
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2.4 Examples

Having given a classification of the possible minimal sets a homeomorphism f ∈
Homeo∗(T2) allows in Theorem 2.A, this section is aimed at constructing home-

omorphisms admitting a minimal set of every type of minimal set Theorem 2.A.

allows. More precisely, there exist f ∈ Homeo∗(T2) such that its minimal set M

1. is a quasi-Sierpiński set, but not a Sierpiński set,

2. is such that the complement consists of a single unbounded disk,

3. is such that the complement consists of essential annuli and disks,

4. is a non-trivial extension of a Cantor set.

It is well-known there exist f ∈ Homeo∗(T2) for which the minimal set is

a Sierpiński set. Example 1, constructed in [4], is derived from the Sierpiński set,

see also section 2.4.3 below for a discussion of this example. The remainder of this

section is devoted to the construction of Example 2 (type I), Example 3 (type II)

and Example 4 (type III). Combined these examples prove Theorem 2.C.

2.4.1 Homeomorphisms semi-conjugate to an irrational translation

There is a natural subclass of Homeo∗(T2), namely those homeomorphisms that are

semi-conjugate to an irrational translation of the torus. Indeed, a standard argument

shows that an element f ∈ Homeo0(T
2) semi-conjugate to a translation τ , through

a continuous map homotopic to the identity, has the property that ρ(f) = ρ(τ)

mod Z2. Given a continuous map π : T2→T2, we call the set of points

Rπ =
{
z ∈ T2 | #

(
π−1(π(z))

)
= 1
}
⊂ T2, (2.20)

the regular set of π.

Definition 2.7. We define the class Homeo#(T2) ⊂ Homeo∗(T2) the class of home-

omorphisms which satisfy the following:
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(i) f is isotopic to the identity, i.e. f ∈ Homeo0(T
2),

(ii) there exists a monotone1 and continuous π : T2→T2, homotopic to the identity,

and an irrational translation τ such that π ◦ f = τ ◦π, where τ is an irrational

translation (cf. (2.9)), and

(iii) the regular set Rπ contains uncountably many elements.

The following simple but important observation plays a crucial role in the

constructions below.

Lemma 2.19. Let f ∈ Homeo#(T2), with π the corresponding semi-conjugacy.

Then f has a unique minimal set M and

M = Cl(Rπ) = Cl(Of (z)), (2.21)

for any z ∈ Rπ.

Proof. Let us first prove M is the unique minimal set. Let M and M′ be two

minimal sets for f . Because M is closed and f -invariant, π(M) is closed and τ -

invariant. In particular, π(M) contains the complete orbit of every point. Since

every orbit of τ is dense, we have that π(M) = T2. Similarly, π(M′) = T2. Take

z ∈ Rπ 6= ∅. Then {z} = π−1(π(z)) is contained in both M and M′. As two

minimal sets are either identical or disjoint, this implies that M = M′. Thus M is

unique.

Next we prove that M = Cl(Of (z)), for every z ∈ Rπ. Take any z ∈ Rπ

and consider Of (z). Then Cl(Of (z)) is closed and invariant, hence it contains

the (unique) minimal set M of f , i.e. M ⊆ Cl(Of (z)). We need to show that

Cl(Of (z)) ⊆ M. If M ∩ Of (z) = ∅, then π(M) 6= T2, therefore M ∩ Of (z) 6= ∅.
Let z′ ∈ M ∩ Of (z), then Of (z′) = Of (z) ⊆ M, since M is invariant. But since

M is also closed, Cl(Of (z)) ⊆ M. Hence M = Cl(Of (z)), for any z ∈ Rπ and,

consequently, M = Cl(Rπ).

1A map is said to be monotone if every point-inverse is connected.
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Let us further introduce the following notation, to be used in the proofs of

examples 2, 3 and 4 below. A non-transitive orientation preserving circle home-

omorphism with irrational rotation number will be referred to as a Denjoy coun-

terexample. Moreover, given a Cantor set in the circle Q = T1 \⋃k∈Z
Ik, we denote

Qrat ⊂ Q and Qirr = Q\Qrat the rational and irrational part of Q, comprised of all

the endpoints of the deleted intervals and the complement in Q of these endpoints

respectively. It is readily verified, using Poincaré’s Theorem (see section 2.1), that

(1) a product of a Denjoy counterexample and an irrational rotation, and

(2) a product of two Denjoy counterexamples,

provided the factors are chosen such that the corresponding rotation numbers are

rationally independent, are elements of Homeo#(T2).

2.4.2 A topological blow-up procedure

In order to construct the examples, we need a tool with which to construct home-

omorphisms exhibiting the desired behaviour. Below we devise such a tool that

enables us to blow up an orbit of a point under a homeomorphism to a collection

of disks. A. Bís, H. Nakayama and P. Walczak in [5] define such a blow-up proce-

dure that works for (groups of) diffeomorphisms. J. Aarts and L. Oversteegen in [1]

defined a similar blowup construction for a homeomorphism that has the property

that it sends straight rays emanating from a point again to straight rays. In both

constructions, this allows for the mapping to be extended to the disks glued to the

surface by the infinitesimal behaviour of the mapping. As this would not work for

a general homeomorphism, we circumvent this by inductively blowing up punctures

to disks, by pulling back points near a puncture along leafs of a dynamically defined

foliation emanating from the puncture. We use the continuity of the foliation to

define an extension of the mapping to the disks.

Let f ∈ Homeo#(T2), with π : T2→T2 the semi-conjugacy between f and an
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irrational translation τ . Take a point z0 ∈ Rπ and consider its orbit Of (z0); we

do not require f to be minimal, so Of (z0) may or may not be dense. Define Γ =

T2\Of (z0). Clearly, f(Γ) = Γ and f |Γ is a homeomorphism. LetBδ := B(z0, δ) ⊂ T2

be the embedded closed Euclidean disk of radius 0 < δ ≤ 1/4 centered at z0. Choose

0 < δ0 ≤ 1/4 and let F0 be the foliation of Bδ0 by straight rays emanating from z0,

see Figure 2.3. The leaves ρθ ∈ F0 are parametrized by θ ∈ [0, 2π). Fix 0 < ǫ0 < 1.

To blow up the punctures to disks, we define the following auxiliary planar map,

which reads in polar coordinates,

gǫ : B̃1 \ {0}→B̃1 \ B̃ǫ, gǫ(r, θ) =

(
r + ǫ

1 + rǫ
, θ

)
(2.22)

where B̃ρ ⊂ R2 is the closed Euclidean disk centered at 0 ∈ R2 of radius 0 < ρ ≤ 1.

Conjugating gǫ0 with a linear injection (into the torus) λ0 : B̃1 →֒ Bδ0 yields a

homeomorphism

h0 = λ0 ◦ gǫ0 ◦ λ−1
0 : A0 −→ h0(A0), (2.23)

where A0 = Bδ0 \ {z0} and h0(A0) = Bδ0 \Bǫ0δ0 the corresponding annuli. We can

extend h0 to T2 \{z0} by declaring it to be the identity off A0, the homeomorphism

we denote again by h0, and it naturally acts on Γ ⊂ T2 \ {z0} by restriction. Note

that h0 acts on Bδ0 \ {z0} along the foliation F0.

A0 h0(A0)

Σ0
ρ0

ρθ

z0
θ h0

Figure 2.3: Radial blow up of a puncture to a disk.
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Define Γ0 = h0(Γ) and define the homeomorphism

f0 : Γ0→Γ0, f0 = h0 ◦ f |Γ ◦ h−1
0 (2.24)

and define the continuous φ0 : Γ0→Γ where φ0 = h−1
0 . Note that, by construction,

f0 = φ−1
0 ◦ f |Γ ◦ φ0. Define Σ0 := Int(Bǫ0δ0) and γ0 := ∂Σ0, see again Figure 2.3.

Consider the points z±1 := φ−1
0 (f±1(z0)) and define

d1 =
1

4
min

{
(1/4)2, d(z−1, z1), d(z−1,Σ0), d(z1,Σ0)

}
> 0. (2.25)

Given 0 < ǫ0 < ǫ < 1, define ǫ′ = ǫ+ǫ0
2 and define the second auxiliary planar map

qǫ : B̃ǫ \ B̃ǫ0→B̃ǫ \ B̃ǫ′ , qǫ = ĝǫ′/ǫ ◦ ĝ−1
ǫ0/ǫ, (2.26)

where rǫ : B̃1→B̃ǫ is a linear (planar) rescaling, and

ĝδ/ǫ := rǫ ◦ gδ/ǫ ◦ r−1
ǫ , (2.27)

for ǫ0 ≤ δ < ǫ. Let λǫ : B̃ǫ →֒ Bǫδ0 be the linear injection of the disk B̃ǫ ⊂ R2 onto

the disk Bǫδ0 ⊂ T2. Define Aǫ,ǫ′ = Bǫ′δ0 \Bǫδ0 and

q̂ǫ : Aǫ,ǫ0→Aǫ,ǫ′ , q̂ǫ = λǫ ◦ qǫ ◦ λ−1
ǫ . (2.28)

In words, q̂ǫ has the effect of mapping the annulus Aǫ,ǫ0 radially, i.e. along (part

of) the foliation F0, to the annulus Aǫ,ǫ′ with the same outer boundary curve, but

larger inner boundary curve, so as to half the modulus of the annulus. There exist

0 < ǫ0 < ǫ±1 < 1, such that, if we denote A±1 := f±1
0 (Aǫ±1,ǫ0), then diam(A±1) ≤

d1. Define

h±1 : A±1→h±1(A±1), h±1 = f∓1
0 ◦ q̂ǫ±1

◦ f±1
0 , (2.29)

defined on A−1 ∪ A1 and we extend h±1 to T2 by declaring it to be the identity

off A±1. The annuli A±1 are foliated by F±1 = f0|Aǫ±1,ǫ0
(F0). The maps h±1 have

the effect of blowing up the puncture z±1 along the foliation F±1 to a disk Σ±1, see

Figure 2.4. Denote Σ±1 the open disks obtained by blowing up the corresponding
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A1 h1(A1)

Σ1

ρ1,θ

z1

h1

Figure 2.4: Blowing up the puncture z1 to a disk; ρ1,θ is a leaf of the foliation F1

emanating from z1 and h1 has the effect of pulling back points on ρ1,θ ∈ F1 along
this leaf, for every θ ∈ [0, 2π).

puncture z±1. As ∂Σ±1 = f0(Cǫ′
±1

), where Cǫ′
±1

is the Euclidean circle centered at

z0 of radius ǫ0 < ǫ′±1 < ǫ±1, γ±1 := ∂Σ±1 is a simple closed curve, as f±1
0 |Aǫ±1,ǫ0

is

a homeomorphism.

Define ĥ1 := h−1 ◦ h1 on A−1 ∪ A1, define Γ1 = ĥ1(Γ0) and define the

homeomorphism

f1 : Γ1→Γ1, f1 := ĥ1 ◦ f0 ◦ ĥ−1
1 . (2.30)

Further, define the continuous φ1 : Γ1→Γ where φ1 = φ0 ◦ ĥ−1
1 .

We proceed by induction. Assume we have blown up the punctures zk to

disks Σk, where −n+ 1 ≤ k ≤ n− 1, and consider the points z±n := φ−1
n−1(f

±n(z0)).

Define ∆n−1 =
⋃n−1

k=−n+1 Σk and define

dn =
1

4
min

{
(1/4)n+1, d(z−n, zn), d(z−n,∆n−1), d(zn,∆n−1)

}
> 0. (2.31)

There exist 0 < ǫ0 < ǫ±n < 1, such that diam(A±n) ≤ dn. Define

h±n : A±n→h±n(A±n), h±n = f∓n
n−1 ◦ q̂ǫ±n

◦ f±n
n−1, (2.32)

defined on A±n, where we can extend h±n to T2 by declaring it to be the identity off

A±n. The annuli A±1 are foliated by F±n = fn
n−1|Aǫ±n,ǫ0

(F0). The maps h±n blow

up the puncture z±n along the foliation F±n to a disk Σ±n. The boundaries γ±n are

again simple closed curves, as γ±n = f±n
n−1(Cǫ′

±n
), where Cǫ′

±n
is the Euclidean circle
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centered at z0 of radius ǫ0 < ǫ′±n < ǫ±n and f±n
n−1|Aǫ±n,ǫ0

is a homeomorphism. Define

ĥn := h−n ◦ hn on A−n ∪An, define Γn = ĥn(Γn−1) and define the homeomorphism

fn : Γn→Γn, fn := ĥn ◦ fn−1 ◦ ĥ−1
n . (2.33)

Further, define the continuous φn : Γn→Γ where φn = φn−1 ◦ ĥ−1
n .

Next, we show that the above sequences of maps and homeomorphisms con-

verge and have the desired properties. First, by (2.31) combined with (2.32), it

holds that Γn ⊂ Γn−1 and that Γ∞ = limn→∞ Γn converges in the Hausdorff sense,

as
∑

n≥0 1/4n+1 < 1 < ∞. Denote N = Cl(Γ∞). Notice that N = Γ∞ ∪⋃k∈Z
γk,

since no point in Σk can be the limit point of points in Γ∞ as Σk∩Γ∞ = ∅. Further-

more, note that, as the boundary curves γk are simple closed curves, the extension

φ̄n : Cl(Γn)→T2 of φn is continuous.

Lemma 2.20. The homeomorphisms fn : Γn→Γn converge to a homeomorphism

f∞ : Γ∞→Γ∞, and extends to a homeomorphism f ′ ∈ Homeo∗(T2) with f ′(N ) = N .

Further, the disks {Σk} in the complement of N are interiors of closed topological

disks. Similarly, the continuous maps φn converge to a continuous map φ∞ : Γ∞→Γ,

and extends to a continuous φ : T2→T2 for which φ(N ) = T2. Furthermore, f ′ is

semi-conjugate to f through φ.

Proof. First, we show that fn→f∞ converges to a homeomorphism of Γ∞. Indeed,

for every n ≥ 0, fn : Γn→Γn is a homeomorphism and we observed above that

Γn→Γ∞ converges. As ĥn moves points by no more than the distance of dn ≤
1/4n+1, and

∑
n≥0 1/4n+1 < 1 < ∞, fn→f∞ converges uniformly and thus the

limit f∞ is a homeomorphism. Further, we observed that γk is a simple closed

curve, for every k ∈ Z and thus Σk is the interior of the closed topological disk

Cl(Σk) = Σk ∪ γk.

Next, we show that f∞ extends to a homeomorphism f ′ of N . To this end, we

first show that f∞ induces a homeomorphism from γk to γk+1, for every k ∈ Z. To

prove this, we note that the disks Σk, for −n ≤ k ≤ n, which have been constructed
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after n steps, are left unmoved by future perturbations by virtue of our choice of

dn. Moreover, again by our choice of dn, it holds that fn|γk
= f∞|γk

: γk→γk+1, for

−n ≤ k ≤ n− 1, where fn|γk
and f∞|γk

are the extensions of fn and f∞ to γk. To

prove that fn|γk
is a homeomorphism, it suffices to show that fn|γk

is one-to-one

and continuous. We prove this by induction, where we consider 0 ≤ k ≤ n, the case

for negative k being handled by considering the inverse.

Assume that after step n − 1, we have shown that fn−1|γk
: γk→γk+1, for

0 ≤ k ≤ n − 2 are homeomorphisms and consider step n, where we have to show

that fn|γn−1
: γn−1→γn is a homeomorphism. By choice of ǫn, An is disjoint from

the previously constructed disks and disjoint from A−n. Restricting to a smaller

neighbourhood of An−1 if necessary, we may as well assume that An−1∩An = ∅. As

hn = ĥn|An (as defined by (2.29)) acts along the foliation Fn, fn sends leafs of Fn−1

to leafs of Fn which foliate An−1 andAn respectively. To each θ ∈ [0, 2π) corresponds

a unique point z(θ) ∈ γn−1 lying on ρn−1,θ ∈ Fn−1, which is by fn mapped to a

unique point z′(θ) = fn(z(θ)) ∈ γn lying on ρn,θ = fn(ρn−1,θ). As these foliations

are continuous, and as the curves γn−1 and γn are (continuous) simple closed curves,

the points z′(θ) vary continuously as θ varies, and thus continuously as z(θ) varies

and this is what we needed to show.

By induction, f∞ extends homeomorphically to every boundary curve γk,

k ∈ Z. It thus follows that the extension f ′ to N is one-to-one, as N = Γ∞∪⋃k∈Z
γk.

To show f ′ is continuous, we distinguish between two cases. First, let z ∈ Γ∞. As

f∞ is a homeomorphism, given a neighbourhood V ⊂ N containing z′, we can

find a small neighbourhood U ⊂ N , containing the point z for which f ′(z) = z′,

such that Cl(f∞(W )) ⊂ V , where W = U ∩ Γ∞. As Cl(Γ∞) = N and f ′ extends

homeomorphically to N , we have that f ′(U) = f ′(Cl(W )) = Cl(f∞(W )) ⊂ V .

Secondly, suppose that z ∈ γk for some k ∈ Z. For N ≥ k + 1, it holds that

fN |γk
= f∞|γk

: γk→γk+1 is a homeomorphism. Therefore, given a neighbourhood

V ⊂ N containing z′ = fN (z) = f ′(z), there exists a small neighbourhood U ∋ z,
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such that fN (U) ⊂ V . Choosing N larger, and a smaller neighbourhood U ′ ⊂ U

containing z, if necessary, as
∑

n≥N dn→0 for N→∞, we have that f ′(U ′) ⊂ V as

well. Thus f ′ is continuous, and therefore a homeomorphism, being one-to-one as

well. We can extend the homeomorphism f ′ : N→N to a homeomorphism of T2 by

extending, e.g. by Alexander’s trick, the induced homeomorphisms of the boundary

curves γk to homeomorphisms of the corresponding closed disks Cl(Σk) = Σk ∪ γk.

As the disks Σk are disjoint, and diam(Σk) forms a null-sequence, the extension of

f ′ : N→N to T2 is a homeomorphism, which we denote again by f ′.

To show that φ : N→T2 is continuous, we recall that Cl(Γn) = T2 \ ∆n,

where n ≥ 0. As we observed, for every n ≥ 0, φn : Γn→Γ is continuous and it

extends to a continuous φ̄n : Cl(Γn)→T2. As φn = φn−1 ◦ ĥ−1
n , with ĥn as in (2.32),

whose norm is bounded by dn, φ = limn→∞ φ̄n : N→T2 is continuous as a limit of

uniformly converging continuous maps φ̄n. By declaring φ(Σk) = fk(z0), φ extends

to a continuous map defined on T2.

Finally, we show that f ′ ∈ Homeo#(T2). First, we observe that, as Rπ is

uncountable, and a countable number of points of Rπ is blown up to disks, we

have that Rπ′ is uncountable. Further, the φ thus constructed is homotopic to the

identity. Thus it suffices to show that φ ◦ f ′ = f ◦ φ. For this, we note that for

every n ≥ 0 we have that φn ◦ fn = f |Γ ◦ φn, where fn : Γn→Γn and φn : Γn→Γ. As

both fn and φn converge uniformly and extend continuously to N , it follows that

φ◦f ′ = f ◦φ, where f ′ : N→N . Further, as Σk, along with γk, is mapped to a single

point by φ, it thus also holds that φ ◦ f ′ = f ◦ φ when f ′ is extended to T2.

The following lemma, which combines Lemma 2.19 and Lemma 2.20 is the

key ingredient in the construction of Examples 3 and 4. Let Bδ0 \ {z0} ⊂ T2

be an embedded punctured disk centered at z0 ∈ Rπ with δ0 ≤ 1/4 and F0 the

corresponding foliation of Bδ \ {z0} by straight rays emanating from z0, in the

notation of the construction above. A wedge W(r, θ1, θ2) ⊂ Brδ0 \ {z0} is the region

bounded by two leaves ρθ1
, ρθ2

∈ F0, where 0 < |θ1 − θ2| < π and 0 < r ≤ 1.
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Lemma 2.21. In the construction above, let f ′ be semi-conjugate to f through φ

by blowing up the orbit Of (z0), with z0 ∈ Rπ, to disks whose interiors are Σk, and

γk = ∂Σk, where k ∈ Z. Let M′ be the minimal set of f ′ and define π′ = π ◦ φ.
Then

(1) M′ = Cl(Rπ′) = Cl(φ−1(Rπ \ Of (z0))),

(2) γk ⊂ M′, for all k ∈ Z, if for every 0 < r ≤ 1 and every θ1, θ2 ∈ [0, 2π), with

0 < |θ1 − θ2| < π, we have that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) 6= ∅.

Proof. To prove (1), as Rπ is uncountable, R0
π 6= ∅. As the points fk(z0) are blown

up to disks, i.e. φ−1(fk(z0)) = Cl(Σk), where Cl(Σk) is a closed topological disk, we

have that Rπ′ = φ−1(Rπ \ Of (z0)). By Lemma 2.19, we have that M′ = Cl(Rπ′),

and this proves (1).

To prove (2), define Rn
π := φ−1

n (Rπ\Of (z0)). First assume that γ0 ⊂ Cl(R0
π).

As the size of the perturbations ĥn, by virtue of our choice of dn, converge to zero

as the perturbations approach γ0, it holds that γ0 ⊂ Cl(Rn
π) for every n ≥ 0. As

the maps φn converge, it thus holds that γ0 ⊂ Cl(Rπ′) = M′, by (1). As M′ is

f ′-invariant, and f ′(γk) = γk+1, we have that γk ⊂ M′, for every k ∈ Z. To finish

the proof, suppose that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) 6= ∅ for every 0 < r ≤ 1 and

every θ1, θ2 ∈ [0, 2π) for which 0 < |θ1−θ2| < π. We have to show that γ0 ⊂ Cl(R0
π).

Suppose, to derive a contradiction, that γ0 ∩Cl(R0
π) 6= γ0. As γ0 ∩Cl(R0

π) is closed,

this implies there exists an open subarc η ⊂ γ0 such that η ∩Cl(R0
π) = ∅. Let z ∈ η

be the midpoint of η and let η′ ⊂ η be a closed subsegment properly contained in η,

and containing z ∈ η, with endpoints {z−, z+} = ∂η′. Let ρθ1
and ρθ2

be the two rays

passing through z− and z+ and W(1, θ1, θ2) the corresponding wedge. As Cl(R0
π)

is closed, there exists an open neighbourhood U ⊃ η′ such that U ∩ Cl(R0
π) = ∅.

However, this implies that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) = ∅ for r > 0 sufficiently

small, contrary to our assumption.
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2.4.3 Minimal sets of type I

It is well-known that, given any Sierpiński set S ⊂ T2, there exist a homeomorphism

f ∈ Homeo∗(T2) for which the minimal set M = S. The following example can be

found in [4, Thm 3]. We will only sketch the proof.

Example 1 (Type I : a quasi-Sierpiński set). There exist homeomorphisms f ∈
Homeo∗(T2) for which the minimal set M is a quasi-Sierpiński set, but not a

Sierpiński set.

Σ Σ1 Σ2/ ∼
η

Figure 2.5: Construction of a quasi-Sierpiński set: collapsing arcs to points.

Sketch of the proof. Let M be a Sierpiński minimal set of an element f ∈ Homeo∗(T2)

and let Σ be a component of the complement of M. Denote Σn = fn(Σ) and

γn = ∂Σn. Take an arc η ⊂ Cl(Σ) such that only the endpoints of η intersect

γ = γ0, see Figure 2.5. Let ηn := fn(η) ⊂ Cl(Σn) the corresponding arcs in the

image disks. Using techniques from decomposition theory, it can be shown that

T2/ ∼, where z ∼ z′ if and only if z, z′ ∈ ηn (i.e. collapsing the arcs ηn to points),

yields a well-defined quotient space homeomorphic to T2 and that M quotients to

a quasi-Sierpiński set M′ = M/ ∼, which is not a Sierpiński set. The correspond-

ing quotient homeomorphism f ′ ∈ Homeo∗(T2) has M′ as its minimal set and this

minimal set M′ is locally connected.

Next, we give an example of a minimal set which is of type I, but not locally

connected. It shows the existence of homeomorphisms f ∈ Homeo∗(T2) for which the
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minimal set M is such that the complement consists of a single unbounded disk Σ,

which is f -invariant. The desired homeomorphism is derived from the derived-from-

Anosov construction, see e.g. [25], and is similar to McSwiggen’s construction [33].

Example 2 (Type I : unbounded disks). There exist minimal sets M of homeo-

morphisms f ∈ Homeo∗(T2) of type I such that the complement of M in T2 is a

single unbounded disk.

Proof. Take A ∈ SL(2,Z) and let L := LA : T2→T2 be the induced linear toral

automorphism. Let z0 ∈ T2, with z0 = p(0) where 0 ∈ R2 is the origin and p : R2→T2

is the canonical projection, be the fixed point of L and vu its unstable eigenvector.

Let Fu
lin the unstable foliation of T2 by parallel lines of this linear Anosov and let

ℓ0 ⊂ T2 be the unstable leaf passing through the saddle fixed point z0. Relative

to the standard basis, the eigenvector vu has an irrational slope, and, consequently,

every leaf ℓ ∈ Fu
lin is an isometric immersion of a Euclidean line in R2. Define Fhor

be the foliation of T2 by horizontal (relative to the standard basis) simple closed

curves, parametrized by y ∈ T1; i.e. Fhor = {Cy}y∈T1 with Cy ⊂ T2 the curve of

height y ∈ T1.

A small smooth perturbation of L around the saddle fixed point z0 ∈ T2

turnes z0 into three fixed points z−1, z0, z1 ∈ T2, two of which are saddles and the

original fixed point is turned into a repeller. Denote g ∈ Diff∞(T2) the diffeomor-

phism obtained by perturbing L. There exists a strong unstable g-invariant foliation

Fu
DA of T2 of the perturbed system. All elements of Fu

DA are (smooth) immersed

copies of R and the two elements W u
±1 := W u

z±1
∈ Fu

DA bound an unbounded disk

Σ ⊂ T2 which is dense in the torus, i.e. Cl(Σ) = T2. The perturbation can be

chosen small enough so that the angle of every unstable leaf of Fu
DA with a leaf of

Fhor is uniformly bounded from below and above, see [25, 33] for these facts.

As Σ ⊂ T2 is dense, it follows that Cy∩Σ is dense and that Qy = Cy\(Cy∩Σ),

being the circle minus a dense union of disjoint intervals, is a Cantor set. Note

that the endpoints Qy,rat of Qy are exactly the set of points Cy ∩ ∂Σ and that
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∂Σ =
⋃

y∈T1 Qy,rat. The complement in Qy of these endpoints are the irrational

points, i.e. Qy,irr = Qy \ Qy,rat. Further, as the slope of vu is irrational, there

exists a suitable ν ∈ R such that νvu = (α, β) with 1, α, β rationally independent.

For example, if we take A ∈ SL(2,Z) to be Arnold’s cat map, then vu = (1, 1+
√

5
2 )

and choosing ν = e, we have that (α, β) is irrational as 1,
√

5, e are rationally

independent. Let τ := τα,β be the corresponding irrational translation of the torus

where, by construction, τ(ℓ0) = ℓ0.

Choose compatible orientations on the foliations Fu
DA and Fu

lin. Given a

y ∈ T1, consider the holonomy homeomorphism hy, h
′
y : Cy→Cy, defined as the

return map to Cy under the unstable foliation of the linear and perturbed system

respectively. It is proved in [33] that, for every y ∈ T1, there exists a semi-conjugacy

πy : Cy→Cy such that πy◦h′y = hy◦πy. As the continuous foliations Fu
DA and Fu

lin are

everywhere transversal to the horizontal foliation, the holonomy homeomorphisms

h′y, and consequently the maps πy, depend continuously on y ∈ T1. In other words,

as T2 =
⋃

y∈T1 Cy, this defines a continuous

π : T2→T2, π(x, y) = (πy(x), y), (2.34)

that has the property that π(Σ ∪W u
− ∪W u

+) = ℓ0. For every y ∈ T1, there exists a

homeomorphism fy : Cy→Crβ(y), defined by mapping the point z ∈ Cy to the first

intersection point of the unique leaf of Fu
DA through z with Crβ(y) (along the positive

direction of the leaf), where rβ : T1→T1 is the irrational rotation with rotation

number ρ(r) = β mod Z, see Figure 2.6.

As Fu
DA is a foliation which is transversal to Fu

hor, fy is one-to-one. Further,

as Fu
DA is continuous, fy is continuous as well and thus fy is a homeomorphism, for

every y ∈ T1. Further, it follows from the definitions that πrβ(y) ◦fy = τ ◦πy. Define

f : T2→T2, f(x, y) = (fy(x), rβ(y)), (2.35)

As the maps fy are homeomorphisms for every y ∈ T1 and depend continuously

on y ∈ T1 (by virtue again of the foliation Fu
DA being tranversal and continuous),
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Σ

Cy

Crβ(y)

z

z′

Figure 2.6: fy maps the point z ∈ Cy along a leaf of the foliation Fu
DA to a point

z′ = fy(z) ∈ Crβ(y).

it holds that f as defined by (2.35) is a homeomorphism. It is clear that this f

is isotopic to the identity, π is homotopic to the identity and, by construction,

π ◦f = τ ◦π and f(Σ) = Σ with Σ the unbounded disk bounded by smooth unstable

leaves W u
±1 ∈ Fu

DA, as τ(ℓ0) = ℓ0. Let M be the minimal set of f . As π is one-to-one,

except on Σ ∪W u
− ∪W u

+, it holds that

Rπ = π−1(T2 \ ℓ0) = T2 \ (Σ ∪W u
− ∪W u

+) =
⋃

y∈T1

Qy,irr. (2.36)

As Qy = Cl(Qy,irr), combining (2.36) with Lemma 2.19, it follows that

M = Cl(
⋃

y∈T1

Qy,irr) =
⋃

y∈T1

Cl (Qy,irr) =
⋃

y∈T1

Qy = T2 \ Σ, (2.37)

where Cl(
⋃

y∈T1 Qy,irr) =
⋃

y∈T1 Cl (Qy,irr) holds as the Cantor sets Qy (and therefore

their irrational parts Qy,irr) depend continuously on y ∈ T1. Thus M = T2 \ Σ,

with Σ an unbounded and f -invariant disk, and f ∈ Homeo#(T2), as required. This

finishes the proof.
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2.4.4 Examples of type II

Let us next give examples of homeomorphisms for which the connected components

{Σk} of the complement of M are essential annuli and disks.

Example 3 (Type II : essential annuli and disks). There exist f ∈ Homeo∗(T2)

with minimal set M of the form M = T2 \ ⋃n∈Z
Σk with {Σk}k∈Z a collection of

essential annuli and disks. Furthermore, the essential annuli can be constructed to

have any characteristic (p, q), where gcd(p, q) = 1.

The proof of Example 3 uses the following.

Lemma 2.22. Let f ∈ Homeo∗(T2) and f ′ = L−1
A ◦f ◦LA with LA : T2→T2 induced

by a linear A ∈ SL(2,Z). Then f ′ ∈ Homeo∗(T2).

Proof. Let LA be a linear conjugation induced by an element A ∈ SL(2,Z). As

f ∈ Homeo0(T
2), f ′ ∈ Homeo0(T

2) as well. Let F,F ′ a lift of f, f ′ respectively.

By [27, Lemma 2.4], we have that

ρ(L−1
A ◦ F ◦ LA) = L−1

A ρ(F ) mod Z2.

Therefore, ρ(f ′) = (α′, β′) mod Z2, where

α′ = aα+ bβ and β′ = cα+ dβ,

with a, b, c, d ∈ Z. The condition N1 +N2α
′ + N3β

′ = 0 implies that N1 = N2a +

N3c = N2b+N3d = 0, as 1, α, β are rationally independent. Multiplying N2a+N3c

by b and N2b + N3d by a and subtracting yields that N2(ad − bc) = 0, which

yields that N2 = 0 as A ∈ SL(2,Z) and thus ad − bc = 1. Similarly, it holds

that N3 = 0 and it thus follows that 1, α′, β′ are rationally independent as well.

Therefore, f ′ ∈ Homeo∗(T2).

Proof of Example 3. First, we construct a homeomorphism f ∈ Homeo#(T2) for

which the complement of M is a collection of essential annuli of a given character-

istic. Let (p, q) with gcd(p, q) = 1 be given. Let f ∈ Homeo#(T2) be a product of
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a Denjoy counterexample ϕ ∈ Homeo(T1) with irrational rotation number α /∈ Q

and an irrational rotation rβ, with β /∈ Q chosen so that 1, α, β are rationally in-

dependent. The corresponding semi-conjugacy π is of the form π = (π1, Id), where

π1 is the semi-conjugacy of ϕ to the irrational rotation rα. As Rπ = Qirr × T1, the

minimal set M of f is M = Cl(Qirr × T1) = Q × T1, where Q ⊂ T1 is the Cantor

minimal set of ϕ. The characteristic of the corresponding essential annuli is (0, 1).

For later reference, denote {Σa
t } the collection of essential annuli in the complement

of M. Given any pair (p, q) ∈ Z2 such that gcd(p, q) = 1, there exists an element

A ∈ SL(2,Z) such that the (linear) LA ∈ Homeo(T2) induced by A has the property

that an essential simple closed curve of characteristic (0, 1) is mapped to an essential

simple closed curve of characteristic (p, q). By Lemma 2.22, conjugating f with LA

gives a homeomorphism f ′ ∈ Homeo∗(T2) and the components of the complement

of the minimal set M′ = L−1
A (M) now consists of essential annuli of characteristic

(p, q).

To obtain an example of a homeomorphism f ′ ∈ Homeo∗(T2) with a minimal

set M′ for which the complementary components contain both essential annuli and

disks, we modify the above example as follows. Let f again be the product homeo-

morphism given above. Choose z0 ∈ Rπ and blow up the orbit Of (z0) to disks by

the procedure in section 2.4.2. This gives a homeomorphism f ′ ∈ Homeo#(T2) and

a continuous φ : T2→T2 such that φ ◦ f ′ = f ◦ φ and we define π′ = π ◦ φ. We have

that φ−1(fk(z0)) = Cl(Σk), where Σk is the interior of the closed disk Cl(Σk) and

γk = ∂Σk a simple closed curve. Denote M′ the corresponding minimal set of f ′.

In order to show that the complement of M′ consists of essential annuli

and disks, it suffices to show that γk ⊂ M′. Indeed, as φ is one-to-one on T2 \
⋃

k∈Z
Cl(Σk), φ

−1(Σa
t ) is again an essential annulus, for every t ∈ Z, where φ−1(Σa

t )∩
M′ = ∅. Thus to show that γk ⊂ M′, for every k ∈ Z, by Lemma 2.21 (2), it suffices

to show that for every 0 < r ≤ 1 and every θ1, θ2 ∈ [0, 2π), with 0 < |θ1 − θ2| <
π, we have that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) 6= ∅. This is proved as follows: as
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z0 ∈ Rπ = Qirr × T1, through every wedge W(r, θ1, θ2) pass infinitely many vertical

simple closed curves (i.e. the connected components of Qirr × T1), arbitrarily close

to z0. As only countably many of these points are deleted from these curves, every

wedge W(r, θ1, θ2) contains points of Rπ\Of (z0), for any r > 0. Therefore, γk ⊂ M′

for every k ∈ Z indeed, where M′ = Cl(Rπ′) by Lemma 2.21 (1). This finishes the

proof.

2.4.5 Examples of type III

The most simple example of an extension of a Cantor set is of course a Cantor

set itself. A homeomorphism f ∈ Homeo∗(T2) admitting such a Cantor minimal

set is obtained by taking a product of two Denjoy-counterexamples with rationally

independent rotation numbers. Its minimal set is the product of the Cantor minimal

sets of its factors, and thus itself a Cantor set. Recall that an extension of a Cantor

set M is said to be non-trivial if not all connected components of M are singletons.

Below we give examples of non-trivial extensions of a Cantor set. Recently, F.

Béguin, S. Crovisier, T. Jäger and F. le Roux in [3, Thm 1.2] also constructed an

example of a homeomorphism f ∈ Homeo∗(T2) for which the minimal set M is a

non-trivial extension of a Cantor set (in our terminology). This homeomorphism is

constructed by adapting a quasiperiodically forced circle homeomorphism (see [3,

Thm 1.2], cf. Counterexample 2.2) with a Cantor minimal set, and blowing up an

orbit of points to arcs, using a construction due to M. Rees [43, 44]. The minimal set

thus constructed has a countable number of arcs among its connected components.

The examples below show that in our class Homeo∗(T2) there exist minimal sets,

which are non-trivial extensions of Cantor sets, which have separating connected

components among its connected components.

Example 4 (Type III : extensions of Cantor sets). There exist f ∈ Homeo∗(T2)

for which M is a non-trivial extension of a Cantor set for which the non-degenerate

components are simple closed curves.
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Remark 1. In a way similar to [4, Thm 3], cf. Example 1, by defining a suitable

family of arcs in the disks enclosed by the non-degenerate components of the above

minimal set, if we pass to the quotient by collapsing these arcs to points, this gives

new quotient homeomorphisms of type III for which the corresponding minimal set

is a again a non-trivial extension of a Cantor set, possible connected components of

which include flowers and dendrites.

The proof of the above example needs two further lemmas. Let Q ⊂ T1 be a

Cantor set and denote {Ik}k∈Z the collection of the connected components of T1\Q.

In what follows, we denote |I| the length (relative to the Haar measure on the circle)

of an interval I ⊂ T1 and denote d̃1 the Euclidean metric on R.

Lemma 2.23. There exist Cantor sets Q ⊂ T1 with the following property: there

exists a point x0 ∈ Qirr, an interval J ⊂ T1, with ∂J ⊂ Qirr and x0 as midpoint of

J , and a constant C > 0, such that for every interval Ik ⊂ J \ Q, k ≥ 1, it holds

that |Ik| ≤ C(d(x0, xk))
2, where xk is the midpoint of the interval Ik.

Proof. First, let [−1, 1] ⊂ R with midpoint 0 ∈ [−1, 1]. Inductively delete intervals

from [−1, 1]: at each step t ≥ 1, choose a point xt ∈ (−1, 1) \⋃t−1
s=0 I

′
s, with xt 6= 0,

and delete an interval I ′t ⊂ (−1, 1) \⋃t−1
s=0 I

′
s, centered at xt and not overlapping 0,

of length at most (d̃1(0, xt))
2. Repeating this ad infinitum produces a Cantor set

Q′ ⊂ [−1, 1]. Given a Cantor set Q ⊂ T1, take a small (closed) interval J ⊂ T1 for

which ∂J ⊂ Qirr. Replacing J ∩Q ⊂ T1 with a rescaled copy of Q′ into J yields the

desired Cantor set in T1, with C = |J |/2.

Lemma 2.24. Let f ∈ Homeo#(T2) be the product of two Denjoy counterexamples

ϕ,ψ ∈ Homeo(T1), semi-conjugate to an irrational translation τ through π. Let

Q1,Q2 ⊂ T1 be two Cantor minimal sets of ϕ and ψ respectively, with x0 ∈ Q1,irr

and y0 ∈ Q2,irr points and corresponding intervals J1 and J2 satisfying the conditions

of Lemma 2.23. Set z0 := (x0, y0) ∈ Rπ. For every 0 < r ≤ 1 and θ1, θ2 ∈ [0, 2π),

with 0 < |θ1 − θ2| < π, we have that W(r, θ1, θ2) ∩ (Rπ \ Of (z0)) 6= ∅.

49



Proof. First, we observe that Rπ = Q1,irr × Q2,irr, so the minimal set M of f is

M = Cl(Q1,irr ×Q2,irr) = Q1 ×Q2, the product of the Cantor sets of the factors ϕ

and ψ. Let Bδ0 ⊂ T2 be the closed embedded disk centered at z0, where δ0 is small

enough so that it is contained in the rectangle of width |J1| and height |J2| centered

at z0.

Relative to the disk Bδ0 , let W(r, θ1, θ2) be any wedge, denoted W for brevity

from now on. Let 0 < ν < π, where ν = |θ1 − θ2| is the angle between the two rays

ρθ1
, ρθ2

that bound the wedge, and define ρ̄ := ρ(θ1+θ2)/2 the bisector of the two

rays. Further, let ν ′ ∈ [0, 2π) be the angle between ρ̄ and the positive horizontal

line through z0. As the vertical and horizontal lines through z0 contain points of

Rπ \ Of (z0) arbitrarily close to z0, by symmetry, we may assume without loss of

generality that 0 < ν ′ < π/2. Given a point w = (x, y) ∈ ρ̄ ∩W, let ℓh(w), ℓv(w)

be the horizontal and vertical straight line through w respectively and define the

intercepts ℓ′h(w) = ℓh(w)∩W and ℓ′v(w) = ℓv(w)∩W, which for w sufficiently close

to z0 only pass through ρθ1
and ρθ2

(and not through the circular arc that cuts off

the wedge).

There exist constants Kh,Kv > 0, depending only on θ1 and θ2, such that

ℓ′h(w) = Khd(y, y0) and ℓ′v(w) = Kvd(x, x0). Given any 0 < r ≤ 1, choose w ∈ ρ̄

such that d(w, z0) < δ0r. As the lengths ℓ′h(w), ℓ′v(w) behave linearly, and the

lengths of the intervals |I1,k| ≤ C1(d(x0, xk))
2 and |I2,t| ≤ C2(d(y0, yt))

2 behave

quadratically, with C1, C2 > 0 uniform constants, if we choose w sufficiently close

to z0, then w ∈ R := I1,k × I2,t, for some k, t ∈ Z, with Cl(R) properly contained

in W. The cornerpoints of the rectangle R are limit points of Rπ, and thus also of

Rπ \ Of (z0), as a neighbourhood of any point z ∈ Rπ contains uncountably many

points and only a countable orbit is deleted. Therefore, as Cl(R) ⊂ W, we have

that W ∩ (Rπ \ Of (z0)) 6= ∅, as required.

Proof of Example 4. We start with the homeomorphism f ∈ Homeo#(T2), where

f is the product of two Denjoy-counterexamples ϕ,ψ ∈ Homeo(T1), with a Cantor
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minimal set M1 = Q1 and M2 = Q2 respectively, semi-conjugate to an irrational

translation τ through π. As every Cantor set in T1 can be realized as a minimal

set of a Denjoy counterexample, we can choose ϕ and ψ such that the Cantor sets

Qi, with i = 1, 2, with x0 ∈ Q1,irr and y0 ∈ Q2,irr points and corresponding intervals

J1 and J2 satisfy the conditions of Lemma 2.23. Let z0 = (x0, y0) ∈ Rπ and let

Bδ0 ⊂ T2 be the closed embedded Euclidean disk with radius δ0 > 0 small enough

so that Bδ0 is contained in the rectangle of width |J1| and height |J2| centered at z0.

Through the procedure in section 2.4.2, we blow up the orbit Of (z0) to a collection

of disks to obtain a homeomorphism f ′ ∈ Homeo∗(T2) and a continuous φ : T2→T2,

such that φ ◦ f ′ = f ◦ φ and φ−1(fk(z0)) = Cl(Σk) is a closed topological disk, and

Cl(Σk) = Σk ∪ γk with γk a simple closed curve, for every k ∈ Z.

Σk

Figure 2.7: A non-trivial extension of a Cantor set M′; Cantor dust accumulating
on the boundary γk ⊂ M′ of each disk Σk and, conversely, every point of the Cantor
dust is a limit point of increasingly small disks Σk.

If we denote Σ the doubly essential component of the complement of the

minimal set M of f , then Σ′ := φ−1(Σ) ⊂ T2 is open (as φ is continuous) and

doubly essential, thus M′ is of type III. The other connected components of the

complement of M′ are, by construction, the disks Σk for k ∈ Z.

Now, φ−1(Rπ \ Of (z0)) ⊂ M′ are all singletons, which by Lemma 2.21 (2)

combined with Lemma 2.24, accumulate on the boundaries of the disks Σk to form

the non-trivial connected components γk, see Figure 2.7. Thus, as M′ = Cl(φ−1(Rπ\
Of (z0))) by Lemma 2.21 (1), γk ⊂ M for every k ∈ Z, which are the desired non-
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degenerate components of M′.

Remark 2. In the proof of example 4, we explicitly constructed a semi-conjugacy

between the extension of the Cantor set M′ and the original Cantor set M. Theorem

2.A. in essence says that all extensions of Cantor sets are of this form.

2.5 Open problems

Let us finish by addressing some open problems that arise from the results obtained

in this chapter.

Open problem 1 (Uniqueness of type III minimal sets). Let f ∈ Homeo∗(T2) with

a minimal set M of type III. Is the minimal set M unique?

Further, it would be interesting to get a completer description of the possible

topology of extensions of Cantor sets.

Open problem 2 (Topology of type III minimal sets). Let f ∈ Homeo∗(T2) with

a minimal set M of type III.

(i) Exactly what continua can arise as a connected component of M?

(ii) Do there exist extensions of Cantor sets with uncountably many non-degenerate

connected components? Can all components be non-degenerate?

For example, a classical result by R. Moore [35] implies that not all com-

ponents of M can be triodic continua, as the number of connected components of

M is uncountable.2 However, it is not entirely clear whether uncountably many

components could be for example an arc.

2A planar continuum C is said to be triodic if there exists a connected closed set C0 ⊂ C such
that C \ C0 has at least three connected components.
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Chapter 3

Topological Entropy and

Diffeomorphisms with

Wandering Domains

Let M be a closed surface and f a diffeomorphism of M . A diffeomorphism is said

to permute a dense collection of domains, if the union of the domains are dense and

the iterates of any one domain are mutually disjoint. In this chapter, we study the

interplay between topological entropy of f , the smoothness of f and the geometry

of the domains that are permuted by it. We show that if f ∈ Diff1+α(M), with

α > 0, and permutes a dense collection of domains with bounded geometry, then f

has zero topological entropy.

3.1 Definitions and statement of results

A result of A. Norton and D. Sullivan [36] states that a diffeomorphism f ∈ Diff3
0(T

2)

having Denjoy-type can not have a wandering disk whose iterates have the same

generic shape. By diffeomorphisms of Denjoy-type are meant diffeomorphisms of

the two-torus, isotopic to the identity, that are obtained as an extension of an
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irrational translation of the torus, for which the semi-conjugacy has countably many

non-trivial fibers. If these fibers have non-empty interior, then the corresponding

diffeomorphism has a wandering disk. Further, by generic shape is meant that the

only elements of SL(2,Z) preserving the shape are elements of SO(2,Z), such as

round disks and squares. In a similar spirit, C. Bonatti, J.M. Gambaudo, J.M. Lion

and C. Tresser in [8] show that certain infinitely renormalizable diffeomorphisms of

the two-disk that are sufficiently smooth, can not have wandering domains if these

domains have a certain boundedness of geometry.

In this chapter, we study an analogous problem, namely the interplay be-

tween the geometry of iterates of domains under a diffeomorphism and its topolog-

ical entropy. To state the precise result, we first need some definitions. Let (M,g)

be a closed surface, that is, a smooth, closed, oriented Riemannian two-manifold,

equipped with the canonical metric g induced from the standard conformal metric

of the universal cover P1,C or D2. We denote by d(·, ·) the distance function rel-

ative to the metric g. Let Diffr(M) be the group of diffeomorphisms of M , where

for r ≥ 0 finite, f is said to be of class Cr if f is continuously differentiable up to

order [r] and the [r]-th derivative is (r)-Hölder, with [r] and (r) the integral and

fractional part of r respectively. We identity Diff0(M) with Homeo(M), the group

of homeomorphisms of M .

Given f ∈ Homeo(M), for each n ≥ 1, define the metric dn on M given by

dn(x, y) = max1≤i≤n{d(f i(x), f i(y))}. Given ǫ > 0, a subset U ⊂ M is said to be

(n, ǫ) separated if dn(x, y) ≥ ǫ for every x, y ∈ U with x 6= y. Let N(n, ǫ) be the

maximum cardinality of an (n, ǫ) separated set. The topological entropy is defined

as

htop(f) = lim
ǫ→0

(
lim

n→∞
sup

1

n
logN(n, ǫ)

)
.

Next, we make precise the notion of a homeomorphism of a surface permuting a

dense collection of domains.

Definition 3.1. Let S ⊂ M be compact and D := {Dk}k∈Z the collection of
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connected components of the complement of S, with the property that Int(Cl(Dk)) =

Dk, where Cl(D) is the closure of D in M . We say f ∈ Homeo(M) permutes a dense

collection of domains if

(1) f(S) = S and Cl(Dk) ∩ Cl(Dk′) = ∅ if k 6= k′,

(2) for every k ∈ Z, fn(Dk) ∩Dk = ∅ for all n 6= 0, and

(3)
⋃

k∈Z
Dk is dense in M .

Note that we do not assume a domain to be recurrent, nor do we assume

the orbit of a single domain to be dense. A wandering domain is a domain with

mutually disjoint iterates under f such that the orbit of the domain is recurrent.

Thus a diffeomorphism with a wandering domain with dense orbit is a special case

of definition 3.1. Denote expp : TpM→M the exponential mapping at p ∈ M . The

injectivity radius at a point p ∈M is defined as the largest radius for which expp is

a diffeomorphism. The injectivity radius ι(M) of M is the infimum of the injectivity

radii over all points p ∈M . As M is compact, ι(M) is positive.

Definition 3.2 (Bounded geometry). A collection of domains {Dk}n∈Z on a surface

M is said to have bounded geometry if the following holds: Cl(Dk) is contractible in

M and there exists a constant β ≥ 1 such that for every domain Dk in the collection,

there exist pk ∈ Dk and 0 < rk ≤ Rk such that

B(pk, rk) ⊆ Dk ⊆ B(pk, Rk), with Rk/rk ≤ β, (3.1)

where B(p, r) ⊂ M is the ball centered at p ∈ M with radius r > 0. If no such β

exists, then the collection is said to have unbounded geometry.

By Cl(Dk) being contractible in M we mean that Cl(Dk) is contained in an

embedded topological disk in M . Our definition of bounded geometry is equivalent

to the notion of bounded geometry in the theory of Kleinian groups and complex

dynamics. It is not difficult, given a surface of any genus, to construct homeo-

morphisms of that surface with positive entropy that permute a dense collection of
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domains. We show that producing examples that have a certain amount of smooth-

ness is possible only to a limited degree.

Theorem 3.A (Topological entropy versus bounded geometry). Let M be a closed

surface and f ∈ Diff1+α(M), with α > 0. If f permutes a dense collection of

domains with bounded geometry, then f has zero topological entropy.

The outline of the proof of Theorem 3.A is as follows. First we show that

the bounded geometry of the permuted domains, combined with their density in

the surface, give bounds on the dilatation of f on the complement of the union of

the permuted domains. The differentiability assumptions on f allow us to estimate

the rate of growth of the dilatation on the whole surface M . Using a result by

Przytycki [41], we show this rate of growth is slow enough so as to ensure the

topological entropy of f is zero.

Remark 3. Oleg Kozlovski and Jean-Marc Gambaudo pointed out that Theorem

3.A. can also be derived from A. Katok’s results in [24] about the existence of saddle

fixed points for C1+α diffeomorphisms with positive entropy. However, our proof is

completely independent from the techniques in [24]; moreover, it is likely that our

result can be generalized to higher dimensions, whereas the techniques in [24] do not

appear to allow for a straightforward generalization to higher dimensions.

3.2 Entropy and diffeomorphisms with wandering do-

mains

First, we study the relation between geometry of domains and the complex dilatation

of a diffeomorphism.
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3.2.1 Geometry of domains and complex dilatation

We denote λ the measure associated to g and dλ the Riemannian volume form. By

compactness of M , there exists a constant κ > 0 such that

λ(B(p, r)) =

∫

B(p,r)
dλ ≥ κr2. (3.2)

A sequence of positive real numbers xk is called a null-sequence, if for every given

ǫ > 0 there exist only finitely many elements of the sequence for which xk ≥ ǫ.

Henceforth, we denote ℓk := diam(Dk), the diameter of Dk measured in g, with

Dk ∈ D.

Lemma 3.1. Let M be a closed surface and let {Dk}k∈Z be a collection of mutually

disjoint domains with bounded geometry. Then the sequence ℓk is a null-sequence.

Proof. Suppose, to the contrary, that {Dk}k∈Z is not a null-sequence. Then there

exist an ǫ > 0 and an infinite subsequence kt such that diam(Dkt
) ≥ ǫ. By the

bounded geometry property, we have that diam(Dkt
) ≤ 2Rkt

≤ 2βrkt
and therefore

rkt
≥ ǫ/2β. Therefore, by (3.2),

λ(Dkt
) ≥ κr2kt

≥ κǫ2

4β2
,

for every t ∈ Z. But this yields that

∑

t∈Z

λ(Dkt
) = ∞,

contradicting the fact that λ(M) <∞ as M is compact.

Recall that S is the complement of the union of the permuted domains, i.e.

S = M \⋃k∈Z
Dk.

Lemma 3.2. Let M be a closed surface and let f ∈ Homeo(M) permute a dense

collection D of domains with bounded geometry. For every p ∈ S, there exists a

sequence of domains Dkt
with diam(Dkt

)→0 for t→∞ such that Dkt
→p.
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Proof. Fix p ∈ S and let U ⊂M be an open (connected) neighbourhood of p. First

assume that p ∈ S\⋃k∈Z
∂Dk. This set in non-empty, as otherwise the surfaceM is a

union of countably many mutually disjoint continua; but this contradicts Sierpiński’s

Theorem [45], which states that no countable union of disjoint continua is connected.

We claim that U intersects infinitely many different elements of D. Indeed, if U

intersects only finitely many elementsDk1
, ...,Dkm

, then Ω :=
⋃m

i=1 Cl(Dki
) is closed.

This implies that U \ Ω is open and non-empty, as otherwise M would be a finite

union of disjoint continua, which is impossible. However, as the union of the elements

of D is dense, U\Ω can not be open. Thus, there are infinitely many distinct elements

Dk1
,Dk2

, ... of D that intersect U . Taking a sequence of nested open connected

neighbourhoods Ut containing p, we can find elements Dkt
⊂ Ut \ Ut+1 for every

t ≥ 1. By Lemma 3.1, diam(Dkt
) is a null-sequence and thus we obtain a sequence

of domains Dkt
with diam(Dkt

)→0 for t→∞ such that Dkt
→p.

As Int(Cl(Dk)) = Dk, given p ∈ ∂Dk and given any neighbourhood U ∋ p,

U has non-empty intersection with M \Cl(Dk). By the same reasoning as above, p

is again is a limit point of arbitrarily small domains in the collection D. Thus we

have proved the claim for all points p ∈ S and this concludes the proof.

Next, we turn to the complex dilatation of a diffeomorphism f ∈ Diff(M) and

its behaviour under compositions of diffeomorphisms, see for example [16] or [31].

We first consider the case where f ∈ Diff(C). The complex dilatation µf of f is

defined by

µf : C→D2, µf (p) =
fz̄

fz
(p), (3.3)

and the corresponding differential

µf (p)
dz̄

dz
, (3.4)

is the Beltrami differential of f . The dilatation of f is defined by

Kf (p) =
1 + |µf (p)|
1 − |µf (p)| , (3.5)
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which equals

Kf (p) =
maxv |Dfp(v)|
minv |Dfp(v)|

, (3.6)

where v ranges over the unit circle in TpC and the norm |·| is induced by the standard

(conformal) Euclidean metric g on C. Denote [·, ·] be the hyperbolic distance in D2,

i.e. the distance induced by the Poincaré metric on D2. When one composes two

diffeomorphisms f, g : C→C, then

µg◦f (p) =
µf (p) + θf (p)µg(f(p))

1 + µf (p)θf (p)µg(f(p))
, (3.7)

where θf (p) = fz

fz
(p). It follows that

µfn+1(p) =
µf (p) + θf (p)µfn(f(p))

1 + µf (p)θf (p)µfn(f(p))
. (3.8)

We can rewrite (3.7) as

µg◦f (p) = Tµf (p)(θf (p)µg(f(p))) (3.9)

where

Ta(z) =
a+ z

1 + āz
∈ Möb(D2) (3.10)

is an isometry relative to the Poincaré metric, for a given a ∈ D2. Further, the

following relation holds

log(Kg◦f−1(f(p))) = [µg(p), µf (p)] . (3.11)

To define the complex (and maximal) dilatation of a diffeomorphism of a

surface M , we first lift f : M→M to the universal cover f̃ : M̃→M̃ and denote

π : M̃→M be the corresponding canonical projection mapping, where M = M̃/Γ,

with Γ a Fuchsian group. We assume here that M̃ is either C or D2, the trivial case

of the sphere P1 is excluded here. As π is an analytic local diffeomorphism, f̃ is a

diffeomorphism. Further, as M is compact, f is K-quasiconformal on M for some
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K ≥ 1 and thus f̃ is K-quasiconformal on M̃ . Since f̃ ◦ h ◦ f̃−1 is conformal for

every h ∈ Γ, it follows from (3.7) that

µ ef
(p) = µ ef

(h(p))
hz

hz
(p). (3.12)

In other words, µ ef
defines a Beltrami differential on M̃ for the group Γ, or equiv-

alently, it defines a Beltrami differential for f on the surface M . Furthermore, the

same formulas (3.5) and (3.6), defined relative to the canonical (conformal) metric

defined on M , hold for the dilatation Kf of f on M .

The following lemma shows that the bounded geometry assumption of the

domains has a strong effect on the dilatation of iterates of f on S. We say f

has uniformly bounded dilatation on S ⊂ M , if Kfn(p) is bounded by a constant

independent of n ∈ Z and p ∈ S.

Lemma 3.3 (Bounded dilatation). Let M be a closed surface and let f ∈ Diff1(M)

permute a dense collection of domains D. If the collection D has β-bounded geome-

try, then f has uniformly bounded dilatation on S.

Proof. Suppose the collection of domains D = {Dk}k∈Z has β-bounded geometry

for some β ≥ 1. Fix N ∈ Z and p ∈ S and take a small open neigbhourhood U ⊂M

containing p. By Lemma 3.2, there exists a subsequence of domains Dkt
, where

|kt|→∞ and diam(Dkt
)→0 for t→∞ and such that Dkt

→p. Denote q = fN(p) ∈ S.

We may as well assume that for all t ≥ 1 the domains Dkt
are contained in U . Define

D′
kt

:= fN (Dkt
). If we denote U ′ = fN (U), then the sequence D′

kt
converges to q

and D′
kt

⊂ U ′. By the bounded geometry assumption, for every t ≥ 1, there exists

pt ∈ Dkt
and 0 < rt ≤ Rt such that

B(pt, rt) ⊆ Dkt
⊆ B(pt, Rt)

with Rt/rt ≤ β. As f ∈ Diff1(M), the local behaviour of fN around q converges to

the behaviour of the linear map DfN
p . In particular, if we take pt ∈ Dkt

, then pt→p
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and thus qt := fN (pt)→q, and in order for all D′
kt

to have β-bounded geometry, it

is required that

KfN (p) ≤ Rtβ

rt
,

for t sufficiently large. Indeed, this is easily seen to hold if the map acts locally

by a linear map and is thus sufficient as f ∈ Diff1(M) and the increasingly smaller

domains approach p. As Rt/rt ≤ β, we must therefore have KfN (p) ≤ β2. As this

argument holds for every (fixed) N ∈ Z and every p ∈ S, we find β2 the uniform

bound on the dilatation on S.

Our smoothness assumptions on f allow us to give bounds on the (complex)

dilatation of iterates of f on M in terms of the diameters of the permuted domains.

Lemma 3.4 (Sum of diameters). Let M be a closed surface and let f ∈ Diff1+α(M),

with α > 0, which permutes a collection of domains D = {Dk}k∈Z with β-bounded

geometry. Then there exists a constant C = C(β) > 0 such that, if p ∈ Dt (for some

t ∈ Z) and q ∈ ∂Dt, then

[
µfn+1(p), µfn+1(q)

]
≤ C ·

t+n∑

s=t

ℓαs , (3.13)

where the domains are labeled such that f s(Dt) = Dt+s.

To prove Lemma 3.4, we use the following.

Lemma 3.5. Let f ∈ Diff1(M) and p0, q0 ∈M . Then

[
µfn+1(p0), µfn+1(q0)

]
≤

n∑

s=0

[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (qs)µfn−s(qs+1))

]
,

(3.14)

where ps = f s(p0) and qs = f s(q0).

Proof. Using (3.9), we write

[
µfn+1(p0), µfn+1(q0)

]
=
[
Tµf (p0)(θf (p0)µfn(p1)), Tµf (q0)(θf (q0)µfn(q1))

]
.
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By the triangle inequality, we thus have the following inequality

[
µfn+1(p0), µfn+1(q0)

]
≤

[
Tµf (p0)(θf (p0)µfn(p1)), Tµf (p0)(θf (p0)µfn(q1))

]

+
[
Tµf (p0)(θf (p0)µfn(q1)), Tµf (q0)(θf (q0)µfn(q1))

]
.

As both Ta (as defined by (3.10)) and rotations are isometries in the Poincaré disk,

we have that

[
Tµf (p0)(θf (p0)µfn(p1)), Tµf (p0)(θf (p0)µfn(q1))

]
= [µfn(p1), µfn(q1)] .

Inequality (3.14) now follows by induction.

As ∂Dt ⊂ S, by Lemma 3.3, µfn−s(qs+1) ∈ Bδ, with Bδ ⊂ D2 the compact

disk centered at 0 ∈ D2 with radius

δ =
β2 − 1

β2 + 1
. (3.15)

Further, define

δ′ = sup
p∈M

|µf (p)| < 1, (3.16)

and let Bδ′ ⊂ D2 be the compact disk centered at 0 ∈ D2 and radius δ′.

Lemma 3.6. There exists a constant C1(δ, δ
′) such that

[Ta(z), Tb(z)] ≤ C1 [a, b] , (3.17)

for given a, b ∈ Bδ′ and z ∈ Bδ.

Proof. First we observe that there exists a constant 0 < δ′′ < 1 (depending only on

δ and δ′), such that [Ta(z), 0] ≤ δ′′, for every a ∈ Bδ′ and every z ∈ Bδ, as the disks

Bδ, Bδ′ ⊂ D2 are compact. Define δ̄ = max{δ, δ′, δ′′} and Bδ̄ ⊂ D2 the compact disk

with center 0 ∈ D2 and radius δ̄.

As the Euclidean metric and the hyperbolic metric are equivalent on the

compact disk Bδ̄, it suffices to show that there exists a constant C ′
1(δ̄) such that

|Ta(z) − Tb(z)| ≤ C ′
1 |a− b| , (3.18)
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where |z−w| denotes the Euclidean distance between two points z,w ∈ D2. Indeed,

if this is shown then (3.17) follows for a constant C1 which differs from C ′
1 by a

uniform constant depending only on δ̄. To prove (3.18), we compute that

|Ta(z) − Tb(z)| =

∣∣∣∣
(a− b) + (ab̄− āb)z + (b̄− ā)z2

(1 + āz)(1 + b̄z)

∣∣∣∣ . (3.19)

As a, b ∈ Bδ′ and z ∈ Bδ, there exists a constant Q1(δ, δ
′) > 0 so that

|(1 + āz)(1 + b̄z)| ≥ Q−1
1 .

Therefore, it holds that

|Ta(z) − Tb(z)| ≤ Q1

(
|a− b| + δ|ab̄− āb| + δ2|a− b|

)
. (3.20)

In order to prove (3.18), we show there exists a constant Q2(δ
′) > 0 such that

|ab̄− āb| ≤ Q2|a− b|. (3.21)

To this end, write a = reiφ and b = r′eiφ
′

and x = ab̄, so that x = rr′eiν with ν =

φ−φ′. We may assume that ν ∈ [0, π). It follows that ab̄− āb = x− x̄ = 2irr′ sin(ν).

Therefore,

|ab̄− āb| = |x− x̄| = 2rr′| sin(ν)| ≤ 2δ′r| sin(ν)|, (3.22)

as r′ ≤ δ′. As the angle between the vectors a, b ∈ Bδ′ is ν, it is easily seen that

r| sin(ν)| ≤ |a− b|. Combining this estimate with (3.22), we obtain that

|ab̄− āb| ≤ 2δ′r| sin(ν)| ≤ 2δ′|a− b|. (3.23)

Setting Q2 = 2δ′ yields (3.21). If we now combine (3.23) in turn with (3.20), we

obtain a uniform constant

C ′
1(δ, δ

′) = Q1(1 + δQ2 + δ2)

for which (3.18) holds, as required.
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Proof of Lemma 3.4. As f ∈ Diff1+α(M), we have that µf (p) ∈ Cα(M,D2) and

θf ∈ Cα(M,C), are uniformly Hölder continuous by compactness of M . By the

triangle inequality, we can estimate the summand in the right-hand side of (3.14)

of Lemma 3.5 as

[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (qs)µfn−s(qs+1))

]
≤ (3.24)

[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (ps)µfn−s(qs+1))

]
+ (3.25)

[
Tµf (qs)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (qs)µfn−s(qs+1))

]
. (3.26)

To estimate (3.25), define

zs := θf (ps)µfn−s(qs+1) ∈ Bδ and as = µf (ps), bs = µf (qs) ∈ Bδ′ ⊂ D2.

Then (3.25) reads

[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (ps)µfn−s(qs+1))

]
= [Tas(zs), Tbs

(zs)] .

(3.27)

By Lemma 3.6, there exists a constant C1 > 0 such that

[Tas(zs), Tbs
(zs)] ≤ C1[as, bs]. (3.28)

By Hölder continuity of µf , there exists a constant Ĉ1 such that

[as, bs] ≤ Ĉ1(d(ps, qs))
α. (3.29)

Therefore, combining equations (3.27), (3.28) and (3.29), we obtain that

[
Tµf (ps)(θf (ps)µfn−s(qs+1)), Tµf (qs)(θf (ps)µfn−s(qs+1))

]
≤ C̃1ℓ

α
t+s, (3.30)

as d(ps, qs) ≤ ℓt+s, with C̃1 := C1Ĉ1.

To estimate (3.26), we note that the hyperbolic distance and the Euclidean

distance are equivalent on the compact disk Bδ. Therefore, as the (Euclidean)

distance between a point z ∈ Bδ and eiφz is bounded from above by a constant
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(depending only on δ) multiplied by the angle |φ|, by Hölder continuity of θf there

exists a constant C̃2(δ), such that

[
θf (p)z, θf (p′)z

]
≤ C̃2(d(p, p

′))α,

for all z ∈ Bδ and p, p′ ∈ M , using the local equivalence of the hyperbolic and

Euclidean metric. Hence, (3.26) reduces to

[
θf (ps)µfn−s(qs+1), θf (qs)µfn−s(qs+1)

]
≤ C̃2d(ps, qs))

α ≤ C̃2ℓ
α
t+s, (3.31)

as d(ps, qs) ≤ ℓt+s. Therefore, if we set C := C̃1 + C̃2, then (3.13) follows.

3.2.2 Upper bounds on the entropy of a surface diffeomorphism

Next, we relate the topological entropy of a diffeomorphism to its dilatation.

Lemma 3.7 (Entropy and dilatation). Let M be a closed surface and let f ∈
Diff1+α(M) with α > 0. Then

htop(f) ≤ lim
n→∞

sup
1

2n
log

∫

M
Kfn(p)dλ(p), (3.32)

with Kf the dilatation of f .

To prove this we use a result of F. Przytycki [41]. We need the following

notation. Let L : Rm→Rm be a linear map and Lk∧ : Rm∧k→Rm∧k the induced

map on the k-th exterior algebra of Rm. L∧ denotes the induced map on the full

exterior algebra. The norm ‖Lk∧‖ of Lk has the following geometrical meaning.

Let Volk(v1, ..., vk) be the k-dimensional volume of a parallelepiped spanned by the

vectors v1, ..., vk , where vi ∈ Rm with 1 ≤ i ≤ k. Then

‖Lk∧‖ = sup
vi∈Rm

Volk(L(v1), ..., L(vk))

Volk(v1, ..., vk)
, (3.33)

‖L∧‖ = max
1≤k≤m

‖Lk∧‖. (3.34)

Further, let

‖L‖ = sup
|v|=1

|L(v)|, (3.35)
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the standard norm on operators, with v ∈ Rm and | · | induced by the corresponding

inner product on Rm. The following result is due to F. Przytycki [41] (see also [28]).

Theorem 3.8. Given a smooth, closed Riemannian manifold M and f ∈ Diff1+α(M)

with α > 0. Then

htop(f) ≤ lim
n→∞

sup
1

n
log

∫

M
‖(Dfn)∧‖dλ(p). (3.36)

where htop(f) is the topological entropy of f , λ is a Riemannian measure on M in-

duced by a given Riemannian metric, (Dfn)∧ is a mapping between exterior algebras

of the tangent spaces TpM and Tfn(p)M , induced by the Dfn
p and ‖ · ‖ is the norm

on operators, induced from the Riemannian metric.

Proof of Lemma 3.7. Fix p ∈M and let Dfn
p : TpM→Tfn(p)M . Then

‖Dfn
p ‖2 = Kfn(p)Jfn(p).

Thus

‖(Dfn
p )1∧‖ =

√
Kfn(p)Jfn(p), and ‖(Dfn

p )2∧‖ = Jfn(p). (3.37)

It follows that

‖(Dfn
p )∧‖ = max

{√
Kfn(p)Jfn(p), Jfn(p)

}
. (3.38)

As

max

{√
Kfn(p)Jfn(p), Jfn(p)

}
≤
√
Kfn(p)Jfn(p) + Jfn(p),

we have that
∫

M
‖(Dfn

p )∧‖dλ(p) ≤
∫

M

(√
KfnJfn + Jfn

)
dλ

= λ(M) +

∫

M

√
KfnJfndλ

as λ(M) =
∫
M Jfndλ, for every n ∈ Z. Either

∫
M

√
KfnJfndλ is bounded as a

sequence in n, in which case (3.32) holds trivially, or the sequence is unbounded in

n, in which case it is readily verified that

lim
n→∞

sup
1

n
log

(
λ(M) +

∫

M

√
KfnJfndλ

)
= lim

n→∞
sup

1

n
log

∫

M

√
KfnJfndλ.
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By the Cauchy-Schwartz inequality, we have that

∫

M

√
KfnJfndλ ≤

√
λ(M) ·

√∫

M
Kfndλ.

and thus,

log

∫

M

√
KfnJfndλ ≤ 1

2
log λ(M) +

1

2
log

∫

M
Kfndλ.

It now follows that

lim
n→∞

sup
1

n
log

∫

M
‖(Dfn)∧‖dλ ≤ lim

n→∞
sup

1

2n
log

∫

M
Kfndλ.

and this proves (3.32).

3.2.3 Proof of Theorem 3.A

Let us now complete the proof. Let f ∈ Diff1+α
A (M), with α > 0, and suppose

that f permutes a dense collection of domains {Dk}k∈Z with bounded geometry. By

Lemma 3.1, the sequence ℓk is a null-sequence. Therefore, ℓαk is a null-sequence as

well, for every α > 0. Let p ∈ Dt for some t ∈ Z and q ∈ ∂Dt and label the domains

such that f s(Dt) = Dt+s. By (3.11),

logKfn(f(p)) = [µfn+1(p), µf (p)]

and thus, by the triangle inequality,

logKfn(f(p)) ≤
[
µfn+1(p), µfn+1(q)

]
+
[
µfn+1(q), µf (p)

]
(3.39)

As the second term in the right hand side of (3.39) stays uniformly bounded, we

have that

logKfn(f(p)) ≤
[
µfn+1(p), µfn+1(q)

]
+ C ′ (3.40)

for some constant C ′ > 0, independent of p ∈M and n ∈ Z. Define

ξ(n) = max

n∑

i=0

ℓαki
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where the maximum is taken over all collections of n+1 distinct elements {Dk0
, ...,Dkn

}
of D. As ℓαk is a null-sequence, we have that

lim
n→∞

sup
ξ(n)

n
= 0. (3.41)

By Lemma 3.4, we have that

[
µfn+1(p), µfn+1(q)

]
≤ C ·

t+n∑

s=t

ℓαs ,

for some constant C > 0. Combined with (3.40), we obtain the following uniform

estimate

logKfn(f(p)) ≤ Cξ(n) + C ′, (3.42)

for every p ∈M and n ∈ Z. Therefore

log

∫

M
Kfndλ ≤ log

∫

M
exp(Cξ(n) + C ′)dλ (3.43)

= log
(
(exp(Cξ(n) + C ′)λ(M)

)
(3.44)

= Cξ(n) + C ′ + log(λ(M)). (3.45)

Combining (3.45) in turn with Lemma 3.7 yields

htop(f) ≤ lim
n→∞

sup
1

2n
log

∫

M
Kfndλ ≤ C lim

n→∞
sup

ξ(n)

2n
= 0, (3.46)

by (3.41). This proves Theorem 3.A.

3.3 Open problems

Our first problem is a natural question arising from the main result in this chapter.

Open problem 3 (Differentiable counterexamples). Let M be a closed surface. Do

there exist diffeomorphisms f ∈ Diff1(M) with positive entropy that permute a dense

collection of domains with bounded geometry?
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Remark 4. An anonymous referee pointed out that, if f ∈ Diff1(M), then µf has

a modulus of continuity η; that is

[µf (p), µf (q)] ≤ η(d(p, q)), (3.47)

where η(ℓ)→0 if ℓ→0. It follows that, if f ∈ Diff1(M), by adapting the proof of

Lemma 3.4, [
µfn+1(p), µfn+1(q)

]

n
(3.48)

is still a null-sequence. However, it is not known whether Przytycki’s Theorem holds

in the class of Diff1(M) that would guarantee zero entropy.

As mentioned in section 3.1, it was shown in [36] that diffeomorphisms f ∈
Diff3

0(T
2) having Denjoy-type can not have a wandering disk for which the iterates

have the same generic shape. Conversely, P. McSwiggen in [33] constructed examples

of diffeomorphisms f ∈ Diff3−ǫ
0 (T2), for every ǫ > 0, that have Denjoy-type. It is

not known whether the orbit of the wandering domain for these diffeomorphisms

has bounded geometry. The first examples of C2 diffeomorphisms of a surface with

a wandering domain were constructed by J. Harrison, see [18, 19]. The following

problem remains.

Open problem 4 (Smoothness versus wandering domains). Let f ∈ Diffr(T2) have

Denjoy-type and suppose that f has a wandering disk with bounded geometry. Is it

possible that r = 3? What if the wandering disk has unbounded geometry?

The Denjoy-type diffeomorphisms are typically modeled on a specific minimal

set, namely a Sierpiński set. The topological classification of the more general class

of non-resonant torus homeomorphisms of chapter 2 in a sense gives a topological

foundation on which to layer more geometrical questions of the above kind; it would

be interesting to understand the interplay between the topology of the wandering

domains (i.e. bounded disk, unbounded disk or essential annulus) and geometrical

behaviour, such as the complex dilatation, of the diffeomorphisms exhibiting these

wandering domains.
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Chapter 4

Quasiconformal Homogeneity of

Genus Zero Surfaces

Let M be a Riemann surface. Then M is said to be K-quasiconformally homoge-

neous if for every two points p, q ∈M , there exists a K-quasiconformal homeomor-

phism f : M→M such that f(p) = q. In other words, M is K-quasiconformally

homogeneous if there exists a transitive family of K-quasi-conformal homeomor-

phisms of M to itself.

In this chapter, we study quasiconformal homogeneity of genus zero surfaces.

Our main result establishes the existence of a universal constant K > 1 such that if

M is a K-quasiconformally homogeneous hyperbolic genus zero surface other than

D2, then K ≥ K.

4.1 Definitions and statement of results

In 1976, the notion of quasiconformal homogeneity of Riemann surfaces was intro-

duced by Gehring and Palka [17] in the setting of genus zero surfaces (and higher

dimensional analogues). It was shown in [17] that the only genus zero surfaces ad-

mitting a transitive conformal family are exactly those which are not hyperbolic,
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i.e. the surfaces conformally equivalent to either P1, C, C∗ = C \ {0} or D2. It was

also shown, by means of examples, that there exist hyperbolic genus zero surfaces,

homeomorphic to P1 minus a Cantor set, that are K-quasiconformally homogeneous,

for some finite K > 1. Recently, this problem has received renewed interest. Using

Sullivan’s Rigidity Theorem, it was shown in [10] by Bonfert-Taylor, Canary, Mar-

tin and Taylor, that in dimension n ≥ 3, there exists a universal constant Kn > 1

such that for every K-quasiconformally homogeneous hyperbolic n-manifold other

than Dn, it must hold that K ≥ Kn. In [9], by Bonfert-Taylor, Bridgeman and Ca-

nary, a partial result was obtained in dimension two for a certain subclass of closed

hyperbolic surfaces satisfying a fixed-point condition. In the setting of genus zero

surfaces, notions similar to (but stronger than) quasiconformal homogeneity have

been studied by MacManus, Näkki and Palka in [32] and further developed in [11]

and [12] by Bonfert-Taylor, Canary, Martin, Taylor and Wolf.

To state our results, let us first define precisely the notions involved. Let

M be a hyperbolic Riemann surface of genus g ≥ 0. By uniformizing M , we may

assume that M = D2/Γ is covered by the Poincaré disk D2. We endow M with

the metric d(·, ·), induced from the canonical hyperbolic metric d̃(·, ·) on D2. Let

FK(M) be the family of all K-quasiconformal homeomorphisms of M . Then M is

said to be K-quasiconformally homogeneous if the family FK(M) is transitive; that

is, given any two points p, q ∈ M , there exists an element f ∈ FK(M) such that

f(p) = q.

Let us also recall the following. An open Riemann surface M is a said to

be extentable or non-maximal if it can be embedded in another Riemann surface

M0 as a proper subregion; that is, if there exists a conformal mapping of M onto a

proper subregion of M0. If M is not extentable, then it is called maximal. Every

open Riemann surface is contained in a maximal Riemann surface (including infinite

genus surfaces), see [6]. A non-maximal Riemann surface of genus 0, i.e. embedded

in the Riemann sphere, is also called a planar domain. Our first result is the following
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Theorem 4.A (Non-maximal surfaces of positive genus). Let M be a non-maximal

surface of genus 1 ≤ g ≤ ∞. Then M is not K-quasiconformally homogeneous for

any K ≥ 1.

Therefore, as far as quasiconformal homogeneity of hyperbolic surfaces is

concerned, one can further restrict to either:

(i) hyperbolic genus zero surfaces, or

(ii) maximal surfaces of genus 2 ≤ g ≤ ∞.

Our main result solves the case of hyperbolic genus zero surfaces.

Theorem 4.B (Genus zero surfaces). There exists a constant K > 1, such that if

M is a K-quasiconformally homogeneous hyperbolic genus zero surface other than

D2, then K ≥ K.

The outline of the proof of Theorem 4.B is as follows. First, we restrict

our attention to short geodesics, that is, simple closed geodesics which are close in

length to the infimum of the lengths of all simple closed geodesics on our surface

M . For K > 1 small enough, using K-quasiconformal homogeneity, we show there

exist intersections of short simple closed geodesics in a small neighbourhood of any

preassigned point. Using this information, we construct a configuration of three

intersecting short simple closed geodesics, see the three-circle Lemma below. By a

combinatorial argument, we show that if M is near conformally homogeneous, these

configurations can not exist, leading to the desired contradiction.

As the only genus zero surfaces homogeneous with respect to a conformal

family are conformally equivalent to either P1,C,C∗ or D2, we thus have the following

corollary of Theorem 4.B.

Corollary 4.1. There exists a constant K > 1 such that if M is a K-quasiconformally

homogeneous genus zero surface with K < K, then M is conformally equivalent to

either P1,C, C∗ or D2.
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4.2 Geometrical estimates

The injectivity radius ι(M) of M is the infimum over all p ∈M of the largest radius

for which the exponential map at p is a injective. Define λ(M) to be the infimum

of the lengths of all simple closed geodesics on M . We have that λ(M) ≥ 2ι(M).

We denote by D(p, ρ) ⊂ M the closed hyperbolic disk with center p and radius ρ.

Given a closed curve γ ∈ M , we denote by [γ] the homotopy class of γ in M . The

geometric intersection number of isotopy classes of two closed curves α, β ∈ π1(M)

is defined by

i(α, β) = min#{γ ∩ γ′}, (4.1)

where the minimum is taken over all closed curves γ, γ′ ⊂ M with [γ] = α and

[γ′] = β. In other words, the geometric intersection number is the least number of

intersections between curves representing the two homotopy classes. Let us recall

some standard facts about simple closed curves, and in particular simple closed

geodesics, on genus zero surfaces, see e.g. [15].

Lemma 4.2 (Curves on genus zero surfaces). Let M be a genus zero surface.

(i) Every simple closed curve γ ⊂ M separates M into exactly two connected

components.

(ii) If γ, γ′ ⊂M are two simple closed curves, then i(γ, γ′) is even.

(iii) If γ, γ′ ⊂M are non-homotopic closed geodesics, then the closed curve α ⊂M

formed by any two subarcs η ⊂ γ and η′ ⊂ γ′ connecting two points of γ ∩ γ′

is homotopically non-trivial.

The following lemma describes the asymptotic behaviour of the injectivity

radius ι(M) of a K-quasiconformally homogeneous hyperbolic surface in terms of

K, see [10].
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Lemma 4.3. Let M be a K-quasiconformally homogeneous hyperbolic surface and

ι(M) its injectivity radius. Then ι(M) is uniformly bounded from below (for K

bounded from above) and ι(M)→∞ for K→1.

Consequently, λ(M) is uniformly bounded from below and λ(M)→∞ for

K→1. We fix K0 > 1 such that λ(M) ≥ 10 for every K-quasiconformally homoge-

neous hyperbolic surface M with K ≤ K0.

Remark 5. If M is a K-quasiconformally homogeneous hyperbolic surface, then

the fact that λ(M) > 0 implies M has no cusps and therefore, any essential simple

closed curve α ⊂ M has a unique simple closed geodesic representative γ ⊂ M ,

see e.g. [46]. In particular, if γ ⊂ M is a simple closed geodesic and f : M→M a

homeomorphism, then the closed geodesic homotopic to f(γ) exists and is simple.

A pair of pants is a surface homeomorphic to the sphere P1 with the interior

of three mutually disjoint closed topological disks removed. Geometrically, it is the

surface obtained by gluing two hyperbolic hexagons along their seams.

In what follows, we denote by |γ| the hyperbolic length of a piecewise geodesic

curve γ ⊂ M . Here by piecewise geodesic curve we mean a finite concatenation of

geodesics arcs. We have the following uniform estimate on lengths of simple closed

geodesics, see [16, Theorem 4.3.3].

Lemma 4.4. Let M be a hyperbolic surface and γ a simple closed geodesic. Let

f : M→M a K-quasiconformal homeomorphism and γ′ the simple closed geodesic

homotopic to f(γ). Then
1

K
|γ| ≤ |γ′| ≤ K|γ|. (4.2)

Further, we use the following classical result in the geometry of hyperbolic

surfaces.

Collar Lemma. Set m(ℓ) = arcsin(1/(sinh(ℓ/2))). For a simple closed geodesic

γ ⊂M of length ℓ = |γ|, the set

A(γ) = {p ∈M : d(p, γ) < m(ℓ)} (4.3)
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is an embedded annular neighbourhood of γ.

In the next two lemma’s we recollect uniform approximation estimates of

K-quasiconformal homeomorphisms, in particular the behaviour when K→1, see

e.g. [31, 16].

Lemma 4.5. For every K ≥ 1 and 0 < ρ < 1, there exists a constant C1(K, ρ),

depending only on K and ρ, such that if f : D2→D2 is a K-quasiconformal homeo-

morphism and D(p, ρ) ⊂ D2 the closed hyperbolic disk of radius ρ centered at p ∈ D2,

there exists a Möbius transformation µ ∈ Möb(D2) such that

d̃(f(q), µ(q)) ≤ C1(K, ρ) (4.4)

for all q ∈ D(p, ρ). For fixed ρ > 0, we have that C1(K, ρ)→0 for K→1.

Proof. By normalizing with suitable Möbius transformations, we may assume that

f(0) = 0 and f(1) = 1. As the family of K-quasiconformal homeomorphisms of D2

onto itself fixing 0, 1 ∈ D2 is a normal family, see e.g. [2, p. 32], by a standard argu-

ment of uniform convergence on compact subsets, there exists a function C1(K, ρ)

with C1(K, ρ)→0 if K→1 such that d̃(f(z), z) ≤ C1(K, ρ), as the only conformal

mapping of D2 onto itself fixing 0, 1 ∈ D2 is the identity. Thus (4.4) follows.

Further, we will utilize the following, see e.g. [13, Lemma 2].

Lemma 4.6. For every K ≥ 1, there exists a constant C2(K) depending only on

K with the following property. Let M be a hyperbolic surface and γ ⊂ M a simple

closed geodesic and p ∈ γ. If f : M→M is a K-quasiconformal homeomorphism,

then the geodesic γ′ homotopic to f(γ) has the property that

d(f(γ), γ′) ≤ C2(K). (4.5)

Furthermore, C2(K)→0 as K→1.
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Proof. In [13, Lemma 2], the above lemma is proved under the assumption that

f : M→M is a quasi-isometry for the hyperbolic metric, that is, f satisfies

1

L
d(z,w) ≤ d(f(z), f(w)) ≤ Ld(z,w), (4.6)

for some L ≥ 1, for every z,w ∈ D2. By lifting the quasi-isometry f , which is a

quasi-isometry of D2, and the geodesic γ to the cover D2 (which we denote again by

f and γ), one needs to find an upper bound on the maximal hyperbolic distance of

the curve f(γ) and the geodesic γ′ with the same endpoints on ∂D2 as f(γ). Using

that f is a quasi-isometry, by a polygonal approximation, it is shown in [13, Lemma

2] that there exists a finite upper bound φ(L), depending only on L, on the distance

between f(γ) and γ′ in D2, where φ(L)→0 if L→1.

By the following approximation argument, we show that this result holds

equally well for quasiconformal homeomorphisms, as follows. As aK-quasiconformal

homemorphism of M lifts to a K-quasiconformal homeomorphism of D2, it suffices

to show that for every K ≥ 1, there exist constants ψ(K) and ϕ(K) depending

only on K, where ψ(K)→0 and ϕ(K)→1 for K→1, such that if f : D2→D2 is K-

quasiconformal, then there exists a ϕ(K)-quasi-isometry g : D2→D2 such that

d̃(f(z), g(z)) ≤ ψ(K). (4.7)

To prove this, let f : D2→D2 be a K-quasiconformal homeomorphism and

transport it to H2 (which we denote again by f). Then f induces a homeomorphism

h : R→R of the boundary R = ∂H2. Without loss of generality we may assume

that h is normalized so that h(∞) = ∞. Then h is k-quasisymmetric, where k(K)

depends only on K and k→1 as K→1 (see [31, Thm 5.1]). Let g be the Ahlfors-

Beurling extension of h. Then g is K1 quasiconformal, where K1(K) depends only

on k and thus only on K and K1(K)→1 if K→1. Moreover, g is ϕ(K)-biLipschitz,

relative to the hyperbolic metric, where ϕ(K) again only depends only on K and

ϕ(K)→1 as K→1 (see [31, Thm 5.2]).
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Define K2(K) := KK1(K) and consider the K2-quasiconformal homeomor-

phism f−1 ◦ g : H2→H2, which extends to the identity on ∂H2. As the family of

K-quasiconformal homeomorphisms that extend to the identity on ∂H2 is a com-

pact family, by a normal family argument, see e.g. [10, Lemma 4.1], there exists a

decreasing function ψ̃(t) with ψ̃(t)→0 if t→1, such that d̃(z, f−1◦g(z)) ≤ ψ̃(K2), for

all z ∈ H2. It follows from Mori’s Theorem (see [2, p. 30]), that on every compact

disk D(p, 1) ⊂ H2, centered at p ∈ H2 and hyperbolic radius (say) 1, there exists a

constant C, such that

d̃(f(z), f(z′)) ≤ C(d(z, z′))1/K . (4.8)

Therefore, for all z ∈ H2, we have that

d̃(f(z), g(z)) ≤ ψ(K), (4.9)

where ψ(K) := Cψ̃(K2(K))1/K2(K). As K2(K)→1 if K→1, we have that ψ(K)→0

if K→1, as desired. This concludes the proof.

4.3 Non-maximal surfaces of positive genus

Using the geometrical estimates derived in the previous section, we are now in the

position to prove Theorem 4.A, which we have stated again below for the reader’s

convenience.

Theorem 4.A (Non-maximal surfaces of positive genus). Let M be a non-maximal

surface of genus 1 ≤ g ≤ ∞. Then M is not K-quasiconformally homogeneous for

any K ≥ 1.

Proof. To derive a contradiction, assume that M is K-quasiconformally homoge-

neous for some finite K ≥ 1. As M is non-maximal, M is embedded in a maximal

hyperbolic surface M0 of genus g ≥ 1. Let p̄ ∈M0 be an ideal boundary point of M

and let D ⊂ M0 be a small closed disk embedded in M0 and centered at p̄. There

77



exists a sequence of points pn ∈M ∩D so that d0(pn, p̄)→0 (where d0 is the metric

on M0) and thus d(pn, ∂D)→∞, as p̄ is in the ideal boundary of M . On the other

hand, as 1 ≤ g ≤ ∞, there exists a non-separating simple closed geodesic γ ⊂ M .

Mark a point p ∈ γ. By transitivity of the family FK(M), for every n ≥ 1, there

exists an element fn ∈ FK(M) such that fn(p) = pn. Therefore the simple closed

curve fn(γ) is non-separating for every n ≥ 1 and thus

fn(γ) ∩ ∂D 6= ∅. (4.10)

Indeed, otherwise we have that fn(γ) ⊂ M ∩D, implying that fn(γ) is separating,

as D is an embedded disk in the maximal surface M0 and thus the connected com-

ponents of M ∩ D are planar subsurfaces, contradicting that γ is non-separating.

By Lemma 4.6, the geodesic γn homotopic to fn(γ) has to stay within a bounded

distance of fn(γ) and therefore, for n large enough, the geodesic γn has the property

that

γn ∩ ∂D 6= ∅ (4.11)

by (4.10). As d(pn, ∂D)→∞, combined with (4.11), we have

|γn| ≥ 2(d(pn, ∂D) − C2(K)) (4.12)

with C2(K) the uniform constant of Lemma 4.6; put in words, the geodesic γn has

to enter D ∩M , pass close to pn, and leave D ∩M again. It follows that |γn|→∞
for n→∞, contradicting Lemma 4.4. Thus M can not be K-quasiconformally ho-

mogeneous for any finite K ≥ 1.

4.4 Quasiconformal homogeneity of genus zero surfaces

In the sections 4.4.2 - 4.4.5 below, we present our proof of Theorem 4.B. But before

we proceed to the proof, let us first consider examples of quasiconformally homoge-

neous genus zero surfaces.

78



4.4.1 Examples of a quasiconformally homogenous genus zero sur-

faces

The following example is taken from [17, Example 4.4], we refer to this paper for

the proofs of the statements in this example. First we recall some notation and

terminology. A group Γ of Möbius transformations acting on P1 is discontinuous at

a point p ∈ P1 provided there exists a neighbourhood U of p such that µ(U)∩U = ∅
for all but finitely many µ ∈ Γ. The region of discontinuity of Γ, denoted O(Γ), is

the set of all p ∈ P1 at which Γ is discontinuous. It follows that O(Γ) is an open

set, possibly empty. The complement P1 \O(Γ) of O(Γ) is called the limit set of Γ

and is denoted by L(Γ). Both O(Γ) and L(Γ) are invariant under Γ. The group Γ

is said to be discontinuous group if O(Γ) 6= ∅.

Now, let {Bi}m
i=1 be a collection of m ≥ 3 pairwise disjoint closed disks

in the sphere P1. Denote by µi ∈ Möb(P1) the inversion in P1 of ∂Bi. Then the

mappings µ1, ..., µm generate a discontinuous group Γ. The limit set L(Γ) is a totally

disconnected perfect set with positive Hausdorff dimension, and

L(Γ) ⊂
m⋃

i=1

Int(Bi). (4.13)

For these reflection groups, the open set M = O(Γ) is connected and M is a genus

zero surface. For example, if we take m = 3 in the above construction, we obtain a

surface M conformally equivalent to a repeated gluing of pairs of pants to the cuffs

of the pairs of pants, see Figure 4.1.

One can show that the surface M is indeed K-quasiconformally homogeneous

for a finite K > 1. In fact, it can be shown, see [17, Remark 4.5], that the following

upper bound

K ≤
(e
s

)4
, where s ≈ 0.483, (4.14)

holds for the quasiconformality constant K of the surface M .
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M

Figure 4.1: A quasiconformally homogeneous genus zero surface M ; the surface is
homeomorphic to the Riemann sphere minus a Cantor set.

4.4.2 The two-circle Lemma

Let us now proceed with the proof of Theorem 4.B. In the remainder, let K0 > 1

as defined in section 4.2 and let M be a K-quasiconformally homogeneous hyper-

bolic genus zero surface, with 1 < K ≤ K0, and FK(M) the family of all K-

quasiconformal homeomorphisms of M , which is transitive by homogeneity of M .

In what follows, we focus on short geodesics, in the following sense.

Definition 4.1 (δ-short geodesics). Given δ > 0, a simple closed geodesic γ ⊂ M

is said to be δ-short if |γ| ≤ (1 + δ)λ(M).

By Lemma 4.3, and the remark following it, for every K ≤ K0, there is a

uniform lower bound on the length of simple closed geodesics on M . Fix

δ0 =
1

378
. (4.15)

Definition 4.2 (Two-circle configuration). A two-circle configuration is a union of

two δ0-short geodesics γ1, γ2 ∈M such that γ1 and γ2 intersect in exactly two points

p1, p2 ∈M .
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Topologically a two-circle configuration is a union of two simple closed curves

γ1, γ2 in the surface M , intersecting transversely in exactly two points and

M \ (γ1 ∪ γ2)

consists of four connected components and the boundary of each component consists

of two arcs. For future reference, let us label the four arcs η1, η2 ⊂ γ1 and η3, η4 ⊂ γ2

connecting the two intersection points p1 and p2, see Figure 4.2.

γ1 γ2

η1 η2

η3 η4

p1

p2

Figure 4.2: A two-circle configuration with labeling.

First, we observe the following, see also [37, Proposition 4.6].

Lemma 4.7. There exists a uniform constant r0 > 0 such that for a pair of pants

P ⊂M , there exists a p ∈ P such that D(p, r0) ⊂ P .

Proof. Each pair of pants decomposes into two ideal triangles. As every ideal triangle

contains a disk of radius 1
2 log 3, every pair of pants therefore contains a disk of (at

least) that radius. Thus we may take r0 = 1
2 log 3.

We first prove the existence of intersecting δ0-short geodesics on M for suf-

ficiently small K > 1, as we build forth upon this result in the remainder of the

proof.

Lemma 4.8 (Intersections of short geodesics). There exists a constant 1 < K1 ≤
K0, such that if M is K-quasiconformally homogeneous with 1 < K ≤ K1, then

there exist δ0-short geodesics that intersect.
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Proof. To prove there exist intersecting δ0-short geodesics onM , we argue by contra-

diction. That is, suppose all δ0-short geodesics on M are mutually disjoint. Choose

1 < K1 ≤ K0 so that

K1 ≤ 1 + δ0
1 + δ0/2

and C2(K1) ≤
r0
2
, (4.16)

with C2(K) the constant of Lemma 4.6 and r0 the constant of Lemma 4.7.

Let us first observe that there exist infinitely many distinct δ0-short geodesics

on M . Indeed, as λ(M) > 0, there exists a simple closed geodesic γ0 ⊂ M such

that |γ0| ≤ (1 + δ0/2)λ(M). Mark a point p0 ∈ γ0 and choose f ∈ FK(M) such

that f(p0) = q, for a certain q ∈M . By our choice of K1, cf. (4.16), combined with

Lemma 4.4, the geodesic γ homotopic to f(γ0) is δ0-short, for every f ∈ FK(M). As

the surface is unbounded (in the hyperbolic metric), by transporting the geodesic

γ0 by different elements of FK(M) sufficiently far apart, by Lemma 4.6, we see that

there must indeed exist infinitely many different δ0-short curves. Denote Γ0 the

(countable) family of all δ0-short geodesics on M .

As all elements of Γ0 lie in different homotopy classes, and all elements are

mutually disjoint, we claim that the elements of Γ0 are locally finite, in the sense

that a compact subset of M only intersects finitely many distinct elements of Γ0.

Indeed, suppose that a compact subset of M intersects infinitely many elements

of Γ0. Label these geodesics γn, n ∈ Z. By compactness, there exists an element

γ := γn, for some n ∈ Z, and a subsequence γnk
, with nk 6= n, such that d(γ, γnk

)→0

for k→∞. As all these elements are mutually disjoint, we can find points pk ∈ γnk

such that pk→p ∈ γ, where, moreover, the vectors vk ∈ Tpk
M tangent to γnk

at pk

converge to the tangent vector v ∈ TpM of γ at p. As the lengths of the geodesics

γnk
are uniformly bounded from above, by the Collar Lemma (see section 4.2), every

curve γnk
is contained in a uniformly thick embedded annulus Ak := A(γnk

) ⊂ M .

Conversely, as the lengths of the geodesics are uniformly bounded from above, and as

the initial data (pk, vk) of γnk
converges to the initial data (p, v) of γ, the geodesics

γnk
converge uniformly to γ. In particular, for sufficiently large k, γ is entirely
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contained in Ak. However, this implies that γ is homotopic to γnk
, a contradiction

as these were all assumed to be mutually disjoint and thus non-homotopic.

Choose an element γ1 ∈ Γ0. As the elements of Γ0 are locally finite, and

as the distance between any two elements of Γ0 is finite, the distance between γ1

and the union of the elements Γ0 \{γ1} is therefore bounded from below and above.

In particular, there exists a δ0-short geodesic with shortest distance to γ1 (though

this geodesic need not be unique). Denote one such geodesic by γ2. There exists

a geodesic arc η ⊂ M connecting γ1 and γ2, with |η| = d(γ1, γ2). Take a simple

closed curve α ⊂ M homotopic to γ1 ∪ η ∪ γ2 and let γ′ be the (not necessarily δ0-

short) geodesic homotopic to α. As γ1 and γ2 are disjoint, and therefore in distinct

homotopy classes, γ′ is non-trivial. By Lemma 4.2 (iii), we have that

γ′ ∩ (γ1 ∪ γ2) = ∅.

Let P ⊂ M be the pair of pants bounded by the simple closed geodesics γ′, γ1 and

γ2. As every pair of pants contains a unique simple geodesic arc connecting each

pair of boundary geodesics of the pair of pants, η ⊂ P is the unique geodesic arc in

P joining γ1 and γ2 such that |η| = d(γ1, γ2), see Figure 4.3.

γ1

γ2η

γ′

α

Figure 4.3: Proof of Lemma 4.8

Next, we claim that the interior of P is disjoint from any δ0-short geodesic.

Indeed, let

γ3 ∈ Γ0 \ {γ1, γ2},
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and suppose that γ3∩Int(P ) 6= ∅. As γ1, γ2 ∈ Γ0, by assumption γ3 can not intersect

γ1 or γ2. Thus, if γ3∩Int(P ) 6= ∅, then we necessarily have that γ3∩γ′ 6= ∅. Consider

any two consecutive intersection points q1, q2 ∈ γ′ of γ′ and γ3 and denote η′ ⊂ γ3∩P
the corresponding simple arc. We first show that we must have that η′ ∩ η 6= ∅. To

show this, suppose that η′∩η = ∅. Then η′∩(γ1∪η∪γ2) = ∅. Let γ′1,2 ⊂ γ′ be the two

simple arcs connecting q1 with q2. Consider the subsurfaces M1,M2 ⊂ M bounded

by γ′1 ∪ η′ and γ′2 ∪ η′ respectively and intersecting Int(P ). As η′ ∩ (γ1 ∪ η ∪ γ2) = ∅,
γ1 ∪ η ∪ γ2 is contained in either M1 or M2. However, this implies that one of

the subsurfaces M1 or M2 is a topological disk, which contradicts Lemma 4.2 (iii).

Therefore, we must have that η′ ∩ η 6= ∅. This in turn implies that

d(γ3, γ1) < d(γ1, γ2) (4.17)

which contradicts the assumption that γ2 is the closest δ0-short geodesic to γ1. Thus

the interior of P is disjoint from any δ0-short geodesic.

By Lemma 4.7, there exists a point p ∈ P such that D(p, r0) ⊂ P . By the

previous paragraph, the disk D(p, r0) is disjoint from any δ0-short geodesic. Take

f ∈ FK(M) such that f(p0) = p. The geodesic γ′′ homotopic to f(γ0) is δ0-short

and, again by our choice of K1, combined with Lemma 4.6, the geodesic γ′′ has the

property that γ′′ ∩ D(p, r0) 6= ∅. This contradicts our earlier conclusion that the

interior of P is disjoint from δ0-short geodesics and thus there must exist δ0-short

geodesics that intersect.

Lemma 4.9 (Two-circle Lemma). Let M be K-quasiconformally homogeneous with

1 < K ≤ K1 and let γ1 and γ2 be two intersecting δ-short geodesics, where δ < 1/3.

Then γ1∪γ2 is a two-circle configuration and the four arcs ηi, 1 ≤ i ≤ 4, connecting

the intersection points p1 and p2 have lengths

λ(M)

2
− δ

2
λ(M) ≤ |ηi| ≤

λ(M)

2
+

3δ

2
λ(M). (4.18)

Proof. Let γ1, γ2 ⊂ M be two δ-short geodesics that intersect. By Lemma 4.2 (ii),

γ1 and γ2 intersect in an even number of points. To prove there can be no more than
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two intersection points, suppose that there are 2k intersection points, with k ≥ 2.

Label these points p1, ..., p2k according to their cyclic ordering on γ1, relative to an

orientation on γ1 and an initial point. Define the arcs αi, with 1 ≤ i ≤ 2k, to be

the connected components of

γ1 \
2k⋃

i=1

pi.

As k ≥ 2 by assumption, at least one of these arcs has length at most (1+δ)λ(M)/4.

Without loss of generality, we may suppose that this is the case for α1. Then the

endpoints of α1, p1 and p2, cut the geodesic γ2 into two connected components β1

and β2. One of these components, say β1, has length at most (1 + δ)λ(M)/2. By

Lemma 4.2 (iii), α1 ∪ β1 is a non-trivial closed curve. However, we have that

|α1 ∪ β1| ≤
3(1 + δ)λ(M)

4
< λ(M),

as (1+δ) < 4/3, which is impossible. Thus γ1 and γ2 intersect in exactly two points.

To prove (4.18), we adopt the labeling in Figure 4.2. As γ1 = η1 ∪ η2 and

|γ1| ≤ (1 + δ)λ(M), one of the arcs η1 or η2 has length at most (1 + δ)λ(M)/2. We

may assume this is the case for η1. As the closed curve η3 ∪ η1 is homotopically

non-trivial, we must have that

(1 + δ)λ(M)

2
+ |η3| ≥ |η1| + |η3| ≥ λ(M),

and thus

|η3| ≥
(1 − δ)λ(M)

2
. (4.19)

Conversely, in order that |η3| + |η4| ≤ (1 + δ)λ(M), by (4.19), we must have that

|η4| ≤
(

1

2
+

3

2
δ

)
λ(M). (4.20)

The other cases follow by symmetry. This finishes the proof.

In particular, the two-circle Lemma holds for all δ ≤ 6δ0 < 4/3. For future

reference, we introduce the following.
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Definition 4.3 (Tight pair of pants). A tight pair of pants is a pair of pants P ⊂M

such that the three boundary curves are 3δ0-short geodesics.

We have the following corollary of the two-circle Lemma.

Corollary 4.10. Let M be K-quasiconformally homogeneous with 1 < K ≤ K1.

Then there exists a tight pair of pants.

γ1
γ2

α1
α2

γ′1 γ′2

P

p1

p2

Figure 4.4: Proof of Corollary 4.10.

Proof. By the two-circle Lemma, for K ≤ K1, there exists δ0-short geodesics γ1 and

γ2 that intersect in exactly two points. In the labeling of Figure 4.2, let α1 be the

simple closed curve η1 ∪ η3 and γ′1 be the simple closed geodesic homotopic to α1.

Similarly, let α2 the simple closed curve η2∪η3 and γ′2 be the simple closed geodesic

homotopic to α2. By Lemma 4.2 (iii), the three geodesics γ′1, γ
′
2 and γ1 are disjoint

and thus the region bounded by these three simple closed geodesics is a pair of pants

P , see Figure 4.4.

To prove P is a tight pair of pants, it suffices to show that γ′i is 3δ0-short,

for i = 1, 2, as γ1 is δ0-short. It follows from (4.18) of the two-circle Lemma that

|η1| + |η3| ≤ 2

(
λ(M)

2
+

3δ0
2
λ(M)

)
= (1 + 3δ0)λ(M). (4.21)
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Therefore, the length of γ′1 is bounded by the length of η1 ∪ η3, which is at most

(1 + 3δ0)λ(M). Similarly, considering the length of η2 ∪ η4, we obtain that γ′2 is

3δ0-short. Therefore, P is a tight pair of pants.

4.4.3 Definite angles of intersection

In what follows, we use the following notation. Let γ1, γ2 ⊂M be two simple closed

geodesics that intersect at a point p ∈ M . The angle between the two geodesics

at p ∈ M , denoted ∠(γ1, γ2)p, is defined to be the minimum of ∠(v1, v2)p and

∠(v1,−v2)p where v1, v2 ∈ TpM is a tangent vector to γ1, γ2 respectively. In order

to produce certain configurations of intersecting simple closed geodesics, we show

that for all K > 1 sufficiently small, there exist 3δ0-short geodesics intersecting at

a uniformly large angle. More precisely,

Lemma 4.11 (Definite angles of intersection). There exists a constant 1 < K2 ≤
K1, such that if M is K-quasiconformally homogeneous with 1 < K ≤ K2, then

there exist two 3δ0-short geodesics γ1, γ2 ⊂ M , intersecting at a point q ∈ M , such

that ∠(γ1, γ2)q ≥ π/4.

The proof of Lemma 4.11 uses the following two auxiliary lemma’s.

Lemma 4.12. Let H ⊂ D2 be a right-angled hyperbolic hexagon. Let a, b, c be the

sides of the alternate edges and a′, b′, c′ the sides of the opposite edges. Suppose that

|a| = (1 + ǫ1)ℓ, |b| = (1 + ǫ2)ℓ and |c| = (1 + ǫ3)ℓ with 0 ≤ ǫi < 1/2, 1 ≤ i ≤ 3. For

every ǫ > 0, there exists ℓǫ > 0 such that, if ℓ ≥ ℓǫ, then the lengths of the sides

a′, b′ and c′ are at most ǫ.

Proof. By the hyperbolic cosine law for right-angled hexagons (see [42]), we have

that

cosh(|c′|) =
cosh(|a|) cosh(|b|) + cosh(|c|)

sinh(|a|) sinh(|b|) , (4.22)

which we can write as

cosh(|c′|) =
1

tanh(|a|) tanh(|b|) +
cosh(|c|)

sinh(|a|) sinh(|b|) (4.23)
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We have that

cosh(|c|)
sinh(|a|) sinh(|b|) ≍ e(1+ǫ3)ℓ

e(2+ǫ1+ǫ2)ℓ
→0, for ℓ→∞, (4.24)

as 0 ≤ ǫi < 1/2 for 1 ≤ i ≤ 3. Further, as tanh(r)→1 for r→∞, given any ǫ′ > 0,

there exists an ℓǫ′ such that, if ℓ ≥ ℓǫ′ , then

cosh(|c′|) ≤ 1 + ǫ′. (4.25)

Thus given an ǫ > 0, choose ℓǫ′ such that (4.25) is satisfied with ǫ := cosh−1(1+ ǫ′).

For this ℓǫ′ (with ǫ′ depending on ǫ only), we have that

|c′| ≤ cosh−1(1 + ǫ′) = ǫ (4.26)

Cyclically permuting a, b, c and a′, b′, c′ gives a similar estimate for a′ and b′ and

this finishes the proof.

Lemma 4.13. Let T ⊂ D2 be an ideal triangle with boundary ∂T = γ1 ∪γ2∪γ3 and

barycenter 0 ∈ D2. Let γ ⊂ D2 be a geodesic passing through 0 ∈ D2. Then for an

i ∈ {1, 2, 3}, γ intersects ∂T at a point p ∈ γi, such that π/4+ ǫ0 ≤ ∠(γ, γi)p ≤ π/2,

where ǫ0 ≈ 0.24.

Proof. Let us label the boundary geodesics γ1, γ2, γ3 of the ideal triangle T as in

Figure 4.5. Let l0 ⊂ D2 be the axis of symmetry of T , relative to the symmetry that

exchanges γ1 and γ2. The distance of 0 ∈ D2 to the point of intersection of ℓ0 with

γ3 is 1
2 log 3. Let l1 be the axis perpendicular to the axis of symmetry relative to the

symmetry that exchanges γ2 and γ3, see Figure 4.5. Let θ1 be the angle between the

axis l1 and the geodesic γ3. The angle between the axes l0 and l1 is π/6. Therefore,

by the hyperbolic cosine law, the angle θ1 between γ3 with l1 is given by

cos(θ1) = cosh

(
1

2
log 3

)
sin
(π

6

)
.

It is readily verified that θ1 = π/4 + ǫ0, with ǫ0 ≈ 0.24.
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γ1

γ2

γ3

γ

θ1

l1

l0

D2

T

0

p

Figure 4.5: Proof of Lemma 4.13.

Suppose that the geodesic γ that passes through 0 ∈ D2 is such that γ∩γ3 6=
∅. Denote p the point of intersection of γ and γ3. By symmetry of the configuration,

we may assume that p is contained in the arc η ⊂ γ3 cut out by the two intersection

points of l0, l1 and γ3, which, up to symmetry, represents the extremal case. Thus

we have that π/4 + ǫ0 ≤ ∠(γ, γi)p ≤ π/2, with ǫ0 ≈ 0.24. This finishes the proof of

the Lemma.

Proof of Lemma 4.11. By Corollary 4.10, there exists a tight pair of pants P ⊂M ,

i.e. a pair of pants P with ∂P = γ1 ∪ γ2 ∪ γ3, with the property that the three

boundary geodesics γ1, γ2, γ3 are 3δ0-short. Lifting the pair of pants P to the cover

D2, it unfolds to two right-angled hexagons H,H ′ ⊂ D2, each of which contains

exactly a half of the component of the lift γ̃i of γi to D2 as its alternate boundary

arcs, with 1 ≤ i ≤ 3. Restrict to H and denote ηi with 1 ≤ i ≤ 3 the alternating
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boundary arcs. As the length of ηi is exactly half of that of γi, with 1 ≤ i ≤ 3, and

these are 3δ0-short, the lengths ηi satisfy the length requirement of Lemma 4.12, so

that, given any ǫ > 0 there exists a K > 1 such that the lengths of the three sides

of the hexagon H opposite to ηi are of length at most ǫ, as λ(M)→∞ for K→1 by

Lemma 4.3.

Therefore, by normalizing by a suitable element of Möb(D2) if necessary,

the hexagon H ⊂ D2 converges on a compact disk D(0, 10) to an ideal triangle

with barycenter 0 ∈ D2, for K→1. In particular, by Lemma 4.13, there exists

1 < K2 ≤ K1, such that any geodesic γ′ ⊂ D2 passing through 0 ∈ D2 intersects one

of the arcs ηi of H under an angle at least π/4+ ǫ0/2, with ǫ0 as in Lemma 4.13. As

geodesics in D2 passing near 0 ∈ D2 are almost straight lines, there exists an ǫ1 > 0

such that any geodesic γ′ ⊂ D2 passing through the disk D(0, ǫ1) ⊂ D2 intersect one

of the arcs ηi at an angle at least π/4. By choosing K2 > 1 smaller if necessary, we

can be sure that C2(K2) ≤ ǫ1, where C2(K) is the constant of Lemma 4.6.

Let γ0 ⊂ M be a δ0-short geodesic and let p0 ∈ γ0. Choose the point

p ∈ P ⊂ M in the tight pair of pants, which without loss of generality we may

assume to correspond to 0 ∈ D2 in the lift. Choose an element f ∈ FK(M) such

that f(p0) = p and denote γ ⊂M the geodesic homotopic to f(γ0). By our choice of

K3, the lift γ̃ of γ will intersect at least one of the three arcs η1, η2 or η3 at an angle

∠(γ̃, ηi)q ≥ π/4. In other words, γ intersects one of the three boundary geodesics

γ1, γ2 or γ3 at an angle at least π/4. Further, as K2 ≤ K1, we have that

K2(1 + δ0) ≤ K1(1 + δ0) ≤ 1 + 3δ0,

as K1(1 + δ0/2) ≤ 1 + δ0, and thus γ is 3δ0-short. This proves the Lemma.

4.4.4 The three-circle Lemma

A triangle T ⊂ M is a subsurface of M such that its boundary consists of a simple

closed curve comprised of three geodesic arcs. The triangle T is said to be trivial if

the simple closed curve ∂T is homotopically trivial and non-trivial otherwise.
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Definition 4.4 (Three-circle configuration). A three-circle configuration is a union

of three 6δ0-short geodesics γ1, γ2, γ3, such that each pair of geodesics intersect in

exactly two points and the connected components M \⋃3
j=1 γj consists of exactly 8

triangles, see Figure 4.6.

γ2

γ1

γ3

p1

p2

p3 T1

T2

T3

T4

T6

T5

T7

T8

Figure 4.6: Three-circle configuration.

Lemma 4.14. Let γ1, γ2, γ3 ⊂ M comprise a three-circle configuration and let

{Tj}8
j=1 be the collection of triangles associated to the configuration. If a trian-

gle Tj for some 1 ≤ j ≤ 8 is trivial, then the length of any of the three geodesic arcs

that comprise ∂Tj is at most λ(M)/7.

Proof. In what follows, we write the juxtaposition of arcs to denote the closed curve

comprised by concatenating the arcs in counterclockwise direction. Suppose that a

triangle T := Tj for some 1 ≤ j ≤ 8 is trivial and let the labeling be as given in

Figure 4.7, where ∂T = x2z2y2. The geodesics γ1, γ2, γ3 are labeled γs, γt, γk with

1, 2, 3 some permutation of the letters s, t, k, where arcs xi ⊂ γs, yi ⊂ γt and zi ⊂ γk

with 1 ≤ i ≤ 3.

Define the simple closed curves

α1 = x2x3y3y2, α2 = x1x2z2z1 and α3 = y2y1z3z2. (4.27)

By Lemma 4.2 (iii), the simple closed curves αi, with 1 ≤ i ≤ 3, are non-trivial.

Further, as each of the three geodesics γs, γt and γk is 6δ0-short (by definition 4.4),
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x1

x2

x3

y1
y2

y3

z1
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γs

γt

γk

T

Figure 4.7: Proof of Lemma 4.14.

by the two-circle Lemma we thus have that

λ(M) ≤ |αi| ≤ (1 + 18δ0)λ(M), (4.28)

for 1 ≤ i ≤ 3. Next, consider the simple closed curves

β1 = x3y3z2, β2 = x1y2z1 and β3 = y1z3x2. (4.29)

As the curves αi are non-trivial, and the triangle T is trivial, the curve βi is homo-

topic to αi, for 1 ≤ i ≤ 3, and therefore non-trivial. Moreover, as T is trivial, by

the triangle-inequality applied to ∂T , we have that

|x2| ≤ |y2| + |z2|, |y2| ≤ |x2| + |z2| and |z2| ≤ |x2| + |y2|. (4.30)

Combining (4.28) with (4.30), it is readily verified that

λ(M) ≤ |βj | ≤ (1 + 18δ0)λ(M), (4.31)

for 1 ≤ j ≤ 3. Summing up the lengths of the arcs that constitute the closed curves

β1, β2 and β3, cf. (4.29), and reordering the terms, it follows that

3λ(M) ≤ |x1|+|x2|+|x3|+|y1|+|y2|+|y3|+|z1|+|z2|+|z3| ≤ 3(1+18δ0)λ(M). (4.32)

The length of α1 can by (4.27) be expressed as the sum of the lengths of its con-

stituent arcs and estimated by

λ(M) ≤ |x2| + |x3| + |y2| + |y3| ≤ (1 + 18δ0)λ(M). (4.33)
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Subtracting (4.33) from (4.32), we obtain the estimate

2λ(M) − 18δ0λ(M) ≤ |x1| + |y1| + |z1| + |z2| + |z3| ≤ 2λ(M) + 54δ0λ(M) (4.34)

However, adding up the lengths of β2 and β3, we must have that

2λ(M) ≤ |x1| + |x2| + |y1| + |y2| + |z1| + |z3| ≤ 2(1 + 18δ0)λ(M) (4.35)

Therefore, subtracting (4.35) from (4.34), we obtain

−54δ0λ(M) ≤ |z2| − (|x2| + |y2|) ≤ 54δ0λ(M). (4.36)

Repeating the same argument for α2 and α3, one obtains

−54δ0λ(M) ≤ |y2| − (|x2| + |z2|) ≤ 54δ0λ(M). (4.37)

−54δ0λ(M) ≤ |x2| − (|y2| + |z2|) ≤ 54δ0λ(M). (4.38)

It then follows from (4.36), (4.37) and (4.38) that

|x2| ≤ 54δ0λ(M), |y2| ≤ 54δ0λ(M) and |z2| ≤ 54δ0λ(M). (4.39)

As δ0 = 1/378, it thus follows that the lengths of the arcs x2, y2 and z2 have to be

at most λ(M)/7.

In Lemma 4.16 below, we prove the existence of certain three-circle config-

urations satisfying additional geometrical properties. The proof uses the following

geometric estimate.

Lemma 4.15. There exists a constant 1 < K3 ≤ K2, such that if M is K-

quasiconformally homogeneous with 1 < K ≤ K3, then the following holds. Let

γ1, γ2 ⊂ M be two 3δ0-short geodesics intersecting at a point p ∈ γ1 ∩ γ2, such that

∠(γ1, γ2)p ≥ π/4. Let γ3 ⊂ M be a geodesic and let q0 ∈ γ3. Let f ∈ FK(M)

with f(p) = q0 and let γ′1, γ
′
2 be the geodesic homotopic to f(γ1) and f(γ2) respec-

tively. Then both γ′1 and γ′2 are 6δ0-short and at least one of γ′1 or γ′2 intersects γ3

transversely at a point q ∈ γ3 with d(q, q0) ≤ 1/20.
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Proof. First, by choosing 1 < K3 ≤ K2, we have that

K3(1 + 3δ0) ≤ 1 + 6δ0,

as K2 ≤ K1 and K1(1 + 3δ0) ≤ 1 + 6δ0. Let γ1, γ2 ⊂ M be two 3δ0-short geodesics

intersecting at a point p ∈ γ1 ∩ γ2, such that ∠(γ1, γ2)p ≥ π/4. Let γ3 ⊂ M be a

geodesic and let q0 ∈ γ3, where f(p) = q0. Then the geodesics γ′1, γ
′
2 homotopic to

f(γ1) and f(γ2) respectively are 6δ0-short, as γ1 and γ2 are 3δ0-short. By Lemma 4.5,

f is approximated by a Möbius transformation on a compact disk. Further, by

Lemma 4.6, the geodesic γ′i stays close to f(γi), for i = 1, 2. Therefore, by choosing

K3 small enough, we have that

(i) γ′1 and γ′2 intersect at a point q1 ∈ M with d(q1, q0) ≤ 1/100, where q0 ∈ γ3,

and

(ii) θ := ∠(γ′1, γ
′
2)q1

≥ π
5 .

q1

q2 q3

η

γ′1

γ′2

γ3

θ

θ′

Figure 4.8: Proof of Lemma 4.15.

Let η ⊂M be the arc emanating from q1 projecting perpendicularly onto γ3

at the point q2 ∈ γ3. As d(q1, q0) ≤ 1/100 and q2 ∈ γ3, we have that |η| ≤ 1/100.

Furthermore, as θ ≥ π/5, at least one of the geodesics γ′i with i = 1, 2 intersects the

arc η at an angle at most 2π/5. Without loss of generality, we may suppose this is

the case for γ′1, i.e. that

θ′ := ∠(η, γ′1)q1
≤ 2π

5
,
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see Figure 4.8. If we consider the (embedded) geodesic triangle with vertices q1, q2

and q3, combined with θ′ ≤ 2π/5 and |η| ≤ 1/100, it follows from the hyperbolic

sine law that

d(q1, q3) ≤ 4/100.

As d(q1, q0) ≤ 1/100, we have that d(q0, q2) ≤ 1/100. Further, we have that

d(q2, q3) ≤ d(q1, q3) and thus

d(q0, q3) ≤ d(q0, q2) + d(q2, q3) ≤ 1/100 + 4/100 = 1/20.

Thus setting q := q3 finishes the proof.

Lemma 4.16 (Three-circle Lemma). If M is K-quasiconformally homogeneous for

1 < K ≤ K3, then there exists a three-circle configuration consisting of simple closed

geodesics γ1, γ2, γ3 ⊂M , such that

(i) γ1 ∪ γ2 is a two-circle configuration, and

(ii) γ3 is a 6δ0-short geodesic intersecting the arc η3 ⊂ γ2 at a point p3 for which

(
1

4
− 1

20

)
λ(M) ≤ d(pj , p3) ≤

(
1

4
+

1

20

)
λ(M),

with j = 1, 2, in the labeling of Figure 4.2, and

(iii) γ3 intersects the interior of the arc ηi in exactly one point for every 1 ≤ i ≤ 4.

Proof. As K3 ≤ K1, by Lemma 4.9, there exists a two-circle configuration, com-

prised of two δ0-short geodesics γ1, γ2 ⊂ M . Label the configuration according to

Figure 4.2. Mark a point q ∈ η3 ⊂ γ2 such that d(q, p1) = d(q, p2). As K3 ≤ K2,

by Lemma 4.11, there exist two 3δ0-short geodesics γ3, γ4 intersecting at a point

p ∈M , such that

∠(γ3, γ4)p ≥ π/4.

Applying Lemma 4.15 to γ3 and γ4 and the target point q ∈ η3 ⊂ γ2, there exists

a 6δ0-short geodesic γ′ intersecting γ2 transversely at a point q′ ∈ γ2 such that
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d(q, q′) ≤ 1/20. Therefore, setting p3 := q′ and γ3 := γ′, the conditions (i) and (ii)

of Lemma 4.16 are satisfied.

We are left with showing that condition (iii) of Lemma 4.16 is satisfied. That

is, we need to show that γ3 intersects the interior of the arc ηi in exactly one point

for every 1 ≤ i ≤ 4. To this end, we first show that γ3 can not intersect the arc η3

(including the boundary points p1 and p2) more than once. To show this is indeed

impossible, suppose that γ3 intersects the arc η3 in a point p′ ⊂ η3 other than p3.

Let α1, α2 ⊂ η3 be the connected components of η3 \ {p3}. We may assume that

p′ ⊂ α1, the case when p′ ∈ α2 is similar. Therefore, if we let α′ ⊂ α1 the subarc

with endpoints p3 and p′, where we include the case that p′ = p1, then it follows

that

|α′| ≤
(

1

4
+

1

20

)
λ(M).

The two points p3 and p′ cut γ3 into two component arcs β1 and β2, one component

of which is of length at most (1 + 6δ0)λ(M)/2; without loss of generality, we may

suppose this is the case for β1. Then the closed curve α′ ∪ β1 is homotopically

nontrivial and

|α′ ∪ β1| ≤
(

1

4
+

1

20

)
λ(M) +

(1 + 6δ0)λ(M)

2
=

(
3

4
+

1

20
+ 3δ0

)
λ(M) < λ(M),

as δ0 = 1/378, which is a contradiction. Therefore, γ3 intersects γ2 at the point p3,

but does not intersects the arc η3 in any point other than p3, and γ3 does not pass

through p1 or p2.

As γ3 intersects γ1, by Lemma 4.2 (ii), there has to exist at least one more

intersection point of γ3 with γ2. By the above argument, all other intersection

points are contained in the interior of the arc η4. By the two-circle Lemma, applied

to δ = 6δ0, γ3 intersects γ2 only twice, and therefore γ3 intersects the interior of η4

exactly once. Similarly, as γ3 intersects the arc η3 exactly once, γ3 has to intersect

the interior of the arc η1 and η2 at least once. Again by the two-circle Lemma,

applied to δ = 6δ0, as the total number of intersection points of γ3 with γ1 is exactly
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two, γ3 has to intersect the interior of the arc η1 and η2 exactly once. Thus condition

(iii) is indeed satisfied and this proves the Lemma.

4.4.5 Proof of Theorem 4.B.

The endgame of the proof of Theorem 4.B. is a combinatorial argument layered on

the three-circle configuration of the Three-Circle Lemma. Thus, let 1 < K ≤ K3

with K the quasiconformal homogeneity constant of M , with K3 the constant which

we obtained in the Three-Circle Lemma in order to ensure the existence of a three-

circle configuration.

Lemma 4.17. Let γ1, γ2, γ3 be the three-circle configuration of Lemma 4.16. Then

the triangle Tj is non-trivial, for every 1 ≤ j ≤ 8.

γ2

γ1

γ3

y1

y2

y3

y4

p1

p2

p3

p4

p5

p6

Figure 4.9: Proof of Lemma 4.17.

Proof. By Lemma 4.16, the 6δ0-short geodesic γ3 intersects γ2 at a point p3 ∈ η3 ⊂
γ1 and (

1

4
− 1

20

)
λ(M) ≤ d(pk, p3) ≤

(
1

4
+

1

20

)
λ(M), (4.40)

with k = 1, 2, as given in Figure 4.9. Let yi with 1 ≤ i ≤ 4 be the connected

components of γ2 \ {p1, p2, p3, p4}. It suffices to show that

|yi| >
λ(M)

6
, for 1 ≤ i ≤ 4. (4.41)
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To prove sufficiency, note that every triangle ∂Tj , with 1 ≤ j ≤ 8, contains exactly

one edge yi for some 1 ≤ i ≤ 4. Now, if (4.41) holds, then by Lemma 4.14, ∂Tj has

to be non-trivial, as otherwise all three edges of ∂Tj have to be of length less than

λ/7 < λ/6.

To prove (4.41), first note that, by (4.40), the arcs y1 and y4 satisfy require-

ment (4.41). Therefore, we are left with proving the estimate for y2 and y3. As

both γ1 and γ2 are δ0-short, and γ3 is 6δ0-short, the two-circle Lemma applied to

the pairs of geodesics γ1, γ2 and γ2, γ3 gives respectively

λ(M)

2
− δ0λ(M)

2
≤ |y2| + |y3| ≤

λ(M)

2
+

3δ0λ(M)

2
, (4.42)

and
λ(M)

2
− 6δ0λ(M)

2
≤ |y3| + |y4| ≤

λ(M)

2
+

18δ0λ(M)

2
. (4.43)

Combining (4.42) and (4.43), it follows that

−19δ0λ(M)

2
≤ |y2| − |y4| ≤

19δ0λ(M)

2
. (4.44)

As |y4| = d(p3, p2), combining (4.44) with (4.40), one obtains

|y2| ≥ λ(M)

(
1

4
− 1

20
− 19δ0

2

)
>
λ(M)

6
, (4.45)

as δ0 = 1/378. By symmetry, the same estimate holds for the arc |y3|. This concludes

the proof.

Let us now conclude the proof.

Proof of Theorem 4.B. Let M be K-quasiconformally homogeneous with 1 < K ≤
K3 and let γ1, γ2, γ3 be the three-circle configuration of Lemma 4.16. By Lemma 4.17,

all triangles Tj with 1 ≤ j ≤ 8 have to be non-trivial. Therefore, the length of ∂Tj

has to be at least λ(M) for every 1 ≤ j ≤ 8. Adding up the lengths of all ∂Tj ,

1 ≤ j ≤ 8, means we count every boundary arc of a triangle Tj with multiplicity

two and thus

2

3∑

i=1

|γi| =

8∑

j=1

|∂Tj | ≥ 8λ(M). (4.46)
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However, as the geodesics γi, with 1 ≤ i ≤ 3, are (at most) 6δ0-short by construction,

the total length of these three geodesics counted with multiplicity two is bounded

by

2

3∑

i=1

|γi| ≤ 2 · 3(1 + 6δ0)λ(M) = 6(1 + 6δ0)λ(M) < 7λ(M), (4.47)

as 36δ0 < 1. The contradictory claims (4.46) and (4.47) finish the proof.

4.5 Open problems

The first open problem relates to our proof of Theorem 4.B. We proved the existence

of a universal lower bound K on the quasiconformality constant of a hyperbolic genus

zero surface. However, the proof, as it stands, does not give precise estimates of the

numerical value K (compare the example in section 4.4.1).

Open problem 5 (An explicit lower bound). Determine the numerical value of the

universal constant K whose existence was proved in Theorem 4.B.

Beyond this problem, there is the case of closed Riemann surfaces of genus ≥
2. Bonfert-Taylor, Bridgeman and Canary obtained a partial result in this direction

stating that a closed hyperbolic surface admitting a conformal automorphism with

”many” fixed points is quasiconformally homogeneous, with the quasiconformality

constant being uniformly bounded away from 1. For example, all hyperelliptic

surfaces, admitting involutions with 2(g + 1) fixed points, satisfy this fixed-point

condition, see [9] for the details. However, the case of general closed surfaces of

genus ≥ 2 remains unanswered.

Open problem 6 (Quasiconformal homogeneity of closed surfaces). Does there ex-

ist a universal constant K′ > 1 such that if M is a K-quasiconformally homogeneous

closed surface of genus ≥ 2, then K ≥ K′?
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beltrami differential, 58

Cantor set, 22

extension of a Cantor set, 8

irrational part, 33

rational part, 33

complex dilatation, 58

Denjoy counterexample, 33

dilatation, 58

domain, 13

planar, 71

essential annulus, 13

characteristic, 14

filled continuum, 7

geometric intersection number, 73

injectivity radius, 55, 73

irrational vector, 12

locally connected, 10

minimal set, 8, 11

type I, 8

type II, 8

type III, 8

non-resonant torus homeomorphism, 5

non-wandering set, 11

omega limit set, 11

pair of pants, 74

tight pair of pants, 86

permuting a dense collection of domains,

54

quasi-Sierpiński set, 9

regular set, 32

Riemann surface

extentable, 71

maximal, 71

quasiconformally homogeneous, 70

rotation number, 6

rotation set, 12

short geodesics, 80

Sierpiński set, 10
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three-circle configuration, 91

topological blowup, 34

topological entropy, 54

torus domain, 13

doubly essential, 14

essential, 14

trivial, 14

triangle

non-trivial, 90

trivial, 90

two-circle configuration, 80

upper semi-continuous decomposition, 16

wandering domain, 55

wedge, 40
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