

Hardened Steel Turned with a Rotary Cutting Tool

Vincent Dessoly Jeff Smith Sathyan Subbiah Dr. Shreyes Melkote

Hard Turning Challenges

1. Heat Generation

- Accelerated Tool Wear
- Thermal Softening
- 2. White layer formation near surface

Solution

- 1. Rotary cutting tools
 - Self-Propelled
 - Driven

Research Objectives

Assess Performance of Rotary Tools for Hard Turning

- **1. Surface Integrity Issues specifically white layer formation**
- 2. Model Temperature Distribution
 - Develop Finite Element Method (FEM) Model
 - Validate Model
 - Measure Temperature Distribution w/ IR Thermal Camera
 - Compare Rotary & Fixed Cutting Tools
- **3. Compare Tool Wear for Different Tool Materials**

FEM Model Assumptions

- 1. Cutting Edge is always SHARP
- 2. All energy involved in plastic deformation is converted into heat
- 3. Primary & secondary deformation zones are plane surfaces
- 4. Heat generated along friction interface is evenly distributed

Model Basis

Energy Partitioning Diagram

R₂ = Heat partitioning coefficient • related to tool & chip conductivity

Temperature

$$\rho_t c_t \frac{\partial T}{\partial t} - \nabla (k_t \nabla T) = \rho_t c_t \omega_r \left(-y \frac{\partial T}{\partial x} + x \frac{\partial T}{\partial y} \right)$$

Heat Flux

$$q_{f} = \frac{P_{f}}{A_{ct}}$$

$$q_{f} = \frac{FV_{cr}}{A_{ct}}$$

$$q_{f} = \frac{2 FV_{cr}}{ml}$$

Model Results

Experimental Work

Experimental Work

Setup for temperature measurements Self-Propelled Rotary Tool (SPRT) process

FT vs. SPRT Temp. Distribution

Measured FT Temperature $V_w = 10 \text{ m/min}$ f = 0.1 mm/revDOC = 0.05 mm Measured SPRT Temperature $V_w = 10 \text{ m/min}$ f = 0.1 mm/revDOC = 0.05 mm

Model vs. Experimental

SPRT Predicted vs. Measured

FT vs. SPRT

Microstructure Results

Cutting Velocity (m/min)

Fixed

Current Work

Compare Tool Wear for Different Tool Materials

- 1. Utilizing 2 rotary tool holders
 - Rotary Technology Tool Holder
 - Mitsubishi Carbide Tool Holder
- 2. Utilizing 4 rotary insert tools
 - PCBN
 - CBN-TiN coated carbide
 - Si_3N_4
 - TiN coated carbide

Cutting Insert

Rotary Cartridge

Summary

- 1. Rotary & fixed tools show different surface integrity
 - Surfaces turned with rotary tool show lower tendency to form white layer
- 2. Model & experiments result in rotary tools providing lower cutting temperatures (~50°C for these conditions) vs. equivalent circular fixed tool cutting
- 3. Fixed tool observed to wear faster than rotary tool

Acknowledgement ...

