
Using Hierarchies for Optimizing Distributed Stream
Queries

Sangeetha Seshadri, Vibhore Kumar and Brian F. Cooper
College of Computing, Georgia Institute of Technology

801 Atlantic Drive , Atlanta GA-30332
{sangeeta,vibhore,cooperb}@cc.gatech.edu

ABSTRACT
We consider the problem of query optimization in distrib-
uted data stream systems where multiple continuous queries
may be executing simultaneously. In order to achieve the
best performance, query planning (such as join ordering)
must be considered in conjunction with deployment plan-
ning (e.g., assigning operators to physical nodes). In our
scenario, the large number of network nodes, query opera-
tors, and opportunities for operator sharing between queries
means that brute force and traditional techniques are too
expensive. We propose two algorithms - the Bottom-Up al-
gorithm and the Top-Down algorithm, which utilize hier-
archical network partitions to provide scalable query opti-
mization. We present analysis that establishes the bounds
on the search-space and sub-optimality achieved by our algo-
rithms. Finally, through simulations and experiments using
a prototype deployed on Emulab [1] we demonstrate the ef-
fectiveness of our algorithms. The Top-Down algorithm, for
instance, was able to achieve, on an average, solutions that
were sub-optimal by only 10% while considering less than
1% of the search space.

1. INTRODUCTION
In many data stream systems, data is produced at multiple,
geographically distributed sources. Examples include enter-
prise supply chain applications, scientific collaborations, and
distributed network monitoring. It is often too expensive to
stream all of the data to a centralized query processor, both
because of the high communication costs, and the processing
load at the central server. Instead, performing distributed
processing of stream queries using techniques such as in-
network processing [34, 23, 3] and filtering at the source [25]
minimizes the communication overhead on the system and
helps spread processing load, significantly improving perfor-
mance. Then, we can think of a continual query as being
“deployed” in the network, with data streams flowing be-
tween operators assigned to distributed physical nodes.

The typical approach used in distributed data stream sys-

Query Planning Deployment Adaptation

Figure 1: Typical Approaches (Plan, then deploy)

Adaptationand Deployment
Query Planning

Figure 2: Our Approach. The shaded oval repre-
sents the phase where our algorithms can be used.

tems [2, 29] is to construct a query plan (such as a relational
algebra tree with a specified join ordering), deploy this plan
into the network in some intelligent way, and then adapt
the deployment at runtime to improve performance. This
approach is shown in Figure 1. However, in this approach,
several optimization opportunities may be lost: (1) the join
order we choose may require intermediate results to be trans-
ported over a long distance, when an alternate join order
would not; (2) the join order we choose may prevent us from
reusing the results of an already deployed join from another
query; (3) pushing selections to the source may similarly pre-
vent us from reusing an already deployed sub-query; and so
on. Of course, post-deployment adaptation can sometimes
find these optimizations. However, if the initially deployed
query plan is not very good, the adaptations may not find
the optimizations, and may be less effective overall.

In order to take advantage of these optimizations, the query
plan and the deployment must be considered simultaneously.
In fact, as shown in Figure 3 significant (> 50%) cost savings
can be achieved by combining the planning and deployment
phases. Our approach is summarized in Figure 2. As the fig-
ure shows, we can still use existing adaptive techniques once
the query has been deployed. The basic idea of combining
query planning and deployment has been proposed in [26,
28]; however, effective and scalable techniques for doing the
planning and deployment together must be developed.

In this paper, we examine techniques for performing query
planning in conjunction with deployment planning. A straight-
forward approach is to exhaustively enumerate all of the
possible plans and deployments. This approach is used in
traditional query planning and deployment in distributed

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

Our ApproachTypical

To
ta

l c
os

t p
er

 u
ni

t t
im

e(
in

 th
ou

sa
nd

s)

Figure 3: Comparison with typical approaches:
The graph shows the total communication cost in-
curred by 100 queries over 5 stream sources each,
on a 64-node network. The network topology was
generated using the standard network topology gen-
erator GT-ITM. Our approach that considers query
plans and deployments simultaneously reduces the
cost by more than 50% as it was able to exploit op-
timization opportunities such as operator reuse.

databases [33] which typically considers only a few database
nodes. Unfortunately, this approach is far too expensive for
networks or query plans of even moderate size. For exam-
ple, in the experiment shown in Figure 3 considering query
plans and deployments simultaneously required us to exam-
ine 2.88 × 109 plans for a single query over 5 streams and
that was only a 64 node network. (For the rest of the pa-
per, we refer to each combination of query plan and operator
placement simply as a ‘plan’.) In order to make this problem
tractable, we propose heuristics that trade some optimality
to achieve a much smaller search space. In particular, we
organize the physical nodes into a virtual hierarchy which
along with “stream advertisements” is used to guide query
planning and deployment and facilitate operator reuse. We
introduce two algorithms. In the Bottom-Up algorithm,
the query starts at the bottom of the hierarchy, and is prop-
agated up the hierarchy, such that portions of the query are
progressively planned and deployed. In the Top-Down al-
gorithm, the query starts at the top of the hierarchy, and is
recursively planned by partitioning the query and assigning
sub-queries to progressively smaller portions of the network.

Although our algorithms may not find the optimal plan,
we present analysis and experiments that show the sub-
optimality is bounded. At the same time, our algorithms
can reduce the search space by orders of magnitude com-
pared to exhaustive search. For example, experimentally,
the Top-Down algorithm was able to achieve, on average,
solutions that were sub-optimal by only 10% while consid-
ering less than 1% of the search space.

This paper presents and analyzes approximation-based al-
gorithms for the query optimization problem. In particular,
we make the following contributions:

• We present a query optimization infrastructure that has
two key components: a hierarchical clustering of network
nodes (to help simplify the optimization problem), and
stream advertisements (to enable operator reuse).

• We develop two algorithms, the Bottom-Up and Top-
Down algorithms, for finding an efficient execution plan.
These algorithms utilize the hierarchy and advertisements

Node available for
processing

Source Sink

A

Sink4

Sink3

Sink5
N2

N3

Sink1

Sink2

C

N1

N5

N4

B

Figure 4: An example network N

of our optimization infrastructure.

• We provide well-characterized bounds on the search space
and sub-optimality offered by each algorithm. We show
analytically that the Top-Down algorithm is more effec-
tive than the Bottom-Up algorithm at bounding the sub-
optimality of the deployment. While the two algorithms
have the same worst-case search space size, the Bottom-
Up offers a smaller search space on average, because it
prunes plans more aggressively.

• We present the results of an experimental study evaluat-
ing the effectiveness of our techniques, conducted using
simulations and a prototype deployed on Emulab.

1.1 An Illustrative Example
Let us examine the optimization opportunities that may be
available in a distributed data stream system where multiple
continuous queries may be executing simultaneously. Con-
sider a distributed stream system operating over a network
N shown in Figure 4. Let A, B and C represent sources of
data-streams and nodes N1−N5 be available for in-network
processing. Each line in the diagram represents a physi-
cal network link. Let us also assume that we can estimate
the expected data-rates of the stream sources and the se-
lectivities of their various attributes, perhaps gathered from
historical observations of the stream-data or measured by
special purpose nodes deployed specifically to gather data
statistics.

Imagine that the following query Q1 arrives at sink Sink4.

Q1: SELECT * FROM A./B./C WHERE FA∧FB∧FC

(FA∧FB∧FC is a filter predicate over the streams.)

1. Network-aware join ordering: Based purely on the
size of intermediate results, we may normally choose the
join order (A./B)./C. Then we would deploy the join
A./B at node N2, and the join with stream C at node
N3. However, node N2 may be overloaded, or the link
A→N2 may be congested. In this case, the network
conditions dictate that a more efficient join ordering is
(A./C)./B, with A./C deployed at N1, and the join with
B at N3.

Now, consider situations where we may be able to reuse an

already deployed operator. This will reduce network usage
(since the base data only needs to be streamed once) and
processing (since the join only needs to be computed once).
Imagine that query Q2 has already been deployed:

Q2: SELECT * FROM A./C WHERE FA∧FC

with the join A./C deployed at N1. Assume that the sink
for the query Q2 is located at node Sink3.

2. Operator Reuse: Although the optimal operator or-
dering in terms of the size of intermediate results for
query Q1 may be (A./B)./C, in order to reuse the al-
ready deployed operator A./C, we must pick the alter-
nate join ordering (A./C)./B. In contrast, if the sinks
for the two queries are far apart (say, at opposite ends of
the network), we may decide not to reuse Q2’s join; in-
stead, we would duplicate the A./C operator at different
network nodes, or use a different join-ordering. Thus,
having knowledge of already deployed queries influences
our query planning.

3. Delayed Filtering: Normally, we would push the filter
predicates FA, FB and FC towards the sources. However,
doing so may prevent us from re-using Q2’s deployed
A./C, if the predicates for Q2 are different than Q1. In
this case, we may decide to delay filtering, until after the
join; although this violates the traditional rule of thumb
for “pushing down selections,” because it enables reuse
of the join, it may be more efficient overall.

These examples show that the network conditions and al-
ready deployed operators must often be considered when
choosing a query plan and deployment in order to achieve
the highest performance.

1.2 Paper overview
The remainder of this paper is organized as follows - a formal
description of the query optimization problem is presented
in Section 2. In Section 3 we present our algorithms and
rigorously analyze their effectiveness. An experimental eval-
uation of the proposed solutions is presented in Section 4.
We discuss related work in Section 5 and finally conclude in
Section 6 with a discussion of possible future directions.

2. PROBLEM DEFINITION
We consider the query optimization problem for multiple
continuous queries that may be executing simultaneously in
a distributed data stream system. Our problem definition
addresses the continual query equivalent of ‘select-project-
join’ queries that involve simple selection, projection and
join operations on one or more data streams. The focus
of this paper is on join-ordering and selections. We leave
queries involving aggregations and unions to future work.
Joins over stream data may be performed using a variety of
techniques such as windowed joins and symmetric hash joins.
However, our system model is based on a generalized notion
of joins and is not tied to any particular technique. The
underlying system, described formally shortly, is essentially
a collection of network nodes and the links between them.
We assume that potentially, any operator can be deployed at
any node in the system. Given a query, there could possibly

be multiple execution plans that the system could follow
to produce results. We assume that all such plans produce
equivalent results.

2.1 System Definition
We now formally describe the components of our distrib-
uted data stream system. Let N(Vn, En) represent a physi-
cal network of nodes where vertices Vn represent the set of
actual physical nodes and the network connections between
the nodes are represented by the set of edges En.

Let Q represent a single continuous query and let P Q =
{pQ

1 , . . . , pQ
m} represent the set of all relational algebra query

trees (e.g. operator orderings) for query Q. Each query tree

pQ
j can be represented as a directed acyclic graph G(V Q

j , EQ
j)

where each element vQ
jk of set V Q

j represents either a source,
operator or sink. While sources and the sink have a static
association with a vertex in graph N , operator vertices can
be dynamically associated with any vertex in the graph N .
For each operator vertex vQ

u , we can estimate the selectivity
by measuring the ratio of outgoing to incoming data. For
example, filters and selective joins reduce dataflow, while
other joins may increase the dataflow.

The deployment of a query tree pQ
j over the network N is

defined as a mapping M(pQ
j , N) that assigns each vertex

vQ
jk ∈ V Q

j to a network node vnk ∈ Vn. Thus, M implies a
corresponding mapping of edges in G to edges in N . That
is, each edge eQ

juw between operators vQ
ju and vQ

jw is mapped
to the network edges along the lowest cost path between the
network nodes to which vQ

ju and vQ
jw are assigned. Thus, for

each vQ
jk ∈ V Q

j we have M(vQ
jk) ∈ Vn and similarly for each

eQ
juw ∈ EQ

j we have M(eQ
juw) ⊆ En.

2.2 Optimization Criteria
In a distributed data-stream system where communication
and processing costs are high and incurred continuously, an
optimal query execution plan should ideally try to achieve
multiple objectives - a minimum response-time while incur-
ring a minimum communication and processing cost per unit
time. However, these objectives may be conflicting, since it
is possible that lower delay paths have higher communica-
tion cost, or it may be the case that paths that incur low
communication cost can cause a processing overload at some
intervening network node. To optimize across such con-
flicting objectives we choose to use the approach suggested
in [17], where the optimization criteria is some ‘application
dependent’ cost function expressed in terms of objectives,
which in our case are the response time, communication cost
and the processing cost.

In many scenarios, such as mission critical real-time ap-
plications, the optimization criteria may degenerate to the
problem of minimizing the response-time and in other sce-
narios, like power constrained sensor networks, it may take
up a formulation that aims to minimize the communica-
tion and the processing cost. The query optimization al-
gorithms presented later in this paper are capable of incor-
porating any ‘application dependent’ cost function to find
an efficient query execution plan. Henceforth, we will use
Cost(M(pQ

i , N)) to denote the ‘application dependent’ cost

incurred by a deployment M of a query tree pQ
i of a query

Q over the network N . In particular, the sub-optimality
analysis and the experiments reported in this paper use a
cost formulation that tries to minimize the communication
cost incurred per unit time by the deployed query plan.

2.3 Optimization Problem
We now define the query-optimization problem for queries
to be deployed on a distributed data stream system.

Query-Optimization Problem: Given a query Q to be
deployed over a network N , and a (possibly empty) set of
existing query deployments D = {D1,. . . ,Dn}, find a query

tree {pQ
i } and a deployment M(pQ

i , N) for Q such that

Cost(M(pQ
i , N)) is minimum over all possible query trees

and deployments of such trees.

The problem is to find an optimal deployment for a query,
given a set of base stream sources and a set of query de-
ployments already executing on the system, by taking into
consideration operator reuse. This problem is similar to that
of computing optimal query trees in database systems while
utilizing existing materialized views [14], but takes into con-
sideration the additional dimension of network costs. Note
that it may be possible to modify existing deployments to
get a better solution. However, such modifications require
us to consider the cost of re-configurations as well. We leave
such possibilities for the future.

3. QUERY OPTIMIZATION ALGORITHMS
In order to choose an optimal execution plan, traditional
query optimizers typically use an exhaustive search of the
solution space, estimating the cost of each plan using pre-
computed statistics. Lemma 1 shows the size of the ex-
haustive search space for the query optimization problem in
distributed data stream systems.

Lemma 1. Let Q be a query over K (> 1) sources to be
deployed on a network with N nodes. Then the size of the
solution space of an exhaustive search is given by:

Oexhaustive =

�
K!× (K − 1)!

2K−1

�
× (N)(K−1)

Proof. We are given a network with N nodes, and a
query Q over K streams 〈S1,S2,. . .SK〉. The search space
is given by all plans (permutations of join-orders) and all
possible placements of each plan. The number of query re-
writings i.e. an enumeration of both linear and bushy joins
of K streams is given by:

K

2

!
+

K − 1

2

!
+ . . . +

2

2

!
=

K!× (K − 1)!

2K−1

The number of network placements of the joins in a query
with K streams in a network of size N is given by N (K−1).
Thus, the exhaustive search space Oexhaustive given by:

Oexhaustive =

�
K!× (K − 1)!

2K−1

�
× (N)(K−1)

As shown in the Lemma 1, the search space increases expo-
nentially with an increase in the query size. Certainly, in a
system with thousands of nodes such an exhaustive search
would be infeasible.

We have developed two approximation-based algorithms for
query optimization in a distributed data stream system.
Given a query and a set of sources, these algorithms find
an efficient execution plan by simultaneously taking into
consideration operator ordering, reuse and network place-
ment. Both algorithms depend on an underlying infrastruc-
ture that provides: 1. a hierarchical clustering of network
nodes based on our cost function and 2. stream adver-
tisements that allow the query planner to determine where
stream data, both base data and data derived from existing
operators, are available.

• The Bottom-Up algorithm begins by deploying a query
in the cluster containing the query sink. It then works its
way up the cluster hierarchy, progressively decomposing
the query into pieces: one that can be answered using
data streams in the local cluster, and one which must
be passed further up the hierarchy in order to discover
remote streams.

• The Top-Down algorithm starts at the top level of
the hierarchy, and performs an exhaustive search using
the whole query to find an execution plan. However, the
exhaustive search only examines a set of “representative
nodes” that approximate the properties of many other
nodes. Each of these representative nodes is assigned a
piece of the query, and similarly uses exhaustive search to
deploy that piece in its own cluster. The algorithm works
its way down the hierarchy, progressively decomposing
the query into pieces that are assigned to finer-grained
clusters.

Both algorithms avoid the cost of exhaustive search by lim-
iting the search space to subsets of the network. Moreover,
the algorithms operate in a distributed manner, using local-
ized network and data statistics, avoiding the high cost of a
centralized planner which must track the properties of the
entire network.

We now describe our algorithms in detail. First, we describe
the infrastructure that support the algorithms. Then, we
discuss each algorithm, and analyze bounds on the search
space and plan sub-optimality. Finally, we compare and
contrast the two algorithms.

3.1 Optimization infrastructure
In this section we describe the key components of our op-
timization infrastructure - hierarchical network partitions
that guide our planning heuristics and stream advertise-
ments that facilitate operator reuse.

We can tune the hierarchy to trade off between search space
size and sub-optimality by adjusting the maxcs parameter,
which bounds the maximum size of each network partition.
This tradeoff is complex, and is analyzed in detail in our
discussion of the Bottom-Up (Section 3.2) and Top-Down
(Section 3.3) algorithms.

Level 3

Level 2

Level 1

Cluster Boundaries

Coordinator Links

Figure 5: Hierarchical network clusters

3.1.1 Hierarchical Network Clusters
We organize physical network nodes into a virtual clustering
hierarchy, by clustering nodes based on our optimization cri-
teria. For example, if the metric is response-time, we cluster
based on inter-node delays. If the metric is communication
costs, we cluster based on link costs which represents the
cost of transmitting a unit amount of data across the link
connecting the two nodes. We refer to this clustering pa-
rameter as inter-node traversal cost. Nodes that are close
to each other in the sense of this clustering parameter are
allocated to the same cluster. However, we impose an upper
bound on the cluster size, specified as the maxcs parameter.

Clusters are formed into a hierarchy. At the lowest level,
i.e. Level 1, the physical nodes are organized into clusters,
in accordance with clustering parameter maxcs. Each node
within a cluster is aware of the inter-node traversal cost
between every pair of nodes in the cluster. A single node
from each cluster is then selected as the coordinator node
for that cluster and promoted to the next level, Level 2.
Nodes in Level 2 are again clustered according to average
inter-node traversal cost, with the cluster formation being
governed by the parameter maxcs. This process of clustering
and coordinator selection continues until Level N where we
have just a single cluster. An example hierarchy is shown
in Figure 5. As a result of our clustering approach we can
determine the upper bounds on the cost approximation at
each level, which is described in the following theorem.

Theorem 1. Let di be the maximum intra-cluster traver-
sal cost at level i in the network hierarchy and cact(vnj , vnk)
be the actual traversal cost between the network nodes vnj

and vnk. Then the estimated cost cl
est(vnj , vnk) between the

same network nodes at any level l is related to the actual
cost as follows:

cact(vnj , vnk) ≤ cl
est(vnj , vnk) +

i<lX
i=1

2di

Proof. At a particular level l the cost of traversal be-
tween nodes vnj and vnk is given by the inter-node traver-
sal cost between the nodes representing them at that level.
However, each node will be resolved to some node in the un-
derlying cluster at level l − 1. Inter-node traversal costs at

this level are bounded by the value dl−1. Therefore, nodes
at level l−1 will be atmost dl−1 distance away from the node
representing them at level l. Thus the inter-node traversal
costs between nodes vnj and vnk at level l − 1 is given by

cl−1
est (vnj , vnk) ≤ cl

est(vnj , vnk) + 2dl−1

. Similarly,

cl−2
est (vnj , vnk) ≤ cl−1

est (vnj , vnk) + 2dl−2

.

⇒ cl−2
est (vnj , vnk) ≤ cl

est(vnj , vnk) +

i<lX
i=l−2

2di

. This process continues down the hierarchy. At level 1,
the estimated cost is the same as the actual traversal cost.
Therefore the estimated traversal cost at level l is at mostPi<l

i=1 2di less than the actual cost.

The hierarchical organization is created and maintained us-
ing the following algorithm. When a node joins the in-
frastructure, it contacts an existing node that forwards the
join request to its coordinator. The request is propagated
up the hierarchy and the top level coordinator then assigns
the new node to the top level node that is nearest to it.
This top level node passes the request down to its child that
is closest to the new node. This child repeats the process,
which continues until the node is assigned to a bottom level
cluster. Note that similar organization strategies appear in
other domains such as hierarchies for internet routing [24],
for data aggregation in sensor networks [8] and other related
applications. However, to the best of our knowledge we are
the first to use such hierarchical approximations and cluster-
ing techniques for distributed continual query optimization.

The virtual hierarchy is robust enough to adapt as necessary.
It can handle both node joins and departures at runtime.
Failure of coordinator nodes can be handled by maintaining
active back-ups of the coordinator node within each cluster.
However, the issue of fault tolerance is beyond the scope
of this paper [22]. Note that, given a network, multiple
clustering hierarchies can be created simultaneously with
different values of the maxcs parameter.

3.1.2 Stream Advertisements
Stream Advertisements are used by nodes in the network to
advertise the stream sources available at that node. A node
may advertise two kinds of stream sources - base stream
sources and derived stream sources. We observe that each
sink and deployed operator is a new stream source for the
data computed by its underlying query or sub-query. We re-
fer to these stream sources as derived stream sources and the
original stream sources as base stream sources. As a result of
the advertisement of derived stream sources, nodes are now
aware of operators that are readily available at multiple lo-
cations in the network and can be reused with no additional
cost involved for transporting input data. The stream ad-
vertisements are aggregated by the coordinator nodes and
propagated up the hierarchy. Thus the coordinator node
at each level is aware of all the stream sources available
in its underlying cluster. Advertisements of derived stream

sources are key to operator reuse in our algorithms. The ad-
vertisements are one-time messages exchanged only at the
initial time of operator creation and deployment.

3.2 The Bottom-Up Algorithm
We now describe the Bottom-Up algorithm which propa-
gates queries up the hierarchy, progressively constructing
complete query execution plans as and when the required in-
formation is available. The algorithm is formally described
in Figure 6.

Queries are registered at their sink. When a new query Q
over base stream sources 〈S1,S2,. . .Si〉 arrives at a sink at
Level 1, the sink informs its coordinator at Level 2. The
coordinator rewrites the query Q as Q′ with respect to two
views - VQ

local and V
Q
remote where V

Q
local is composed of base

and derived sources available locally within the cluster and
V

Q
remote is composed of base sources not available locally

(steps 3-8 in Figure 6). Thus Q′ ← V
Q
local ./ V

Q
remote. The

coordinator deploys V
Q
local within the current cluster (step

10), and then advertises V
Q
local as a derived stream at the

next level. The above rewriting causes any joins between lo-
cal streams to be deployed within the current cluster, leaving
the joins of local streams with remote streams or joins be-
tween remote streams to be deployed further up in the hier-
archy. It may be noted that VQ

local may project a few columns
that are not projected in Q to facilitate the join with the
remote view. Furthermore, the remote view is composed
only of base sources since each node is only aware of derived
sources available within its own cluster and not aware of
those in remote clusters.

The coordinator then requests Q′ from its next level coor-
dinator, who similarly decomposes the query and repeats
the process (step 16). This process continues up the hi-
erarchy, with the query Q′ progressively decomposed into
locally available views and remote views and the re-written
query being requested from the current cluster’s coordina-
tor. Meanwhile, the coordinator performs an exhaustive
search, within its underlying cluster, to determine an opti-
mal execution plan for VQ

local. By limiting exhaustive searches
to only sub-queries that can be composed within a single
partition and only to the current coordinator’s partition,
the Bottom-Up algorithm is able to bound the search-space
of possible execution plans and their deployments.

By considering all possible constructions of V
Q
local that uti-

lize derived sources, the coordinator at each level takes into
account reuse of operators already existing in its underlying
cluster. When using a derived stream source, communica-
tion costs for transporting input data to the node that is
the source of the derived stream, and processing costs for
computing the result of the operator are incurred only once.
Note that if it is cheaper to duplicate operators rather than
reuse existing ones, the coordinator will do so.

3.2.1 Bounding Search Space with the Bottom-Up
Algorithm

In a network N that is organized into a clustering hierarchy,
for a query Q over K (> 1) sources the search space depends
on the clustering parameter maxcs and the resulting height

Algorithm: Bottom-Up

Input: Query Q over base-sources S[1..m] arrives at this node

Output: Deployed query plan

bottomUp (Query Q, Sources S[1..m])

1. localSources[] := {}, remoteSources[] := {};
2. for(i := 1; i < m; i++)

3. if(S[i].isVisibleAt(N))

4. localSources.addSource(S[i]);

5. else

6. remoteSources.addSource(S[i]);

7. end;

8. end;

9. localQuery := createSubQuery(Q, localSources);

//Perform exhaustive search for sub-query

//within the local cluster

10. localPlan := this.deployQuery(localQuery);

11. if(remoteSources = null)

12. return localPlan;

13. else

14. remoteSources.addSource(localPlan.sink);

15. Q′ := createSubQuery(Q, remoteSources);

16. return this.coordinator->bottomUp(Q′, remoteSources)

+ localPlan;

17. end;

Figure 6: Bottom-Up Algorithm

h(≈logmaxcsN) of the hierarchy. We define the following:

β = h(
maxcs

N
)K−1 (1)

In Theorem 2 we prove that β represents the upper bound
on the ratio of the search space of the Bottom-Up algorithm
to that of the exhaustive search. Note that as the ratio
maxcs

N
decreases linearly, β decreases exponentially. When

maxcs << N , β is orders of magnitude less than 1 and thus,
the Bottom-Up algorithm is orders of magnitude cheaper
than exhaustive search. For example, for a query over 4
streams on a network with 1000 nodes, with a maxcs value
of 100, β ≈ 0.0015.

Theorem 2. Let Q be a query over K (> 1) sources to
be deployed on a network with N nodes. Let the clustering
parameter used to organize the network into a hierarchical
cluster be maxcs and let the height of such a hierarchical
cluster be h. Let Obottom−up represent the solution space for
the bottom-up algorithm. Then,

Obottom−up ≤ βOexhaustive

Proof. We are given a network with N nodes, and a
query Q over K streams 〈S1,S2,. . .SK〉. Let σi represent
the number of streams, for query Q , requested by a node
at level i-1 and available within the partition of a single
coordinator at level i . Also, σ1 + . . . + σh = K. Let αi

represent the actual number of streams to be considered at
level i. At the level where V

Qi
remote=φ, αi=σi. At all other

levels αi=σi + 1 to take into consideration the presence of
the remote stream V

Qi
remote. Thus, α1 + . . .+αh ≤ K +h. At

any level the search space is given by all plans (permutations
of join-orders) and all possible placements of each plan. The
number of query re-writings at level i i.e. an enumeration
of both linear and bushy joins of αi streams is given by:

αi

2

!
+

αi − 1

2

!
+ . . . +

2

2

!
=

αi!× (αi − 1)!

2αi−1
(2)

The number of network placements of the joins in a query
with αi streams in a cluster of size maxcs is given by (maxcs)

(αi−1).
Thus the search space Oi at level i is given by:

Oi ≤
�

αi!× (αi − 1)!

2αi−1

�
× (maxcs)

(αi−1)

Thus the total search space in the Bottom-Up algorithm,
Obottom−up for a query Q is:

Obottom-up ≤
i≤hX
i=1

Oi (3)

Since ∀ i, αi ≤ K, and not all αi = K (since the query is
totally composed of only K streams and streams found at
each level are different), we have

Obottom−up ≤
i≤hX
i=1

�
K!× (K − 1)!

2K−1

�
× (maxcs)

(K−1)

⇒ Obottom−up ≤
�

K!× (K − 1)!

2K−1

�
× (maxcs)

(K−1) × (h)

(4)
Thus, from Lemma 1 and Equation 4 we have:

Obottom−up ≤ βOexhaustive

3.2.2 Sub-Optimality in the Bottom-Up Algorithm
The Bottom-Up algorithm partitions queries into locally
and remotely available views as the result of which all local
sources are now represented as a single source deployed at
the coordinator. This results in a pruning of the plan search
space since only join orderings between streams available
within a single cluster are considered. While the Bottom-
Up algorithm can find optimal join orderings among local
sources, the resulting overall execution plan may be sub-
optimal. As an example, consider a high volume stream Sr

that is in a remote cluster, and which we want to join with
two low volume, local streams S1 and S2. An overall optimal
plan might be to perform a selective join between Sr and S1

in the remote cluster, and then stream the resulting (low-
volume) intermediate results to the local cluster for joining
with S2. The Bottom-Up algorithm will not consider this
plan. However, note that the Bottom-Up algorithm may in-
stead stream the results of S1 ./ S2 to the remote cluster
for joining with Sr.

In the worst case the resulting deployment may be arbitrar-
ily bad making it impossible to bound the sub-optimality
of the algorithm. However, note that the situations under
which this algorithm performs badly can be well charac-
terized: the algorithm performs badly when streams avail-
able remotely have significantly higher data rates than those
available close to the sink. Therefore, it is possible to iden-
tify these scenarios a priori through static analysis of stream
rates and selectivities and use the Top-Down algorithm in
those cases.

We show in Theorem 3, that the sub-optimality of the plan
chosen by the Bottom-Up algorithm is bounded with respect
to the most optimal deployment of the same join-ordering.

Algorithm: Top-Down

Input: Query Q over base-sources S[1..m] arrives at this node

Output: Deployed query plan

topDown (Query Q, Sources S[1..m])

1. return this.topLevelCoordinator->recurse(Q, S);

recurse (Query Q, Sources S[1...m])

1. plan := this.deployQuery(Q, S);

2. n := |this.clusterSize|;

3. if(n = 0)

4. return plan;

5. else

6. {subQ[1..n],subS[1..n][]}:=distributeToClusters(plan);
7. for(i := 1; i < n; i++)

8. plan += this.cluster[i]->recurse(subQ[i], subS[i]);

9. end;

10. return plan;

12. end;

Figure 7: Top-Down Algorithm

This proves that the Bottom-Up algorithm can offer better
bounds than a random placement of the same query tree.
Thus, the Bottom-Up algorithm is ideal in situations where
the network placement of operators is a more dominant fac-
tor than join-ordering.

Theorem 3. A query Q deployed as query tree P over a
network N using the Bottom-Up algorithm is no more than

l=h−1X
l=1

(

j=2αl−1X
j=1

(

i=l−1X
i=1

2di)× sj)

sub-optimal compared to the optimal deployment of query
tree P over the same network N , where h is the number of
levels in the hierarchical organization of N , αl represents
the number of query sources found at a certain level l in the
network hierarchy, di is the maximum intra-cluster delay
at level i and sj represents the stream rate of the jth edge
deployed at that level.

Proof. Assume that the query Q has K sources, and the
network N is organized into a clustering hierarchy of height
h with {d1, d2, ...dh} as the maximum intra-cluster traver-
sal cost at the corresponding level. Let αl represent the
number of sources found at a certain level l in the network
hierarchy. The number of edges of plan P therefore deployed
at any level l is equal to 2αl - 1. If sj be the stream-rate
corresponding to the jth edge deployed at level l, the cor-
responding error is given by:

Pj=2αl−1
j=1 (

Pi=l−1
i=1 2di) × sj

(refer Theorem 1). The total error, i.e. the sum of errors
across all levels is

l=hX
l=1

(

j=2αl−1X
j=1

(

i=l−1X
i=1

2di)× sj)

3.3 The Top-Down Algorithm
The Top-Down algorithm (Figure 7) bounds sub-optimality
by making deployment decisions using bounded approxima-
tions of the underlying network; specifically, each coordina-
tor’s estimate of the distance between its cluster and other
clusters. The algorithm works as follows: The query Q is

submitted as input to the top level (say level t) coordinator
(step 1 of sub-routine topDown in Figure 7). The coordina-
tor exhaustively constructs the possible query trees for the
query, and then for each such tree constructs a set of all pos-
sible node assignments within its current cluster. The cost
for each assignment is calculated and the assignment with
least cost is chosen. An assignment of operators to nodes
partitions the query into a number of views, each allocated
to a single node at level t (step 1 of sub-routine recurse).
Each node is then responsible for instantiating such a view
using sources (base or derived) available within its under-
lying cluster. The allocated views act as the queries that
are again deployed in a similar manner at level t − 1, with
all possible assignments within the cluster being evaluated
exhaustively and the one with the least cost being chosen
(steps 6-9). This process continues until level 1, which is
the level at which all the physical nodes reside, and opera-
tors are assigned to actual physical nodes (step 3-4).

The hierarchical structure and limited size of partitions min-
imizes the expense of the exhaustive mapping performed by
each coordinator. Since each level has fewer nodes and oper-
ators are progressively partitioned and assigned to different
cluster coordinators, the search space is still much smaller
compared to a global exhaustive search.

Whenever a coordinator is exhaustively mapping a portion
of the query, it considers both base and derived streams that
are locally available. As a result, operator reuse is consid-
ered automatically in the planning process. In particular,
if the coordinator calculates that reuse would result in the
best plan, derived streams are used; otherwise, operators are
duplicated.

3.3.1 Bounding Search Space with the Top-Down Al-
gorithm

Recall our definition of β in Section 3.2.1. We now show
in Theorem 4 that β also represents the the upper bound
on the ratio of the search space of the Top-Down algorithm
to that of the exhaustive search. Note that, as the ratio
maxcs

N
decreases linearly, β decreases exponentially. When

maxcs << N , β is orders of magnitude less than 1. Thus,
the search space of the Top-Down algorithm is orders of
magnitude less than the exhaustive search space.

Theorem 4. If Otop−down represents the solution space
for the top-down algorithm, then

Otop−down ≤ βOexhaustive

Proof. The worst case search space of the Top-Down
algorithm results when all query tree nodes (sources, opera-
tors and sink) appear in the same cluster. As in the case of
Theorem 2 we compute this search space by considering all
possible query trees and all possible placements of operators
within a single cluster at each level.

We are given a network with N nodes, and a query Q over
K streams 〈S1,S2,. . .SK〉. At the top level t, we have K
streams. The search space Ot at level t follows from Equa-

tion 2 and is given by:

Ot =

�
K!× (K − 1)!

2K−1

�
× (maxcs)

(K−1)

In the worst case the coordinator at each level may assign
all streams to a single partition thereby causing the search
space to be the same at all levels. Thus, Otop−down is given
by

Otop-down ≤ h×
�

K!× (K − 1)!

2K−1

�
× (maxcs)

(K−1) (5)

Thusfrom Equation 5 and Lemma 1 we have

Otop−down ≤ βOexhaustive

3.3.2 Sub-Optimality in the Top-Down Algorithm
The Top-Down algorithm works by propagating a query
down the network hierarchy, described in Section 3.1.1. As-
sume that we are given a query Q and a network N orga-
nized as a hierarchy. At each level, the coordinator chooses
a deployment M (and hence a corresponding tree P) with
the least cost for the sub-query assigned to it, and then as-
signs the operators in this tree to nodes in its underlying
cluster. It follows from Theorem 1 that the maximum net-
work approximation is incurred at the top most level of the
network hierarchy and therefore the Top-Down algorithm is
most sub-optimal when all the edges of tree P are deployed
at the top-most level. The following theorem establishes the
bounds on sub-optimality of the top-down algorithm as com-
pared to an optimal deployment using an exhaustive search.

Theorem 5. A query Q deployed using the Top-Down
algorithm over a network N is no more than

X
ek∈EQ

(

i=h−1X
i=1

2di)× sk

sub-optimal compared to the optimal deployment of query Q
over the same network N , where h is the number of levels in
the network hierarchy of N , EQ represents the set of edges
of the tree chosen for query Q, di is the maximum intra-
cluster traversal cost at level i and sk is the stream rate for
the kth edge ek.

Proof. The maximum sub-optimality of the Top-Down
algorithm occurs only when all the edges of the tree chosen
for Q are mapped to the top-most level, i.e. no two nodes
(operators or sources or sinks) lie in the same underlying
cluster. The proof then follows directly from Theorem 1.

3.4 Bottom-Up versus Top-Down
The Bottom-Up and Top-Down algorithms bound the search
space by limiting exhaustive searches to a bounded cluster.
However, the Bottom-Up algorithm considers only a sub-
set of operators at each level thus pruning the search space
even more aggressively. As shown in Theorem 2 and 4, in
the worst case both algorithms may result in the same search
space. However, as we show in our experiments, in the aver-
age case the Bottom-Up algorithm must consider only about
50% of the plans of the Top-Down algorithm.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f p
la

ns

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 8: Bottom-Up Algorithm: Number of plans

Since the Bottom-Up algorithm prunes the search space ag-
gressively, it does not consider all join orders. In particular,
join orders where remote streams are joined before locally
available streams are not considered. As a result in the worst
case, the Bottom-Up algorithm may choose plans that are
arbitrarily bad. However, it is possible to identify these cases
a priori by considering stream data rates and join selectiv-
ities. In cases where the variation in the cost of different
join orderings of the same query is high, it may be prefer-
able to use the Top-Down algorithm, which offers tighter
bounds on the sub-optimality of the deployment. However,
if the network placement costs are the dominant factor in
deployment costs, or if deployment time is a primary con-
cern as compared to sub-optimality (which may be true in
the case of short-lived queries), the Bottom-Up algorithm
is ideal. The Bottom-Up algorithm offers smaller time-to-
deploy for queries since the algorithm completes at the low-
est level where all sources are found. On the other hand,
with Top-Down the query always traverses the entire depth
of the hierarchy.

It is possible to combine the two approaches into a hy-
brid approach. For example, we could reduce both sub-
optimality and deployment time while considering a larger
search space by beginning the Bottom-Up algorithm from
some level j > 1 higher in the clustering hierarchy. We
leave such approaches to future work.

4. EXPERIMENTS
We present both simulation based experiments and exper-
iments conducted on Emulab [1] using IFLOW [22], our
implementation of a distributed data stream system that
supports distributed deployment of continual-queries. In
particular, we show in our experiments that in the aver-
age case the Top-Down algorithm is only 10% sub-optimal
compared to an exhaustive search, while the Bottom-Up al-
gorithm is 34% sub-optimal. However, the deployment time
of the Bottom-Up algorithm is 70% less than that of the
Top-Down algorithm.

4.1 Experimental Setup
Our simulation experiments were conducted over transit-
stub topology networks generated using the standard tool,
the GT-ITM internetwork topology generator [35]. Most ex-
periments were conducted using a 128 node network, with
a standard Internet-style topology: 1 transit (e.g. “back-
bone”) domain of 4 nodes, and 4 “stub” domains connected
to the transit domain (each of 8 nodes). Link costs (per byte

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 9: Bottom-Up Algorithm: Cost

transferred) were assigned such that the links in the stub
domains had lower costs than those in the transit domain,
corresponding to transmission within an intranet being far
cheaper than long-haul links. The cost of a deployment is
the total data transferred along each link times the link cost.

We used a synthetic workload so that we could experiment
with a large variety of stream rates, query complexities, and
operator selectivities. Our workload was generated using a
uniformly random workload generator. The workload gen-
erator generated stream rates, selectivities and source place-
ments for a specified number of streams according to a uni-
form distribution. It also generated queries with the number
of joins per query varying within a specified range (2-5 joins
per query) with random sink placements. In our experi-
ments we use a cost formulation that tries to minimize the
communication cost incurred per unit time by the deployed
query plan. Therefore, as described in Section 3.1.1 our net-
work is organized into a clustering hierarchy based on link
costs which represent the cost of transmitting a unit amount
of data across the link.

4.2 Tuning Cluster Size: Tradeoff between
Sub-Optimality and Search Space

As explained in Section 3, an exhaustive search of all possible
query plans and all possible placement of operators may
not be feasible as network size increases. For example, an
exhaustive search on a 128 node network for the deployment
of a single query over 5 stream sources required enumeration
of approximately 4.83×1010 plans that took nearly 3 hours
to complete on our system.

In this section we demonstrate how the maxcs parameter
can be used to tune the tradeoff between the sub-optimality
of the heuristic and minimizing the search space. Intuitively,
a larger maxcs means: (1) larger clusters and (2) fewer lev-
els in the hierarchy. Moreover, larger clusters increase the
chance that multiple sources will be found in the same clus-
ter. The impact of these effects are studied below.

The experiments were conducted on the 128 node topology
described in Section 4.1, with 10 source streams. We aver-
aged our results over 10 workloads generated using our ran-
dom workload generator, each with a different set of place-
ments for sources and sinks. Each workload consisted of 200
queries with 2-5 joins per query.

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 0 20 40 60 80 100 120 140 160 180 200

N
um

be
r o

f p
la

ns

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 10: Top-Down Algorithm: Number of plans

4.2.1 Bottom-Up Algorithm: Effect of Cluster Size
on Search Space

In this experiment we studied the effect of the cluster size
parameter maxcs on the search space with the Bottom-Up
algorithm. Figure 8 depicts the cumulative number of plans
examined on a log scale, with varying maxcs. As the figure
shows, the number of plans increases as maxcs increases. A
maxcs value of 2 resulted in the fewest plans examined. This
is because the resulting hierarchy had small cluster sizes at
each level, and thus fewer deployment options had to be
examined.

Interestingly, we notice that a maxcs value of 32 results in
a smaller search space than a value of 16. In both cases,
the hierarchy had the same number of levels, but in the case
of maxcs = 32, the upper level clusters were smaller (since
the lower level clusters were larger.) Since many sources are
found remotely, most of the planning is done at the upper
levels, and having small cluster sizes at those levels results
in a smaller search space overall.

In contrast, a maxcs value of 64 resulted in the maximum
search space, nearly an order of magnitude larger than maxcs =
16. This is a straightforward effect of the increased prob-
ability of finding sources in a larger cluster. For example
a query over 4 streams, with all streams found within a 57
node Level 1 cluster, considers as many as 3.3× 106 deploy-
ments.

4.2.2 Bottom-Up Algorithm: Effect of Cluster Size
on Cost

The aim of this experiment was to study the impact of the
maxcs parameter on the cost of deployments obtained with
the Bottom-Up algorithm. Figure 9 shows the cumulative
deployed cost per unit time of queries deployed incremen-
tally for different values of the maxcs parameter. It can be
noticed that cost decreases as the maxcs value is increased.
For example, a maxcs value of 64 results in a 21% decrease
in cost compared to a maxcs value of 8. With smaller clus-
ter sizes, the number of levels in the hierarchy increases. As
a result, more deployments are computed at higher levels
resulting in greater approximations.

To summarize, in terms of sub-optimality, fewer levels and
more nodes per level is best. In terms of search space, fewer
nodes per level is best. A useful guideline for choosing maxcs

for the Bottom-Up algorithm is:

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

cluster size=2
cluster size=4
cluster size=8

cluster size=16
cluster size=32
cluster size=64

Figure 11: Cost using Top-Down algorithm

• Choose the largest value of maxcs that results in a search
space (using Theorem 2) that is acceptable.

4.2.3 Top-Down Algorithm: Effect of Cluster Size on
Search Space

Figure 10 shows the effect of the maxcs parameter on the
search space of the Top-Down algorithm. Note that the
y-axis has a log scale. As the figure shows, maxcs = 2
results in the smallest search space, because the top level
cluster must have at most 2 nodes. We see (as before) that
maxcs = 32 is better than maxcs = 16. Setting maxcs = 32
results in fewer nodes at the top level, where the whole query
is considered for deployment. Although maxcs = 64 also
results in a small top level cluster, in this case individual
lower level clusters have much higher probability of having
multiple sources. The result is that usually the whole query
must be passed down to a large lower level cluster, so that
many operators and deployments must be considered. In
general smaller values of maxcs results in smaller search
spaces.

4.2.4 Top-Down Algorithm: Effect of Cluster Size on
Cost

Next, Figure 11 shows the effect of the cluster size parameter
maxcs on the cost in the Top-Down algorithm. Note that
large values of maxcs (> 4) result in deployed costs that are
close to each other. The Top-Down algorithm considers all
possible operator orderings at the top-most level (regardless
of maxcs). This in turn results in a good and mostly ‘simi-
lar’ choice of operator ordering for a range of maxcs values.
However, if maxcs is too small, there are many levels in
the hierarchy. Since each level adds more inaccuracy to the
approximation, each top-level node provides a poorer pic-
ture of the underlying network. Therefore, the Top-Down
algorithm makes poorer planning decisions.

To limit sub-optimality, we need a reasonably large maxcs

(to avoid the above effect.) To bound search space, we need
a small maxcs. Therefore, a useful guideline for choosing
maxcs for the Top-Down algorithm is:

• Choose the smallest value of maxcs that is large enough
so that the height of the hierarchy results in reasonable
sub-optimality (based on Theorem 5).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 20 40 60 80 100 120 140 160 180 200

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

Top-Down without reuse
Top-Down with reuse
Bottom-Up without reuse
Bottom-Up with reuse
Exhaustive

Figure 12: Effect of reuse and comparison with ex-
haustive search

4.3 Effect of Reuse and Comparison with Ex-
haustive Search

We now examine the effect of operator reuse in the Bottom-
Up and Top-Down algorithms. Figure 12 shows the cumu-
lative cost of deployment using exhaustive search and the
two algorithms both with and without operator reuse. The
maxcs parameter was set to 32. We chose this value of
maxcs based on the above guideline for the Bottom-Up al-
gorithm; and we used the same value for the Top-Down to
provide apples-to-apples comparison. Operator reuse was
implemented through stream-advertisements. The commu-
nication cost of advertisements was negligible compared to
the data streams themselves. The figure shows that the
Bottom-Up algorithm benefits by nearly a 30% decrease in
cost per unit time through operator reuse, while the Top-
Down algorithm achieves cost saving of 27% per unit time
through operator reuse.

Figure 12 also allows us to compare the deployed costs of the
two algorithms with an exhaustive search. As can be seen,
the Top-Down algorithm with reuse performs nearly 19%
better than the Bottom-Up algorithm with reuse. This is
because the Bottom-Up algorithm may choose a sub-optimal
plan since it does not consider an ordering of all operators
at any level, unlike the Top-Down algorithm. When com-
pared to an exhaustive search, the Bottom-Up algorithm
with reuse, performs sub-optimally by only 34% and the
Top-Down algorithm by only 10%. This shows that the
sub-optimality due to the approximations made by the al-
gorithms is minimal. We show in our next experiment that
both algorithms effect a massive decrease in search space.

4.4 Scalability with Network Size
In this experiment we study the scalability of the algorithms
with respect to the number of deployments considered as
network size increases. We generated a workload of 100
queries using 10 stream sources with each query performing
joins over 4 streams. We measured the average number of
deployments considered for queries in this workload over 4
different transit-stub topologies of different sizes generated
using GT-ITM. Again, sinks were placed at random nodes
in the network. Figure 13 shows the deployments consid-
ered for a single query with Bottom-Up and Top-Down al-
gorithms with maxcs 32 and exhaustive search. The figure
also shows how the average case (experimental) compares
with the worst case (theoretical) analytical bounds. Note

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

1024512256128

N
um

be
r o

f p
la

ns

Network size

Top-Down
Bottom-Up
Exhaustive

AnalyticalBounds

Figure 13: Average number of plans

that the y-axis has a log scale. Again, the value of maxcs

was set to 32 to produce the largest feasible search space.
Note that the increase in Oexhaustive is offset by the decrease
in β such that the worst case bounds are nearly identical
across the different networks.

The values for exhaustive search were calculated using Lemma 1
while the analytical bounds was calculated using Theorems 2
and 4. Clearly, performing exhaustive searches in such sys-
tems is infeasible. Both the Top-Down and Bottom-Up al-
gorithms decrease the search space by at least 99%. We
also see that the search space per query in the Bottom-Up
algorithm is nearly 45% less than that of the Top-Down al-
gorithm. This can be attributed to the early splitting of
queries between levels in the Bottom-Up algorithm result-
ing in fewer operators being considered for placement at each
level. Meanwhile, the Top-Down algorithm must consider all
operator deployments at all levels in the hierarchy.

Although the search space of Top-Down and Bottom-Up al-
gorithms seems to first decrease with network size and then
increase, note that this is only a particular characteristic of
our sample networks. For example, clustering using maxcs

32 resulted in an average Level 1 cluster size of 26 with a
128-node network, and 15 with a 510-node network. Thus
the search space for a 510-node network is less than that of
the 128 node network. Note that the search space, while
being limited by the maxcs parameter, is affected by the
average cluster size too, which depends on the particular
network topology.

4.5 Prototype Experiments
The next set of experiments was conducted on Emulab us-
ing IFLOW [22], our implementation of the distributed data
stream system which supports hierarchies and advertise-
ments as described earlier. The testbed on Emulab consisted
of 32 nodes (Intel XEON, 2.8 GHz, 512MB RAM, RedHat
Linux 9), organized into a topology that was again gener-
ated with GT-ITM. Links were 100Mbps and the inter-node
delays were set between 1msec and 6msec. The query work-
load for the following experiments consisted of 25 queries
over 8 stream sources. The number of streams per query
varied from 2 to 4.

4.5.1 Deployment Time
The first experiment conducted on Emulab was meant to
validate our claim about the stricter search space bounds

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

432

Ti
m

e
(in

 se
co

nd
s)

Size of query (number of streams)

Bottom-Up (cluster size=4)
Bottom-Up (cluster size=8)
Top-Down (cluster size=4)
Top-Down (cluster size=8)

Figure 14: Query deployment time

offered by the Bottom-Up algorithm. Figure 14 shows the
average deployment time in seconds for different query sizes.
We observe that the deployment times of the Bottom-Up al-
gorithm is almost 70% less than that of the Top-Down algo-
rithm. This can be attributed to two factors: (1) the smaller
search space in the Bottom-Up algorithm, and (2) the fact
that the Top-Down algorithm must always traverse the en-
tire depth of the network hierarchy. We also observe that
the deployment time of the Top-Down algorithm decreases
with increasing maxcs value. This is due to the fact that
more levels need to be traversed for lower maxcs values,
hence resulting in higher deployment times.

4.5.2 Deployment Cost
In this experiment, we studied the cost of deployments with
the Bottom-Up and Top-Down algorithms for different val-
ues of maxcs. Figure 15 shows the cumulative cost in-
curred per unit time over 25 queries. We observe that the
Top-Down algorithm offers a lower deployed cost than the
Bottom-Up algorithm. This is in alignment with our simu-
lation results. Since the Top-Down algorithm considers all
operator orderings at the top-most level this algorithm leads
to the selection of a better execution plan.

5. RELATED WORK
Distributed query optimization has received a great deal of
attention from researchers since the 1980s [21]. Classic ef-
forts in this area include R∗ [33], Distributed INGRES [31]
and SDD-1 [9]. Both the R∗ algorithm and the Distrib-
uted INGRES algorithm execute at a master site. Since our
system may consist of thousands of nodes, it is infeasible to
maintain all network information at a single node or perform
exhaustive searches for an optimal deployment. Note that
our notion of local and global views is with reference to the
actual network locations of sources and cluster boundaries.
This is very different from the LAV, GAV and GLAV [18]
concepts used for schema mapping in data-integration sys-
tems. Also, our algorithms primarily deal with performance
issues and require orthogonal research in semantic issues
such as schema mapping and transformation [27].

A number of data-stream systems such as STREAM [5],
Borealis [2], TelegraphCQ [10] and NiagaraCQ [13] have
been developed to process queries over continuous streams
of data. Approaches to query optimization in centralized
stream processing systems have explored use of techniques
like common sub-expression elimination and commutative

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25

To
ta

l c
os

t p
er

 u
ni

t t
im

e
(in

 th
ou

sa
nd

s)

Number of queries

Bottom-Up (cluster size=4)
Bottom-Up (cluster size=8)
Top-Down (cluster size=4)
Top-Down (cluster size=8)

Figure 15: Utility with Bottom-Up and Top-Down
algorithms

ordering of operators [7, 12]. There has also been an effort in
moving towards distributed processing of stream queries [2,
29] in general and query optimization [4, 32] in these sys-
tems in particular. Novel systems like Eddies [16, 4] have
also used a tuple-by-tuple routing approach to adaptively
decide the execution plan of a query. The paradigm of in-
network query processing has been used earlier in sensor
networks [23, 34]. The use of this technique in stream based
systems to decide operator placement when the query tree
is already known is described in [3] and a heuristic based
approach for the same problem is presented in [26]. Op-
timal placement for a single query on a sensor network is
considered in [30]. However, we consider the more generic
problem of selecting an optimal plan and do so by simulta-
neously considering operator ordering and placements.

Although our algorithms utilize stream rates and statistics
we do not deal with the issue of computing and maintaining
these statistics. Rate-based and sliding-window approaches
have been described elsewhere for computing statistics in
data stream systems [6, 32]. The problems of common sub-
expression elimination and operator reuse in our distributed
stream processing system, overlaps to some extent with the
problems of view selection, maintenance and reuse [20, 11,
19]. However, our solution space is compounded by the
need to additionally consider network costs. The problem
of multi-query optimization in distributed data stream sys-
tems was defined in [28], but that work only sketched out
preliminary solution approaches. We build upon this work
by presenting detailed algorithms for query optimization,
and conducting an in-depth experimental study of their ef-
fectiveness. Note that our algorithms can be applied to the
task scheduling problem [15] in distributed systems, but are
designed to deal with distribution at a much larger scale.

6. CONCLUSION & FUTURE WORK
We described the query-optimization problem in distributed
data-stream systems and illustrated how traditional data-
base paradigms may not apply to such systems. We demon-
strated through our experiments that selection of an opti-
mal execution plan in such systems must consider operator
ordering, network placement and operator reuse. We pre-
sented a query optimization infrastructure that has two key
components: a hierarchical clustering of network nodes that
allow network approximations and stream advertisements
that enable operator reuse. We described algorithms Top-
Down and Bottom-Up that find efficient execution plans

while examining a very small search space. Experimen-
tal and analytical results showed that both algorithms of-
fer costs that are comparable to that provided by an ex-
haustive search while exploring much fewer plans. In on-
going work we are exploring run-time reconfiguration of de-
ployments, and other optimization opportunities achievable
through query containment.

7. REFERENCES
[1] Emulab - network emulation testbed.

http://www.emulab.net/.

[2] D. J. Abadi et al. The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on
Innovative Data Systems Research (CIDR 2005),
Asilomar, CA, January 2005.

[3] Y. Ahmad and U. Cetintemel. Network-aware query
processing for stream-based applications. In VLDB,
2004.

[4] R. Avnur and J. M. Hellerstein. Eddies: continuously
adaptive query processing. In SIGMOD, 2000.

[5] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In PODS, 2002.

[6] B. Babcock, M. Datar, R. Motwani, and
L. O’Callaghan. Maintaining variance and k-medians
over data stream windows. In PODS, 2003.

[7] S. Babu, R. Motwani, K. Munagala, I. Nishizawa, and
J. Widom. Adaptive ordering of pipelined stream
filters. In SIGMOD, 2004.

[8] J. Beaver and M. A. Sharaf. Location-aware routing
for data aggregation for sensor networks. In Geo
Sensor Networks Workshop, 2003.

[9] P. A. Bernstein et al. Query processing in a system for
distributed databases (sdd-1). ACM Trans. Database
Syst., 1981.

[10] S. Chandrasekaran et al. TelegraphCQ: Continuous
dataflow processing for an uncertain world. In CIDR,
2003.

[11] S. Chaudhuri, R. Krishnamurthy, S. Potamianos, and
K. Shim. Optimizing queries with materialized views.
In ICDE, 1995.

[12] J. Chen, D. J. DeWitt, and J. F. Naughton. Design
and evaluation of alternative selection placement
strategies in optimizing continuous queries. In ICDE,
2002.

[13] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang.
NiagaraCQ: A scalable continuous query system for
internet databases. In SIGMOD, 2000.

[14] R. Chirkova and C. Li. Materializing views with
minimal size to answer queries. In PODS, 2003.

[15] R. Chow and T. Johnson. Distributed Operating
Systems and Algorithms. Addison-Wesley Longman,
Reading, MA, 1997.

[16] A. Deshpande and J. Hellerstein. Lifting the burden of
history from adaptive query processing. In VLDB,
2004.

[17] R. Epstein, M. Stonebraker, and E. Wong. Distributed
query processing in a relational data base system. In
SIGMOD, 1978.

[18] M. Friedman, A. Levy, and T. Millstein. Navigational
plans for data integration. In AAAI, 1999.

[19] J. Goldstein and P.-A. Larson. Optimizing queries
using materialized views: a practical, scalable
solution. In SIGMOD, 2001.

[20] A. Y. Halevy. Answering queries using views: A
survey. VLDB Journal, 2001.

[21] D. Kossmann. The state of the art in distributed
query processing. ACM Comput. Surv., 2000.

[22] V. Kumar et al. Implementing diverse messaging
models with self-managing properties using IFLOW.
In IEEE International Conference on Autonomic
Computing, 2006.

[23] S. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong. TAG: a tiny aggregation service for ad-hoc
sensor networks. In OSDI, 2002.

[24] J. Moy. OSPF version 2, request for comments 2328.
1998.

[25] C. Olston, J. Jiang, and J. Widom. Adaptive filters
for continuous queries over distributed data streams.
In SIGMOD, 2003.

[26] P. Pietzuch, J. Ledlie, J. Shneidman,
M. Roussopoulos, M. Welsh, and M. Seltzer.
Network-aware operator placement for
stream-processing systems. In ICDE, 2006.

[27] E. Rahm and P. A. Bernstein. A survey of approaches
to automatic schema matching. VLDB Journal, 2001.

[28] S. Seshadri, V. Kumar, and B. F. Cooper. Optimizing
multiple queries in distributed data stream systems.
In 2nd Workshop on Networking Meets Database
(NetDB), in conjunction with ICDE, 2006.

[29] M. Shah, J. Hellerstein, S. Chandrasekaran, and
M. Franklin. Flux: An adaptive partitioning operator
for continuous query systems. In Technical Report
CS-02-1205, U.C. Berkeley, 2002.

[30] U. Srivastava, K. Munagala, and J. Widom. Operator
placement for in-network stream query processing. In
PODS, 2005.

[31] M. Stonebraker. The design and implementation of
distributed INGRES. The INGRES papers: anatomy
of a relational database system, 1986.

[32] S. D. Viglas and J. F. Naughton. Rate-based query
optimization for streaming information sources. In
SIGMOD, 2002.

[33] R. Williams et al. R*: An overview of the architecture.

[34] Y. Yao and J. Gehrke. The cougar approach to
in-network query processing in sensor networks.
SIGMOD Rec., 2002.

[35] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee.
How to model an internetwork. In Infocom, 1996.

